Education
My research program explores the interactions among biomaterials, innate immune cells and adsorbed proteins to better understand the underlying mechanisms that drive host responses to implanted biomedical materials and devices. Specifically, we are interested in defining the contributions tissue-derived proteins and other macromolecules within adsorbed protein layers on biomaterial surfaces, and studying activation of pattern recognition pathways in responding inflammatory cells, such as macrophages. The goal of our research is advance biomaterial science and improve material-tissue integration by better understanding the mechanisms driving host responses and foreign body reactions. In parallel, we are also developing rapid-throughput models for screening novel biomaterial candidates through non-invasive imaging to assess biocompatibility and host responses, as well as in vivo material characterization.
Fitzpatrick Lab trainees are eligible to apply to the Queen's Collaborative Biomedical Engineering (CBME) graduate program.
This course will provide students with a fundamental understanding of cell biology, human physiology and the application of engineering principles (momentum and mass transfer, mechanics, materials) for the solution of medical problems. Topics include: Cell Biology, Anatomy and Physiology, Transport Phenomena in the Body, Biomechanics, Materials in Medicine, and Regenerative Medicine and Tissue Engineering.
This course is designed as a graduate level introductory course in tissue engineering: the interdisciplinary field that encompasses biology, chemistry, medical sciences and engineering to design and fabricate living systems to replace damaged or diseased tissues and organs. Topics to be discussed include: tissue anatomy, basic cell biology, cell scaffolds, cell sources and differentiation, design considerations, diffusion and mass transfer limitations, effects of external stimuli, bioreactors, methods used to evaluate the engineered product(s), and implantation. Case studies of specific tissue engineering applications will also be discussed. Students will be required to participate in, as well as lead, discussions on the course material and relevant journal articles.
Journal Articles
Book Chapters
Funding