Leon Boegman PhD, P.Eng.

Professor

Civil Engineering, Faculty
Phone: 613-533-6717
Fax: 613-533-2128
Ellis Hall, Room: 228

Twitter  


Expertise: Environmental fluid dynamics, physical limnology and water-quality, shoaling internal solitary waves, turbulence in stratified flows, hydrodynamic modelling, coastal oceanography, quantitative imaging techniques
Leon Boegman
Biography Research Teaching Publications Graduate Students Open Positions

Biography

Education

  • Doctor of Philosophy (PhD) - Environmental Fluid Dynamics (2004)
    Centre for Water Research, Department of Environmental Engineering
    University of Western Australia
  • Master of Applied Science (MASc) - Environmental Fluid Dynamics (1999)
    Department of Mechanical and Industrial Engineering
    University of Toronto
  • Bachelor of Engineering (BEng) (1997)
    Department of Civil Engineering and Applied Mechanics
    Environmental Engineering Minor
    McGill University

Selected Appointments

  • Associate Editor: Limnology and Oceanography
  • Associate Editor: Journal of Great Lakes Research
  • Section Editor: Inland Waters
  • Formerly: Scientific Advisory Committee: Great Lakes Fishery Commission
  • Adjunct Professor: Department of Integrative Biology, University of Guelph; Department of Civil Engineering, University of Alberta, Department of Biology, University of Waterloo
  • Member, Professional Engineers of Ontario

Engineering Experience

  • Engineering Consultant - Consulting projects for Environment and Climate Change Canada, Ontario Ministry of the Environment and Climate Change, Ontario Ministry of Natural Resources and Fisheries, Conservation Authorities and Municipalities.
  • Post-Doctoral Researcher - Computational Fluid Dynamics and Ocean Process Modeling (2005)
    Scripps Institution of Oceanography, University of California San Diego
  • Post-Doctoral Researcher - Geophysical Fluid Dynamics Laboratory (2004)
    School of Environmental Systems Engineering, University of Western Australia
  • Research Associate - Environmental Fluid Dynamics Laboratory (1999-2000)
    Department of Mechanical and Industrial Engineering, University of Toronto
  • Research Assistant - Environmental Hydraulics (1997)
    Department of Civil Engineering and Applied Mechanics, McGill University
  • Environmental fluid dynamics
  • Sediment resuspension
  • Coastal oceanography
  • Hydrodynamic and water quality modelling
  • Physical limnology and physical-biogeochemical coupling
  • Internal waves, turbulence and mixing in stratified flows
  • Impacts of climate change on water quality and fish habitat
My research activities focus on transport and mixing processes in the aquatic environment and their impact upon water quality.  Recently, my lab has been developing process-based models to aid lake management.  This includes models and parameterizations for deep-water oxygen concentrations, turbulent mixing, sediment resuspension, harmful algae blooms and the impacts of both climate change and offshore infrastructure development on water resources. Selected research themes include:
Internal waves, turbulence and mixing in stratified flows:
Field measurements are collected and computational models are applied to investigate the circulation and mixing dynamics in lakes and coastal oceans.  Recent work has focused on developing parameterizations for turbulent diffusivity from temperature microstructure measurements and improving observation of turbulent dissipation in bottom boundary layers.
(embedded link to youtube video: https://www.youtube.com/watch?v=tHQATFyMg8I&feature=emb_title)
Video of internal wave generation in tilting tank experiment (top) and false colour video of breaking internal solitary wave (bottom).  The lower panel is indicated as a gray shaded region in the upper panel.  From Boegman, Ivey and Imberger (2005; Limnol. Oceanogr.)
 
Sediment resuspension in lakes and coastal oceans:
Lab experiments and field-scale numerical models are being applied to understand how wave-generated currents resuspend sediment material in lakes and coastal oceans.
(embedded link to youtube video: https://www.youtube.com/watch?time_continue=1&v=84_p6IR9Oq4&feature=emb_logo)
True-color bed sediment response to passage of an internal solitary wave of depression.  The pycnocline is shown in green and the sediments appear orange. From Aghsaee and Boegman (2015;J. Geophys. Res.).
 
Hydrodynamic and water quality modelling in lakes:
Computer models have developed to the stage where they can be routinely applied by managers, engineering consultants and researchers for diagnostic and prognostic simulations of aquatic hydrodynamics and water quality (e.g., effects of nutrient loads on eutrophication).  My group is developing and applying computer models for management of the Great Lakes and inland waters.
(embedded link to youtube video: https://www.youtube.com/watch?v=COOWoaIKVj0&feature=emb_title)
Modelled spring through fall temperature and dissolved oxygen contours in Lake Erie during 1994.   Note hypoxic bottom water in central basin.  From Boegman, Loewen, Culver, Hamblin and Charlton (2008; J. Environ. Eng.).
 
Development of calibration-free Sediment Oxygen Demand models:
The Sediment Oxygen Demand (SOD) is a parameter that regulates deep water oxygen concentrations in lakes and reservoirs.  However, in computer based lake management models, the SOD is typically a constant variable that is tuned so that model results match observations.  This has no predictive value.  My group is performing high-resolution numerical simulations and analyzing field data to develop calibration-free SOD algorithms.
(embedded link to youtube video: https://www.youtube.com/watch?v=1OMQIjZT7_A&feature=emb_title)
Contours of instantaneous wall-shear stress (top), mass flux at the sediment water interface (middle) and dissolved oxygen concentration at the sediment water interface (bottom).  Black arrows highlight different transport events.  From Scalo, Piomelli and Boegman (2012; Phys. Fluids).
 
Ice modelling in lakes:
Ice cover algorithms are being developed to enable lake management models to be run through winter.
Modelled ice thickness on Lake Ontario during winter 2006–2007. From Oveisy, Boegman and Imberger (2012; Limnol. Oceanogr.).
 
Shoreline protection: Wind farm effects, wave uprush
Management of wastewater stabilization and stormwater ponds:
Effects of climate change on fish habitat and harmful algae blooms
 

Undergraduate courses

CIVL 451 - Lake, Reservoir and Coastal Engineering

The fundamental hydraulic processes regulating lake hydrodynamics, reservoir operation, and coastal engineering are discussed. Topics include wave theory, wave measurement, wave record analysis, wave transformation, seiches, tides, storm surges, turbulent mixing and transport of pollutants. Student projects are assigned on computational reservoir modeling, analysis of field data and reservoir operation as well as the design of breakwaters and ocean structures and the use of hydraulic and numerical coastal models. Prerequisites: CIVL 350 or permission of the instructor.
CIVL 350 - Hydraulics II
Topics in open channel flow including friction, specific energy, free-surface profiles, culverts and hydraulic-jump energy dissipaters. Lake dynamics and environmental hydraulics will be introduced. The basic underlying concepts of water resources and hydrology will be discussed. (0/5/0/10/33)
CIVL 260 - Civil Engineering Design I
The objectives of this introductory course are: to introduce students to engineering design and the challenges and excitement of the civil engineering profession; to develop written and oral communications skills; to develop an appreciation and ability for teamwork, creativity and time/project management; to develop skills in idea generation, creative problem solving, and research; and to develop skills in using computer applications in engineering design and analysis. The course exposes students to civil engineering design through case studies and group projects. Students are expected to learn about the design process through practice and, where possible, through implementation. Design projects are team-based and as such students need to learn how to work effectively with their peers. Sketching and AutoCAD are also be introduced and used. The design principles and concepts introduced will be used in follow-on courses throughout students' degrees. (0/0/12/12/24)
Graduate courses
CIVL 852 - Environmental Fluid Dynamics
Topics to include: conservation equations for turbulent flows; wall-bounded shear flows; spectral dynamics; measurement and modelling of mixing and dissipation in stratified flows; stability of stratified flows; linear, nonlinear and dispersive waves; internal wave breaking; convection. Theory will be discussed with reference to field observation, computational and laboratory modelling of lake and ocean flows. Three term-hours, winter.
CIVL 855 (Subtopic) - Hydrodynamics of Lakes, Reservoris and Coastal Oceans
This introductory level graduate course covers the fundamental geophysical fluid dynamics processes occurring in lakes, reservoirs and coastal oceans. Topics include: wave theory, wave measurement, wave record analysis, wave transformation, seiches, Rossby, Kelvin and Poincare waves, Ekman dynamics, tides, storm surges, nonlinear internal waves, turbulent dissipation and mixing.

Google Scholar Citation Profile

Journal Papers: Submitted (students and post-docs in bold)

Shukla, R., Boegman, L. Kumar, P. and Mishra, M. Identifying climate factors driving harmful algal blooms in a large shallow lake using causal machine learning.

Ghassemi, A. and Boegman, L.  Sediment resuspension and transport by fission of nonlinear internal waves over a mild slope.

Wang, Q., Nakhaei, N. and Boegman, L. Calibration versus computation: Comparison between 1D and 3D phytoplankton simulations in western Lake Erie.

Wang, Q., Boegman, L., Nakhaei, N. and Ackerman, J.  Long-term three-dimensional simulation of Lake Erie phytoplankton.

Dippold, D., Budnik, R., Wang, Q., Boegman, L. and Ludsin, S. Modeling historical trends in larval stage duration of Lake Erie walleye to evaluate climate change impacts.

Hurtado Caicedo, D., Boegman, L., Hoffman, H. and Jabbari, A. Prediction of future methane emissions using a small-lake model for coupled climate modelling application.

Boegman, L., Nakhaei, N. and Yerubandi R Rao. Two-dimensional hydrodynamic-biogeochemical modelling of Lake Winnipeg for eutrophication management. 

Journal Papers: Published and In-press (students and post-docs in bold)

77. Lin, S., Boegman, L., Jabbari, A., Valipour, R. and Zhao, Y. 2023. Observation and parameterization of bottom shear stress and sediment resuspension in a large shallow lake. (Accepted). Earth and Space Science.

76. Zahedi, S., Ghassemi, A., and Boegman, L. 2023. Bolus degeneration on uniform slopes. Estuarine, Coastal and Shelf Science.  https://doi.org/10.1016/j.ecss.2022.108190

75. Ghane, A. and Boegman, L. 2023. The dissolved oxygen budget of a small Canadian Shield lake during winter. Limnol Oceanogr. https://doi.org/10.1002/lno.12265

 74. Elbagoury, D.H., Boegman, L. and Yerubandi R. Rao.  2023. Modelling river plume dynamics in a large wind-forced embayment. J. Hydraulic Engineering ASCE. https://ascelibrary.org/doi/abs/10.1061/JHEND8.HYENG-13238

73. Mahyari, F.G., Boegman, L., Rey, A., Mulligan, R., Champagne, P., Filion, Y., and da Silva, A.M.F. 2023. Evaluation of a three-dimensional hydrodynamic and water quality model for design of wastewater stabilization ponds. J. Environmental Engineering ASCE. https://ascelibrary.org/doi/epdf/10.1061/JOEEDU.EEENG-6987

72. Swatridge, L., Mulligan, R., Shan, S., Valipour, R. and Boegman, L. (2022) Coupled modelling of storm surge, circulation and surface waves in a large stratified lake. J. Great Lakes Res. https://doi.org/10.1016/j.jglr.2022.08.023

71. Golub, M. and 63 co-authors including L. Boegman.  2022. A framework for ensemble modelling of climate change impacts on lakes worldwide: the ISIMIP Lake Sector. Geoscientific Model Development https://doi.org/10.5194/gmd-2021-433

70. Dorostkar, A., Boegman, L., Schweitzer, S. and Pollard, A. 2022. Three-dimensional numerical simulation of basin-scale internal waves in a long narrow lake. Environ. Fluid Mec. https://doi.org/10.1007/s10652-022-09868-z

69. Ghassemi, A., Zahedi, S.  and Boegman, L. 2022. Bolus formation from fission of nonlinear internal waves over a mild slope. J. Fluid Mech., vol. 932, A50, doi:10.1017/jfm.2021.1033

68. Lin, S., Boegman, L., Shan, S. and Mulligan, R. 2022. An automatic lake-model application using near real-time data forcing:  Development of an operational forecast model for Lake Erie. Geoscientific Model Development 15, 1331–1353  https://doi.org/10.5194/gmd-15-1331-2022

67. Boegman L. 2022. Currents in Stratified Water Bodies: Internal Waves. In: Encyclopedia of Inland Waters. Encyclopedia of Inland Waters, Second Edition.  Oxford: Elsevier.  https://doi.org/10.1016/B978-0-12-819166-8.00067-0 *Invited contribution*

66. Bolkhari, H., Boegman, L. and Smith, REH. 2021. Simulated impacts of climate change on Lake Simcoe water quality.  Inland Waters DOI: 10.1080/20442041.2021.1969190

65. Nakhaei, N., Boegman, L. Mehdizadeh. M. and Loewen, M.R.L. 2021. Three-dimensional biogeochemical modeling of eutrophication in Edmonton stormwater ponds. Ecological Modelling, v. 456, https://doi.org/10.1016/j.ecolmodel.2021.109684.

64. Ghane, A. and Boegman, L. 2021. Turnover in a small Canadian Shield lake. Limnol. Oceanogr. https://doi.org/10.1002/lno.11884

63. Yerubandi R. Rao, Boegman, L., Zhang, W., Oveisy, A., Bolkhari, H., and Zhao, J. 2021. Surface meteorology, hydrology and physical limnology features of the Bay of Quinte. In Ecology of the Bay of Quinte: Health, Management and Global Implications, Aquatic Ecoststem Health & ManagementEds. C.K. Minns, M. Munawar and M.A. Koops. 12-27.

62. Zahedi, S.Aghsaee, P., and Boegman, L.  2021. Internal solitary wave bottom boundary layer dissipation. Phys. Rev. Fluids. 6(7) 16 pp https://link.aps.org/doi/10.1103/PhysRevFluids.6.074802

61. Wang, Q., and Boegman, L. 2021. Multi-year simulation of western Lake Erie hydrodynamics and biogeochemistry to evaluate nutrient management scenarios. Sustainability. 13,7516. https://doi.org/10.3390/su13147516

60. Lin, S., Boegman, L. Valipour, R., Bouffard, D., Ackerman, J.D. and Zhao, Y. 2021. Reynolds-averaged modeling of sediment resuspension in a large shallow lake. J. Great Lakes Res. https://doi.org/10.1016/j.jglr.2021.04.014

59. Rey, A. Mulligan, R., Filion, Y., da Silva, AMF, Champagne, P. and Boegman, L. 2021. Temperature stratification in an operational waste stabilization Pond. J. Environmental Engineering ASCE. 147(6) https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29EE.1943-7870.0001876

58. Jabbari, A., Ackerman, J.D.A., Boegman, L. and Zhao. Y. 2021. The effect of increased frequency of extreme wind events on lake biogeochemistry. Nature Scientific Reports. https://www.nature.com/articles/s41598-021-84961-9

57. Jabbari, A. and Boegman, L. 2021. Parameterization of oscillating boundary layers in lakes and coastal oceans.  Ocean Modelling. https://doi.org/10.1016/j.ocemod.2021.101780

56. Nakhaei, N., Bouffard, D., Ackerman, J.D., Yerubandi, R. Rao and Boegman, L. 2021. Empirical modeling of hypolimnion and sediment oxygen demand in lakes.  Inland Waters https://doi.org/10.1080/20442041.2021.1880244

55. Lin, S., Boegman, L., and Yerubandi R. Rao. 2021. Mixing and dissipation of turbulent kinetic energy in Lake Erie.  J. Great Lakes Res. 47(1):  168-179. https://doi.org/10.1016/j.jglr.2020.11.014

54. Rey, A., Mulligan, R., Filion, Y., da Silva, A.M., Champagne, P. and Boegman, L. 2021. Three-dimensional hydrodynamic behaviour of an operational wastewater stabilization pond.  J. Environmental Engineering ASCE. 147(2): https://doi.org/10.1061/(ASCE)EE.1943-7870.0001834

53. Nakayama, K., Sato, T., Tani, K., Boegman, L., Fujita, I., and Shintani, T. 2020.  Breaking of internal Kelvin waves shoaling on a slope.  J. Geophys. Res. 125, https://doi.org/10.1029/2020JC016120

52. Jabbari, A., Boegman, L., Valipour, R., Wain, D. and Bouffard, D. 2020. Dissipation of turbulent kinetic energy in the oscillating bottom boundary layer of a large shallow lake. J. Atmos. Ocean Tech. 37(3) 517-531. https://doi.org/10.1175/JTECH-D-19-0083.1

51. Boegman, L. and Stastna, M. 2019. Sediment resuspension and transport by internal solitary waves.  Ann. Rev. Fluid. Mech. https://doi.org/10.1146/annurev-fluid-122316-045049 **Invited contribution**

50. Jabbari, A., Ackerman, J.D., Boegman, L. and Zhao, Y. 2019. Episodic hypoxia in the western basin of Lake Erie. Limnol. Oceanogr.  https://doi.org/10.1002/lno.11180

49. Nakayama, K., Sato, T., Shimizu, K. Boegman, L. 2019. Classification of internal solitary wave breaking over a slope. Phys. Rev. Fluids. https://doi.org/10.1103/PhysRevFluids.4.014801

48. Nakhaei, N., Boegman, L.. Mehdizadeh. M. and Loewen, M.R.L. 2018. Hydrodynamic modelling of Edmonton storm-water ponds.  Environ. Fluid Mech. https://doi.org/10.1007/s10652-018-9625-5

47. Nakayama, K., Sato, K., Boegman, L. and Shimizu, K. 2017. Categorization of internal solitary wave breaking on a uniform slope.  Public Works Association Proceedings B2 (Coastal Engineering). 73(2): 31-36.

46. Valipour, R., Boegman, L. Bouffard, D., and Rao, Y.R. 2017. Sediment resuspension mechanisms and their contributions to high-turbidity events in a large lake. Limnol. Oceanogr. doi 10.1002/lno.10485. 21 pp. https://doi.org/10.1002/lno.10485

45. Dorostkar, A., Boegman L., and Pollard A. 2017. Three-dimensional simulation of nonlinear internal wave dynamics in Cayuga Lake. J. Geophys. Res. doi 10.1002/2016JC011862, 22 pp. (http://dx.doi.org/10.1002/2016JC011862)

44. Zhang, H., Boegman, L., Scavia, D. and Culver, D. 2016. Spatial distributions of external and internal phosphorus loads and their impacts on Lake Erie phytoplankton and water quality. J. Great Lakes Res. 42:6, 1212-1227. https://doi.org/10.1016/j.jglr.2016.09.005

43. Jabbari, A., Rouhi, A. and Boegman, L. 2016. Evaluation of the structure function method to compute turbulent dissipation within boundary layers using numerical simulations. J. Geophys. Res. 121, 5888–5897, https://doi.org/10.1002/2015JC011608

42. DeVanna Fussell, K., Smith, R., Fraker, M., Boegman, L., Frank, K., Miller, T., Tyson, J., Arend, K., Boisclair, D., Guildford, S., Hecky, R., Hӧӧk, T., Jensen, O., Llopiz, J., May, C., Najjar, R., Rudstam, L., Taggart, C., Rao, Y., and Ludsin, S.  2016. Managing Great Lakes fisheries under changing ecosystem conditions: a perspective on needed approaches and research. J. Great Lakes Res. 42:4 743-752. https://doi.org/10.1016/j.jglr.2016.04.007

41. Aghsaee. P. and Boegman, L. 2015. Experimental investigation of sediment re-suspension beneath internal solitary waves of depression. J. Geophys. Res. https://doi.org/10.1002/2014JC010401

39. Valipour, R., Bouffard, D., and Boegman, L. 2015. Parameterization of bottom mixed layer and logarithmic layer heights in central Lake Erie. J. Great Lakes Res. 41: 707-718. https://doi.org/10.1016/j.jglr.2015.06.010

36. Rao, Y.R., Boegman, L., Bolkhari, H. Hiriat-Baer, V. 2016. Physical processes affecting water quality in Hamilton Harbour. Aquat. Ecosys. Health Manage. 19(2): 114-123. https://doi.org/10.1080/14634988.2016.1165035

35. Valipour, R., Bouffard, D., Boegman, L. and Rao, Y.R. 2015. Near-inertial waves in Lake Erie. Limnol. Oceanogr. 60(5): 1522-1535. https://doi.org/10.1002/lno.10114

34. Jabbari, A., Boegman, L. and Piomelli, U. 2015. Evaluation of the inertial dissipation method using numerical simulations. Geophys. Res. Lett. 42: 1504–1511, https://doi.org/10.1002/2015GL063147

33. Oveisy, A., Boegman, L. and Yerubandi R. Rao. 2015. A model of the three-dimensional hydrodynamics, transport and flushing in the Bay of Quinte. J. Great Lakes Res. 41: 536-548. https://doi.org/10.1016/j.jglr.2015.03.016

32. Paturi, S., Boegman, L., Watt, S. and Yerubandi R. Rao. 2015. Transport of municipal wastewater, industrial and tributary discharges in eastern Lake Ontario and upper St. Lawrence River during the ice-free period of 2006. J. Great Lakes Res. 41: 549-559. https://doi.org/10.1016/j.jglr.2015.03.010

31. Paturi, S., Boegman, L., Bouffard, D. and Yerubandi R. Rao. 2015. Three-dimensional simulation of Lake Ontario north-shore hydrodynamics and contaminant transport. J. Hydraul. Eng. ASCE, 141(3), http://dx.doi.org/10.1061/(ASCE)HY.1943-7900.0000963

30. McCombs, M.P., Mulligan, R.P., Boegman, L. and Yerubandi R Rao. 2014. Modelling surface waves and wind-driven circulation in eastern Lake Ontario during winter storms. J. Great Lakes Res. 40(S3): 130-142, http://dx.doi.org/10.1016/j.jglr.2014.02.009

29. Bouffard, D., Boegman, L., Ackerman, J.D., Valipour, R., and Rao, Y.R. 2014. Near-inertial wave driven oxygen transfer through the thermocline of a large lake. J. Great Lakes Res. 40(2), 300-307,http://dx.doi.org/10.1016/j.jglr.2014.03.014

28. Schwalb, A.N., Bouffard, D., Boegman, L., Leon, L., Winter, J.G., Molot, L. and Smith, R.E.H. 2014. 3D modelling of dreissenid mussel impacts on phytoplankton in a large lake supports the nearshore shunt hypothesis and the importance of wind-driven hydrodynamics. Aquat Sci. 20 pp. http://dx.doi.org/10.1007/s00027-014-0369-0

27. McCombs, M.P., Mulligan, R.P. and Boegman, L. 2014. Offshore Wind Farm Impacts on Surface Waves and Circulation in Eastern Lake Ontario. Coastal Engineering, 93:32–39.http://dx.doi.org/10.1016/j.coastaleng.2014.08.001

26. Oveisy, A., and Boegman, L. 2014. One-dimensional simulation of lake and ice dynamics during winter. J. Limnol. DOI: http://dx.doi.org/10.4081/jlimnol.2014.903

25. Bouffard, D., Ackerman, J.D., and Boegman, L. 2013. Factors affecting the development and dynamics of hypoxia in a shallow large stratified lake: Hourly to seasonal patterns. Water Resour. Res. 49: 14 pp. http://dx.doi.org/10.1002/wrcr.20241

24. Schwalb, A.N., Bouffard, D., Ozersky, T., Boegman, L. and Smith, R.E.H. 2013. Impact of hydrodynamics and benthic communities on phytoplankton distributions in a large, dreissenid-colonized lake (Lake Simcoe, Ontario, Canada). Inland Waters. 3: 269-284.

23. Scalo, C., Piomelli, U. and Boegman, L. 2013. Self-similar decay of dissolved oxygen concentration in an oscillating boundary layer in the intermittently turbulent regime. J. Fluid Mech. 726: 338-370.

22. Bouffard, D. and Boegman, L. 2013. A diapycnal diffusivity model for stratified environmental flows. Dyn. Atmos. Ocean.
http://dx.doi.org/10.1016/j.dynatmoce.2013.02.002. 61-62: 14-34. (Download PDF)

21. Scalo, C., Boegman, L. and Piomelli, U. 2013. Large-eddy simulation of variable sediment oxygen uptake in a transitional oscillatory flow. J. Geophys. Res . 118, doi:10.1002/jgrc.20113. 14 pp (Download PDF)

20. Dorostkar, A., Boegman L. 2013. Internal hydraulic jumps in a long narrow lake. Limnol. Oceanogr.58(1): 153'Äì172. (Download PDF)

19. Boegman, L., and Ivey, G.N. 2012. The dynamics of internal wave resonance in periodically forced lakes. J. Geophys. Res.117, C11002, doi:10.1029/2012JC008134, 16 pp. (Download PDF)

18. Scalo, C., Piomelli, U. and Boegman, L. 2012. Mass transport mechanisms at high Schmidt numbers from a turbulent flow to underlying weakly absorbing sediment layers. Phys Fluids. 24, 085103; doi: 10.1063/1.4739064. 16 pp. (Download PDF)

17. Boegman, L. and Sleep, S. 2012. Feasibility of bubble plume destratification of central Lake Erie. J. Hydraul. Eng. ASCE. doi: 10.1061/(ASCE)HY.1943-7900.0000626, 138: 985-989. (Download PDF)

16. Scalo, C., Piomelli, U. and Boegman, L. 2012. Large-eddy simulation of oxygen transfer to organic sediment beds. J. Geophys. Res., doi:10.1029/2011JC007289. 17 pp. (Download PDF)

15. Bouffard, D., Boegman, L and Yerubandi R. Rao. 2012. Poincar√© wave induced mixing in a large lake. Limnol. Oceanogr. 57(4), 1201'Äì1216. (Download PDF)

14. Oveisy, A., Boegman, L. and Imberger, J. 2012. Three-dimensional simulation of lake and ice dynamics during winter. Limnol. Oceanogr. 57(1), 2012, 43'Äì57. (Download PDF)

13. Aghsaee, P., Boegman, L., Diamessis, P.J. and Lamb, K.G. 2012. Boundary layer separation and vortex shedding beneath internal solitary waves.¬† J. Fluid Mech. vol. 690, pp. 321-344. (Download PDF)

12. Paturi, S., Boegman, L. and Yerubandi R. Rao. 2012. Hydrodynamics of Eastern Lake Ontario and upper St. Lawrence River. J. Great Lakes Res. 38 (Supp. 4), 194-204. (Download PDF)

11. Zhang, H., Culver, D.A. and Boegman, L. 2011. Dreissenids in Lake Erie: an algal filter or a fertilizer? Aquatic Invasions. 6: doi: 10.3391/ai.2011.6.2 (Download PDF)

10. Conroy, J.D., Boegman, L., Zhang, H., Edwards, W.J. and Culver, D.A. 2011. "Dead Zone" dynamics: the importance of weather and sampling intensity on calculated hypolimnetic oxygen depletion rates. Aquat. Sci. doi: 10.1007/s00027-010-0176-1. (Download PDF)

9. Aghsaee, P., Boegman, L., and Lamb, K.G. 2010. Breaking of shoaling internal solitary waves. J. Fluid Mech. 659: 289-317 doi:10.1017/S002211201000248X. (Download PDF)

8. Boegman, L., and Ivey, G.N. 2009. Flow separation and resuspension beneath shoaling nonlinear internal waves. J. Geophys. Res. 114, C02018, doi:10.1029/2007JC004411. (Download PDF)

7. Zhang, H., Culver, D.A. and Boegman, L. 2008. A two-dimensional ecological model of Lake Erie: Application to estimate dreissenid impacts on large lake plankton populations. Ecological Modelling. 214: 219-241.(Download PDF)

6. Boegman, L., M. R. Loewen, P. F. Hamblin, and D. A. Culver. 2008. Vertical mixing and weak stratification over zebra mussel colonies in western Lake Erie. Limnol. Oceanogr. 53: 1093-1110.(Download PDF)

5. Boegman, L., Loewen, M.R., Culver, D.A., Hamblin, P.F. and Charlton, M.N. 2008. Spatial-dynamic modelling of algal biomass in Lake Erie: Relative impacts of Dreissenid mussels and nutrient loads. J. Environmental Eng. ASCE. 134(6): 456-468. (Download PDF)

4. Boegman, L., Ivey, G.N. and Imberger, J. 2005. The degeneration of internal waves in lakes with sloping topography. Limnol. Oceanogr. 50: 1620-1637. (Download PDF)

3. Boegman, L., Ivey, G.N. and Imberger, J. 2005. The energetics of large-scale internal wave degeneration in lakes. J. Fluid Mech. 531: 159-180. (Download PDF)

2. Boegman, L., Imberger, J, Ivey, G.N. and Antenucci, J.P. 2003. High-frequency internal waves in large stratified lakes. Limnol. Oceanogr. 48: 895-919. (Download PDF)

1. Boegman, L., Loewen, M.R., Hamblin, P.F. and Culver, D.A. 2001. Application of a two-dimensional hydrodynamic reservoir model to Lake Erie. Can. J. Fish. Aquat. Sci. 58: 858-869. (Download PDF)

Books & Book Chapters

Boegman L. 2021. Currents in Stratified Water Bodies: Internal Waves. In: Encyclopedia of Inland Waters. Encyclopedia of Inland Waters, Second Edition.  Oxford: Elsevier. **Invited contribution** 

Boegman, L. 2020. Hydrodynamics of lakes. Encyclopedia of Water:  Science, Technology, and Society.  [Ed. P. Maurice]. Wiley. **Invited contribution**

Yerubandi, R. Rao., Ackerman, J.D. and Boegman, L. [Eds.] 2012. Physical processes and water quality in natural waters. Water Qual. Res. J. Can. 47: 3-4, 462 pp. ISSN 1201-3080 (Download PDF)

Bouffard, D. and Boegman, L. 2012. Basin-scale internal waves. In L. Bengtsson and R.W. Herschy (Eds.)Encyclopedia of Lakes and Reservoirs. Springer. 102-107. **Invited contribution** (Download PDF)

Boegman L. 2009. Currents in Stratified Water Bodies 2: Internal Waves. In: G.E. Likens, (Ed.) Encyclopedia of Inland Waters. volume 1, pp. 539-558. Oxford: Elsevier. **Invited contribution** (Download PDF)

Selected Conference Papers

Boegman, L., Gassemi, A. and Zahedi, Z. 2019. Internal solitary wave shoaling and bolus formation on slopes.  In proc. 6th Norway-Scotland Waves and Maring Hydrodynamics Symposium. The Royal Society of Edniburgh, Edinburgh, Scotland. 2 pp. **Invited* contribution*

Jabbari, A., Boegman, L. and MacKay, M. 2018. Future prediction of hypolimnetic dissolved oxygen concentration in small lakes. In proc. 5th IAHR Europe Congress. Trento, Italy. doi:10.3850/978-981-11-2731-1_169-cd. 2 pp. 

Mahyari, F., Rey, A., Boegman, L., Champagne, P., Mulligan, R., Hall, G., da Silva, A.M. and Filion, Y. 2018. Three-dimensional simulation of hydrodynamics and water quality in a wastewater stabilization pond.  In proc. 1st International WDSA Joint Conference, Kingston, ON, Canada. 8 pp. 

Rey, A., Mulligan, R., Boegman, L., Filion, Y., da Silva, A.M. and Champagne, P. 2018. Impact of control structures on hydraulic retention time in wastewater stabilization ponds. In proc. 1st International WDSA Joint Conference, Kingston, ON, Canada. 8 pp. 

Rey, A., Sauder, M., Mulligan, R. P., Boegman, L., Filion, Y., da Silva, A. M., & Champagne, P. (2017). Modeling and validation of stratification and hydrodynamics in a wastewater stabilization pond using Delft3D. In F. Chazarenc (Ed.), S2Small2017 Conference on Small Water & Wastewater Systems and Resources Oriented Sanitation (pp. 427–431). Nantes, France

Román-Botero, R., Boegman, L. and Gómez-Giraldo, A. 2017. Vertical mixing in a tropical Andean reservoir, Porce II. In proc. 20th Workshop on Physical Processes in Natural Waters.  21-25 Aug.  Hyytiälä, Finland, 2 pp.

Boegman, L. and Bouffard, D. 2016.  Anatomy of a turbulent patch in a large shallow lake. In proc. VIIIth International Symposium on Stratified Flows. San Diego, California, 29 Aug. - 1 Sept., 8 pp.

Jabbari, A., Boegman, L., MacKay, M., and Nakhaei, N.  2016. Modeling the oxygen depletion within stratified bottom boundary layers of lakes. In proc. VIIIth International Symposium on Stratified Flows. San Diego, California, 29 Aug. - 1 Sept., 8 pp.

Nakhaei, N., Boegman, L., and Bouffard, D. 2016. Measurement of vertical oxygen flux in lakes from microstructure casts. In proc. VIIIth International Symposium on Stratified Flows.  San Diego, California, 29 Aug. - 1 Sept., 8 pp.

Boegman, L. 2014. Limitations of hydrodynamic models in simulating Great Lakes processes of varying scale.  In proc. Modeling tools for analysis and forecasting of fish recruitment and its response to physical processes. Huron, OH, 23-25 June, 6 pp. (Download PDF)

Boegman, L., Aghsaee, P. and Dorostkar, A. 2013. Multiscale research on 3D dynamics of nonlinear internal wave and topography interaction. Proceedings 3rd Norway-Scotland Internal Waves Symposium. Oslo. Norway. Sept. 16 - 17. 2 pp. **Invited contribution**

McCombs, M.P., Mulligan, R.P., Boegman, L., Rao, Y.R. 2013. Wave propagation and growth in the Kingston Basin of Eastern Lake Ontario. Proceedings Canadian Society for Civil Engineering Annual Conference, Montreal, QC, May 29 - Jun 1, 8 pp.

Boegman, L. Shkvorets, I., Johnson, F. 2012.¬†Hypoxia and turnover in a small ice-covered temperate lake. Proceedings 21st IAHR International Symposium on Ice.¬†Dalian, China, June 11-15, 12 pp.(Download PDF)

Bouffard, D. Boegman, L. 2011. Spatio-temporal dynamics of the basin scale internal waves in Lake Simcoe. Proceedings 7th Int. Symp. on Stratified Flows, Rome, Italy, August 22 - 26, 2011, 6 pp.(Download PDF)

Boegman, L., and Dorostkar, A. 2011. Three-dimensional simulation of NLIW generation, propagation and breaking in Cayuga Lake. Proceedings 7th Int. Symp. on Stratified Flows, Rome, Italy, August 22 - 26, 2011, 8 pp. (Download PDF)

Boegman, L., and Aghsaee, P. 2011. Instability and resuspension beneath shoaling internal solitary waves. Proceedings Geophysical and Astrophysical Internal Waves, Les Houches, France, 6-11 Feb.**Invited contribution**

Boegman, L., Aghsaee, P. and Dorostkar, A. 2010. Evolution and degeneration of nonlinear internal waves in long narrow basins. Proceedings 2nd Norway-Scotland Internal Waves Symposium, Edinburgh, UK, 01-02 November, 4 pp. **Invited contribution**

Dorostkar, A., Boegman, L., Diamessis, P., and Pollard, A. 2010. Sensitivity of MITgcm to different model parameters in application to Cayuga Lake. Proceedings 6th International Symposium on Environmental Hydraulics, Jun. 23-25, Athens, Greece, 6 pp. (Download PDF)

Boegman, L. and Yerubandi, R. Rao. 2010. Process oriented modeling of Lake Ontario hydrodynamics. Proceedings 6th International Symposium on Environmental Hydraulics, Jun. 23-25, Athens, Greece, 6 pp.(Download PDF)

Boegman, L. and Ivey, G.N. 2007. Experiments on internal wave resonance in periodically forced lakes. Proceedings 5th International Symposium on Environmental Hydraulics, Dec. 4-7, Tempe, Arizona.(Download PDF)

Boegman, L. 2006. A model of the stratification and hypoxia in central Lake Erie. Proceedings 6th International Symposium on Stratified Flows. University of Western Australia, Dec. 11-14, 608-613.(Download PDF)

Lamb, K.G., Boegman, L. and Ivey, G.N. 2005. Numerical simulations of shoaling internal solitary waves in tilting tank experiments. Proceedings 9th European Workshop on Physical Processes in Natural Waters.Lancaster University, 31-38. (Download PDF)

Boegman, L., Ivey, G.N. and Imberger, J. 2004. An internal solitary wave parameterization for hydrodynamic lake models. Proceedings 15th Australasian Fluid Mechanics Conference. University of Sydney, CD Rom: AFMC00098, 4 pp. (Download PDF)

Theses

Boegman, L. 2004. The degeneration of intenal waves in lakes with sloping topography. Ph.D. thesis, Centre for Water Research, Department of Environmental Engineering, University of Western Australia.(Download PDF)

Boegman, L. 1999. Application of a two-dimensional hydrodynamic and water quality model to Lake Erie. M.A.Sc. thesis, Environmental Fluid Dynamics Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto. (Download PDF)

 

Miles Wilson, PhD student

Co-supervised with Dr. J. Shore (RMC)

 

Research Topic: Coastal boundary layer hydrodynamics in Lake Ontario

 

leon_grad_1.png

Nina Beigzali, PhD Student

Co-supervised with Dr. Y. Zhao (OMNRF) and Dr. J. Ackerman (Guelph)

 

Research Topic: Impacts of climate change on walleye habitat in Lake Erie

        
   rohit_pathway.jpg

Rohit Shukla, PhD student

 

Research Topic: Data driven methods to predict changes in water quality 

   leon_grad_3.jpg

Sandra Dusolt, PhD student

Co-supervised with Dr. R. Mulligan (Queen's) and Dr. S. Shan (RMC)

 

Research Topic: Realtime and forecast modelling of water quality in Canadian Shield lakes

 

 

leon_grad_4.png

Andres Posada Bedoya, PhD student

Co-supervised with Dr. J. Olsthoorn (Queen's)

 

Research Topic: Periodic internal solitary waves  

 

leon_grad_5.png

Laura Swatridge, PhD student

Co-supervised with Dr. R. Mulligan (Queen's) and Dr. S. Shan (RMC)

 

Research Topic: Realtime and forecast modelling of waves and storm surges  

 

leon_grad_6.png

Lauren Haliwell, PhD student

Co-supervised with Dr. P. Champagne (NRC), Dr. G. Hall (Queen's) and Dr. H. Shirkhani (NRC)

 

Research Topic: Water quality modelling of wastewater stabilizaiton ponds

 

 

Former Students & Fellows

  • Matt Julseth (Undergrad Thesis 2022)
    • Modelling the storm surge in Lake Erie
  • Dr. Qi Wang (PhD 2022) 
    • Water quality modelling in Lake Erie
  • Dr. Amin Ghassemi (PhD 2022)
    • Sediment resuspension and transport shoaling internal solitary waves
  • Dr. Alireza Ghane (PhD 2022)
    • Winter hydrodynamics and nutrient fluxes in a Canadian lake
  • Dr. Shuqi Lin (Postdoctoral Fellow 2020-21)
    • Realtime and forecast modelling of Lake Erie
  • Dr. Saeid Zahedi (PhD 2021)
    • Energy dissipation under shoaling internal solitary waves
  • Dr. Aidin Jabbari (Postdoctoral Fellow 2019-20 at Queen's and Guelph)
    • Fish habitat and oxygen dynamics in Lake Erie
  • Dr. Alexander Rey (PhD 2020)
    • Hydrodynamic modelling of wastewater stabilization ponds
  • Daniela Hurtado (MASc 2019)
    • Modelling methane emissions from arctic lakes under climate change
  • Dr. Joanna Majarreis (PhD 2019 in Biology from Waterloo)
    • Nutrirent fluxes from cladophera and mussels in the Lake Erie nearshore zone 
  • Dina Elgaboury (Research Assistant 2018-2019)
    • Modelling harmful algae blooms in the Mississippi Valley watershed
  • Dr. Shuqi Lin (PhD 2019)
    • Modelling sediment resuspension in lakes
  • Laura Swatridge (Undergrad Thesis 2019)
  • Dr. Nader Nakhaei (MITACS Postdoctoral Fellow 2017-2018)
    • Eutriophication in Mississippi Lake
  • Fatemeh Mayhari (MASc 2018)
    • Modelling water quality in wastewater stabilization ponds
  • Haotian Sun (C.A. Thompson Undergrad 2018)
    • Long-term RANS modelling of Lake Erie
  • Dina Elgaboury (MASc 2018)
    • Modelling effects of phosphorus fractions on algae bloom development
  • Dr. Nader Nakhaei (PhD 2017)
    • Modelling eutrophication in Edmonton stormwater ponds
  • Carly Portch (Undergrad Thesis 2017)
    • Extreme wave run-up events in Lake Ontario
  • Elora Oades (Undergrad Thesis 2017)
    • Best Management Practices to reduce nutrients in watershed models
  • Dr. Hadiseh Bolkhari (MITACS Postdoctoral Fellow 2016-17)
    • Modelling wave run-up with SWASH
  • Dr. Aidin Jabbari (Postdoctoral Fellow 2015-17)
    • Integrating lake and climate models to predict oxygen in Canadian Shield lakes
  • Carly Portch (NSERC Undergrad 2017)
    • Wave run-up
  • Alex Carmel (NSERC Undergrad 2017)
    • 1D Lake modelling
  • Dr. Aidin Jabbari (PhD 2015)
    • Turbulent boundary layers
  • Dr. Payam Aghsaee (Postdoctoral Fellow 2011-12; presently Post-Doc at Iowa State)
    • Solitary wave resuspensiuon
  • Dr. Hadiseh Bolkhari (PhD 2015; presently Post-Doc at Queen's/CRCA)
    • Turbulent boundary layers
  • Matthew McCombs (MSc 2013; presently consulting engineer)
    • Impacts of offshore wind farms
  • Dr. Shastri Paturi (PhD 2012; presently NOAA scientist)
    • Effluent modelling in lakes
  • Dr. Damien Bouffard (Postdoctoral Fellow 2009-12; presently faculty member at EAWAG-ETH)
    • Turbulence, internal waves and hypoxia in lakes
  • Daniel S. Morikawa (Visiting Undergrad 2013; presently undergrad at University of Sao Paulo)
    • Impacts of lakeshore capacity on hypoxia and cold-water fisheries
  • Dr. Ali Oveisy (Postdoctoral Fellow 2011-12; presently Visiting Scientist at Environment Canada)
    • Numerical simulation of ice cover on lakes
  • Dr. Abbas Dorostkar (PhD 2012; presently a consulting engineer)
    • Massively parallel RANSE simulations of internal waves in lakes
  • Dr. Reza Valipour (PhD 2012; presently Visiting Scientist at Environment Canada)
    • Internal wave and sediment dynamics in Lake Erie
  • Dr. Carlo Scalo (PhD 2012; presently Assistant Professor at Purdue)
    • Large-Eddy Simulation and modelling of dissolved oxygen transport and depletion in water bodies
  • Dr. Payam Aghsaee (PhD 2011)
    • Dynamics of internal solitary wave and bottom boundary interaction
  • Christian Sonekan (Research Assistant)
    • Modelling impacts of climate change on Ontario Lakes
  • Sylvia Sleep (Undergrad; presently MSc student at UofT)
    • Feasibility of bubble plume destratification of Lake Erie
  • Erin Hall (MSc 2008; presently a consulting engineer)
    • Hydrodynamic modelling of Lake Ontario
  • Erin Hall (NSERC Undergrad)
    • Lake Ontario hydrodynamics
  • Marc Pichette (NSERC Undergrad)
    • Impacts of climate change on central Lake Erie thermal structure
  • Karan Bhawsinka (Visiting Undergrad from IIT Kharagpur)
    • Combined sewer overflow modelling in the upper St. Lawrence River
  • Perrine Leclerc (Visiting MSc from Institute of Sci. & Eng. Toulon)
    • Hydrodynamics of eastern Lake Ontario and the upper St. Lawrence River
I am always looking for motivated students for funded MASc and PhD research positions, as well as Undergraduate Summer Research Assistants and Undergraduate Thesis students. If you find the research on this website interesting (see my Students, Research, Publications and Laboratory tabs) and would like to apply, please drop by my office, or send me an email with a copy of your CV.
Information on applying to Grad School at Queen's can be found here; information on the Civil Engineering Graduate Program can be found here; student testimonials can be found here; and the application form can be found here.
Examples of recent graduate student projects:
Examples of recent field deployments:



Back to Main Directory