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Introduction
Although millions of women wear high-heeled shoes, little
is known about the effects of these shoes on the forces
acting on leg joints. Most studies have focused on the foot
and showed greater forces in the forefoot, particularly in
the medial forefoot, implying increased predisposition to
forefoot deformities such as hallux valgus.1–6 Does wearing
high-heeled shoes compromise the function of the ankle
such that compensations to maintain stability during
walking occur in the knee or hip joints? This possibility is
pertinent, because osteoarthritis is twice as common in
women as in men, and usually occurs bilaterally.7–9

Compensations were expected to occur mainly in the
sagittal (flexion/extension) plane, although differences were
also anticipated in the coronal (varus/valgus) plane. During
walking, the weight of the body is medial to the knee,
which imposes a varus torque at the knee—a compressive
force on the medial aspect and a stretching force on the
lateral aspect of the knee.10 Because walking in high-heeled
shoes shifts the weight of the body medially with respect to
the foot,2,4,11 we postulated there would be a greater than
normal varus torque at the knee. A greater varus torque
implies a greater compressive force on the medial aspect of
the knee, which could be important because osteoarthritic
changes are more common in the medial than in the lateral
aspect of the knee.12 We measured joint torques at the hip,
knee, and ankle13-17 in women walking barefoot and in high
heels.

Summary
Background Little is known about the effects of walking in
high heels on joints in the legs. Since osteoarthritis of the
knee is twice as common in women as in men, we
investigated torques (forces applied about the leg joints)  of
women who wore high--heeled shoes.

Methods We studied 20 healthy women who were
comfortable wearing high-heeled shoes. The women walked
with their own high-heeled shoes and barefoot. Data were
plotted and qualitatively compared; major peak values for
high-heeled and barefoot walking were statistically
compared. Bonerroni adjustment was made for multiple
comparisons.

Findings Measurement showed increased force across the
patellofemoral joint and a greater compressive force on the
medial compartment of the knee (average 23% greater
forces) during walking in high heels than barefoot.

Interpretation The altered forces at the knee caused by
walking in high heels may predispose to degenerative
changes in the joint.
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typically in the scanner for less than 15 min, including
setting-up time. Third, our perfusion maps allow
quantitative measurement of net blood flow within pixels
in the placental images, and this may allow us to separate
regions of normal perfusion within the intervillous space
from regions of infarction with low perfusion.

However, we realise that our results are only
preliminary, because of the small sample size studied. At
present this study has only been done on single slices taken
through the placenta of each patient; errors in assessment
could occur if the slice chosen were abnormal. The
development of multi-slice perfusion imaging will prevent
such errors. Further work is currently being done on a
remotely perfused placenta to study methods of separating
fetoplacental flow from maternal-placental flow.

In conclusion, we believe that EPI has great potential in
the non-invasive assessment of abnormal placental
function. The production of non-invasive perfusion maps
of the placenta by means of EPI enables us to show an
association between reduced placental perfusion and
IUGR complication in pregnancy. If mapping of placental
perfusion with EPI can give important information about
the degree of ischaemia in the placenta, the management of
pregnancies complicated by IUGR can be improved.
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Methods
20 healthy women who felt comfortable wearing shoes with
narrow heels at least 5 cm high were recruited. We excluded
platform shoes or those with a high-contact area of more than 2
cm width. The study was approved by our Institutional Review
Board and written informed consent was obtained from each
woman. The women had a mean age of 34·6 (SD 9·3) years,
height of 1·67 (0·06) m, and weight of 61·76 (7·6) kg. Each
woman was asked to walk at her comfortable walking speed across
a 10 m gait-laboratory walkway, both barefoot and in her own
high-heeled shoes. The order for high-heel and barefoot walking
was randomised, with a 10 min rest between experiments. The
height of the heels was 6·0 (1·0) cm. Barefoot walking served as
the control rather than walking in low-heeled shoes, because styles
of low-heeled shoes vary widely.

Hip, knee, and ankle-joint torques in sagittal, coronal, and
transverse planes were measured on both sides over three trials of
high-heeled and barefoot walking. We used standard
procedures,13,16,17 and the specific protocol has been described
elsewhere.14,18 Briefly, a video-based motion-analysis system
measured the three-dimensional position of markers attached to
various bony landmarks on the pelvis and legs during walking.
Ground-reaction forces were measured synchronously with the
motion-analysis data by two staggered force platforms imbedded
in the walkway (Advanced Medical Technology Inc, Newton,
MA, USA). Joint torques in each plane were calculated with a full-
inverse dynamic model, SAFLo (Servizio di Analisi della
Funzionalita’ Locomotoria Bioengineering Technology Systems,
Milan, Italy). Joint torque calculations were based on the mass
and inertial characteristics of each leg and the derived linear and
angular velocities, and acceleration, as well as ground-reaction
force and estimates or joint-centre positions. Joint-angle motion in
all planes was also studied and reported in degrees with zero
defined as the angle during quiet standing while barefoot. Joint
torques were adjusted for bodyweight and height and reported in
N-m/kg-m.

Joint torques and joint motions were plotted on a graph over
the walking cycle (0–100% at 2% intervals). Statistical evaluations
were done with Systat 7.0 (SPSS Inc, Chicago, IL, USA). To
account for variances between trials and sides, differences between
high-heeled and barefoot walking were assessed with a general
linear model, which does not assume that the data are balanced,
with covariates of trial and side.19 Bonferroni adjustment was made
for the multiple (50) comparisons; statistical significance was
defined at p<0·001.

Results
In the sagittal plane, peak ankle torque was significantly
reduced with high-heeled shoes (0·60 [SD 0·08] high-heels
vs 0·75 [0·07] barefoot, mean difference �0·15 [SE 0·013]
N-m/kg-m, p<0·001). The pattern of knee torque was
different (figure 1), such that with high heels the knee-
flexor torque normally present during the early stance
phase, extended into the mid-stance phase, and the peak
knee-extensor torque during late stance was significantly
reduced (0·06 [0·09] vs 0·15 [0·06], mean difference
�0·09 [0·012] N-m/kg-m, p<0·0001). The hip-torque
pattern was slightly altered with a brief rise in hip-flexor
torque in early stance with high heels 0·49 [0·13] vs 0·42
[0·10]; mean difference 0·07 [0·017] N-m/kg-m,
p<0·001).

In the coronal plane, the normal eversion torque at the
ankle was significantly reduced with high-heels (peak
eversion torque 0·03 [0·03] high heels vs 0·12 [0·05]
barefoot, mean difference �0·09 [0·008] N-m/kg-m,
p<0·0001). The varus torque at the knee was increased
throughout the stance period (figure 2), with both peaks
significantly greater with high heels than barefoot (0·32
[0·07] vs 0·26 [0·07] N-m/kg-m, mean difference 0·06
[0·006] and 0·26 [0·06] vs 0·21 [0·08], mean difference

0·05 [0·006] N m/kg m, p<0·0001 for each peak torque).
There were no significant changes at the hip or at any of
the joints in the transverse plane.

There were significant joint-angle differences between
high-heeled and barefoot walking throughout the walking
cycle. There was an obvious increase in ankle plantar
flexion throughout (mean 20·4° increase, p<0·0001).
High-heeled shoes were also associated with greater peak
hip flexion than barefoot walking (30·0 [4·3] vs 27·0 [5·1]°,
mean difference 3·0 [0·65]°, p=0·0002), greater peak knee
flexion in stance (22·6 [4·2] vs 19·7 [4·6]°, mean difference
2·9 [0·58]°, p=0·0001) and less knee flexion in swing (60·5
[4·3] vs 63·5 [4·5]°, mean difference �3·0 [0·42] degrees,
p<0·0001).

Discussion
Our findings confirm that wearing high-heeled shoes
significantly alters the normal function of the ankle.
Because of this compromise, compensations must occur at
the knee and hip to maintain stability and progression
during walking.20–22 Our findings suggest that most of these
compensations occur at the knee. The prolonged sagittal
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Figure 1: Sagittal knee joint torque during walking in high-
heeled shoes and barefoot
*Significant difference at p=0·001.

Figure 2: Coronal knee joint torque during walking in high-
heeled shoes and barefoot
*Significant difference at p=0·001.
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knee torque during the stance phase increases the work of
the quadricep muscles, prolongs the strain through the
patella tendon, and prolongs the pressure across the
patellofemoral joint;23 both the prolonged strain and
prolonged pressures may lead to degenerative joint changes
within the patellofemoral compartment.

Walking in high-heeled shoes exaggerated the normal
varus torque at the knee by an average 23% during the
stance period. Greater varus torque imposes greater
stretching force through the lateral knee ligaments (and/or
greater muscular forces about the lateral aspect of the
knee). This increased varus torque is likely to be relevant,
since animal experiments show that increasing varus
torque at the knee leads to degenerative changes in the
medial compartment.24 Also relevant is that osteoarthritic
changes at the knees of human beings are more common
in the medial aspect than the lateral aspect of the knee.12

We may have underestimated increased medial knee-
joint forces because of the limitations of current
measurement technology which does not allow for direct
measurement of either muscle forces of overall joint
compressive forces. Increased varus torque with high-
heeled shoes may cause a compensatory increase in lateral
muscular forces around the knee to help balance the
increased torque. If this is so, overall tibio-femoral
compressive forces with high-heeled shoes will be
increased, and the magnitude of the medial compressive
forces will be greater than our estimated 23% increase.
Similarly, prolonged sagittal knee torque implies prolonged
force through the quadriceps muscles to balance this
torque. Prolonged quadriceps force will cause a
prolongation of the overall tibio-femoral compressive
forces.

Our findings indicate that much of the compensation for
the reduction in torque about the ankle occurs at the knee,
rather than the hip. However, a slight increase in hip
torque was observed in early stance, consistent with the
need for greater hip extensor muscle action during this
time. The changes in joint-angle motion we observed
accord with other reports: increased ankle plantarflexion
throughout walking,25–28 decreased peak knee flexion,25,27–29

and increased peak knee flexion in stance.25,28

Women wear high-heeled shoes for various reasons.30–32

The possibility that wearing high-heeled shoes contributes
to osteoarthritis at the knee has not been suggested to date.
Our findings suggest that further investigations are needed
to evaluate a causal relation.
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