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Abstract

Children with cerebral palsy often walk with diminished knee extension during the terminal-swing phase, resulting in a troublesome

‘‘crouched’’ posture at initial contact and a shortened stride. Treatment of this gait abnormality is challenging because the factors that

extend the knee during normal walking are not well understood, and because the potential of individual muscles to limit terminal-swing

knee extension is unknown. This study analyzed a series of three-dimensional, muscle-driven dynamic simulations to quantify the angular

accelerations of the knee induced by muscles and other factors during swing. Simulations were generated that reproduced the measured

gait dynamics and muscle excitation patterns of six typically developing children walking at self-selected speeds. The knee was accelerated

toward extension in the simulations by velocity-related forces (i.e., Coriolis and centrifugal forces) and by a number of muscles, notably

the vasti in mid-swing (passive), the hip extensors in terminal swing, and the stance-limb hip abductors, which accelerated the pelvis

upward. Knee extension was slowed in terminal swing by the stance-limb hip flexors, which accelerated the pelvis backward. The

hamstrings decelerated the forward motion of the swing-limb shank, but did not contribute substantially to angular motions of the knee.

Based on these data, we hypothesize that the diminished knee extension in terminal swing exhibited by children with cerebral palsy may,

in part, be caused by weak hip extensors or by impaired hip muscles on the stance limb that result in abnormal accelerations of the pelvis.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Many children with cerebral palsy walk with diminished
knee extension during the terminal swing and stance
phases. Failure to extend the knee in swing is problematic,
often resulting in a ‘‘crouched’’ posture at initial contact
and an abnormally short stride. Tight hamstrings, resulting
from an exaggerated reflex response or from excessive
passive forces, are thought to cause the diminished knee
extension in most cases (e.g., Baumann et al., 1980;
Crenna, 1998; Sutherland and Davids, 1993; Tuzson
e front matter r 2007 Elsevier Ltd. All rights reserved.
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et al., 2003). Thus, children with a crouched gait often
undergo hamstrings lengthening surgery.
Unfortunately, it is difficult to predict which patients will

benefit from hamstrings surgery; some walk with drama-
tically improved knee extension following treatment
(DeLuca et al., 1998; Novacheck et al., 2002), while others
show negligible increases in knee extension. Restoring
terminal-swing knee extension in these children is challen-
ging, in part, because the factors that extend the knee
during normal walking are not well understood. Knee
motions during swing are often described as ‘‘ballistic’’
(e.g., McGeer, 1990; Mochon and McMahon, 1980),
analogous to the passive motion of a multi-link pendulum.
However, metabolic energy is consumed by swing-limb
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Fig. 1. Muscle-driven simulation of swing phase that reproduces the gait

dynamics of a representative subject, Subject 4. To create this simulation,

a musculoskeletal model with 21 degrees of freedom and 92 muscle-tendon

actuators was scaled to the mass (31.7 kg) and height (1.4m) of an 11-year-

old subject who walked at a self-selected speed of 1.3m/s. The simulation

is shown at the instants just prior to toe-off (left), just prior to initial

contact (right), and at peak swing-phase knee flexion (center).
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muscles (Doke et al., 2005; Marsh et al., 2004), and some
muscles—including the hamstrings—are active (Perry,
1992; Winter, 1990). The extent to which muscles influence
knee motions late in swing has not been rigorously
investigated. Determining how individual muscles contri-
bute to knee motions is difficult because a muscle can
accelerate joints it does not span and segments other than
those to which it attaches (Zajac and Gordon, 1989; Zajac
et al., 2002). For instance, several studies have shown that
knee motions in early swing are influenced not only by
muscles that cross the knee, but also by moments generated
at other joints (Anderson et al., 2004; Kerrigan et al., 1998;
Piazza and Delp, 1996).

The purpose of this study was to evaluate the angular
accelerations of the knee induced by muscles, gravity, and
the passive dynamics of the body during the mid- and
terminal-swing phases of normal gait. We achieved this by
analyzing a series of muscle-driven simulations. Our results
offer insight into the actions of muscles during walking and
establish a framework for the identification of factors that
may limit terminal-swing knee extension in persons with
cerebral palsy.
2. Methods

Muscle-driven simulations of the swing phase were generated that

reproduced the measured gait dynamics of six typically developing
children walking at self-selected speeds. The subjects’ ages ranged from

10 to 14 years (mean 12.3 years), and their walking speeds from 1.1 to

1.4m/s (mean 1.3m/s). Each subject underwent gait analysis at the Gillette

Children’s Specialty Healthcare, St. Paul, MN. A 12-camera system

(Vicon Motion Systems, Lake Forest, CA) was used to record the three-

dimensional locations of markers secured to the torso, pelvis, and lower

extremities during static and walking trials. Markers were placed over

skeletal landmarks according to a standard clinical protocol (Davis et al.,

1991), supplemented with torso markers at the seventh cervical vertebra

and distal to the clavicles. The subjects’ hip and knee centers were

estimated using functional techniques (Schwartz and Rozumalski, 2005),

and their joint angles were computed (e.g., Kadaba et al., 1990). Surface

EMG was recorded bilaterally from the medial and lateral hamstrings,

rectus femoris, gastrocnemius, and anterior tibialis (Motion Lab Systems,

Baton Rouge, LA). Four force plates (AMTI, Watertown, MA) were used

to record the ground reaction forces and moments. One barefoot trial with

consecutive force plate strikes, per subject, was selected for analysis. All

subjects and/or their parents provided informed consent for the collection

of these data. Retrospective analyses of the data were performed in

accordance with the regulations of all participating institutions.

A dynamic model of the musculoskeletal system was used, in

combination with the experimental data, to create a three-dimensional

simulation of each subject’s swing phase (Fig. 1). We represented the

musculoskeletal system as a 21-degree-of-freedom linkage actuated by 92

muscle-tendon units. The pelvis was allowed to rotate and translate in

three dimensions with respect to the ground. The head, arms, and torso

were represented as a single rigid segment that articulated with the pelvis

via a ball-and-socket joint (Anderson and Pandy, 1999). Each hip was

modeled as a ball-and-socket joint, each knee as a planar joint with

constraints that specify the tibiofemoral and patellofemoral translations as

a function of knee flexion angle (Yamaguchi and Zajac, 1989), and each

ankle-subtalar complex as two revolute joints (Inman, 1976). Inertial

properties of the segments were based on the regression equations of

McConville et al. (1980). We represented each muscle-tendon unit as a

Hill-type muscle in series with an elastic tendon (Schutte et al., 1993;

Zajac, 1989). The attachment sites, path geometry, and force-generating

properties of the muscles were based on data reported by Delp et al.

(1990), and were refined for the hamstrings and adductors based on work

by Arnold and Delp (2001), Arnold et al. (2000). The model was created

using SIMM and the Dynamics Pipeline (Delp and Loan, 2000). The

equations of motion were derived using SD/Fast (Parametric Technologies

Corporation, Needham, MA). Variations of this model have been used in

other studies (e.g., Thelen and Anderson, 2006), and additional details are

provided elsewhere (Anderson and Pandy, 2001; Delp et al., 1990).

We generated a forward simulation of each subject’s swing phase using

a five-step procedure:

Step 1 was to scale the model to match the anthropometry of each

subject. We scaled the dimensions of the torso, pelvis, thigh, shank, and

foot based on the relative distances between pairs of markers measured

experimentally and the corresponding markers in the model. The muscle

attachments were scaled with the segments, and the optimal muscle fiber

lengths and tendon slack lengths were scaled proportionally so that the

force-generating properties of the muscles were preserved. The mass

properties of the segments were scaled proportionally so that the measured

mass of each subject was reproduced.

Step 2 was to use a least-squares formulation (Lu and O’Connor, 1999)

to compute a set of desired joint angles for tracking, consistent with each

scaled model, based on the marker trajectories, joint constraints, and joint

angles from gait analysis.

Step 3 was to eliminate dynamic inconsistencies between the joint

kinematics to be tracked, as computed in Step 2, and the subjects’

measured ground reaction forces and moments. We did this by making

small adjustments to the desired pelvis translations and torso orientations

(Thelen and Anderson, 2006).

Step 4 was to solve for a set of muscle excitations which, when applied

to the model along with the measured ground reaction forces and

moments, reproduced the desired kinematics (Thelen and Anderson,

2006). We resolved muscle redundancy at each time step by minimizing the
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Fig. 2. Sagittal plane hip, knee, and ankle angles vs. time as determined experimentally (dotted lines) and as generated by the muscle-driven simulation

(solid lines) for Subject 4. Averaged data72 SD for a group of 29 unimpaired subjects (shaded region) are shown for comparison. For each of the six

subjects in this study, data from gait analysis were collected for two or more successive strides. Simulations were generated that accurately tracked each

subject’s measured kinematics from toe-off (TO) through the end of the swing phase (IC) of the first stride.
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sum of the muscle activations squared, weighted by the muscle volumes.

Steps 2–4 are described in more detail elsewhere (Delp et al., in press;

Thelen and Anderson, 2006).

Step 5 was to compare the simulations with each subject’s measured

gait data (Figs. 2–4), and to refine the muscle excitations as needed. In

most cases, our algorithm produced excitations that were similar to the

subjects’ measured EMG patterns and to EMG on/off times published in

the literature. In some cases, however, one or more of the muscles were

excited at inappropriate times unless we constrained the solution of the

algorithm (Step 4), forcing those muscles to be inactive at those times. We

implemented the necessary constraints for each simulation, solved for a

refined set of muscle excitations, and verified that the resulting

coordination patterns were plausible (e.g., Fig. 4). We also verified that

the joint angles of each simulation matched the subjects’ measured joint

angles to within a few degrees (e.g., Fig. 2), and that the joint moments

were consistent with the moments computed from the experimental data

(e.g., Fig. 3).

We analyzed the contributions of individual muscles to the angular

accelerations of the swing-limb knee using a perturbation technique (Liu et

al., 2006). At each 10ms time step in each simulation, for each muscle in

the model, we introduced a 1N perturbation in the muscle’s force. All

other muscles were constrained to apply the same force trajectories that

they applied in the unperturbed simulation. We integrated the equations of

motion over a 20ms interval to determine the changes in the accelerations

of the swing-limb segments and joints per unit force. We then scaled these

accelerations by the muscle’s average force over the perturbation interval
to determine the net accelerations attributable to that muscle, independent

of other factors such as gravity. Interactions between the stance-limb foot

and the ground were characterized by a set of rotational and translational

spring-damper units located at the average center of pressure, as computed

over the perturbation interval (Thelen and Anderson, 2006). Hence, the

ground reaction forces and moments were allowed to change in response

to the perturbations in force. The translational stiffness and damping

coefficients (5000 kN/m and 500N/m/s, respectively) were scaled depend-

ing on the percentage of body weight supported by the foot. The

rotational stiffness and damping coefficients (20,000Nm/rad and

100Nm/rad/s1, respectively) were scaled depending on the orientation

of the foot, approximating a fixed-foot constraint in the interval between

foot flat and heel off (Anderson and Pandy, 2003). Analogous methods

were used to determine the knee motions induced independently by gravity

and velocity-related forces (i.e., Coriolis and centrifugal forces).

3. Results

During normal walking at self-selected speeds, the knee
is rapidly accelerated toward flexion during preswing,
reaching its peak flexion velocity near toe-off (Fig. 5A).
During the remainder of the swing phase, the knee is
accelerated toward extension (Fig. 5B, extension phase),
then toward flexion (Fig. 5B, braking phase) as the knee’s
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extension motion is slowed prior to contacting the ground.
The knee reaches its peak flexion between 25% and 40% of
the swing phase, and thereafter it extends.

In our simulations, muscles generated about half
(5774%) of the knee extension acceleration during the
extension phase (Figs. 5C and 6A, dark gray bars); the
other half was provided by velocity-related forces that
arose from the rotational motions of the limb segments
(Figs. 5C and 6A, light gray bars). Muscles generated
nearly all of the knee flexion acceleration during the
braking phase (Figs. 5C and 6B, dark gray bars). These
findings were consistent for all six subjects.

Muscles on the stance limb—not the swing limb—made
the largest net contribution to extension of the swing-limb
knee during the extension phase (Fig. 7A, dark gray bars).
The net action of muscles on the swing limb, by contrast,
was to accelerate the knee toward flexion (Fig. 7A, light

gray bars). Examination of the motions induced by
individual muscles revealed that the knee was powerfully
accelerated toward extension in our simulations by the
stance-limb hip abductors (Fig. 8B). These muscles provide
vertical support (Anderson and Pandy, 2003; Kimmel and
Schwartz, 2006; Liu et al., 2006) and typically generate
large forces in early and mid-stance. The swing-limb hip
flexors, biceps femoris short head, and ankle dorsiflexors,
all of which are activated during early swing, contributed
to knee flexion (Fig. 8A). Passive forces produced by the
swing-limb vasti and residual forces produced by the
uniarticular ankle plantarflexors, remaining from their
activity during stance, opposed knee flexion in our
simulations (Fig. 8A).
During the braking phase, both swing- and stance-limb

muscles contributed to deceleration of the knee (Fig. 7B).
The swing-limb ankle dorsiflexors (Fig. 9A) and the stance-
limb hip flexors (Fig. 9B), in particular, accelerated the
swing-limb knee toward flexion. Other muscles generated
forces that accelerated the knee toward extension, notably
the swing-limb hip extensors (Fig. 9A) and the uniarticular
ankle plantarflexors (passive). The stance-limb hip abduc-
tors also induced terminal-swing knee extension in our
simulations (Fig. 9B).

4. Discussion

Classic texts on walking frequently assert that the knee
extends passively under the influence of gravity and/or
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Note that our musculoskeletal model has the isometric force-generating capacity of an adult, while Subject 4 has the anthropometry of an 11-year-old

child. The magnitudes of the muscle activations, therefore, reflect the relatively small activations (and forces) needed to track the subject’s gait dynamics.
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velocity-related forces during the mid- and terminal-swing
phases, analogous to the passive dynamics of a multi-link
pendulum (e.g., Boakes and Rab, 2006; Gage, 2004; Perry,
1992; Whittle, 1996). In this study, we quantified the
angular accelerations of the swing-limb knee induced by
muscles, gravity, and the passive dynamics of the body in
six children with normal gait. In contrast to the classic
texts, our analysis suggests that both muscular and
velocity-related forces, but not gravity, make important
contributions to terminal-swing knee motions during
walking, at self-selected speeds.
Gravity did not contribute substantially to angular

motions of the knee in our simulations (Figs. 5C and 6,
white bars) because it accelerated all segments of the swing
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limb downward, nearly uniformly. If we had analyzed a
simpler model consisting of only the swing limb, in which
the trajectory of the pelvis was prescribed, then gravity
would have accelerated the knee toward extension during
the extension phase. This explanation has been noted
previously (Anderson et al., 2004).

Muscles on the stance limb, particularly the hip
abductors, extensors, and flexors, had a major influence
on motions of the swing-limb knee in our simulations
(Figs. 8B–9B). These muscles, in combination with their
induced ground reaction forces, accelerated the pelvis,
simultaneously inducing reaction forces at the swing-limb
hip that accelerated the thigh and knee (Fig. 10). For
instance, during early and mid-stance, corresponding to the
extension phase of the swing-limb knee (Fig. 5B), the hip
abductors and extensors produced forces that accelerated
the pelvis center of mass upward and rotated the pelvis
posteriorly. As a result, the swing-limb thigh was
accelerated forward relative to the pelvis, and the swing-
limb hip and knee were accelerated toward extension
(Fig. 10A). In late stance, corresponding to the braking
phase of the swing-limb knee (Fig. 5B), the hip flexors
produced forces that accelerated the pelvis center of mass
backward and rotated the pelvis anteriorly. As a result, the
swing-limb thigh was accelerated backward relative to the
pelvis, and the swing-limb hip and knee were accelerated
toward flexion (Fig. 10B). If we had analyzed a simpler
model consisting of only the swing limb, in which the
trajectory of the pelvis was prescribed (e.g., Piazza and
Delp, 1996), then these actions of the stance-limb muscles
would not have been elucidated.
Our conclusion that motions of the swing-limb knee are

sensitive to the forces generated by stance-limb hip muscles
is consistent with other studies. For example, Mena et al.
(1981) analyzed a planar, three-segment model of the swing
limb and showed that when the prescribed trajectory of the
hip was exaggerated, the motions of the knee were
abnormal. Anderson et al. (2004) used a simulation to
identify the contributions of muscles and toe-off kinematics
to peak knee flexion during early swing, and reported that
the net effect of stance-limb muscles, particularly the
gluteus maximus and gluteus medius/minimus, was to
oppose knee flexion. Wang et al. (2005), using a torque-
driven simulation, showed that reasonable stepping mo-
tions could be generated simply by controlling pelvis
motion.
Muscles on the swing limb crossing the hip, knee, and

ankle also generated forces that affected knee motions in
our simulations. However, the net effect of swing-limb
muscles was small relative to stance-limb muscles, particu-
larly during the braking phase (Fig. 7B), because several of
the swing-limb muscles induced opposing accelerations of
the knee (Fig. 9A). For example, the ankle dorsiflexors
generated forces that accelerated the knee and ankle
toward flexion. The hip extensors, by contrast, accelerated
the hip and knee toward extension (Fig. 11B).
It is commonly thought that the hamstrings are activated

in terminal swing to restrain both hip flexion and knee
extension in preparation for contacting the ground (e.g.,
Boakes and Rab, 2006; Perry, 1992; van de Crommert et
al., 1996). Therefore, we were surprised to discover that the
hamstrings in our simulations did not contribute substan-
tially to motions of the swing-limb knee (e.g., Fig. 9), even
though they were actively generating force in terminal
swing. This was due to dynamic coupling: the hamstrings’
knee flexion moment accelerated the knee toward flexion,
but the hamstrings’ hip extension moment accelerated the
knee toward extension. Further analysis of the muscle
actions revealed that the hamstrings decelerated the
forward motion of the swing-limb shank (Fig. 12). The
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hamstrings decelerated the shank, without substantially
influencing rotational motions of the knee, because they
simultaneously accelerated the pelvis forward and the hip
into extension.

It is pertinent to consider some of the limitations of this
study. First, our estimates of the motions induced by
muscles depend on the forces applied by the muscles during
the simulations. We fine-tuned the timing of the muscle
excitations based on detailed comparisons with measured
and published EMG recordings (Fig. 4), and we verified
that the simulations accurately reproduced the subjects’
measured gait data (Figs. 2 and 3); thus, we believe that the
forces generated by most muscles in our simulations are
reasonable. Nevertheless, the forces produced by some
muscles, such as the swing-limb vasti and stance-limb hip
abductors, remain questionable. Our tracking algorithm
chose not to excite the vasti in terminal swing, inconsistent
with EMG recordings, because these muscles were short-
ening too rapidly to generate much force. If the vasti had
generated more force, then they would have made larger
contributions to terminal-swing knee extension (Fig. 9A).
The gluteus medius in our simulations exhibited prolonged
excitation during stance as compared to EMG data. Hence,
our analysis may have exaggerated the contribution of the
stance-limb hip abductors to swing-limb knee extension,
particularly in the late extension phase. The forces
produced by the back muscles in our simulations also
remain questionable. We did not attempt to measure or
track motions of the subjects’ arms. As a result, the back
muscles may have been activated, in part, to compensate
for unmodeled forces on the torso.
We analyzed the muscle actions at the body positions

corresponding to normal walking at self-selected speeds.
The potential of the muscles to accelerate the knee might be
different at the body positions corresponding to crouch
gait, or at speeds much faster or slower than normal. To
better understand the muscle actions during crouch gait,
simulations that reproduce the musculoskeletal geometry
and gait dynamics of individuals with crouch gait are
needed. The data reported in this study establish a baseline
for assessing how the muscle actions might change with
variations in bone geometry, walking speed, or posture.
The muscle-induced accelerations reported in this study

describe the actions of individual muscles or groups of
muscles acting in isolation. To identify the source of a
patient’s diminished knee extension, it may be necessary to
consider how excessive or insufficient force in one muscle
might change the forces in other muscles. For example, a
patient with crouch gait may exhibit diminished activity of
the gluteus maximus in terminal swing to compensate for
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hamstrings, and adductor magnus. HipAb, the stance-limb hip abductors, includes gluteus medius and gluteus minimus. Other includes all other muscles of

the corresponding limb in the model.

A.S. Arnold et al. / Journal of Biomechanics 40 (2007) 3314–3324 3321
the excessive force produced by tight hamstrings. If the
hamstrings’ force was reduced, and the gluteus maximus’
force increased, then the patient’s knee extension might
improve—not because the hamstrings were the direct
source of the excessive knee flexion, but because the
gluteus maximus powerfully accelerates the knee toward
extension.
Identifying the factors that influence terminal-swing
knee extension during normal gait is an important step
toward explaining the causes of crouch gait and the
consequences of common interventions. The results of this
study suggest that diminished knee extension in swing
could potentially arise from weak hip extensors on the
swing limb, or by impaired hip muscles on the stance limb
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Fig. 10. Motions of the pelvis and swing limb induced by all stance-limb muscles during the extension phase (A) and braking phase (B). Straight arrows

represent translational accelerations, and curved arrows represent angular accelerations. All arrows are scaled proportional to their magnitudes.

Accelerations of the thigh are calculated relative to the pelvis. Stance-limb muscles accelerated the center of mass of the entire model (not shown) upward

and backward during the extension phase, and upward and forward during the braking phase, consistent with previous studies (Liu et al., 2006).
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that result in abnormal accelerations of the pelvis. Our next
step, to test these hypotheses, is to analyze simulations of
patients with diminished knee extension in swing.
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Fig. 11. Motions of the pelvis and swing limb induced by all swing-limb muscles during the extension phase (A) and braking phase (B). Straight arrows

represent translational accelerations, and curved arrows represent angular accelerations. All arrows are scaled proportional to their magnitudes.

Accelerations of the thigh are calculated relative to the pelvis, and accelerations of the shank are calculated relative to the thigh.
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