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Aweighted least squares method for inverse dynamic analysis*

ANTONIE J. VAN DEN BOGERT†‡* and ANNE SU{§
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Internal forces in the human body can be estimated from measured movements and external forces
using inverse dynamic analysis. Here we present a general method of analysis which makes optimal use
of all available data, and allows the use of inverse dynamic analysis in cases where external force data is
incomplete. The method was evaluated for the analysis of running on a partially instrumented treadmill.
It was found that results correlate well with those of a conventional analysis where all external forces
are known.
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1. Introduction

The recursive Newton–Euler method is widely used for

inverse dynamic analysis of human movement (Winter

1979, Vaughan et al. 1992, van den Bogert 1994). These

methods are applicable to multibody systems with a tree

structure, with rigid body equations of motion being

applied sequentially to each body segment, starting at

distal segments where external loads are either zero or

measured. The result is a full set of intersegmental load

variables, i.e. a force and moment vector at each joint.

This method is fast and easily implemented but has some

undesirable properties. First, the results are dependent on

the order in which the model is traversed. In lower

extremity studies, the analysis is typically started at the

feet, working towards the pelvis (Winter 1979). For the

upper extremity, the analysis starts at the hands, working

towards the shoulder (Fleisig et al. 1995). When

estimating forces in the spine, it is not clear which of

the two starting points is best (de Looze et al. 1992).

Second, when the analysis is carried out for the entire

human body, “residual loads” are needed at the final

segment to satisfy the equations of motion, even when it is

known that the final segment does not have contact with

the environment. Kuo (1998) recognized that these

shortcomings arise from the fact that the system of

equations is overdetermined. For instance, if a 3D linked

segment model has N-degrees of freedom (DOF), and all

external forces are known or measured, there are N

equations of motion and only N 2 6 unknown internal

loads. The conventional method effectively solves this by

discarding six of the equations, and the results will then

depend on which six equations are eliminated. Further-

more, all kinematic and force measurements that entered

in those six equations remain unused, even if they contain

potentially useful information.

Kuo (1998) proposed an alternative method which

solves joint moments from the overdetermined system of

motion equations for the entire system, while satisfying

the boundary conditions for a postural control task. The

method finds a set of joint moments that best agrees (in the

least squares sense) with all available measurements of

kinematics and external forces. Redundancy in the system

of equations is attractive when certain measurements are

unreliable, or even unavailable such as in instrumented

treadmills with only vertical force transducers. With

complete data, Kuo (1998) demonstrated about a 30%

noise reduction when compared to the conventional

recursive analysis. The method was applicable only to a

2D system jointed to the ground, and was therefore, not

suitable for gait analysis.

Here we present a further development of this least

squares inverse dynamics (LSID) method that is no longer

restricted to 2D systems jointed to ground. The method
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was implemented as a general software tool that allows

arbitrary 3D or 2D models to be defined using markers on

the subject and generates and solves the kinematic and

dynamic equations automatically. The method can

produce an optimal solution for any inverse dynamics

problem as long as the number of unknown load variables

does not exceed the number of DOF. The utility of the

method will be demonstrated on an analysis of running

with incomplete ground reaction force (GRF) data.

2. General methodology

2.1 Kinematic analysis

First, a skeleton model is defined with N DOF and

generalized coordinates q ¼ (q1 . . . qN)T. Assuming known

joint axes, the position r ¼ (x, y, z)Tand orientationRof each

body segment can be computed using forward kinematics as

functions ofq. If a marker i is placed at a known positionp in

the segment’s reference frame, the global coordinates ri of

the marker are therefore a known function of q:

ri ¼ rðqÞ þ RðqÞ ·pi ; f iðqÞ ð1Þ

If M markers are placed on the skeleton and their global 3D

coordinates are measured, the optimal (least squares)

estimate for the skeleton pose q can be obtained by

minimizing

FðqÞ ¼
XM
i¼1

ri 2 f iðqÞkk
2

ð2Þ

Note that in 3Ds, the right hand side is a sum of 3M squares.

A unique minimum exists if 3M $ N and 3m £ N the

Jacobian matrix J ¼ ›f/›q is non-singular. This method is

commonly referred to as global optimization (Lu and

O’Connor 1999), where global refers to the fact that the

entire skeleton is modeled, rather than isolated bones as in

conventional rigid body motion analysis (Challis 1995). If an

appropriate skeleton model and marker set is used, global

optimization requires fewer markers and produces more

robust results than conventional rigid body methods (Lu and

O’Connor 1999, Roux et al. 2002).

In our implementation (Mocap Solver 6.19, Motion

Analysis Corp., Santa Rosa, CA), equation (2) is minimized

using the LMDIF code for nonlinear least squares problems

(Moré et al. 1980) which is available from MINPACK at

http://www.netlib.org. We also have obtained good results

with the Levenberg–Marquardt solver in Numerical

Recipes (Press et al. 1992) which is faster but somewhat

less robust in situations where J is near-singular.

2.2 Dynamic analysis

After adding mass properties to the skeleton model, its

equations of motion can be derived as:

M· €q ¼ AðqÞ·tu þ BðqÞ·tk þ cðq; _qÞ; ð3Þ

where M is a mass matrix, tu is a vector of unknown forces

and moments, tk is a vector of known forces and moments,

and c are the gravitational, centrifugal and Coriolis effects.

A and B are coefficient matrices. After using spline

smoothing (Woltring 1986) to obtain first and second

derivatives of q(t), the only remaining unknowns are tu. In

order to avoid inconsistency in frequency content between

the force and motion measurements, force measurements

tk are smoothed with the same spline filter (van den Bogert

and de Koning 1996, Bisseling and Hof 2006). If, as is

typically the case in whole body models, the number of

unknown forces and moments in tu is less than the number

of equations (number of DOF) N, the system of equations

is overdetermined and a linear least squares method can be

used. Unlike in the kinematic analysis, weighting is

required because here the N equations may have different

error levels, scaling relationships, or units of measure-

ment. We first rewrite (3) as:

A·tu ¼ bþ e ð4Þ

where

b ¼ BðqÞ·tk þ cðq; _qÞ2M· €q ð5Þ

and e is a vector of residual errors. The weighed least

squares solution is:

tu ¼ arg min
tu

A·tu 2 bð ÞTW A·tu 2 bð Þ
� �

; ð6Þ

where the weighting matrix W is the inverse of the

covariance matrix of the error vector e.

In order to find the covariance matrix, we consider that

the noise in q(t) is small, while the error in first and second

derivatives can be substantial even after optimal

smoothing (Woltring 1985). We therefore assume that

the matrix A does not contribute to e, and we only consider

the error in b which is the result of the propagation of

measuring errors in tk, q, _q, and €q. There are strong

correlations between the elements of b, because of the

coefficient matrices and because of the whole body

kinematic solution in which each marker coordinate

contributes to each generalized coordinate. We can,

therefore, not assume that the covariance matrix is

diagonal. An analytical derivation would be intractable, so

we use Monte Carlo simulation to estimate the covariance

matrix from errors in raw data. The raw data are the

marker coordinates ri and the force measurements on

which tk depends. We assume normally distributed errors

sr (mm) in each marker coordinate, and normally

distributed errors st (N or Nm) in measured force and

moment variables. We take one typical recording of the

motion of interest, perturb each sample of raw data with

normally distributed random numbers with standard

deviations sr and st , and propagate the data through the

kinematic analysis, spline smoothing, and finally through

equation (5). This is done a number of times on the same

motion data to obtain a large number of perturbed vectors

A. J. van den Bogert and A. Su4
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b from which the covariance matrix COV is then

estimated as:

COV ij ¼
1

NpNf

XNf

k¼1

XNp

l¼1

bikl 2 bikð Þ bjkl 2 bjk
� �

ð7Þ

where bik is the unperturbed ith element of b in sample k,

and bikl is the kth perturbation of this variable. Nf is the

number of frames (samples), and Np is the number of

perturbations applied to each frame. We use Np ¼ 50.

Once the covariance matrix is known, we compute its

square root S using Cholesky factorization, such that

S·ST ¼ COV. Equation (6) is now equivalent to:

tu ¼ arg min
tu

S21 A·tu 2 bð Þk
�� ; ð8Þ

Equation (7) was solved using the DGGGLM General

Linear Regression solver which is available from the

LAPACK library at http://www.netlib.org. DGGGLM is

based on QR decomposition of the matrices A and S

(Golub and Van Loan 1989).

2.3 Equations of motion

There are many ways to derive equations of motion in

the form (3). We used the SD/Fast software (PTC,

Needham, MA) to generate the equations of motion.

SD/Fast produces a triangular mass matrix which is

advantageous for forward dynamics but has no particular

advantage here because the mass matrix is never

inverted. We obtain the mass matrix M using the

SD/Fast function SDMASSMAT. SD/Fast also has a

function SDFRCMAT which computes the right hand

side of (3) for given kinematic state ðq; _qÞ and applied

forces. The latter function was used to obtain first the

column vector cðq; _qÞ, by setting all forces to zero, and

then to obtain the columns of matrices A and B by

successively applying a unit force in each component of

tu or tk, while keeping all other components zero. A new

M, A, B and c is thus computed in each sample of the

movement. A more general symbolic manipulation

method, such as Autolev (Online Dynamics, Sunnyvale,

CA), would be able to extract A, B and c directly which

would be more efficient.

3. Example of application

3.1 Problem statement

We will consider the inverse dynamic analysis of a

running movement. Three dimensional joint moments

are thought to be relevant to injury prevention and

rehabilitation (Ferber et al. 2003). In the conventional

gait laboratory, with a force platform in the ground, it is

not possible to collect the required data continuously

while the patient runs at their mechanical and metabolic

steady state. Treadmill running is therefore an attractive

paradigm but this does not allow full 6-component GRF

(3D force and moment) to be recorded, which is required

for conventional recursive inverse dynamic analysis

when starting at the feet. A relatively inexpensive option

is an instrumented treadmill with a force platform under

the belt (GaitWay, Kistler, Amherst NY). This

instrumentation only measures three of the 6 external

load variables: vertical force and center of pressure.

There is, however, currently no method for inverse

dynamic analysis that can use such partial instrumenta-

tion. This inverse dynamic problem, however, fits nicely

into the least squares framework presented above. With

an N-DOF linked segment model in 3Ds, there will be

N 2 6 unknown internal loads, 3 unknown external

loads, and n equations of motion. The number of

equations (n) exceeds the number of unknowns (n 2 3).

We will demonstrate the utility of the least squares

method on this problem.

3.2 Instrumentation and protocol

Twenty-eight reflective markers were placed on a 44

year old male subject (figure 1). Markers were tracked

with six Falcon cameras (Motion Analysis Corp., Santa

Rosa, CA) and EVa 5.2 software at 240 frames per

second. GRF data were collected with an AMTI force

plate (OR6-5 #4048, Advanced Mechanical Technology

Inc., Watertown, MA) at 1000 samples per second. Data

were collected during standing, followed by 23 trials of

running at the subject’s preferred speed. The subject was

instructed to vary running style between trials, in order

to test the ability of the inverse dynamic analysis to

detect these variations.

Figure 1. Marker set and skeleton model. Numbers indicate the number
of DOF assigned to each of the body segments.

Inverse dynamic analysis 5
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3.3 Data processing

From the marker coordinates during standing, a twelve-

segment skeleton model (figure 1) was generated with 29

DOF: six for trunk position and orientation, three for a

spherical joint between pelvis and trunk, three for each

spherical joint at hip and shoulder, one for each hinge joint

at elbow and knee and two for the rotations in each ankle

(van den Bogert et al. 1994). Positions and orientations of

joint axes were based on existing methods (Isman and

Inman 1969, Bell et al. 1990, Vaughan et al. 1992).

Segment mass properties were computed from total body

mass and segment lengths using the methods of de Leva

(1996). Equations of motion were generated using

SD/Fast as described in section 2.1. Data from the

running trials were processed using the methods presented

in sections 2.1–2.3. Specifically, the spline smoothing of

q(t) and tk(t) was performed using a quintic spline filter

(Woltring 1986) with a cutoff frequency of 8 Hz. After

smoothing, force and motion variables were resampled at

a frame rate of 240 Hz, starting at heel strike of each trial,

for a total of 100 frames (417 ms). In each trial, the inverse

dynamic analysis was performed three ways:

(1) Using full GRF data (FULLGRF). This represents the

situation with 29 equations (one for each DOF) and

23 unknowns (one for each joint moment). The

covariance matrix was generated from the assump-

tion of 1 mm error in all marker coordinates and 0.1 N

and 0.1 Nm error in GRF and moment data,

respectively.

(2) Without using GRF measurements (NOGRF). This

represents the situation with 29 equations and 29

unknowns (one for each joint moment, and the six

unknown GRF variables). This is not an over-

determined system and results are independent of the

covariance matrix.

(3) Using partial GRF data, simulating the instrumented

treadmill in which only the vertical force and center

of pressure are measured (FzMxy). This represents

the situation with 29 equations and 26 unknowns

(joint moments and three unknown GRF variables).

The covariance matrix was generated from the

assumption of 50 mm error in all marker coordinates

and 0.1 N and 0.1 Nm error in GRF and moment data.

Solution (1) is the best possible solution with all

available data and will be used as the “gold standard”.

Solutions (2) and (3) represent two options for analysis of

running on the partially instrumented treadmill. Solution

(2) can be found with existing recursive inverse dynamic

analysis, starting at the hands and working towards the

lower extremity. Solution (3) requires our weighted least

squares method.

The comparison between the three analyses will

consider six variables of interest, the 3D joint moments

at hip and knee which are thought to be relevant for

overuse injury (Ferber et al. 2003). We will present the

time histories of these variables during one typical trial,

using all three solution methods. The ability of methods

(2) and (3) to detect differences between trials was

assessed by determining peak joint moments from each

trial over the first 60 frames (250 ms) after heelstrike. Each

of the methods (2) and (3) was compared to the “gold

standard” result of method (1) and the differences between

methods were quantified by the Pearson product-moment

correlation coefficient

r ¼
n
P

xiyi 2
P

xi
P

yiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
P

x2
i 2

P
xi

� �2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
P

y2
i 2

P
yi

� �2
q ð9Þ

and mean relative error

MRE ¼
1

n

X xi 2 yi

yi

����
���� ð10Þ

where xi is the peak joint moment in trial i obtained with

method X, and yi is the corresponding “gold standard”

value obtained with the FULLGRF method.

4. Results

Figure 2 shows, for one typical trial, the three dimensional

joint moments at the hip and knee, computed with all three

methods. There is good agreement between the three

methods for the flexion–extension moments. The agree-

ment appears to be worst for the internal–external

rotation, especially in the swing phase.

Peak joint moments for all trials are shown in figures 3

and 4 and the corresponding quantitative comparisons are

reported in table 1. The partial instrumentation (FzMxMy)

results which were produced using the LSID technique

correlated well with FULLGRF results, except for the hip

extensor moment. The error, however, in the hip extensor

moment was only 13.5%, suggesting that the low

correlation in this variable is due to small variations

between trials. The opposite is true for the knee rotator

moment, which has a large error of 47.2% but a high

correlation coefficient. This shows that the error is mostly

systematic (figure 4, bottom right) and that increases or

decreases in this variable can still be detected well with

partial GRF data. The NOGRF method (figure 3) had

larger errors and lower correlations when compared to

FULLGRF, especially for the knee adductor moment.

NOGRF also systematically overestimated the hip

abductor moment and underestimated the knee extensor

moment.

5. Discussion

We have presented a general methodology for performing

inverse dynamic analysis of multibody systems, which

makes optimal use of the redundancy in kinematic and

external force data. Compared to earlier versions of this

A. J. van den Bogert and A. Su6
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method (Kuo 1998), it is no longer required that the model

is jointed to the ground. This, however, necessitated the

use of a weighting matrix in solving the least squares

problem. We derived this weighting matrix via Monte

Carlo simulation of error propagation from estimated

errors in raw measurements (marker trajectories and

external forces). The method as presented here solves

unknown actuator forces, joint moments and any unknown

GRFs. Conventional recursive methods (Winter 1979) also

solve the non-actuating reaction loads at each joint, which

are useful in estimations of joint contact forces (van den

Bogert 1994). In order to enable such applications of our

methods, not demonstrated in this paper, we obtain the full

6-component reaction loads at each joint by a single

function call to the SD/Fast function SDREAC, after the

actuating loads have been solved. In addition to the ability

to utilize redundant measurements, the least squares

method has the additional advantage over conventional

methods that it is not limited to tree-structured multibody

systems.

There are also some limitations and disadvantages of

this method. If certain regions of the multibody system

have higher errors in model or measurements, it may be

better not to use a whole body least squares method, but

(if complete external force data are available) use a

recursive method which models only the region of interest.

For example, the inverse dynamic analysis of the lower

extremity during gait is more reliable when the upper body

Figure 2. Three dimensional joint moments at hip and knee during a representative running trial, obtained with each of the three inverse dynamics
methods. Frame rate is 240 Hz and frame 1 represents heel strike.

Inverse dynamic analysis 7
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is not included in the model, because motion of visceral

mass can not be measured reliably. However, if no full

GRF data is available, such a partial body model is not an

option.

The hip and knee joint moments during running

(figure 2) were consistent with other studies that used full

force plate instrumentation (Winter 1983, Ferber et al.

2003). Our results demonstrate that nearly the same results

can be obtained with an instrumented treadmill in which

only the vertical force and centre of pressure are measured

(figure 4), except perhaps the extensor moment at the hip.

Large errors were seen in the internal rotation moments

during the swing phase (figure 2), when the true loads are

zero, but the unmeasured GRF were given significantly

non-zero estimates by the NOGRF and FzMxy methods.

This problem could be avoided by considering these

unmeasured variables to be known, and equal to zero,

whenever the measured vertical GRF (Fz) is zero.

In order to obtain good results with the LSID method,

the measurement error estimates sr and st, required for

the covariance matrix, may need to be tuned carefully.

In this application, the FULLGRF results were robust and

not sensitive to our choice of sr ¼ 1 mm and st ¼ 0.1 N

and 0.1 Nm. However, the FzMxy analysis was sensitive

to sr. Trial and error tuning showed that sr ¼ 50 mm

produced good results, though no attempt was made to

fully optimize this parameter. The value of 50 mm may

seem large, as it is much larger than typical measuring

errors in motion capture systems, but it does reflect the

fact that many aspects of upper body motion, where most

mass resides, were not modeled: spine and neck motion,

scapulo-thoracic translation, wrist motion, and especially

the motion of internal organs which can not be measured

reliably.

Table 1. Error measures for joint moments obtained with no force
measurement (NOGRF) or partial force measurement (FzMxMy). Each
result was compared to a “gold standard” where complete GRF data was

used (FULLGRF). Mean relative errors (MRE) and correlation
coefficients (r) were computed using equations (9) and (10).

FzMxMy NOGRF

Joint moment MRE (%) r MRE (%) r

Hip extensor 13.5 0.379 11.4 0.263
Hip adductor 9.4 0.827 16.9 0.735
Hip rotator 9.4 0.645 12.4 0.653
Knee flexor 4.4 0.942 12.8 0.663
Knee adductor 11.7 0.946 58.4 0.002
Knee rotator 47.3 0.887 49.6 0.526

Figure 3. Peak joint moments (in Nm) in all 23 trials, compared
between the NOGRF method (no GRF data used) and the FULLGRF
method, where full GRF data is available. Maximum moments were used
for hip extensor and both internal rotator moments. Minimum moments
were used for knee flexor and both adductor moments.

Figure 4. Peak joint moments in all 23 trials, compared between the
FzMxy method (partial instrumentation) and the FULLGRF method,
where full GRF data is available.

A. J. van den Bogert and A. Su8
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We have demonstrated the utility of the LSID method

for analysis of running on a partially instrumented

treadmill. This can be applied clinically to assist and

evaluate gait retraining therapies with the goal of

preventing overuse injuries in runners. Many such injuries

are thought to be related to abnormal three dimensional

joint moments (Ferber et al. 2003). The partially

instrumented analysis (FzMxMy) has the capability of

detecting changes in joint moments caused by changes in

running technique.

When analysing walking gait with similar methods, we

obtained good results during single stance, but the double

stance phase presents a problem, even if the feet are on

separate force platforms that can measure vertical force

and center of pressure. Although the number of unknowns

(N-6 joint moments, plus 6 external force/moment

variables) is, in this case, exactly equal to the number of

equations N, the matrix A is singular and no unique

solution exists. This can be understood by considering that

the resultant horizontal GRF can be estimated from

horizontal acceleration of the center of mass of the entire

body, but the data contains no information on how this

resultant force is distributed between the two feet.

Minimal effort solutions can then be considered as an

alternative (Vaughan et al. 1982). An application where

the LSID method may be especially useful is the spine,

where it will produce an optimal merging of the top–down

and bottom–up methods which are currently the only

available options (de Looze et al. 1992).
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