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Abstract

We studied the feasibility of estimating walking speed and slope using a shank-mounted inertial measurement
unit. Our approach took advantage of the inverted pendulum-like behavior of the stance leg during walking to identify
a new method for dividing up walking into individual stride cycles and estimating the initial conditions for the direct
integration of the accelerometer and gyroscope signals. To test its accuracy, we compared speed and slope estimates
to known values during walking overground and on a treadmill. While the slope estimation method systematically
underestimated slope, the speed estimation method worked well across treadmill speeds and slopes yielding a root
mean square speed estimation error of only 7%. It also worked well during overground walking with a 4% error in
the estimated travel distance. This accuracy is comparable to that achieved from foot-mounted sensors, providing an
alternative in sensor positioning for walking speed estimation. Shank mounted sensors may be of great benefit for
estimating speed in walking with abnormal foot motion and for the embedded control of knee-mounted devices such
as prostheses and energy harvesters.

Key words: Gait analysis, Inertial measurement unit, Ambulatory system, Gait cycle, Walking speed, Inverted
pendulum model

1. INTRODUCTION1

An important component of gait analysis is the determination of walking’s spatial and temporal parameters includ-2

ing heel strike, toe-off, cadence, stride length and walking speed. These parameters are useful for diagnosing abnormal3

gait, evaluating the effectiveness of rehabilitation techniques, monitoring the performance of exercise programs, and4

providing fall risk indicators [3, 11, 14, 18]. To bring gait analysis out of the laboratory and make it portable, recent5

efforts have focused on estimating gait parameters using accelerometers and gyroscopes. As the name suggests, an6

accelerometer is a device for measuring accelerations, including those induced by gravity. A gyroscope measures7

angular velocity. The combinations of these sensors are referred to as inertial measurement units (IMU). Most studies8

using accelerometers and gyroscopes have been concerned with estimating temporal gait parameters—such as stride9

frequency-from characteristic features in the sensor signals when attached to different body locations including the10

trunk, thigh, shank and foot [16, 2, 10, 17].11

Determining walking speed requires estimating stride length in addition to stride frequency. One approach esti-12

mates stride length indirectly by first computing an intermediate kinematic parameter from sensor measurements and13

then relating the stride length to the intermediate parameter using an anthropomorphic model. For example, Miyazaki14

[15] integrated angular velocity measured by a thigh-mounted gyroscope to determine thigh angle. A single element15

model related thigh angle to stride length resulting in an error in estimated speed of less than 15%. Aminian et al. [1]16

used a more realistic two-segment model with gyroscopes mounted on the thigh and shank and achieved a root mean17
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square estimation error of 7%. (It is only possible to make rough comparisons of measured error between studies1

because different investigators have used different experimental conditions and calculated error in different ways.) In-2

stead of attaching sensors to the lower limb, Zijlstra and Hof [21] studied the feasibility of estimating spatio-temporal3

gait parameters using a trunk-mounted accelerometer. From the measured upward and downward displacements of4

the trunk, an inverted pendulum model estimated mean step length yielding root mean square speed estimation errors5

ranging from 5% at a walking speed of 0.5 m/s to 14% at a walking speed of 1.75m/s. While these studies demon-6

strate reasonable accuracy in estimating speed, they are limited by their requirement of subject-specific calibration—7

the same angles in a taller person will correspond to longer stride lengths and faster speeds.8

Instead of estimating spatial parameters indirectly, an alternative is to determine displacements by direct time9

integration of measured accelerations. This approach is more general than the previously described indirect approach10

as it does not require subject-specific calibration. It can be more difficult, however, to get accurate results from double11

time integration of accelerometer measurements. The first issue is that the measured accelerations have contributions12

not only from the motion of the limb but also from gravity. Gravitational acceleration must be subtracted before13

integration requiring continuous knowledge of the device angle with respect to gravity—an angle that is often difficult14

to determine. A second issue is that drift in the accelerometer offset, even if it is very small, can quickly cause large15

inaccuracies in the estimated displacement because its contribution grows proportional to the square of time. Common16

causes of drift include changes in sensor temperature or the structure of the micro-machined parts [13, 4]. A solution17

is to take advantage of the cyclical nature of walking and divide up the continuous motion into a series of stride cycles18

(ie. segmentation), resetting integration at the beginning of each new cycle. Resetting treats the new sensor offset19

as a constant and as long as cycle duration is much shorter than the rate at which the sensor offset is changing, quite20

accurate results can be achieved. However, resetting introduces a third issue—the initial conditions at the beginning21

of each integration must be known.22

Sabatini and colleagues have demonstrated that it is possible to correctly account for these issues and directly23

integrate measured accelerations to yield accurate estimates of walking speed [19]. These authors placed an IMU24

on the top of the foot and resolved the gravitational acceleration component using the gyroscope signal. Integration25

resetting took advantage of the unique mechanics of the foot during locomotion—that it has zero linear and angular26

velocity once per stride when the foot is flat—to determine the initial conditions for each new integration. The27

algorithm was quite accurate with root mean square speed estimation errors of about 5%. While the approach of28

Sabatini and colleagues is quite useful, it is not always desirable to mount sensors directly on the feet. They may29

easily move out of the plane of progression, especially during pathological gait, because of the complex motions of30

the ankle joint during walking [10]. In addition, mounting sensors closer to the knee joint would be more useful31

for the embedded control of knee-mounted devices such as prostheses, orthoses, exoskeletons and energy harvesters32

[9, 20, 12, 6].33

The purpose of this paper was to study the feasibility of estimating walking speed and slope using a shank-34

mounted inertial measurement unit. Our approach took advantage of the inverted pendulum-like behavior of the35

stance leg during walking to identify a new method for segmenting the gait cycle and estimating the initial conditions36

for integration. To test its accuracy, we compared algorithm speed and slope estimates to known values during walking37

overground and on a treadmill at a range of speeds and inclines.38

2. Methods39

2.1. Speed and slope estimation40

Shank linear accelerations and angular velocity were measured using a bi-axial accelerometer (Analog Devices41

ADXL320) and a gyroscope (Analog Devices ADXRS300), respectively. When the shank is vertical with respect to42

the world coordinate system, the tangential and normal axes of the accelerometer point in the fore-aft and vertical43

directions, respectively (Figure 1). The gyroscope axis is orthogonal to the plane defined by the tangential and normal44

axes. Shank angle, θ, is defined as the angle between the normal axis of the accelerometer and the vertical axis of45

the world coordinate system. As per the right hand rule, positive angular velocity corresponds to a counterclockwise46

rotation of the shank.47

To compute the displacements along the horizontal and vertical world coordinate axes, we first resolved the48

accelerometer-measured acceleration signals an(t) and at(t) at time t into component accelerations ax(t) and ay(t)49
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in the world coordinate system according to1

ax(t) = −an(t) sin θ(t) + at(t) cos θ(t)
ay(t) = an(t) cos θ(t) + at(t) sin θ(t) − g, (1)

where θ(t) is the shank angle, and g is the acceleration due to the gravity (Figure 1). The shank angle θ(t) was2

computed by integrating the gyroscope-measured angular velocity ω(t),3

θ(t) =

∫ t

0
ω(τ)dτ + θ(0), (2)

where θ(0) is the initial shank angle before integration.4

With the resolved acceleration ax(t) and ay(t), we computed the associated velocities vx(t) and vy(t),5

vx(t) =
∫ t

0 ax(τ)dτ + vx(0)
vy(t) =

∫ t
0 ay(τ)dτ + vy(0),

(3)

where vx(0) and vy(0) are the initial horizontal and vertical velocity conditions.6

By integrating the velocities vx(t) and vy(t), we obtained the horizontal displacement, sx(t), and vertical displace-7

ment, sy(t),8

sx(t) =
∫ t

0 vx(τ)dτ + sx(0)
sy(t) =

∫ t
0 vy(τ)dτ + sy(0),

(4)

where sx(0) and sy(0) are the initial horizontal and vertical positions before the start of integration.9

We segmented the continuous walking motion into a series of stride cycles and reset the integration of Equations10

(2)-(4) at the beginning of each new cycle. Mid-stance shank vertical events—the time in the stance phase when the11

shank is parallel to the direction of gravity—defined each new stride cycle. The inverted pendulum-like behavior of12

the stance leg during walking allowed us to identify each mid-stance shank vertical event from a characteristic feature13

in the gyroscope signal (Figure 2). During the inverted pendulum-like stance phase, the body vaults up and over the14

stance leg with shank angular velocity negative and slowing down as kinetic energy is exchanged for potential energy15

[5]. At the shank vertical event, the body center of mass reaches its highest point, potential energy reaches a maximum,16

and velocity reaches a minimum. The angular velocity of the shank is slowest at this point but then accelerates as the17

inverted pendulum swings down, exchanging potential energy for kinetic energy. The angular velocity of the shank18

switches from negative to positive during swing in order to progress the shank forward and return it to the correct19

orientation at the beginning of the next stance phase. Thus, the characteristic feature for defining mid-stance shank20

vertical events was the local maximum during the lengthy period of negative angular velocity (Figure 3).21

Mid-stance shank vertical is a convenient event to define the initial conditions for integration. By definition,22

θ(0) = 0 at mid-stance shank vertical thereby providing the initial condition for integrating Equation (2). If the23

stance leg behaves like an inverted pendulum, vy(0) = 0 at mid-stance shank vertical because the body has reached24

its maximum height (Equation 3). As the sensor is located much closer to the center of inverted pendulum rotation25

than that of the center of mass, its horizontal velocity is much smaller than that of the center of mass (Figure 2).26

We assume, as a first approximation, that vx(0) = 0 at mid-stance shank vertical (Equation 3; c.f. Discussion). The27

initial conditions for Equation (4) will not affect the estimation results—we set them both equal to zero for simplicity.28

These initial conditions allowed the integration of Equations (2)-(4) over each gait cycle duration, T , providing a first29

estimate of horizontal and vertical displacements.30

To reduce the estimation error caused by offsets in the acceleration measurements, we assumed zero net accel-31

eration within each stride cycle. While the shank continuously accelerates and decelerates, the average acceleration32

is zero in each stride cycle during steady state walking. With zero acceleration, the shank horizontal and vertical33

velocities will be the same at the beginning and at the end of the stride cycle. While the horizontal velocity at the34

beginning of the stride, vx(0), equals zero, offsets in the acceleration measurements result in the horizontal velocity at35

the end of the stride, vx(T ), not being equal to zero. We estimated this mean horizontal acceleration offset, āx, as36

āx = (vx(T ) − vx(0))/T. (5)
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The contribution of this offset āx to the estimated horizontal displacement was37

s̄x =
1
2

āxT 2 =
1
2

T · vx(T ). (6)

Similarly, we estimated the mean vertical acceleration offset, āy, as1

āy = (vy(T ) − vy(0))/T. (7)

The contribution of this offset to the estimated vertical displacement was2

s̄y =
1
2

āyT 2 =
1
2

T · vy(T ). (8)

At the end of each gait cycle, we performed a correction on the estimated horizontal and vertical displacement of3

Equation (4) by subtracting the corresponding offsets from Equations (6) and (8). The corrected horizontal displace-4

ment s′x(T ) and vertical displacements′y(T ) in the gait cycle were calculated as5

s′x = sx(T ) − 1
2 T · vx(T )

s′y = sy(T ) − 1
2 T · vy(T ), (9)

and the stride length sT was computed as6

sT =

√
(s′x)2 + (s′y)2. (10)

With the stride length sT , we computed the average walking speed V(T ), in m/s, and slope φ(T ), in percent grade,7

for each gait cycle as8

V(T ) = sT /T
φ(T ) =

s′y(T )
s′x(T ) · 100.

(11)

Before each walking experiment, we calibrated the accelerometer by aligning its axes parallel with gravity (nomi-9

nal output of 1g) and perpendicular to the gravity (nominal output of 0g) and adjusted the gain and offset accordingly.10

We performed a single calibration procedure for the gyroscope using a dynamometer (BIODEX II, Biodex Medical11

Systems, New York) to rotate the device at predefined angular velocities. During the experiment, the sensor signals12

were digitized (16 bit) at a sample rate of 1 kHz (PCMCIA card NI DAQ 6036E, National Instrument Inc, Austin,13

TX) and low-pass filtered (Second order, Butterworth, 4 Hz cut-off). The speed and slope estimation algorithms were14

programmed in Simulink, compiled using Real Time Work-shop and executed in real-time using Real Time Windows15

Target on a laptop computer (Mathworks, Natick, MA).16

2.2. Experimental methods17

To test the proposed methods, we performed treadmill and overground walking experiments. Five male and three18

female subjects (age: 28.0 ± 5.8 years; height: 1.68 ± 0.07; tibia length: 0.41 ± 0.03 m) participated in the treadmill19

walking experiment. The three female subjects also performed overground walking experiments. All subjects were20

healthy and exhibited no clinical gait abnormalities. Before the experiments began, volunteers gave their informed21

consent to participate in accordance with university policy.22

After familiarizing the subjects with the experimental protocol and treadmill walking, we collected data at tread-23

mill speeds of 0.8, 1.0, 1.2, 1.4, 1.6, and 1.8 m/s. At each speed, subjects walked at −10%,−5%, 0%, 5%, and 10%24

grade. Subjects wore their own walking shoes and athletic clothing. Trials were 90s in duration. During all trials, an25

IMU was attached with athletic tape directly onto the calf and parallel to the sagittal plane. The center of the IMU26

was positioned midway between the knee and ankle along the longitudinal axis of the shank. To identify the effects27

of sensor location on gait parameter estimation, we performed additional experiments with the center of the IMU unit28

positioned at 25% (proximal), and 75% (distal) along the longitudinal axis. In these trails, subjects walked at the full29

range of speeds but only on the level grade. During the overground experiments, subjects completed two trials of30

walking along a straight 100 meter long course at their preferred walking speed with the IMU in the middle position.31
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2.3. Data analysis32

For each treadmill walking trial, we calculated the mean walking speed and slope by averaging the stride-by-1

stride data from the last 60s of each trial. Estimation error at a given speed and slope was calculated as the difference2

between the estimated speed or slope and the actual treadmill value. Within a condition, we averaged across subjects3

to determine the mean estimation error (Mean) and standard derivation (S.D.). We also calculated the root mean4

square error (RMSE) of the speed estimates as RMSE =
√∑

(estimated-actual)2/N (N is the number of samples). For5

each slope, we calculated the RMSE between eight subjects across six speeds (N = 48). For each individual walking6

speed, the RMSE was calculated across five slopes within eight subjects (N = 40). The overall RMSE was calculated7

across all of the testing speeds and slopes within eight subjects (N = 240). The effects of walking speed, slope and8

sensor location on speed and slope estimation error were tested using repeated-measures ANOVA, with P < 0.059

considered statistically significant. For overground walking trials, we computed the mean and RMSE of the estimated10

walking distance.11

3. Results12

The proposed speed estimation method accurately estimated walking speed. Figure 4 presents typical data from13

a single subject during level walking. For this representative subject, speed and slope are estimated accurately and14

with low variability. This pattern holds across the eight measured subjects as summarized in Figure 5 and Table 1.15

While actual speed did not affect the speed estimation error during level walking (P = 0.065), the algorithm tended16

to slightly overestimate at slow speeds and underestimate at fast speeds. Estimation errors were nevertheless small17

with the largest being −0.10 m/s at 1.8 m/s. Walking slope had a systematic effect on estimated speed (P = 0.04). In18

general, the speed estimation algorithm was accurate across speeds and slopes—the RMSE for speed estimation was19

only 7%. The accuracy of speed estimation resulted in accurate distance estimation. The mean value of the estimated20

distance covered in the six overground walking trials was 96.5 ± 2.0 m equating to a RMSE of 4%.21

Unlike the speed estimation method, the proposed slope estimation method was not accurate (Figure 6). While22

the estimated slope for level walking, averaged across all walking speeds, was close to zero (−2.3%), variability23

between subjects was high (4.2% S.D.). For level walking, the slope estimation error was not affected by walking24

speed (P = 0.41). Actual slope had a systematic effect on estimated slope (P = 9.8e − 7), with the method tending25

to underestimate both the degree of incline and the degree of decline. At the steepest decline of −10% grade and26

the highest walking speed of 1.8 m/s, the algorithm estimated a positive slope of 5% grade, resulting in the largest27

absolute estimation error.28

29

4. Discussion30

Our results indicate that a shank-mounted inertial measurement unit can provide accurate estimates of walking31

speed across a wide range of speeds and slopes. This approach leveraged walking’s inverted pendulum-like behavior32

to define individual gait cycles based on mid-stance shank vertical events and estimate the initial conditions for33

integration. The algorithm worked well across speeds and slopes yielding a root mean square speed estimation error34

of only 7%.35

The position of the sensor along the shank affected speed estimation results (Figure 7). To determine the initial36

condition for integrating the sensor horizontal acceleration, we assumed a zero sensor horizontal velocity at mid-37

stance shank vertical (Equation 3). Any deviation of the actual initial horizontal velocity from zero would result in38

the same amount of offset in the estimated horizontal speed. Because the shank rotates about the ankle joint at the39

mid-stance shank vertical event, the absolute value of the initial horizontal velocity vx(0) is approximately equal to the40

product of the angular velocity omega of the shank and the distance of the sensor to the ankle joint (Figure 2). At the41

mid-stance shank vertical event, the shank angular velocity reached a non-zero local maximum resulting in a positive42

nonzero initial horizontal velocity (Figure 3). The speed estimation algorithm underestimated walking speed, and the43

underestimation became larger at faster walking speeds, because the shank retained a greater angular velocity, and44

therefore a larger initial horizontal velocity, at the peak of the inverted pendulum arc. As expected, a more proximal45
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Table 1: Speed estimation errors at different speeds and slopes

Slope
Speed (m/s)

Slope 0.8 1.0 1.2 1.4 1.6 1.8 RMSE
−10% abs. 0.01±0.08 −0.03 ± 0.10 −0.01 ± 0.10 −0.04 ± 0.10 −0.06 ± 0.11 −0.16 ± 0.11 0.12

pct. 0.01 ±0.1 −0.03 ± 0.1 −0.01 ± 0.08 −0.03 ± 0.07 −0.03 ± 0.07 -0.09 ±0.06 0.09

−5% abs. 0.04 ± 0.07 0 ± 0.06 0.04±0.06 0±0.07 −0.02 ± 0.07 −0.09 ± 0.08 0.08
pct. 0.05 ± 0.09 0 ± 0.06 0.03 ±0.05 0 ±0.05 −0.02 ± 0.05 −0.05 ± 0.04 0.06

0% abs. 0.01 ± 0.07 −0.03 ± 0.06 −0.03 ± 0.06 −0.05 ± 0.06 −0.05 ± 0.07 −0.10 ± 0.07 0.08
pct. 0.02 ± 0.09 −0.03 ± 0.06 −0.03 ± 0.05 −0.03 ± 0.04 −0.03 ± 0.04 −0.06 ± 0.04 0.06

5% abs. 0.02 ± 0.06 −0.02 ± 0.03 0.01 ± 0.03 −0.02 ± 0.05 −0.01 ± 0.04 −0.06 ± 0.04 0.05
pct. 0.02±0.08 −0.02 ± 0.03 0.01 ± 0.02 −0.01 ± 0.03 0 ± 0.02 −0.03 ± 0.02 0.04

10% abs. 0.10 ± 0.05 0.06 ± 0.05 0.10 ± 0.05 0.05 ± 0.03 0.06 ± 0.03 −0.01 ± 0.05 0.08
pct. 0.12 ± 0.06 0.06 ± 0.05 0.08 ± 0.04 0.04 ± 0.02 0.04 ± 0.02 −0.01 ± 0.03 0.08

RMSE abs. 0.08 0.07 0.08 0.07 0.08 0.12 0.08
pct. 0.10 0.07 0.06 0.05 0.05 0.07 0.07

Absolute estimation error(abs.), percentage estimation error (pct.) at different speed and slope are shown.
Values are means ±S .D., N = 8.

sensor placement resulted in an even larger degradation in estimation error at faster speeds. Speed estimation error46

in the distal sensor was independent of speed but suffered from a small but constant overestimation. The tradeoff1

between the underestimation from the middle sensor and overestimation from the distal sensor suggests that the ideal2

IMU location to minimize speed estimation error would be between the middle and distal sensor locations.3

Our approach failed to provide accurate slope estimation by consistently underestimating both positive and nega-4

tive slopes. These inaccuracies appear to arise, at least in part, from limitations of using an inverted pendulum model5

to predict shank vertical events during slope walking. During incline walking, the COM kinetic energy reaches its6

minimum prior to the COM gravitational potential energy reaching its maximum [8]. In the context of our method,7

this implies that the local maximum of shank angular velocity occurs prior to the stance leg reaching its vertical posi-8

tion during incline walking. The order of the COM energy extrema is reversed during decline walking [8] suggesting9

that the local maximum of shank angular velocity occurs after the stance leg reaching its vertical position. Non-zero10

shank angles at predicted shank vertical events results in positive and negative initial vertical velocities during incline11

and decline walking, respectively. Our method assumes that the initial vertical velocity is zero (Equation 3), underes-12

timating the actual vertical speed and, consequently, underestimating slope. Because grade is calculated as the ratio13

between the estimated vertical displacement and the estimated horizontal displacement (Equation 11), small absolute14

errors in vertical speed can have a large effect on estimated slope at small slope angles. There is a much less pro-15

nounced effect of small absolute errors on estimated speed (Equation 11) explaining why accurate speed estimation16

can be accompanied by poor slope estimation.17

While not suitable for estimating slope, the present method appears to provide a greater accuracy at estimating18

speed than the most accurate indirect method and without requiring subject-specific calibration [15, 1, 21]. The present19

accuracy is roughly comparable to that achieved by Sabatini and colleagues who, like us, used direct integration of20

accelerations but from a sensor mounted to the foot [19]. That accurate results can be achieved with either method21

allows for flexibility in sensor positioning. This may be of great benefit for integrating sensors directly into a knee-22

mounted device, such as an energy harvester [6], or for estimating speed in walking with abnormal foot motion, such23

as the equinus gait often observed in children with cerebral palsy [7].24
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and then speeds up with its minimum speed occurring at mid-stance shank vertical. Consequently, the IMU horizontal and vertical velocities (vx
and vy; right side arrows) are approximately zero at mid-stance. Shank angular velocity switches from negative to positive during swing in order
to progress the shank forward and return it to the correct orientation at the beginning of the next stance phase. S T is the stride length between two
mid-stance shank vertical events.
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Figure 3: Shank configuration and filtered angular velocity, ω. At mid-stance shank vertical, the angular velocity of the shank reaches a local
maximum with a value close to zero.
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Figure 4: Estimated speed and slope from a representative subject during level walking at treadmill speeds ranging from 0.8 m/s to 1.8 m/s.
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Figure 5: Estimated speeds during −10% (N ), 0% (•) and 10% (¥) grade walking. The solid grey line is the line of identity where
the estimated speed equals the treadmill speed. Values shown are means± S.D., N = 8.
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Figure 6: Estimated slopes during walking speeds at 0.8 m/s (¥), 1.2 m/s (•) and 1.8 m/s (N). The solid grey line is the line of
identity where the estimated slope equals the treadmill slope. Values shown are means± S.D., N = 8.
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Figure 7: Estimated speeds during level walking with the sensor locations at placed along the longitudinal axis of the shank at
proximal (¥), middle (•) and distal (N) locations. The solid grey line is the line of identity where the estimated speed equals the
treadmill speed. Values shown are means± S.D., N = 8.
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