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Unique features of body segment kinematics in falls and activities of daily living (ADL) are applied to

make automatic detection of a fall in its descending phase, prior to impact, possible. Fall-related injuries
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can thus be prevented or reduced by deploying fall impact reduction systems, such as an inflatable

airbag for hip protection, before the impact. In this application, the authors propose the following

hypothesis: ‘‘Thigh segments normally do not exceed a certain threshold angle to the side and forward

directions in ADL, whereas this abnormal behavior occurs during a fall activity’’. Torso and thigh

wearable inertial sensors (3D accelerometer and 2D gyroscope) are used and the whole system is based

on a body area network (BAN) for the comfort of the wearer during a long term application. The

hypothesis was validated in an experiment with 21 young healthy volunteers performing both normal

ADL and fall activities. Results show that falls could be detected with an average lead-time of 700 ms

before the impact occurs, with no false alarms (100% specificity), a sensitivity of 95.2%. This is the

longest lead-time achieved so far in pre-impact fall detection.

& 2008 Published by Elsevier Ltd.
1. Introduction

Falls are a major care and cost burden to health and social
services world-wide (Annekenny and O’Shea, 2002). Falls have
traditionally been recognized as one of the ‘‘giants’’ for geriatric
medicine, reflected from the high incidence of falls, common
adverse sequelae such as fractures, and the major psychological
impact. Among the causes of falls, fainting (syncope) is one
common factor in older people and also related to unexplained
and recurrent falls (McIntosh et al., 1993). Syncopal episodes or
fainting related falls are unwitnessed in 40–60% of older people
over 65 (McIntosh et al., 1993) and cause considerable mortality
and morbidity among this age group.

Even though most falls produce no serious injury, only 1–2% of
falls result in hip fractures (Hayes et al., 1996), 5–10% of
community-dwelling older adults who fall each year do sustain
a serious injury such as fracture, head injury, or serious laceration
(Nevitt et al., 1991; Tinetti et al., 1995). Of all the fall-related
traumas, fractures of the neck and trochanteric regions of the
femur, the major bone in the hip joint, are currently one of the
most serious health care problems faced in aging populations
(Marks et al., 2003). Most hip fractures (60–99%) are related to
direct trauma to the hip (Chapuy et al., 1992; Cummings and
Elsevier Ltd.

).

et al., A wearable system
Nevitt, 1989; Hipp et al., 1991; Lauritzen and Askegaard, 1992). An
investigation performed by Smeesters et al. showed that at any
gait speed, that faint falls resulted in a greater number of sideways
falls with impact near the hip (Smeesters et al., 2001). In these
scenarios, the most promising prevention strategies for faint fall
involves the identification of individuals who are at increased risk
and the implementation of appropriate interventions, these
include physical restraint (Gross et al., 1990), investigation of
fall-related fractures prevention strategies (Smeesters et al., 2001;
Van den Kroonenberg et al., 1996; Yamamoto et al., 2006), study of
characteristics and risk factors of syncope (Kenny and O’Shea,
2002; Peczalski et al., 2006), and multi-factorial risk assessment
and management (Sjösten et al., 2007; Weatherall, 2004).

In fall intervention strategies, one of the key concerns in
preventing or reducing the severity of injury in the elderly is to
detect the fall in its descending phase (Hayes et al., 1996) before
the impact (pre-impact fall detection). A few groups have
attempted to detect falls prior to impact (Bourke et al., 2008;
Nyan et al., 2006; Wu, 2000). Some researchers have investigated
inflatable hip protectors to cushion the fall prior to impact
(Davidson, 2004; Lockhart, 2006; Ulert, 2002). Wu implemented
pre-impact fall detection by thresholding the horizontal and
vertical velocity profiles of the trunk using motion analysis
system. Wu showed that falls can be distinguished from activities
of daily living (ADL) with 300–400 ms lead-time before the impact
(Wu, 2000). Nyan et al. used three gyroscope sensors at three
different locations, the sternum, front of the waist and under the
for pre-impact fall detection. Journal of Biomechanics (2008),
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arm, for fall pre-impact detection. Nyan achieved 100% sensitivity
with approximately 200 ms lead-time before the impact; how-
ever, 16% of ADL events tested were misinterpreted as falls (Nyan
et al., 2006). In addition, at the instant when fall is detected, the
angle of body configuration from the vertical axis is 40–541 (Nyan
et al., 2006). Bourke et al. investigated pre-impact detection of
falls by thresholding the vertical velocity of the trunk. An optical
motion capture system and an inertial sensor unit consisting of a
tri-axial accelerometer and a tri-axial gyroscope were used in
their experiments. The inertial sensor was located on the chest of
the body using a harness. Falls can be distinguished from normal
ADL, with 100% accuracy and with an average of 323 ms prior to
trunk impact and 140 ms prior to knee impact, in that subject
group (Bourke et al., 2008).

In pre-impact fall detection, if a fall can be detected in its
earliest stage, i.e., in the descent phase (Hayes et al., 1996), more
efficient impact reduction systems can be implemented with a
longer lead-time for injury minimization.

This paper presents the implementation and clinical trial
results of a wearable pre-impact fall detection prototype, using
inertial sensors to detect faint falls in its incipience. The approach
is based on the characteristics of angular movements of the thigh
and torso segments in falls and ADL. The authors hypothesize the
following statement: ‘‘Thigh segments normally do not exceed a
certain threshold angle to the side and forward directions in ADL,
whereas this abnormal behavior occurs during a fall activity’’. This
pre-impact fall detection algorithm can be implemented in a
wearable fall injury minimization system to track a user’s body
movement and notify the fall impact reduction device when to
activate in order to reduce the severity of the fall injury.
x

Fig. 1. (a) Hardware setup of the pre-impact fall detection system. Data processing

board (8�3.5�2 cm, 70 g), sensor board (4.3�4.3�1.5 cm). (b) Sensitivity axes of

the 3D accelerometer and 2D gyroscope. The TS is attached using Velcro at the

front of the right thigh and the WS is attached on a belt at the front waist position.
2. Materials and methods

The hardware setup developed for the pre-impact fall detection prototype

includes a thigh sensor set (TS), waist sensor set (WS) and data processing unit

(Fig. 1a). The TS contains one Freescale1 MMA7260Q (74 g, 300 mV/g) tri-axial

micromachined accelerometer {x: vertical (downward positive); y: lateral (right

positive); z: sagittal (forward positive)} and two Analog Devices2 ADXRS150

(71501/s) rate gyroscopes measuring pitch (back positive) and roll (left positive)

angular velocity. The sensitive axes of the sensors are shown in the figure (Fig. 1b).

A single tri-axial accelerometer is included in the WS with similar sensitivity axis

setting as those in TS. Two AAA-size batteries can power the sensor unit for nearly

two days. Acceleration data (xTS(i), yTS(i), ZTS(i), xWS(i), yWS(i), zWS(i)) are low pass

filtered with cutoff frequency of 0.5 Hz and the gyroscope signals (oLAT(i), oSAG(i))

are band-pass filtered between 0.5 and 2.5 Hz. Hardware RC low-pass and band-

pass filters are used in implementation to avoid time delay and phase shift in

digital filtering. The sampled data are then smoothed with a simple exponentially

weighted moving average filter.

Chipcon CC2420 Zigbee transceivers are used for data communication between

the sensor sets and data processing unit. An Intels PXA255 processor (400 MHz) is

used in the data processing unit. Three AAA-size batteries can power the

processing unit for 12 h. Sensor data is sampled at sampling rate of 47 samples/s.

In wireless communication between the transmitters and the receiver, polling

medium access control (MAC) was used. The polling MAC is designed mainly for

the multi-transmitter BAN systems requiring the continuous transfer of data at a

central processing point. The receiver at the processing unit sends a polling packet

to each transmitter at the two sensor sets in a round robin fashion. Upon reception

of the polling packet, the transmitter will be allowed to transfer a pending packet

immediately. There are two light emitting diodes (LEDS), green and red, to show

the status of the system. The red LED is used to show the data communication

status between the sensor sets and the processing unit and the green LED turns on

for 30 s when a fall is detected. For post-trial analysis, data was also recorded onto

a laptop through a Zigbee transceiver, at the laptop’s serial port, during the

experiment.

The process flow of pre-impact detection algorithm in the processing unit is

shown in Fig. 2. Acceleration samples are transformed into two dimensional

degrees of body orientation, measuring how many degrees these body segments

deviate from the vertical axis (i.e., standing is 01 and lying flat on the floor is 901),
1 Freescale Semiconductor, Inc., Austin, TX, USA.
2 Analog Devices, Inc., Norwood, MA, USA.

Please cite this article as: Nyan, M.N., et al., A wearable system
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using the following equations:

degSAG;TSorWSðbackward positiveÞ ¼ �tan�1ðzTSorWS=xTSorWSÞ � ð180=pÞ, (2.1)

and

degLAT;TSorWSðleft positiveÞ ¼ tan�1ðyTSorWS=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

TSorWS

q
Þ � ð180=pÞ, (2.2)

where TS and WS represent thigh segment and torso segment. The 3-D

accelerometer’s degree conversion is calibrated with 30–60–90 and 45–45–90

triangle metal blocks located on a small table whose surface is adjusted to be

horizontal with a carpenter’s spirit level. For calibration of the ADXRS150 rate

gyroscope sensor, 12.5 mV/1/s was used to convert gyroscopes’ outputs (raw

voltages) to degree/second measurement, this value was obtained from the

manufacturer’s data sheet. Angular data (degSAG, degLAT) were examined according

to the hypothesis, if one of two dimensional angular signals (degSAG,TS and

degLAT,TS) of the thigh segment intersects the threshold levels, 7101, then a fall is

confirmed using the following algorithm. First, the correlation coefficient (rdeg) of

thigh angular data (TAD) and torso angular data (WAD) are compared (i.e.,

between {degSAG,TS(�N+i); i ¼ 0,y,N and N ¼ 19} and {degSAG,WS(�N+i); i ¼ 0,y,N

and N ¼ 19}, or between degLAT,TS and degLAT,WS) to the threshold value (rdegX0.8).

Secondly, if the correlation coefficient (ro) between the band-pass filtered

gyroscope segment {o(�N+i); i ¼ 0,y,N and N ¼ 79}, and its corresponding

reference template is greater than or equal to 0.8, then a fall is confirmed. The

reference templates are those taken from experimental data used in the

development stage of the algorithm before the experiment whose results are

presented in this paper was conducted. The experiment conducted during the

development stage is described in the Appendix A. Thus, falls were simulated

similarly to those presented in the paper to generate the reference templates. If

degLAT,TS intersects the +10/�101 threshold level, the gyroscope segment is

correlated with left/right fall reference template and if degSAG,TS intersects the

+101/�101 threshold level, the gyroscope segment is correlated with backward/

forward fall reference template. The LED will switch on if the coefficients rdeg and

ro are above or equal to 0.8 (Fig. 2). In this fall detection algorithm, only the thigh

angular data between 01 to 7901 are taken as points of interest for the
for pre-impact fall detection. Journal of Biomechanics (2008),
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confirmation process. Here, the term ‘‘0 to 790’’ refers only to the trend of thigh

segment’s sway in fall activities and it does not mean that thigh rotates only

between 0 and 790 in fall activities. The whole algorithm, written in the C

programming language, can be processed in less than 7 ms using Intels PXA255

(400 MHz) processor.

Thirteen male and eight female volunteers participated in the clinical trial. The

average ages were 23.38 and 22.25 years old, respectively, with a range of 22–27

for males and 21–for females. The mean height and mass7standard deviation of

the males were 1.7670.06 m and 69.178.72 kg, respectively. For the female

volunteers, the mean height7standard deviation was 1.6570.03 m, and for mass it

was 51.5874.47 kg. The trial protocol was approved by the Singapore General

Hospital Medical Research Ethics Committee and written informed consent was

obtained from each subject. In faint fall simulations, the subjects were told to

stand on the floor beside the mattress and simply relax themselves and fall to the

sides, back, and front. The subjects performed the simulated fainting incidents on a

6 in thick soft foam mattress. For ADL, a chair, the mattress and two flights of stairs

were used for sitting, sit–stand transitions, walking, stand–sit transitions, lying,

ascending and descending stairs. Each activity was conducted twice and recorded

using a camcorder (Panasonic, VDR-D300GC) with a frame rate of 30 frames/s. The

observer simultaneously reset the camcorder and the processing unit during the

experiment.
Please cite this article as: Nyan, M.N., et al., A wearable system
doi:10.1016/j.jbiomech.2008.08.009
3. Results

Angular movements of thigh and torso segments, their
respective correlation coefficient data (moving window size is
20 samples), and gyroscope data for lateral and sagittal move-
ments of ADL conducted by a subject in the experiment are shown
in Figs. 3 and 4. ADL were conducted using the following
procedures:
(1)
for
Segment a: Initially the subject was sitting down on a chair
(referring to thigh sagittal angular data (TSAD) (Fig. 3a) which
is at approximately 901 and the torso sagittal angular data
(WSAD) (Fig. 3b) is at 01). The subject then stood up and
walked. A sit–stand transition activity can be seen at TSAD
(Fig. 3a), which shows transition between approximately 901
and 01 and a few similar cycles of gyroscope data (Fig. 3f)
represents a walking activity.
pre-impact fall detection. Journal of Biomechanics (2008),
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ARTICLE IN PRESS

Fig. 3. Angular data, correlation coefficients (moving window size is 20 samples)

and gyroscope data for normal activities.

Fig. 4. Angular data, correlation coefficients (moving window size is 20 samples)

and gyroscope data for normal activities.
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(2)
P
d

Segment b: The subject then sat down on the mattress
(referring to the transition between 01 and 901 at TSAD
(Fig. 3a) and lay down (referring to TSAD of Fig. 3a and WSAD
of Fig. 3b which are around 901).
(3)
 Segment c: Next activities were, standing up (referring to
transition between 901 and 01 at TSAD (Fig. 3a), walking for
two or three steps (as discussed in segment a) and sitting
down on the chair (as discussed in segment a).
(4)

Fig. 5. Fall reference templates used in ro computation.
Segments d and e: The subject repeated the activities as
shown in segments a–c in the same sequence.
lease cite this article as: Nyan, M.N., et al., A wearable system
oi:10.1016/j.jbiomech.2008.08.009
(5)
for
Segments f and g: After that the subject ascended the stairs
for 12 steps and descended the stairs. Repetitive cycles of
gyroscope’s sagittal data represent stairs activities (Fig. 4f).
Activities were validated with recorded video clips in the
experiment. According to the hypothesis ‘‘thigh segments nor-
mally do not exceed a certain threshold angle to the side and
forward directions in ADL’’, only three intersections points (a1, a2,
and a3) were found between TSAD (lateral movements) and
threshold levels and no intersection points were found between
TSAD and �101 threshold level (forward movements) (Figs. 3a and
4a). The number of intersection points can be reduced by
increasing the threshold level, but it is kept as low as possible
with the compromise between lower false alarm frequency and a
longer lead-time interval, i.e., to get longer lead-times, the
threshold level is kept as low as possible. As thigh rotates from
01 to 7901 in fall activities, only the intersection points where
thigh angular data go from 01 to 7901 are the point of interests in
this study. Altogether nine intersection points (a1�3, b1�4, g1,2)
were found, as pointed by arrows in Figs. 3a and 4a; most of them
were caused by backward movements (b1, b2, b3, and b4) in sitting
down activities. However, almost all of them could be rejected as
false alarms since their respective correlation coefficients were
lower than the threshold value (rdeg ¼ 0.8) as arrowed in Figs. 3c,
d and 4c, d. Conversely the second last and last arrows in Figs. 3c
and 4d (related to arrows a3 and g2) were two possibilities for
false alarms, but they were rejected again by ro as they were�0.6
(Fig. 3e) and 0.332 (Fig. 4f), i.e., lower than the threshold level
(ro ¼ 0.8). The ro values were computed between gyroscope
segments, shown by double sided arrows (Figs. 3e and 4f), and
their respective reference templates (Fig. 5). In the left side fall
activity (Fig. 6), the person started to fall down at about 9 s and
rdeg was well above the threshold level. Then, ro between the
segment shown by double sided arrow (Fig. 6d) and the left side
fall reference template was 0.997. Correlation coefficient relation-
ships from falls and normal activities were plotted (Fig. 7). A total
of 42 data points were plotted for falls and 216 data points were
plotted for normal activities. Two hundred and sixteen is the
number of detected points using 7101 threshold levels for all falls
and ADL performed by the 21 subjects. No false alarms were found
in the experiment (100% specificity). All falls, except for two front
falls, could be detected; thus, a sensitivity of 95.2% (40/42) was
pre-impact fall detection. Journal of Biomechanics (2008),
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achieved. Means and standard deviations of lead times for the
different fall types are shown in Fig. 8.
4. Discussion

As most of the fall-related injuries occur when the body hits
the ground (Wu, 2000), the application of a pre-impact fall
Fig. 6. Angular data, correlation coefficients (moving window size is 20 samples)

and gyroscope data for fall activity.

Fig. 7. rdeg and ro relationships o

Please cite this article as: Nyan, M.N., et al., A wearable system
doi:10.1016/j.jbiomech.2008.08.009
detection approach along with fall impact reduction systems
(Davidson, 2004; Lockhart, 2006; Ulert, 2002) for injury mini-
mization, will provide useful intervention for elderly people
susceptible to faint falls.

This study aimed to detect a fall in its inception for a longer
lead-time using the unique feature of body segments encountered
in falls and ADL. In this study, we achieved a lead-time of 700 ms,
this is the longest lead-time obtained so far in pre-impact fall
detection (Wu, 2000; Bourke et al., 2008; Nyan et al., 2006).

Detection of thigh segment’s movement in the forward and
sideways directions is very unique in pre-impact fall detection.
Most of the intersection points between the thigh angular data
and threshold levels (7101) in the ADL performed were caused by
f falls and normal activities.

Fig. 8. Means and standard deviations of lead times for fall activities.

for pre-impact fall detection. Journal of Biomechanics (2008),

dx.doi.org/10.1016/j.jbiomech.2008.08.009
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backward movements such as the sitting down activity. By
increasing the threshold level, the total number of intersection
points, 216, can be reduced. However threshold levels of 7101
were retained as it produced the optimum level with the
compromise between lead-time and the number of false positives.
For backward movements such as the sitting down activity, the
possibility of false alarm can be rejected using the correlation
coefficient of the angular data from both segments as they move
in opposite directions during this activity. Moreover, as presented
in the materials and methods section, only the thigh angular data
swaying from 01 to 7901 are taken as points of interest for the
confirmation process. Here, ‘‘01 to 7901’’ refers only the trend of
thigh segment’s sway in fall activities. It does not mean that the
thigh rotates only between 01 and 7901 in fall activities. As 7101
is the threshold in fall detection, a fall is considered only for the
angular data trend of the movement from 01 to 7901, i.e., the data
trend representing the movement from 7901 to 01 such as data
found in sit–stand transition is not considered in detection. That is
also a way of false alarm prevention in fall pre-impact detection.

There have been active research attempts to study fall
detection using acceleration and velocity characteristics, but none
so far exploit the correlation of the movement of body segments.
Using correlation results in a more robust, longer lead-time and
accurate methodology when daily activities are taken into
consideration. In detection, a movement can be considered as a
fall if rdeg and ro are above the threshold of 0.8. The algorithm
was tested in a clinical trial with day-to-day activities that elderly
people normally perform. As a result, all fall activities were
detected apart from two forward falls; however, no false positives
occurred. The reason for the misdetection of these two activities is
due to the fact that the two subjects first knelt down before they
released their bodies onto the mattress in the forward direction.
Before they released their bodies forward, the movement of thigh
segments was more similar to a sitting down activity than a
forward fall. An average lead-time of 700 ms before the impact
from a fall was achieved. This is the longest lead-time achieved so
far in pre-impact fall detection (Bourke et al., 2008; Nyan et al.,
2006; Wu, 2000).

In the assessment of successful balance recovery from
complete loss of balance in fall (Madigan and Lloyd, 2005; Thelen
et al., 1997; Wojcik et al., 1999), Thelen et al. found that the
maximum lean angle where subjects could recover balance with a
single forward step averaged 32.51 for young men and 23.91 for
older men (Thelen et al., 1997). In his experiment, a horizontal
lean-control cable was attached to the back of a padded pelvic belt
to support the subjects while they kept their bodies approxi-
mately straight in a forward-leaning posture before they were
released for forward falls. Madigan and Lloyd found similar results
for their male subjects (29.91 and 20.51, respectively) (Madigan
and Lloyd, 2005). Wojcik et al. found that the maximum lean
angle averaged 30.71 for young women and 16.21 for older women
(Wojcik et al., 1999). Therefore, it can be noted that our threshold
level of 7101 of thigh angle is well within the limits of balance
recovery ability in the fall process.

It should be pointed out that all activities tested in this
experiment were performed by healthy volunteers aged below 30,
as the experimental procedure is understandably not suited for
elderly subjects who are at greater risk of suffering injury. The
movement of younger subjects is bound to differ from that of the
elderly population, who may have a slower reaction time and
lesser ability to rescue the body from falling. However, thigh
segment’s movement detection and correlation of body segments’
movements are less affected by this limitation as it is a postural
condition independent of physique. Moreover, the proposed
hypothesis and the developed algorithm were tested against a
small range of fall types, i.e., faint fall, among those that elderly
Please cite this article as: Nyan, M.N., et al., A wearable system
doi:10.1016/j.jbiomech.2008.08.009
people encounter in their daily lives. Therefore, further tests are
needed for other types of falls such as falls preceded by walking
such as tripping and slipping. An appropriate temperature
compensation strategy is also required as temperature drift may
affect the performance of the system during a long term
implementation.

In conclusion, a pre-impact fall detection system has been
developed that will allow detection of an impending fall, as a
result of a faint, with a lead-time of 700 ms before impact occurs
to the vulnerable areas of the body. This is the longest lead-time
achieved so far in pre-impact fall detection. Subsequently through
the implementation of effective fall impact reduction systems,
such as an inflatable airbag for hip protection, it is envisaged that
injuries that occur to the elderly as a result of a fall can be reduced
or even prevented.
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