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Muscles actuate running by developing forces that propel the body forward while supporting the body’s

weight. To understand how muscles contribute to propulsion (i.e., forward acceleration of the mass
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center) and support (i.e., upward acceleration of the mass center) during running we developed a three-

dimensional muscle-actuated simulation of the running gait cycle. The simulation is driven by 92

musculotendon actuators of the lower extremities and torso and includes the dynamics of arm motion.

We analyzed the simulation to determine how each muscle contributed to the acceleration of the body

mass center. During the early part of the stance phase, the quadriceps muscle group was the largest

contributor to braking (i.e., backward acceleration of the mass center) and support. During the second half

of the stance phase, the soleus and gastrocnemius muscles were the greatest contributors to propulsion

and support. The arms did not contribute substantially to either propulsion or support, generating less

than 1% of the peak mass center acceleration. However, the arms effectively counterbalanced the vertical

angular momentum of the lower extremities. Our analysis reveals that the quadriceps and plantarflexors

are the major contributors to acceleration of the body mass center during running.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Experimental studies have characterized human running using
kinematic, kinetic, and electromyographic (EMG) measurements
(e.g., Cavagna et al., 1976; Winter, 1983; McClay, 1990; McMahon
and Cheng, 1990; Novacheck, 1998). Recordings of mass center
positions and velocities have shown that in steady state running
the body mass center travels downward and its forward speed
decreases during early to mid-stance (i.e., the braking phase of
stance) (Cavagna et al., 1964). The body mass center travels
upward and its forward speed increases during mid- to late stance
(i.e., the propulsive phase of stance). While it is possible to measure
muscle activities, joint angles, and acceleration of the body mass
center during running, it is difficult to determine how individual
muscles contribute to the motion of the body mass center.

Analyses of mass center trajectories and ground reaction forces
have suggested that elastic storage of energy is important for
running efficiency (Cavagna et al., 1976; Dickinson et al., 2000).
This finding has motivated the development of models of running
dynamics in which all of the lower extremity muscles are
represented by a single spring. These spring–mass models have
been used to gain valuable insights into the dynamics and
energetics of human running (e.g., Blickhan, 1989; McMahon
ll rights reserved.
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and Cheng, 1990; Seyfarth et al., 2002). Although spring–mass
models of running provide a useful theoretical framework for
examination of running dynamics, these models are not intended
to describe the actions of individual muscles or to study muscle
coordination during running.

Muscle-actuated simulations complement experimental ana-
lyses and spring–mass models by providing a systematic
methodology for determining muscle contributions to propulsion
and support (Liu et al., 2008; Neptune et al., 2008). For example,
Sasaki and Neptune (2006) created two-dimensional muscle-
actuated simulations of walking and running at the walk–run
transition speed (1.96 m/s) and used a ground reaction force
decomposition method with a segment power analysis to quantify
muscle contributions to propulsion and support. This study
provided the first estimates of muscle contributions to mass
center accelerations in the sagittal plane at a slow running speed.
However, muscle activity (Nilsson et al., 1985; Mann et al., 1986;
Cappellini et al., 2006), joint kinematics (Mann and Hagy, 1980),
and relative joint work (Novacheck, 1998) change with running
speed, which suggests muscle contributions to propulsion and
support may also change with speed. Additionally, the two-
dimensional running simulation by Sasaki and Neptune (2006)
did not include arms or a separate torso segment, yet arm and
torso motions may affect running dynamics (Hinrichs et al., 1987).

The purpose of this study was to determine how muscles
contribute to propulsion and support of the body mass center
during running at 3.96 m/s (6:46 min/mile), including the effects
of the torso and arms. To achieve this, we developed a three-
dimensional muscle-actuated simulation of running that included
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92 musculotendon actuators representing 76 muscles of the lower
extremities and torso. Using a model that included lower
extremity muscles, a torso, and arms we were able to quantify
the contribution of muscles and arm dynamics to mass center
accelerations in three dimensions, which provided insights into
the actions of muscles during running. The simulation is freely
available (simtk.org/home/RunningSim) allowing researchers to
reproduce our results and perform additional analyses.
2. Methods

We collected marker trajectories and ground reaction forces and moments of a

subject running on a treadmill and used these data to generate a subject-specific

simulation. A single healthy male subject (height 1.83 m, mass 65.9 kg) had 41

reflective markers placed on anatomical landmarks (Kadaba et al., 1990).

Experimental data was collected while the subject ran at 3.96 m/s, three times

his self-selected walking speed. Marker positions were measured at 60 Hz using a

six-camera motion capture system (Motion Analysis Corporation, Santa Rosa, CA,

USA). The ground reaction forces and moments were measured at 600 Hz using a

force-plate instrumented treadmill (Bertec Corporation, Columbus, OH, USA).

Marker positions and ground reaction forces and moments were low-pass filtered

at 20 Hz with a finite impulse response filter. EMG data were collected at 600 Hz

using surface electrodes (Noraxon, Scottsdale, AZ, USA) for eight muscles: erector

spinae, gluteus maximus, gluteus medius, semitendinosus, vastus lateralis,

gastrocnemius medialis, soleus, and tibialis anterior.

The simulation was generated using OpenSim (Delp et al., 2007; see

Supplemental Movie 1 for an animation of the simulation). A 12 segment, 29

degree-of-freedom (dof) musculoskeletal model was used to create the simulation

(Fig. 1). Each lower extremity had five degrees-of-freedom (Supplemental Fig. 1);

the hip was modeled as a ball-and-socket joint (3 dofs), the knee was modeled as a

custom joint with 1 dof (Seth et al., 2010), and the ankle was modeled as a revolute

joint (1 dof) (Delp et al., 1990). Lumbar motion was modeled as a ball-and-socket

joint (3 dofs) (Anderson and Pandy, 1999). Each arm consisted of 5 degrees-of-

freedom; the shoulder was modeled as a ball-and-socket joint (3 dofs), and the

elbow and forearm rotation were each modeled with revolute joints (1 dof)

(Holzbaur et al., 2005). Mass properties for the arms were estimated from de Leva

(1996; Supplemental Table 1). The lower extremity and back joints were actuated

by 92 musculotendon actuators (Delp et al., 1990; Anderson and Pandy, 1999) and

the arms were driven by torque actuators.

The model was scaled to match the subject’s anthropometry based on

experimentally measured markers placed on anatomical landmarks. A virtual

marker set was placed on the model based on these anatomical landmarks. An

inverse kinematics algorithm solved for the joint angles that minimized the

difference between the experimentally measured marker positions and the virtual

markers on the model. Joint moments needed to track the subject’s motion were

calculated using a residual reduction algorithm (RRA) (Delp et al., 2007). With

traditional inverse dynamics, a non-physical external force and moment

(i.e., residuals) are applied to a body in the model (e.g., the pelvis) to resolve

dynamic inconsistency between the measured kinematics and ground reactions
Fig. 1. Snapshots from a simulation of the running gait cycle. The simulation starts at

0.683 s. Muscle color indicates simulated activation level from fully activated (red) to f

mass center, braking as backward acceleration of the mass center, and support as upw
(Kuo, 1998). RRA uses the inverse dynamics result, calculated from joint

kinematics and experimentally measured ground reactions, and reduces the

magnitude of the residuals by slightly adjusting the joint kinematics and model

mass properties (see Supplemental Fig. 2 for changes in residuals). The computed

muscle control algorithm (Thelen et al., 2003; Thelen and Anderson, 2006) was

then used to compute the muscle excitations required to track the kinematics

produced by RRA. Computed muscle control solved a static optimization problem

(Crowninshield and Brand, 1981) to resolve muscle redundancy by minimizing the

sum of the square of muscle activations, while accounting for muscle activation

and contraction dynamics (Zajac, 1989). Computed muscle control estimated the

initial states for each muscle such that the muscle fiber and tendon force equaled

the musculotendon force, which was calculated by solving a static optimization

problem using experimental joint kinematics and kinetics.

To test the accuracy of the simulation we compared simulated quantities to

experimental data. The joint angles from inverse kinematics, joint moments from

RRA, and experimentally measured ground reaction forces were compared to

averaged data from previous studies (Cavanagh and Lafortune, 1980; Winter,

1983; Novacheck, 1998; Swanson and Caldwell, 2000; Yokozawa et al., 2007;

Supplemental Fig. 3). Simulated muscle activations were compared to the subject’s

recorded EMG and to speed-matched experimental EMG data averaged from eight

subjects (Cappellini et al., 2006). We also compared simulated muscle forces to

muscle forces derived from an EMG-driven musculoskeletal model of running

(Lloyd and Besier, 2003; Besier et al., 2009; Supplemental Fig. 4).

An induced acceleration analysis was used to compute the contributions of

individual muscles to the acceleration of the body mass center (Zajac and Gordon,

1989; Riley and Kerrigan, 1999; Anderson and Pandy, 2003). A challenge of this

analysis was to capture the rapid changes in acceleration at foot contact. To meet

this challenge we modeled the foot–floor interaction using a combination of a non-

penetrating unilateral constraint (i.e., no floor penetration but the foot can be lifted

off the floor) and a pure rolling constraint (i.e., no slipping and no twisting) (Kane,

1961). To perform the induced acceleration analysis, we described the general form

of the constrained multibody dynamic system with equations of motion:

½M� €q�½C�Tk¼ GþVþ½R�Fm ð1Þ

where M is the mass matrix, q are the generalized coordinates (e.g., joint angles), C

is the constraint matrix, k are the constraint forces, G are the gravitational

generalized forces, V are the generalized forces due to velocity effects (i.e.,

centrifugal and Coriolis forces), R is the matrix of muscle moment arms, and Fm are

the muscle forces. The constraint matrix, C, maps from constraint forces, k, to

system generalized forces.

To simultaneously solve for constraint forces, k, and system accelerations, €q ,

we defined the constraint conditions at the acceleration level:

½C� €q ¼ B ð2Þ

where B is a vector describing the position and velocity terms of the constraint

equations. Both C and B are derived by differentiating kinematic constraint

(Eqs. (3)–(6)). The constraint conditions were comprised of one position and three

velocity constraint equations

ryðqÞ ¼ 0, non-penetrating constraint ð3Þ

_rxðq, _qÞ ¼ 0, fore-aft no-slip constraint ð4Þ
left foot contact and ends at subsequent left foot contact, with a total duration of

ully deactivated (blue). Axes show propulsion as forward acceleration of the body

ard acceleration of the mass center.



S.R. Hamner et al. / Journal of Biomechanics 43 (2010) 2709–2716 2711
_rzðq, _qÞ ¼ 0, mediolateral no-slip constraint ð5Þ

oyðq, _qÞ ¼ 0, no-twist constraint ð6Þ

where r is the position of the point of contact on the foot segment expressed in

ground, _r is its velocity, o is the angular velocity of the foot segment expressed in

ground, x is the fore-aft direction, y is the vertical direction, and z is the
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Fig. 2. Kinematics of the back, pelvis, and lower extremities during the running gait

kinematics, while the dashed line represents simulated joint angles produced by comp
mediolateral direction. Eq. (3) describes a non-penetrating constraint, which was

active only if the vertical reaction force was upward (i.e., the floor cannot pull

downward). Eqs. (4) and (5) describe rolling constraints (i.e., no slip), which were

active if the non-penetrating constraint was active and the magnitude of the

reaction force was less than the product of a coefficient of static friction, m, and the

non-penetrating constraint force, l1. Eq. (6) describes the pure rolling constraint,

which was active if the vertical reaction moment was less than the moment due to
vis list
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the resultant no-slip force acting within a specified contact radius, rc. Specific

parameters used for these constraints were a coefficient of static friction (m) of

0.65 and a contact radius (rc) of 0.01 m. Differentiating the constraint equations

enabled us to formulate the system constraints in Eq. (2):

C½ � ¼

@ry

@q

@ _rx

@ _q

@ _rz

@ _q
@oy

@ _q

2
6666666666664

3
7777777777775

and B¼�

@2ry

@q2
_q2

@ _rx

@q
_q

@ _rz

@q
_q

@oy

@q
_q

2
6666666666664

3
7777777777775

We solved Eqs. (1) and (2) for the contact constraint reaction forces, k, and the

system acceleration, €q .
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Fig. 3. Comparison of moments about the lumbar and lower extremity joints during

reduction algorithm (solid line), and by summing the moments generated by muscle forc

gait cycle.
Throughout the simulated running trial, the effect of each force (i.e., muscle

forces, gravity, and forces due to velocity effects) on musculoskeletal dynamics

was calculated by solving Eqs. (1) and (2) for the accelerations caused by that

force. During the stance phase (i.e., ground contact) we constrained the foot to the

floor using the constraint described by Eqs. (3)–(6). We verified that the sum of all

the accelerations due to muscles, gravity, and velocity effects equaled the total

acceleration of the body mass center (Supplemental Fig. 5).
3. Results

The muscle-actuated simulation tracked the joint angles
calculated from the experimental marker positions with a
maximum RMS deviation of 1.51 for all joint angles over the gait
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cycle (Fig. 2). The sum of joint moments generated by all muscles,
computed as the product of each muscle’s force and moment arm,
closely matched the joint moments calculated with inverse
dynamics after residuals were reduced (Fig. 3). Simulated
activations, experimental EMG data recorded for this subject,
and speed-matched experimental EMG averaged from eight
subjects (Cappellini et al., 2006) showed similar features (Fig. 4),
including strong activation of the quadriceps (i.e., rectus femoris
and the vasti) and hamstrings (i.e., semitendinosus and biceps
femoris long and short heads) in early to mid-stance, and
activation of soleus and gastrocnemius in mid- to late stance.
Simulated activations lacked anticipatory activation seen in the
EMG recordings of biceps femoris just before foot strike.

The horizontal and vertical mass center accelerations (i.e.,
propulsion and support) during running were generated primarily
by muscles, as skeletal structures contributed very little to
support (Fig. 5, see All Muscles). Muscles accelerated the mass
center backward during the first 60% of stance phase (i.e., the
braking phase of stance) and the muscles accelerated the mass
center forward during the remaining 40% of the stance phase
(i.e., propulsion phase of stance) (Supplemental Fig. 6, see total
fore-aft mass center acceleration).
During the braking phase of stance, the main contributor to
both braking and support was the quadriceps muscle group,
which contributed twice the peak braking acceleration and nearly
half of the peak vertical support of the body mass center (Fig. 5,
see quadriceps). Gluteus maximus, gluteus medius, and adductor
magnus together contributed about half of the peak vertical
support after initial contact.

During the propulsion phase of stance, soleus and gastro-
cnemius were the two main contributors to propulsion and
support; together they provided over twice the peak forward
acceleration and over half of the peak vertical support of the body
mass center (Fig. 5). During the propulsive phase, the quadriceps
continued to resist forward motion (Supplemental Movie 2).
The hamstrings, tibialis anterior, and iliopsoas accelerated the
mass center downward at the end of stance.

The arms did not contribute substantially to either propulsion
or support, with a maximum contribution of less than 1% of both
the peak horizontal and vertical mass center accelerations.
However, the angular momentum of the arms about a vertical
axis passing through the center of mass counterbalanced (i.e., was
equal and opposite to) the angular momentum of the lower
extremities about the vertical axis (Fig. 6).
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4. Discussion

The purpose of this study was to determine how muscles
contribute to propulsion and support during running by creating
and analyzing a three-dimensional muscle-actuated simulation of
the running gait cycle. During the braking phase of stance, the
quadriceps muscle group is the largest contributor to both
braking and support of the body mass center. During the
propulsive phase of stance, soleus and gastrocnemius became
the greatest contributors to both forward propulsion and support.

As highlighted by Sasaki and Neptune (2006), previous studies
have disagreed on the role of the ankle plantarflexors (i.e., soleus
and gastrocnemius) during the late stance phase of running. Some
researchers suggest that the plantarflexors provide propulsion
and support (Novacheck, 1998), while others suggest that
plantarflexor activation ceases well before toe-off and thus cannot
contribute to propulsion (Reber et al., 1993). Similar to Sasaki and
Neptune (2006), our simulation reveals that the ankle plantar-
flexors are the primary contributors to both propulsion and
support of the body mass center during late stance. In contrast to
Sasaki and Neptune (2006), however, our results show that the
quadriceps muscle group (i.e., vastus lateralis, vastus intermedius,
vastus medialis, and rectus femoris), not soleus, is the largest
contributor to braking the body mass center during early stance.
The difference in fore-aft accelerations induced by soleus between
Sasaki and Neptune (2006) and our simulation could arise for
several reasons, including different simulated activations of
soleus, different musculoskeletal models (e.g., 2D or 3D, arms or
no arms), or different models of the foot–floor interaction. Our
analysis revealed that the fore-aft accelerations induced by soleus
are sensitive to the model of foot–floor interaction. With the
current model, the sum of the mass center accelerations produced
by muscles closely matched the mass center acceleration caused
by the measured ground reaction force (Supplemental Fig. 5), a
necessary condition for accurate muscle-induced accelerations.

Muscle contributions to propulsion and support of our subject
were similar to muscle contributions reported for fast walking by
Liu et al. (2008). During early stance, both simulations revealed
that the quadriceps decrease forward speed of the body mass
center and provide body weight support, with gluteus medius and
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maximus providing additional support. During mid- and late
stance, both simulations show soleus and gastrocnemius as the
primary contributors to propulsion and support of the body mass
center. These results suggest that muscles have similar actions on
the body mass center during fast waking (Liu et al., 2008), running
at the walk–run transition speed (Sasaki and Neptune, 2006), and
running at 3.96 m/s, as studied here, especially during mid- to late
stance. Forces transmitted through the skeleton contribute
substantially to body weight support during slow and free-speed
walking (Liu et al., 2008); yet skeletal forces contribute much less
to body weight support during fast walking (Liu et al., 2008) and
running because the lower extremity joints are more flexed
during these activities.

The contributions of arm dynamics to propulsion and support
of the body mass center were negligible (less than 1% of the total
mass center acceleration), which disagrees with Hinrichs et al.
(1987), who utilized a relative momentum approach that
attributed 5–10% of the total vertical impulse to the arms. This
discrepancy may be due to differences in how contributions were
computed. As highlighted by Hara et al. (2006), the relative
momentum approach attributes all arm motion relative to the
torso to the ground reaction impulse, yet arm motion can induce
changes in kinematics of the lower extremities through mechan-
ical coupling, an effect that the relative momentum approach
does not capture. Contribution of arms to propulsion and support
may also be sensitive to running speed and style. We also found
that the arms counterbalanced the change in angular momentum
of the legs, which agrees with the findings of Hinrichs (1987) and
Pontzer et al. (2009) who presented that angular momentum
balance of the arms reduces torso rotations. Although the arms
have less mass than the legs, they are able to balance the angular
momentum of the legs due to a greater distance of the arm
segments from the body mass center (Hinrichs, 1987).

Modeling arms improved the dynamic consistency of our
simulation by reducing residual forces and moments, especially
the vertical force and sagittal moment. This caused differences in
the calculated back and hip moments, which improved accuracy
of the simulated activations for muscles crossing the back and hip
in comparison to EMG recordings. While arms do not significantly
contribute to propulsion and support, modeling arm dynamics
may be necessary to produce accurate full-body simulations of
running. Additionally, a three-dimensional model allowed us to
examine muscle contributions to the mediolateral acceleration of
the body mass center. Unlike propulsion and support of the mass
center, individual muscles or muscle groups did not have distinct
roles in producing the small net mediolateral acceleration of the
body mass center observed during running (Supplemental Fig. 5,
see mediolateral mass center acceleration).

Several limitations should be kept in mind when interpreting
our results. We studied a single subject running at a single speed.
Therefore, the results do not represent a general running strategy,
as different runners may adopt different strategies based on their
anthropometry, level of training, and performance goal (e.g.,
sprinting versus long-distance running). However, we did com-
pare the joint angles, joint moments, ground reaction forces, and
EMG data from our subject and simulation to results from
previous studies with larger populations to ensure our subject
had a typical running gait pattern (Fig. 4; Supplemental Fig. 3). To
more thoroughly characterize muscle actions during running, the
methodology used here could be applied to more subjects over a
range of speeds (e.g., 2–9 m/s), as there is evidence that move-
ment strategy varies with running speed (Novacheck, 1998).

A challenge in simulating human running is modeling the
transition from the flight phase to the initial contact of the stance
phase. As the forward speed of a runner increases, peak ground
reaction forces and the rate of loading increase (Weyand et al.,
2000). Modeling the foot–floor interaction becomes more difficult
with such a rapid transition and requires more robust and
accurate contact models during high-speed running. While we
have designed a contact model using rigid body constraints that
was able to match the accelerations due to ground reaction forces
for a majority of stance phase, better modeling is still required to
accurately analyze effects at initial foot contact (i.e., the first
5–10% of the stance phase).

We have created a three-dimensional muscle-actuated simu-
lation of a complete running gait cycle and quantitatively
described how individual muscles accelerate the body mass
center. To promote the utilization and acceptance of simulations
in movement science our simulation is freely available in
OpenSim (Delp et al., 2007; simtk.org/home/RunningSim), so
others may reproduce our results, perform additional analyses,
and gain further insight into running dynamics.
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Supplemental Fig. 1. Joint definitions for the 12 segment, 29 degree-of-freedom 
musculoskeletal model created for this study. 
 
Supplemental Fig. 2. Residual forces and moments acting on the pelvis resulting 
from inverse dynamics (dashed line) and after residual reduction (solid line). The 
residual reduction algorithm was successful in substantially reducing the 
magnitude of the residual forces and moments. 
 
Supplemental Fig. 3. Comparison of joint angles, joint moments, and ground 
reaction forces from the simulation to experimental data from previous studies. 
Joint angles calculated by inverse kinematics for our subject were compared to 
data from Winter (1983), Novacheck (1998), and Swanson and Caldwell (2000). 
Joint moments computed using the residual reduction algorithm were compared to 
data from Winter (1983), Novacheck (1998), and Yokozawa (2007). 
Experimentally measured ground reaction forces were compared to data from 
Cavanagh and Lafortune (1980, 4.5 m/s). The average running speed for each 
study is shown in the figure legend. 
 
Supplemental Fig. 4. Comparison of estimated muscle forces from computed 
muscle control (solid line) with results averaged across 16 subjects running at 
2.7±0.3 m/s (Besier et al. 2009; dashed line with gray area representing ±1 
standard deviation), which were computed using an EMG-based model. Muscle 
forces were individually normalized by the maximum isometric force of each 
muscle. 
 
Supplemental Fig. 5. Comparison of mass center acceleration calculated from 
experimental measurements (dashed line) with the sum of individual muscle 
contributions (solid line) computed by the induced acceleration analysis (i.e., 
superposition) during the stance phase. 
 
Supplemental Fig. 6. Muscle contributions of major contributing muscle groups to 
total mass center acceleration during the stance phase of running. Muscle groups 
include the quadriceps (vastus lateralis, vastus intermedius, vastus medialis, and 
rectus femoris), ankle plantarflexors (soleus and gastrocnemius), hamstrings 
(semimembranosus, semitendinosus, and biceps femoris long and short heads), and 
all other muscles. 
 
Supplemental Table 1. Mass properties of the generic musculoskeletal model 
created for this study. 
 















segment mass (kg) inertia XX (kg·m2) inertia YY (kg·m2) inertia ZZ (kg·m2)

pelvis 11.77 0.1028 0.0871 0.0579
femur 9.30 0.1339 0.0351 0.1412
tibia 3.71 0.0504 0.0051 0.0511
talus 0.10 0.0010 0.0010 0.0010

calcaneus 1.25 0.0014 0.0039 0.0041
toes 0.22 0.0001 0.0002 0.0010

torso + head 26.83 1.4745 0.7555 1.4314
humerus 2.03 0.0119 0.0041 0.0134

ulna 0.61 0.0030 0.0006 0.0032
radius 0.61 0.0030 0.0006 0.0032
hand 0.46 0.0009 0.0005 0.0013


	Hamner_Running.pdf
	Muscle contributions to propulsion and support during running
	Introduction
	Methods
	Results
	Discussion
	Conflict of interest statement
	Acknowledgements
	Supporting information
	References


	Figure_headings
	SuppF1.pdf
	SuppF2.pdf
	SuppF3.pdf
	SuppF4.pdf
	SuppF5.pdf
	SuppF6.pdf
	SuppTable1_mass



