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A new method for estimating knee joint flexion/extension angles from segment acceleration and

angular velocity data is described. The approach uses a combination of Kalman filters and
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biomechanical constraints based on anatomical knowledge. In contrast to many recently published

methods, the proposed approach does not make use of the earth’s magnetic field and hence is

insensitive to the complex field distortions commonly found in modern buildings. The method was

validated experimentally by calculating knee angle from measurements taken from two IMUs placed on

adjacent body segments. In contrast to many previous studies which have validated their approach

during relatively slow activities or over short durations, the performance of the algorithm was evaluated

during both walking and running over 5 minute periods. Seven healthy subjects were tested at various

speeds from 1 to 5 mile/h. Errors were estimated by comparing the results against data obtained

simultaneously from a 10 camera motion tracking system (Qualysis). The average measurement error

ranged from 0.7 degrees for slow walking (1 mph) to 3.4 degrees for running (5 mph). The joint

constraint used in the IMU analysis was derived from the Qualysis data. Limitations of the method, its

clinical application and its possible extension are discussed.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The use of lightweight, low power, MEMS inertial sensors to
measure acceleration or angular velocity is now widespread in the
clinical community. Inertial sensor data has been used to infer:
activity type/intensity; falls and falls risk; muscle activity; and
gait events (Kavanagh and Menz, 2008; Orizio, 1993; Plasqui and
Westerterp, 2007). However, accelerometers together with rate
gyroscopes can also be used to estimate orientation relative to an
inertial frame. While high accuracy estimation of inclination is
possible (Luinge and Veltink, 2005), such an approach is limited
by the lack of absolute orientation information in the horizontal
plane (azimuth). Relative orientation estimation is possible by
integration of gyro signals in this plane, but such an approach is
susceptible to drift. Consequently, techniques that take advantage
of the earth’s magnetic field, that provides information on
azimuth, are often adopted. Commercial systems that adopt such
an approach are now widely available (e.g. www.xsens.nl).
However, despite attempts to deal with the heterogeneity of the
earth’s magnetic field inside modern buildings (Roetenberg et al.,
ll rights reserved.

x: +44161 2952668.

).
2005), using them to measure orientation in typical clinical
environments over extended periods remains extremely difficult
(de Vries et al., 2009).

Therefore, research is continuing into improved methods for
deriving orientation without the use of magnetometers. A recent
paper (Favre et al., 2006) showed that it was possible to obtain
high accuracy three-axis orientation without the use of a
magnetometer by using a two stage approach—integration of
the angular velocity signals, followed by a correction to the angle
estimation based on inclination data from accelerometers gath-
ered during periods of rest, or near constant velocity motion.
However, the interest of the biomechanics community generally
lies in differential orientation measurements, derived from
absolute angle measurements on two adjoining limb segments.
While it would be possible to estimate joint angle from
independent estimates of distal and proximal segment orientation
(from an IMU on each segment), this approach ignores the
additional useful information that can be derived from knowledge
of the joint anatomy and the pose of the two IMUs on their
respective segments.

Favre et al. extended their earlier work (Favre et al., 2006) to
calculate joint angles by taking account of known anatomical
constraints (Favre et al., 2008). To calculate joint angle from the
outputs of IMUs on the lower and upper legs, a calibration
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procedure is required. First, while the subject stands in a defined
pose, a static calibration takes advantage of gravity being the
signal common to both IMUs; and second, a dynamic calibration is
performed, during which the subject rotates their leg about the
hip while maintaining a ‘‘stiff’’ knee, which imposes the same
angular velocity on both IMUs. This allows the relative orientation
of the two IMUs to be identified and then the estimation of knee
angle may be derived from the two IMUs’ signals.

While Favre’s approach uses a calibration routine to align the
two reference frames, we present a different approach, similar to
Luinge et al. (2007), which takes advantage of the kinematic
constraints offered by anatomical joints as an input to the
measurement process itself, rather than as a means of prior
alignment. By positioning an IMU either side of the joint of
interest, it is possible to take advantage of the known constraints
on joint motion to counteract sensor drift and thereby provide
stable orientation estimation.

The objective of this research is to demonstrate that IMUs
(measuring only acceleration and angular velocity) can be used in
combination with knowledge of joint constraints to give measure-
ments of knee joint flexion/extension angles during dynamic
activity (walking & running). The method is demonstrated using
the simplification that the knee is a hinge joint; however, it may
be possible to extend the method to measure additional DOF.

The paper begins with a description of the hardware and
algorithm design. It then reports on the experimental validation of
the approach for the measurement of knee angle during gait and
draws conclusions.
2. System design

The IMU comprised three orthogonally aligned single axis rate
gyroscopes (71200 deg/s) and a three-axis accelerometer (75 g).
Data were logged on a SD-micro card integrated into each unit. A
synchronising pulse was sent to each unit prior to commencing
measurements to provide synchronisation.1

The estimation of joint angle is split into two parts: first, a
Kalman filter estimates the two components of the Euler angles of
each IMU (pitch & roll); and second, this information is used to
estimate knee joint angle.
2.1. Kalman filter

The pitch and roll of each IMU is estimated by a Kalman filter
which tracks the state of the system, including the roll (f), pitch
(y), acceleration, angular rate, and sensor biases. The state vector
of the Kalman filter is defined by Eq. (1)

s ¼
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ð1Þ

where ap is the vector of accelerations along the three orthogonal
axes in the pseudo-inertial frame (defined below); vp the vector of
velocities along the three orthogonal axes in the pseudo-inertial
frame; ob the vector of angular rates around the three orthogonal
body axes; bg the vector of gyro biases around the three body axes
1 The hardware was provided by ETB Ltd, Codicote, UK. However, the

algorithms described in the paper are not implemented in any of ETB’s commercial

products.
The rotation between the inertial frame and the body frame of
the sensor is defined by the three Euler angles c, y and f, in either
Euler 321 or Euler 312 formulation. Appendix A describes how
singularities are avoided by using the two different Euler
formulations. The angles c, y and f, are rotations about the z, y,
and x vectors, respectively.

The primary motivation for using Euler angles rather than
alternative representations is that this allows the orientation
component around the gravity vector (c) to be readily extracted
from the main state vector (Appendix B).

The Kalman filter system models the accelerations as Gauss–
Markov processes with additional factors to limit the long-term
velocity RMS (Eq. (2))

a
p;kþ1

¼ a
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expð�baDtÞþwa
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ð2Þ

where wk
a is the vector of noise on accelerations at the kth time

step.
Velocities are integrated from the accelerations, Eq. (3)
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Angular rates and gyro biases are modelled as Gauss–Markov
processes, Eq. (4)
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Angles were then calculated from the angular rates using the
Euler formulation Eq. (5)

_f ¼oxþðozcosfþoysinfÞtany

_y ¼ ðoycosf�ozsinfÞ
_c ¼ ðozcosfþoysinfÞsecy ð5Þ

(where sec indicates the secant function) and using backwards
integration, Eq. (6)

fkþ1 ¼fkþ
_fkDt

ykþ1 ¼ ykþ
_ykDt

ckþ1 ¼ckþ
_ckDt

ð6Þ

In the software, ĉ is propagated separately from the other
angles, because it is kept separate from the state vector. The
estimate of ĉ is referenced to the pseudo-inertial frame. The filter
relies on the fact that the pseudo-inertial frame drifts slowly

around the inertial frame, so that estimates of orientation and
gyro bias can still be made.

The measurements are the three accelerometer measurements
in the body frame, and the three gyro measurements in the body
frame, Eq. (7).
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where vk is the vector of noise on measurements at the kth time
step

The filter process itself is a standard extended Kalman filter
(Cui and Chen, 1999). The state matrix A is derived from the above
propagation equations, so that the state vector obeys Eq. (8)

s
kþ1
¼ As

k
ð8Þ

The process noise covariance matrix WQW (Eqs. (9) and (10))
uses the Jump Markov method, so that the covariances of the
accelerations, angular rates and gyro biases follow the usual
Gauss–Markov equations, and the angle and velocity covariances
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Fig. 1. Graphical representation of the Z inertial vectors in the IMU2 frame.
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are set to zero.

WQW ¼

03 03 03 03 03�2
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where

Da
¼ qað1� expð�2baDtÞÞ ð10Þ

and qa is the long-term acceleration RMS. Similar equations
apply for Do and Dg.

The parameters of the EKF were based on the typical velocities,
accelerations and angular rates seen during running, and were
defined as fixed parameters (i.e. not modified in response to
observed motions).

2.2. Knee angle estimator

The knee angle estimator assumes that the knee can be
represented as a pure hinge joint. It combines information from
the two IMUs (roll and pitch, as estimated by the Kalman filter)
along with the physical constraints of the knee joint to estimate
the knee angle.

The need to use the joint constraint in the estimate arises
because the IMUs only estimate inclination (roll and pitch), rather
than orientation (roll, pitch and yaw). At each point in time, four
measurements are available: roll and pitch for each IMU. If the
joint constraint was not included, then the overall physical system
would have five important degrees of freedom (DOF): the
inclination of the thigh section (two DOF) and state of the joint
(three DOF). It is not possible to estimate these five DOF from only
four measurements and extra information is required.

Modelling the knee as a pure hinge joint can provide this extra
information. With the joint constraint in place, there are only
three important DOF: inclination of the thigh (two DOF) and the
hinge joint angle (one DOF), making the problem solvable. The
user specifies the rotation axis of the joint relative to the IMUs and
then for each time step the knee angle is estimated using an
analytical chi-squared minimisation method.

To solve for knee angle without any joint constraint would
require estimates of the third orientation parameter (yaw) from
both IMUs. The Kalman filter does maintain an internal estimate
of yaw, but this is in the pseudo-inertial frame, which drifts
significantly relative to the inertial frame. This severe drift
prevents any direct estimate of knee angle (i.e. an estimate which
does not rely on the joint constraint).

Given a pseudo-inertial vector at some point in time, its
transformation in the shank’s IMU frame, designated IMU2,
through the thigh’s IMU frame, called IMU1 is given by Eq. (11).

VIMU2;PREDðtÞ ¼MROT ðtÞM1-2ð0ÞMi-1ðtÞVi ð11Þ

where VIMU2,PRED is the predicted inertial vector in IMU2 frame;
MROT the rotation matrix that takes a vector V in the IMU2 frame
at the first time step and maps it to the IMU2 frame at time t, such
that V(t)=MROT*V(0). This rotation matrix is dependent on the
knee angle and is derived in Appendix C; M1-2(0) is the rotation
matrix between IMU1 and IMU2 frames at the first time step,
obtained via a simple calibration process (see Section 3); Mi-1 the
rotation matrix that maps a vector in the pseudo-inertial frame to
the IMU1 frame and is a standard function of the estimated Euler
angles for IMU1; Vi a vector in the pseudo-inertial frame.

Eq. (11) assumes that only a rotation about the knee hinge axis
causes the orientation of the IMU2 frame relative to the pseudo-
inertial frame to change in time. Frame changes that come from
muscle or skin movement at the IMU2 location are not taken into
account.

The same transformation can also take place using directly the
rotation matrix from the pseudo-inertial to the IMU2 frame, for
which measurement data are available:

VIMU2;MEASðtÞ ¼Mi-2ðtÞVi ð12Þ

where Mi-2 is the rotation matrix that maps a vector in the
pseudo-inertial frame to the IMU2 frame and is a function of the
estimated Euler angles for IMU2.

By using the inertial Z vector to be V in Eqs. (11) and (12), the
dependency on c is eliminated.

Fig. 1 illustrates the predicted and measured Z inertial axis in
the IMU2 frame. Zi

IMU2;PRED;PREROT
is the inertial vector before the

rotation about the hinge axis ĥ
2
, Zi

IMU2;PRED
is the same vector after

the rotation as predicted by Eq. (11), substituting Vi with [0 0 1]T,
and Zi

IMU2;MEAS
is the measured vector as given by Eq. (12). e is the

error angle between the predicted and measured vectors and it is
present due to measurement errors in the IMU output Euler
angles:

cosðeÞ ¼ Zi
IMU2;PRED

� Zi
IMU2;MEAS

ð13Þ

Therefore, at each time step the knee angle is calculated to
minimise the error angle e in Eq. (13).
3. Experimental validation

Ethics approval was obtained from the University of Salford and
informed consent was obtained from the test subjects (Table 1).
A 10 camera Qualysis system was used to provide independent
reference measurements of the IMUs’ orientations, the knee axis
location, and knee angle during the validation trials. Fig. 2 shows
the IMUs and reflective markers attached to a test subject’s right
leg.

The test subjects were asked to stand still on the treadmill
within the cameras’ capture volume and data were recorded for
10 s (the static calibration trial). The anatomical reflective markers
were then removed leaving the markers on the IMUs as tracking
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Table 1
Test subject anthropometric data (note that s.d. refers to standard deviation).

Number of test subjects Age (years) Height (metres) Weight (kilograms)

Male Female Mean s.d. Mean s.d. Mean s.d.

5 2 30 6 1.7 0.2 70 11

Fig. 2. IMU and reflective marker position on the test subject. Two IMUs (one on the thigh, one on the shank) were attached to each test subject. The IMUs each had 4

markers to enable the camera system to record their position and orientation. The knee axis was defined by markers on the two epicondyles and markers were also placed

on the malleoli and the greater trochanter.

G. Cooper et al. / Journal of Biomechanics 42 (2009) 2678–2685 2681
markers for both the leg segments and the IMUs during the
dynamic trials.

The IMUs, the camera system and a synchronisation unit were
first connected via a cable. Following synchronisation of the
systems, the cable was removed prior to the start of walking trials.
Subjects began walking on the treadmill at 1 mile/hour and the
speed was increased in five increments to 5 mile/h over a 5 min
period until the subject was running. The IMU and camera data
were captured at 100 Hz.

The roll, pitch and yaw angles that describe the rotation of the
IMU reference frames with respect to an inertial frame were
extracted from the Qualysis camera data using Visual 3D. The
angles were represented in the Euler 3-2-1 sequence that the knee
angle estimator requires for processing. From this camera derived
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data at the first time step, the initial rotation matrix between the
IMU frames (M1-2(0)) was calculated. This defines the absolute
flexion/extension angle of the knee, i.e. the observed angle during
the standing posture is taken to be a knee angle of 0. The knee
rotation axis was defined from the camera derived data to be
coincident with the anatomical flexion–extension axis of the knee
(derived using anatomical landmarks) and was required to
initialise the IMU-based knee angle estimator.

The knee angle was estimated from angular velocities and
linear accelerations measured in the two IMU reference frames.
This data were processed through the Kalman filter and the Euler
angles that describe the pitch and roll of the IMU reference frames
with respect to a pseudo-inertial frame were estimated. Due to
the inability of accelerometers and rate gyros alone to provide
absolute orientation about the gravity vector (nominally the z

inertial axis), no azimuth angle estimation was provided. To avoid
singularities in the estimation of the remaining Euler angles (pitch
and roll about intermediate x and y axes), the algorithm
automatically adjusted the rotation sequence in each time step
to either Euler 3-2-1 or Euler 3-1-2 (Appendix A). The outputs of
the estimation namely the roll and pitch angles and the rotation
sequences for the two IMUs at each time step were saved in a text
file to be read by the knee joint angle estimator. The knee rotation
axis and the initial rotation matrix between the two IMU frames
were already known from the camera derived calibration
information.
4. Results

In this section the overall estimation performance is described
by comparison with reference results calculated from the camera
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Fig. 3. Comparison of knee angle estimates using camera and IMU data fo
data. In Fig. 3, the knee angles estimated from camera and IMU
data are compared for different speeds (only a subset of the data is
shown). The vibration of the IMUs that occurs at heel strike is
evident at knee angles close to zero.

Fig. 4 shows the absolute estimator errors for the same sample
times shown in Fig. 3. It can be seen that the accuracy decreases as
the speed increases, which is expected since the Kalman filter’s
ability to accurately estimate the state vector decreases as the
accelerations and angular rates increase. In principle, it is possible
that the loss of accuracy may be partly due to the duration of the
measurement as well as the increase in dynamics. However, the
Kalman filter is designed to produce bounded errors on inclination
irrespective of the experiment duration, so the decrease in accuracy
is likely to be due primarily to the waking/running speed.

Fig. 5 shows the pitch and roll angles as measured by the IMU
and the camera system for both the thigh and shank.

The RMS errors of the knee angle estimator for the entire data
set are given in Table 2, along with the estimation errors produced
by the EKF for both the shank and the thigh. It was observed that
the knee angle estimation error is sometimes smaller than the
errors in the individual angle measurements. Due to the physical
mounting of the sensors the estimate of knee angle is mainly
dependent on the estimates of j, so errors in y do not necessarily
lead to errors in knee angle. Second, if there is any degree of
correlation in the errors in thigh and shank measurements of j, then
the errors will partially cancel, leading to small knee angle errors.
5. Discussion

This study has demonstrated that two IMUs (attached to the
thigh and shank), each consisting of a three-axis accelerometer
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Fig. 4. Knee angle estimation error from camera and IMU data for Subject 1 at speeds of 1 mph (top graph) to 5 mph (bottom graph).
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and three single axis rate gyroscopes, provide sufficient data to
obtain high accuracy knee angle estimates. Kalman filters are used
to estimate the pitch and roll of each IMU and this information,
together with known anatomical constraints on knee joint
motion, is used to estimate knee angle.

In the validation trials, knee angle was estimated over a 5 min
period with RMS errors of 0.7 deg for walking and 3.4 deg for
running based on a single static calibration at the beginning of the
measurement period. Whilst other researchers have also investi-
gated the use of inertial sensors (accelerometers, gyroscopes or
both) to measure body segment orientation or joint angles, their
validation experiments have used relatively slow movements or
movements of short duration (Boonstra et al., 2006; Tong and
Granat, 1999; Huddleston et al., 2006). Furthermore, some
researchers have compared their IMU results with less accurate
validation instrumentation than the methods used here (e.g.
Dejnabadi et al., 2006; Williamson and Andrews, 2001).

Luinge and Veltink (2005) also produced promising results by
using an IMU and Kalman filter to estimate orientation of the
trunk, pelvis and forearm. Accuracy is increased by comparing
(drift prone) gyro measurements with autocalibrated acceler-
ometer measurements (Luinge and Veltink, 2004) using knowl-
edge of the frequency of movement and gravity. They achieved
RMS errors of around 3 degrees; however, in the tasks they used
for validation (lifting & daily routine tasks), the body segments
were relatively slow moving. Further research by Luinge et al.
(2007) evaluated elbow joint orientation using a similar approach
to the one described in this paper. Their method measured full
joint orientation and included a practical calibration procedure,
whereas our method simplified the knee joint to a single angle.
However, their validation experiment was over a short duration
(10–30 s) and had less dynamic movement in comparison to the
running validation used here. In the results presented here (Table
2), RMS errors were less than 3 degrees for all cases except the
fastest running speed.

Favre et al. (2008) measured knee angle during walking. For
each trial the sensors were calibrated by a period of static
standing followed by abduction/adduction of the leg with the
knee locked. They then derived quarternions for the 30 m walking
trial based on integration of angular velocity plus use of
accelerometer data when the device was stationary to provide
correction. Results produced by this fusion algorithm (Favre et al.,
2006) were benchmarked against a Polhemus system and gave
mean errors of 1 deg for knee flexion/extension. We assume that
their errors would increase with the distance walked because of
the integration of rate gyro biases.

An important limitation of the work presented in this paper is
that the knee is assumed to be a perfect hinge joint, and hence
while the flexion–extension angle is measured well, rotations about
other axes are not estimated. This could be addressed by adding
filters to estimate the remaining two angles, based on a model of
the knee which allowed small deviations from 0 in these angles,
but stipulated that the average angle was 0. A Kalman filter would
probably work well here: the existing system would allow direct
calculation of the rate-of-change of the remaining two knee angles
(which would provide the measurements to the Kalman filter), and
a simple stochastic prediction model could be used to stabilise the
system. This would allow a complete 3D estimate of the knee angle,
albeit at the expense of some additional complexity.

A key question in the design of any EKF is stability. Both the
experimental results and also long duration simulation based
testing indicate that the filter is stable. However, this is dependent
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Fig. 5. Euler angles measured by the IMU and the camera system for both the thigh and shank (shin) body segments (a - thigh IMU, b - shank IMU, c - thigh camera system,

d - shank camera system).

Table 2
Average and standard deviation of root mean square of the knee angle errors

between video and IMU data for the 7 test subjects.

Speed (mph) RMS error (degrees)

Knee angle Shank Thigh

Average Standard deviation h u h u

1 0.7 0.2 0.9 0.4 0.4 0.4

2 0.8 0.3 1.5 0.6 0.5 0.9

3 1.0 0.4 1.8 0.6 0.6 0.8

4 2.3 0.6 4.7 1.5 0.9 1.0

5 3.4 1.1 4.5 4.1 0.9 1.5
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on the movement dynamics (acceleration, velocity and rate of
rotation) remaining within the bounds specified in the filter
parameters—higher dynamics lead to instability. One area that
was not well tested by the experimental methodology was the
response of the system when the user is turning (e.g. walking or
running round a corner): in principle the filter should not be
adversely affected by such motions, but further testing would be
required to verify this. Also the validation tests at varying speeds
were performed in one experimental session and, hence, it was
not possible to differentiate errors caused by speed from those
caused by measurement duration.

As is the case with alternative IMU-based approaches (Favre
et al., 2008; Luinge and Veltink, 2005), the performance of our
system is dependent on the accuracy with which the initial
calibration is performed. Further development work is required to
eliminate the need for a camera system for calibration. An
alternative static alignment calibration method could be to take
measurements from the IMUs with the test subject’s body
segments in known static orientations or joint angles. Greater
accuracy could be obtained by combining these static measure-
ments with some known dynamic movements, as proposed by
(Favre et al., 2008; Luinge et al., 2007).
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