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The need for the temporal alignment of gait cycle data is well known; however, there is little consensus

concerning which alignment method to use. In this paper, we discuss the pros and cons of some
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methods commonly applied to temporally align gait cycle data (normalization to percent gait cycle,

dynamic time warping, derivative dynamic time warping, and piecewise alignment methods). In

addition, we empirically evaluate these different methods’ abilities to produce successful temporal

alignment when mapping a test gait cycle trajectory to a target trajectory. We demonstrate that

piecewise temporal alignment techniques outperform other commonly used alignment methods

(normalization to percent gait cycle, dynamic time warping, and derivative dynamic time warping) in

typical biomechanical and clinical alignment tasks. Lastly, we present an example of how these

piecewise alignment techniques make it possible to separately examine intensity and temporal

differences between gait cycle data throughout the entire gait cycle, which can provide greater insight

into the complexities of movement patterns.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Locomotor movement patterns are typically assumed to be
periodic, so data are frequently segmented into gait cycles (GCs) for
analysis. However, GC duration varies even under relatively steady
state conditions (Chao et al., 1983; Cunningham et al., 1982; Murray
et al., 1964), and within-GC events often vary in timing as well
(Forner-Cordero et al., 2006; Sadeghi et al., 2000, 2003). These
temporal differences between and within GCs cause gait data to
slightly deviate from the assumed periodicity, which is referred to as
quasi- or pseudo-periodicity (Forner-Cordero et al., 2006; Pecoraro
et al., 2006). Thus, if point-by-point comparisons of GC trajectories
are desired, some temporal alignment technique is needed to handle
these between- and within-GC temporal differences.

Several methods are available to temporally align GC data, and
different methods are preferred depending on the application. In
biomechanical and clinical applications, GC trajectories are often
aligned either by converting the data to percentages of the GC
(e.g., Perry, 1992; Winter, 1991) or by segmenting trajectories
into subphases and temporally aligning corresponding subphases
with one another (e.g., Forner-Cordero et al., 2006; Sadeghi et al.,
2000, 2003). In contrast, computer science identification/recogni-
ll rights reserved.
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tion applications often utilize variations of dynamic time warping
to align GC data (e.g., Boulgouris et al., 2004; Kale et al., 2003).

While temporal alignment is almost always applied to GC data,
there has been little comparison of the different methods used to
temporally align GC trajectories. In this paper, we discuss the
benefits and shortcomings of several temporal alignment techni-
ques applicable to GC data. Also, we empirically evaluate these
techniques’ abilities to successfully align a test GC trajectory with
a target trajectory. Lastly, given our empirical evaluation, we
discuss and provide an example of how these techniques can be
used to examine both intensity and temporal differences between
GC trajectories throughout the entire GC, which can offer added
insight into the movement patterns under study.
2. Methods

2.1. Temporal alignment techniques

An online supplement provides essential formulaic expres-
sions for each alignment technique.

2.1.1. Linear length normalization

Most frequently, gait data are temporally aligned by expres-
sing the data in percentages (0–100%) of the GC (e.g., Perry, 1992;
Winter, 1991). Given that this approach linearly compresses/
expands the time axis of each GC such that all GCs have the same
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length, we refer to this method as linear length normalization
(LLN). LLN removes temporal differences between GCs due to
differences in GC duration; however, even after GCs are aligned by
LLN, temporal differences between events (e.g., peaks and valleys)
within the GC still exist (Fig. 1). Such temporal misalignments will
confound any point-by-point comparisons of intensity informa-
tion between trajectories. Furthermore, if summary statistics are
calculated for a set of GC trajectories, variation at any one time
point will be inflated, and peaks/valleys in averaged GCs will be
broader and flatter than for any individual cycle (Sadeghi et al.,
2000, 2003).

2.1.2. Dynamic time warping

Dynamic time warping (DTW) was developed for spoken-word
recognition (Sakoe and Chiba, 1978) and has since been used to
temporally align various types of biometric data (e.g., Boulgouris
et al., 2004; Cho et al., 2003; Di Brina et al., 2008; Kovács-Vajna,
2000; Zifan et al., 2006). DTW non-linearly compresses/expands
the time axis of a test trajectory to find the temporal alignment
that minimizes the distance between the intensities of the test
and target trajectories. There are two noteworthy consequences of
DTW’s minimization criterion: (1) when test and target trajec-
tories differ in timing but not intensity, DTW produces successful
temporal alignment; and (2) when subphases of test and target
trajectories exhibit systematic intensity differences, DTW pro-
duces poor temporal alignment. Another important (yet rarely
discussed) aspect of DTW is that solutions are highly dependent
on user-specified constraints that can cause either distortion of
trajectory features (lenient constraints) or insufficient warping to
align the trajectories (strict constraints). For a thorough discus-
sion of DTW and possible constraints, see Kruskal and Liberman
(1983).

2.1.3. Derivative dynamic time warping

Derivative DTW (DDTW) is a modification of DTW that
overcomes limitations of DTW’s minimization criterion (Keogh
and Pazzani, 2001). DDTW non-linearly compresses/expands the
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Fig. 1. A sample subject’s linear length normalized ankle (a) and knee (b) angular disp

between normal walking (non-braced) and walking with a knee brace on the right kne
time axis of a test trajectory to find the temporal alignment that
minimizes the distance between the (estimated) local derivatives
of the test and target trajectories. This modification of the
minimization criterion means that: (1) when test and target
trajectories differ in timing but not shape pattern, DDTW
produces successful temporal alignment; and (2) when subphases
of test and target trajectories exhibit systematic shape pattern
differences, DDTW produces poor temporal alignment. Like in
DTW, DDTW solutions are highly dependent on user-specified
constraints.

2.1.4. Piecewise linear length normalization

Another approach segments GC trajectories into subphases at
points of interest (POI; user-determined points to align) and
temporally aligns the POI in each test trajectory with the
corresponding POI of a target trajectory (Sadeghi et al., 2000,
2003). Given that this approach utilizes LLN in a piecewise
manner to align corresponding subphases of GC trajectories, we
refer to this method as piecewise LLN (PLLN). POI can be
characterizing-points of any within-GC features, so long as it is
possible to identify these features across subjects and experi-
mental conditions. The first and last POI in each trajectory should
be the first and last time points of the GC to ensure that the cycles’
endpoints are aligned. We recommend that within-GC POI be
determined based on trajectory shape of the data (using an
approach described in Hong, 2009) or be kinematically relevant
points in the GC (e.g., heel-strike, toe-off, etc.).

2.1.5. Piecewise dynamic time warping

Once GC trajectories are segmented at POI, it is also possible to
apply DTW in a piecewise fashion to align corresponding
subphases of the trajectories. We recommend that each subphase
of each trajectory be individually intensity normalized, since
substantial intensity differences interfere with DTW alignment.
After intensity normalization, the alignment of each subphase is
treated as its own DTW problem, which we refer to as piecewise
DTW (PDTW).
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2.2. Data

To illustrate these techniques, we use walking data from
Shorter et al. (2008). In these experiments, 10 healthy male
subjects (2172 yrs) walked on a treadmill under two conditions:
(1) normal (non-braced) walking; and (2) knee-braced walking.
The brace prevented right knee flexion, simulating an injury or
other abnormal gait pattern. Bilateral ankle and knee sagittal-
plane angles were determined from the motion-capture data
(Vicon, Oxford, UK), and 10 consecutive GCs per condition were
used per subject.

Before temporal alignment, continuous data were divided into
GCs (from heel-strike to heel-strike), and LLN was used to make
each GC 100 time points in length. LLN is not a necessary
preprocessing step for any of the alignment techniques in this
paper. However, LLN makes the data easier to manipulate and
facilitates interpretation. Also, the equal length constraint is often
applied in any temporal alignment technique mapping a test
trajectory to a target, so applying LLN as a preprocessing step will
not influence conclusions drawn from the alignment procedures.

2.3. Analyses

Temporal alignment methods (DTW, DDTW, PLLN, and PDTW)
were applied to align non-braced and braced trajectories with the
appropriate (ankle or knee) target trajectory. The target trajectory
is defined as the average trajectory (averaged over legs, subjects,
and GC replications) during the non-braced condition. This
average was chosen as the target to quantify intensity and
temporal differences from normative behavior within and
between subjects in both conditions.

For the dynamic warping algorithms, several constraints were
imposed. Boundary constraints required alignment of the test and
target trajectory endpoints. Monotonicity constraints preserved
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Fig. 2. The target ankle angle trajectory and a typical subject’s right ankle an
the order of the test trajectory time indices. Continuity constraints
ensured mapping of all test trajectory time indices onto some
time index/indices of the target (and vice-versa). Window

constraints required that the alignment did not stray too far from
the LLN mapping. Lastly, slope constraints prevented excessive
compression and expansion of test trajectory points. Window and
slope constraints were empirically determined to find a balance
between trajectory shape preservation and effective temporal
alignment. For the piecewise techniques, we selected POI to be
the prominent maxima and minima in the data trajectories by
taking the time indices nearest to local maxima and minima
within predetermined ranges of interest (Figs. 2a and 3a).

To evaluate the effectiveness of the temporal alignment
techniques at matching the shape patterns of the test and target
trajectories, we calculated the Euclidean distance between the
(estimated) local derivatives of the test and target trajectories
after alignment, referred to as the derivative distance. A smaller
derivative distance represents a better alignment of the shape
patterns in the trajectories, regardless of intensity differences. The
average derivative distance (averaged over subjects and GC
replications) was used for evaluating the temporal alignment
techniques.
3. Results

For the non-braced data, temporal and intensity deviations
from the target trajectories were minimal after only LLN was
applied (Figs. 2a, 3a, and 4a LLN). DTW resulted in poor alignment
of the POI, and both DTW and DDTW produced distorted aligned
cycles (Figs. 2b,c and 3b,c). Furthermore, relative to the LLN
baseline, both DTW and DDTW increased shape dissimilarity
(i.e., derivative distance) between the test and target trajectories
(Fig. 4a DTW, DDTW). In contrast, PDTW and PLLN provided more
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Fig. 3. The target knee angle trajectory and a typical subject’s right knee angle trajectory in both conditions after each temporal alignment method.
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desirable alignment results (Figs. 2d,e and 3d,e) and produced less
shape dissimilarity (Fig. 4a PDTW, PLLN).

The braced-walking results differed depending on the limb. For
the left limb, the results were similar to the non-braced data
(Fig. 4 Left Ankle, Left Knee). However, the right limb results
illustrated the systematic differences caused by the right knee
bracing. For the right ankle, all of the temporal alignment
procedures removed some of the systematic temporal differences
caused by the brace, with PDTW and PLLN providing the best
alignment (Figs. 2 and 4b Right Ankle). For the Right Knee, DDTW
actually increased the shape dissimilarity, whereas the other
techniques reduced the dissimilarity, with PDTW and PLLN
performing best (Figs. 3 and 4b Right Knee).
4. Discussion

4.1. Comparison of temporal alignment techniques

These results demonstrate that different techniques used to
temporally align GC data can produce quite different alignment
results, potentially leading to different interpretations of the data.
Unlike LLN, DTW was able to reduce some of the temporal
differences between events within GC trajectories; however, DTW
misaligned GC events when systematic intensity differences
existed between subphases of the test and target trajectories.
DDTW, on the other hand, was better able to align GC events
despite intensity differences and without requiring any a priori

information on where to search for the events. However, DDTW
sometimes introduced distortion to the aligned trajectories and
did not produce ideal alignment for the right knee-braced data
(due to systematic shape pattern differences induced by the
bracing). Like DDTW, PDTW and PLLN were able to effectively
align shape patterns in GC trajectories regardless of intensity
differences. Furthermore, PDTW and PLLN produced more desir-
able alignment results than DDTW when trajectory shape
differences existed between the test and target trajectories.

The question of which temporal alignment technique should
be used depends on the application. In recognition/identification
applications, a researcher desires an alignment technique that
only provides successful alignment when the test and target
trajectories ‘‘match’’ (i.e., when they differ in timing but not
intensity or shape pattern). In these applications, DTW or DDTW
should be preferred, given that the piecewise approaches
constrain the alignment such that POI are aligned regardless of
whether the test and target match. However, in biomechanical
and clinical applications, a researcher often desires to temporally
align GC trajectories for the purpose of aligning subphases in the
trajectories. For these applications, PDTW or PLLN is the more
logical choice, given that these piecewise approaches directly
accomplish the alignment goals. Given the straightforwardness of
the algorithm, we recommend PLLN to align POI in GC trajectories.

When using PLLN, the choice between trajectory shape versus
kinematic POI depends on the research goals. Kinematic POI preserve
temporal synchronization between joints and often provide more
meaningful biomechanical and clinical interpretations. In contrast,
trajectory shape POI make it possible to separately analyze each joint
trajectory’s distinct temporal deviation from its corresponding target.
Thus, kinematic POI should be used when it is important for data to
be analyzed holistically, whereas trajectory shape POI are more
appropriate when data are to be analyzed atomistically.
4.2. Examining intensity and temporal differences

In biomechanical and clinical applications, intensity and
temporal differences between GC trajectories are often discussed
only at select points within the GC (e.g., Shorter et al., 2008; Wojcik
et al., 2001). In contrast, the techniques discussed here make it
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possible to separately examine intensity and temporal differences
between GC trajectories throughout the entire GC. After temporal
alignment, intensity differences between trajectories can be
meaningfully calculated at each point throughout the GC. In
addition, by recording the directions and magnitudes of the
temporal shifts necessary for alignment, it is possible to quantify
temporal differences between trajectories at each point throughout
the GC. When examined together, these intensity and temporal
differences may be used to characterize and better understand the
movement patterns of subjects or subject populations.

As an example, we show how PLLN can be used to examine
intensity and temporal differences between biomechanical sub-
phases of GC trajectories (as defined by Perry, 1992). We segment
non-braced and knee-braced right ankle angle trajectories at four
within-GC kinematic POI (Fig. 5a,b) to examine five biomechanical
subphases of the GC: (1) loading response (LR); (2) mid- and
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terminal-stance (MTS); (3) pre-swing (PS); (4) initial- and mid-
swing (IMS); and (5) terminal-swing (TS). In the non-braced data,
intensity and temporal differences (i.e., test minus target values) are
minimal throughout the GC (Fig. 5c). In contrast, the knee-braced
data show average intensity differences as large as 151 during IMS
(Fig. 5d). Also, the knee-braced data display substantial negative
temporal differences throughout the GC, indicating that the POI in
the braced data lead the POI in the target (Fig. 5d). By examining
temporal differences at the pairs of POI defining the stance
subphases, we see that the brace causes the average durations of
LR, MTS, and PS to decrease by about 3%, 2%, and 2% GC, respectively,
causing IMS to begin about 7% GC earlier (Fig. 5d). Thus, taken
together, these differences suggest that the knee-braced walkers
spend a longer-than-normal percentage of the GC in the swing
subphases, i.e., IMS (5% GC longer) and TS (2% GC longer), during
which they exhibit substantially reduced motion at the right ankle.

4.3. Concluding remarks

Temporal alignment of gait data is a necessary step to make point-
by-point comparisons of GC trajectories meaningful and accurate.
This work demonstrates that piecewise temporal alignment methods
outperform several commonly applied alignment techniques at
mapping a test GC trajectory to a target. In addition, we demonstrate
how these piecewise methods facilitate the examination of both
intensity and temporal differences between GC trajectories at all
points throughout the GC, which permits a more detailed quantifica-
tion and characterization of the behaviors under study.
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