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Abstract
The purpose of this study was to investigate the influence of walking speed on the amount and structure of the stride-to-stride fluctuations

of the gait cycle. Based on previous findings for both walking [Hausdorff JM, Purdon PL, Peng CK, Ladin Z, Wei JY, Goldberger AL. Fractal

dynamics of human gait: stability of long-range correlations in stride interval fluctuations. J Appl Physiol 1996;80:1448–57], and running

[Jordan K, Challis JH, Newell KM. Long range correlations in the stride interval of running. Gait Posture 2006;24:120–5] it was

hypothesized that the fractal nature of human locomotion is a reflection of the attractor dynamics of human locomotion. Female participants

walked for 12 min trials at 80%, 90%, 100%, 110% and 120% of their preferred walking speed. Eight gait cycle variables were investigated:

stride interval and length, step interval and length, and from the vertical ground reaction force profile the impulse, first and second peak

forces, and the trough force. Detrended fluctuation analysis (DFA) revealed the presence of long range correlations in all gait cycle variables

investigated. Speed related U-shaped functions occurred in five of the eight variables, with the minima of these curves falling between 100%

and 110% of the preferred walking speed. These findings are consistent with those previously shown in running studies and support the

hypothesis that reduced strength of long range correlations at preferred locomotion speeds is reflective of enhanced stability and adaptability

at these speeds.

# 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Walking is one of the most practiced of all motor skills,

thus, it is not surprising that there is a very low level of

variability (e.g. coefficient of variation � 3%) associated

with many biomechanical measures of this task, e.g. [1,3].

This low level of variability is generally taken to mean that a

very repeatable movement pattern has been attained [3].

Traditionally this variability has been regarded as a (white)

noise process, where any given fluctuation in the time series

is independent of all other fluctuations. However, in the last

decade it has become apparent that in both walking [1,4] and

running [2], that stride-to-stride fluctuations (i.e. stride

interval variability) contain structure in the form of long

range correlations. Statistically, this means that the stride
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interval at any point in the time series is related to or

dependent upon the stride interval at remote previous times.

This type of long range dependence is common in

physiological time series and has been used as an indicator

of overall adaptability of particular systems. For example,

the fluctuations of a healthy heart show complex multi-scale

long range order, whereas heart disease results in a change in

the scaling behavior such that the fluctuations are limited to

either very few time scales (excessive predictability) or

uncorrelated randomness (e.g. [5]). Similarly, it has been

shown that the scaling behavior of the stride interval of

human walking becomes more random-like with aging and

disease [6]. One finding of relevance here is that the strength

of the long range correlations of healthy young adults in both

gaits appears to be speed dependent [1,2], but there has been

no systematic investigation of the speed-long range

correlation function in walking.

Studies investigating variability of the step interval and

length have revealed U-shaped patterns of change with speed
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for the coefficient of variation (CV) of both of these

variables [7,8]. It is also known that individuals exhibit a

preference for a particular walking speed, which occurs at or

close to the speed at which energy consumption (per unit

distance) is minimized [9]. Results from both walking [10],

and leg swinging [11] studies provide evidence that the

metabolic cost of walking is minimized by taking advantage

of the passive mechanical properties of the leg, which in turn

reduces the required force contribution of muscle. When

walking at a constant speed, preferred and predicted periods

of oscillation are not significantly different, and these

periods coincide with minimum metabolic expenditure [12].

Collectively, these findings support the idea of a preferred

walking speed (PWS) which is related to the mechanical

properties of the leg.

Within the dynamical systems motor control framework,

the preferred parameterization of movement patterns (in this

case PWS) is associated with the concept of an attractor [13].

An attractor can be regarded as a pattern of behavior towards

which a system is drawn [14]. Preferred behavior of a system

is regarded within this framework as being close to an

attractor and hence stable. As the behavior of the system

moves away from the attractor (for example by increasing or

decreasing walking speed) it is expected that there will be a

loss of stability. It follows from the results of Holt and

coworkers [10,12] that the preferred walking speed, related

as it is to the eigenfrequency of the limb, is the most stable in

terms of the attractor dynamics of the system. Here we

examine the proposition that the apparent reduction in long

range correlations at the preferred walking speed may be

related to the attractor dynamics of walking.

The purpose of the current study was to investigate the

influence of walking speed on the amount and structure of

the stride-to-stride fluctuations of the gait cycle. Based on

previous findings for both walking [1] and running [2], it was

hypothesized that long range correlations would be present

in gait cycle variables other than stride interval, that the

effects of speed would be similar across these variables, and,

that the preferred walking speed would be that at which the

long range correlations were the weakest.
2. Methods

2.1. Subjects

Eleven female volunteers from The Pennsylvania State

University between the ages of 22 and 30 years of age

(average age = 24.9 � 2.4 years; average height = 164.9 �
5.1 cm; average mass = 57.2 � 3.1 kg) were recruited for the

study. All participants were healthy non-smokers with no

history of cardiovascular disorders and were required to

fill out a physical fitness readiness questionnaire (PAR-Q)

to ensure they were suitable candidates for an exercise

test. Additionally, in order to minimize fatigue effects,

participants werewell trained recreational runners who ran for
a minimum of 15 miles per week. All participants provided

informed consent and all procedures were approved by the

Institutional Review Board of The Pennsylvania State

University.

2.2. Apparatus

The apparatus consisted of a Kistler Gaitway treadmill

with two embedded force plates. Vertical ground reaction

forces (VGRF) were measured by uni-dimensional piezo-

electric force sensors and sampled at a rate of 250 Hz. The

treadmill had a speed range of 0.8–20 km/h, the smallest

increment in speed was 0.1 km/h.

2.3. Tasks and procedures

On a day prior to data collection participants spent 45 min

walking on the treadmill at speeds at which they felt

comfortable, to become familiar with the treadmill. The first

10 min of each experimental session was used as a warm up/

treadmill adaptation period, participants were prevented

from viewing the speed at which they were walking. The

PWS was established during this period by initially having

the participant walk at a relatively slow speed, the

investigator then increased the speed in 0.1 km/h increments

until the subject reported that they were walking at their

PWS. The speed was then increased by approximately

1.5 km/h and then decremented by 0.1 km/h until the PWS

was re-established. This procedure was repeated until a close

match was achieved (less than 0.4 km/h different)—in the

majority of participants a similar speed was arrived at on the

first two attempts to establish PWS.

Participants performed one 12 min trial at each of the

following percentages of preferred walking speed: 80%,

90%, 100%, 110% and 120%. Speeds were presented

randomly and participants were given at least 2 min and up

to 10 min to recover between trials. Approximately 650

stride intervals were captured per 12 min trial.

2.4. Analysis of force plate data

Custom written MATLAB software was used to compute

and process the VGRF data. The center of pressure and

ground reaction force data were filtered in forward and

reverse directions with a second order Butterworth filter with

a cut off of 15 Hz. A 20 N threshold was used for the

identification of the start and end of each foot fall, signal

below this threshold was considered to be noise.

Eight gait cycle variables were investigated: stride

interval and length, step interval and length, and, from

the VGRF profile, the impulse, first and second peak forces,

and the trough force. Stride interval was defined as starting

with the onset of the heel strike of one foot and finishing with

the onset of the next heel strike of the same foot. Step

interval was defined as starting with the heel strike of one

foot and finishing with the subsequent heel strike of the other
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Fig. 1. Slope of line (a) relating log of average window size, n, to log of

average fluctuation size, F(n), for a representative trial.
foot. Step length was calculated by multiplying the step

interval by the average belt speed for that interval and adding

(or subtracting as appropriate) the difference in distance

between the two heel strikes used for the calculation of step

interval. Stride length was calculated similarly, multiplying

stride interval by the average belt speed and adding

(subtracting) the difference in distance between the

successive heel strikes of the limb. Impulse is the area

under the force time curve, first and second peak forces were

taken as the maximum vertical ground reaction force

produced during the force absorption and generation phases

of stance, respectively. Trough force was the force at the

minima between the first and second peaks.

2.5. Data analysis

The mean, coefficient of variation (CV—standard

deviation divided by the mean), and the strength of long

range correlations (a) were calculated for the time series of

each dependent variable. CV quantifies the amount of

variability of the time series and does not reflect the

structure of stride-to-stride fluctuations. Long range

correlations on the other hand provide a measure of the

structure of the variability of the time series. Stronger

correlations indicate a more predictable time series whereas

weaker correlations indicate a less predictable time series

where any given stride interval is less dependent on the

stride intervals preceding it.

Long range correlations of the time series data were

calculated using detrended fluctuation analysis (DFA [15]).

Briefly, this method forms an accumulated sum of the time

series, sections it into windows ranging in length from 4 to

N/4 data points (where N is the total number of data points in

the time series) and the log of the average size of fluctuation

for a given window size is plotted against the log of the

window size. The slope of this line, a, is the value returned

by the DFA algorithm (see Fig. 1). This method avoids the

spurious detection of correlations that are artifacts of

nonstationarity in the time series [16]. An a value of 0.5

corresponds to a white noise process; a greater than 0.5 and

less than (or equal to) 1.0 indicates persistent long range

correlations; a less than 0.5 indicates persistent long range

anti-correlations.
Table 1

Main effects of speed on all dependent variables from analysis of variance

Mean S.D.

F(4,40) p F(4,40)

Stride interval (s) 217.56 <0.05 14.83

Stride length (m) 323.24 <0.05 1.54

Step interval (s) 216.03 <0.05 22.89

Step length (m) 497.94 <0.05 1.92

Vertical impulse (N s) 155.13 <0.05 8.99

Force at first peak (N) 87.21 <0.05 7.84

Force at second peak (N) 105.91 <0.05 10.57

Force at trough (N) 271.81 <0.05 7.94
The mean, CV, and a for each variable were calculated

for each trial. The effects for each dependent variable were

then examined using a two way (leg by speed) repeated

measures ANOVA. Non-linear regression was performed on

the DFA results to test for the presence of U-shaped curves.

Post hoc analysis was carried out using the Tukey post hoc

test and results are reported as significant if p < 0.05.
3. Results

Table 1 provides an overview of the ANOVA results.

Long range correlations were present in all of the gait cycle

variables examined. With the exception of the DFA of step

interval, there were no significant differences in mean, CVor

DFA between the legs for any of the gait cycle variables

investigated. In the case of step interval, the long range

correlations for the right leg were slightly but significantly

higher than for the left leg (0.71 versus 0.68, respectively).

Fig. 2 illustrates the significant speed effect for all gait

cycle variables. Stride and step interval, impulse, and trough

force decreased while stride and step length, peak first and

second peaks increased with increasing speed. In all cases

post hoc testing revealed significant differences between

each pair wise combination.
CV DFA

p F(4,40) p F(4,40) p

<0.05 6.37 <0.05 3.12 <0.05

n.s. 5.95 <0.05 3.12 <0.05

<0.05 9.75 <0.05 5.01 <0.05

n.s. 10.43 <0.05 1.50 n.s.

<0.05 3.18 <0.05 5.16 <0.05

<0.05 2.0 n.s. 0.14 n.s.

<0.05 6.55 <0.05 0.77 n.s.

<0.05 14.22 <0.05 0.47 n.s.
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Fig. 2. (A) Group mean values for stride interval, step interval, stride length

and step length vs. walking speed. (B) Group mean values for impulse, first

and second peak forces and trough force vs. walking speed.

Fig. 3. Group CV for all variables vs. walking speed.

Fig. 4. Group a values for stride interval, step interval, stride length, step

length and impulse vs. walking speed.
3.1. Amount of variability

Fig. 3 illustrates significant decreases in CV for step and

stride interval, step and stride length and impulse, with the

slope of the curve being steepest between 80% and 90% of

PWS in all cases. For step and stride interval, and stride length,

post hoc tests revealed significant differences between 80% of

PWS and all other speed conditions. CV of step length

decreased significantly between 80% and the three fastest

walking speeds, where as for impulse there was a significant

decrease from 80% to 110% of PWS only. CVof both second

peak force and trough force increased, with significant

increases occurring from the slowest three speeds to the fastest

speed for second peak force. In the case of trough force, there

was a significant increase in CV from all speeds to 120% of

PWS, as well as from 90% to 110% of PWS.

3.2. Structure of variability

Significant speed effects were seen for a values of step

and stride interval, stride length, and impulse with the a

values of these variables and step length following a U-

shaped pattern of change with increasing speed (Fig. 4). For
stride interval and length there was a significant reduction in

the strength of long range correlations from 80% to 110% of

PWS. For step interval, there was a significant decrease from

80% to both 100% and 110% of PWS. In addition, for

impulse, there were also significant differences between

80% and both 110% and 120% of PWS as well as between

90% and 110% of PWS.
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Second order polynomial curves were fit to the DFA

scaling exponents for the five gait cycle variables that

demonstrated a curvilinear change with speed. For stride and

step interval, stride and step length, and impulse, adjusted r-

squared values of 88%, 97.5%, 80.8%, 98.8%, and 75.4%

were observed, respectively. For all variables except

impulse, the minimum fell between 100% and 110% of

PWS. In the case of impulse, the minimum was between

110% and 120% of PWS. While only step interval and step

length had significant quadratic components, these adjusted

r-squared values indicate that the data are well fit by a

second order polynomial, and in all cases r-squared values

for linear fits were smaller.

3.3. Follow-up experiment

Fig. 4 suggests that had a broader range of speeds been

examined, the U-shaped curve for DFA would be more

pronounced. In order to examine this possibility we

performed a post hoc data collection using the same

protocol but over an increased range of walking speeds:

�20% and 40% of PWS (i.e. 60%, 80%, 100%, 120%,

and 140% of PWS). Data were collected from 10 non-

smoking healthy participants (age = 27.4 � 4.0 years;

height = 166.6 � 3.8 cm; weight = 62.2 � 5.8 kg), some of

whom had participated in the original data collection. The

same exclusion criteria were used for these participants,

thus, they were of similar fitness level to the original

participants. Data were collected during 6 min trials at each

speed. While it has been shown that at least 8 min of data are

required in order to achieve reliable estimates of a [17], the

top speed of 140% made collecting data for a longer period

of time prohibitive. In all other respects, the methods were

identical to that employed in the initial data collection. The

pattern of results for the post hoc data collection was

consistent with that of the original data. Because the

motivation for the additional data collection was to clarify

the initial findings for DFA, we present only the DFA results.
Fig. 5. Values for a for stride interval for both initial and post hoc data

collections.
The DFA scaling exponents for the additional data across the

five variables demonstrated U-shaped curves with speed that

was similar to that of the initial data collection. Fig. 5 shows

the DFA results for stride interval versus speed for both

experiments separately.
4. Discussion

In this study we examined the long range correlations in

multiple gait cycle variables during walking over a range of

speeds. Our two main findings are that long range

correlations are present in all of the gait cycle variables

assessed in this study; and there are distinct U-shaped

patterns of change in the strength of the correlations of

several different gait cycle variables with speed that are

anchored to the preferred walking speed. The CV of the

majority of variables (stride interval, step interval, stride

length, step length, impulse) decreased with speed. The

implication of this result is that the gait cycle becomes

more consistent as speed increases [3].

The a values of stride and step interval, stride and step

length, and impulse all exhibit a curvilinear change with

speed, the minima consistently falling between 100% and

110% of PWS. Significant quadratic trends were seen for the

a values of step interval and step length but not of stride

interval and stride length (although the p-values for these

variables did come close to reaching significance). A similar

pattern of DFA results was observed for step interval, stride

and step length and impulse. While similar U-shaped curves

are apparent for both sets of data, the a exponents for the

post hoc data are larger than those of the original data

collection (Fig. 5). To examine the possibility that this effect

was related to trial length (cf. [17]), DFA was performed on

the first 6 min of the original 12 min walking trials. There

was no difference in the average size of a when only the first

6 min (compared with the entire 12 min) of the trial was

examined. Therefore, it is likely that the relatively higher a

values observed for the 6 min post hoc trials is related to

influences other than trial length.

Examination of the literature on long range correlations

in the walking stride interval of young healthy adults reveals

that there is a large study to study variation in the average

size of a. Hausdorff and colleagues have reported average

values of a for this population of 0.76 [18], 0.9 (at preferred

walking speed) [1], 0.88 [6], and Pierrynowksi et al. have

reported a = 0.66 for the right limb and a = 0.69 for the left

limb [17]. Thus, it is likely that there are factors other than

speed and general health of the neuromuscular apparatus

that affect the average size of a. The amount of time

participants are required to walk (or run) for has an influence

on the speed at which participants choose to transition

between walking and running [19], thus, we can speculate

that informational constraints (such as the amount of time

participants anticipate walking for) may also have an

influence on the scaling behavior of gait cycle fluctuations.
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One explanation for the overall U-shaped pattern of change

for long range correlations with increasing speed is that this

finding relates to the increasing degree of constraint

encountered by the neuromuscular apparatus at non-preferred

speeds. Statistically, a reduction in strength of long range

correlations indicates that any given stride is less dependent

upon all preceding strides [1]. Further, the relatively larger

number of time scales present in the motor output (as

indicated by a decrease in long range correlation) is consistent

with the proposition that there are a larger number of

independently controllable system elements contributing to

the motor output (e.g. [20,21]). As such, as individuals are

required to walk at increasingly non-preferred speeds, the

number of available options for solving the coordination

problem of walking decreases and the gait cycle becomes

increasingly constrained. Alternatively, this suggests that the

PWS is more readily adaptable than other walking speeds.

While it is impossible based on our findings to speak to the

specific interactions of the sub-systems that contribute to this,

in terms of physical constraints, increasing walking speed is

associated with an increase in muscle stress, particularly of

the dorsi-flexors and plantar flexors [22,23], and a saturation

of stride length [24]. It is reasonable to speculate that other

aspects related to the control of locomotion are also more

constrained at non-preferred speeds and that the collective

result of this is reflected in a more regular motor output.

The reduction in long range correlations at the PWS may

also result from improved stability associated with walking

at resonance. When individuals walk freely (i.e. at their

PWS), they naturally select a stride frequency that is the

same as the predicted eigenfrequency of the leg [10,12]. It

has also been demonstrated that a rhythmic movement

carried out at resonance has greater cycle to cycle

reproducibility and stability [25] than movements at other

frequencies. Because step frequency increases with increas-

ing walking speed, walking at the resonant frequency of

the limb only occurs naturally at the PWS, even though there

are preferred step frequencies for all other speeds. Thus, the

PWS is that at which the locomotor system should be most

stable and the reduced strength of long range correlations at

the PWS may reflect this enhanced stability.

Interestingly, our results appear to be in conflict with

those of Goodman et al. [26], who showed that the number of

active degrees of freedom required to capture the dynamics

of pendulum swinging was reduced at the resonant

frequency. This suggests that oscillatory movement at

resonant frequency improves the predictability of the

movement output, which contrasts with our results for

walking. However, there are a number of differences

between our study and that of Goodman et al. [26], the most

obvious of which is that the task of walking is inherently

more unstable and complex than that of swinging a

pendulum about the wrist [3]. While stability may be

maximized in both cases under the condition of preferred

parameterization of the task, in the case of pendulum

swinging the only way in which the task changes is that more
force must be applied to swing the pendulum faster or more

damping to swing the pendulum slower. The consequences

of the central nervous system not compensating for the loss

of stability in the wrist-pendulum system are negligible. This

is clearly not the case in locomotion. While changing the

speed of locomotion may require additional force produc-

tion or damping as appropriate, the destabilizing effects of

this internal perturbation also need to be accounted for. As

participants are forced to walk at speeds increasingly

different from preferred, it becomes necessary to more

actively control the movement output which may increase

the degree of structure present in our data. At slower speeds

this may be particularly apparent as the mediolateral

excursions of the center of mass increase [27]—keeping the

center of mass over the support limb may therefore require a

greater degree of active regulation.

One limitation of this study is that we were restricted to

the use of a treadmill to collect continuous ground reaction

force data (and thus the range of gait cycle variables

examined). It has been shown that while mechanically there

is no theoretical difference between over-ground and

treadmill locomotion [28], walking on a treadmill stabilizes

the locomotor output [29]. It is likely that the constantly

driven speed of the treadmill does influence the scaling

behavior of gait cycle behavior and future research should

include a direct comparison of over-ground versus treadmill

walking on the long range correlations of the gait cycle.

Other avenues of future research could include an

investigation of the influence of systematically altering

constraints (other than gait speed) on long range correlations

to examine the proposition that strength of long range

correlations is related to the degree of constraint experienced

by the neuromuscular apparatus.

In summary, we have shown that long range correlations

are present in a range of gait cycle variables during

unconstrained walking on a treadmill. In five out of eight

gait variables investigated, a values followed U-shaped

curves as a function of walking speed, the minima of which

fell between 100% and 110% of PWS. These findings are

consistent with those previously shown in running [2] and

support the hypothesis that reduced long range correlations

at preferred locomotion speeds is reflective of enhanced

stability and adaptability at these speeds.
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