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Abstract

This chapter provides readers a systematic and panoraavicofiLDC formula-
tion and various LDC designs under different criteria.

1. LDC

1.1. Introduction

The term, linear dispersion codes (LDC), has been considered agbemminology for
block coding [1-3]. LDC were first proposed by Hassibi and Hodbwaa a general frame-
work of arbitrary complex space time codes (CSTC) for block flat-fadimnaels [1, 2].
LDC subsumes orthogonal space time block codes and Vertical Bell Layeréd Space-
times (V-BLAST) as subclasses [1,2]. LDC possess high coding rdtesdéfinition of
LDC coding rate will be discussed in Section 1.2.2.), and can supportagbdonfigura-
tion of transmit and receive antennas. To avoid numerical difficulty of minirgiziver-
age pairwise error probability (PEP), LDC design was initially achievedobmiilating a
power-constrained optimization problem based on mutual information [2&r Afie sem-
inal work introduced in [1], the term of LDC has been extensively adbfite high-rate
CSTC designs under different design criteria other than capacity criteAtthough ini-
tially designed as complex codes in space-time channels, LDC has furrecbesidered
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as a general framework of linear 2-dimensional (2-D) codes in geBdbacommunica-
tions channels. Note that conventional block error correcting codedeaonsidered as
real integer subclasses of LDC.

This chapter aims to give readers a systematic and panoramic view of LD1I&iron
and various LDC designs under different criteria. The following notatiare used;-)*
denotes matrix pseudoinverse,” matrix transpose(:)”* matrix transpose conjugatky
denotes identity matrix of siz& x K, 0,,x, denotes zero matrix of size& x n, [X]mb
denotes théa, b) entry of matrixX, A ® B denotes Kronecker (tensor) product of matrices
A andB, C"*™ denotes a complex matrix with dimensiomsx n, andF; denotes the
discrete Fourier transform (DFT) matrix, representing Aiepoint fast Fourier transform

(FFT) with entriegF /], , = (1/\/M) exp (—j2m(a — 1)(b— 1)/M).

1.2. Concepts of LDC
1.2.1. LDC Definition

Assume that an uncorrelated data sequence has been modulated usingxe@hed
source data symbols chosen from an arbitrary, e.gPSK orr.-QAM, constellation. A
T x N; LDC matrix codewordS, p¢ is transmitted fromV, transmit antennas and occu-
piesT channel uses and encodgsource data symbols. LDC was originally proposed as a
complex space-time matrix coding framework [2]. The matrix codev#gyg is expressed
as
Q
SLDC = Z anq + jﬂqu (1)
q=1
whereS;pc € CT*Nt andA, € CT*N B, € CT*Nt g =1,...,Q are called dispersion
matrices. The complex source data symbols are defined by

Sq = Qq +j/8q7 qg=1,..,Q. (2)

Note that there is another LDC definition with different dispersion matriCgsand
D,, as follows [2]

Q
Sipc = Z Squ + S:;Dq, 3)
q=1
whereC, = 1 (A, + By) andD, = ;3 (A, — B,),¢=1,..,Q.
If the basic encoding units are real and imaginary components of data syited_DC
codewords are can be written as
2Q
Sioc =Y _ Ky, 4)
k=1

where the components are

= { AL, ]{7:1,...,@
ﬁk—Q7 k:Q+1772Q
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and the component dispersion matrices are

K. Ay, k=1,...Q
Tl B k=Q41,...,2Q

1.2.2. Coding Rate of LDC

Hassibi and Hochwald have defined the coding rate of LDC in terms of bits as

Q
R = T logy (5)
wherer is the size of constellation [2].
At the physical layer of a communication system, symbol coding rate ofteefalder
comparing the spectrum efficiency between different systems. Condsy to the bit rate
definition in (5), the symbol coding rate is defined as

sym Q

Note that this definition is different from that of conventional error eoting codes
(ECCQ). In the latter case, the symbol coding rate is defined as

SYym Q
Ri’pe = NI (7)
which may be used for codes in frequency-time channels [3]. In sjimeechannels, the
symbol coding rate can be alternatively defined as

Sym Q
Y _
Ripo = T min {Np, Ng}’ (®)

According to (8),R}), = 1 is the maximum coding rate for linear zero-forcing de-
coding.
In the rest of this chapter, the original definitions of coding rate (5) &hd/fll be used.

1.2.3. Matrix Form LDC Encoding

A special subclass of LDC In this chapter, we primarily consider a special subclass of
dispersion matrices with the constraints

A,=B, q¢=1,..Q. (9)

Substituting (2) and (9) into (1) yields

Q
SLpc = Y sgAq, (10)
q=1
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which can be transformed into matrix form by using the operation. Reordering;pc
and each matriA ; into aT'M x 1 column vector, respectively, byc(Sy pc) andvec(A,),
we obtain

S1
vec(Sppe) = | vec(Ar) ... vec(Ag) | N (11)
5Q

An example of this special class of LDC codes is shown as follows. Thegrbsquare
dispersion matrices of this code, referred to as HH Square LDC [2]fisattonstraint (9).
More specifically, the dispersion matrices are

1
AN b1 =B 1) = —DFHIT (12)
Ni(k—1)+1 Ni(k—1)+1 N,
wherek =1,..., Ny, 1 =1, ..., Ny,
1 0
- 27
0 &M ... 0
D=|. : .. : ’
. ' . .27r(.Nt71)
0 0 e Nt
and -~ -
0 O 0 0 1
10 0 0O
0 1 0 0 O
=19 o 00 0
| 00 -~ 0 1 0|

Using the definition (6), the symbol coding rate of the above cod#s.is
A possible zero-forcing method to estimate the data symbol vector in (11) iktdate
the Moore-Penrose pseudo-inverse of LDC encoding matrix

Grpc = [vec(Aq), ..., vec(AQ)]. (13)

General matrix form Denote

Apec = | vec(AT) wec(AT) .. vec(Ag) ], (14)
Buee = | vec(BY) wvec(BI) .. vec(Bg) ], (15)
Qpec = [ ap g ... QQ }T, (16)

T

ﬁvec:[ﬁl Ba ... ﬁQ} > (17)
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evec - [ Oéz-ec 53;0 ]Ta (18)
Gyec = [ Ayee JBuec ] ’ (19)
Svecz[sl e 8Q }T. (20)

In this general case, we have

vee (S7p) = Guecluee- (21)
With constraint (9), we have

vece(STH) = AvecSvec (22)

There is a slight difference betwedn,.. in (14) andG pc in (13), i.e., the transpose
operations, and botA .. and G, pc can encode LDC in different contexts, respectively.
Note that other format of encoding matrices may be obatined by permutatingltirercs
of one of the following matricesA ... in (14), Gy pc in (13), andG,.. in (19).

In this chapter, under constraint (4%z, p¢ is called LDC encoding matrix.

1.2.4. LDC Decoding

Maximum likelihood decoding (MLD) [4,5] and MLD-like decoding, suctsghere decod-
ing (SD) [6-9] have been primarily considered LDC decoding methods intliteraNote

that the worst case complexity of both MLD and SD is exponential, which mayrie
hibitively expensive for practical applications. Although MLD and SD m@&n methods
of LDC decoding, linear LDC decoding has been proposed with lower taxity under

some performance loss [3].

1.3. Numerical LDC Designs Based on Capacity Criteria

1.3.1. System Formulation by Hassibi and Hochwald

In [2], Hassibi and Hochwald considered space-time block fadingraian The numbers
of transmit and receive antennas are denotetf;aand N,., respectively. The basic LDC
system was originally formulated as follows [2]:

Q
X = 1/thz:;(%Aq +j8,B)H+V, (23)

whereH € CVe*Nr is the space time MIMO channel matriX, € CT*"r is the received
signal matrix andvV. € CT*Nr is the complex white Gaussian noise. The normalizaton

N% ensures that the signal-to-noise-ratio (SNR) at each receive amesitedependent
of V;. A matrix format of (23) can be written as
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where
0 =loa, B, 00, 80)"
x = [Re (1X],,) 1 ([X],,) oo Re (X, ) o (1X],,)]
v=[Re([V],,) . 1m ([V],) .- Be (V] )l (V] )]
and
Aih, Bih; - AQhN,« BQhNT
H=| A S (25)
Aihy Bihy - Aghy  Bohy,
Ao mia) et | e
o, o) i3]
h, = iﬁggng (28)
Remarks:

a) The above LDC system model (23) requirds & NV,.) MIMO block fading channels
that are valid only when the channel is constant for at [&asthannel uses.

b) The matrix model (24) is the same as Eq. (23) in [2] although the notations are
different. From (23) and (24), one can see that the knowledge ofttaenel is
required for LDC decoding.

1.3.2. Optimization Based on Capacity Criteria
Design Criterion 1 [2]
a) Select) < min {N¢, N,} T. Assumet (067 ) = 1Iyq.
b) Selecf{A,, B,} to optimize
OLD (p7T7 Nta Nr)

1 T
- 1 Flogd t(I LHH )
ApBgoi,.q 2 OB BN T T,

(29)

for a SNRp of interest, subject to one of the following constraints:
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a.
S {tr ()" A,) +tr ((B)B,) | =27, (30)
q=1
b,
tr ((Aq)H Aq> — tr ((Bq)H Bq) - TQNt g=1,..0, (31)
C.
(A)"A,=(B,)"B, = gth,q =1,..,Q. (32)

Note that the constraints (30), (31), and (32) are convex in the dispergtrices since
they can be rewritten as

a)
S {tr ()" A,) +tr ((B)B,)} <27, (33)
g=1
b)
tr ((Aq)H Aq) — tr ((Bq)H Bq> < Igt,q —1,..,0, (34)
c)

Ty

T
(A)TA, < ol BB, < 2y, q=1,..,Q, (35)

Q

all of which are convex. However, the cost function,

1 P ona/T
= _—F(logdet | I — 36
f 5T <og e <2NTT+NtHH >> (36)
is neither concave nor convex in the variablés,, B, }, meaning that (29) might have local
maxima. In [2], the authors show that if not the global maxima, the local maximaitis q
close to actual channel capacity. The local maxima is obtained via constigiiadient-
ascent method. Note that

Z=Tyn71+ NLtHHT

Q r _ _ _
=Ion, 1+ (ﬁt q;l [.Aqh (h)T (Aq)T}) -

(4 5 mRm @),



8 Shell et al.

A, -+ 0 B, -+ 0 h,
whered,=| : .. : |[,B;=1| : .. : |,andh= ;
0 - A, 0 - B hy
The gradient of the cost function,
f = o2 (log (det (2))). (38)
2T

with respect to the spreading matrideés(A,), Im (A,), Re (B,), Im (B,) is calculated
using

a)
owita
IRe(Ay) |,y
2 N, , (39)
= TN, nzl ([Pq]a+(2n72)T,b+(2nf2)Nt + [Pq]a+(2n71)T,b+(2n71)Nt)
b)
ot
AMm(Aq) | o
0 N . (40)
= TN; nz—:l ([Pq]a+(2n—1)T,b+(2n—2)Nt B [Pq]a+(2n—2)T,b+(2n—1)Nt)
c)
oni |
ORe(Byg) ab
. N . (41)
= T]’f/t 21 ([Rq]a+(2n—1)T,b+(2n—2)Nt B [Rq]a+(2n—2)T,b+(2n—1)Nt)
d)
Bl
am(B,) |,
2P N’r Y (42)
= TN, 7;1 Ralot@n-2)7p+@n—2)n, T [Rq]a+(2n—1)T,b+(2n—1)Nt)
where
P,=E(2'h(b)"4,), (43)
and

R,=E(27h(R)"B,). (44)
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1.4. Numerical Designs under Both Capacity and Diversity Cteria
1.4.1. System Formulation by Heath and Paulraj

In [10], the space time channel model is expressed as

Q
Y =+E, Y HMys, +V, (45)
q=1
whereM, = - A7 = v [B,]” is of sizeN, x T, H is a MIMO channel matrix

of size N, x Ny, sp,n = 0,...,N — 1 are data source symbol¥] is a N, x T ma-
trix whose columns represent realizations of an independently and idgndsributed
(i.i.d.) circular complex additive white Gaussian noise (AWGN) process witniloligion
CN (0, NIy, ).
The model (45) can also be written as [10]
y = VEHXs +v, (46)

whereX = [vec(My),...,vec(Mg)], H = Ir @ H, y = vec(Y), v = vec(V), s =
[51,.,5¢]7, andRs = Es (ss™) = Iy.
1.4.2. Optimization under Both Capacity and Diversity Criteria

Capacity based criteria The dispersion matrices should satisfy the power constraints
Q
trq > MMy 3 =T, (47)
q=1

and more practically, each dispersion matrix is assume to contain the same[pojvee.

tr { M [M,]"*} = % (48)

The ergodic capacity of the AWGN system with Rayleigh fading for capamitymum
complex LDCs is given by [10]

1 Es
C,= max —Fq [log det <I N T + HXXHHHH (49)
Tr(XXH)<N, T N,

We have the following design criterion based on optimal capacity.

Theorem 1 [10] Let Q = N;T. Any X which satisfiest X7t = ﬁTINTT is a capacity-
optimal LDC.

In the case of) < N,T, capacity may not necessarily be optimal , and the criterion in
Theorem 1 may be rewritten as [10]

T
xhxy = —1,. 50
o (50)
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In the case of) < N,T, the capacity can be bounded by

1 E,
Lyx = = En {log det <INTT + NHXXHHH)] , (51)

o

WhereIC‘X < (C..

Theorem 2 [10] The mutual information achieved by using any frame-bakésibounded
by

Mo

E

Sl

B
[log (1 + w N )‘z—i-NtT—Q)} <
q

I <lE§j log (1 + 72~ \?
dx S T . g NiN, 'k
q:

1

(52)

where)\;, is thek-th singular value ofH, and the expectation is taken over the distribution
of the singular values.

diversity based criteria LDCs proposed in [2] and discussed in Section 1.4. only opti-
mize the ergodic capacity, and thus does not necessarily lead to googerarmance.

In [10], both capacity and error probability criteria have been consdlerin a vector
AWGN channel, maximum-likelihood (ML) decoding rule is written as

2
/s\:argmigHy— \/ESHXS‘Q, (53)
sE

whereS is the set of all possible vector symbols.
For high SNR, the Chernoff upper bound on the average probabilityrtagix code-
word S is mis-decoded aS is

1

rank(Rs)Ny rank
Es
(&)

(54)

P(S—8)< ,
( - ) RS)(AR)NT

—

n=1

~ A\ H
whereR,, = (S — S) (S — S> , and{\, } is the eigenvalue dR ;.

Denote the transmitted sequeneg } corresponding t&® and the erroneous received
sequencdr,} corresponding t&. The matrixR is derived as

Q e 4
R, = (Z M, (sq — Tq)) (Z M, (sq — rq))

(55)

wheree, = s; — 7.
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Theorem 3 [10] The diversity order of a linear code is less than or equal to
N, min {N;, T'}.

Design Criterion 2 High SNR Near-Optimal LDCs: For a code, choqidq}(ff:1 to sat-
isfy the tight frame relationship in (50). Within this class of codes, search éodésign
that maximizes the minimum rank and product of nonzero singular vafueatrixR ;.

ForT < Ny, under the conditions (30), (31), and (32), the design constrainBdsign
Criterion 2 are

a)
Q
tra> My M8 =T, (56)
q=1
b)
H T
tr{Mq [M,] } = 0= 1 Qs (57)
c)
M)t M, = iJT,q =1,..,Q. (58)

N

Numerical code design Under capacity criterion, frame based code designs aim to find
matrices that satisfies (50), and two relevant methods are provided in [10]

a) Projection: For aiv;T x @@ matrix A, frameX’ is constructed using

x= [ La(A"A) 2, (59)
Q
Note that, if A = QR is the QR-decomposition ofA, Q follows Q =
A (ATA)T
b) Householder transformation:
Denote
v(m) — [0,...,0,1,v§m),...,v§$%fm} (60)

form =1, ..., N.T, the corresponding Householder reflection is

9y (M) (V<m>)H

HV(’”)Hz (61)

Vi =1Inr —

DenoteU = DV,Vy..Vy,r, whereD is a diagonal matrix of arbitrary complex
exponentials, and &4 = [ Io } , the frameX is constructed using’ =
0N, T-Q)xQ

T
@UZ.
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According to one of the above frame construction procedures, disparsatrices are
optimized using the frame-constraint with respect to the rank and deternchitania:

a) Global Optimization: LeD and {v(™)

b)

}2—1 be an initial set of Householder param-

eters with the structure in (60). L&f < min {N, T'} be the minimum required rank
of the LDC. Find{v(m)}fi:1 such that

K
J(X)=min | | Mi(Rs(e)) (62)
ecé =0
is maximized subject to the constraint
rank (Rs(e)) > K (63)
for Ve € &, where
s, €8,81 €8,
&= S — 8§y .
k#1

The convergence of this optimization procedure is not guaranteed since

a. the cost function is a nonlinear function of the Householder parameters;
b. itis non-convex due to maximizing the minimum taken over a discrete space.

Basis Selection: Léf be the set of all possible subsetgp€olumns of avV; T x N;T

NT

unitary matrix. By constructionZ| = . Denote the matrix formed by the

i-th subset inZ as X;. The basis selection algorithm is chosen such that (62) is
maximized subject to the constraint (63).

The advantage basis selection is low complexity. However, it is not usafd) f=
N;T, since there is only one possible combination of columns.

Random search may improve sampling of the space of frames. Twomaserch
methods are provided in [10]:

Random Search 1 Generatel realizations ofA from some distribution, for exam-
ple, the multivariate complex Gaussian distribution. From all the posstblma-
trices, calculateX’ using (59) such that62) is maximized subject to the constraint
(63).

Random Search 2 ConsiderL candidate realizations of &;7 x Q random matrix

A, and lete be some stopping value. For each candidate makixcalculate X
) —~ —1/2

using (59). Then, extrac{'rl\/lq}ff:1 from &, and letM, = M, ((MQ)H Mq)

and scale appropriately. Repeat the procedure for= [ve((ﬁl), ...,vec(ﬁQ)}

until HXHX — %IQH < e. Choose theY' generated from the realizations &f that

maximizes/ (X') subject to constraint (63).

Random Search 2 typically converges quickly by enforcing a convastaaint with
respect to the dispersion matrices [10].
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1.5. Algebraic Designs of LDC

Numerical designs of LDC, as discussed in previous subsections oftipsar, do not have
closed algebraic forms. This subsection concentrates on more desigibiate algebraic
designs of LDC, and presents a systematic survey of algebraic degiyixCo Prior to
the discussion, it is necessary to explain a new term, non-vanishing dedetniiMivD),
which has recently been introduced as a new method for designing blgekl bamplex
space-time code (BCSTC) [11-18].

One NVD design should satisfy two requirements

a) full diversity,
b) NVD condition.

The NVD condition is to ensure
_ . H
Apin = (mln det (SLDC (Stpc) ) IVSLDC> # 0, (64)

and there exist® such thatA,;, > ¢ > 0 for un-normalized data symbols of arbitrary
size carved in a finite set. In other wordgsdoes not depend on the spectral efficiency of
the code. Note that (55) is different from product criterion [19] whecisures that

. a b a b H a b
(mindet ((86e — She) (8tbe —the) ") [v8ihe-Sthe ) 20 (69

for source data symbol paits®,s®), (s(@ —s(®)) £ 0. Denote the set containing all
LDC codewords aspc. The criterion (64) is equivalent to (65) only if

Thus, the criterion (64) is weaker than the criterion (65), since (66) rabglways hold
for non-orthogonal LDC. However, (64) may provide a more convani&ly to designing
good codes using the algebraical approach. Code designs satistyidgian (65) are
called infinite code, denote &s, [16].

NVD designs usually choose QAM or HEX [20] as source symbols [11-TBg un-
normalized QAM or HEX symbols are defined as [18]

|a|§(M_1)v‘a|§(M_l)a
a, bodd ’
la| < (M —1),la| < (M —1), }

Agam = {a—i—jb‘

Arpx = {a +wsb a, bodd,ws = eI27/3

A majority of high-rate algebraic designs of LDC are based on diversiigriom using
layered or threaded structure, and the related research undergesthges:
a) full diversity codes of symbol rat&;%’, = 1, which do not satisfy NVD crite-
ria;: Damen et. al. proposed diagonal algebraic space-time (DAST) csites the
combination of rotated constellations and the Hadamard transform [21} dlke
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b)

constructed a space-time block codeRjf/;,, = 1 over N; = 2 transmit anten-
nas andl’ = 2 symbol periods using algebraic number theory in [22]. Xin et. al.
employed algebraic number theoretic tools to design linear space-time consiellatio
rotating (ST-CR) block codes [23] or space-time linear constellation giegd24]

of R0 = 1.

full diversity codes of symbol rate < R}’ < N;, which do not satisfy NVD cri-
teria: Ma and Giannakis designed a layered space-time (ST) schemeejuijip
linear complex field (LCF) coding full-diversity full-rate (FDFR) codessyimbol
rate of V; for the data symbols carved from integer ring, which rely on the concate-
nation of two bandwidth efficient modules: the outer one implements LCF coéing p
layer and feeds the inner one which performs a circular form of lay@Tfeahultiplex-

ing [25]. Gamal and Damen developed a framework based on the thrisgeeihg
concept, referred to as threaded algebraic space-time (TAST) cotaygnbol rate

up to N;. Within the TAST framework, the authors recognized a special classialsco
which use algebraic number-theoretic constellations as component cadesr®
general data symbols carved from eitisfi) or Z (e%27/?) [26]. In [27], Sethuraman
et. al. presented some general techniques for constructing full-ranknatidelay
code with symbol rate up tdV; over a variety of signal sets for arbitrary number
of transmit antennas using commutative division algebras (field extensienggll

as using noncommutative division algebras of the rational field embeddediix ma
rings.

sym

full diversity codes of symbol rat&;”,~ < Ny, which satisfy NVD criteria: The
research on NVD-related codes in the related literature can be catebmia¢hree
stages:

a. codes of symbol ratefor IV, = 2 transmit antennas arild = 2 symbol periods:
the first found NVD code, named Golden Code, is a space-time code for 2
transmit and 2 receive antennas for the coherent MIMO channel, @atden
studied independently in [11], [12], and [13].

b. codes of symbol rat&;*), < N, for certain number of transmit antennas:
Wang et. al. have proposed a systematic and general structure of NVD multi-
layer cyclotomic spacetime code design [14]. Several cases of optimaligy hav
been analyzed [14]:

i. Optimal single-layer (diagonal) cyclotomic spacetime codes have been
found for a certain number ofV; transmit antennas, wher&/; =
¢ (3n) /¢ (3), whereg (3n) is the Euler number af.

ii. The optimal full rate cyclotomic spacetime codes for two and three trans-
mit antennas have been obtained. Optimal two-layer cyclotomic spacetime
codes have been obtained for three and four transmit antennas.

In [15], based on cyclic division algebras, Kiran et. al. presentedgtesyatic
technique for constructing STBC-schemes with non-vanishing deternfisrant
certain number of transmit antennas of the f@n3 - 2% 2. 3% ¢%(¢ — 1)/2,
wheregq is any prime of the formis + 3.
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In parallel to the work mentioned above, Oggier et. al. introduced the ndtion o
perfect spacetime block codes (STBCs), which are NVD codes for4£,éhd
6 antennas [16].

In [17], Liao and Xia presented a transformation technique to improve the no
malized diversity product for a full rate algebraic spacetime block codBC3

by balancing the signal mean powers at different transmit antennasaslt w
shown in [17] that the normalized diversity product of the transformettco
with the multi-layer structure is better than that of the transformed code with
the cyclic division algebra structure. A new full rate algebraic STBC with
multi-layer NVD structure with a larger normalized diversity product for ¢hre
transmit antennas has been presented [17].

c. for arbitrary number of transmit antennas: as an extensiamxef NVD perfect
space-time codes, Elia has constructed NVD perfect codes for alhehdi
mensions, and extended the notion of a perfect code to the rectancadd4i 8h

1.6. Precoding Designs for LDC under Correlated MIMO Channels
1.6.1. Introduction

Under correlated space-time MIMO channels, LDC designed for i.i.d. Midh@nnels
may not work ideally. Due to simple structure, precoding for orthogoratesiime block
codes [28, 29] has been investigated extensively and thoroughl3$30-Note that there
exists a number of super non-orthogonal LDC designs for uncordeMtMO channels.
However, due to difficulties intrduced by non-orthogonality, only very limiteatk have
been done to exploit feedback resources for non-orthogonal lIBE3B]. Sayeed et. al.
provided capacity and pairwise error probability (PEP) analysis of L&t on a unitarily
equivalent eigen-domain representation of correlated MIMO fadingreia [36]. In [36],
LD are encoded via a family of structured code generator matrices, vgeoseator matri-
ces is parameterized by three unitary matrices that determine the space-tchestofithe
codes and a diagonal power-shaping matrix. Hayes and Caffery ralginligd a two-stage
DCC design procedure to utilize statistical channel knowledge to providdisantly im-
proved capacity and bit error rate performance over LDC codes inrdsepce of channel
correlations [37]. Vu and Paulraj proposed linear precoder desiguisiting channel mean
and transmit antenna correlation in (MIMO) wireless system [38].

In the following, the work [38] by Vu and Paulraj is introduced in more detsilsce
analytical precoding solutions for general non-orthogonal LDC areertttoroughly dis-
cussed in [38].

1.6.2. System Model
In [38],
a) the non-zero mean space-time MIMO channel model is defined as

H = H,, + H,R,"*, (67)
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where channel meani4,, = / K/ (K + 1)Hy, transmit correlation matrix iR; =
(1/ (K + 1)) Ro, Hyy ~ CN (0,0%Ix,xn,), tr((HO)H H0> = N;N,, tr(Ro) =
Ni.

b) the system equation is
Y =HWC+V, (68)
where
a. precoding matridV follows
tr (WW™) =1, (69)

b. LDC codeword can be equivalently written @s= &(SLDC)T, whereP
is the sum transmit power,

c. additive complex Gaussian noiseVis~ CA (0, 0%y, ).

¢) Maximume-likelihood (ML) decoding is performed as

~

2
C = arg min HY _ \/PHWQH , (70)
CeC F

whereC is the LDC codebook, and the subscriptdenotes the Frobenius norm.

1.6.3. Precoding Design Criteria

The Chernoff bound of pairwise error probability (PEP) over coddwgair
{g, C.C+ Q} for the ML decoding (70) is [38]

fvomw(e )

402

P(g—@)<exp - F (71)

~ ~\H
DenoteA = % (g - Q) (g — Q) , the Chernoff bound in (71) can then be written
as

f (A W) = exp (St (HWA (W)™ (F)) ) . (72)
where SNR ig = U—PQ. The Chernoff bound expression (71) is monotonic in codeword dis-

tanceA. Two optimization criteria based on the codeword distance selection arelemats
in [38]:

a) minimum pairwise distance: when the minimum-distance codeword pairs is bt sma
with high probability, these pairs will dominate the error performance, cpresgly,
the minimum-distance design

F — argmin {mgx Ex [f (HL A, wn} 73)

will lead to a reasonable overall performance gain. Note that criterigrnw@8 also
given in [30].



Linear Dispersion Codes for Wireless Communications 17

b) average distance over all codeword pairs: when the minimum-distamiesvood
pairs is not small with low probability, average distance over all codewairs pnay
become important. An average-distance measure was proposed in [38] as

A= prr|(c-€)(c-)"| - 5 S pmaties Bual” (79

whereA, , = C@ —C®), andp, ; is the probability of the pai{g(“), Q(b)} among
all pairs of distinct codewords.
The average distance criterion provided in [38] is

P~ arg g { s B (7 (. (4] W] | (75)

Since the average distance may lead to a smaller value of the Chernoff Goind
compared to the minimum distance, the gain obtained using the average distance
criterion may not be guaranteed to be the minimum precoding gain of the system.
However, with the average distance approach for nonorthogonaCS®BLDCs, it

is more appropriate to approximateas a scaled-identity matrix [38].

The probability density distribution of the non-zero mean channel is [38]

exp (—tr <(H ~H,)"R;(H - Hm)))

g(H) = ANV det (Ry) (76)
The average PEP of (72) over channel statistics is bounded by [38]
_ exp (—tr (Hm (W)~ (Hm)H)> exp (—tr (H R (H )H)) 7
= det (Rt)NT e " ’
where
W= —Ztr (RtWA (W) Rt> +R,. (78)

1.6.4. Problem Formulation and Analysis

Since minimizing the bound in (77) is equivalent to minimizing the logarithm of this 8pun
after ignoring the constant terms, the convex objective function in the matriable W is
obtained as [38]

J=tr (Hm (W)~ (Hm)H) — N, log det (W). (79)

Combining this objective function with the precoding power constraint (&8)opti-
mization problem for designing can be formulated as [38]

min J = tr (Hm (W)~ (Hm)H> — N, log det (W) (80)
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a) W = —2tr (RtWA (W)™ Rt) +R,

b) tr (WW™) =1

This problem is not convex iWV due to the nonlinear power constraint. To tackle this
problem, we can add one more power constraint [38]

tr (WAW?) =+, (81)

where~ is a positive constant, and then apply different relaxations to obtain tlvegee
analytically.
Note that t{ AB) < > A; (A) A; (B) [39]. Therefore

v =t (WAW™) = tr (WH'WA) <)\ (WHW) ) (A), (82)

where the equality occurs when the eigenvectoVOf W are the same as those Af
We perform

a) the singular value decomposition®f asW = UD (V)"

b) eigenvalue decomposition &f asA = U, A o (QA)H
This equality condition can be achieved if

The equality condition in (82) is fulfilled if; (WAW?™) = X; (W"W) ); (A) [38].
In this case, the problem is then equivalent to the following problem [38]

min J = tr (Hm (W)~! (Hm)H> — N, log det (W) (84)
subject to
a)
W = —gtr (R:BR,) + Ry, (85)
b)
> &r(B) =1, (86)
c)

B -0, (87)
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whereB = WAW™ and¢; = ()\; (A)) ! are the inverses of the nonzero eigenvalues of
A.

However, the new formulation (85) is not convexIhdue to the nonlinear equality
constraint involving the eigenvalues 8. The authors in [38] relaxed this constraint to
obtain an analytical precoder solution which may be non-optimal. Two diftestaxation
methods presented in [38] are summarized as follows:

a) Minimum eigenvalue relaxation method: the problem is relaxed Usjiggh; (B) <

> Emaxtr (B), whereé,,.x = max {¢;}. This approach is equivalent to approximat-

ir'Zlg A as an identity matrix, scaled by the minimum nonzero eigenvaluk.of his
approximation effectively produces a smal&f (in the positive semidefinite sense),
hence loosening the upper bound on the PEP in (12). The problem faiomuite-
comes the same form as that of orthogonal STBC, i.e.,

min J = (Hm (W)~! (Hm)H) — N, log det (W) (88)
subject to
a.
W= —%tr (RtW (W) Rt) +Ry, (89)
b.
tr (WW™) =1, (90)

where the value fop is
.. T . — i . (a,b) (a,b) H
a. for the minimum-distance desigm, min {)\mm (A (AlaD) )}
b. for the average-distance design,= Amin (A) # 0.

The problem can be further formulated in termsvt

minJ = tr (Hm (W)~! (Hm)H> — N, log det (W) (91)
subject to
a.
tr (((Rt)flﬂ(Rt)fl - (Rt)71)> = 10, (92)
b.
(R) "W (R)™ = (R)™' 20, (93)

whereny = #42.
This relaxation method is suitable fér with reasonably small condition number.



20 Shell et al.

b) Trace relaxation method: this relaxation method is to substitute linear constrain

tr ((AA)*1 B) = 1 for (86) in order to ensure the problem to be convex. How-
ever,>_tr (AB) > 3" Ay_i+1 (A)); (B), and thus t{ WW7) < 1, which may
result lin a precoderzwith the total transmit power less than the original edmtstr

(69). This can be resolved using a scaling factor to reach the powstraom. The
optimization problem foW becomes

minJ = tr (Hm (W)~! (Hm)H> — N, log det (W) (94)
subject to
a.
tr((Aa) 7 (R W(R)T - R))) =1 (95)
b,
(Re)"' W (R) ™' — (Re) ™ > 0. (96)

1.6.5. Remarks for Precoder Solutions

As in [38], the problem formulation$(91),(92),(93} and{(94),(95),(96} for minimum
eigenvalue relaxation and trace relaxation methods can be solved analyt@alterally
speaking, the precoder solutions should match the properties of both hBChannel
through matching singular vectors. We have the following remarks:

a) The precoder beam directions (the left singular vectors) depdndoihe transmit
channel side information (CSIT) [38].

b) The input shaping matrix (the right singular vectors) depends only ®pricoder
input signal - the LDC structure [38].

c) The power allocation, which can be allocated using dynamic water fillinggrobs
on both LDC and channel [38].

1.7. Distributed LDC for Cooperative Communications
1.7.1. Introduction

Recently, relay based cooperative wireless communications have bestirdtsignificant
attention. One of promising cooperative techniques are relay baseetspaccoding. In
[40], spatial diversity using relay based space-time code design alyezad using capacity
based outage bound. Jing and Hassibi in [41] used a two-stage rakay peotocol, where
in one stage the transmitter sends information and in the other, the relayseetheid
received signals into a distributed LDC, and then transmit the coded sigrthis teceive
node. The diversity properties of distributed LDC were analyzed in [#ilihe following,
distributed LDC approaches in [41] will be described.
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1.7.2. System Model

The wireless network considered in [41] Was- 2 nodes, including one transmit node, one
receive node, an® relay nodes. Every node has a single antenna, which can be used for
both transmission and reception in half-duplex mode. The transmitter seigpigbv@ctor

s, wheres = [sq, ..., sT]T, of sizeT x 1 over a period ofl’ symbols. The receive vectoy

ati-th relay is

ri =/ PiTfis+ v, (97)

wheref; is the channel from the transmitter to thth relay,v; is the noise vector at theth
relay, P, is transmit power of the transmit node. The receive node received siggtars
from all R relay nodes over another periodBfsymbols, and the receive vectgrat the
receive node is [41]

R
x =) giti+w, (98)

wherey; is the channel from théth relay to the receive nodey is the noise vector at the
receive node. We assume thfatg;, v;, andw are independent complex Gaussian random
variables with zero-mean and unit-variance. The receive signal vectdri-th relay is

encoded by
=\ D 1 Pl + 12 r2> (99)

whereP; is transmit power of each relay node. The receive vectisrwritten as [41]

R
X = Zgiti +w;
i=1

R
PhPRT (100)
= £.G; JiS zA Vz + w;
VRIS o 5
_ PBPT ~
VAot w

g1f1 R
whereS = [As, ..., Aps|, h = | andw = /525 Z (i A;vi) + w.
IrSR =
In [41], 2-D space-time dispersion matrices are not provided..i = 1, ..., R} in (99)
and (100) are not space-time 2-D dispersion matrices. Rather, thep@rdieg matrices
for 1-D dispersion codes over& symbol period for the-th relay. However, the corre-
sponding 2-D space-time dispersion matrices can be constructed using

[Aq]t,i = [Bq} [Az]t

whereq=1,....,T,t=1,...,T,andi =1, ..., R.
In[41], {A,,i =1, ..., R} are assumed to be unitary matrices, thug both spatially

and temporally white sincear (w) = < p1+1 Z (’9i|2>> Ir.

i = g (101)
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1.7.3. PEP, Power Allocation, and Diversity

The maximume-likelihood (ML) decoding rule of the system is [41]

2

PPRT -~

v _ Bl s,k
P +1 r

Theorem 4 With the ML decoding in (102), the PEP, averaged over the channeli-coef
cients, of mistaking; bys; has the following Chernoff bound [41]

(102)

arg min P (x|s;) = arg min
Sk Sk

P, P,T (H)H (S, —S)" (S, —S)h

P (Sk — Sl) < E{giyfi} exXp | — . (103)

4 <1 PR (gi|2)>

=1

Integrating overf;, the bound becomes [41]
—1

PP, TMG
R
4 <1 PPy (Igilz))

=1

P(Sk — Sl) < E{gz} det | Ip + , (104)

whereM = (S, — S,)" (S, — S,;) and G = diag{\gl\2 s ]gR|2}.

R
Sinceg = 21 (|gi\2) has gamma distribution, (104) can be approximated as [41]

P P,TMG !
P(sp —s)) < Egy |det | T . 105
Thus, the Chernoff bound is approaches the minimum value if
P = RPy = g (106)

Denote the minimum nonzero singular value of Meds, . After applying the power
allocation (106), (104) is further approximated as [41]

P(Sk —>Sl) <

rank(M) log log P
(S YO pon(t-5), o

log P
To-giin
In the case of full rank M, the correspoding diversity gain is

min {T, R} (1 - %)
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1.7.4. General Distributed LDC

In the previous introduction{A, = B,,¢ = 1,...,T'} have been considered. Now, we
address a more general case in whith# B,. The receive signal vectay; at thei-th
relay is encoded by [41]

P2 * .
ti =/ Pt 1 (Ajri+B,(r;)"),i=1,..,R, (108)

whereA,;, B, areT’ x T matrices.

Denote
D — [ Re(A;) + Re(B;) —Im(A;) 4+ Im (B;) }
Di=| bu(A)+m(B) Re(A,)-Re(B,) |
_ [ Re(g;)Ir —Im(g;) I ]
= Im (g;) I7  Re(g:) It
o [ Re (fi)Ir —Im(fi)Ir }
— Im (fi) Iz Re(fi))Ir |’
and

Ry = G,D, [ Re(sp —s;) —Im(sg —s;) } .

Im (s —s;) Re(sg—si)

The system equation can now be written in real-valued form as [41]

P BT
P1 +1

Hbpee + W, (109)

X:

e~ ) 0= [ 10 o o £ o 102 ] o -

[ iﬁ EZ; ],andx_ [ Eﬁg; } Im (w) S5 Im(vy)

Theorem 5 [41] Design the transmit signal at thieth relay as in (108). The ML decoding
is

PRT
P +1

X —

H‘gvec,i

arg min P (x|s;) = arg min
S; S; F

Use the optimum power allocation given in (106) Af> 1, integrating overf;, the PEP
of mistakings bys; can be upper bounded by

R . —1/2
PT Y. (R (Ry)7)
P (S]C — Sl) < E{gz} det | Isg + =1 . (110)

8 <R+ é (Ig¢\2)>
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1.8. LDC Designs for Single Stream Communications in Frequezy Selective
Channels

1.8.1. Introduction

LDC designs for space-time block fading channels have been disdagbedcrevious parts
of this chapter. Here, we introduce LDC designs in frequency selechi@anels. In high
data rate broadband communications, signals often experience frgcgedactive fading,
introducing inter-symbol interference (ISl). There are two class afkblmased communi-
cations technologies (both using guard intervals) to tackle this problem

a) orthogonal frequency division multiplexing (OFDM) [42]. there ar® tiypes of
OFDM, cyclic-prefix (CP) OFDM and zero-padded (ZP) OFDM. Byiaeto-parallel
(S/P) conversion, CP-OFDM, accepted as a key technique in multiple indssria
dards for high-data-rate communications [43—47], transforms a singébard mul-
tipath channel into multiple parallel narrowband flat fading channels, liegadim-
ple equalization [48]. ZP-OFDM guarantees symbol recovery andes§lR (even
zero-forcing (ZF)) equalization of FIR channels regardless of tlaacél zero loca-
tions [48].

b) single-carrier block communications (SCBC): there two types of SCBfSidered,
cyclic-prefix single-carrier modulation (CP-SCM) and zero-paddedlsioarrier
modulation (ZP-SCM). CP-SCM, accepted as an option in IEEE 802.16athnd
[46], utilizes frequency-domain equalization (FDE) with similar lower complexity
to CP-OFDM, due to its use of the computationally-efficient fast Fouriestoam
(FFT). Time-domain equalization may be applied in ZP-SCM systems [49].

Note that uncoded OFDM cannot provide the same order of diversityasied single-
carrier systems in severe frequency-selective fading environmémts, the frequency re-
sponses of channel space branches differ from one anotheite€m@que to mitigate this
problem is the combination of interleaving and forward error correctionsaall subchan-
nels at the price of reduced bandwidth efficiency, i.e., coded OFDM [INDH50-55]. As
an alternative to error control coding, linear precoding has beeropeapto be combined
with OFDM to exploit frequency diversity [56,57]. To further improvefeemance, linear
constellation precoding [24] was recently proposed to work in conjunetitim OFDM,
known as LCP-OFDM, to maximize not only frequency diversity gain bub aisding
gain [58]. However, LCP-OFDM is not able to exploit time diversity ovefatdnt OFDM
blocks in the channels.

Recently, LDC-OFDM including LDC-CP-OFDM and LDC-ZP-OFDM havexin pro-
posed to achieve full time and frequency diversity with high spectraiefioy [3,59]. LDC
were also proposed to be applied to SCBC as LDC-SCM, including LDGC®-and
LDC-ZP-SCM, to exploit high diversity available in the channels [60, 8\te that both
LDC-OFDM and LDC-SCM are designed for single antenna transmissstes\s.

1.8.2. Wideband Channel Model

Assume the communications channel experiences frequency-seleding,fand the chan-
nel for thek-th OFDM/SCM block is modeled as dith-order FIR filter with impulse re-
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sponséh(®) = [h((]k), . h(Lk)} ” Channel coefficients are constant within one OFDM/SCM
block but vary statistically independently across different OFDM/SCM kdoc Each
OFDM/SCM block is of size? = N¢ + N, including a data symbol block of sizé- and

a guard interval of sizéV, > L to avoid inter-block interference. Deno&,ﬁk) as thep-th
frequency domain subcarrier channel gain duringitiie OFDM/SCM block, and

L
H,S’“ = Zhl(k)e*j(Q’T/Nc)l(P*U, o HY = w,]” b where w, =
l=o0

[1,wP~L, w2P=D) . ,wL(p—l)}T andw = ¢ J(27/Ne) - The additive noise is circularly
symmetric, zero-mean, complex Gaussian with variakigeAssume additive noise is sta-
tistically independent for differerit, andp is the normalized signal to noise ratio (SNR).

a) OFDM case: denoLéOkl)TDM P = 1..., N¢ as the LDC-encoded symbol transmit-
ted on thep-th subcarrier during thé-th OFDM block. The receiver experiences
additive complex Gaussian noise. Before transmission, a guard intergal ¢yclic
prefix (CP)) is added to each OFDM block. After FFT processing, tbeived sym-
bol is

k) _ k) (F) k)
xé ) = \/ﬁHI(, )SOFDM(p) + UI(, ),p =1,...,Ne. (111)

The CP-OFDM system may also be written in block matrix form as
k) (k
x®) = /pDWsE) v ®), (112)

wherex*) andv(*) are the frequency domain received signal and noise vectors, re-
spectivelyD¥) = Fy H®W [Fy, )" = diag(H" ...,H](fg), where[H®] =

(k) ’
((m—n) mod N¢*

When zero-padding (ZP) is used as the OFDM guard interval, orthdigoisade-
stroyed, and the system model does not have a simple form as showri)n K-
ever, the ZP-OFDM system model can be expressed in block matrix forre timtle
domain as

k k H (k k
X(le’,OFDM = \/EHE) ) [FNC] SEDJ)?DM + V(Z})D,OFDM’ (113)

with the k-th received ZP-OFDM block's), ..., € CP*1, and the frequency se-
lective channel matriH(()k) e ¢P*Ne corresponding to the-th OFDM block. The

Toeplitz channel matri>H(()k) is guaranteed to be invertible, regardless of the chan-
nel zero locations [48]. Zero-mean white additive complex Gaussian neder is

represented byg“})io FDM-

b) SCM case: denotgg% as the channel data symbol vector transmitted during the

: (k) (k) (k) 7
k-th SCM block of sizeN¢ x 1, andxg, = Tsoay o TsoNe) | where

xgg(p),p = 1,..., N¢ is thep-th data symbol of thé-th SCM block in sequence.
Before transmission, a cyclic prefix (CP) guard interval is appendeadio EP-SCM
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block. The CP is then removed at the receiver. The effective chaftiet k-th SCM

block is a circulant matriH(Ck]){SC with eIements[HgCI){SC} , = hg(g b) mod Ne)"
The CP-SCM block system can be modeled as ’
k k k k
r(h g0 = VPHED soXSe + VEb 5o (114)

yvhere.rgfl){SC is the received block after CP removal, arﬁél)gisc is the correspond-
ing noise vector.

At the receiver, the received bloaig“l))isc is first processed by an FFT to gener-
ate blockygﬁl)g sc = FNCr(C{“]){SC. Due to its circulant propert;Hg“]){SC can be
decomposed as
k Hy(k
Hep g0 = [Fxel D& scF e,

WhereD(C]%SC is diagonal with
L L
D& so] =3 hi® exp (=j2ri(p — 1)/Ne)
=0

The frequency domain system equation can be expressed as
k
yCP sc = \[DCP SCFNCX( - FNCV(CJ)D sc- (115)

the ZP-SCM system model does not have a simple frequency domain fdroven s
in (115). However, the ZP-SCM system model can be written in block matrix fo
in the time domain as,

k
rZP sc = szp scxgc)* + V(ZJ)D S (116)

where H%,sc represents a Toeplitz convolution matrix wit[tﬂgfl){sc} , =

hé’;)_b), wherer(ZkI){SC is the received block of siz& x 1, and is the correspond-

ing noise vector of siz&g“};isc.

)

1.8.3. Coded Block Construction

a) One LDC-OFDM block consists @f adjacent OFDM blocks. An LDC-OFDM block

includesD LDC codewords, each with LDC matrices occupng(i) subcarriers

andT OFDM blockse CT*Nr@) i = 1,.... D, with Z Ng(;y = N¢. In OFDM

systems, since the number of subcarriers is typlcally much larger than theenumb
of antennas in space-time MIMO systems, the LDC-OFDM system has fre&ulo
choose larger dispersion matrices and exploits low correlation acros&@EDcar-
riers.

One LDC-OFDM block is organized into the mat® pc_orpas Of Size No x T,

Srpc-orpm = s(Oll)mDM,. Y (OT}DM] Wheresg"}DM is the k-th OFDM block
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symbol vector of sizé x N, and represents the transmitted complex symbol vector
before inverse Fourier transformation (IFFT) in the transmitter forld‘F?eOFDM
transmitted block. Elemen%‘%DM consist of all theD row vectorsS'”

‘ LDC(Ic,.)’i -
1,...,D, WhereS(L%C(k ) € C'NF) js thek-th row of thei-th LDC matrix code-
word S(L%C in a single LDC-OFDM block. WhiIe?%C(k ) occupiesN ;) subcar-

riers, it is not necessary that these subcarriers be spectrally atjacen

b) One LDC-CP-SCM block consists 6fadjacent SCM blocks. In addition, one LDC-
SCM block includesdD LDC codewords, each of siZé x NF(i),i =1,...,D,where
NF(i) is the number of channel symbols within one SCM block, whichittteLDC
codeword is across. Thus, the maximal size of one LDC-SCM bloZkisN.

The difference in allocation between a LDC-OFDM block and a LDC-CRA®DCK is
that the LDC-OFDM block is located in frequency domain, while the LDC-@PDlock
is located in time domain.

1.8.4. Two Step Estimation

Although LDC decoding was proposed using ML decoding or spheredileg in earlier lit-
erature [2, 10], low complexity linear LDC decoding has been proposddecommended
in [3].

Note that it is desirable to maintain the existing receiver structure using mazhriar
ponents when introducing new system concepts, which may save investostrit re-
search and development. To this end, a two-step estimation (TSE) predsduoposed
for LDC-OFDM, permitting channel coefficients to change per OFDM bloskead of per
T OFDM blocks. This enables LDC decoding to be independent of the gpeqifializers
used, and in turn, enables wide applicability for enhancing differentatas. One possi-
ble zero-forcing method to estimate the data symbol vector in (11) is via theeM®emrose
pseudo-inverse of LDC encoding matfix;, o, which is calculated and stored offline.

To remove dependence of LDC decoding on symbol estimation, LDC desegtsto
meet the following criterion:

Correlation criterion: denote the correlation matrix okc ([SLDC]T) asRveC([SLDC}T).
In the case that LDC-encoded symbols per channel use or per By ef are block-wise

estimatedS; pc needs to be row-wise uncorrelated. In other wol%i%c([swcm needs
to have the block diagonal form
RSLDC(I,.) e 0
Roec(s1p017) = : (117)
0 RSLDC(T,.)

whereRs, ..., € CM*M k = 1., T is the correlation matrix of thé-th row vector

of S;pc, and0s areM x M zero matrices. In the case that LD-coded symbols are esti-

mated per element &7 pc, S pc needs to be element-wise uncorrelated. In other words,

R 7y needs to be diagonal, and more restrictive constraints are applied. The two
vec([SLDC] )

steps are:
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a) Signal estimation per channel use:

Signals in each of T channel uses are estimated. No immediate signal detection is
performed. (In different channel uses, channel matrices may leretiti);

b) Data symbol estimation and detection per LDC block:

The data symbols corresponding to one LDC codeword are estimatedis(bigp,
channel knowledge is not required). Bit detection is then performed.

Unlike other two-stage estimation methods, such as Kalman filter, the same cdre matr
vector TSE processing may operate on different signal dimensions withayblocks of
different sizes. The per-data-symbol complexity of encoding anddilegds constant and
proportional to the LDC data symbol coding rate.

Similar to LDC-OFDM, LDC-SCM may advantageously utilize two-step-estimation
(TSE) procedure in receivers.

1.8.5. Diversity Properties

Itis more tractable to analyze the diversity properties of CP-based LB{€rag rather than
ZP-based LDC systems, since CP-based systems satisfy frequencin dwthagonality.
In the following, the diversity for LDC-CP-OFDM is first introduced, aheén the approach
of diversity analysis is extended to LDC-CP-SCM.

Without loss of generality, we consider a single time-frequency (TF) bicek a single
T x Np(; blockC", i = 1, ..., D within a LDC-OFDM block [59]. The bloclC( is cre-
ated after encoding thieth LDC codeword within a LDC-OFDM codeword. Denote sub-
carrier indices chosen for TF blo&® i = 1,..., D as{pg?(i),nF(i) =1,....Npg),i =
1,..,D,k=1,...,T}, and the block components

O] 1) (1) ]
C C DY C
Pl TP PNpa)
@ @ @
ci — | Mo P PNp
) (T) (1)
C C DY C
| Pl P2 PNpGy

The transmission of a general LDC codewsit) is expressed as
r@ = /pMOH® 4 v, (118)

where received signal vectof) and noise vector(®) are of sizeNp; T x 1, thei-th LDC
symbol matrix [59]

MO = diag(cl) ..V NI (119)

Cpigyy oo Py Pl P

is of sizeNp) T x Nppy T, cé’l(i is the channel symbol of thieth OFDM block,pnF(i)—

th subcarrier, anéth LDC codewordyp(;y = 1, ..., Np(;), andi = 1,..., D. The channel
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matrix
T
gy gy gl
H(l) _ pl(l);—v pz“)jr ’ pNF %7 (120)
"'7HZ(71(2)7H1(72(2)"“’ Ié’Nl‘“)
is of sizeNp(;T x 1, and each element
T
k)  _ (k)
) = [wpnF(i)] h (121)

is the path gain of thé-th OFDM block andp,, .., -th subcarrier for blociC(®).

Considering a pair of matricedI and M(® corresponding to two different time-
frequency (TF) blocke') andC(®, the upper bound pairwise error probability (PEP) [62]
betweerM® andM () is [59]

r ~1
P —30) < (7Y (f1) (122)
r a=1
wherer is the rank of
. . ~ . . ~ \H
O (Mm _ Mm) Ry (Mm _ Mm) ’

andRyu = F {H(“ [H(i)]H} is the correlation matrix of vectdd®, v,,a = 1,...,7

are the non-zero eigenvaluesnf).
The corresponding rank and product criteria are

a) Rank criterion: the minimum rank a£(*) over all pairs of different matriced1(”
andM () should be as large as possible.

T
b) Product criterion: the minimum value of the prodydt , over all pairs of different

a=1
M® andM® should be maximized.
It has been proved that the rank&f) satisfies [59]
rank (A(i)) < min {mnk (M(i) — 1\~/I(i)> ,rank (RH(n)} ) (123)
where
. 1 H
Ry == [IT ® W@} ® {IT ® [W@} ] , (124)
where
a)
. T
W [me)a L 7WPNF(Z->} , (125)
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b)
h— Hhm]’[ . [hmﬂ , (126)

c)
HO — (IT ® W“)) h, (127)

d)
»=F {h [h]H} . (128)

Clearly, the maximum of rank o® is T'(L + 1). To maximize the rank oR
[59], it is necessary to maximize the rank of matk¥®) of size N, x (L + 1) [59].
This may be achieved by selecting a special subcarrier set to ensuranaW (), where
Np@iy > L+ 1. For full diversity, the channels need to be full rank jointly in frequency
and time domains. For a description on how to choose subcarrier sets teeaftligank
W@, refer to [58], [63], and [59]. The full diversity conditions for LBCP-OFDM are
summarized as follows.

Theorem 6  a) If the correlation matrixR ) of channel vecto () has full rank
T(L + 1), the necessary condition that the frequency-time (FT) b@¢k of LDC-
OFDM achieves full joint frequency-time diversity order, kenk(A;)) = T(L+1),
is that the frequency dimension size of the FT blo¢k satisfiesNp;) > L+ 1.

b) The sufficient condition that the frequency-time (FT) bl@k of LDC-OFDM
achieves available joint frequency-time diversity ordenk(R ) ), is that any two

elementscgfz)F(i) and cﬁ,’f}F(i), of any two different block€;(?) and C(?) are different.

Mathematically, the sufficient condition is

P —dP 2o, (129)

P
whereng;y = 1,..., Npgy, k= 1,..., T,

c) If both Np;y = L + 1 andrank(Ryw) = T(L + 1) are satisfied, the condition
(129) is the sufficient and necessary condition that the frequency-fmehlock
C(® of LDC-OFDM achieves joint full frequency-time diversity ordemk(A ;) =
T(L+1),

d) The related product criterion of design is that the minimum of products

CRE
k)

—c
Pa(s) Pa(i)

over distinct FT blockC(®) and C(®) must be maximized.
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Now it is time to discuss the diversity properties of LDC-CP-SCM. Unlike LOE-
OFDM, it is necessary to choose the frequency domainXSgizdor LDC-CP-SCM to con-
duct diversity analysis instead 6f(;), since the whole time domain based LDC-CP-SCM
block is transformed into frequency domain only if all subcarriers arsidened. Denot-
ing zg“])j_sc = FNng%,k = 1,...,T, the whole LDC-CP-SCM block with FFT outer
processing in each SCM block can expressed as

L

2 (@ (2
C _ C2 C2. “ e c]\.fc 7

T T T

D gD D

wherec}(f) = {Z(C]’gI)D—SC} b= 1,...N¢g,k=1,..T.
P

After this frequency domain transformation, the rest of analysis of LIFGSTM fol-
lows the similar strategy in diversity analysis of LDC-CP-OFDM. Howeve résults are
different, and a sufficient condition for LDC-CP-SCM to achieve fukitable joint fre-
guency and time diversity in the channels, is summarized in the following theorem.

Theorem 7 a) The necessary and sufficient condition to ensutrek (M — 1\71) =
NeT is
[FNC <x(s’2 - ;(gg)} £0,k=1,..,T,p=1,..., No
p,1

b) In a LDC-CP-SCM system, the rank(cM — 1\71) satisfies

rank (M — 1\71) = NcT.

a. The LDC-CP-SCM system achieves full available diversity order in the fre
quency selective channels, ivenk (A) = rank (Ry)

b. The corresponding product design criterion for LDC-CP-SCM bledkat the
minimum of the product

T Nc¢

a-TII

L Fanl] - [Ps] [ (120

)

taken over all pairs of distinct frequency domain symbol matrigesnd M
must be maximized.

c) Assume that the frequency selective channel ofdier constant over time. A con-
dition for LDC-SCM to achieve the available full joint frequency and time diver-
sity orderry = rank(Ry) is that there always exist (L+1) indices, < p*) =
pgk), ...,p(LkJ)rl < Ng, for eachk = 1, ..., T such that

[FNC (ngg - ig@)h(k)g 70

Note that this condition is a sufficient and necessary condition for frequaimersity
and a sufficient condition for time diversity.
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Note that single-carrier systems inherently achieve some level of fregutversity.
However, full frequency diversity cannot be guaranteed in caimweal uncoded single-
carrier communications systems, especially in uncoded CP-SCM systemshearfe-
guency coding gain may be further improved through careful signégl¢g4, 65].

A LDC-SCM block is across multiple SCM blocks in block time varying channeld, a
the LDC-SCM system has potential to achieve joint frequency-time diveositgr up to
T(L+ 1). Although the design strategy of LDC-SCM systems to support a certagm ofd
frequency diversity is different from that of LDC-OFDM, from Thren 6 and 7, we can
come up with the following Corollary on the relation between full joint frequesiay time
diversity LDC-CP-SCM and LDC-CP-OFDM.

Corollary 1 Assume that a LDC-CP-OFDM blo€;, pc orpy With Ne subcarriers and
T OFDM blocks achieves full joint frequency and time diversity order. Bafeld, the k-
th OFDM block within the LDC-CP-OFDM blocK 1, pc orpas IS expressed asg“}DM,

herek — dx® W (k) T Then thek-th
wherek = 1,....,T andxyrpy = [xOFDM(l)’""xOFDM(NC)} . Then thek-th SCM

blockC 1, pc_sca Within a LDC-CP-SCM can be designed as
stk()} = [F]” XS??DMa (131)
T
wherek = 1,...,T andx(skg = [x(skg, ey :c(ské} . The resulting LDC-CP-SCM achieves full
joint frequency and time diversity order in the time varying frequency sedectignnel.

Corollary actually 1 provides a method to construct full joint frequencytand diversity
LDC-CP-SCM. However, since the IFFT is involved, this LDC-CP-SCMstauction is the
same as LDC-CP-OFDM with IFFT processing, one might be concernecdlhétrelated
problems, such as high PAPR.

1.9. Other Topics in LDC Designs and Applications

This subsection briefly introduces several other topics in LDC desighaaplications.

1.9.1. Trace Based Design Criteria

Recall that in (4), one LDC codeword can be written as

2Q
Si.pc = Z 7Ky
qg=1

Let C, = 7,K}, one LDC codeword can be written as

2Q
SLoc =Y Cy. (132)
k=1
Its Hermitian square has the form
K
(Szoe)SLpe =Y _CHC, + ) (Cl'C, + CJIC)). (133)

k=1 i<k
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Denote the difference of a pair of LDC codewords&-? = s'%)  — g =~ —
Z D,, whereD, = ( (@) _ (b))
Then the following relation holds [66, 67]
[Dw»b)} DY =D 4 A, (134)
where
K
D= (Di'D,)
k=1
and

N =) (DI'D, + D}'D;).
i<k
The concept of maximal symbol-wise diversity (MSD) is introduced in [6,i6
a non-orthogonal case: the individual code matri€gsshould be scaled unitary ma-

trices with [C,]"* C, = |m[*I. For a maximal symbolwise diversity code, the dis-
H K 2
tance maitrix iS[D(“’b)} Db — > <‘T,§“) —T]gb)‘ I) + N. Note that maximal
k=1

symbol-wise diversity can be defined more generally than that in [66,@3 that for
Vk, rank(Cy) = min{T, Nr}.

Design Criterion 3 Traceless non-orthogonality [10]: if maximal symbol-wise diversity
is satisfied,C;, should be designed so that the non-orthogonality maffixs traceless
[66,67], i.e.,

Tr(N)=0. (135)

As illustrated in the following theorem, another trace related design criterioroizeF
nius orthogonality, also called traceless self-interference [68].

Theorem 8 [68] For a linear matrix modulation with a Frobenius orthogonal basis, i.e.,
Tr (ClC, + ClC,) =0, (136)

the union bound on the pairwise error probabilities increases with increaself-
interference at any SNR.

In [68], it is shown that Frobenius orthogonality supports minimizing the ubumd.

In [69], Zhang et. al. employed both trace and diversity criteria to desiydifersity
cyclotomic codes, which generally allow LDC dispersion matrices Wil # B,}. The
trace related criteria in [69] are given as follows.

Definition 1 LetT > NN;. A sequence of matric&s, andD,, ¢ = 1, ..., Q, and is said to
constitute a trace-orthonormal LD code if the following conditions are satisfie

a)

c)"c,+ D) D, = aIM, (137)



34 Shell et al.

b)
Dy C, +[C,]" D, =0, (138)

c)
T (Cy €+ D, D) = 560 - o) (139)

d)
T (D, [, + D, [C]") =0, (140)

wherep = 1,...,Q andqg = 1, ...,Q, C, (or C,) andD,, (or D,) are dispersion matrices
defined in (3).

1.9.2. Space-Time-Frequency Codes

To further exploit space diversity, LDC concepts may extend to 3-Desfiae-frequency
channels as STF codes [70-72].

General MIMO-OFDM channel model has been provided in [70]. @lersa MIMO-
OFDM system with; transmit antennasy,. receive antennas and a OFDM block/gf
subcarriers per antenna. The channel betweemthf transmit antenna and-th re-

ceive antenna in thé-th OFDM block experiences frequency-selective, temporally non-
T
,m =

selective Rayleigh fading with channel coeﬁiciehﬁé?n = [hﬁf)n(o), o hgnk)n(L)
1,....,Np,n=1,..., Ng, where

L =max{Ly,,m=1,...,Np,n=1,..., Nr},

andL,, , is the frequency-selective channel order of the path betweemttietransmit
antenna anch-th receive antenna. Note that the above model is based on the fact that
frequency selective channels are different from one pair of transraitie receiver anten-

nas to another, since different transmitter-receiver channel ofiggriexce different phys-

ical environments, especially for outdoor communications. Using the agiplioa]62],

Wu and Blostein in [70] provided a general diversity order bound @& 8AF block as

Nr Ng
min {meq(i)NRT,T ZT > (Lmn+1) ¢, where Ny, is the given frequency do-

m=1n=1
main size of the STF block. Note that, in [73], the diversity order boundiéiGGwas given
provided that,, , = L holds for allm =1, ..., N;andn = 1, ..., N,.
Using a simpler MIMO OFDM channel model as in [73], Zhang et. al. coostdia
high rate STFC in [72], achieving a full diversity ord®; N, T (L + 1). For Ny = N, =
T = 2 andL = 1, the design example is shown as follows,

X1(1) ¢Xo(1) X1(5) ¢Xa(5)
X — $X2(2) X1(2) ¢Xa2(6) X1(6)

X13) ¢X2(3) Xu(7) oXo(7) |’

PXa2(4) Xi1(4) ¢X2(8) Xi(8)

(141)
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where[X1 (1), ..., Xn(8)]” = O [sg(n_1)11, - Ssn), n = 1,2, ¢ and® is defined in [72].

Note thatX of size N;(L + 1) x N, T also use layered structure, and the number of
layer is N;. The designs in [72] are extensions of the layered structure of the 8dsco
in [25-27]. Even the frequency diversity orderis- 1, the minimal frequency domain size
is settoNy(L + 1) > (L + 1) to achieve full diversity.

1.9.3. LDC in Multiuser Communications

Applications of O-STBC to CDMA systems have been studied, e.g., in [74+@{ever,
very limited efforts have been made in investigating the application of LDCs to DM
systems. In order to support future high data rate CDMA systems, thefusgherate
space-time block codes, e.g, LDCs, may be desirable. In [77], a LDGddecombined
with a blind subspace-based multi-user detector is studied for the downlanR8fCDMA
system, and a subspace-based sphere decoding algorithm is propdgetier improve
the performance. The iterative decoding of LDC codes in a frequseelggctive channel is
considered in [78], where only a single-user approach is studiednattduser scenarios
were not investigated.

In [79], Xiao et. al. have proposed a joint multi-user detection, space-t& decod-
ing, and@-ary demodulation algorithm for DS-CDMA sytems, and the turbo processing
principle is applied to improve the system performance, while maintaining a r&alson
computational complexity. Results show that in comparison to the spatial multiplexing
(SM) system with the same transmission rate, the LDC coded systems havieisppe
formance and faster convergence. Furthermore, by exploiting timesdiyektDCs also
provide us a powerful means to combat impairment caused by fast faldémmels. How-
ever, it has been observed in [79] that the advantages of applyin@ $EBome smaller
when a strong channel code is used and/or when the receive diviesidases. Consid-
ering the fact that strong channel codes are usually employed in ptaziimanunication
systems, and a high receive diversity order can be readily implementeel lzdigle station.
The simple SM scheme using turbo MIMO approaches would work properlifMO
CDMA systems in slow fading channels, whereas LDCs are more helpfuhfod fading
channels.

1.10. Performance Examples

Although we will not provide a thorough investigation of system performeatids subsec-
tion provides several performance examples of LDC based systemsetoegitiers some
visionary feelings on advantages of LDC.

1.10.1. ST-LDC

In the following comparisons, ST MIMO flat fading channels are assufedect channel
knowledge (amplitude and phase) is assumed at the receiver but netiartkmitter. Each
LDC codeword is of sizd" x N;. The symbol coding rates of all tested codes are one.
Data symbols use 4-QAM modulation in all simulations. Maximum likelihood decoding
is performed at the receiver. Average SNR per receive antennadsinigll figures. The
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matrix channel is assumed to be constant over one ST-LDC codewdttk tase ofV; =
N, =2, R}\r, = 2, the following ST-LDCs are compared in Fig. 1:

a) HH: size2 x 2, proposed by Hassibi and Hochwald, Eq. (31) of [2].

b) TAST: size2 x 2, Egs. (13) and (15) in [26]. This code achieves full diversity over
constellations carved froff[;].

c) GD: size2 x 2, proposed by Gohary and Davidson [80],
d) TON(Zhang): size x 2, given in Example 3 on p. 626 of [69].

Note that the performance of TORI x 2 (Zhang) is quite close to Golden codes. As
mentioned in [69], TON x 2 (Zhang) is also a NVD ST-LDC.

In the case ofV; = N, = 3, R}¥};, = 3, the following ST-LDCs are compared in Fig.
2:

a) TAST of size3 x 3, from Eq. (18) of [26]. It achieves full diversity over constellations
carved fromz[j].

b) HP of size3 x 3, as proposed by Heath and Paulraj, from (30) and (31) of [10],

¢) FDFR: size3 x 3, as proposed by Ma and Giannakis, a full-diversity full-rate (FDFR)
code corresponding to Design A in [25],

d) HH of size3 x 3, proposed by Hassibi and Hochwald, from (31) of [2].

All the curves except the one for TAST are very close to each othertli@investigated
ST-LDCs have similar diversity properties in the shown SNR range in the cbd; =
N, = 3.

1.10.2. LDC-OFDM

Each of theD LDC demodulators decodés x Np(;) LDC matrices. In particular, we
setNpy) = Np = T,i = 1,...,D, and Nc = 16 OFDM subcarriers are chosen. An
evenly and maximally spaced subcarrier mapping with respect to the sebdadices
is used within LDC codewords. Data symbols use 4-QAM modulation. Theuémxy-
selective Rayleigh fading channel hapaths with uniform power delay profile. The chan-
nel is assumed to be constant over an integer number of OFDM blockpeindently and
identically-distributed between blocks. Denote this interval of OFDM bloskb@achannel
change interval (CCl) for LDC-OFDM. Linear constellation precoddtt@FDM (LCP-
CP-OFDM) with subcarrier grouping has been proposed as a namdadcy approach to
improve BER performance [58]. Although LCP-CP-OFDM achieves botkimam fre-
guency selective diversity gain and coding gain, it cannot exploit timersity over OFDM
blocks. Using MLD, we investigate the performance limitations of LDC-CP-®IFBor a
fair comparison, all parameters of LCP-CP-OFDM are chosen to be the aa those of
LDC-CP-OFDM. Thus the available diversity in the channels is the samentardystems.
In Figure 3, it is observed that LDC-CP-OFDM, which achieves full jdieguency and
time diversity, significantly outperforms LCP-CP-OFDM with the frequenowdin MLD

in rapid fading channels{(CI = 1).
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Figure 1. ST-LDC performanc®; = N, = 2, R}/, = 2.
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Figure 2. ST-LDC performanc¥; = N, = 3, R}/, = 3.
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—#— LDC-CP-OFDM (MLD),CCI=1 OFDM block
—+— LCP-CP-OFDM (MLD),CCI=1 OFDM block

107

10’5 1 1 1 1 1
8 9 10 11 12 13 14

SNR (dB)

Figure 3. Performance comparison between LDC-OFDM and LCP-OFBd¢iuMLD.

1.11. Summary

This chapter have given a systematic survey of LDC designs and appiedtiowireless
communications. LDC have been and will further be considered as aaletess of block
coding techniques in improving quality of wireless information transmission.
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