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Abstract— A throughput-maximization call admission control
(CAC) policy is proposed for CDMA beamforming systems in
which the QoS requirements in both physical and network layers
can be guaranteed. While the existing cross-layer CAC policies
rely on a separate reduced-outage-probability (ROP) algorithm
to guarantee the physical layer QoS requirement, which adds to
system complexity and reduces spectral efficiency, the proposed
CAC policy can maintain arbitrary outage probability constraints
as well as all the other QoS requirements without the aid of any
ROP algorithm. The optimal CAC policy, obtained by formu-
lating a constrained semi-Markov decision process (SMDP), is
able to optimize the overall system throughput across different
layers. Numerical examples demonstrate that the proposed policy
is capable of achieving a significant performance gain, in terms
of lowered blocking and outage probabilities as well as increased
system throughput.

I. INTRODUCTION

Recently, the problem of ensuring quality-of-service (QoS)
requirements in both physical and network layers by designing
a cross-layer CAC policy is receiving much attention. In
[1]- [2], optimal semi-Markov decision process (SMDP)-based
CAC polices are presented for the case of single-antenna
systems, which lacks the tremendous benefits provided by
multiple antennas. In this paper, we investigate the optimal
CAC policy for a CDMA multiple-antenna system.

In multiple antenna systems, the spatial channel response,
parameterized by the angle-of-arrival (AoA) information may
be employed at the receiver to suppress interference. The
resulting signal-to-interference ratio (SIR) is a random process
determined by the realizations of AoAs. The large fluctuations
in this spatially filtered SIR can lead to a significant outage
probability in the physical layer, defined as the probability
that the target SIR cannot be satisfied. Outage probability
constraints are discussed in [2]. However, the CAC policy
in [2] considers a single antenna system, which relies on a
specific large system analysis. Furthermore, existing methods
for cross-layer admission control in the current literature,
e.g., [1] [2], treat the SIR as quasi-static and do not work
well for multiple antenna systems. Therefore, designing an
optimal CAC policy for multiple antenna systems can be a
very challenging problem since the outage probability must
be controlled jointly with the network layer operation.

In [3] [4], suboptimal CAC policies are derived for CDMA
beamforming systems, in which a separate reduced-outage-
probability (ROP) algorithm is required to mitigate the outage
probability. Several efficient ROP algorithms are proposed in
[3], which can reduce the outage probability to a tolerably

small level. These ROP algorithms, however, either introduce
cost in system resources, such as reduced spectral efficiency
and increased computation complexity, or degrade the network
layer performance [3]. Furthermore, in [1]- [4], only network
layer optimization is considered, which is inferior to the CAC
policy jointly optimized across physical and network layers.
This motivates our research on a throughput-maximization
CAC policy for multiple antenna systems without the aid of a
ROP algorithm.

An exact outage probability is derived in the presence
of both voice activity and multiple antennas. Based on this
outage probability, the optimal CAC problem is obtained
by formulating a constrained semi-Markov decision process,
which can guarantee arbitrary outage probability constraints
without the aid of a ROP algorithm. The proposed policy
optimizes the overall system throughput across physical and
network layers. To the best of our knowledge, the CAC
design which maximizes the overall system throughput across
different layers has not been addressed in the literature.

To highlight the maximum-throughput CAC design, error-
control schemes such as automatic retransmission request
(ARQ) are ignored in this paper. However, in our companion
paper [5], an optimal admission control (AC) policy as well
as a low-complexity suboptimal version are developed that
incorporate a truncated ARQ scheme [5]. In summary, this
paper differs from [5] in the following ways: a) In this
paper we study a connection-oriented network in which voice
activity factor is employed to increase the user capacity, while
in [5], a connectionless communication is assumed in which no
activity factor is considered; b) In this paper we focus on the
optimal CAC design by incorporating the outage probability as
well as all the other QoS constraints into the Markov decision
process, while in [5] we mainly emphasize the formulation of
the constrained admission control problem by considering the
impact of ARQ.

The rest of this paper is organized as follows. The signal
model and problem formulation are presented in Section
II. Section III investigates the physical layer performance
and provides an analytical expression for outage probability.
Optimal CAC policies for multiple-class systems are proposed
in Section IV. Numerical results are presented in Section V.
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II. SIGNAL MODEL
A. Signal model in the physical layer

We consider an uplink CDMA beamforming system in
which M antennas are employed at the BS and a single
antenna is employed for each user. A single-cell, power-
controlled synchronous CDMA system is assumed which
supports J classes of users. Different classes of users are
characterized by different QoS requirements.

Without loss of generality, class 1 is assumed to be voice
traffic. We use «y; to represent the voice activity indicator
for voice user i, i = 1,..,nl, where «; can be one or
zero corresponding to an active or inactive status for user 1,
respectively. It is assumed that the voice activity indicators
have independent and identical distributions with success rate
Do-

A system state, denoted by s, is defined as

1 J]

s=[ng,..,n;

where nJ is the number of accepted users for class j. The total
number of accepted users in the system can be obtained by
summing the users in all the classes, i.e., K = ijl ng In
the following, we derive the SIR for a given system state s.

Let dj, denote the normalized array response vector for user
k, where k =1, .., K. The array response vector contains the
relative phases of the received signals at each array element,
which depend on the array geometry as well as the angle of
arrival (AoA) for user k, denoted by 6.

To characterize the fraction of user i’s signal passed by the
beamforming weights, the beamforming pattern for a desired
user k can be accomplished by

0% = &t al”

(D

where &, denotes the beamforming weight vector for a desired
user k, and (.)¥ denotes conjugate transpose.

We assume the signature sequences of the interfering users
appear as mutually uncorrelated noise. As shown in [6], the
received signal-to-interference ratio (SIR) for a desired user
k, where k = 1, .., K, can be written as

E pk@bik
Ry, Zi;ﬁk Pi¢?k +noB

where B and R denote the bandwidth and data rate for user
k, respectively, and the ratio R% represents the processing
gain; pi = PkGi denotes the received power for user k, in
which Py and G, denote the transmitted power and link gain,
respectively; the transmitted power for an inactive user is set
to zero; 7y denotes the one-sided power spectral density of
background additive white Gaussian noise (AWGN). In the
following, we consider a spatially matched filter receiver, i.e.,
Wi — ag.

SIRy = 2)

QoS requirements in the physical layer

In a wireless communication network, we must allow for
outage, defined as the probability that a target SIR cannot be
satisfied. The QoS requirement in the physical layer can be
represented by target outage probabilities. In this paper, we
consider two types of outage probability constraints: worst-
state-outage-probability (WSOP) constraint, denoted by p,,,

and average-outage-probability (AOP) constraint, denoted by
Pav- The WSOP is defined as the maximum outage probability
among all the feasible system states for a long term, while the
AORP is defined as the long-run average outage probability.

B. Signal model in the network layer

The arrival process of the aggregate connections is modeled
by a Poisson process with rate )\; for each class j, where
7 =1,..,J. We assume that the duration time of a connection
follows an exponential distribution with mean duration -, and
the angle-of-arrival (AoA) of mobile users follows a uniform
distribution within the service area.

The QoS requirements in the network layer can be repre-
sented by the target blocking probability, denoted by ¥; for
class j.

The connection delay constraints are neglected in this paper
in order to highlight the optimal CAC policy which can
guarantee an exact outage probability constraint. However,
the CAC policy can be easily extended to include delay
constraints.

C. Problem formulation

The overall system throughput, defined as the number of
correctly received connections per second, can be evaluated
by [7]

Throughput = > (1 - P})(1— Pa)); 3)
J
where P] and P2, denote the blocking probability for class
7 and average-outage-probability, respectively.

In this paper, we aim to derive an optimal CAC policy R*,
which incorporates the benefits provided by multiple antennas
and voice activity. The objective is to maximize the overall
system throughput, while simultaneously guaranteeing QoS re-
quirements in terms of target average-outage-probability, target
worst-state-outage-probability and target blocking probability.
If one of the above probability constraints is not required,
simply set the constraint of that probability to one.

The above optimal CAC problem is a constrained optimiza-
tion problem, which can be solved by formulating a semi-
Markov decision process [9].

In the following, we first analyze the outage probability in
the physical layer, which is then passed to the network layer to
decide CAC. In the network layer, the optimal CAC problem
can be formulated as a semi-Markov decision process (SMDP),
and then solved by linear programming methodology.

III. PERFORMANCE ANALYSIS IN THE PHYSICAL LAYER:
POWER SOLUTION AND OUTAGE PROBABILITY

In this section, we investigate the power solution and outage

probability for a given system state s, where s = [nl,..,n/].

A. Power solution

In the physical layer, we aim to derive a power solution
which minimizes the total transmitted power while guarantee-
ing SIR requirements, i.e., min Zszl Py, subject to STRy >
vx, Where k& = 1,... K, SIRj is given in (2), and ~
denotes the target SIR. For the above criterion, we also find
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the maximum number of users of each class that can be
simultaneously supported while meeting their constraints [10].

As shown in [10], at the optimal power solution, all SIR
constraints are met with equality,

_ E pk(lsik
Ry, Z@gk pz(b?k +noB

By grouping the above K equations, we have the following
matrix form

T “4)

[IK - Qst]ps = qus (5)

where subscript s refers to the given state s = [nl,..,n/],
Ix is a K—dimensional identity matrix, power vector p; =

[pla "7pK]t’ us = T]()B[l, ) 1]t5

TR Ik RK
QS = dlag & R, 1 4 R (6)
1 + 'YlB 1 1+ ’YKBK
and
Fii1 Fig Fi k
F, — .1?2,1 izz .fiz,K )
Frg,a Fgkp Fr k
@2
in which Fl‘j = .

b5, . .
To ensure a positive solution for power vector p,, we require
the following feasibility condition [8],

v(QsFs) < 1 )

where v(.) denotes the maximum eigenvalue, which is real-
valued since the matrices are symmetric.

Under the above condition, the power solution can be
obtained as

Ps = [IK - QSFS}71qus )
where (.)~! denotes matrix inverse.

B. Outage probability

In the above power solution, (8) represents a sufficient
and necessary condition which guarantees a positive power
solution to meet the target SIRs. Due to randomly distributed
AoAs and user mobility, v(QsF) is a random process which
depends on the realizations of AoAs. Therefore, for a given
state s, the condition in (8) cannot be satisfied at all time
instances, which introduces a non-zero outage probability.

The outage probability for state s = [nl,...,n/] can be
obtained by

LR S

Pui(s) = Prob{v(QsF;) > 1}

where Prob{A} denotes the probability of event A.
The above outage probability ignores the voice activity.

With voice activity, the outage probability in (10) for state

s = [nl,..,nJ] is modified to

(10)

1
g

Pout(s) = Z p(m)Prob{v(Qs,, Fs,,) > 1}

m=0

Y

where p(m) denotes the probability that m out of n! users
are active at the current time instant, which is the probability-
density-function of a Binomial distribution with parameter p,,.

Qs,, and F,  are the parameter matrices defined in (6) and

(7) for a state s,, = [m,n?,..,n’], where m = 1,...nl.
Equation (11) gives the outage probability for a system state

s. This state outage probability is then employed to ensure QoS

for an optimal CAC policy.

IV. OPTIMAL CALL ADMISSION CONTROL POLICY

To derive an optimal CAC policy for multiple-class net-
works, we need to solve a constrained optimization problem
as presented in Section II-C. This constrained optimization
problem can be achieved by formulating the CAC problem
as a semi-Markov-decision-process (SMDP) if the Markovian
property holds, and then solved by linear programming (LP)
[1].

In view of the assumptions that the amount of time the
process stays in some state is exponentially distributed and
that the next state visited is independent of the duration of
that stay, the process has the Markovian property that the
future behavior of the process depends only on the present
state and is independent of the past history [9]. In this sense,
the CAC problem can be formulated as a SMDP, which in-
cludes the following components: state space, decision epoch,
action space, dynamic statistics, policy, performance criterion,
expected cost function and constraints [2]. The detailed SMDP
formulation can be found in [9]. By considering the signal
model and optimization problem discussed in Section II-C, the
components of our formulated SMDP is derived as follows.

A. State space
The state space comprises of any state vector s, whose
state outage probability, given in (11), is less than the WSOP

constraint, i.e.,
S ={s=[nk,..n’], where P,u:(s) < pu}.

S

(12)

where p,, denotes the WSOP constraint. It is obvious that the
state space formulated as the above ensures that the worst-
state-outage-probability (WSOP) constraint can be satisfied for
a long term.

For a system without WSOP constraint, i.e., p,, = 1, the
above state space would have a size of infinity. To formulate
a finite-size state space, as shown in [2], we can limit the
number of users by a large number G,

S ={s=[nl, mi],Zné < G}.
J

where G can be decided by the system.

Let s(t) denote the system state at time ¢, where s(t) € S.
Since the arrivals and departures are random, {s(t)}icrr, is
a finite-size stochastic process [2].

B. Decision epoch and action space

Decision epochs are chosen to be the set of all arrival and
departure instances.

At each decision epoch, tx, k = 1,2, .., the network makes
a decision for each possible user arrival or departure that may
occur in the time interval (¢, tr11]. An action a at decision
epoch t is denoted by a(t) = [ai(t)..,as(t)], where a;(t)
can be 1 or 0, corresponding to decisions of acceptance or
rejection, respectively.
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For any s € S, the admissible action space A is defined as
As={a€A:a;=0,ifs+(0,.., 1 ,.,)¢5

(13)
and (aq,..,az) # (0,..,0) if s =(0,..,0)}

which ensures that after taking this action, the next transition
state is still in state space S. In addition, we impose the
condition that (a1, ..,a5) # (0,..,0) if the system is in state
s=(0,..,0).

C. Dynamic statistics

Dynamic statistics can be characterized by expected holding
time and transition probability. The expected holding time
7s(a) is the expected time until the next decision epoch after
action a is chosen in the present state s,

J J
(@) = [ Do Nja+ > puml
j=1 j=1

Transition probability, denoted by ps, (a), is the probability
that the state at the next decision epoch is y if action a is
selected at the current state s, which can be represented by

Psyla) = {

in which ej» represents vector with a dimension of J, which
contains only zeros except for position j which contains a 1.

-1

ify=s+ej
ify=s—e;

Aja;Ts(a)
ey ”g 7s(a)

D. Policy, performance criterion and expected cost function

For each given state s € S, an action a € A, is chosen
according to a policy R; € R, where R is the set of all
admissible policies. A policy defines a mapping rule from the
state space to the action space [2], i.e.,

R={R:S — AR, € A;,Vs € S}.

In this paper, we take the average cost as the performance
criterion. For any policy R with an initial system state so,
where sy € .5, the average cost can be expressed as

T
Jr(s0) = tlim %E {/ c(s(t%a(t))dt} (14)
oo o
where E[.] denotes expectation, and c(s(t),a(t)) is the ex-
pected cost function which represents the expected cost until
the next decision epoch when a(t) is chosen at the current
system state s(t).

If the average cost in (14) represents blocking probability,
the expected cost function, denoted by ¢} (s, a), can be written
as [1]

c(s,a) = (1—aj) (15)

where a; denotes the action for class j traffic.

If the average cost in (14) represents average-outage-
probability, expected cost function, denoted by ¢+ (S, a), can
be expressed as

Cout(sa a) = Pout(s) (16)

which is given in (11).

If the average cost in (14) represents throughput, according
to the definition of throughput in (3), the expected cost
function, denoted by ¢, (s, a), can be expressed as

J(1=(s,0)(1 = cour(s,))

Cthr(sa a) =

,ij

<
Il
_

Aja;(1 — Pout(s)) (17)

<
Il
—_

|
'M“

where the last equation is obtained by using Equations (15)
and (16).

The optimal policy can be chosen according to a certain per-
formance criterion, such as minimizing-blocking-probability
or maximizing-throughput. In this paper, we aim to find an
optimal policy R* which maximizes the throughput for any
initial system state, i.e.,

cRt—o0

* . 1 T
R* = arg max lim fE /0 ;)\jaj(l — Poyt(s))dt

Under the assumption that the embedded chain is a unichain
[9], which is a common assumption in the CAC problem, an
optimal CAC policy exists and can be obtained by solving the
SMDP [2].

E. Constraints

In the optimal CAC problem, we have blocking probability,
average outage probability and worst-state outage probability
constraints.

The worst-state outage probability constraint can be sat-
isfied by restricting the state space in (12), so only the
blocking probability constraint and average-outage-probability
constraint need to be considered.

From (14) and (15), the achieved long-run blocking proba-
bility can be expressed as

P =

(18)

A
=
.
I
\'I—‘
<

where U; denotes the blocking probability constraint for class
7-

From (14) and (16), the achieved long-run average-outage-
probability (AOP) can be represented by

1 T
Py, = TIEI;OTE{ / Pom<s<t>,a<t>>dt}
< Paw

where p,, denotes the AOP constraint.
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F. Deriving an optimal policy by solving the SMDP

As formulating the admission problem as a SMDP, an
optimal CAC policy can be obtained by using the decision
variables z5,,s € S,a € Ag, in solving the following linear
programming (LP) problem:

max

J
zmzo,s,az Z Z)\jaj(l — Pout(s))7s(a)zsq (20)

s€SacA; j=1

subject to the set of constraints

Z Zma — Z Z pSm(a)Zsa = 0,me S
a€A,, SES a€A,
SN r(@)za = 1
se€S acAs
Z Z (1- aj)TS(a)Zsa < Wy, 0=1,..,J
s€ES acA,
Z Z Pout(s)7s(a)zsa < pav
sES a€A;

In the above LP formulation, 75(a)zs, represents the steady-
state probability that the system is at state s and an action
a is chosen. The first constraint is the balance equation,
and the second constraint ensures the sum of all the steady-
state probabilities to be one. The latter two constraints rep-
resent the QoS requirements in terms of blocking probability
and average-outage-probability, respectively. The worst-state-
outage-probability constraint, if any, is already included in the
state space S as discussed in (12).

Since the sample path constraints are included in the above
linear programming approach, the optimal policy resulting
from the SMDP is a randomized policy [2]: the optimal action
a* € A, for state s, where A, is the admissible action
space, is chosen probabilistically according to the probabilities
Zsa/ ZaeAs Zsa-

We remark that the above randomized CAC policy allows
for resources to be more flexibly reserved for potential arriving
traffic, and as a result can optimize the long-run performance.

V. NUMERICAL EXAMPLES

In the following examples, a circular antenna array with
a uniformly distributed AoA is employed at the BS. The
total bandwidth is B = 3.84MHz. A two-class system
is considered in which the SIR requirements are given by
v1 = 10 and vy, = 5, and the rate for each class is set to
R, = 48 kbps and Ry = 144 kbps, respectively. The arrival
and departure rates for class 1 and class 2 are denoted by
A1 =1, Ay = 0.5, ug = 0.25, and pus = 0.1375, respectively.

As shown in [4], compared with beamforming systems,
single antenna systems encounter an infeasibility problem
more easily, i.e., the QoS requirements may not be satisfied by
any CAC policy. Since we aim to compare the performance
between single and multiple antenna systems in a quantitative
way, this infeasibility situation should be avoided. Therefore,
in this paper, we employ a relatively relaxed blocking proba-
bility constraints, which are set to 0.25 and 0.45 for classes 1
and 2, respectively. However, the conclusions derived in this
paper can be generalized to any QoS constraints.
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Fig. 1. Performance comparison between simulation and analytical results
with p, = 1.

We now investigate the long-run average performance in
terms of blocking probability, average outage probability and
overall system throughput.

Consider a system with a small average-outage-probability
constraint and a relatively relaxed worst-state-outage-
probability constraint. We investigate a system with WSOP
constraint of 0.5, and AOP constraint varies over [10~%,1072].
Figure 1 shows the analytical and simulated performance in
terms of blocking probability, outage probability and through-
put for a two-antenna system, in which P} and P2, denote the
achieved blocking probability and average-outage-probability,
respectively. The analytical results are derived from linear
programming, while the simulation results are obtained by
Monte-Carlo simulation. It is observed that the simulation
results are very close to the analytical results, which justifies
the accuracy of our derived optimal CAC policy.

From Figure 1, we observe that the blocking probability for
class 1 is not monotonically reduced with pg,,. At a point
of pay = 5 x 1072, the blocking probability is increased
compared with p,,, = 1072, This is because under this certain
Pav, t0 achieve a maximum throughput, more space should
be reserved for class 2 users by blocking class 1 connections.
Although the blocking probability for a certain class may not
be monotonically reduced, the overall blocking probability as
well as the throughput do follow a monotonous rule with pg,,.

Figure 2 compares the analytical performance for single
antenna and two-antenna systems, obtained through linear
programming (LP) approach, in which P, is obtained by
(Py + P})/2.

As mentioned before, allowing for outage probability in
the physical layer can reduce the overall blocking probability
and improve the throughput. For single antenna systems, the
outage is introduced by employing voice activity, while for
beamforming systems, outage is introduced by both voice
activity and randomly distributed AoAs. Therefore, allowing
outage for multiple antenna systems provides a more flexible
way to handle QoS requirements. For example, when average-
outage-probability (AOP) constraint is relaxed from 10~*
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Fig. 2. Performance comparison between single antenna and two-antenna
systems with p, = 3/8.

to 1072, the overall blocking probability for single antenna
system can be reduced from 0.27 to 0.17, i.e., reduced by 37%,
while for a two-antenna sysstem, the blocking probability can
be reduced from 0.14 to 0.016, i.e., reduced by 88%.

Next, we compare our proposed optimal CAC policy with
the sub-optimal CAC policy derived in [4]. For the sub-optimal
CAC policy, a ROP algorithm is required to mitigate the
outage probability. In the following example, a ROP algorithm,
proposed in [3], is employed, in which the CAC policy is
derived with an increased virtual target SIR. By using this
suboptimal CAC policy, the average-outage-probability can be
reduced to an arbitrarily small level by adjusting the ROP
parameter.

Figure 3 compares the blocking probability, average-outage-
probability and system throughput for sub-optimal and optimal
CAC policies for a two-antenna system. It is observed that
for a given average-outage-probability constraint, the proposed
optimal CAC policy can achieve a dramatic performance gain
in terms of lower blocking probability and improved system
throughput. For example, with an AOP constraint of 0.035,
compared with the suboptimal CAC policy, the proposed
optimal CAC policy can reduce the blocking probability from
0.15 to 0.06, i.e., reduced by 60%, and increase the throughput
from 1.24 to 1.37 connections/second, i.e., increased by 10%.
With an increased AOP constraint, this performance gain
becomes even larger. The optimal CAC policy is performed
without the aid of any ROP algorithm, and as a result, saves
substantial system complexity.

VI. CONCLUSIONS

An optimal CAC policy is proposed for CDMA beam-
forming systems, which can maximize the overall system
throughput while simultaneously guaranteeing all the QoS re-
quirements. Compared with the existing policies, the proposed
optimal CAC policy is capable of achieving a significant per-
formance gain in terms of blocking probability, outage proba-
bility and system throughput. The multiple QoS requirements
can be flexibly handled by employing the tradeoff between
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Fig. 3. Comparison between the optimal and sub-optimal CAC policies with
pv =1

network and physical layer performance. Unlike the existing
suboptimal CAC policies, in which a separate ROP algorithm
must be employed to control the outage, our proposed CAC
policy can guarantee an arbitrary outage probability constraint
without the aid of any ROP algorithm, which saves a lot of
system resources.
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