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Abstract— The Bell Labs Layered Space-Time (BLAST)
architecture has been proposed to achieve high spectral effi-
ciency on multi-input multi-output (MIMO) channels. Most
studies of the BLAST algorithm consider spatially and tem-
porally white noise and interference at the receiver. In this
paper, we study channel estimation and data detection of
a MIMO system under both spatially and temporally col-
ored interference. We derive maximum likelihood (ML) esti-
mates of channel and spatial interference correlation matri-
ces. By exploiting known temporal interference correlation,
we extend one-time-slot ordered minimum mean-squared er-
ror (MMSE) nulling detection to a multi-time-slot version.
We evaluate the symbol error rate of an uncoded QPSK
MIMO system under independent Rayleigh fading. The re-
sults show that by exploiting both spatial and temporal in-
terference correlation, we achieve about 2dB gain in SIR for
a 4× 4 MIMO system.

I. Introduction

The Bell Labs Layered Space-Time (BLAST) architec-
ture was proposed to achieve high channel capacity on
multi-input multi-output (MIMO) channels [1]. Most stud-
ies of the BLAST algorithm consider temporally and spa-
tially white noise or interference at the receiver. How-
ever, in cellular and/or multiple access systems, due to co-
channel or multiple access interference, the interference is
in general spatially and temporally colored. In [2] and [3],
one-time-slot 1 zero-forcing and minimum mean-squared
error (MMSE) detection with optimal ordering have been
studied, respectively. Spatially and temporally white noise
and perfect channel knowledge at the receiver were as-
sumed in [2] and [3]. In [4], maximum likelihood (ML)
estimate of channel using training sequences was studied
assuming temporally and spatially white noise.

In this paper, we study channel estimation and data de-
tection of a MIMO system with one co-channel interferer
under slow flat fading in an interference-limited environ-
ment. The interference is shown to be both temporally and
spatially colored. The temporal correlation may be due to
fading and/or intersymbol interference, and can be deter-
mined a priori by the interfering user’s delay and pulse
shaping factor. In the training period, by decomposing
the interference covariance matrix into a Kronecker prod-
uct of temporal and spatial correlation matrices, we de-
rive ML estimates of channel parameters and interference
spatial correlation lags. By exploiting known temporal in-
terference correlation, we extend the one-time-slot ordered
MMSE detection [3] to a multi-time-slot version. Monte-
Carlo simulation is used to evaluate the symbol error rate of
an uncoded QPSK MIMO system in independent Rayleigh

1The term one-time-slot will be explained in Section IV.

fading. A special case of high temporal interference cor-
relation is examined. The results quantify the benefits of
utilizing known temporal interference correlation in chan-
nel estimation and data detection.

II. System Model

We consider a single-user link with one co-channel inter-
ferer. We assume the desired user has N1 transmit anten-
nas, the interfering user has L transmit antennas, and there
are N2 receive antennas. The desired user transmits data
frame by frame. Each frame has M data vectors. The first
N data vectors are for training, and the remaining data
vectors are for information transmission. The desired and
the interfering users transmit data at the same rate. As-
suming thermal noise is small relative to interference, we
ignore thermal noise. In a slow flat fading environment, as-
suming perfect synchronization for the desired user, as we
sample the matched filter output at the receiver at time
jT , we obtain

yj =

√

PsT
N1

Hxj +

√

PIT
L

HI

∞
∑

k=−∞

bkg(jT − kT − τ)

︸ ︷︷ ︸

nj

j = 0, . . . , M − 1,

where g(t) is the combined impulse response of the trans-
mitter and receiver which has a raised cosine spectrum with
rolloff factor β [5]. The data transmission rate is 1/T . The
symbols in data vectors xk (N1×1) and bk (L×1) are mu-
tually independent, zero-mean and with unit variance. The
delay of the interfering user is τ . Matrices H (N2 × N1)
and HI (N2 × L) are channel matrices of the desired and
the interfering users, respectively. The channel matrices
are fixed over one frame, and have independent realiza-
tions from frame to frame. The elements in H and HI are
assumed independent, identically distributed (i.i.d.) zero-
mean complex Gaussian with unit variance. This implies
independent Rayleigh fading. We denote Ps and PI as the
transmit powers of the desired and the interfering users,
respectively.

Since bk is zero-mean, the interference vector nj is zero-
mean as well. During the training period, we further as-
sume nj is circularly symmetric complex Gaussian. It can
be shown that the cross correlation between interference



vectors at time jT and qT is

E
{

njn†q
}

=
(

PIT
L

HIH
†
I

︸ ︷︷ ︸

R0

) ∞
∑

k=−∞

{

g(jT − kT − τ)g(qT − kT − τ)
}

︸ ︷︷ ︸

λ0(j, q)

,

where † denotes transpose conjugate, and λ0(j, q) depends
on |j − q|, delay τ and rolloff factor β.

During the training period, we stack the interference vec-
tors into a long vector, n̄ = [nT

0 · · ·nT
N−1]

T , where N is the
training length and T denotes transpose. The covariance
matrix of this long interference vector can be expressed as
a Kronecker product,

E
{

n̄n̄†
}

= R0 ⊗Λ0 (1)

=







Λ0(0,0)R0 · · · Λ0(0,N−1)R0
...

...
Λ0(N−1,0)R0 · · · Λ0(N−1,N−1)R0





 ,

where ⊗ denotes Kronecker product, Λ0(i,j) denotes the
(i, j)th element of matrix Λ0, and Λ0(i,j) = λ0(i, j). In
(1), R0 (N2×N2) captures the spatial correlation of inter-
ference which is determined by the channel matrix of the
interfering user, while Λ0 (N ×N) captures the temporal
correlation of interference. With the knowledge of delay
τ and rolloff factor β, the temporal correlation matrix Λ0
can be calculated a priori. In the following sections, we
rely only on a spatial-temporal correlation structure given
by a Kronecker product as in (1). That is, the spatial and
temporal interference statistics are separable.

III. ML Estimates of Channel and Spatial
interference Correlation

During the training period, given observations

yj =

√

PsT
N1

Hxj + nj , j = 0, · · · , N − 1 (2)

where xj ’s are known training vectors, we would like to find
ML estimates of channel and spatial correlation matrix of
nj . The estimates will facilitate data detection after the
training period.

A. General case: interference is both spatially and tempo-
rally colored

Let ȳ = [yT
0 · · ·yT

N−1]
T and x̄ = [xT

0 · · ·xT
N−1]

T , the
observations in (2) can be re-written as

ȳ =

√

PsT
N1

(H ⊗ IN )x̄ + n̄

where IN is an N ×N identity matrix.
If the covariance matrix of n̄ in (1) is R ⊗Λ, assuming

that R and Λ are nonsingular, the conditional probability

density function (pdf) of ȳ given H and R is

p(ȳ|H ,R)

=
1

πN ·N2 |R⊗Λ|
exp

{

−
[

ȳ −
√

PsT
N1

(H ⊗ IN )x̄
]†

(R⊗Λ)−1
[

ȳ −
√

PsT
N1

(H ⊗ IN )x̄
]

}

(3)

where | · | denotes matrix determinant. The ML estimate
(Ĥ, R̂) is the one maximizing the conditional pdf in (3).

With the identities [6] |R ⊗ Λ| = |R|N |Λ|N2 (R is
of dimension N2 × N2, Λ is of dimension N × N) and
(R ⊗ Λ)−1 = R−1 ⊗ Λ−1, maximizing (3) is equivalent
to minimizing

f(H, R) = ln |R|+ 1
N

[

ȳ −
√

PsT
N1

(H ⊗ IN )x̄
]†

(

R−1 ⊗Λ−1)
[

ȳ −
√

PsT
N1

(H ⊗ IN )x̄
]

.

Denoting the elements of Λ−1 as







α0,0 · · · α0,N−1
...

...
αN−1,0 · · · αN−1,N−1





 = Λ−1,

we re-write f(H,R) as

f(H, R) = ln |R|+ trace

{

R−1 1
N

N−1
∑

i=0

N−1
∑

j=0

αi,j

(

yi −
√

PsT
N1

Hxi

)(

yj −
√

PsT
N1

Hxj

)†
}

.

(4)

By setting ∂f(H, R)/∂R = 0, we obtain

R̂ =
1
N

N−1
∑

i=0

N−1
∑

j=0

αi,j

(

yi −
√

PsT
N1

Hxi

)(

yj −
√

PsT
N1

Hxj

)†

.

Substituting R̂ into (4), the estimate of H is determined
by minimizing

f1(H)

=

∣

∣

∣

∣

∣

1
N

N−1
∑

i=0

N−1
∑

j=0

αi,j

(

yi −
√

PsT
N1

Hxi

)(

yj −
√

PsT
N1

Hxj

)†
∣

∣

∣

∣

∣

.

(5)

It can be shown that [7]

Ĥ = R†
xyR−1

xx , (6)



-
temporal
whitening

filter

-
yi = Hxi + ni y′i = Hx′i + n′i

Fig. 1. At the output of the filter, interference n′0, . . . ,n′N−1 are
i.i.d. random vectors.

where

Ryy =
1
N

N−1
∑

i=0

N−1
∑

j=0

αi,jyiy
†
j (7)

Rxy =
1
N

N−1
∑

i=0

N−1
∑

j=0

√

PsT
N1

αi,jxiy
†
j (8)

Rxx =
1
N

N−1
∑

i=0

N−1
∑

j=0

PsT
N1

αi,jxix
†
j . (9)

Using (6)-(9), the estimate of R can be expressed as

R̂ = Ryy − ĤRxy. (10)

Let us interpret (7)-(9). If we pass observations
y0, . . . , yN−1 through a filter which temporally whitens the
interference as shown in Fig. 1, it can be shown that Ryy,
Rxy and Rxx in (7)-(9) are the auto- and cross-correlation
of x′i and y′i, respectively. The temporal whitening filter is
determined by the temporal correlation matrix Λ.

B. Special cases

B.1 Interference is spatially colored, but temporally white
(ni is independent of nj for i 6= j)

The covariance matrix of n̄ in (1) has the form R⊗ IN .
Substituting Λ = IN into (7)-(9), we obtain

Ryy1 =
1
N

N−1
∑

i=0

yiy
†
i (11)

Rxy1 =
1
N

N−1
∑

i=0

√

PsT
N1

xiy
†
i (12)

Rxx1 =
1
N

N−1
∑

i=0

PsT
N1

xix
†
i . (13)

Substituting (11)-(13) into (6) and (10) yields the estimates
of the channel and spatial interference correlation matrix.

B.2 Interference is both spatially and temporally white

The covariance matrix of n̄ in (1) has the form σ2IN2 ⊗
IN . Substituting R = σ2IN2 and Λ = IN into (4), it can
be shown that Ĥ in (6) is replaced by

Ĥw = R†
xy1R

−1
xx1,

while

σ̂2 =
1

N2
trace

{

Ryy1 − ĤwRxy1

}

.

IV. Data Detection with Estimated Channel and
Interference

During the data transmission period, with estimates of
the channel and spatial interference correlation matrix,
MMSE nulling with optimal ordering can be used to de-
tect data at the receiver. Without loss of generality, we
present two data detection schemes, which we refer to as
one-time-slot and two-time-slot detection. In one-time-slot
detection, we ignore temporal correlation of interference,
and detect xi using only yi. While in two-time-slot de-
tection, we utilize the known temporal interference corre-
lation, as well as (yi,yi+1), to detect (xi, xi+1).

A. One-time-slot data detection

Suppressing the time dependence, the observation is

y =

√

PsT
N1

Hx + n. The linear MMSE estimate x̂ = Qy

chooses the matrix Q such that trace[cov(x−Qy)] is min-
imized. With the estimates Ĥ and R̂,

Q =

√

PsT
N1

Ĥ
†
(

PsT
N1

ĤĤ
†
+ R̂

)−1

.

The covariance matrix of the estimation error is

P ∆= E
{

(x− x̂)(x− x̂)†
}

= IN1 −
PsT
N1

Ĥ
†
(

PsT
N1

ĤĤ
†
+ R̂

)−1

Ĥ.

MMSE nulling with optimal ordering using perfect chan-
nel knowledge under spatially white interference is given in
[3]. Modifying the algorithm in [3], we give the steps of
MMSE nulling with optimal ordering using an estimated
channel under spatially colored interference.
1. k = 1, Hk = Ĥ .

2. Calculate P k = I− PsT
N1

H†
k

(

PsT
N1

HkH†
k + R̂

)−1

Hk,

and find that the jth diagonal entry of P k is the smallest.
3. Estimate the jth element in x from Qjy, where Qj is the

jth row of Q and Q =

√

PsT
N1

H†
k

(

PsT
N1

HkH†
k + R̂

)−1

.

4. Subtract the effect of the jth element of x from y.
5. k = k + 1, form Hk+1 by deleting the jth column of
Hk. Go to Step 2 until all the data in x are detected.

B. Two-time-slot data detection

When interference is not temporally white, we use
yN+1, . . . , yM to detect data symbols xN+1, . . . , xM
jointly. Due to the complexity of using all observations,
we consider a simplified algorithm using only (yi,yi+1) to
detect (xi,xi+1). It can be shown that

[

yi
yi+1

]

︸ ︷︷ ︸

ỹ

=

√

PsT
N1

[

H 0
0 H

]

︸ ︷︷ ︸

H̃

[

xi
xi+1

]

︸ ︷︷ ︸

x̃

+
[

ni
ni+1

]

︸ ︷︷ ︸

ñ

.



An estimate of H̃, ˆ̃H, can be obtained through the esti-
mate of H. Using the estimated spatial correlation matrix
of ni and the known temporal interference correlation, we
are able to estimate the covariance matrix of ñ, ˆ̃R. Replac-
ing x, y, Ĥ and R̂ in the one-time-slot detection algorithm
by x̃, ỹ, ˆ̃H and ˆ̃R, respectively, we obtain the two-time-
slot detection algorithm.

V. Data Detection without channel and
interference estimation

During the training period, instead of estimating the
channel and the spatial interference correlation matrix, a

matrix M which minimizes
N−1
∑

i=0
|xi −Myi|

2, where N is

the training length, may be estimated. It can be shown
that

M = Rxy3R−1
yy3, (14)

where

Rxy3 =
1
N

N−1
∑

i=0

xiy
†
i , (15)

Ryy3 =
1
N

N−1
∑

i=0

yiy
†
i . (16)

During the data transmission period, the data vector is
estimated by x̂i = Myi.

VI. Simulation Results

We assume that both desired and interfering users have
4 transmit antennas and there are 4 receiver antennas.
The training sequences are columns of an FFT matrix [3].
This guarantees that the training sequences from different
transmit antennas are orthogonal. Both desired and in-
terfering users employ uncoded QPSK. Monte-Carlo sim-
ulation is used to evaluate the symbol error rate, and

SIR(dB) ≡ 10 log
Ps

PI
. We examine a special case of high

temporal interference correlation with β = 1, T = 1 and
τ = 1/2, where the temporal interference correlation ma-
trix Λ0 in (1) is a symmetric Toeplitz matrix with elements

Λ0(i,j) =







0.5 i = j
0.25 |i− j| = 1
0 otherwise

for 0 ≤ i, j ≤ N − 1.

Figs. 2 to 4 show symbol error rates for different train-
ing lengths. In each figure, symbol error rates with differ-
ent estimates of channel and spatial interference correlation
matrices and different data detection schemes are shown:
• channel and interference are estimated assuming the in-
terference is both spatially and temporally colored (Section
III-A), with one-time-slot (curve 1) or two-time-slot (curve
2) detection;
• channel and interference are estimated assuming the in-
terference is spatially colored but temporally white (Sec-
tion III-B.1), with one-time-slot detection (curve 3);

• channel and interference are estimated assuming the in-
terference is both temporally and spatially white (Section
III-B.2), with one-time-slot detection (curve 4).
For reference, we show results for the cases of
• perfectly known channel parameters and interference
statistics, with one-time-shot and two-time-shot detection;
• no channel and interference estimation (Section V)
(curve 5).

Comparing curves 4 and 5 in Figs. 2 to 4, it is obvious
that much lower symbol error rates can be achieved by
estimating the channel and interference statistics. In Fig.
2, we observe that with a short training length, it is better
to estimate channel and interference statistics by assuming
the interference is both spatially and temporally white.

By comparing curves 3 and 4 in Figs. 3 and 4, we see
that much gain can be obtained by considering the inter-
ference as spatially colored in estimating the channel and
interference statistics, and this gain increases as the train-
ing length increases.

By examining curves 1 and 3 in Figs. 3 and 4, we ob-
serve that the improvement by taking account of temporal
interference correlation in channel estimation is not signifi-
cant, and this improvement decreases as the training length
increases.

By comparing curves 1 and 2 in Figs. 3 and 4, we ob-
serve that the improvement of using two-time-slot detec-
tion over one-time-slot detection is not significant either,
but this improvement increases as the training length in-
creases. This implies that not much gain can be achieved
by taking account of temporal interference correlation in
data detection.

Fig. 3 shows that, by comparing curves 2 and 4, there is
about 2dB gain in SIR by assuming spatially colored inter-
ference and taking explicit advantage of known temporal
interference correlation in channel estimation and data de-
tection. Most of the savings are due to the estimation of
spatial interference correlation.

VII. Conclusions

We have quantified the benefit of taking account of spa-
tial and temporal interference correlation in channel esti-
mation and data detection in a MIMO system. The results
show that the improvements in symbol error rates by ex-
ploiting temporal interference correlation in channel esti-
mation and data detection are not significant. However,
more significant gains may be achieved by estimating the
spatial correlation of the interference.
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