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Abstract

As prior knowlodge of mobile velocity has been found useful in many applications
of mobile communications, it is necessary to estimate the mobile velocity at the
mobile station (MS) based on the received fading signal. Rice et al. have derived a
continuous-time fading signal model, which can be used to obtain estimates of mobile
velocity. The main emphasis of this thesis is on the development of level crossing rate
(LCR) and autocorrelation function (ACF) methods for estimating mobile velocity
using the discrete-time received fading signal corrupted by the additive noise. While
our results show that both methods produce close estimates to actual mobile velocity,
the ACF method has superior performance in low SNR conditions.

We then apply the estimated mobile velocity to the problem of tracking moving
mobiles by employing a Kalman filter. By adding the mobile velocity measurements
into the mobile motion tracking model, we found, through the simulation results, that
the performance of the system can be improved significantly when the mobile velocity

is relatively large.
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Chapter 1

Introduction

Motivation

Mobile velocity is an important parameter in a mobile communication system. There
exist a variety of real-world applications that can use the mobile velocity to improve
their performance. For example, handoff requests from rapidly moving mobiles in
microcellular networks must be processed quickly. Otherwise, excessive dropped calls
will occur. Velocity-adaptive handoff algorithms can solve this problem. They are
known to be robust to the severe propagation environments that are typical of urban
microcellular networks [2, 19, 20, 40].

In a mobile communication system, the signal received by the mobile station
always consists of multiple components from different directions and with different
delays, due to the reflection, scattering and diffraction of the incoming waves by the
objects in the immediate vicinity of the mobile. If there are small changes in the
differential delays, large variations in the amplitude and phase of the received signal
will occur. This is called multipath fading. The fading rate depends on the mobile
velocity. The faster the mobile, the larger the fading rate. Therefore, statistical char-
acterization of the fading signal model is fundamental to mobile velocity estimation.
Rice et al. developed a continuous-time fading signal model [1, 7, 22, 26, 31, 32, 39].
Some mobile velocity estimation techniques have been developed based on Rice’s
model [33, 38].

The focus of this thesis is on the development of a discrete-time fading signal

model and corresponding mobile velocity estimation techniques.



Contributions

The main contribution of this thesis is the derivation of a discrete-time fading signal
model and level crossing rate (LCR) and autocorrelation function (ACF) estimation
techniques for mobile velocity using a discrete-time fading signal corrupted by additive
noise. Through the use of simulations, we show that both estimators can produce
accurate estimates of mobile velocity. We then apply the mobile velocity estimators
to the mobile position tracking application. We will find that, by adding velocity

measurements, the performance of mobile motion tracking is improved.

Thesis Outline

The following chapters examine various aspects of mobile velocity estimation in multi-
path fading channels. Chapter 2 introduces the modelling of multipath fading signals
and discusses the previous work on mobile velocity estimation using continuous-time
received fading signals. The discrete-time fading signal model is presented in Chapter
3, and this chapter studies the derivation of a level crossing rate (LCR) estimation
technique as well. In Chapter 4, we present another estimation technique of mobile
velocity, autocorrelation function (ACF) estimation. Chapter 5 applies mobile veloc-
ity estimation to mobile motion tracking. We then present the conclusions in Chapter

6, where suggestions for future research are also given.



Chapter 2

Background

2.1 Mobile Radio Propagation

A mobile radio system typically consists of a set of base stations (BSs) whose an-
tennas are usually placed well above local terrain. Therefore, the BSs are relatively
independent of local scatterers. Most of the time, there hardly exists a line-of-sight
(LOS) path between the BS and mobile station (MS) antennas, because there are
always many natural and man-made objects in the immediate vicinity of the MS.
After the consequences of reflection, diffraction, and scattering the transmitted plane
waves from the BS arrive at the MS from many different directions and with different
delays, as shown in Figure 2.1. This property is called multipath propagation. The
multiple plane waves combine vectorially at the MS antenna to produce a composite

received signal.

Since the carrier wavelength used in recent mobile radio systems is relatively small,
small changes in the differential delays introduced by the moving MS will cause large
changes in the phases of the arriving plane waves. These phase differences cause
constructive and destructive addition of the arriving plane waves which causes large
variations in the envelope amplitude and phase of the composite received signal at the
MS end. Since the MS is moving through space, the spatial variations in the envelope
and phase of the composite received signal manifest themselves as time variations.

This phenomenon is called envelope fading.

In the urban area a MS is usually surrounded by local scatterers, so that there



local scatterers

- / \

_— \*17'

|

. mobile station
base stati On\‘ ‘\/‘(\/ X

Figure 2.1: Typical radio propagation in mobile radio system.

exists no direct LOS path between the BS and the MS. All plane waves arrive at the
MS from all directions with nearly equal probability. Therefore, isotropic scattering
is a reasonable modelling assumption [6] and Rayleigh distributed envelope fading is
assumed. While in the suburban area, there sometimes exists a LOS path between
the MS and BS, and at other times there is no LOS component. The received signal
will still experience fading. However, the scattering is usually non-isotropic and the

envelope fading has a Ricean distribution.

2.2 Continuous-Time Received Signal Model

As stated in the previous section, the signal received by the MS antenna is made up
a number of horizontally travelling plane waves with random amplitudes and angles
of arrival for different locations. The phases of the waves are uniformly distributed

over [—7, 7]. The amplitudes and phases are assumed to be statistically independent.

Figure 2.2 depicts a horizontal z-y plane with a MS moving along the a-axis with

velocity v. The MS motion introduces a Doppler shift, or frequency variation, into

4



the n'* incident plane wave, given by

fan(t) = frcosb,(t) (2.1)

where f,, = v/A. and A. is the wavelength of the arriving plane wave, is called

maximum Doppler frequency, and 6,,(¢) is the incident angle of the n'" wave.

n" incoming wave

0.{t)

mobile

Figure 2.2: A typical component wave incident on the MS receiver

Assuming that the transmitted signal is vertically polarized, the composite re-
ceived signal can be written as

N

r(t) = Z o, (1) cos(2m fot + 27 fun(D)t + 0n(t)) (2.2)

n=1

where f. is the carrier frequency, () is the amplitude of the n'* wave, and ¢, (#) is
the phase angle uniformly distributed over [—7, 7].

Following Rice [31] [32], we can express bandpass signal r(¢) in quadrature form
r(t) = ri(t) cos 2w fot — rg(t)sin 27 fot (2.3)

5



where

=

ri(t) = (1) cos(27 fun (1)t + ¢u(t)) (2.4)

3
Il
—

=

ro(t) = Ay (1) sin(27 fun (D)t + on(t)) (2.5)

3
Il
—

are in-phase and quadrature components of r(t), respectively. According to the Cen-
tral Limit Theorem, for large N, the quadrature components r;(t) and rg(t) can
be approximated as independent Gaussian processes. Furthermore, we can assume
that these random processes are wide sense stationary, with constant parameters
fan(t) = fan, an(t) = an, ¢u(t) = én, and assume that the received signal r(t) is

wide sense stationary. Therefore, Equations (2.2)—(2.5) can be rewritten as

N
r(t) = Z_: oy o8 27 (fe + fan)t + &l (2.6)
= ry(t)cos2x f.t —rgsin 27 fut (2.7)

and

N
ri(t) = Z oy, cos(27 fynt + ¢n) (2.8)

n=1

N
ro(t) = Z_: ay Sin(27 fant + ¢n) (2.9)

2.2.1 Received Signal Envelope Distribution

We denote r; and rg the random variables corresponding to r;(¢) and rq() for fixed

t, each having zero mean and equal variance:

1 N
=ty = L3 Bla) = o 210

if there exists no LOS component between the BS and MS. By using a bivariate
transformation, the received signal envelope 2(1) = |/rj(t) +r}(t) has a Rayleigh

distribution at any time ¢, i.e.,

po(x) = U%exp{—%} (x >0) (2.11)

This type of fading is called Rayleigh fading.

6



If there is a LOS path or a specular component from a strong (fixed) local scatterer,
the amplitude of one incoming plane wave, «y, is significantly larger than other «,,.
Then, r; and rg have non-zero mean and the received signal envelope has a Ricean

distribution at any time ¢, i.e.,

pz(x) = cr%exp {_x22;|—252 } ]0 (%) ((E Z 0) (212)
where
s* = ad cos® ¢g + agsin® ¢y = (2.13)

is the non-centrality parameter and Io(x) is the zero-order modified Bessel function

of the first kind. This type of fading is called Ricean fading.

2.2.2 Received Signal Correlation and Spectrum
The autocorrelation function of r(¢) is
Gre(T) = E{r(t)r(t+7)}
= E{ri(t)ri(t +71)}cos2r for — E{ro(t)ri(t + 7)} sin 2x for
= Gpp(7) COS 27 foT — @y, (7) sin 27 for (2.14)

Note that in Equation (2.14)

rir(T) = Prgrg(T) (2.15)
¢7’I7’Q(T) = _¢7’Q7’I(T) (216)

The autocorrelation function ¢,,,,(7) can be obtained from Equations (2.8), (2.10),
and (2.1),

Oriry(T) = E{ri(t)ri(t +7)}

— [% Z_: E{ai}] FE{cos2r fy .7}

= %E@{COS(QmeT cos )} (2.17)
where
Qp 2 2 1 2
o — ni0) = B30 = SE(a) 219



is the total average received power from all multipath components.

Likewise, the crosscorrelation function ¢, ,,,(7) is

Oring(1) = E{ri(t)ro(t +7)}

= %Eg{sin(ZﬂfmT cos )} (2.19)

In Rayleigh distributed fading channels, Equation (2.17) becomes

Q, 1
Grpry(T) = %g/_ﬂcos(ermTcosﬁ)dG
Q
= 7p]0(27rfm7-) (2.20)
where Jo(x) is the zero-order Bessel function of the first kind. Likewise, Equa-
tion (2.19) becomes
Q, 1 |
Grirg(T) = 7p2—/_ﬂsm(27rfm7'cosﬁ)d0

s

= 0 (2.21)

The power spectral density (PSD) of r;(t) and rq(t) is the Fourier transform of

Grirr(T) OF @roro(T), Tespectively, i.e.,

Seri(F) = Flrn (1)}
Qyp 1
_ { AT \J1=(f/ fm)? 1< Jo (2.22)

0 otherwise

The PSD of the bandpass received signal r(¢) can be expressed in terms of the

quadrature components as

STT(f) = %[STIT](-]C - fc) + ST]TI(_f - fc)]
30, 1 _ <
_ A7 fim \/1—(U;—77]:c|)2 |f fc| = fm (223)
0 otherwise

The normalized PSD S, (f)/(3Q,/47 f.n) is plotted against the normalized difference
(f — f.)/ fm in Figure 2.3. Notice that S,.(f) is limited to the range of frequencies

|f — fe| < fim or twice the maximum Doppler frequency.

8
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m

p

Power Sepctrum, Sxx(f)/(SQ /4mtf ) (dB)

| |
0.6 0.8 1

L L L L
-1 -0.8 -0.6 -0.4 -0.2 0 0.2
Frequency Difference, (f—fc)/fm

Figure 2.3: PSD of the received signal for a Rayleigh distributed fading channel

2.3 Previous Work on Mobile Velocity Estima-

tion

2.3.1 Level Crossing Rate Estimators

From [38], the envelope level crossing rate (LCR) is defined as the average number of
positive-going crossings per second that a signal makes of a predetermined level R.
Likewise, the zero crossing rate (ZCR) is defined as the average number of positive
going zero crossings that a signal makes per second.

Assuming the fading model in Equation (2.3), Rice has derived the envelope LCR
with respect to the level R as [32]

o .. REm)TYE g S
LCR = / R,i)dr = 220 d/ d
, "PUL = = [ [

exp {_2[31’60 [B(R2 — 2Rscos + 32) + (bor + byssin ;/))2]} (2.24)

9



and ZCR of r;(t) — my (or ro(t) — mg) as

ZCR = lﬁ (2.25)
n bo

where my, mg are the means of r;(t), ro(t), respectively; p(R,7) is the joint prob-
ability density function of the envelope r (evaluated at r = R) and the slope of the
envelope 7, and B = byby — b2, where for integers n > 0,
0.2 fm fn
b, = (27" / 1y
U
with by = o2, and f,, is the maximum Doppler frequency. Therefore, by using Equa-

tion (2.26), Equations (2.24) and (2.25) become, respectively,

LOR = (u/A)y/2r(K + Dpe 050072 1, (9 /K (K 1 1)) (2.27)

(2.26)

and

7ZCR = V2v/\. (2.28)

where p = R/Ryms, where Rrms = \/(Tp is the rms signal level, K is the Ricean
factor and Io(x) is the zero-order modified Bessel function of the first kind.

From [38], the LCR around p = 1 is roughly independent of K, and ZCR is not
affected by K. Therefore, the steps for using the LCR (or ZCR) of the envelope (or

ri(t) or rg(t)), for velocity estimation are [38]:

1. Determine Ryrms (or my or mg),
2. Estimate the number of crossings per second [A/ers (or [A/ZCR), and

3. Use Equation (2.27) to solve for v, with p = 1 and K = 0 (or Equation (2.28)
for ZCR).

2.3.2 Covariance Approximation Methods

Holzman and Sampath have proposed a velocity estimator that relies on an estimate
of the autocovariance function of received faded samples, which we denote as r[:] [19]

[33]. With this method, referred to as the covariance method (COV), the statistic,
1 N

V= N ];(r[k + 7] — r[k])? (2.29)

10



is calculated. If N is large and ergodicity applies, then the time average V' can be

replaced by the sample mean
BAVY} = 20,0(0) — 24, (7) (2:30)

where p,,(7) denotes the autocovariance of r[k]. Assuming squared-envelope samples

and that the channel is characterized by isotropic scattering, () is written as [1]

o (T) = (KQ_Z; 1) [Jg(QTFT/)\C) + 2K Jo(277 /) cos(2nT cos (9)/)\0)] (2.31)

Substituting Equation (2.31) into (2.30),

Q 2
E{V} =2 (K 2 1) (14 2K) = (J2(2mr /) + 2K Jo( 257 [A.) cos(2m7 cos 0)/A.))]
(2.32)
which is dependent of K and . If ,,(0) is known exactly, then the bias with respect

to K can be eliminated for small 7 by the normalization [33]

\% 1+ 2K + K cos(26)
~ (2 A )? 2.
0] (2rvTe/Ae) (1 52k) (2.33)
so that [33]
) A 1%
Vcov ~ (234)

277 \| ftrr (0)

where 7, is the sample spacing in seconds/sample.

2.4 Laboratory Simulation of Fading Signals

It is desirable to use actual fading signals recorded at a MS antenna. However, at the
present time we do not have this opportunity. Therefore, fading signal simulators are

of interest that are derived from theoretical principles.

2.4.1 Filtered Gaussian Noise

The simplest fading signal simulator is to use low-pass filtered white Gaussian noises
as shown in Figure 2.4. If the Gaussian noise sources have zero-mean, this method

produces a Rayleigh fading signal; otherwise a Ricean signal is produced.

11



Gaussian _| low-pass | (1
noise source filter
EEEE—
() =1 0+
Gaussian | low-pass
noise source filter Io(t)

Figure 2.4: Fading simulator that uses low-pass filtered white Gaussian noise. The

output signal rp(t) is the low-pass signal equivalent to the desired bandpass signal.

The two different noise sources must have the same PSD to produce a fading
process that is stationary. The main limitation of this approach is that only rational
forms of the fading spectra can be produced, which is accomplished by using a high
order pole-zero filter. However, using an infinite impulse response (IIR) filter has

stability problems [8].

2.4.2 Jakes’ Method

Jakes has introduced a different fading simulator. Assuming that all processes are
wide sense stationary with equal strength multipath components (i.e., a,, = 1) where
each of the N components are uniformly distributed in angle (i.e., 8, = (2an)/N,n =

1,2,---,N), Jakes proposed that the in-phase and quadrature components to be [22]

M
ri(t) = 2 Z cos (3, cosw,t + V2 cos a cos w, t (2.35)
n=1
M
ro(t) = 2 Z sin 3, cos wnt + V2 sin av cos wy, t (2.36)
n=1
where
1 N
M = -(=-1)
22



Vs
a = —
4
™
N
2mn
W, = Wy COS ——
N
and
wn = 270/, (2.37)

The Jakes” fading simulator is constructed as shown in Figure 2.5.
offset oscillators
coso t
—<—@—> 2c0s
)
25|nBM<—@—> 2c0s
20l |«——~)—=| cos

o(0) l i (1)
L (0= 1 (O 1)

Figure 2.5: Jakes’ fading simulator
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2.4.3 Inverse Discrete Fourier Transform Rayleigh Fading

Simulator

Smith introduced a Rayleigh fading simulator using inverse discrete Fourier trans-
form of uncorrelated Gaussian processes [35]. To generate a desired Rayleigh fading
sequence, a complex sequence {X[k]},k = 0,1,---, N — 1 is formed by adding in

quadrature two uncorrelated sequences of Gaussian processes, that is
X[k] = F[k]A[k] — jF k] B[K] (2.38)

where {F'[k]} are filter coefficients, {A[k]} and {B[k]} are i.i.d., N(0,0%) and {A[k]}
and {B[k]} are independent of all k.
Taking the inverse DFT of X[k], we have

1 N1 -2mkn

el =+ 3 X[He™¥ n=0,1--- N -1 (2.39)
k=0

The real and imaginary parts of {z[n]}, {zgr[n]} and {zg[n]|} are

chln] = = S PR AL cos 20

1 N2t 27 kn
FlE|Blk]si
KBl sin 7T

1= ok
ziln] = F[EA[K] sin @V”

1 Nt 27 kn
FlE|Blk
(KB cos 2

(2.40)

(2.41)

xpr[n] and x7[n] are composed of a weighted sum of 2N jointly Gaussian random
variables; therefore they are also Gaussian distributed. In order to approximate z[n]
as a Rayleigh fading signal, the filter coefficients { F'[k]} must be appropriately chosen.
Smith chose {F[k]} to approximate the spectrum

S(f) = L (2.42)

7"'fm\/l - (f/an)2

where f,, is the maximum Doppler frequency, and this choice of {F[k]} corresponds

to an approximation of the continuous-time autocorrelation r(7) = Jo(27 f,,7), and

models fading due to isotropic scattering.

14



Smith chose the filter coefficients { F/[k]} as

0 k=0
1 k=1,2,--,k, —1
(5 )? (2.43)
\/g — arctan(\/kz’"T;l_l) k=k,
0 elsewhere

where k,, = | f/f,], and f, = f5/N, fs is the sampling rate.
Young and Beaulieu modified the IDFT fading simulator by choosing a different
set of filter coefficients { F'[k]} as [43]

Flk]

0 k=0
Lk k=1,2,---, Y1

_ ) e 2 (2.44)
F[k] k=14
SN =k k=5 +1,,N—1

to reduce the computation time of the simulator.
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Chapter 3

Level Crossing Rate Estimator

3.1 Discrete-Time Propagation Model

3.1.1 Received Signals

From Equation (2.2), the received continuous-time band-pass signal is given by
N
x(t) = Z oy, cos(Qt + Qpt + én) (3.1)
n=1
where . and 2, are the continuous-time carrier frequency and Doppler frequency
caused by the n'® incoming wave, respectively, and ¢, is the phase angle of the n!”
incoming wave. A band-pass continuous-time signal can be represented uniquely at
the sampling rate of 2B < F; < 4B samples per second [29], where B is the bandwidth
of the continuous-time signal. If we sample x(f) at the rate Fy = 2B samples per

second, we have

x(k) = Z oy, cos(wek + wk + ¢,) (3.2)

n=1

where w, = Q./Fs and w,, = Q,,/ F; are the discrete-time carrier and Doppler frequen-
cies, respectively.
The in-phase and quadrature components of the received signal can be written,

respectively, as

ri(k) = Z_:lozncos(wnk—l—qﬁn) (3.3)
ro(k) = Z_:lozn sin(w,k + ¢,) (3.4)
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The low-pass equivalent signal is given by

r(k) = ri(k) + jro(k) (3.5)

3.1.2 Received Signal Correlation and Spectrum

Since these random processes of fading signals are assumed to be wide-sense station-
ary, their autocorrelation functions can be directly derived from their continuous-time

counterparts by sampling at the rate F; samples per second [27]. From Equations

(2.17) and (2.19), we obtain
Q
Gryry (M) = %E@{COS(QmemCOS 0)} (3.6)
Q
Grirg(m) = %Eg{sin(%'fmm cos )} (3.7)

and from Equations (2.15) and (2.16)

Pror(m) = Grprr(m) (3.8)
¢7’Q7’](m) = _¢7’I7’Q(m) (39)

The autocorrelation function for the low-pass equivalent signal is

Orr(110) = Gppr (10) + jbrprg () (3.10)

The power spectral density (PSD) of the discrete-time wide-sense stationary (WSS)
random process, S(f), is the discrete Fourier transform of its autocorrelation ¢(m),
le.,

S = S0 g(m)eim (3.11)

Using the Poisson summation formula [27], the PSD of a WSS discrete-time process

equals the sum of the PSD of the continuous-time process and its displacements.

S(w) = Ti 3 s, (w + 2;”) (3.12)

S n=—c0

where S(w), S:(w) are PSD’s of discrete-time and continuous-time processes, respec-
tively, and T is the sampling period. For a discrete-time signal to be bandlimited,

range of w € [—B,+B] where B < 7, we can find that the PSD of discrete-time
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process is identical to the PSD of its continuous-time counterpart, which is the most
interesting and useful.
If the propagation channels are Rayleigh distributed, from Equations (2.20) and

(2.21), the autocorrelation functions can be written as

¢T1T1(m) = ¢T1T1(m) = 0-2‘]0(27Tfmm) (313)
¢7°I7°Q (m) = _¢TQ7’I(m) =0 (314)
Using Equations (3.8)—(3.10) and (3.13)—(3.14) and taking the Fourier transform, the

power spectral density of the low-pass equivalent signal is given as

0'2 1
SrelF) = Sepni(F) = g——= (f/Fn)?

(3.15)

where |f| < fin-

3.1.3 Adjacent Signal Envelope Statistics

In order to find the joint pdf of two adjacent envelope samples p(zy, z541), the joint
pdf of their in-phase and quadrature components, ry, rg, must be derived first. That
is, the pdf, p(ri(k),rq(k),ri(k + 1),rg(k 4+ 1)) should be found. We know, from
Section 2.2, that the in-phase and quadrature components are normally distributed
due to the Central Limit Theorem. For Rayleigh distributed channels, they have zero

mean and common variance o2. That is

E{ri(k)} = E{r§(k)} = o (3.16)
From Equations (3.13)—(3.14), the following is derived

E{ri(k)yri(k+ 1)} = E{ro(k)rg(k+ 1)} = 0*Jo(27 f,n) (3.17)

E{ri(k)ro(k)} = E{ri(k)ro(k + 1)}
= E{ri(k + Vro(k)} = E{rilk+ Lrg(k+1)} =0 (3.18)

From Equations (3.16)—(3.18), the covariance matrix of these four components is

0'2 0 02J0 0

0 2 0 2,
A= 4 7 (3.19)
02J0 0 0'2 0

0 0'2JO 0 0'2
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where the Bessel function Jo(27 f,,) is simplified to Jy for notational convenience.

From [9], the joint pdf of these four components is

exp {_m I} = 2Joi [, + I5 4+ QF — 2J0(Q1Q2 + Q%]}
4r20t(1 — J3)

p(]17Q17]27Q2) =
(3.20)

where [, I5, @1, and @y denote r;(k), ri(k + 1), ro(k), and rg(k + 1), respectively.
For notational simplicity, we have dropped the dependence on time k due to the
wide-sense stationarity assumption.

Second, we transform this joint pdf to the joint pdf of the envelopes and phases
of the two adjacent signals, p(z1, 61, z2,63). We define the signal envelope, at time k
and k& + 1, as

o= I+ QF
Z9 = ]22 + Q% (3.21)

and the phase of a signal, at time k and k + 1, as

0, = tan_lﬁ

I
0, = tan’! % (3.22)
Therefore,
I, = z/cosb
Ql = Z sin 01
I, = 2z,cos8,
QQ = 23 sin 02
The Jacobian of the transformation is
ononog g |
821 891
o & 0
J(]17Q17]27Q2) _ 9z ot
0 0 2 9L
822 892
2Q 2Q
0 0 8222 W;
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cosf; —z sinb, 0 0
sinf, z; cosb; 0 0
0 0 cosfl; —zysinf,
0 0 sinfl; 2y cosfy
1
= 3.23
o (3.23)

where |A| denotes the determinant of matrix A.

Using Equations (3.23) and (3.20), the joint pdf of the envelopes and phases is

p(]h Q1, I, Qz)
‘](]17 le ]27 Q?)

= z129p(z1 cos Oy, z1 sin 0y, z3 cos Oz, 23 sin b,)

p(21701722702) =

2179 %
dr2oi(1 — J¢)

1
exp {—m [Z% + Z% — 2J02122 Cos((91 — 02)]} (324)

Finally, as in [31], the joint pdf of two adjacent envelope samples can be found
by integrating the joint pdf of envelopes and phases with respect to the two adjacent
phases. Integrating (3.24) with respect to #; and 6, the pdf of two adjacent envelope

samples is given by

p(Zl,Zz) = /_ /_ p(21,22,01,02)d91d02

2422
~1%2 exp{ 202 (1— J2 } J021272
g e gy st = 0 donds
2] +25
B 21792 GXP{_202(1_J3)}] ZlZQJO (3 25)
R - el P '
where [o(-) is the modified Bessel function of the first kind of zero order.
3.1.4 Effects of Additive Noise
The received bandpass signal in the presence of additive noise is given by
(1) = a(t) + n(t) (3.26)

where n(t) is the additive white Gaussian noise (AWGN) with zero mean and constant
power spectral density over the entire frequency range. It is mathematically conve-

nient in problems concerned with narrow-band signals in noise to model the additive
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noise process as white and to represent the noise in terms of quadrature components.
This can be accomplished by postulating that the signal and noise at the receiving
terminal have passed through an ideal bandpass filter, having a passband, B, that
includes the spectrum of the signals but is much wider. Such a filter will introduce
negligible, if any, distortion on the signal but it does eliminate the noise frequency

components outside of the passband[28].

| S

—B— 0 8 F

Figure 3.1: Power spectrum density of bandpass white noise

The noise resulting from passing the white noise process through an ideal bandpass
filter is termed bandpass white noise and has the power spectral density depicted in

Figure 3.1. The power spectral density of the equivalent lowpass noise n;(t) is given

by

Ny |F|<1iB,
Sun(F) =4 " Fl=s (3.27)
0 |F|>3B.,
and its autocorrelation function is
sint B, T
rum (7) = No———— (3.28)

where B,, is the bandwidth of the bandlimited noise. Since the bandlimited noise is
a WSS process, we can obtain the autocorrelation function of the discrete-time noise

by directly sampling the autocorrelation of the continuous-time bandlimited noise,
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which is
sinwB,mT,

¢nlnl(m) = No—————— (329)

am
where T is the sampling rate.
The power spectral density for bandpass white noise is symmetric about f = 0,
and is given by

e (1) = Grgng(m) = 6 (m) (330)

where n;(k) and ng(k) are the in-phase and quadrature components of the bandpass
white noise.

Sometimes the received signal is corrupted by inpulsive noise instead of white
noise. Here we adopt the two-term mixture Gaussian noise model [41]. The pdf of

this noise has the form
f=0—=eN(0,v%) + eN(0, kr?) (3.31)

with » > 0,0 <e <1, and « > 1. In Equation (3.31), the N(0,»*) term represents
the nominal background noise, and the N(0, kv?) term represents the impulsive com-
ponent, with e representing the probability that the impulse occurs. The variance of

this noise is
o’ = (1 - 6)1/2 + exv? (3.32)
By bandpass-filtering with bandwidth B,, and sampling this noise at 1/7 samples

per second, we obtain its discrete-time autocorrelation function as

sinwB,mT,

¢nlnl(m) = N(/J (333)

am

where N) = (1 — €)v? + exv?.

Adjacent Received Signal Envelope Statistics with Noise

With the presence of additive white noise, the in-phase and quadrature components

of the received signal are written as
yi(k) = ri(k) +ni(k)
yo(k) = ro(k) +no(k) (3.34)
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where n;(k) and ng(k) are the in-phase and quadrature components of the bandpass

white noise, respectively. Therefore,

E{y3(k)} = EQA (k) = 0 + ~o? (3.35)
and
BBk + 1)} = Elyo(Rlyo(h+ 1)} = o*do(2n fu) 4 5% (336)
E{yi(Fwo(k)} = E{y(Kyo(k + 1)}
= B{yi(k+ Dyo(k)} = E{ys(k + Dyg(k+ 1)) =0 (3.37)

where o2 is the average power of the bandpass noise, which can be equal to NyB,, if
the noise is white Gaussian noise, or N) B, if the noise is two-term mixture Gaussian
noise. From Equations (3.35)—(3.37), the covariance matrix for these four components

with noise is given by

o+ Lo} 0 o?Jo+ 302 0
0 o+ 152 0 o Jy + Lo?
A= 27n 2 (3.38)
o?Jy + %02 0 o? + %02 0
i 0 o2 Jy + %0‘2 0 o’ + %0‘2 |

Again, the Bessel function Jo(27 f,,,) in Equation (3.38) is simplified to Jy for no-
tational convenience. Similar to the derivation procedure from Equation (3.20) to

(3.25), we can obtain the pdf of two adjacent envelope samples written as
(P +500) (e +23)
#1272 P\ T 52 (1= T (02 +02 Jo+02) (0%Jo + $02)z122)
o1 = Jo)(o? + 02Jy + 02) 0 o1 — Jo)(o? + o%Jy + %0‘%)
(3.39)

p(Zlv 22) —

3.2 Envelope Level Crossing Rate for Discrete-

Time Model

For the discrete-time propagation model introduced in the previous section, a positive
level-crossing at time k of envelope z(k) at level A occursif z(k—1) < A and z(k) > A.

A negative level-crossing at time k of envelope z(k) at level A occurs if z(k—1) > A
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and z(k) < A. That is, whenever one of two adjacent samples is lower than A and the
other is higher than A, an envelope level crossing is recorded. One must notice that
positive and negative crossing directions cannot be mixed when counting the number
of level crossings. Since the sample envelopes are random signals, the number of level
crossings is a random variable. The level crossing rate over N given samples can
be defined as the ratio of the expected number of level crossings to the number of
samples. Let X denote the number of level crossings at the specified envelope level A

over N given samples, the envelope level crossing rate (LCR) is therefore written as,

E{X}
LCR = — (3.40)

Let X} denote the state between two adjacent samples: X; = 0 when there is
no level crossing between two adjacent samples, and X; = 1 when there is a level

crossing. Therefore,
n+N-—-1

X=3Y x (3.41)

where n denotes an arbitrary starting time and N is the total number of envelope

samples processed. Substituting Equation (3.41) into Equation (3.40), we can obtain

(T X,
LCR =
N
B Zn—I—N 1 E{Xk}
N N
CORENTHO0 X po + 1 % py)
N N
_ Np
N
= M (3.42)
where
po = P{X;=0} (3.43)
n = P{Xy=1} (3.44)

denote the probabilities of state 0 and 1, respectively. From the definition of envelope

level crossing, Equation (3.42) can be written as
LCR = P{z1 < A,z > A}
= / / Zk 1,Zk de 1de (345)
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where p(zx_1, zx) is the joint pdf of two ajacent envelope samples. In order to find
the LCR, we must first evaluate the double integration in Equation (3.45).
With the absence of the additive noise, from Equation (3.25), Equation (3.45) can

be written as,

2422
oo legexp{ 202(1— J2)} z122.Jo
LCR = / / I dzrd 3.46
ot (1 — J3) “\era =g (3.46)
where z; and 2z, denote z;_; and z, respectively. Substituting m? = (1 — J3),

= zy/m, and o = (z1.Jy)/m into Equation (3.46), we obtain

A 1 2 00 1
v = [ Zep{-La- 2l [ e (-3t 4 o)} hanids) do

Alm
A 1 2
= / %exp{—§(1 —Jg)%}Q(Q,A/m)dzl
0o O m
A 21 1 Z% leo A

where
&0 1
Q(avﬂ) = / weXP{—§($2+a2)}]0(ax)dx
8
is the Marcum’s Q function [17]. Substituting & = z;/m into Equation (3.47),

LCR = /OA/mu — J2)rexp {—%ﬁu - Jg)} QUlor, Afm)dz  (3.48)

The Marcum’s () function can be written in terms of the following series [17],

e 3) = e %a+@>§;(%)anaﬂ> (3.19)

Substituting Equation (3.49) into (3.48),

2 2 Jom\" rA/m 2 JoAx
L — 1 — 2y —A?/(2m?) ( 0 ) / n+l _—z /2]n (0—) d
CR ( J3)e HZ:% I A " e - T
= (1 e e 3 (Jom) G (3.50)
n=0 A
where

Afm 2 A

G= [, (‘]0 “’) de (3.51)
0 m

Substituting v = A/m into Equation (3.51), we obtain

G = /U :1:”+16_$2/2]n(J0v:1;)d:1; (3.52)
0
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. .2 . .
Expanding e™* /% into series,

2/ x? 1 x? 2 1 x? k
—zt/2 _ _= i B )
e —I-( 2)+2!( 2)—|— +k’( 2)—|— (353)

and substituting Equation (3.53) into (3.52), we obtain,
G = /0 :1;”+1]n(J0v:1:)d:1;—|—/v 2 (‘%2) L(Jova)da
+/ o (2 ) 1. (Jova)dz + - (3.54)
The modified Bessel functions have the property [17],
[ " Leslaf)de = 1) (3.55)
Using Equations (3.54) and (3.55), we obtain,

G = e V)2 Z J()_k]n+k(Jov2)

k=1

_ (é) A S g ’f]n+k(‘];A2) (3.56)

m k=1

Substituting Equation (3.56) into Equation (3.50), we obtain

: A2
LCR = (1- J2)e ¥/ S5 Jo- k1n+k(‘]0 )

n=0 k=1
2
_ (1 _Jg)e—A2/cr2(1—J2 szn k]n-|—k( JoA . )
n=0 k=1 ( _‘]0)
2 2 2J
= (1 _ Jg)e—Qp /(1—J0) Z Z Jg_k]n_l_k (1 _052) (357)
n=0 k=1 0

where p = A/V/20?, and V202 is the rms value of the signal envelope amplitude.
With the presence of noise, by using the derivation procedure shown from Equa-

tions (3.45) to (3.57) and using Equation (3.39), we can obtain the LCR as

9 2141922 Jot L n—k
LCR = (1= Jo)(1+ Jo+ —)e Cmem 32 3° ( )

5 n=0 k=1

2(Jo + (14 L2)p?
Sy Lo+ 5, %)’; (3.58)
(L—=Jo)(I+Jo+ =

where v, = (20?) /02 is the signal-to-noise ratio (SNR).
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3.3 Level Crossing Rate Estimation

We have shown that the level crossing rates of the envelope z(k) = /r3(k) + ré(k) of
a received signal in noise are functions of the mobile velocity as discussed in previous
sections. The envelope level crossing rate (LCR) is defined as the average number
of level-crossings per envelope sample at an envelope amplitude level A, which is

predeterminated by received signals.

Therefore, the LCR of the received signals can be used to estimate the mobile
velocity. The LCR as the function of mobile velocity is given by Equation (3.57) for
the noiseless case, and Equation (3.58) for the case in the presence of additive noise.
As long as we are given the LCR for the received signal, we can solve for the maximum

Doppler frequency f,, using the equations shown above. Once f,, is calculated, using

_ Jmle
=

v (3.59)
where Fj is the sampling rate, F. is the carrier frequency and ¢ is the velocity of light,

we can solve for the desired mobile velocity v.

3.3.1 Level Crossing Rate Estimation Procedures

In level crossing rate estimation of mobile velocity, the first step should be bandpass-
filtering the received signal in additive noise to get rid of the out-of-band component
of the signal. Then we can sample the output of the bandpass filter at F samples
per second to obtain the discrete-time signal. In order to obtain the LCR, we need
to convert the received discrete-time signal into an equivalent lowpass signal and
calculate the LCR at a specified level A over N envelope samples. From the obtained
LCR and using Equations (3.57)—(3.59), we can calculate the desired mobile velocity.
The procedure is shown in Figure 3.2. Before we go further, we must clarify some
issues in parameter determination. We need to know how the bandwidth of the
bandpass filter is specified; how to choose the sampling rate Fj; and how many

envelope samples should be processed to obtain the LCR.
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Figure 3.2: Procedure for obtaining LCR

Bandpass Filter Bandwidth B,

As described in Section 3.1.4, the passband of the bandpass filter must include the
spectrum of the signal. For mobile velocity estimation, only the maximum Doppler
frequency F), introduced by the mobile mobility is needed; and from Figure 2.3, we
can see that the spectrum of the fading signal is within the range of (F.— F,,, F.+ F,),
where F is the carrier frequency. Therefore, the bandwidth of the bandpass filter B,
should be larger than 2F),.

The maximum Doppler frequency F,, depends on the carrier frequency F. and

mobile velocity v, as shown below,

F, = (3.60)

where ¢ is the velocity of light. For a specific mobile communication system, the
carrier frequency F. is usually fixed, that is, F}, is mainly affected by the mobile
velocity, v. Therefore, as long as we set B, larger than twice of the maximum value
of the expected maximum Doppler frequency for a specific system, useful information

will not be eliminated by the bandpass filter.
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Sampling Rate F|

The sampling rate I can be theoretically chosen as twice the upper bound of the
bandpass signal due to the sampling theorem. In practice, it would be expensive
in the case that the upper bound frequency is extremely high. Generally, the carrier
frequency in mobile communication systems is very high. For example, about 2 GHz is
used for recent personal communications systems. We need to find another sampling
method. It would be advantageous to perform a bandpass-to-lowpass conversion, and
sample the equivalent lowpass signal [29]. Figure 3.2 is, therefore, modified as in
Figure 3.3. The resulting equivalent lowpass signal has a bandwidth B, /2; hence it
can be represented uniquely by samples taken at the rate of B, samples per second
for each of the quadrature components. Thus the sampling can be performed on each
of the lowpass filter outputs at the rate of B, samples per second. Therefore, the

resulting rate is 2B,, samples per second.
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Figure 3.3: Modified procedure for obtaining lcr

In Equations (3.57) and (3.58), we are using J3(27 f,,), which is depicted in Fig-
ure 3.4. From this figure, we can find that J3(27f,,) descends monotonically from
its maximum value until it reaches 0, then it goes upward. This implies that for

one unique LCR, we may obtain more than one estimated f,, by using these two
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equations. To guarantee a unique estimated f,,, we must limit the maximum value of
the expected f,, for a specific mobile communication system to be less than 0.3827,
which is the smallest positive solution of J3(27f,) = 0. This can be accomplished
by choosing a large enough sampling rate. Fortunately, if we set the sampling rate
F; to be at least larger than 2B,, which in turn is larger than 4F,,, the maximum
value of the expected maximum Doppler frequency f,, = F,,/F; is always less than

0.25. Therefore, a unique solution of the estimated f,, is always guaranteed.
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Figure 3.4: Squared Bessel function

Number of Samples N

In order to obtain an accurate estimate of the actual LCR, it is necessary to process a
sufficient number of envelope samples. This can be accomplished by determining the
confidence interval for the observed LCR. By specifying the desired width of interval,
the necessary number of samples can be calculated.

Letting é; denote the confidence interval, the observed LCR fm’l should fall into the
range of (R; —6;, R+ 6;), where R; represents the actual LCR. The interval boundary
6; can be calculated from the observed values as [10]

Ri(1—R)

5 =0Q v (3.61)

where NV is the total number of samples to be processed and the value of () depends

on 51/]%1 as shown in Table 3.1.
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S/Ri || 10% | 3% | 1%
Q | 1.65|1.96]| 258

Table 3.1: Standard deviation multipliers for various confidence intervals

Solving for N from Equation (3.61),

_ QR - R

N
of

(3.62)

By specifying é;, we can calculate the desired number of samples processed. Ta-
ble 3.2 shows numbers of samples corresponding to various observed LCR, where ¢

is specified as 0.1R,.

Ry 0.1 0.01 0.001
0 0.01 0.001 0.0001
N || 2.4 x 10° | 2.69 x 10* | 2.72 x 10°

Table 3.2: Total number of samples for various observed LCR

Algorithm Summary

The algorithm for estimation of mobile velocity using LCR method is summarized as

below,

e Design a bandpass filter with bandwidth B,. In all experiments, a Butterworth
filter is used with upper cutoff frequency F., = F.+ B, /2, lower cutoff frequency
F., = F.— B,/2, upper stopband frequency F,, = F., + B, /4, lower stopband
frequency Fy = F; — B, /4, and 60 dB stopband attenuation, where F, is the

carrier frequency,
e Bandpass-filter the received fading signal through the bandpass filter,

o Convert the bandpass received signal into its lowpass equivalent signal,
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e Sample the lowpass equivalent signal at the sampling rate of F; samples per

second,
o Calculate the LCR at a specified level A over N envelope samples, and

o (Calculate the desired mobile velocity from the obtained LCR using Equa-
tions (3.57) or (3.58) and (3.59).

3.3.2 Implementation and Simulation Results

In the previous section, we have introduced a new algorithm and procedure of LCR
estimation of mobile velocity, as well as the parameter specifications for the LCR
velocity estimator. We will represent the detailed simulation procedure and results
in this section.

Before we describe the results in detail, we have to first specify the parameters for
velocity estimation. As we have described in the previous section, both the bandwidth
of the bandpass filter B, and the sampling rate F; depend on the maximum value
of the expected Doppler frequency F,,, which in turn depends on the maximum
expected mobile velocity v,,,, and the carrier frequency F.. If the mobile stations
are automobiles, it is reasonable to assume that the maximum expected velocity
Umar 18 200 km /h. Assuming that the carrier frequency is 2 GHz, we can, therefore,
calculate the other parameters using the methods described in previous section. These
parameters are shown in Table 3.3. The curve of LCR against mobile velocity v is

depicted in Figure 3.5, using Equations (3.57) and (3.59).

Fc Umazx Fm,maac Bn Fs fm,max
2 GHz | 200 km/h | 370.4 Hz | 800 Hz | 1600 Hz | 0.2315

Table 3.3: Parameters for simulation system

The final parameter to be specified is the total number of samples processed. In
an urban area, the vehicle speed usually ranges from 20 to 70 km/h. This corre-

sponds to a maximum Doppler frequency f,,, within the range of (0.02316,0.08103),
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Figure 3.5: Level crossing rate against vehicle speed v

using parameters shown in Table 3.3 and Equation (3.60). From Figure 3.5 or using
Equations (3.57), we obtain that the range of LCR is within (0.0141,0.1038). Using
Equation (3.62) and setting the confidence interval to be 10% of observed LCR, we
can calculate the total number of samples processed N to be within the range of
(2.4 x 10°,2.69 x 10*). To assure the accuracy of simulation, we choose the upper

bound 2.69 x 10* as the total number of samples processed, which corresponds to a

vehicle speed of 20 km /h.

Now that we have specified all the parameters used in the LCR method of mobile
velocity estimation, we simulate the implementation of this estimator. As described
in the previous section, we need to bandpass-filter the input fading signal, sample the
output of the bandpass filter, calculate the LCR at a specified envelope amplitude
level, then calculate the desired mobile velocity using Equations (3.59) and (3.57)
or (3.58).

Ideally, we would like to test the estimator on real data with known mobile velocity.
Since we do not have the real fading signal, we generate a fading signal using a fading
signal generator described in Section 2.4. For the sake of simplicity, we use Young and
Beaulieu’s generator. First, we generate a sequence of fading signal samples according
to a specific vehicle speed. Since, from Section 2.4.3, the generated signal is already
discrete-time, we do not have to implement the sampling procedure. Second, we count

the number of positive crossings through a specific envelope level over N envelope
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samples and calculate the LCR. Finally, we calculate the estimated vehicle speed
using Equations (3.57) to (3.59) and the given LCR. If the estimated vehicle speed is
close to the one specified to generate the fading signal, the LCR estimation method
for the mobile velocity is justified.

In order to simulate the implementation of the LCR method in the presence of
noise, we also need to generate a bandlimited noise sequence with bandwidth B,, and
add it onto the generated fading signal. We can find that Equation (3.58) tends to
Equation (3.57) when the SNR tends to infinity. In high SNR conditions, we can,
therefore, use Equation (3.57) to solve for the LCR in the presence of noise. Since
the fading signal and additive noise are generated by computer, Monte-Carlo trials
are used to smooth the fluctuation.

The procedure is shown in Figure 3.6 and sumarized below,

o Generate a fading signal using Young and Beaulieu’s generator according to a

specific vehicle speed,

o Generate bandlimited noise with bandwidth B, according to a SNR value and
add it onto the generated fading signal to form the received signal at the mobile

station,

o Count positive crossings through a specified envelope level over N envelope

samples and calculate the LCR, and
e Calculate estimated vehicle speed using Equations (3.57) and (3.59),

e Repeat the above steps until the total number of Monte-Carlo trials is reached

and calculate the average vehicle speeds obtained from the trails.

Simulation Results without Noise

Simulating the LCR estimation method of mobile velocity using a received fading
signal that is not corrupted by noise is relatively straightforward. Assuming that
the maximum vehicle speed is 200 km/h, the carrier frequency is 2 GHz, then the
maximum expected value of the maximum Doppler frequency is 370.4 Hz. Following

the previous section, we can set the sampling rate to be 1600 Hz. Letting the input to
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Figure 3.6: Simulation procedure for LCR mobile velocity estimation

the fading signal generator corresponds to the desired vehicle speed, we can obtain the
output of the generator is a sequence of discrete-time fading signal samples, where
the number of samples to be processed is set to 2.69 x 10*. Simply following the
estimation procedure described in Figure 3.6, we can obtain the simulation results,
using Equations (3.59) and (3.57), where p = 1, and the number of terms of both
sumations is set to be 30. The number of Monte-Carlo trials is set to be 30. Table 3.4
and Figure 3.8 show the simulation results corresponding to various actual vehicle
speeds. Figure 3.7 shows the theoretical results and simulation results of LCR against

vehicle speed.

From Figure 3.7, we can find that the estimated LCR obtained from the sequence
of generated fading signals are significantly lower than the theoretical LCR value
when the real vehicle speed exceeds 100 km/h. This could result in underestimation
of vehicle speed, which is shown in Table 3.4 and Figure 3.8. The possible reason
for this problem could be a low sampling rate. Since the fading depends on vehicle
speed, the faster the vehicle, the larger the fading rate. If the sampling rate is not
large enough, level crossings would be missed by the sampling of the received analog
signal. We were using a sampling rate of 1600 Hz. The simulation results, using a
sampling rate of 3200 Hz, are shown in Table 3.5 and Figure 3.9. From the table
and figure, we can find that when we increase the sampling rate, the estimates of

vehicle speeds are closer to the actual values. Therefore, the sampling rate used in
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20 30 40 30 60 70 80
20.71 | 30.53 | 40.59 | 50.39 | 60.15 | 69.40 | 78.96

87.05 | 95.20 | 102.01 | 108.82 | 115.54 | 120.37 | 125.92

160 170 180 190 200
128.63 | 133.36 | 136.72 | 139.97 | 142.09

(km/h)
(km/h)
v (km/h) | 90 100 | 110 | 120 | 130 | 140 | 150
(km/h)
(km/h)
(km/h)

Table 3.4: LCR estimation results without noise, maximum vehicle speed: 200 km /h,

sampling rate: 1600 Hz, Monte-Carlo trials: 30

the LCR estimator is dependent on vehicle speed. The faster the vehicle, the larger
the required sampling rate. In a practical system, we can set a threshold of the
mobile speed due to the carrier frequency and maximum expected mobile speed. If
the estimated vehicle speed crosses this threshold, we must increase the sampling rate

and re-estimate the vehicle speed to obtain more accuracy.

Simulation Results in Additive White Gaussian Noise

We now simulate the LCR estimation system of the mobile speed with received fading
signal corrupted by additive white Gaussian noise. Equations (3.58) and (3.59) will
be used. In practical estimation system, however, since we do not exactly know the
signal-to-noise ratio, therefore, the use of Equation (3.58) is inconvenient. It will be
advantageous to use Equation (3.57) in the noisy case. This would imply that the use
of Equation (3.57) is robust in the estimation of mobile speed using received fading
signal regardless of additive noise. We will demonstrate the robustness by using this
equation in simulation of mobile speed in presence of additive noise.

Assuming that the maximum vehicle speed is 200 km/h, the carrier frequency
is 2 GHz, then the maximum expected value of the maximum Doppler frequency
is 370.4 Hz. Following the previous section, the bandwidth of the bandpass filter
could be set to be 800 Hz, then the sampling rate could be set to be 1600 Hz for the
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100 110 120 130 140 150
100.17 | 110.32 | 119.13 | 129.68 | 138.67 | 147.04

160 170 180 190 200
157.41 | 165.67 | 173.40 | 181.88 | 190.67

Table 3.5: LCR estimation results without noise, maximum vehicle speed: 200 km /h,

sampling rate: 3200 Hz, Monte-Carlo trails: 30
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Figure 3.9: LCR estimation results without noise, maximum vehicle speed: 200 km /h,

sampling rate 3200 Hz, Monte-Carlo trials: 30
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vehicle speeds lower than 100 km /h, and 3200 Hz for the vehicle speeds of 100 km /h
and above. Letting the input to the fading signal generator correspond to the actual
vehicle speed, we can obtain the output of the generator is a sequence of discrete-time
fading signal samples, where the number of samples processed is set to be 2.69 x 10%.

Simply following the estimation procedure described in Figure 3.6,we can obtain
the simulation results, using Equations (3.59) and (3.57), where p = 1, and the num-
ber of the terms of the sumations is set to be 30. The signal-to-noise ratio for each
speed is varied from 5 to 50 dB. The simulation results are shown in Figures 3.10
to 3.15. From these figures, we can observe that the estimated vehicle speeds are
close to the actual values. When the signal-to-noise ratio exceeds 30 dB, the simu-
lation results become quite accurate. Then, we can conclude that the robustness of
Equation (3.57) in the presence of additive white Gaussian noise is justified in SNR’s
of at least 30 dB.

Simulation Results in Impulsive Noise

In the previous section, we have demostrated that the LCR mobile speed estimator
is robust in the presence of additive Gaussian noise. However, as described in Sec-
tion 3.1.4, impulsive noise is sometimes encountered in practical application of mobile
communication systems. Therefore, in this section, we will simulate the LCR mobile
speed estimator in the presence of impulsive noise. Here we use the two-term mixture
Gaussian noise to represent impulsive noise as described in Section 3.1.4.

Assuming that the maximum vehicle speed is 200 km /h, the carrier frequency is 2
GHz, then the maximum expected value of the maximum Doppler frequency is 370.4
Hz. Following the previous section, the bandwidth of the bandpass filter is set to
be 800 Hz, then the sampling rate could be set be 1600 Hz for the vehicle speeds
lower than 100 km/h, and 3200 Hz for the vehicle speeds of 100 km/h and above.
Letting the input to the fading signal generator correspond to the actual vehicle speed,
we obtain at the output of the generator, a sequence of discrete-time fading signal
samples, where the number of samples processed is set to be 2.69 x 10,

Simply following the estimation procedure described in Figure 3.6, we obtain the

simulation results, using Equations (3.59) and (3.57), where p = 1, and the number
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Figure 3.12: Simulation results of actual vehicle speed of 70 km/h in presence of

additive Gaussian noise

109

108

107

=
o
13

105

=
o
B

Estimated vehicle speed (km/h)

=
o
w

102

101

100 1 1 1 1 1 1 1 1
5 10 15 20 25 30 35 40 45 50
Signal-to—noise ratio (dB)

Figure 3.13: Simulation results of actual vehicle speed of 100 km/h in presence of

additive Gaussian noise
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Figure 3.14: Simulation results of actual vehicle speed of 120 km/h in presence of

additive Gaussian noise
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Figure 3.15: Simulation results of actual vehicle speed of 150 km/h in presence of

additive Gaussian noise

42



of the terms of the sumations is set to be 30. The signal-to-noise ratio for each speed
is varied from 5 to 50 dB, € = 0.01, and £ = 100. The simulation results are shown
in Figures 3.16 to 3.21. The simulation results are close to the actual mobile speeds.
Then, robustness of Equation (3.57) in the presence of two-term mixture Gaussian

noise is justified.

3.4 Summary

We have derived the LCR mothod of the mobile velocity estimation and shown the
implementation procedure and simulation results of the LCR estimator in this chap-
ter. The simulation results show that the estimates of the mobile velocity are close to
the actual values, in the presence of white additive noise or two-term mixture Gaus-
sian noise. However, the sampling rate used in the LCR estimator depends on the
vehicle speed. In a practical system, a threshold may be set to adjust the sampling
rate. When the estimated mobile velocity exceeds the threshold, the sampling rate

should be increased and the mobile velocity should be re-estimated.
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Figure 3.16: Simulation results of actual vehicle speed of 20 km/h in presence of

two-term mixture Gaussian noise
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Figure 3.17: Simulation results of actual vehicle speed of 50 km/h in presence of

two-term mixture Gaussian noise
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Figure 3.18: Simulation results of actual vehicle speed of 70 km/h in presence of

two-term mixture Gaussian noise
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Figure 3.19: Simulation results of actual vehicle speed of 100 km/h in presence of

two-term mixture Gaussian noise
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Figure 3.20: Simulation results of actual vehicle speed of 120 km/h in presence of
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Chapter 4

Autocorrelation Function Estimator

We have described the level crossing rate (LCR) method of mobile velocity estimation
and shown implemention and simulation results in the previous chapter. From that
chapter, we noted that there is a drawback in using the LCR estimator. When the
mobile speed is large, it will be underestimated if the sampling rate of the continuous-
time received signal is relatively small. That is, the sampling rate must be either larger
or cannot be fixed when we are using LCR estimation. In this chapter, we propose
a new type of estimator using the autocorrelation function of discrete-time received
fading signal with a fixed sampling rate of the continuous-time received signal, which
is denoted as autocorrelation function (ACF) estimator for mobile velocity.

In Section 4.1, we describe the algorithm for the new ACF estimator, and we will

show implementation and simulation results in Section 4.2.

4.1 ACF Estimator Algorithm

As we have described in Section 3.1.2; the autocorrelation function (ACF) of the
in-phase and quadrature components of the discrete-time fading signal is a function
of the maximum Doppler frequency, which is proportional to the mobile velocity.
Therefore, the ACF is a function of the mobile velocity. From Equations (3.13)
and (3.57) or (3.58), we find that the relationship between the ACF of the in-phase
or quadrature components of the fading signal and the mobile velocity is much simpler
than the relationship between the LCR and the mobile velocity. It is therefore much

easier to derive a mobile velocity estimator using the relationship between the ACF
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of the in-phase or quadrature components of the fading signal and mobile velocity.
We will derive the algorithm without assuming additive noise first, then later present

an algorithm suitable in the presence of noise.

4.1.1 ACF Estimator without Noise

From Section 3.1.2, for Rayleigh distributed channels, the autocorrelation function of
quadrature components of fading signal is a product of the average envelope power

and a Bessel function, of which the maximum Doppler frequency f,, is the variable.

That is,
o11(m) = 0*Jo(27 fram) (4.1)
where 2 is the variance of the quadrature components of the fading signal. Jo(+) is

the zero-order Bessel function of the first kind.

Letting m in Equation (4.1) equal 0 and 1, respectively, we obtain

é11(0) = o?

4.2
ér1(1) = o2 Jo(27 f1n) (4.2)

Then the ratio ¢77(1)/¢11(0) can be used to solve for f,,,

o= 325 (5 -3

where J;'(+) is the inverse function of the zero-order Bessel function of the first kind.
We use the following maximum-likelihood estimators (MLE’s) of ¢;(1) and ¢7(0)

over N samples for the case of unstructured covariance matrices [25],

(0] = S ailhy’
ori(1) = ﬁ;m(iﬁ)xl(mm (4.4)

where x;(k) is the quadrature component of the received fading signal. Substituting
Equation (4.4) into Equation (4.3), we can obtain the estimate of Doppler frequency
fm. Using invariance [25], we note that fm is also a MLE of the Doppler frequency

fon-
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As we have known, the maximum Doppler frequency f,, is appropriate to the
moblie velocity v we are estimating, it is, therefore, straightforward to obtain the
mobile velocity using the relationship formula between these two quantities. Using

Equation (3.59), the estimated mobile velocity is derived as

ek én(l))
V= Jo - 4.5
2 F, (</5U(0) (45)

4.1.2 ACF Estimator with Noise

In the previous section, we have derived the ideal ACF estimator for mobile velocity
in the absence of noise. In fact, the received fading signal is always corrupted by
noise in practical mobile communication systems. It is, therefore, necessary to derive
an ACF estimator using the received fading signal corrupted by noise.

Being corrupted by noise, the quadrature components of the received fading signal,

yr(k) can be written as

yr(k) = ar(k) + ni(k) (4.6)

where nj(k) is the quadrature component of noise. Therefore, the autocorrelation
function of the quadrature components of the received signal becomes (see Sec-
tion 3.1.4)

1 sinwB,mT,

¢r1(m) = o> Jo(27 frm) + 5V gl (4.7)

for band-limited white Gaussian noise, where Ny is the power of the noise, B,, is the
bandwidth of the noise, T is the sampling period.

If the sampling period T is small, the second term of Equation (4.7) can be
simplified as 0 and 1/2(NoB,), when m equals 0 and 1, respectively. Thus, ¢;7(0)
and ¢7(1) become

611(0) = o°
orr(1) o Jo(27 1) +

ol (4.8)

[N

where 62 = NyB,,. Therefore, Equation (4.3) becomes

_ o) 1
=gt (¢H<0> %) -
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where
202

Yo = (4.10)

o2
is the signal-to-noise ratio (SNR).
If the recevied fading signal is corrupted by two-term mixture Gaussian noise, the

autocorrelation function of quadrature components of fading signal is written as (see

Section 3.1.4)

sintB,mT,

g1r(m) = UzJo(%fmm)Jr%[(1—e)z/2+em/2]

1 mnrB,mlT,
= o2 Jo(27 frum) + §N6M

am

(4.11)

am

where Nj = (1 — 6)1/2 + exr?.
Similarly, when the sampling period is small and letting m equal 0 and 1, we can

obtain

611(0) = o°

ori(1) = o*Jo(2nfn) + 50,7 (4.12)

(NN

where o/ 2 = N/B,. Solve for the maximum Doppler frequency using the ratio of

¢11(1)/611(0),
fu = g (¢11(1) - i) (4.13)

20" \onu(0)
where
202
I
V= (4.14)

is the signal-to-noise ratio (SNR).
Given the signal-to-noise ratio and using Equation (4.4), where x;(k) is replaced

by yi(k), we can obtain the MLE of f,,. Then we can solve for the mobile velocity

el (D) 1)
b= i = - — 4.15
2r (¢II(0) s -

where ~; is either the SNR in Equation (4.10) or in Equation (4.14).

estimate ©

Compared to the ACF method in this chapter, the covariance approximation
(COV) method [33] described in Section 2.3.2 uses the squared-envelope of the re-

ceived fading signal rather than the in-phase or quadrature components. Furthermore,
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the COV method assumes that the covariance f,,.(0) is known exactly for eliminating
the bias with respect to K. However, since p,,(0) is always unknown, it must be
estimated. Therefore, the estimation erorr of y,,(0) will introduce more bias to the

mobile velocity estimates.

4.2 Implemention and Simulation Results

We have described the algorithms of the ACEF estimators for mobile velocity in the
previous section. We will deal with implementation and simulation issues for the ACF

estimators in this section.

4.2.1 Implementation Procedures

The implementation procedure of the ACF estimator is slightly different from that
of the LCR estimator. We deal with the in-phase component of the received fading
signal instead of the envelope of the signal. Figure 4.1 shows the implementation
procedure of the mobile velocity using the received fading signal with the presence of
noise, where the noise could be additive white Gaussian noise or two-term mixture
Gaussian noise described earlier. As described in Chapter 3, we need to know how
the bandwidth of the bandpass filter is specified; how to choose the sampling rate Fj;

and how many signal samples should be performed to obtain the mobile speed.

Bandpass Filter Bandwidth B,

Assuming that we pass the in-phase or quadrature component of the received signal
r(k) =ri(k) +ni(k) (4.16)

through a lowpass filter with an impulse response h(k) and bandwidth B, /2, we
obtain the output z(k). In Equation (4.16), r;(k) denotes the in-phase or quadrature
component of the fading signal and n;(k) is the in-phase or quadrature component
of the additive noise. The variance of z(k) is given by

o0 = [ SnIHPY (417)

~B,/2
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Figure 4.1: Implementation procedure for ACF estimator for mobile velocity

where S,,(f) is the power spectral density of r(k), and H(f) represents the frequency
response of the filter. It can be shown that if H(f) is an ideal lowpass filter, the

variance of z(k) becomes

¢ (0)_ ¢TITI(O)+%NOBH7 Bn/2>Fm
b Grrer(0) = 2 (57, Sp (F)df + NoB,, Buj2 < F,

where N is the variance of noise.

We obtain the correlation of two adjacent output samples

60 = [0 o4 S H )P cos2m

_B,/2

Again, if H(f) is an ideal lowpass filter, we get

¢ (1) ~ ¢TITI(1)7 Bn/2 > Fm
T b () =2 fEm, S (D). B2 < By,

using the approximation

Bn/2
/ Nocos2r fdf ~0
/2

n

(4.18)

(4.19)

(4.20)

(4.21)

From Equations (4.18) and (4.20), we can conclude that we require B, /2 to be larger

than F,, for accurate estimation of ¢, (1). But we also need B, /2 to be as close
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to F,, as possible for accurate estimation of ¢, (0). This justifies our choice of
B, ~ 2F,, as the bandwidth of the bandpass filter.

As in Section 3.3.1, the maximum Doppler frequency F,, depends on the carrier
frequency F. and mobile velocity v. However, the carrier frequency is usually fixed
for a practical mobile communication system, the maximum Doppler frequency is
mainly affected by the mobile velocity v. Therefore, as long as the bandwidth of the
bandpass filter is set to be at least 2F,,, useful imformation will not be eliminated by

the bandpass filter.

Sampling Rate F|

From Section 3.3.1, if the sampling rate Fj is set to be at least 2B,,, which in turn
is larger than 4F,,. This makes the discrete-time maximum Doppler frequency f,,
is always less than 0.25 and guarantees the mobile velocity and LLCR are one-to-one
mapped. This is also true for the ACF estimation. When we limit f,, to be less than
0.25, the autocorrelation function of the received fading signal uniquely corresponds

to the mobile velocity.

Number of Samples N

In order to obtain an accurate estimate of the actual f,,, it is necessary to process
a sufficient number of signal samples. This can be accomplished by determining
the confidence interval for the f,,. By specifying the desired width of interval, the

necessary number of samples can be calculated using Equation (3.62).

Implementation Summary

The algorithm for estimation of mobile velocity using ACF method is summarized as

below,

o Design a bandpass filter with bandwidth B,,, for example, the Butterworth filter
described in Section 3.3.1,

e Bandpass-filter the received fading signal through the bandpass filter,
o Convert the bandpass received signal into its lowpass equivalent signal,
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e Sample the lowpass equivalent signal at the sampling rate of F; samples per

second,
e Obtain the MLE’s of ¢7;(0) and ¢;;(1) from N given samples,

e Calculate the desired mobile velocity from the obtained QEH(O) and QEH(O) and
Equations (4.5), or Equation (4.15) if we have known the SNR.

4.2.2 Simulation Results

In the previous section, we have introduced the algorithm and implementation pre-
cedure of ACF mobile velocity estimator, we will study the detailed simulation pro-
cedure and results in this section.

The simulation procedure is slightly different from the implementation procedure
shown in Figure 4.1, because we do not have the actual fading signal. The simula-
tion precedure is shown in Figure 4.2, where x;(k) and n;(k) are generated in-phase
component of fading signal and noise. Here we use Young’s fading signal generator
described in Section 2.4.3 to produce a fading signal, whose autocorrelation func-
tion matches the autocorrelation function of the actual fading signal very well [43].
Because the output of the generator is already discrete-time, we do not have to im-

plement the sampling procedure.

n (k)

X, (K) Yi(K) | caculaeMS v
@—» — -
v using ACF

Figure 4.2: Simulation procedure for ACF estimator for mobile velocity

Before doing the simulation, we discuss the specification of the parameters. It is
reasonable to assume that the maximum expected velocity vy, being 200 km /h if

the mobile stations are automobiles. Assuming that the carrier frequency is 2 GHz,
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we can obtain the bandwidth of the bandpass filter B,, the sampling rate Fy, which
are shown in Table 3.3. We should also set the total number of samples processed to
obtain an accurate estimate of vehicle speed. Assuming that the minimum expected
vehicle speed of 10 km/h, the digital maximum Doppler frequency f,, is 0.01158.
Using Equation (3.62) and setting the confidence interval to be 10% of estimated
fm, we can calculate the total number of samples processed N is 2.33 x 10*. The

parameters calculated are shown in Table 4.1.

I B, F, N
2 GHz | 800 Hz | 1600 Hz | 2.33 x 10*

Table 4.1: Parameters of ACF estimator

We will study the simulation results without noise, with additive white Gaussian
noise and with two-term mixture Gaussian noise. Since the fading signal and noise
are generated by computer, Monte-Carlo trials are used to smooth the fluctuation.

The simulation procedure is summarized as below,

o (Generate in-phase component of fading signal using Young’s generator according

to a specific vehicle speed,

e Generate in-phase component of bandlimited noise with bandwidth B, accord-
ing to a SNR value and add it onto the generated fading signal to create the

in-phase component of received signal at the mobile station
e Calculate the MLE’s of ¢;7(0) and ¢;7(1) over N samples, and
e Calculate estimated vehicle speed using Equation (4.5),
e Repeat above steps until reach the total number of Monte-Carlo trials and
calculate the average vehicle speeds obtained from the trials.
Simulation Results in the absence of noise

Following the simulation precedure depicted in Figure 4.2, except for the generation

of noise, and using parameters in Table 4.1, we obtain the simulation results in the
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absence of noise, which are shown in Table 4.2 and Figure 4.3. From the figure and

200
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= = =
) o N '
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Estimated vehicle speed (km/h)

[*2]
o

40

20

vkm/h | 10 20 30 40 50
o km/h | 10.03 | 19.89 | 29.84 | 39.83 | 49.82

v km/h 60 70 80 90 100
o km/h | 59.60 | 69.46 | 79.29 | 88.64 | 98.41

vkm/h | 110 120 130 140 150
o km/h | 107.82 | 117.19 | 126.44 | 135.35 | 144.31

v km/h | 160 170 180 190 200
0 km/h | 153.53 | 162.27 | 170.48 | 178.58 | 187.18

Table 4.2: ACF estimation results without noise

the table, we
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Figure 4.3: ACF estimation results without noise

can find that the estimated vehicle speeds match the acutal ones very
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well. All errors introduced are less than 10%. This implies that the correctness of
the ACF estimator is justified. Also, the use of a fixed sampling rate simplifies the

implementation of the ACF estimator of the mobile speed.

Simulation Results in the presence of AWGN

We have illustrated the simulation results of ACF estimator in the absence of noise
and found that the estimates of the mobile velocity are close to the actual values.
Now we will deal with issues of simulation in the presence of AWGN. Following the
simulation procedure depicted in Figure 4.2 and using the parameters in Table 4.1,
and letting the signal-to-noise ratio range from 5 to 50 dB, we obtain the simulation
results shown in Figures 4.4 to 4.9, where circle-lines represent ACF estimates and
star-lines represent LCR estimates. The sampling rates for both methods are 1600
Hz for the case of the mobile speeds are less than 100 km/h, and 3200 Hz for the case
of the mobile speeds are larger than 100 km /h.

These figures show that ACF estimates of the mobile speeds obtained from the
noisy signal are close to actual values for various SNR’s. Then, we can justify the
correctness of ACF estimator in the presence of AWGN. From these figures, we also
find that ACF estimates are more accurate than LCR estimates, especially in low
SNR conditions. However, when the actual mobile speeds and the SNR are large, the

LCR estimates are closer to actual mobile speeds.

Simulation Results in the presence of Impulsive Noise

For a practical mobile communication system, as described in Section 3.1.4, the re-
ceived fading signal is often corrupted by impulsive noise. Therefore, it is necessary to
simulate the ACF estimator in the presence of impulsive noise. Here we use two-term
mixture Gaussian noise to represent it. Following the simulation procedure depicted
in Figure 4.2 and using the parameters in Table 4.1, and letting the signal-to-noise
ratio range from 5 to 50 dB, e = 0.01, and & = 100, we obtain the simulation results
shown in Figures 4.10 to 4.15, where circle-lines represent ACF estimates and star-
lines represent LCR estimates. The sampling rates for both methods are 1600 Hz for
the case of the mobile speeds are less than 100 km/h, and 3200 Hz for the case of the
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mobile speeds are larger than 100 km /h.

These figures show that ACF estimates of mobile speeds obtained from the signal
corrupted by two-term mixture Gaussian noise are close to the actual speeds for
various SNR’s. Correctness of ACF estimator in the presence of two-term mixture
Gaussian noise is then justified. Compared to the LCR estimates, the ACF estimator
has much better performance in low SNR. However, when the mobile speeds and SNR

are large, LCR estimates are more accurate than ACF estimates.

4.3 Summary

In Section 4.1, we described the algorithm of ACF method of mobile velocity. We
also showed implementation procedure and simulation results of the ACF estimator
in Section 4.2. From the simulation results, we learned that ACF estimates are
accurate. Compared to the LCR mobile velocity estimator, the ACF estimator uses a
single sampling rate of the continuous-time received signal for different mobile speeds,
which simplifies the implementation of the mobile velocity estimation. Furthermore,
ACF estimates of mobile speeds are more accurate than LCR estimates in low SNR
conditions. When mobile speeds and SNR are large, the LCR estimator has better

performance.
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Figure 4.10: Simulation results of actual vehicle speed of 20 km/h in presence of
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Chapter 5

Application to Mobile Location Tracking

5.1 Introduction to Mobile Geolocation

Emergency services for cellular phone users have drawn significant attention over
the past few years. In 1996, in order to achieve adequate provision of emergency
services, the Federal Communications Commission (FCC) in the U.S. announced its
mandate for enhanced emergency services (E-911) for cellular phone users. The wire-
less services providers, including cellular, personal communications services (PCS)
and special mobile radio (SMR), are required to provide latitude and longitude es-
timates of the 911 caller’s position within an accuracy of 125 m RMS in 67 percent
of all measurement by October, 2001[13]. Recently, to conform the FCC requirement
being concerned primarily with the ability to locate mobile telephones originating

emergency phone calls is the main goal for implementing position location.

Geolocation systems may be loosely separated into unilateral systems and multi-
teral systems [30]. In a unilateral system, a mobile unit estimates its own position
based on received signal from transmitters at known locations. The Global Position-
ing System (GPS) is the classic example of unilateral system. In a multilateral system,
an estimate of the mobile location is based on a signal transmitted by the mobile and
received at multiple fixed base stations. Most cellular geolocation systems are mul-
tilateral, where the estimate of the mobile’s position is made by the network, rather
than by the mobile itself. In this section, we review some basic mobile positioning

technologies that are available for accurate position location in recent years.
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5.1.1 Global Positioning Systems

A GPS receiver makes the appropriate signal measurements from signals transmitted
from a network of 24 satellites and uses these measurements to determine its position
[11, 15, 18, 21]. These satellites with precise timing transmit L-band signals (cen-
tered at 1575.42 MHz) to earth. The receiver measures the time delay between the
signals leaving the satellites and arriving at the receiver with a built-in clock. The
exact distance from the receiver to each satellite is then calculated. A sphere about
each satellite can be described by the calculated distance from each satellite to the
receiver. If three satellites are visible to the receiver, the receiver’s position lies at
the intersection of these three spheres, providing coordinates in latitude, longitude,
and altitude. In practice, signals from the fourth satellite are used to correct receiver

clock errors, due to the lower-accuracy built-in clock of the receiver.

Commercial GPS receivers that are available now accurately determine position to
within approximately 50 m [18]. However, wireless services providers are not intending
to use GPS as their principal geolocation technology. This may be due to cost, size,
complexity, and power consumption associated with integrating a GPS receiver into
a handset and to the susceptibility to radio frequency interference. Furthermore, the
reliability of GPS measurements is greatly reduced in urban environments, when one
or more satellites are obscured by buildings, or when the mobile antenna is located

inside a vehicle.

5.1.2 Cellular Geolocation Systems

Cellular geolocation relies on the existing infrastructure of cellular base stations. It
has some advantages over GPS since it does not need the extra GPS equipment at the
mobile. Geolocation systems estimate the target mobile’s position by monitoring the
reverse signal channel transmissions from the mobile. Multiple base stations receive
the mobile signal, and the mobile position can be determined that are based on either
angle of arrival (AOA) estimates from each base station, time of arrial (TOA), or time
difference of arrival (TDOA) measurements between multiple base stations, or their

combinations.
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Angle of Arrival

Angle of arrival, also called direction of arrival (DOA), has been used widely in
surveying, radar tracking, and vehicle navigation systems [23, 34]. The position of
the desired target mobile can be found by the intersection of two lines of bearing
(LOBs), each formed by a radial from a base station to the target mobile. Instead of
using the intersection of just two lines, many pairs of LOBs are used in practice, and
highly directional antennas are required, which makes AOA estimation difficult at the
mobile end. Figure 5.1 shows an AOA method using three base stations located at
points (A, B, C). This method may be solved using trigonometry or analytic geometry,
or through table lookup [23].
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Figure 5.1: AOA method using three base stations.

AOA is usually determined at a base station by electronically steering the main
lobe of an adaptive phased array antenna in the direction of the arriving mobile
signal. In practice, two closely spaced antenna arrays are used to determine the exact
direction of peak incoming energy (Figure 5.2). In general, the antenna element
spacing used in AOA measurement is on the order of half the wavelength of the
signal carrier frequency. The relatively close spacing of the antenna elements allows
the time delay seen by a signal as it propagates across the array to be modeled as a

phase shift. This is referred to as the “narrowband model”.
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incident plane
wave

Figure 5.2: Hlustration of a plane wave incident on a linear equispaced array.

For high SNR, the most straightforward AOA estimation approaches are phase
interferometry and beamforming. However, they will fail for strong co-channel in-
terference and/or multipath [30]. Maximum likelihood (ML) methods work well in
multipath but implementation of these methods is very complicated [23, 37, 44]. To
simplify the implementation of the MLL methods, Xu and Liu proposed subspace-based
algorithms combining spatially smoothed covariance matrix [42].

For code-division multiple access (CDMA) signals where exists very large number
of co-channel signals, all of the AOA estimation algorithms proposed so far will fail,
since they are assumed that the number of antennas in the array exceeds the number
of co-channel signals [3]. However, by assuming that the CDMA signal may be de-
modulated with low bit error rate (BER), an estimated waveform may be substituted
for the known waveform. One implementation of this approach uses the despread soft
decisions from each antenna together with the hard decisions made by the existing
CDMA demodulation process. Results presented in [3] show that accurate AOA esti-

mates of CDMA waveforms can be obtained even in highly overloaded environments.

Time of Arrival

Time of arrival (TOA) is the second primary method for determining position lo-

cation. Since electromagnetic waves propagate at the constant speed of light in a
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free-space medium, the distance from the mobile target to the receiving base station
is directly proportional to the propagation time. If the signal propagates in time ¢;
from the target transmitter to the ith fixed receiver, then the receiver lies on a sphere

of radius R;, where

Ri == Cti (51)

It TOA measurements are made at a second base station at a second location,
the target position can be determined to lie on a circle. The position of a trans-
mitter is then uniquely determined by the intersection of three spheres using TOA

measurements from three base stations [12, 36].

Time Difference of Arrival

In general, direct TOA requires all transmitters and receivers in the system have
precisely synchronized clocks, for example, just 1 ps of timing error could result in
a 300 meter position location error. Furthermore, the transmitting signal must be
labeled with a timestamp in order for the receiver to discern the distance the signal
has traveled. Therefore, time difference of arrival (TDOA) measurements are a more
parctical means of position location for commercial systems [5].

The idea behind TDOA is to determine the relative position of the mobile trans-
mitter by examining the difference in time at which the signal arrives at multiple base
station receivers, rather than the absolute arrival time. Therefore, each TDOA mea-
surement determines that the transmitter must lie on a hyperboloid with a constant

range difference between the two receivers. The equation of this hyperboloid is given

by

Rij = J(Xi—2)2+ (Yi—y)2 4+ (Z — )
(X =22+ (Y —y)2 4 (2 — 2)? (5.2)

where R, ; is the length difference between two base stations to the mobile transmitter,
the coordinates (X, Y;, Z;) and (X;,Y;, Z;) represent the fixed receivers ¢ and j, and
determine the unknown coordinates (x,y, z) of the target transmitter [14]. A mobile

location can be estimated from the intersection of two or more hyperboloids generated
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from three or more TDOA measurements. Figure 5.3 illustrates mobile position

estimation using TDOA measurements from three base stations.

R2- Ry
1

R3' R1

Figure 5.3: Mobile position location solution using TDOA measurements from three

base stations, where 57, 5,5, and S35 represent the fixed base station locations.

Using the TDOA measurements, the transmitted signal does not have to contain a
timestamp, and only base stations are required to have precisely synchronized clocks.
This makes TDOA more realistic than TOA, which requires each mobile unit to have
an accurate clock.

A two-stage process is required to obtain position estimates from TDOA measure-
ments. First, we must accurately compute the TDOA estimates from noisy signals,
and then we determine the mobile position from the TDOA estimates and Equa-
tion (5.2). Generalized cross-correlation methods and filtering techniques are usually
used in the first stage [30]. Once TDOA estimates are available, the position of the
mobile may be located by substituting the corresponding range difference estimates
R, ; into the hyperbolic equations, Equation (5.2), and solving for the Cartesian co-
ordinates of the mobile. There exist several methods to solve for the hyperbolic

equations, which are summarized in [30].
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5.2 Mobile Motion Tracking Using Kalman Fil-

tering

We have introduced static mobile geolocation techniques in the previous section. In
order to track to motion of mobiles, a Kalman filter can be applied. In this section,
we introduce the mobile motion tracking application in terms of Kalman filter. We
then try to improve tracking performance through the use of mobile velocity estimates
which were developed in previous chapters.

Assuming that we are estimating the motion trajectory of a mobile with a constant

velocity v. Along the - and y-axis, we know that

d*x(t) B
R 0 (5.3)
and
d*y(t)
e =0 (5.4)

where x(t) and y(t) are the position of the mobile at 2 and y-axis, respectively.
In practice, the velocities undergo at least slight changes. These can be modeled

by the continuous-time white Gaussian noises 0,(%) and v,(t), respectively. Therefore,

d2:1;(t) .
T 0,(1) (5.5)
and
d*y(t) _ .
Iy (5.6
where
E{o,(t)} =0 (5.7)
E{ﬁx(t)ﬁx(T)} = Qx5(t - T)
and

(5.8)

where 0,(t) and 9,(t) are assumed mutually independent, ¢, and ¢, are variances of

0,(t) and v,(1), respectively.
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The state vector corresponding to Equations (5.5) and (5.6) is

(1) ] (5.10)

where

(5.11)

g

Il
o o o o
o o o o
o o o &
o o = o

and

(5.12)

o = O O
o o O

Using Equations (2-192)—(2-199) in [4], the discrete-time state equation with sam-

pling period T is

Xk+1 = FXk + v (513)
where
1 0 17, 0
01 0 1
F = Al = (5.14)
00 1 0
00 0 1 |

and vy is a 4 X 1 process noise vector. For simplicity, we assume that v is a white

(Gaussian noise vector with

E{vi} =0 (5.15)
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and the covariance matrix Q is

[ 12
315G

0
0
0

0

% T52 ql/
0
0

0

0
Tsq.

0

0
0
0

Tsqy |

(5.16)

5.2.1 Mobile Motion Tracking without Velocity Measure-

ment

If we only know x) and ¥, the mobile position measurements at - and y-axis, the

measurement equation for mobile motion tracking can be written as
yr = Hxp + wy (5.17)
where x; is the state vector, y;. is the measurement vector

Tk

Yk
and wy, is the measurement noise vector,
Wy, k
Wi = ’ (519)
Wy k
with
E{w,} =0
twi) (5.20)
where
: 0
R=| (5.21)
0 r,

ry, Ty are variances of w,; and w,, respectively, and w’ is the transpose of vector
w.

To implement the Kalman filter algorithm, we should first initialize the state
vector x and its covariance matrix P. Then we obtain the one-step prediction by
taking expection of Equation (5.13) conditioned on Y* 2 {y(4),7 =1,...,k}, which
results in

73



and the one-step prediction covariance matrix is
Piip = FPF' 4+ Q (5.23)

where F’ is the transpose of matrix F.
The predicted measurement follows similarly by taking the expected value of Equa-

tion (5.17) at time k + 1, conditioned on Y.

Vit = HXppipp (5.24)
and the Kalman gain is
Kit1 = Py H'[HP, 1, H + R] (5.25)
and thus
Xkt = Xk + Kipa [yeer — HX g (5.26)

Finally, the state covariance matrix at time &k + 1 is
Piyipsr = I — Ko HIP i [T — Ko HY + K RKG 4 (5.27)
The algorithm implementation procedure is summarized as bellow:
1. Initialize the state vector Xy and its covariance matrix Py;
2. Obtain the time update using Equations (5.22) and (5.23);
3. Obtain the measurement update using Equations (5.24) — (5.27);

4. Go back step 2 and repeat until all samples have been processed.

5.2.2 Mobile Motion Tracking with Velocity Measurement

If we have the position and velocity measurements, x, y. and v, of the mobile, the

measurement equation can then be written as

yr = hlk,xx] + wy (5.28)
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where

T
Ye=| (5.29)
Vg
and
Ty
h[] = i (5.30)

2 2
\/ vx,k + vy,k

and the measurement noise vector

Wy, |
Wk = w%k (531)

Wy, k
is assumed as a white Guassian noise vector with

E{Wk} =0

(5.32)
where
ry,. 0 0
R=10 r, 0 (5.33)
0 0 r,

and r, is the variance of w, .

Since the measurement equation (5.28) is nonlinear, we have to linearize it be-
fore we implement the Kalman filter algorithm. It is done by replacing H in Equa-
tions (5.24)—(5.27) by the Jacobian of h[-] with respect to the state vector:

dhl[k
hy = 2R (5.34)
dxk Xp=Xy
Substituting Equation (5.30) into (5.34), we obtain
10 0 0
her=|0 1 0 0 (5.35)
0 U k Uy k

2 2 2 2
\/U.r,k-l—vy,k \/U.r,k-l—vy,k

Therefore, the implementation procedure is the same as the one in the previous

section, but using hy ; rather than H in Equations (5.24)—(5.27).
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5.3 Simulation and Comparison

We have introduced two mobile motion tracking models in the previous section, one is
without mobile velocity measurement and another uses mobile velocity measurement.
We will simulate these two motion trackers and compare their performance in this
section. At the very first, the measurement covariance matrices for each tracker and
the process noise covariance matrix should be determined. Then the initial state

estimate is specified.

5.3.1 Measurement Noise Covariance Matrices

If position error produced by mobile geolocation methods described in Section (5.1)
is A meters and it is uniformly distributed with zero mean, its variance is then
, A

= (5.36)

g

Assuming that position errors on z- and y-axis are the same, values of r, and
ry in Equation (5.21) and (5.33) corresponding to various values of A are listed in

Table (5.1).

A (m) 20 | 40 100
re. 7y (m?) | 33.33 | 133.33 | 833.33

Table 5.1: Various position error variances

From previous two chapters, we have known that both of LCR and ACF estimates
of mobile velocity have estimate errors within 10% of the actual mobile velocity. We

then list mobile velocity measurement error variances r, in Table (5.2).

5.3.2 Process Noise Covariance Matrix

The process noise covariance matrix Q in Equation (5.16) is related to sampling
period T, and ¢,, q,, the variances of acceleration error on a- and y-axis, respectively.

Here we assume that

T,=1 (5.37)
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pedestrian | slow moving | fast moving | faster moving
vehicle vehicle vehicle
v (km/h) 5 20 50 100
r, (m?/s?) 0.0064 0.1029 0.6430 2.5720

Table 5.2: Various velocity error variances

Then Q is determined mainly by ¢, and g,.

One must notice that the Kalman gain is directly proportional to the process
noise covariance matrix. However, if the Kalman gain is too small, the contribution
of the current measurement will be ignored. On the other hand, if the Kalman gain
is too large, small residual errors will be magnified, thus affecting the accuracy of the
updated state estimates.

Unfortunately, there does not exist any sysematic procedure to determine the
“proper amount” of the process noise covariance matrix. The following process noise

covariance matrix will be used in all the simulations.

[ 0.005 0 0 0 |
0 0005 0 0
Q- (5.38)
0 0 001 0
0 0 0 001

5.3.3 Initial State Estimates

A Kalman filter need to be initialized. Specifically, inital values for the estimated
state vector and error covariance matrix must be given. The following formula is

used in specifying initial state estimates:

Xo = [1 £ (14 r)e]xo (5.39)

where r is a random number uniformly distributed in the interval (0,1) and e is used
to control the magnitude of the errors. By setting e = 0.2, for example, errors can be

introduced in the range 20%-40%. ¢ = 0.2 will be used for all the simulations.
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The initial error covariance matrix is computed as

($071 - ¢%071)2 0 0 0
0 Tog — $0.2)? 0 0
P, = (%02 = %o2) (5.40)
0 0 (1’073 — JA?073)2 0
L 0 0 0 ($074 — JA/’OA)

5.3.4 Simulation Results

We assume that the mobile is traveling along a line y = = on a z-y plane, and the
initial position of the mobile is (1000,1000). Then we can obtain the estimated initial
state vector and its error covariance matrix using Equation (5.39) and (5.40). Due to
the correlation between computer-generated “pseudo” white noise samples, we have
to use Monte-Carlo method to get rid of the correlation. For all the simulations, we

set the number of Monte-Carlo trials be 50.

According to Table 5.1 and 5.2, we simulate the mobile trackers with various ve-
locities and position errors. Figure 5.4-5.51 depict the simulation results. In each
figure, the solid line and dashed line represent simulation results of mobile motion
tracker with and without mobile velocity measurement, respectively. From these fig-
ures, we see that when the mobile is moving slowly (i.e., velocity at 5 or 20 km/h), the
mobile velocity measurements do not improve the performance of the mobile motion
tracker. On the other hand, when the mobile velocity is large (i.e., velocity at 50 or
100 km/h), the performance of the mobile motion tracker is improved significantly

with velocity measurement being taken into account.

This phenomenon occurs becuase of the relatively large position measurement
errors. With relatively large position measurement errors, the mobile velocity mea-
surements at 5 or 20 km/h will not change the Kalman gain in Equation (5.25)
significantly. Therefore, the state estimates remain the same as those without veloc-
ity measurements. Once the mobile velocity measurements are large (for example,
50 or 100 km/h), the Kalman gain will be affected accordingly, then we obtain more

accurate state estimates than those without velocity measurements being considered.
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5.4 Summary

In this chapter, we have applied the mobile velocity estimates in mobile motion track-
ing problem. Then we simulated the mobile motion trackers and compared the per-
formance of trackers with and without velocity measurements. From the simulation
results, we found that when the mobile is moving slowly, the velocity measurements
do not increase the accuracy of the mobile position estimates. However, when the
mobile velocity is large, the performance of mobile motion tracker with velocity mea-

surements being taken into account is improved significantly.
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Figure 5.45: x position bias, mobile velocity: 100 km /h, position measurement error:
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Figure 5.46: y position variance, mobile velocity: 100 km/h, position measurement
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Figure 5.47: y position bias, mobile velocity: 100 km /h, position measurement error:
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Figure 5.50: y position variance, mobile velocity: 100 km/h, position measurement

error: 100 m
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Chapter 6

Conclusion and Future Work

In a mobile radio system, the received signal at the mobile always consists of multiple
components from different directions and with different delays. Small changes in the
differential delays introduced by the moving mobile will cause large variations in the
envelope amplitude and phase of the composite received signal. This phenomenon
is called multipath fading. The fading depends on the mobile velocity. The faster
the mobile, the larger the fading rate of received signal. Therefore, the statistical
characteristics of the fading signal can be used for mobile velocity estimation. At the
beginning of this thesis, we introduced the mathematical model for continuous-time
fading signal derived by Rice et al. and some mobile velocity estimation techniques

based on it in the background chapter.

The main contribution of this thesis is the development of discrete-time fading sig-
nal model and level crossing rate (LCR) and autocorrelation function (ACF) estima-
tion techniques for mobile velocity using a discrete-time fading signal. In Chapter 3,
we introduced the definition of level crossings for discrete-time model, and then de-
fined the level crossing rate over NV given samples as the ratio of the expected number
of level crossings to the number of samples. From the statistical characteristics of the
discrete-time fading signal model, we obtained an expression for LCR as a function
of the signal envelope and the mobile velocity. In Chapter 4, we derived the ACF
method by exploiting the feature that the autocorrelation function of the in-phase

and/or quadrature components of fading signal are functions of mobile velocity.

Based on our simulation results, we are able to conclude that both methods can
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obtain accurate estimates of mobile velocity. We also carried out a comparison be-
tween these two methods. We found that by using the ACF method, we obtained
more accurate results, especially when the SNR is small. Furthermore, if the sampling
rate of the continuous-time fading signal is relatively small and the actual mobile ve-
locity is large, the LCR method would underestimate the actual values. However,
when we increase the sampling rate, we still can obtain accurate results. This leads
to using different sampling rates for different mobile velocities in the implementation
for LCR method. ACF method overcomes this drawback of LCR method. It uses a
single fixed sampling rate for various mobile velocities.

In Chapter 5, we applied the estimates of mobile velocity into the mobile motion
tracking application. We proposed a simple Kalman filter tracking model taking into
account the mobile position and velocity measurements. We then compared it with
the tracking model using only position measurements. From the simulation results, we
found that when the mobile velocity is large, the performance of the velocity-based
mobile motion tracker is significantly better than the tracker only using position
measurements. On the other hand, when the mobile is moving slowly, there is no

obvious difference in the performance of these two mobile motion trackers.

Suggestions for Future Research

The purpose of the introduction of the mobile tracking model in Chapter 5 is to
illustrate the advantages of employing the mobile velocity measurements in addition
to the mobile position measurements. The simulation results show that we have
accomplished this purpose. However, this model should be further refined in order to
be used in practical mobile motion tracking applications. For example, we assumed
that the measurements are independent of each other and the measurement noise
matrix is time-invariant for the sake of simplicity. One should develop a real-world
model which takes correlated measurements and time-varying measurement noise.
We have observed that there is no improvement in adding mobile velocity estimates
to the tracker for the case of small mobile velocity. This observation should be

investigated in more detail.
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