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Abstract

This thesis is concerned primarily with the development of algorithms for estimating

and segmenting image motion �elds that contain discontinuities. An error-weighted

regularization algorithm for image motion �eld estimation is proposed as a com-

putationally attractive alternative to stochastic optimization based schemes. Block

matching errors in the local motion measurement process are used in the regulariza-

tion functional in order to avoid oversmoothing across motion boundaries. A second

algorithm, anisotropic regularization, improves on the local measurement process, by

employing alternative matching criteria and matching window organization. A se-

lective con�dence measure derived from anisotropic local measurements is used to

further improve the error-weighted regularization.

For moving object estimation and segmentation needed in object-oriented video

coding applications, a new optimality criterion based on the minimum description

length (MDL) principle is developed. In the proposed MDL estimator, the cost to be

minimized is the sum of the ideal coding lengths for the motion parameters, bound-

aries and motion-compensated predictive errors of all moving objects in a scene. An

optimization procedure to obtain a sub-optimal MDL estimator is proposed based on

a region-merging framework. A number of experimental comparisons has shown a

signi�cant ideal coding rate reduction of the object-oriented coding scheme using an

MDL estimator over a standard block-oriented scheme.
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Chapter 1

INTRODUCTION

1.1 MOTIVATION

Moving objects in a scene cause temporally varying image intensity patterns in the

image plane of a viewing camera. The analysis of motion in image sequences obtained

from such a viewing camera has long been an important component of computer vision

and image processing [2, 39]. Accurate image motion estimation or moving object

estimation is crucial in many applications of image sequence processing. Applications

such as object tracking in surveillance or navigation usually begins with the estimation

of image-motion �elds and follows by the detection of critical regions of a scene.

E�cient image coding and motion-compensated temporal �ltering can be realized

by using image motion estimation [13, 43, 46, 61]. Image motion is also needed for

frame-frequency conversion of television signals and temporal interpolation of missing

or unknown images in the sequence [5, 47, 86]. Recently, object-oriented coding

has promised a further coding rate reduction over traditional block-oriented motion

compensated coding schemes and thus has drawn wide attention in the �eld of image

compression [37, 50, 62, 60, 81].

This thesis addresses the problems of moving object estimation for image motion

�elds that may contain discontinuities. Motion discontinuities which occur in real
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images are major error sources in image motion estimation. The quality of recovered

images from motion-compensated temporal interpolation is directly related to the ac-

curacy of image motion estimation. Moving object estimation and segmentation is a

another way to deal with motion discontinuities since the task of moving object esti-

mation is essentially the problem of motion-based scene segmentation and the motion

boundaries can be explicitly estimated. The output of moving object estimation also

provides necessary information for object-oriented coding schemes.

1.1.1 Existing approaches and their drawbacks

The estimation of image-motion �elds poses signi�cant theoretical and practical prob-

lems [2, 6, 19, 47]. One of these problems is the random sensor noise present in the

real images. The local motion measurements are often corrupted by this random

noise. However, even in the absence of noise, the image-motion �elds cannot be

uniquely determined by the local measurement process and the computation may

turn out to be very ill-conditioned. This nonuniqueness is often referred to as the

aperture problem, where only the velocity component parallel to the spatial image

intensity gradients can be locally recovered. A solution to the aperture problem is to

use second-order derivatives of pixel intensities, but the set of points where second-

order derivatives can be reliably computed locally is sparse for most real images. This

sparsity of motion measurements results in a smoothing or interpolation problem in

the computation of a dense image-motion �eld. In order to compute image motion

uniquely, constraints on the solution space are therefore required in the form of ad-

ditional assumptions, such as smoothness of image-motion, or constancy about the

physical world. Such constraints may be introduced using a regularization theory

framework [3, 36, 58, 74, 75]. One drawback of regularization is its lack of consider-

ation of the presence of motion discontinuities due to multiple moving objects in the

image sequences. The standard regularization formulations often smooth over motion

2



boundaries and result in degraded image motion estimates [36].

In principle, to prevent smoothing over motion discontinuities, motion bound-

aries may be detected prior to motion-�eld estimation. However, motion boundary

detection depends on a prior motion �eld estimate, and therefore requires a more

sophisticated and computationally complex approach [77, 84].

Motivated by Geman and Geman's \line process" modeling technique [22], Konrad

[47] proposes a displacement �eld model with discontinuities to avoid oversmoothing

problem in a Bayesian estimation framework. The model combines the displacement

�eld with a binary (on/o�) stochastic line process. When a line element between

adjacent pixels is turned on, the displacement vectors across the line element will not

be smoothed. Conversely, when the displacement vectors across a line element site

di�er considerably, the line element at this site is turned on. A similar line process

formulation is reported in [31, 32] and a deterministic version of a line process has also

been proposed [41]. The problem with these algorithms is the high computational cost

involved in the optimization process even if deterministic solution methods are used.

Also, line process parameter estimation is data-dependent and di�cult to justify in

general.

1.1.2 The application-oriented viewpoint

The performance of an image-motion estimation technique should depend on the na-

ture of the subsequent processes that will interpret or use the estimates. At present,

most image-motion estimation algorithms are designed separately from the subse-

quent processes. The optimality criteria of the solution do not relate to later pro-

cesses. For example, the mean-squared error criterion used in most regularization

functionals is intuitively appealing but is hard to justify when image motion esti-

mates are used for motion compensated image coders, since subjective qualities of

the recovered images to humans are not measured by mean-squared error [50].
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When the subsequent process is object-oriented image coding, a natural concern

of moving object estimation is how e�cient the encoding results will be in terms of ei-

ther coding length to a given distortion or image distortion with given coding length.

If the moving object estimator is designed only to minimize prediction errors, the

coding cost for prediction errors may be small but the cost of encoding the moving

object parameters may be high and an overall ine�cient coding of the images might

result. This thesis proposes to use the minimum description length (MDL) principle

[69] as a new framework in which a combined moving object estimation and seg-

mentation problem for image sequence coding is solved. The criterion established by

the MDL principle serves the very purpose of image coding process. Speci�cally, the

MDL principle has been applied in this thesis to object-oriented motion-compensated

predictive image coding.

1.2 Thesis outline

This thesis addresses the problems of moving object estimation and segmentation

for image motion �elds that may contain discontinuities. An adaptive regularization

technique which utilizes information provided in the local motion measurement pro-

cess and the application of the MDL principle to the moving object estimation and

segmentation problem are the two major contributions of this work.

In Chapter 2, relevant background on image motion �eld estimation is �rst pre-

sented, followed by a survey of existing techniques for measuring local image motion

including di�erential, matching, and spatiotemporal �ltering approaches. Then, reg-

ularization theory and its application to image-motion �eld estimation, speci�cally,

regularization for discontinuous motion �elds, are discussed.

In Chapter 3, an error-weighted regularization algorithm for image-motion �eld

estimation from image sequences is presented. First, we discuss the essential features

and drawbacks of a regularization framework for the problem of image-motion �eld
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estimation. Then some arguments are given as to why a block-matching technique

is chosen as the local measurement process. Following this is an examination of the

properties of block-matching errors, motion boundary types and derived con�dence

measures associated with local motion vectors. The error-weighted regularization al-

gorithm is then described in detail. The chapter concludes with experimental results

which compare performance between the new algorithm and conventional regulariza-

tion schemes.

Chapter 4 presents an alternative to the error-weighted regularization scheme

presented in Chapter 3 based on a straight forward improvement to the local mea-

surement process. First, a brief description of piece-wise continuous functions is

presented. The concept of anisotropic regularization is then introduced with a de-

tailed one-dimensional example. A selective con�dence measure is introduced based

on multiple o�-centered sub-window matching scheme (MOW) and the sum of ab-

solute di�erence (SAD) criterion. Finally, experimental results are provided which

demonstrate the improved performance over existing schemes, as well as a comparison

to error-weighted regularization.

Chapter 5 begins by motivating the use of the minimum length description (MDL)

principle in moving object segmentation and estimation. An introductory discus-

sion of motion-compensated predictive coding then follows, including brief overviews

of block-oriented and object-oriented coders. Existing approaches to object-oriented

coding and, more generally, moving object estimation and segmentation are reviewed.

Section 5.3 describes the MDL principle in general. A philosophical comparison be-

tween regularization and the MDL estimation is included together with a summary of

the advantages of the MDL principle for moving object segmentation and estimation

problems. Existing applications of the MDL principle to the problem of single image

segmentation based on intensity information are also discussed.

In Chapter 6, we �rst formulate the moving object estimation problem using the
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MDL principle for scenes with single and multiple moving objects. The ideal coding

length functions for motion parameters, object boundaries and motion-compensated

predictive errors are derived. An optimization procedure to obtain a sub-optimal

MDL estimator is then proposed based on a region-merging framework. The issue of

motion parameter estimation within �xed object boundaries is also discussed. Sec-

tion 6.3 describes experimental comparisons of the block-oriented and object oriented

coding schemes, and assesses the coding rate reduction of the object-oriented cod-

ing scheme over a block-oriented scheme. The chapter ends with a discussion of the

important implementation issues required for a practical MDL estimator.

Finally, Chapter 7 gives a summary of the results presented in this thesis. The

contributions of the thesis and some open problems for future investigation are also

included.
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Chapter 2

Image motion �eld estimation

In this chapter, relevant background on image motion �eld is �rst presented, followed

by a survey of existing techniques for measuring local image motion vectors which

include di�erential approaches, matching approaches, and spatiotemporal �ltering

approaches. Then, regularization theory and its application to image-motion �eld

estimation, including regularization with discontinuities, are discussed. The material

presented in this chapter serves as background mainly for Chapters 3 and 4. The

relevant background to moving object estimation and segmentation is deferred to

Chapter 5.

2.1 Image motion �eld

When objects move in front of a camera, or when a camera moves through a �xed

environment, there are corresponding changes in the image intensity pattern formed

in the image plane of the viewing camera. These changes can be used to recover

the relative motion between objects and camera as well as the shapes of the objects.

As a �rst step towards these goals, the image-motion �elds, which represents the

perspective projection onto the image plane of the true 3-D velocity �eld of moving

objects, are usually �rst estimated.

To de�ne image-motion �eld explicitly, a camera centered Cartesian coordinate
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system (X;Y;Z)for the 3-D real world is assumed in what follows. The Z axis is

directed along the viewing direction. The image plane of the camera is normal to the

Z axis at unit distance from the origin (here unit focal length is assumed). Then the

image coordinate system (x,y) has its origin at (0,0,1). The x and y axes are parallel

to the X and Y axes, respectively. In the perspective projection geometry, the image

of a point (X,Y,Z) is formed by drawing a line from it to (0,0,0) which intersects the

image plane at (x,y), therefore

x = X=Z y = Y=Z: (2:1:1)

At a particular instant in time, suppose that a point p in the image corresponds

to some point P on the surface of an object. The two are related by the projection

equation (2.1.1) in the case of perspective projection. If a set of object points is

moving in the scene, every corresponding image point will move according to the

projection equation. In this way, a vector can be assigned to every image point.

These vectors constitute the image-motion �eld of the moving object.

As an example of a closed-form expression for the image-motion �eld in the case

where the object is undergoing a rigid body motion with a rotational velocity 
 =

(


X

;


Y

;


Z

)

T

and a translational velocity V = (V

X

; V

Y

; V

Z

)

T

, the instantaneous

velocity (

_

X;

_

Y ;

_

Z)

T

of a point P = (X;Y;Z)

T

is given by [2]
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(2:1:2)

The corresponding point p in the image plane then moves with a velocity u = (u; v)

given by

u = (x

V

Z

Z

�

V

X

Z

) + (xy


X

� (1 � x

2

)


Y

+ y


Z

v = (y

V

Z

Z

�

V

Y

Z

) + ((1 + y

2

)


X

� xy


Y

� x


Z

:

(2:1:3)

It is clear from (2.1.3) that the image motion vector u depends on the surface depth

Z of the moving object. When moving objects are far enough from the camera or
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the surface is smooth, the induced motion �eld in the image plane will be continuous.

This property of image motion �elds is exploited as an additional constraint on image

motion estimators. But when the scene consists of multiple moving objects with

di�ering velocities and positions, discontinuities will occur in the image motion �eld

along the object boundaries.

Another term displacement �eld is more often used in the context of video se-

quence processing. The displacement �eld describes the displacement of each image

pixel between two successive frames. The image-motion �eld and displacement �eld

are equal if one assumes constant image-motion velocity and a unit temporal interval

between frames.

2.2 Local image-motion �eld measurements

An important problem in image-motion �eld estimation concerns the type of local

motion measurements that should be used. The existing techniques for measuring

local image motion vectors roughly fall into three categories:

1. di�erential approaches,

2. matching, or area correlation approaches and

3. spatiotemporal �ltering approaches.

These three approaches will be reviewed in the following subsections.

2.2.1 Di�erential approaches

Di�erential techniques typically are based on the assumption that the inter-frame mo-

tion is small and the intensity function is smooth and well behaved. These techniques

rely on the following relationship between the spatial and temporal image intensity

gradients:
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Let E(x; y; t) represent the intensity at time t at the pixel (x; y). Let u(x; y) and

v(x; y) denote the x and y components, respectively, of the image motion vector at

pixel (x; y). By assuming that the spatial structure of image intensity is constant

during the time interval (t; t+ �t), we have [2]

E(x+ u�t; y+ v�t; t+ �t) = E(x; y; t) (2:2:1)

where �x = u�t, �y = v�t, and �t represents the length of a small time interval. If

intensity function E(x; y; t) varies smoothly within a small neighborhood of (x; y; t),

we can expand the left-hand side of (2.2.1) into a Taylor series, and (2.2.1) thus

becomes

E(x; y; t) + �x

@E

@x

+ �y

@E

@y

+ �t

@E

@t

+ e = E(x; y; t) (2:2:2)

where e contains second- and higher-order terms in �x; �y, and �t. Canceling E(x; y; t)

from both sides of Equation (2.2.2), dividing through by �t, and taking the limit as

�t! 0, we obtain

@E

@x

dx

dt

+

@E

@y

dy

dt

+

@E

@t

= 0; (2:2:3)

which is actually just the expansion of the equation

dE

dt

= 0 (2:2:4)

in the total derivative of E with respect to time. Using the abbreviations

u =

dx

dt

; v =

dy

dt

; (2:2:5)

E

x

=

@E

@x

; E

y

=

@E

@y

; E

t

=

@E

@t

; (2:2:6)

we obtain

E

x

u+ E

y

v + E

t

= 0: (2:2:7)

The derivatives E

x

; E

y

; and E

t

are estimated from the image data. Equation (2.2.7)

is often called the image-motion �eld constraint equation, since it expresses one con-

straint on the components u and v of the image-motion �eld.
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Equation (2.2.7) alone is insu�cient to determine the two components of the

vector (u; v). Haralick and Lee [27] use the image-motion �eld constraint equation in

conjunction with the requirement that the �rst derivatives of image intensity pattern

that have been displaced in the image due to object motion must remain the same.

This yields a system of four equations in two unknowns:

E

x

u+ E

y

v + E

t

= 0

E

xx

u+ E

xy

v + E

xt

= 0

E

yx

u+ E

yy

v + E

yt

= 0

E

tx

u+ E

ty

v + E

tt

= 0:

(2:2:8)

The above formulation is usually referred to as the multi-constraint method. Algo-

rithms based on (2.2.8) in general have not yielded promising results because high

order derivatives of the brightness function are di�cult to compute accurately. How-

ever Mitiche et al [55] and Barron et al [4] have reported some success in the

computation of image-motion �elds using the multi-constraint method.

By noticing that the image-motion �eld constraint equation is a �rst-order approx-

imation of Equation (2.2.1) which is poor along intensity edges and corners, Snyder

et al [76] instead use �rst- and second-order derivatives of the Taylor series expan-

sion of (2.2.1) to obtain a single nonlinear equation in the two unknowns u; v. Nagel

[58, 59] has posed speci�c conditions on local intensity distributions and presented

a corner detector that detects locations in the image that satisfy these conditions.

Using second-order terms, Nagel also obtains a closed-form solution for the image

motion vectors at the image locations detected by the corner-detector.

A major problem faced by di�erential approaches is the di�culties in computing

derivatives of images. Image pre-�ltering can alleviate these di�culties to a certain

extent, but new problems may be created in localization and discontinuity identi�ca-

tion. Also, Since the inter-frame image motion is restricted to be small, the velocities

computed can be easily overridden by pixel-level perturbations.
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2.2.2 Matching approaches

Matching, or area correlation techniques have been designed to solve the short- and

long-range feature correspondence problem, which associates certain intensity pat-

terns in one image with corresponding intensity patterns in subsequent images. Var-

ious intensity patterns , image-dependent or image-independent, can be used. First,

these patterns are identi�ed in a reference image. Then, an organized search for the

corresponding patterns is performed in the following image.

A simple intensity pattern which can be used to solve the correspondence problem

is a �xed size block of pixels. The basic assumption inherent in block matching

algorithm is that motion is locally translational and slowly varying within the block.

The motion vectors are either computed over a dense grid or are assumed constant

over a block if only a single vector is estimated for each block. Then an optimization

problem based on some objective criteria, is formulated in the form of

Min

fu;vg

I(x; y;u; v) =

X

i;j

�(E

�

(x+ i; y + j)� E

�+1

(x+ u+ i; y + v + j)) (2:2:9)

where �(�) is a objective function, and (u; v) is restricted to a search space de�ned

by a pre-determined maximum velocity. The summation is carried out over all pixels

within the block. The local image motion values obtained by matching techniques are

usually integer-valued. When sub-pixel precision is required, intensity interpolation

is needed.

The optimization problem (2.2.9) can be solved by performing a very simple ex-

haustive search: computation of the objective function for every possible vector in

the given search space, choosing the vector which o�ers the minimum value of the

objective function. To speed-up the search procedure, several methods have been

proposed:

1. 2D-logarithmic search [43],

2. three-step search [46], and
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3. modi�ed conjugate direction search [78].

These techniques assume monotonicity of the objective function which in general is

not always valid. For small search space, however, this function may frequently turn

out to be unimodel.

An interesting matching algorithm has been proposed by Anandan [3]. He uses

a Laplacian pyramid image structure [10] and a coarse-to-�ne matching strategy.

Anandan applies local analysis of the matching error surfaces using principle axis

decomposition. This results in a heuristic con�dence measure associated with each

local image motion vector. Singh [74] de�nes the local image motion vector as a

weighted average of a set of candidate matching vectors. Thus, the resulting motion

vectors have sub-pixel precision. A covariance-matrix is also associated with each local

image motion vector. The reciprocals of the eigenvalues of the covariance-matrix serve

as con�dence-measures with the directions given by the corresponding eigenvectors.

The simple translational motion model assumption made in matching approaches

is often not adequate for images which contain complex motion. In [17], an improved

algorithm for block matching is proposed, which allows the blocks to undergo a�ne

shape deformation. The parameters for this a�ne model are found via a least-squares

algorithm. The cost of this new model is the increased computation time for each

local image motion vector.

Compared to di�erential approaches, matching approaches are usually more com-

putationally demanding. However, since the matching operation is identical for all

pixels in an image, it can be e�ciently implemented as a parallel convolution opera-

tion using special-purpose hardware.

2.2.3 Spatiotemporal �ltering

Estimation of image motion �elds based on spatiotemporal �ltering relies on three-

dimensional �ltering of image sequences[19, 20, 29]. Intensity is represented as a
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three-dimensional function of spatial variables x and y and temporal variable t. A

bank of three-dimensional �lters in (x; y; t) space is used to determine the image-

motion �eld vector for each pixel. Each three-dimensional �lter in the bank is tuned

to a speci�c velocity magnitude and direction.

Spatiotemporal �ltering approaches are also thought of as frequency-domain based

owing to the common design of velocity-tuned �lters in the Fourier domain. However,

these �lters are still based on the assumption that image intensity is constant over

time as expressed in Equation (2.2.1). The Fourier transform of Equation (2.2.1) is

^

E(k; !) =

^

E

0

(k)�(! + (u; v)

T

k) (2:2:10)

where

^

E

0

(k) is the Fourier transform of E(x; 0), �(k) is a Dirac delta function, !

denotes temporal frequency and k = (k

x

; k

y

) denotes spatial frequency. This equa-

tion shows that all nonzero power associated with a translating pattern lies on a

plane passing through the origin in frequency space. Heeger [29] used 3-D Gabor

�lters tuned to di�erent spatiotemporal-frequency bands and describes a method for

combining the outputs of the �lters to compute local velocity vectors.

Techniques based on spatiotemporal �ltering are usually used to explain and model

the human visual system. With regards to image motion estimation at motion bound-

aries, the same problems exist as with other approaches. The image motion vector at

a point (x; y) on frame t is determined by the outputs of a set of three-dimensional

�lters. Each of these �lters has a �nite region of support in both spatial and tem-

poral domains. When the image motion vector at a pixel is based on the outputs of

�lters applied to a �nite three-dimensional neighborhood of the pixel, it is implicitly

assumed that all pixels in the associated three-dimensional neighborhood move with

the same velocity as that pixel itself. However, this is an assumption which is violated

at motion boundaries. As a result, image motion estimation at motion boundaries

are often not reliable and motion boundaries are easily blurred. The extent of blur-

ring is directly proportional to the regions of support of the �lters in the spatial and
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temporal domains.

2.3 Image motion estimation by regularization

The estimation of image-motion �eld is often ill-posed in the original sense of Hadamard

[6]: the solution may not be unique, it may not exist, or it may not depend contin-

uously on the data. Even when a problem is not ill-posed, if constraints relating

data to the real world variables of interest are noisy, the unique solution to the noisy

constraints is not particularly meaningful. For image-motion �eld estimation, the

major di�culty is that the local motion measurements obtained by the approaches

described in the previous section are often corrupted by image noise and may not

yield a unique solution.

To deal with ill-posed problems, two branches of mathematical analysis have been

developed: the theory of generalized inverses and regularization theory. Assume that

functional spaces X and Y , as well as a linear, continuous operator L from X to Y

are given. The task of an inverse problem is to �nd, for some given d 2 Y , a function

w 2 X such that

d = Lw: (2:3:1)

The theory of generalized inverses attempts to solve the problem by minimizing the

norm of a certain function derived from (2.3.1). Inverses can be classi�ed according

to the choice of that function as follows:

1. Least squares inverses: the following variational problem is solved

min

fw2Xg

kLw � dk

Y

(2:3:2)

where k � k

Y

denotes the norm in space Y . This problem results in the linear

system of equations L

�

Lw = L

�

d (L

�

is the adjoint operator of L) for which the

existence and uniqueness of the solution depend on the rank of L

�

L.
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2. Generalized inverse: the solution (2.3.2) is sought such that it is also of minimum

norm:

min

fw2Xg

kwk

X

(2:3:3)

3. C-Generalized inverse: the solution (2.3.2) is sought such that it is also mini-

mum in a constraint space:

min

fw2Xg

kCwk

Z

(2:3:4)

where C is a linear operator from X into the constraint(functional) space Z.

An alternative to the above formulations based generalized inverses are regulariza-

tion methods. The most investigated regularization method is to form the following

optimization problem:

min

fw2Xg

�kLw � dk

2

Y

+ kCwk

2

Z

(2:3:5)

where C is a linear operator from X into the constraint space Z. The parameter � is

called the regularization parameter, and kC � k is the regularization functional, which

usually expresses some desired property expected from the solution (e.g., smoothness,

directionality). Regularization parameter � > 0 weights the compromise between data

approximation and model �tting (expressed by the regularization functional).

There are numerous examples of regularization in the �eld of image processing

[6]. Numerical di�erentiation in image edge detection has been formulated in the

framework of regularization [35, 66], where the regularization functional uses the sec-

ond derivative of the approximating function. Other problems which are approached

using regularization theory are shape from shading [42], and surface interpolation [8].

Most image-motion �eld estimation techniques also employ regularization [23, 34].

Horn and Schunck [36] use regularization to minimize the departure of smoothness in

the 
ow �eld as measured by the squared magnitude of the gradient of the 
ow �eld

summed over both components which has the form

(u

2

x

+ u

2

y

+ v

2

x

+ v

2

y

) (2:3:6)
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with the local constraint over the space, D, of admissible image-motion �eld vectors

u = (u; v). The estimate of the image-motion �eld is the solution to the following

optimization problem:

Min

(u)

Z Z

D

�(E

x

u+ E

y

v + E

t

)

2

+ (u

2

x

+ u

2

y

+ v

2

x

+ v

2

y

): (2:3:7)

Regularization theory has a simple statistical interpretation. Minimizing \en-

ergy" = �kLw� dk

2

Y

+ kCwk

2

Z

is the same as maximizing e

�k\energy"

. The expression

e

�k\energy"

can be regarded as a probability density function if the normalization con-

stant k is chosen correctly. Standard regularization theory maximizes the likelihood

of the solution w if the error vector (Lw� d) is assumed to be Gaussian. The spaces

X, Y and Z in this case refer to the the Hilbert spaces of random variables. Therefore,

when a priori knowledge of statistical properties of the signal and noise are available,

probabilistic versions of regularization methods can also be developed. In this proba-

bilistic formulation, the underlying process and/or its relationship with observations

are considered as samples of some random processes.

Konrad and Dubois [48, 47] present a probabilistic formulation for image-motion

�eld estimation and a stochastic algorithm for minimization of the associated objec-

tive function. In their formulation, the observation model, relating the underlying

displacement �eld and the observed images, expressed as additive Gaussian noise, is

combined with the structural model assuming constant image intensity along motion

trajectories. A vector Markov Random Field (MRF) is used for the displacement

�eld model. Such a model is able to capture various image-motion �eld properties

(e.g. smoothness) in terms of spatial interactions which can be controlled by certain

parameters. Gibbs distributions are then used to uniquely characterize the spatial

properties of this vector Markov Random Field. Combined via Bayes' rule, these

distributions provide a cost functional to be minimized. The minimization problem,

involving several thousands of unknowns, has been solved using simulated annealing.

A stochastic relaxation algorithm, the Gibbs sampler, originally proposed in [22], has
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been used to generate MRF samples according to the a posteriori probability.

2.4 Regularization that includes discontinuities

An outstanding problem for the computation of image-motion �elds by using regular-

ization is the presence of discontinuities in the image-motion �eld. The smoothness

assumption disambiguates the aperture problem and smoothes the local measurement

noise. But the global smoothing may also smear motion boundaries and produce inac-

curate estimates. In a recent experimental study [4], it is reported that the techniques

based on global smoothing tend to have lower accuracy of motion �eld estimation than

those based on local smoothness constraints. Also, it di�cult to distinguish the mov-

ing objects from background or other moving objects when the motion boundaries

are smoothed over. It is generally agreed that motion discontinuities convey use-

ful information in many applications, because they indicate where one object ends

and another one begins. Motion as well as intensity discontinuities are also vital for

solving the critical object segmentation problem.

Classical regularization theory does not address the problem of the presence of

motion discontinuities in image motion �elds. On the contrary, discontinuities con-

tradict the basic smoothness assumption in the theory. A signi�cant challenge is

thus to extend regularization theory to deal with discontinuities. Lee and Pavlidis

[52] have proposed an extension for the one dimensional case. The two-dimensional

extension is signi�cantly more di�cult. Blake uses a weak continuity constraint in

the problems of surface reconstruction and edge detection. Though his formulation

is not explicitly framed in the context of classical regularization theory, it represents

some promising initial steps in this direction [8].

Geman and Geman [22] proposed a successful strategy for dealing with discon-

tinuities in image restoration and intensity-based segmentation. They exploited an

analogy between statistical mechanics and digital images, where the intensity values
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at each pixel and the presence of discontinuities are viewed as states of particles on

a lattice. The smoothness assumption is formulated in terms of a Markov Random

Field (MRF) model. In the MRF, the conditional probability that a given variable

at location (i; j) has a particular value f

ij

depends only on the values of f in a neigh-

borhood of (i; j). Two random processes are used in their formulation: one is the

intensity random �eld and another random process, a line process, is introduced to

model the intensity discontinuities. Line elements are located on a regular lattice

consisting of sites placed between each adjacent pair of pixels. A line element, l, can

occupy one of two states: \on" (l = 1) or \o�" (l = 0). The decision to turn on a

particular line element state is combined within the global model and estimation of

the intensity and line processes are simultaneous.

Motivated by this idea, Konrad and Dubois [47, 49] proposed a displacement �eld

model incorporating a line processes to model motion �eld discontinuities. When

a line element is turn on, any motion vectors that cross the line element will not

be smoothed. Conversely, when displacement vectors on each side of a line element

site di�er considerably, the line element at this site is turn on. To prevent a line

process from forming everywhere and to incorporate additional knowledge of motion

discontinuities into the line process, a structural model is constructed for the line

process. Structural considerations are used to prevent the formation of parallel line

elements, multiple line intersections and isolated discontinuities, while at the same

time, are designed to favor the formation of motion discontinuities along extended

contours. A deterministic version of the line process has also been used in image-

motion �eld estimation via nonstochastic methods [41].

A formulation similar to [47] which combines gradient-based and feature-based

motion estimation schemes is proposed by Heitz and Bouthemy [31]. In the observa-

tion model, two complementary motion measurement equations are used. The �rst is

based on the image-motion �eld constraint equation, and the second is derived from
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the output of a moving edge estimator. The model employs a simple intensity edge

detector to provide binary information about intensity discontinuities which is used

as partial evidence supporting the presence of motion discontinuities. The method of

Iterated Conditional Modes [7], a low cost alternative to simulated annealing, is used

to minimize the cost functional. In this deterministic relaxation scheme, the �nal

result depends heavily on state initialization and site visiting order.

The line process described above models motion discontinuities in an explicit form:

values of line elements are binaried and cause computational problems in the above

formulations since the resulting optimization functional is not convex. Blake and

Zisserman [8] show that the line process can be eliminated from the regularization

functional, resulting in a cost functional which is solely dependent on the actual

surface function under consideration. In Chapter 3, we develop an error-weighted

regularization algorithm which uses the local matching errors to guide the smoothing

process instead of the modeling discontinuities explicitly. It is shown that the high

computational cost associated with the line process is greatly reduced without a

corresponding degradation in the quality of motion estimation.
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Chapter 3

ERROR-WEIGHTED

REGULARIZATION

In this chapter, an error-weighted regularization algorithm for image-motion �eld es-

timation from image sequences is presented. The main goal of this new algorithm is

to obtain reliable image-motion �eld estimates when there are motion discontinuities

and image occlusions due to multiple moving objects present in the image sequences.

The algorithm is based a general regularization framework that includes a new form of

regularization functional and takes the motion discontinuities into consideration. The

new algorithm's regularization functional di�ers from existing regularization function-

als in that block-matching errors are used to control the �eld-smoothing process. The

large block-matching errors along motion boundaries act as a motion vector propaga-

tion barrier at the global smoothing stage. As a result, the motion measurement errors

in occluded areas do not spread out to other regions. The local measurements have

con�dence measures associated with them based on the distribution of block-matching

errors. Thus the problem of nonuniqueness of local measurements is automatically

taken into account in the formulation of the cost functional. The regularization con-

stant is also speci�ed by the con�dence measures as suggested by Anandan [3]. No

measurement or motion information �lling is attempted on the regions with uniform

intensity. This enhances the algorithm's robustness to image noise and reduces the
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possibility of motion boundary smearing. A later stage of �lling and segmenting the

image-motion �eld can be accomplished by using a priori knowledge or assumptions

about the scene being viewed. Besides improved image-motion estimation perfor-

mance near motion discontinuities, the algorithm is computationally similar to the

standard regularization approach as used by Horn and Schunck [36] except that fewer

iterations are required for convergence. The algorithm is also amenable to implemen-

tation in special purpose hardware due to the algorithm's inherent parallel nature at

both the local and global processing stages [41].

The remainder of this chapter is organized as follows. In the next section, we

overview the standard regularization framework and mention its drawbacks with re-

spect to the image-motion �eld estimation problem. In Section 3.2, several arguments

are provided to motivate the block-matching technique for the local measurement pro-

cess. In Sections 3.3, 3.4, and 3.5, the properties of block-matching errors, the di�er-

ent types of motion boundaries, and the con�dence measures derived for local motion

vectors are examined, respectively. In Section 3.6, we describe the new matching-

error weighted regularization algorithm and in the �nal section experimental results

are shown that verify the improved performance of the new algorithm.

3.1 Standard regularization and its drawbacks

Due to the noise corruption and \aperture problem" embedded in the local image-

motion measurement process, the method of regularization has been employed in

a number of image-motion �eld estimation algorithms [3, 36, 41, 57, 75]. In the

regularization framework, image-motion �eld estimation can be formulated as the

solution to an optimization problem of the form:

min

fug

f��(u;d) + �(u)g; (3:1:1)
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where u is the image-motion vector �eld, � is a measure of the lack of �delity to

local measurement data d, � is a regularization functional specifying the smoothness

of the motion �eld, and � is a positive scalar regularization parameter that weights

the compromise between � and �. The solution to (3.1.1) will produce an image

motion estimate which is both faithful to local measurements, and has the desired

smoothness properties of � as well.

Equation (3.1.1) has the same structure as Equation (2.3.5) in Chapter 2. The data

d and estimate u lie in two dimensional vector spaces and the norm used in Equation

(3.1.1) is the Euclidean norm. In Section 3.6 of this Chapter, a new regularization

functional � is de�ned in terms of the Euclidean norm.

The cost functional (3.1.1) is expressed in very general terms, and speci�cation

of a particular algorithm entails choosing �, � and �. The choice of the � term is

usually made on the basis of the measured data error distribution. For most cases,

this distribution is assumed to be Gaussian. For vector data, con�dence measures

are often used to re
ect the reliabilities of each component measurement. The choice

of the � term is based on prior knowledge about true image motion. Due to the

complexity of real motion in image sequences, only general properties are used to

specify � . Since one conventionally expects the image-motion �eld to be smooth and

without abrupt changes globally, this � term is often called the smoothness constraint.

As far as the degree of image-motion �eld smoothness is concerned, the choice of �

becomes critical.

The previous discussion leads to three di�erent problems in formulating the reg-

ularization functional: 1) how well the estimate should �t the measured data, 2) the

choice of smoothness constraint used in the regularization functional �, and 3) the

strength of the smoothness requirements. If the image motion �elds are not contin-

uous everywhere, the choice of the � term will be very important in order to avoid

smoothing across the motion boundaries.
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For the data �tting term �, Horn and Schunk [36] �rst use the optical 
ow con-

straint equation (2.2.7) in which only the component of local motion vectors normal

to the intensity gradients is constrained.

Anandan [3] and Singh [75] use local motion vectors obtained from the block-

matching for the data term �. The con�dence measures derived from the block-

matching error surfaces are used to provide space-varying directional weights to local

motion vectors.

The optimal choice of � has proved to be a very di�cult problem. Methods

based on the properties of the residuals and on generalized cross-validation have

been proposed for estimating the regularization parameter [6]. Two alternative cri-

teria, weighted least squares and sum of squared weighted residuals, based on cross-

validation have been used by Galatsanos and Katsaggelos [21]. The problem with

these methods is that the task of estimating the regularization parameter is more

computationally demanding than the original estimation problem. As a result, the

application of cross-validation methods have not been readily accepted by most re-

searchers. As an alternative, Horn and Schunk [36] have suggested that � should be

roughly equal to the expected noise in the intensity derivatives. Anandan and Singh

[3, 75] implicitly choose � by using the con�dence measures associated with the local

motion vectors.

The smoothing functional, �, usually takes the form of the squared �rst- or second-

order derivatives of image-motion �eld estimates, such as in (2.3.6). Singh [74] uses

the L

2

norm of the di�erences between a central estimate and a neighborhood average

estimate as the smoothing functional.

In principle, in order to prevent smoothing across motion boundaries by the

smoothing functional, one can �rst detect the motion boundaries [77, 84], and limit

the smoothing functional to lie within these boundaries. However, explicit motion

boundary detection is a nontrivial task in its own sake and often depends on a prior
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motion �eld estimate. The resulting joint boundary detection and motion estimation

problem requires a more sophisticated approach such as described in Section 2.4.

The new algorithm to be introduced in this chapter provides signi�cant improve-

ments in constructing smoothness constraints. A new regularization functional, �, is

proposed by using matching-error-weighted local motion averaging. The matching er-

rors are readily available from the block-matching process. No auxiliary computations

need be performed on the intensity images. Moreover, the increasing availability of

special-purpose hardware for block-matching is an important practical consideration

[64].

3.2 Motivation for using block-matching

As discussed in Chapter 2, there are three major techniques for the local measurement

of dense image-motion �elds from image intensity functions:

1. Di�erential approaches,

2. Matching approaches, and

3. Spatiotemporal �ltering approaches.

Block-matching, which belongs to the second category, is used for the local image-

motion measurement process in the new algorithm. This choice is based on the

following considerations:

� Applicable to a wide range of displacements

In most video image sequences, the amount of image motion between image

frames will often be several pixels. Block-matching can measure either small or

moderate inter-frame displacements. If intensity interpolation is used, block-

matching may also handle sub-pixel displacements.
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� No image pre-�ltering is needed

Block-matching can be applied to di�erent image intensity functions. In con-

trast to di�erential-based techniques, no image pre-�ltering is necessary for

block-matching [53]. Di�erential techniques, on the other hand, require a cer-

tain amount of image pre-�ltering to obtain accurate numerical approximation

of intensity derivatives which may be di�cult in regions where the intensity

function is not continuous, such as at edges. Since the pre-�ltering will mix

the intensity patterns of di�erent moving surfaces, the motion �eld discontinu-

ities will often be poorly estimated and large measurement errors may result

such as those occurring at the lower levels when using a multiple resolution

representation [3].

� Amenable to hardware implementation

For block-matching, the local measurement stage is homogeneous over the whole

image, so is amenable to implementation in special purpose hardware. In fact,

new integrated circuit chips for block matching have already been announced

by LSI Logic Corp. [64].

� Con�dence measures derivable from block-matching

assist global smoothing

Image motion estimation using block-matching can be divided into two stages:

local measurement and global smoothing. An important advantage of block-

matching is that by-products from the local matching stage can be utilized in

the global smoothing stage. One such by-product is the con�dence measure for

the local measurement data which is derived from the matching error surfaces

[3]. As will be discussed in the next sections, the new algorithm exploits such

information from the local measurements in the global smoothing process to

avoid smoothing across the motion boundaries.
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One of the disadvantages of block-matching is that it cannot deal with transparent

motion phenomena. Also, the motion vectors obtained by block-matching are often

integer valued and thus the estimates are poor when motion �eld contains small

velocities with a signi�cant dilational component [4].

3.3 Properties of block-matching errors

Block-matching approaches assume a local 2-d translational motion model for all

pixels within a small local window. This model is adequate for most real image se-

quences as long as the interframe image-plane motion is not very large. The matching

algorithm is described as follows: at each pixel in the image, under each integer dis-

placement, the windowed images in the two frames are compared and a measure of

the match quality between pixels in the window is computed, and summed over the

window. This can be interpreted as matching small patches from the �rst image to

small patches in the second image. There are di�erent matching criteria, such as the

maximization of cross-correlation or the minimization of a Euclidean distance metric.

A more detailed study of di�erent matching criteria is deferred to Chapter 4. In the

following, the mean sum-of-squared di�erence (SSD) is used as the matching-distance

metric due to its simplicity and wide-spread use[3].

Let E

�

(x; y), E

�+1

(x; y) represent the image intensity functions at the times, �

and � +1, respectively. The SSD matching error between two image windows with a

displacement d = (u; v) is de�ned as

"

x;y

(u; v) =

1

(2N + 1)

2

i;j=N

X

i;j=�N

(E

�

(x+ i; y + j)� E

�+1

(x+ i+ u; y + j + v))

2

(3:3:1)

�d

max

� u; v � +d

max

where 2N + 1 is the window size, and d

max

is the predetermined maximum displace-

ment component. The search space of the matching is denoted by D, and is of size

(2d

max

+ 1)

2

. An error surface is de�ned over D with height at d = (u; v) equal to
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"

x;y

(u; v). The displacement vector d with the minimum matching error is chosen as

the local motion estimate at pixel (x; y).

Let �

x;y

be the mean height of the matching-error surface over D. The matching-

error variance is computed by

�

2

(x; y) =

1

(2d

max

+ 1)

2

X

(u;v)2D

("

x;y

(u; v)� �

x;y

)

2

: (3:3:2)

For real video image sequences, the existence of a perfect match cannot be guar-

anteed. There are several factors which preclude a perfect match:

1. Random noise in the images.

2. Illumination change over time and photometric e�ects of the object

surfaces.

3. The actual image motion is not purely translational. For example,

object rotation or camera zooming will render a non-translational image-motion

�eld. In this case, the matching window undergoes an area deformation, which

violates the assumption of the local translational model used in block-matching.

4. The matching errors are also related to the intensity variation in the

matching windows. For the image regions with small intensity variation, a

large mismatching in displacement may not necessarily result in a large match-

ing error.

5. The matching windows contain at least two moving surface with dif-

ferent velocities. In this case, the matching window straddles motion bound-

aries, the intensity patterns within the window vary between two frames. This

problem is more serious when the motion discontinuities cause image occlusion.

Among all the factors listed above, the matching errors will be abnormally large

only in case 5, where the motion discontinuities are present in the matching window.
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This has been veri�ed experimentally in Section 3.7. If one can remove the e�ect of

image intensity variation on the matching errors, the moving surfaces then can be

well demarcated by large local matching errors. To counteract the e�ects of intensity

variation, the minimummatching error is scaled by the error surface variance �

2

(x; y)

as de�ned in (3.3.2) and this scaled matching error is denoted as "

0

x;y

. This scaling

is based on the observation that the variances of the matching error surfaces are

proportional to the intensity variations.

3.4 Motion boundary types

To cope with motion discontinuities and the image occlusion problem, we need to

study matching error e�ects more closely. To illustrate the concepts, we classify three

extreme types of motion boundaries and image occlusions according to the type of

bordering image texture patterns. It is worth reminding the reader that real motion

boundaries do not always fall into these three extreme types.

1. No-texture/no-texture: In this motion boundary type, both sides of motion

boundary are uniform intensity patterns and only edges are present. Thus,

the disoccluded or occluded image regions do not produce any mismatches. In

this case, the image-motion discontinuities do not cause the matching error to

increase.

2. No-texture/texture: Here one side of the boundary is a uniform intensity

pattern and the other side is a well-textured intensity pattern. An example of

this type of motion boundary is shown on the top part of the image in Figure

3.1(a). If the textured intensity pattern is the occluding surface, the image

occlusion will have no e�ect on the local measurements made on the textured

side since the occluded pixels have false matches. These can be seen from the

matching error image shown in Figure 3.1(b) where small matching errors are
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present along the motion boundaries on the top part of the image. However, if

the textured intensity pattern is disoccluded or occluded in the second frame,

large matching errors will occur in the local motion measurement process.

3. Texture/texture: Here both sides of motion boundaries have well-textured

intensity patterns. In this case, the image occlusions on either side will cause

large matching errors since both occluded and disoccluded pixels will not have

correspondences either in the �rst frame or in the second frame. The motion

boundaries of this type are shown in Figure 3.1(a) in the lower part of the image.

The matching errors along those boundaries have abnormally large values as

shown in Figure 3.1(b).

From the above illustrations, it can be concluded that matching errors will abruptly

increase in the case of the texture/texture boundary or the no-texture/texture

boundary when the textured intensity pattern is disoccluded or occluded in the second

frame. Therefore, the only type of motion boundaries that can be reliably indicated

by matching errors is the texture/texture boundary. On the other hand, the other

two types of motion boundary can be easily identi�ed by detecting uniform inten-

sity surfaces and eliminating them from the local measurement and global smoothing

processes. In other words, the uniform intensity regions do not contain any motion

information and do not contribute anything to image-motion �eld estimation. The

detection of uniform intensity regions can be achieved by a threshold test of image

intensity variance with the threshold determined using prior information on the image

noise-level. This amounts to a test of variance for simple binary hypotheses [67].

3.5 Con�dence measures for local motion

In general, there will be many areas of the image with insu�cient information for a

complete and reliable local determination of the image motion vectors. The di�erent
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directional components of the image motion vectors may be locally computed with

di�erent degrees of reliability. For instance, it is obvious that in a uniform intensity

region, no component of the image motion vector can be estimated. At a pixel location

along a line (or edge), the component perpendicular to the line will have higher

reliability than the component parallel to the line. Finally, at a pixel of high curvature

along an image contour it may be possible to completely and reliably determine the

image motion vector on the basis of local information. Therefore con�dence measures

are needed to re
ect local measurement reliability for the later global smoothing stage.

In Anandan's paper [3], a computational framework of image motion measure-

ment is introduced that associates a direction-dependent con�dence measure with

every measured local image-motion vector. This con�dence measure is based on the

variation of the matching errors over the search space. It combines information in the

minimum matching error with the matching error distribution around the minimum

matching error location. The con�dence measure consists of two directions, ê

max

and

ê

min

which denote the principal axes of the matching error surface, and two scale

factors, c

max

and c

min

, as given by

c

max

=

C

max

k

1

+ k

2

"

min

+ k

3

C

max

(3:5:1)

and

c

min

=

C

min

k

1

+ k

2

"

min

+ k

3

C

min

(3:5:2)

where C

max

and C

min

are the two principal curvatures of the matching error surface

associated with ê

max

and ê

min

, respectively, k

1

, k

2

and k

3

are three normalization

parameters, and "

min

is the matching error corresponding to the best match. In this

formulation, the local image motion vector is decomposed into components along

ê

max

and ê

min

, respectively. Each component's reliability is computed based on the

minimum matching error and corresponding curvature in its direction.

Singh employs a covariance-matrix as a con�dence measure associated with each

local image motion vector [74]. In Singh's algorithm, the matching errors "(u; v) are
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�rst mapped onto the unit interval by an exponential function. That is,

R(u; v) = e

�k"(u;v)

(3:5:3)

where k is a normalization factor chosen such that the maximum of R(u; v) is close

to unity. The local image motion measurements are obtained by a matching error

weighted-least-squares estimator which actually is a weighted mean of R(u; v) over

the search space. This estimate is given by

u

cc

=

P

u

P

v

R(u; v)u

P

u

P

v

R(u; v)

; (3:5:4)

v

cc
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P

u

P

v

R(u; v)v

P

u

P

v

R(u; v)

: (3:5:5)

Under the assumptions of additive, zero mean and statistically independent errors,

the covariance-matrix associated with u

cc

and v

cc

is of the form:

S
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(3:5:6)

where the summation is carried out over the search space D. The reciprocals of

the eigenvalues of this covariance-matrix are taken as the con�dence measures asso-

ciated with the estimates u

cc

and v

cc

, along directions given by the corresponding

eigenvectors.

It should be pointed out that these con�dence measures only re
ect the relative

reliabilities between the two components of the local image motion vectors. A separate

regularization parameter is still needed in the global smoothing process. In [3, 74], the

con�dence measures also serve as regularization parameters. Such a treatment might

be interpreted as a practical ad hoc solution to the problem of choosing regularization

parameter �.
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3.6 Error-weighted regularization

Since the matching errors can indicate the presence of motion boundaries as dis-

cussed in Section 3.3, they could instead be used in the global smoothing stage to

avoid smoothing across motion boundaries. For this purpose, we introduce a new reg-

ularization functional � which utilizes information contained in the matching error

surfaces.

For a pixel located at (x; y) which is on a motion boundary, there will two sets of

neighborhood pixels around that pixel. Let set A belong to the same moving object as

the pixel and let set B belong to a di�erent moving object. Using a new regularization

functional, we regularize the local motion vector d(x; y) by the motion information in

set A. Thus the motion information from two moving objects will not be mixed and

no oversmoothing across motion discontinuities will occur. To do this, a local average

displacement vector
�
u(x; y) of u(x; y) for each pixel (x; y) is �rst de�ned as

�
u(x; y) =

P

(i;j)2S(x;y)

w(i; j)u(i; j)

P

(i;j)2S(x;y)

w(i; j)

(3:6:1)

and

w(i; j) =

1

"

0

i;j

where S(x; y) is a neighborhood of the pixel at (x; y) and "

0

i;j

is the scaled minimum

matching error de�ned by Equation (3.3.1). We have experimentally compared the

results of an eight-pixel and a four-pixel neighborhoods and there is no signi�cant

di�erence. Therefore a four-pixel neighborhood S(x; y) is used which makes the new

algorithm computationally comparable to standard regularization [36].

The contribution of neighborhood motion information to the local average motion

vector in Equation (3.6.1) is weighted by the inverse of the scaled matching-error,

"

0

i;j

of each neighborhood motion vector. The pixels with larger "

0

i;j

contribute less
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to
�
u(x; y). The scaled minimum matching errors are used to direct motion informa-

tion propagation. Each pixel obtains global motion information only from neighbor-

hood pixels which have comparatively reliable measurements. Therefore, the value of

�
u(x; y) is primarily determined by displacement vectors of pixels on one side of the

boundary when there is a motion discontinuity adjacent to the pixel (x; y) and the

matching window size is small enough.

An alternative formulation would be to derive the above matching error weights

based on the inverse covariance matrix of the matching error surface. Such an ap-

proach would generalize Singh's � functional [75] from a distance-based measure to

an adaptive matching error based measure. With a certain idealized statistical inter-

pretation, it can be argued that such a formulation would be theoretically preferred

to that above. However, the matching error covariance matrix requires signi�cant

added computational complexity.

The new regularization functional � is de�ned as the Euclidean norm of the dif-

ference of u(x; y) and
�
u(x; y), i.e.,

�

x;y

(u) = ku(x; y)�
�
u(x; y)k

2

: (3:6:2)

From the construction of the local motion average vector
�
u(x; y), minimizing the �

term in the cost function will smooth each image motion vector selectively towards

its consistent neighboring motion vectors.

The data �delity terms, � and � in Equation (3.1.1), are designed as in [3]. Let

fdg be the set of local image motion measurements obtained by the matching pro-

cess, which can be represented using the local orthogonal basis (ê

max

(x; y),ê

min

(x; y)),

which denote the principal axes of the matching error surface. In this data term, one

minimizes the error between the image-motion �eld estimate fug and fdg. The er-

ror is a weighted sum of the squared deviations of the components of u(x; y) along

corresponding components of the local matching motion vector d(x; y). The weights
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are the con�dences c

max

(x; y) and c

min

(x; y), i.e.,

��(u;d) =

X

x;y
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max
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)

2

+ c
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(u � ê
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� d � ê

min

)

2

]: (3:6:3)

In the above and following equations, the indices (x,y) have been omitted from each

term for notational compactness. Using (3.1.1), (3.6.2) and (3.6.3), the cost functional

to be minimized for the error-weighted regularization is

I(u) =

X

x;y

[c

max

(u � ê

max

� d � ê

max

)

2

+ c

min

(u � ê
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min

)

2

+ ku�
�
uk

2

]: (3:6:4)

There are well-developed techniques for minimizing the cost functional given by

Equation (3.6.4). Analogous to [74], at each spatial location a discrete normal equa-

tion is �rst derived by viewing this functional minimization problem as a vector

parameter estimation problem and the term
�
u as constant vectors. The motivation

for constant
�
u is to make the structure of the resulting normal equations similar to

that from the standard regularization functional which is computationally e�cient

for implementation. Setting the derivatives of I(u) over each u(x; y) to zero, and

assuming
�
u as constant vectors, the following system of coupled linear equations is

obtained:

(u�
�
u) + c

max

(u � ê

max

� d � ê

max

)ê

max

+ c

min

(u � ê

min

� d � ê

min

)ê

min

= 0: (3:6:5)

Numerical methods exist for solving the system of couple linear equations (3.6.5).

One of the simplest methods is the Gauss-Seidel relaxation algorithm [33]. This is an

iterative process, where during each iteration the value of u at each pixel in the image

is solved for in terms of the values of its neighbors and its local motion measurement.

The iterative update equation at the k + 1st iteration is

u

k+1

=
�
u

k

+

c

max

c

max

+ 1

((d�
�
u

k
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)ê
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)ê
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(3:6:6)

where
�
u

k

is de�ned as

�
u

k

=

P

(i;j)2S(x;y)

w(i; j)u

k

(i; j)

P

(i;j)2S(x;y)

w(i; j)

: (3:6:7)
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Since the normal system of Equations (3.6.5) is linear in u, the stability of the iter-

ative algorithm given by Equations (3.6.6) and (3.6.7) can be shown using a similar

argument to that found in [73].

We remark that computationally, this algorithm is similar to standard regulariza-

tion as used in [36], and can therefore be run on similar special-purpose hardware.

The only di�erence is that this algorithm uses spatially-varying FIR �lter coe�cients

for neighborhood-averaging. It has been observed experimentally that the new al-

gorithm needs fewer iterations than standard regularization for the same stopping

criteria.

3.7 Experimental results

This section describes the results by applying the ideas described above to a set of

test images. The stopping criterion used in the iteration process (3.6.6) is

P

ku

k+1

� u

k

k

2

P

ku

k

k

2

� 10

�4

(3:7:1)

In the implementation, the matching window size, N, is set to 2. The parameters in-

volved in the computation of the con�dence measures are the normalization constants

k

1

,k

2

and k

3

in (3.5.1) and (3.5.2). For these experiments, the choices of k

1

= 50,

k

2

= 1 and k

3

= 0 are used based on guidelines discussed in [3]. A 3x3 set of match-

ing errors around the best match is taken as the error surface for the computation of

the local con�dence measure for each pixel. This involves computing weighted sums

of the 3x3 values to obtain �rst- and second-order derivatives of the error surface

and then a singular-value decomposition (SVD) algorithm [68] is used to calculate

the principal curvatures and principal axes. Although a larger error surface size may

yield more reliable con�dence measure estimates, the computational cost is higher.

The image-motion �eld estimation error, measured by mean squared error (MSE),
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is de�ned by:

1

I

X

kd� uk

2

(3:7:2)

where I is the total number of pixels in one image, and d is the local image-motion

measurement and u is the true motion vector. The signal-to-noise ratio (SNR) of the

estimates is de�ned as

SNR = 10log

10

kuk

2

kd� uk

2

dB: (3:7:3)

For purpose of comparison, the algorithm is also tested with all the error-weights set

to unity. The resulting algorithm is called distance-weighted regularization since the

weights will be roughly same for the pixels in a 3x3 window by using a Gaussian

distance mask which is comparable to the approach taken by Singh [75].

Synthetic image sequences were �rst used to test the algorithm. Synthetic se-

quences have the advantage that the true image motion �elds are known, and the

results from the motion estimation algorithms can be quantitatively compared to

the true motion �eld using (3.7.2) and (3.7.3). For image interpolation, real image

sequences can then be used since the images to be interpolated are known.

3.7.1 Sinusoidal input with pure translation

The �rst pair of synthetic images (64x64) represents a diagonal translation of the

square sinusoidal intensity pattern towards the lower-right corner (two pixels hori-

zontally and four pixels vertically). The �rst frame of the pair is shown in Figure

3.1(a). Gaussian grey-level noise with zero mean and variance of 2 is added to this

sequence. The sinusoids on the lower part of the stationary background have spa-

tial wavelengths of 10 pixels and the sinusoids belonging to the moving foreground

pattern have spatial wavelengths of 15 pixels. The motion boundaries in the top

part are the no-texture/texture type as described in Section 3.4 due to the uni-

form intensity pattern in the upper half of the image. These motion boundaries are

processed by detecting the uniform background and excluded from the local motion
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Figure 3.1: Translating square over textured and uniform background. (a) Local

measurement. (b) matching error image. (c) Error-weighted regularization. (d)

Distance-weighted regularization.
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measurement and global smoothing stages. The uniform background is detected by

thresholding the intensity variance. The threshold value used is 8 in the experiments.

This threshold value is obtained by subjectively viewing the detection results. The

image-motion �eld obtained from local block-matching superimposed in the �rst im-

age is shown in Figure 3.1(a). Clearly, the motion �elds have large noises along motion

boundaries. The minimum matching error image is shown in Figure 3.1(b). Large

matching errors appear along the motion boundaries in the lower part of the image

as we discussed in Section 3.5. The image-motion �elds smoothed by error-weighted

and distance-weighted regularizations are shown in Figures 3.1(c) and 3.1(d), respec-

tively. The motion boundaries in the image-motion �eld are well-preserved for the

error-weighted regularization algorithm and the motion �eld estimates are more accu-

rate than those produced by distance-weighted regularization. The motion boundaries

in the image-motion �eld obtained by distance-weighted regularization algorithm are

mostly oversmoothed. Table 3.1 lists the MSE/vector and SNR values for the local

measured motion �eld and smoothed motion �elds obtained by the two regulariza-

tion algorithms. Note that error-weighted regularization takes fewer iterations than

distance-weighted regularization for the same stopping criterion.

Algorithms MSE SNR number of iterations

Local measurement only 1.56 5.06 dB 0

Distance-weighted regularization 0.96 7.16 dB 11

Error-weighted regularization 0.78 8.04 dB 5

Table 3.1: Motion �eld estimation for \Square" images
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3.7.2 Rotating and zooming disc

The second image pair represents a more complicated motion. The �rst frame is

shown in Figure 3.2.(a). This pair of images is designed to test the overall abilities

of error-weighted regularization in more realistic conditions. Here, the background

pattern translates two pixels horizontally, and the circular foreground pattern zooms

by a factor of 0.04 units in pixel distance while rotating by 4 degrees. The resulting

maximum displacement is 6 pixels. For this example, the matching errors are caused

by image noise, local motion model error and motion discontinuities as discussed in

Section 3.3.

The local motion measurements for the image pair is shown in Figure 3.2(a).

Clearly, the measured motion �eld has large errors along motion boundaries. Fig-

ure 3.2(b) reveals signi�cant matching errors along the motion boundaries and also

matching errors appearing within the surface of the circular disc. The latter errors are

caused by a failure of the local motion translational model. The motion �eld obtained

by the error-weighted regularization algorithm is shown in Figure 3.2(c). One can see

that motion vectors do not propagate across motion boundaries where the matching

error values are relatively high. At the same time, the motion �eld is adequately

smoothed within the motion boundaries. The motion estimation errors, calculated

for both distance-weighted and error-weighted smoothing, are listed in Table 3.2.

Algorithms MSE SNR number of iterations

Local measurement only 1.39 8.21 dB 0

Distance-weighted regularization 0.53 12.43 dB 9

Error-weighted regularization 0.24 17.30 dB 4

Table 3.2: Motion �eld estimation for \Disc" images
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Figure 3.2: Rotating and zooming disc over translating background. (a) Local mea-

surement. (b)matching error image. (c) Error-weighted regularization. (d) Distance-

weighted regularization.
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3.7.3 Real images

In subsequent examples, we apply the new algorithm to real video images and the

image-motion �elds obtained are then applied to motion-compensated image sequence

interpolation. In this application, the task is to interpolate missing images temporally

located between two given two image �elds based on motion information. In the

following, the intensity values E(x(t)) for all pixels along the motion trajectory x(t) =

x(t

0

) + �u(x; t

0

) is given by [14]

E(x(t)) = (1� � )E(x; t

0

) + �E(x+ u(x; t

0

); t

1

) (3:7:4)

where � =

t�t

0

t

1

�t

0

and t

0

; t

1

are the temporal indices of �rst and second image frames re-

spectively. First, the experiment is performed on Fields 1 and 5 of \Femme et arbre",

by Konrad and Dubois [47, 49]. This sequence contains natural motion (a woman

decorating a Christmas tree). Field 3 of the sequence is shown in Figure 3.3(a), and

the resulting motion �eld by error-weighted regularization is shown in Figure 3.3(b).

As shown, the motion boundary between the right hand and mouth is accurately

estimated. This motion �eld is then used to interpolate images between �elds. The

motion-compensated interpolation error for Field 3 is shown in Figure 3.3(d) and

the MSE/pel is 12.87 which is somewhat higher than reported in [47] (MSE/pel of

8.77) where a line process is introduced to model motion discontinuities. However

the computational requirements of the new algorithm are much less than the stochas-

tic solution using a line process and a very good image interpolation quality is still

obtained, as shown in Figure 3.3(c).

The algorithm is also applied to a locally digitized image sequence of a translating

and spinning chair which consists of 124 interlaced �elds with 256 by 256 pixel spatial

resolution. Field 55 of the chair sequence is shown in Figure 3.4(a). The motion �eld

between Fields 53 and 57 of the sequence is estimated by the error-weighted regu-

larization algorithm. The mean interpolation errors (MSE/pel) for �elds 54, 55 and

56 recovered by motion-compensated temporal image interpolation are summarized
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Figure 3.3: (a) Original Field 3 of \Femme et arbre" sequence. (b) Estimated motion

�eld between Fields 1 and 5. (c) Recovered �eld 3 of \Femme et arbre"sequence. (d)

Interpolation error image for Field 3.
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Figure 3.4: (a) Original Field 55 of the chair sequence. (b) Interpolation error image

for Field 55.

44



in Table 3.3, where the motion-compensated interpolation error performance of the

new algorithm is compared with other schemes. The interpolation error image for

Field 55 is shown in Figure 3.4(b).

Motion �eld estimated by �eld 54 �eld 55 �eld 56

Local motion measurement only 17.160 12.489 16.267

Distance-weighted regularization 15.614 9.572 16.298

Error-weighted regularization 12.815 6.165 12.940

Table 3.3: Motion-compensated interpolation: MSE/pel for chair sequence

The entire 124-�eld sequence is also uniformly temporally subsampled by a factor

of four, representing a maximum inter-�eld displacement of around 8 pixels. The

subsampled sequence of 31 odd �elds was then used to interpolate the in-between �elds

using the image-motion �elds obtained by the error-weighted regularization algorithm.

The results are shown in Figure 3.5. A sample of interpolation error image is shown

in Figure 3.4(b) for Field 55. Evaluating the subjective quality of the recovered and

original video sequences on a TV monitor reveals only minor di�erences in perceived

quality. Since the interpolation is performed on the odd �elds, signi�cant excess MSE

is introduced in the recovery of even �elds due to spatial intensity interpolation: here

the MSE per pixel ranged from about 4-12 for odd �elds, and 13-20 for even �elds.

This suggests that the interpolation error in interlaced video images is signi�cant and

warrants further investigation.
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Figure 3.5: MSE/pel versus the �eld number for recovered \Chair" sequence
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Chapter 4

ANISOTROPIC REGULARIZATION

In this chapter, an alternative to the error-weighted regularization scheme presented

in Chapter 3 is presented based on anisotropic regularization. In this regularization

scheme, a selective con�dence measure is proposed. This selective con�dence measure

is derived from local measurement errors as in Anandan's work [3]. However, instead

of being used for judging the reliability of the local motion estimates, the new measure

is designed for use in the regularization functional to select the consistent neighboring

motion information. The resulting smoothness constraint is no longer isotropic. Also

a local matching scheme called multiple o�-centered sub-window matching (MOW)

with the sum of absolute di�erence (SAD) criterion is designed for more accurate

local motion estimation. The matching errors from this local matching scheme are

then used to calculate the selective con�dence measures. As will be discussed, image-

motion boundaries can be remarkably well-preserved by anisotropic regularization

and the accuracy of image-motion �eld estimation can also be signi�cantly improved.

The chapter begins with a brief description of piece-wise continuous functions. The

concept of isotropic and anisotropic regularizations is introduced in Section 4.2 using

a detailed one-dimensional example. Section 4.3 de�nes the selective con�dence mea-

sure with the introduction of the multiple o�-centered sub-window matching scheme

and SAD criterion. Finally, experimental results are provided which show improved
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performance over both isotropic schemes as well as the error-weighted regularization

algorithm proposed in Chapter 3.

4.1 Piece-wise continuous functions

By de�nition, a function f(x) has a discontinuity of degree k at x

0

, k=0,1,...., if the

kth order left and right derivatives at x

0

di�er [52], i.e.,

f

(k)

(x

0

+) 6= f

(k)

(x

0

�):

In image motion �elds, the discontinuities due to di�erent moving objects in the scene

are usually zero-order. The zero-order discontinuities may be also caused by depth

discontinuities of a single object. Other types of discontinuity are often caused by

the surface textures of the moving objects. Continuous functions commonly refer to

functions with continuous zero-order derivatives while smooth functions usually refer

to those with higher-order continuous derivatives. The term, discontinuity , used

here refers to zero degree discontinuity. A piece-wise continuous function is de�ned

as a function which has all orders of derivatives almost everywhere except at a �nite

number locations of zero degree discontinuity. A very simple example of a piece-wise

continuous function is depicted in Figure 4.1. The function consists of two pieces,

f(x) =

8

>

<

>

:

21 � 0:02x 0 � x < 50

22 � 0:12x 50 � x � 140:

(4:1:1)

This function has a domain D = [0; 140] and an internal boundary pixel at x = 50.

It has well-de�ned derivatives of all orders except on the boundary points.

In the two dimensional case, the continuity of a function f(x; y) is de�ned in terms

of its directional partial derivatives. A line which intersects the point (x

0

; y

0

) has the

form

y = a(x� x

0

) + y

0

, or

x = b(y � y

0

) + x

0

(4:1:2)
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Figure 4.1: An example of piece-wise continuous functions

where a and b are real constants. If the set of one dimensional functions f(x; a(x�

x

0

) + y

0

) or f(b(y � y

0

) + x

0

; y) is continuous at point (x

0

; y

0

) for any constants a or

b, then the function f(x; y) is said to be continuous at that point. A vector function

of

~

f(x; y) = (f

1

(x; y),f

2

(x; y),...,f

n

(x; y)) is continuous at point (x

0

; y

0

) if all of its

component functions are continuous at that point. The image motion �eld is a vector

function of the form u(x; y) = (u(x; y); v(x; y)).

4.2 Anisotropic regularization

4.2.1 One dimensional regularization

To introduce anisotropic regularization, we �rst examine the simpler problem of one

dimensional regularization with discontinuities.

Given the measurements g(x) with measurement errors being modeled by a noise

term n

"

,

g(x) = f(x) + n

"

(4:2:1)
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for x in a domain D, we consider the problem of recovering the function f(x) from

data g(x). The function f(x) is assumed to be piece-wise continuous on D. The

precise locations of the discontinuities are unknown. If the problem is seriously ill-

conditioned due to the noise or incomplete measurements, regularization techniques

are usually employed. As done in Chapter 3, a cost functional I(f) is constructed

and minimized for a given parameter �,

I(f) =

Z

D

�(f) + ��(f; g)dx (4:2:2)

The �rst term is usual regularization functional or global smoothness constraint and

often takes the form

�(f) = (f

(x)

)

2

where f

(x)

is the �rst-order derivative of the function f(x). The minimization of this

term will result in a continuous approximation of function f(x).

One disadvantage of this formulation is that the smoothness condition is applied

throughout the whole function domain D by the global smoothness assumption of the

solution. Also from the formulation in (4.2.2) , it is not clear that how the derivatives

f

(x)

along the boundaries of D are de�ned, since by the de�nition, we have that

f

(x)

exists if and only if

8

>

<

>

:

f

(x)

(x+) & f

(x)

(x�) exist, and

f

(x)

(x+) = f

(x)

(x�).

For image data, the boundaries of D are the image frame borders. In Horn and

Schunck's work [36], the derivatives along the image frame borders are simply copied

from adjacent pixels further in from the image borders. For the same reason, the

derivatives along motion boundaries have the same problem . In essence, it is assumed

that the function to be estimated belongs to the class of continuous functions in

the standard regularization scheme. The consequence of this is oversmoothing over

motion boundaries.

Error-weighted regularization proposed in the preceding chapter can alleviate over-

smoothing across motion discontinuities if the needed weights can be derived from
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the local motion measurement process. The e�ciency of error-weighted regularization

scheme can be further improved by introducing a new notion of anisotropic smoothing

or anisotropic regularization as will be discussed in Section 4.2.3.

4.2.2 Isotropic regularization functional

Upon to now, the best-known smoothness constraints or regularization functionals

for image processing in the literature are isotropic in the sense that the neighboring

information used to smooth a given pixel comes from all the neighboring pixels. When

a pixel is close to a motion boundary, the neighboring pixels may come from di�erent

moving surfaces. In other words, smoothing across motion boundaries is unavoidable

by using such regularization functionals. Nagel [58] has used the notion of \oriented

smoothness " with a regularization functional � of the form

�(u) = trace((ru)

T

W

�1

(ru)) (4:2:3)

where the matrix W is a function of �rst-order of intensity derivatives which can be

viewed as projection operators that project any vector onto its component parallel or

perpendicular to the local image gradient, and (ru) represents the �rst-order deriva-

tives of image-motion �eld u. In this formulation, the smoothness requirement would

be retained only for the displacement vector component perpendicular to edges along

signi�cant gray value transitions. The smoothness requirement for the displacement

vector component in the direction of the pixel intensity change would be suppressed.

It is hoped that this component could be reliably determined from the pixel inten-

sity change itself. Thus, Nagel's notion of oriented smoothness is weaker than the

smoothness requirement of Horn and Schunk [36]. However Nagel's approach will

not solve the problem of smoothing across the motion boundaries since neighboring

information used to smooth the image-motion component may come from di�erent

moving surfaces.
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4.2.3 Anisotropic regularization functional

The underlying assumption of anisotropic regularization is that each pixel of a piece-

wise continuous function always belongs to a continuous surface and no isolated points

exist for the function. If the function to be estimated is piece-wise continuous, then

there always exists a consistent neighboring subset for each point on the whole func-

tion domain D.

For a one-dimensional piece-wise continuous function f(x), at least, one of the

one-sided derivatives f

(x)

(x�) or f

(x)

(x+) is always well de�ned for every x 2 D.

If f

(x)

(x�) or f

(x)

(x+) exists, the point x will be then de�ned on the continuous

interval (x�A;x) or (x; x+A), respectively. Here A is a small positive constant. We

say that all the points in the interval are consistent with point x. Therefore, we can

de�ne a new regularization functional � as

�(f) =

8

>

<

>

:

(f

(x)

(x�))

2

if f

(x)

(x�) exists,

(f

(x)

(x+))

2

otherwise:

(4:2:4)

For piece-wise continuous functions, if both one-sided derivatives exist they must

equal to each other. Thus, the new regularization functional (4.2.4) is well-de�ned

everywhere on D.

To determine which one-side derivative exists in (4.2.4), we can assign a numerical

value �(x+) or �(x�) to each point (x) corresponding to f

(x)

(x+) or f

(x)

(x�). These

two numerical values can be calculated based on the information within a small

interval (x � A � x � x + A) and are called selective con�dence measures since

those values can provide information for the regularization functional to select the

functional �(f) of (4.2.4). We will discuss this property in detail in Section 4.3. The

con�dence measure will always give higher values to the side where the function is

smoother within that �nite interval. That is, if �(x�) > �(x+), then we assume that

f

(x)

(x�) exists. Otherwise, f

(x)

(x+) will be assumed to exist. Therefore, �(f) in
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(4.2.4) can be rewritten as

�(f) =

8

>

<

>

:

(f

(x)

(x�))

2

�(x�) > �(x+)

(f

(x)

(x+))

2

otherwise

(4:2:5)

The anisotropic regularization functional de�ned in (4.2.5) di�ers from Nagel's

\oriented smoothness" de�ned in (4.2.3) in that anisotropic regularization smooths

each pixel by adaptively incorporating its neighboring pixels. It is clear that the

smoothness requirement of anisotropic regularization can hold for piece-wise contin-

uous functions but an isotropic smoothing requirement may not. Therefore, for each

measurement g(x) at location x, we can always smooth that local measurement to-

wards either (x � A;x) or (x; x + A). If it happens that the point x is close to a

boundary point, the smoothing action will not take place across the boundary.

A problem still remains with the functional (4.2.5). For the pixels within con-

tinuous surfaces, only part of the neighboring information is used in the smoothing.

Therefore, one continuous surface might suboptimally be treated as several smaller

continuous surfaces. The global information, therefore, may not be propagated e�ec-

tively within continuous surfaces. A better choice of �(f) would be

�(f) = �(x�)(f

(x)

(x�))

2

+ �(x+)(f

(x)

(x+))

2

: (4:2:6)

That is, �(f) is chosen as a weighted sum of two squared one-sided derivatives. The

weights �(x�) are the selective con�dence measures. When a point is on the boundary

or close to a boundary, the two selective con�dence measures will di�er signi�cantly

and thus the functional �(f) will behave as de�ned in (4.2.5). Otherwise, �(f) will be

similar to an isotropic functional since the two weights �(x�) will be roughly similar.

4.2.4 Two-dimensional anisotropic regularization

In the two-dimensional case, such as in the case of image-motion �eld estimation, it is

more convenient to formulate the anisotropic regularization functional by averaging
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function values of neighboring subsets of a function on each pixel since the number

of directional derivatives is not �nite. To do this, the neighborhood of each pixel

is �rst divided into M subsets denoted by Q

m

;m = 1; 2; :::;M . For a piece-wise

continuous motion �eld, the motion vector at a pixel is always consistent with the

motion vectors of pixels belonging to one or more of Q

1

; :::; Q

M

. Thus each motion

vector can be regularized by the motion vectors of consistent neighboring subsets if

consistent neighboring subsets can be determined. A selective con�dence measure is

used to indicate the degree to which a candidate subset Q

i

is a consistent subset.

De�ne a new regularization functional �(u) as

�(u) = ku�

M

X

m=1

�

m

�
u

m

k

2

(4:2:7)

where
�
u

m

is the local average motion vector within Q

m

and �

m

is the selective con-

�dence measure of Q

m

. A large selective con�dence measure will smooth the image-

motion vector u at the pixel (x; y) towards the average vector
�
u

m

in minimizing �(u).

For the pixels close to motion boundaries, the selective con�dence measures for dif-

ferent subsets Q

i

will di�er signi�cantly from each other, and the resulting smoothing

will proceed away from the boundaries. Otherwise, the selective con�dence measures

will be roughly the same for each subset and the smoothing will be isotropic.

If we use the same data term �(�) of (3.6.3) in Chapter 3, the cost functional to

be minimized in the new scheme is

I(u) =

X

x;y

[c

max

(u � ê

max

�d � ê

max

)

2

+ c

min

(u � ê

min

�d � ê

min

)

2

+ ku�

m=M

X

m=1

�

m

�
u

m

k

2

]:

(4:2:8)

The minimization of this cost functional can proceed as in Chapter 3. The resulting

iteration equation of the solution is

u

k+1

=
�
u

k

S

+

c

max

c

max

+ 1

((d�
�
u

k

S

) � ê

max

)ê

max

+

c

min

c

min

+ 1

((d�
�
u

k

S

) � ê

min

)ê

min

(4:2:9)

where
�
u

k

S

is de�ned as

�
u

k

S

=

M

X

m=1

�

m

�
u

k

m

: (4:2:10)
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4.3 Constructing selective con�dence measure

The central issue in anisotropic regularization is how to derive an e�ective selective

con�dence measure for the functional � of (4.2.7). Here we will arrive at such a

measure from a new matching approach, multiple o�-centered sub-window matching

(MOW) approach combined with the sum of absolute di�erence (SAD) criterion.

This new local matching scheme not only provides a convenient selective con�dence

measure function but also can signi�cantly improve the local measurement accuracy.

4.3.1 Motivating the SAD criterion

In image motion estimation schemes using a regularization framework, any local mo-

tion measurement errors will propagate into the global smoothing. It is therefore

desirable to have accurate local motion measurements for a better �nal image motion

�eld estimate.

There are essentially two sources of local measurement errors: image noise and

local motion model error. The �rst error source is from imaging sensors, which we do

not have control over. Our major emphasis for improvements to local motion mea-

surements is therefore the second error source. Below we will discuss how the sum of

absolute di�erence (SAD) matching criterion a�ects the local motion measurements.

Let S(x; y) denote the set of pixels within a local matching window. In block-

matching, it is implicitly assumed that all pixels in S(x; y) are moving with the

same translational velocity. This assumption is generally invalid for real images with

other than purely translational motion. In the absence of motion discontinuities,

the motion measurement errors caused by motion modeling error can be described

statistically by Gaussian noise over a small local windows. In this case, we say that

the pixels within the set S(x; y) are consistent in the sense that they come from the

same moving surface. At motion boundaries, the error distribution can no longer be

adequately described by a Gaussian distribution since there will be a subset of pixels
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Q(x; y) � S(x; y) whose velocity vectors are not consistent with the velocity of the

pixel (x; y) itself. This subset Q(x; y) can be viewed as statistical outliers which, if not

rejected or down-weighted, will cause incorrect measurements and motion boundary

blurring. Usually, the extent of blurring is proportional to the sizes of both the

outlying subset of pixels and the correlation window used in the matching.

The sum-of-squared di�erence (SSD) matching criterion, a quadratic objective

function �(�) = (�)

2

, implicitly is optimum when noise in the matching is statistically

modeled as Gaussian and thus signi�cantly penalizes large matching errors. But in

the presence of multiple motions, this Gaussian model is no longer valid and the SSD

criterion disproportionately weights the outliers and results in measurement errors.

Robustness in this case can be achieved by adopting a more appropriate model of the

error by absolute di�erences, i.e., �(�) = j(�)j [40]. The matching criterion derived

from this model is the sum of absolute di�erence (SAD) measure. Compared with

SSD, the SAD error measure performs better in dealing with multiple motions within

a matching window. When two motions are present in the matching window, less

weights is given to the inconsistent subset Q(x; y), and thus, allows a larger population

of outlier pixels within a matching window.

4.3.2 Multiple o�-centered sub-window (MOW) matching

The SAD criterion down-weights outliers relative to SSD but does not totally discard

them. Thus there will still some local measurement errors by using SAD criterion

in local motion measurements. A better option to improve local measurements is to

discard those outlying pixels. A low-complexity scheme for realizing this is through

using a multiple o�-center sub-window (MOW) matching scheme which also exploits

the properties of piece-wise continuous functions discussed in Section 4.1. Since each

pixel on the domain D of a piece-wise continuous function is not isolated, there is

always a subset of neighboring pixels which is consistent with that pixel.
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In MOW, S(x; y) is divided into M possibly overlapping subsets Q

m

(x; y), m =

1; 2; ::::M . For each subset Q

m

(x; y), a correlation operation is conducted with the

candidate motion vector that has the smallest matching error. Mathematically, we

can write the matching error as a function of both displacement vector and Q

m

,

"

m

x;y

(u; v) =

X

(i;j)2Q

m

(x;y)

�(E(x+ i; y + j)� E(x+ i+ u; y + j + v)) (4:3:1)

where � is an objective function corresponding the matching criterion used. The

candidate vector which has the smallest matching error among all subsets is taken as

the local motion measurement for the pixel (x; y).

We note that at least one of these subsets will be consistent with pixel (x; y) for

all pixels in the image, even for the pixels on the motion boundaries.

The division of S(x; y) into subsets Q

m

(x; y) can be accomplished by considering

the geometric shapes of motion boundaries. One possible choice is to use o�-centered

sub-windows of the original centered window. For the experiments presented in the

next section, we set the number of sub-windows, M = 4, which correspond to the

upper half, lower half, right half and left half of the original centered windows. In

principle, the MOW scheme can have di�erent sub-window organizations.

As an illustration, we consider a matching problem for a one-dimensional image

sequence. In this case, the number of subsets of the pixel x

0

in the image E(x) is

two, that is,

Q

x

0

�

= fE(x) : x 2 (x

0

�A;x

0

)g and

Q

x

0

+

= fE(x) : x 2 (x

0

; x

0

+A)g

(4:3:2)

where A is the matching window size. Therefore, the local image motion measurement

is obtained by performing two block-matchings for each pixel, i.e., minf"

x+

; "

x�

g,

where

"

x�

(u) =

X

(i)2Q

x

0

�

�(E(i)� E(i+ u)): (4:3:3)

The displacement with smaller matching error of the two matchings is taken as the

local motion estimate of that pixel.
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4.3.3 The selective con�dence measure

The local motion measurements can be improved by combining MOW with the SAD

criterion. This will be veri�ed through experiments presented in the next section.

In addition, the minimum matching error of each subwindow can be exploited to

construct a selective con�dence measure to be used in the regularization functional.

The selective con�dence measure for anisotropic regularization is de�ned as a re-

ciprocal of the minimum matching error corresponding to each subset match using

multiple o�-centered subwindows. From the matching error properties discussed in

Section 3.3, some useful properties of selective con�dence measure can be easily identi-

�ed. For pixels close to boundaries, the minimummatching errors of di�erent subsets

will di�er from one another. The matching error for the subset which contains the

motion boundary will be signi�cant and a small selective con�dence measure will then

result. For other subsets which are on the same object surface as the central pixels,

a large selective con�dence measure can be expected. To reduce the e�ect of image

noise on the selective con�dence measures, the maximum di�erence of the minimum

matching errors over all sub-window matchings is also used in the computation of the

selective con�dence measures . Let

� = max

i;j2f1;2;:::;Mg

j"

i

� "

j

j; i 6= j

be the maximum absolute di�erence of any two minimum matching errors of the sub-

window matchings. The selective con�dence measure for each subwindow is de�ned

as

�

m

=

1

"

m

+

c

�
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M

i=1

1
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i

+

c

�

; m = 1; 2; ::::M (4:3:4)

where c is a simple scaling factor. The denominator in (4.3.4) is used for normalization

purposes. The term

c

�

is used to enhance the selectivity when the maximum di�erence

of the minimum matching errors is large and to weaken the selectivity otherwise.

This can be explained as follows: when � is large, the the term

c

�

will be small. The
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selective con�dence measure of each subwindow will mainly be determined by its

minimum matching error and thus a large di�erence among M selective con�dence

measures will result. This is the case when the pixel is close or at motion boundaries.

On the other hand, when � is small, the selective con�dence measures will mainly be

determined by

c

�

and thus all �

m

will be nearly the same. The selectivity will be less

strong in this case, where a pixel is away from motion boundaries.

4.4 Experimental results

4.4.1 Comparison between multiple and single window match-

ing

It is now shown that the multiple o�-centered sub-window matching (MOW) together

with the SAD criterion has better performance than a standard single centered win-

dow (SCW) local measurement scheme since the former takes motion boundaries into

account. This is veri�ed through two synthetic image pairs. In the implementation,

the window radius N of the single centered window is set to 2. Thus there are 25 pix-

els in a single centered window and 15 pixels in an o�-centered sub-window if we take

the upper half, lower half, right half and left half of the original centered window as

four sub-windows. In the �gures shown, all the resulting 
ow �elds are superimposed

on the �rst image. The mean-squared error (MSE) and signal-to-noise ratio (SNR)

used below are de�ned by Equations (3.7.2) and (3.7.3), respectively.

The �rst synthetic image pair (64X64) tested is the \Square " images shown

in Figure 4.2, representing a diagonal translation of the square sinusoidal intensity

pattern towards the lower-right corner (two pixels horizontally and vertically). By

using pure translation, we exclude the e�ects of motion modeling error in the block-

matching. Both image disocclusion and occlusion occur along the motion boundaries.

The resulting image motion �elds obtained by the standard SCW with both SSD and
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Figure 4.2: Local motion �eld by SCW with SSD scheme

Figure 4.3: Local motion �eld by SCW with SAD scheme

Figure 4.4: Local motion �eld by MOW with SSD scheme

Figure 4.5: Local motion �eld by MOW with SAD scheme
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SAD criteria are shown in Figure 4.2 and Figure 4.3, respectively. The quantitative

comparison between two criteria is made in Table 4.1. From the results, we see that

the SAD criterion obtains better local measurements than SSD.

Criteria MSE(Upper) MSE(Lower) SNR(Upper) SNR(Lower)

SSD 0.256 0.343 6.28 dB 4.21 dB

SAD 0.202 0.310 7.30 dB 4.65 dB

Improving -0.054 -0.033 +1.02 dB + 0.44 dB

Table 4.1: SCW scheme: comparison between SSD and SAD for \Square". Upper:

the left upper diagonal part of the images. Lower: the right lower diagonal part of

the images.

An interesting discovery from observing the results is that the improvement in

measurements mainly comes from disocclusion boundaries. For the occluded area,

SAD does not perform much better than the SSD. This due to the fact that the

erroneous pixels in the matching window represent more than half of the total pixels

in the window when the considered pixel is occluded on the second image. In Table 4.1,

the MSE and SNR values on the left upper diagonal part and right lower diagonal part

of the image are separately listed. Note the disocclusion boundaries are on the upper

part and the occlusion boundaries are on the lower part. The SNR improvement

on the left upper diagonal part which contains the disocclusion boundaries is 1.02

dB and the SNR improvement for the right lower diagonal part is only 0.44 dB.

This di�erence can also observed from the 
ow �elds shown in Figures 4.2 and 4.3.

Hence we can conclude that neither SSD nor SAD criteria can obtain reliable motion

estimates along the occlusion regions by using the SCW scheme.

The quantitative comparisons for motion �elds obtained by the MOW and SCW

schemes are shown in Tables 4.2 and 4.3. The corresponding motion �elds are shown
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in Figures 4.4 and 4.5. Here N is still set to 2.

Criteria MSE MSE(Upper) MSE(Lower) SNR SNR(Upper) SNR(Lower)

SSD 0.144 0.010 0.134 11.41 dB 20.27 dB 8.30 dB

SAD 0.150 0.007 0.143 11.25 dB 21.73 dB 8.03 dB

Improving +0.006 -0.003 +0.009 -0.16 dB +1.46 dB -0.27 dB

Table 4.2: MOW scheme: comparison between SSD and SAD for \Square". Upper:

the left upper diagonal part of the images. Lower: the right lower diagonal part of

the images.

From Table 4.2, we see that there are no signi�cant di�erences in the performance

of SSD and SAD criteria for the particular pair of images using the MOW scheme.

Both o�er signi�cant improvement along both disocclusion and occlusion boundaries.

Carefully observing the resulting �elds, one can �nd that SAD does perform better

than SSD on corner motion boundaries, since the support pixels for the 4 sub-windows

may come from di�erent moving surfaces.

Schemes MSE MSE(Upper) MSE(Lower) SNR SNR(Upper) SNR(Lower)

SCW 0.513 0.202 0.310 5.90 dB 7.30 dB 4.65 dB

MOW 0.150 0.007 0.143 11.25 dB 21.73 dB 8.03 dB

Improving -0.363 -0.195 -0.167 +5.35 dB +14.43 dB 3.38 dB

Table 4.3: SAD scheme: comparison between MOW and SCW schemes for \Square".

Upper: the left upper diagonal part of the images. Lower: the right lower diagonal

part of the images.

The comparison between two di�erent schemes with the SAD criterion is made in

Table 4.3. From Table 4.3, it is immediately evident that the MOW scheme provides
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a signi�cant improvement in the accuracy of the estimated motion �eld. The SNR

value of the motion �eld obtained by MOW scheme nearly doubles the SNR value

obtained by the SCW scheme.

To see the performance di�erences between SSD , SAD, MOW and SCW in more

complex scenes, another pair of synthetic images (256X256) called \Disc" is used

to test each scheme. The �rst image of the pair is displayed in Figure 4.6. The

background pattern of the images translates two pixels horizontally to the left, and

the circular foreground pattern zooms-in by 0.04 unit in pixel distance while rotating

by 4 degrees. The resulting maximum displacement is 6 pixels. The actual image-

motion �eld for the center pattern is not translational and motion boundaries are not

at all straight. The estimated motion �elds are displayed in Figures 4.6, 4.7, 4.8 and

4.9. The MSE and SNR error measures are listed in Table 4.4. The SAD criterion

schemes SAD (MSE, SNR) SSD (MSE, SNR)

MOW 0.326, 14.53 dB 0.593, 11.92 dB

SCW 0.959, 9.84 dB 1.394, 8.22 dB

Table 4.4: Comparison among SAD, SSD, MOW and SCW schemes for \Disc"

with the MOW scheme gives the best local motion measurements on the occlusion

boundaries and other image regions. Particularly, when using the SCW scheme, the

SAD criterion results in a 1.622 dB over the SSD criterion. In the MOW scheme, the

SAD criterion results in a 1.016 dB improvement over the SSD criterion.

4.4.2 Anisotropic smoothing experiments

In the following examples, the stopping criterion for iteration of Equation (4.2.9) in

the minimization is taken as

P

ku
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� u
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� 10
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: (4:4:1)
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Figure 4.6: Local motion �eld by SCW with SSD scheme

Figure 4.7: Local motion �eld by SCW with SAD scheme

Figure 4.8: Local motion �eld by MOW with SSD scheme

Figure 4.9: Local motion �eld by MOW with SAD scheme
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A pair of 1-d images is �rst tested. Two images E

1

(x) and E

2

(x) are shown in

Figure 4.10. The images consist of two sinusoids: a stationary background with a

wavelength of 30 pixels and a central moving part with a wavelength of 40 pixels,

which translates to the right by 6 units. Note that occlusion occurs at the boundaries

of the background and foreground waves. Gaussian noise with a zero mean and

standard deviation of 2 is added to the images.

The cost functional to be minimized in this case is taken as

I(u) =

Z

D

�

�

(u

0

�

)

2

+ �

+

(u

0

+

)

2

+ �(u� d)

2

(4:4:2)

where d is the local motion vector, u

0

�

, u

0

+

are the derivatives from left and right sides,

and � is a regularization constant which is set to 5. The discrete problem of (4.4.2)

is

I(u) =

X
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The minimization of this function leads to an iteration equation

u

k+1

(i) =

�d + �

i�

u

k

(i� 1) + �

i+

u

k

(i+ 1)

1 + �

: (4:4:4)

Note that u

k+1

is a combination of local measurements and a weighted average of the

neighboring values at the kth stage.

The local measurements of image motion are depicted in the Figure 4.11(a) which

have large measurement errors along the image occlusion areas. The performance

comparison between anisotropic regularization and isotropic regularization (where

all the selective con�dence measures are set equally) for image-motion estimation is

shown, respectively, in Figures 4.11 (b) and (c). From the �gures, one can see that

anisotropic regularization performs remarkably well in the presence of the motion

discontinuities. Table 4.5 lists the SNR values for local measurements as well as

the motion �elds estimated by anisotropic regularization and isotropic regularization
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Figure 4.10: A one dimensional test image pair
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Figure 4.11: The experimental results for 1-d image pair
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scheme SNR iteration number

Local measurement 13.05 dB 0

Isotropic regularization 14.78 dB 75

Anisotropic regularization 23.25 dB 41

Table 4.5: SNR values of di�erent motion �elds for 1-d images

schemes. From the table, we see that anisotropic regularization can provide more

accurate image motion �eld using fewer iterations for the same stopping rule.

The Figure 4.11(d) shows the selective con�dence \contrast" which is de�ned as

j�

i+

� �

i�

j, the absolute di�erence of two selective con�dence measures. As seen from

Equation (4.4.4), the large \contrast" in motion boundary areas smooths the value of

u

k+1

toward the side with the higher selective con�dence measure. Smoothing across

motion boundaries is thus avoided.

In the two dimensional case, the implementation begins with the local motion mea-

surement together with the selective con�dence measure computation using (4.3.4).

The estimation is then obtained by iterating (4.2.9) with the stopping rule (4.4.1).

The performance comparison between anisotropic regularization and isotropic reg-

ularization for \Square" and "Disc" image pairs is shown in Tables 4.6 and 4.7,

respectively. The isotropically and anisotropically smoothed motion �elds are shown

Scheme after smoothing iteration number

Local measurements 11.25 dB 0

Isotropic regularization 8.25 dB 16

Anisotropic regularization 14.58 dB 4

Table 4.6: Comparison by SNR values for "Square" images
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in Figures 4.12, 4.13, 4.14 and 4.15, respectively. In both cases, the motion bound-

aries obtained by isotropic scheme are oversmoothed, and thus the SNR values of the

�elds drop by 3 and 1.01 dB, respectively, for the \Square" and \Disc" image pairs.

On the other hand, anisotropic regularization does not su�er from the problem of

oversmoothing at motion discontinuities. The SNR values of the image-motion �elds

obtained by anisotropic regularization have gained 3.33dB and 4.75 dB, respectively,

for the two cases over local measurements. Also note that anisotropic regularization

uses fewer iterations than isotropic regularization for the same stopping rule.

Scheme after smoothing iteration number

Local measurements 14.53 dB 0

Isotropic regularization 13.52 dB 9

Anisotropic regularization 19.28 dB 4

Table 4.7: Comparison by SNR values for "Disc" images

4.4.3 Comparison between anisotropic and error-weighted

regularizations

It is interesting to compare anisotropic regularization proposed in this chapter with

the error-weighted regularization proposed in Chapter 3. Computationally, they have

a similar global smoothing process except for the choice of weights used. For local

motion measurement, the multiple window matching involved in the MOW scheme

has twice as much computation as that in the SCW scheme if the MOW scheme uses

four subwindows, since the number of pixels in a subwindow, (2N + 1)(N + 1), is

more than half that in the center window (2N + 1)

2

. The computation involved in

computing the con�dence measures is similar for both procedures.

The comparison results on the \Square" and \Disc" images are shown in Table
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Figure 4.12: Smoothed motion �eld by standard regularization

Figure 4.13: Smoothed motion �eld by anisotropic regularization

Figure 4.14: Smoothed motion �eld by standard regularization

Figure 4.15: Smoothed motion �eld by anisotropic regularization
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4.8. The local measurements performed by two algorithms di�er signi�cantly due to

the di�erent local matching schemes used. The global smoothing by error-weighted

regularization has produced a larger gain than by anisotropic algorithm. But over-

all the anisotropic algorithm performs better than the error-weighed algorithm with

twice as much computation as that used by error-weighted regularization in the local

measurement.

In our serial processor implementation, for each pixel, the MOW scheme will have

(2d

max

+ 1)(2N + 1)

2

multiplications more than that in the local matching used in

error-weighted regularization. On the other hand, there are only 16 multiplications

used in each iteration of Equation (3.6.6). When d

max

and N are both set to 2

as in the example of the \Square" images, error-weighted regularization will take

less computation than the MOW scheme as long as the number of global smoothing

iterations is less than 8. In our \Square" example, only 4 iterations are used for

error-weighted regularization. For larger d

max

, the computation in the MOW scheme

will cost even more.

Things would be di�erent if fast and low-cost special-purpose hardware is avail-

able for block-matching. In this case one may consider using only local measurements

by allowing some performance degradation. The global smoothing, however, can be

performed in parallel-array machines with SIMD architectures very e�ciently. As a

Scheme local measurement after smoothing iteration number

Error-weighted (Square) 5.22 dB 12.81 dB 4

Anisotropic (Square) 11.25 dB 14.58 dB 4

Error-weighted (Disc) 8.21 dB 17.30 dB 4

Anisotropic (Disc) 14.53 dB 19.28 dB 4

Table 4.8: Comparison between anisotropic and error-weighted regularization
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result, the error-weighted regularization algorithm may still require less overall com-

putation than the MOW scheme. Therefore, the choice of regularization algorithms

is dependent on the processor architecture used.
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Chapter 5

OBJECT-ORIENTED CODING AND

MDL PRINCIPLE

Based on the application-oriented viewpoint discussed in Chapter 1, a new formula-

tion for estimating moving objects from the image sequence is presented with appli-

cation to object-oriented image coding in the following two chapters. This chapter

begins by motivating the use of minimum description length (MDL) principle to be

used in a new image motion segmentation and estimation framework. A brief review

of motion-compensated predictive coding then follows. Block-oriented and object-

oriented coders are described, including several existing algorithms for moving object

segmentation and estimation as they are essential to object-oriented image coding.

Section 5.3 describes the MDL principle in detail and discusses the relationship be-

tween regularization and MDL estimation. Some previous applications of the MDL

principle to intensity-based single image segmentation are also reviewed in this sec-

tion. In the end of this chapter, the advantages of the MDL principle for moving

object segmentation and estimation are summarized. Using the material presented

in this chapter as background, a procedure for moving object segmentation and esti-

mation is presented in Chapter 6.
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5.1 Motivating the use of the MDL principle

In Chapters 3 and 4, we have developed two new regularization algorithms for the

estimation of image-motion �elds. From the experiments, we have demonstrated

that these techniques can properly handle the motion discontinuities when multiple

moving objects are present in the image sequences. As was demonstrated, the image

motion �elds estimated from the algorithms in Chapters 3 and 4 are more accurate

than those from the standard regularization algorithms. However, two issues remain

that are important in certain applications:

1. The problem of choosing the optimal regularization parameter � is

still unsolved. It is important to choose the regularization parameter opti-

mally so that the regularized image motion �elds are close to the true motion

�eld. Since the regularization parameter is used to balance �tting the data

and a priori knowledge about the solution, it will be very di�cult to choose an

optimal � if the properties of the data and solution are not exactly known.

2. The motion discontinuities are only preserved and not explicitly de-

termined. For certain applications such as moving object tracking or object-

oriented coding, a further step of segmenting the image motion �eld [1, 56, 62]

is often needed. In general, it is a computationally complex task to obtain such

a segmentation from the estimated image motion �eld. For example, an algo-

rithm that uses simulated annealing to perform scene segmentation from image

motion �eld is presented in [56].

In addition to the above issues, the problems of integrating the requirements

of a particular application of image motion �eld estimation into the optimization

criterion is also addressed in this chapter. In Chapters 5 and 6 of this thesis, our

application of image motion estimation is object-oriented image sequence coding. The

minimum length description (MDL) principle is used as the optimization criterion
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for the segmentation and estimation of moving objects in video image sequences.

The criterion produced by the MDL principle, as we shall see below, is related to

maximum-likelihood (ML) and maximum a posteriori (MAP) criteria, but is a more

natural criterion when prior probabilities are not well-de�ned or the model structures

( the number and order of models) are not constrained. By the using MDL principle,

the data �tting and a priori knowledge can be more reasonably balanced since these

two factors are closely related to a single quantity: the ideal coding length. This will

be clearly shown in the following chapter where the motion parameters and boundaries

of moving objects are estimated using an MDL framework that uses the ideal coding

length as a cost function.

5.2 Block- and object-oriented image coding

In many applications of digital image processing, it is necessary to describe an image

sequence in a compressed form. A typical example is the transmission of images. In

these applications one can exploit correlation in space for still images and in both

space and time for moving image sequences together with a certain degradation of

image quality to achieve a low bit rate. Here we only consider inter-frame coding

techniques which utilize the existing redundancy between image frames.

An important class of inter-frame coding schemes is motion-compensated pre-

dictive coding. For a large number of image transmission and storage applications,

such as teleconferencing, videophone, television and satellite image transmission, etc.,

very high compression could be achieved if the trajectories of the moving objects are

known. To achieve compression, one could simply code the initial frame together

with the trajectory information of each set of pixels belonging to a moving object.

Image coding schemes that predict the next frame using motion estimation are called

motion compensated predictive coding algorithms.

The basic motion-compensated predictive coder consists of the following elements:
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Figure 5.1: Motion-compensated predictive coder

1. Estimation of motion information of the moving objects from the image se-

quence,

2. Use of motion information to generate motion-compensated prediction error

images,

3. A coding scheme for the prediction error and side information (motion estimates

and/or segmentation).

A block diagram of a general motion-compensated predictive coder is shown in Figure

5.1. Motion estimator, predictor and quantizer blocks are the three basic elements of

the coder. A key factor contributing to the success of motion-compensated predictive

coding is motion extraction from the image sequences. The input to the motion

estimator is the current frame and reconstructed previous frame which is stored in

a frame bu�er. The output of the motion estimator consists of motion vectors and

segmentation information which are fed into the predictor and sent to the receiver.
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The predictor produces a motion-compensated prediction of the current frame from

the reconstructed frame based on the output of the motion estimator. The di�erence

between the prediction image and the original image is then quantized and coded

before being sent to the receiver.

5.2.1 Block-oriented coder

Traditionally, block-oriented motion estimation has been widely investigated due to

its simplicity and e�ectiveness [9, 28, 64]. The method divides the image into �xed-size

rectangular blocks and assumes that each block is undergoing independent uniform

translation. For each block in the current frame a correlation of all possible blocks

is performed within a search area in the previous frame. The best match is then

found by minimizing a distortion measurement such as the sum of squared di�erence

(SSD). In this scheme, the motion estimator in Figure 5.1 usually works on a 8-by-8

block basis, that is, each 8-by-8 block in the current frame is matched within a search

window in the frame bu�er. The motion vector that represents the o�set between

the current block and a block in the prior reconstructed frame that forms the best

match is coded and sent to the receiver. In the block-oriented coder, the output of

the motion estimator provides no motion segmentation information to the receiver

other than the predetermined blocks.

The block-oriented motion-compensated predictive coder works quite well for typ-

ical videophone scenes, if the amount of motion is not large. In fact, it has been

employed as an industry standard and special VLSI chips have been developed [64].

Nevertheless, block-oriented coding has some disadvantages. Since it only uses sta-

tistical dependencies, it does not explicitly consider the real (semantic) contents of

the images. Thus, it does not try to understand or model the contents of the scene.

The block boundaries and the boundaries of the objects in the scene normally do not

coincide, because the blocks are not adapted to the image contents. This can lead to
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visible distortion known as blocking and mosquito e�ects in low bit-rate coders [37].

For instance, if the boundary between two di�erently moving objects is in the middle

of one block, the motion estimation will be unreliable and the predicted image will be

of low quality. Furthermore, if there is a large region with homogeneous motion, this

region might be split up into di�erent blocks. For each block, motion information

is transmitted separately which leads to information redundancy. Also, more com-

plicated motion that includes rotation or zoom cannot be described correctly if only

pure translation is considered. Another disadvantage is the fact that all blocks are

treated equally. There is no distinction between more or less important parts of the

scene. It would be desirable if important regions (e.g. the face of a person) could be

extracted and then transmitted with a higher quality than less important parts (e.g.

stationary background).

5.2.2 Object-oriented coder

To overcome the disadvantages of the block-oriented coder mentioned above, an

object-oriented technique has recently attracted considerable attention in the �eld

of image compression [37, 50, 62, 60, 81].

By object-oriented coding, moving objects are �rst extracted through the image

sequence using more powerful algorithms than simple block matching techniques. The

parameters describing the objects' motion and shape are encoded and transmitted

along with motion-compensated prediction error (MCPE) images. Since the images

are segmented into moving objects, fewer segments will result than in block-oriented

schemes for most natural images. Furthermore, a segment's boundaries will coincide

with the object's boundaries and artifacts in the reconstructed image will be greatly

reduced. It is also easy to distinguish among all the moving objects extracted from the

sequence and to assign di�erent coding rates based on their importance to the overall

quality of the images. These advantages make object-oriented coding a promising
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approach to realize ultra-low bit rates and high quality image transmission.

The structure of a practical object-oriented coder is similar to Figure 5.1, that

is, it still belongs to the class of hybrid coders. The output of the motion estimator

will consist of both motion parameters and segmented contour information. These

outputs are fed to the predictor and sent to the receiver. In the predictor, the image

motion �eld between the current frame and reconstructed frame is �rst recovered

from the motion parameters for all the moving objects and then this image motion

�eld is used to predict the current frame. The di�erence between the predicted and

the original frame is also quantized and coded.

Hotter [37] proposed an object-oriented colour image coder which encodes arbi-

trarily shaped objects instead of rectangular blocks. The objects are described by

three parameter sets de�ning their motion, shape and colour. The colour parameters

denote the luminance and chrominance values of the object surface. The parame-

ters of each object are obtained by image analysis based on source models of moving

2-D objects and coded by a parameter coder with a mode control unit. The mode

control unit decides whether or not the motion information is adequate to describe

the objects. If the objects cannot be described by the models, only shape and colour

information are transmitted. In his work, Hotter reported that the quality of the

recovered image is drastically increased in image background areas which border on

moving objects. Annoying mosquito e�ects are eliminated by the new coder concept.

5.2.3 Moving object estimation

Moving object segmentation and motion estimation is a key step to object-oriented

coding. A better image analysis will result in a smaller encoding cost. Much research

on this topic exists in the literature [12, 38, 62, 81]. There are two important com-

ponents in the estimation of moving objects: one is the models used to describe the

moving objects and other is the criterion used to estimate those model parameters.
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In [60], a 3-d facial model is used to describe scenes in the object-oriented coding of

videophone images. The transmitter and receiver have the same copy of a 3-d facial

model. The motion parameters of the facial model are estimated by determining

feature points on the face. The feature points are extracted manually in the leading

image of the sequence and roughly tracked by block matching in succeeding frames.

Templates of the eyebrows, eyes, and the mouth of the past frames are used for

this block matching. Then, after thresholding the extracted blocks, the ends of the

eyebrows, eyes and mouth are searched. This analysis strategy correctly traces feature

points only under limited conditions. An optimal threshold needs to be determined

interactively to match the illumination conditions. Since the extracted location of

the feature points are unstable, the head tends to vibrate in the recovered image

sequence. A time domain nonlinear �lter is utilized to �lter out this vibration.

Although 3-d object models are e�ective for reducing bit rates, at present it is

still quite impractical to successfully estimate those 3-d models if the input image

sequences are not con�ned to a particular type of scene. As a result, 2-d models have

widely been used due to their simplicity and e�ectiveness.

Nicolas and Labit [62] have used four parameters in their 2-d motion model of

moving objects. These four parameters are 2-d components of apparent translation,

divergence ratio, and rotation angle. Their moving object estimation algorithm starts

with an initial dense image motion �eld. A merge segmentation procedure, initial-

ized by a spatial segmentation, is applied using a homogeneity criterion based on

intensity and the initial image motion �eld. Two objects are merged if the combined

object meets the homogeneity criterion. The motion parameters are refreshed for

each merged object. The merging process stops when no hypothesized object meets

the homogeneity criterion. Because the initial �eld is noisy, all the motion parame-

ters from the merging process are re�ned by a steepest descent gradient method with

regard to a cost function based on prediction errors. Promising results for motion
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compensated predictive coding are obtained on TV image sequences.

Diehl [12] also proposed an objected-oriented motion segmentation and estimation

scheme based on 2-d object model. He uses a hierarchical scene description approach.

The image is �rst divided into changed and unchanged regions. The unchanged region

is taken as a single stationary object. For the changed region, motion parameters are

estimated using a modi�ed Newton and quasi-Newton algorithm on the hypothesis

that the changed region is a single moving object. After that, the changed region

is split into two objects in the next lower level: one object that is consistent with

the newly estimated motion parameters and the other object that has large motion-

compensated predictive errors. The objects in the next lower level will be segmented

by repeating the same procedures. Therefore, this algorithm is a type of top-down

splitting algorithm. Also, the segmentation in each level heavily depends on some

thresholding constants for intensity-edge based consistency checks.

5.3 MDL principle

The common drawback of present moving object estimation algorithms is that the

choice of the optimality criterion does not directly match the requirements of the

image sequence coding process. A better approach towards moving object estimation

is to integrate the coding requirements into the criterion used for moving object

estimation. The minimum description length (MDL) principle minimizes the coding

cost for the data to be compressed, and therefore seems to be a natural choice to

combine moving object estimation with image sequence coding.

The MDL principle was originally proposed by Rissanen [69, 70, 71]. MDL pro-

vides a framework for estimating both integer-valued structure parameters and real-

valued parameters which specify a model for the data source. The principle is to use

the least number of bits necessary to encode an observed data sequence x generated
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by a stochastically modeled source. This principle leads to an optimal parameter esti-

mator with minimum coding length for the observed data as the optimality criterion.

The coding length obtained by such estimator corresponds to a notion of information

in the data x relative to the class of models [70]. This notion of information consists

of two terms: 1) Shannon's probabilistic notion of information, which describes the

observations x generated by the stochastically modeled source and 2) Kolmogorov's

algorithmic notion of information [79], which describes the nonrandom selection of

the models or parameters. It is Kolmogorov's algorithmic notion of information that

extends the classical maximum likelihood criterion and permits estimation of the

number of parameters without a separate hypothesis test. This mixture model of in-

formation provides the common measure of complexity that can be assigned to both

the data models and parameters.

5.3.1 Relation between estimation and coding

In the coding problem, we are given a string of observed data points x

t

, t = 1,...,n,

each truncated to some �nite precision, and the objective is to redescribe the data

with a suitably designed code as e�ciently as possible, i.e., with a short coding length.

In estimation, which is a fundamental problem in signal processing and related �elds,

we seek an explanation of the observations, or, rather, of the underlying mechanism,

which we believe has generated the observed data. More precisely, we select a para-

metrically de�ned statistical model described by a probability mass function, P

�

(x),

for the data x, and try to estimate the vector parameter � = (�

1

,...,�

m

) from the ob-

servations, where m is an integer variable to be estimated. The use of the probability

mass functions is motivated by the fact that each observed realization x

i

is always

expressed in �nite precision, with, say, q fractional binary digits.

By representing the number x

i

in binary notation, we see that the entire sequence

x can be written down using nq bits. But such a trivial coding or description of
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the observed sequence does not take into account the possible correlations that exist

between the numbers x

i

nor the relative frequency with which each observation occurs.

If such dependencies were taken advantage of, we might be able to reduce the total

number of binary digits in the description of x. The dependencies between data can

often best described by a parametric model, and the coding length L(x) of the data

x will be a function of those model parameters. The shortest coding length should

result if the true parameters are used in the code design.

Rissanen [69] has shown that a one-to-one relation exists between the coding

length function L(x) and the negative base-two logarithm of the probability mass

function P

�

(x) used to describe the data model, i.e.,

L(x) = �logP

�

(x) (5:3:1)

where � is a parameter vector which speci�es a whole class of probability mass func-

tions. If we pick just any \model" P

�

(x) in the class and encode the data x using

�logP

�

(x) bits, then the mean coding length �

P

P

�

0
(x)logP

�

(x), where the sum is

over all data sequences x of length n and �

0

denotes the \true" parameter, cannot be

smaller than the entropy, which is de�ned as �

P

P

�

0
(x)logP

�

0
(x). Moreover, equality

is achieved only when � = �

0

. Therefore, if the observed data sequence has probabil-

ity P

�

(x) with � regarded as �xed, then the minimum coding length for the observed

data is �logP

�

(x) bits. This coding length is called the ideal coding length. If � is

variable, and we wish to design the shortest code, we clearly have to estimate � so as

to minimize the ideal coding length �logP

�

(x). This is an alternative interpretation

of the familiar Maximum Likelihood (ML) estimator.

We have not yet considered the problem of obtaining a compact description

of �. Without any cost assigned to encoding the parameters we could, in princi-

ple, bring the the mean coding length �

P

P

�

0
(x)logP

�

(x) as near to the entropy

�

P

P

�

0
(x)logP

�

0
(x) as we like by increasing the complexity of the model, i.e., the
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dimension of �. This is one reason why the correct model structure cannot be deter-

mined by the ML estimator. This problem can be solved by including the number

of bits spent on encoding the parameters into the ideal coding length function. The

interpretation of this solution can be identi�ed with Maximum A Posteriori (MAP)

estimation [51] as discussed below.

When we include the ideal coding length for the parameters into the total coding

length function, we have

L(x) = �logP

�

(x) + L(�) (5:3:2)

where L(�) denotes the ideal coding length for the parameters. The problem of e�-

ciently encoding the model parameters, �, is quite di�erent from encoding the random

observations x because � can not be readily modeled by probability distributions. By

similar arguments as used for the data model term, Rissanen has shown in [69] that

2

�L(�)

de�nes a prior distribution function for the parameters under certain condi-

tions. That is

P (�) = 2

�L(�)

: (5:3:3)

As examples, if the parameter is a constant vector known to the decoder, we will

not need to encode it at the transmitter, so L(�) = 0 and P (�) = 1. If the parameter

is known to range uniformly over a �nite set of M values, then we will need log(M)

bits to encode it and with P (�) = 1=M .

Using (5.3.2) and (5.3.3), we can write the total coding length function as

L(x) = �logP

�

(x)� logP (�) (5:3:4)

or in a more familiar form

L(x) = �log[P

�

(x)P (�)]

= �log[P (xj�)P (�)] (5.3.5)

On the other hand, the MAP criterion chooses the parameter vector � that maximizes

the conditional probability of the model, given the data: P (�jx). An application of
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Bayes's rule yields

P (�jx) =

P (xj�)P (�)

P (x)

: (5:3:6)

Since P (x) is constant with respect to �, the MAP strategy is to choose � that

maximizes

P (xj�)P (�):

From (5.3.5) and (5.3.6) , we see that the strategy of �nding the minimum coding

length by choosing particular model parameters is equivalent to the MAP strategy of

maximizing the conditional probability for the model, given the data: P (�jx).

5.3.2 Prior information and parameter coding

There are two sources of information in the estimation problem. The �rst consists of

observed data x, and the second, called prior information, consists of everything else,

based on earlier observations that are no longer available to us or based on known

properties of the data source. Prior information plays as crucial a role in the MDL

criterion as in MAP estimation. We �rst need to know how the data are generated,

that is, the prior information that is used to de�ne an observation data model. Usually

this is done by selecting a parametric class of probability mass functions, P

�

(x), and

assigning a probability to every possible observed data x. If the observations consist

of both an \input" sequence y and an \output" sequence x, then the appropriate

probability mass function is P

�

(xjy). Secondly, the prior information must be taken

into account to derive the ideal coding length functions for model parameters.

Of particular interest is the case where the model parameters are integers. Suppose

k is an integer to be coded and one knows that the number of bits in the binary

representation of the integer equal to n. Then the coding length for k is simply n.

That is, integer k has a uniform distribution over a �nite range [0; 2

n

], i.e., P (k) =

1=2

n

.

If one does not know the number of bits in the binary representation of this integer,
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we can encode it by a simple but ine�cient method which uses a sequence 01 as a

\comma". This is done by repeating every bit of the binary expansion of k twice and

then ending the description with a sequence 01 so that the decoder knows that the

end of the code has come. For example, the number k = 5 (binary 101) would be

encoded as 11001101. This code requires 2dlogke + 2 bits.

A more e�cient method for encoding k is through the following recursive proce-

dure: at �rst, the number (logk) of bits in the binary representation of k is speci�ed,

followed by the actual bits of k. To specify logk, the length of the binary represen-

tation of k, we can use loglogk bits. Continuing this recursively, we can encode k in

logk + loglogk + logloglogk + � � � bits, summing until the last positive term. This

sum of iterated logarithms is sometimes written as log

�

k. The associated probability

P (k) = 2

�log

�

k

is known as a universal proper prior for the integers.

For encoding a real-valued vector parameter �, without prior knowledge, we �rst

truncate each component of �,�

i

, to an integer number of bits and then encode the

integer as above. The truncation performed is by writing each component �

i

of �

to precision ��

i

=2. This allows for the precision of each component to be adjusted

according to its contribution to the total coding length of the data x.

Distributions of parameters other than uniform may also be considered. For in-

stance, since asymptotically e�cient estimators in general have a near Gaussian dis-

tribution, �

i

could be modeled as Gaussian. Also, we could assume that the observed

data points come in batches of, say, N points each and we could specify a conditional

probability P (�

k

j�

k�1

) of the parameter vector �

k

for the kth batch given the previ-

ous parameter �

k�1

for the (k � 1)th batch in terms of prior knowledge of temporal

correlations of the model parameters.
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5.3.3 Data model structure

In many situations, the observed data to be encoded are generated by several under-

lying models rather than just a single model. In the modeling process, the observed

data may not be adequately described even if a complicated single model is used.

A simple example is the data string generated by the piece-wise continuous function

de�ned by Equation (4.1.1) in Chapter 4.

In such situations universal modeling of the encoder is needed. In broad terms,

the modeling of the observed data involves a determination of local structure within

the entire data and its contexts. Thus we can regard the model as consisting of two

parts: 1) the local structure which speci�es the set of events and their contexts, and

2) the parameters which de�ne the probabilities assigned to the local events.

The local structure captures the global redundancies while the parameters are

tailored to each individual local structure. If we can estimate the local structure of

the data and use a shorter model for each subset of the data, then a shorter coding

length would be obtained even though additional bits are used to describe the local

data structures. Generically, the process of �nding local structures of the data is

a segmentation problem for observed data. The number of local segments and its

boundaries are the integer-valued structure parameters to be estimated.

The original MDL formulation did not consider this segmentation problem. We

now extend MDL to the multiple model case by posing a combined segmentation

and estimation problem. Let O

n

; n = 1; :::; N be a collection of disjoint subsets that

partition the data. Let each subset be generated by a parametric model P

�(n)

(xjx 2

O

n

). If the prior probability distribution of the parameters for O

n

is P (�(n)), then

our combined segmentation and estimation problem under MDL is to estimate the

number of subsets N , the points of b

n

, representing boundaries, in subset O

n

, and N

parameter vectors �(n); n = 1; :::; N together with their order number m

i

such that
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the coding length for x, as expressed below, is minimized

L(x) =

N

X

n=1

[�logP

�(n)

(xjx 2 O

n

)� logP (�(n))+ log

�

m

n

]+ log

�

N+

N

X

n=1

log

�

b

n

: (5:3:7)

The last term in the above expression denotes the coding length for the boundary

contour of the ith segment if the data x is in the form of a two-dimensional array.

5.3.4 Relationship between regularization and MDL

It is interesting to consider regularization theory discussed in Chapter 3 in the con-

text of the MDL principle. First, regularization theory is usually used to estimate

an unknown function from noisy data and the solution is obtained by minimizing a

functional of the unknown function. The MDL principle treats the unknown functions

as a class of parametrized functions. The cost functional in regularization theory is

thus expressed in terms of a function of unknown parameters in the MDL estimation

context. Therefore, the MDL estimator is a parameter estimator. Once the param-

eters for the unknown function are estimated, the unknown function can be easily

reconstructed.

Regularization theory deals with ill-posed problems by adding a measure of the

solution's smoothness requirement. The cost functional to be minimized thus consists

of two terms: one term measures the �t to the data and the other term measures the

smoothness of the estimates. Since these two measures are fundamentally di�erent,

an optimal combination of the two is obviously di�cult to obtain. On the other hand,

the two terms in the criterion produced by the MDL principle are similar in nature:

the number of bits needed to encode both the prediction errors and the parameters

which specify the unknown function. Therefore, the MDL principle can automatically

balance between the smoothness and data �tting capabilities of estimators by using

coding length as a common measure. From a coding point of view, the number

of bits needed to encode the parameters will be smaller if the estimates become

smoother. Therefore, regularization with smoothness constraints is roughly equivalent
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to MDL estimation except that it lacks the automatic balancing capability between

smoothness and and data �tting.

As an example, consider the classical curve-�tting problem, in which one is pre-

sented with an ordered set of numerical observations that can be described as points

along some mathematically de�ned curve, such as a polynomial. A smoother �tting

will result if a low order polynomial is used. By allowing the order of the polynomial

to be variable, the smoothness and accuracy of curve �tting can be balanced by min-

imizing the coding length for describing the �tting errors and the parameters of the

polynomial model. If the observations come from several curve segments, the MDL

estimator can get a segmented �tting which has a minimal coding length among all

other possible �ttings.

5.3.5 Image segmentation by MDL

The general MDL principle discussed above has been proposed for some time [69, 70,

71], but it is only recently that researchers have found the MDL principle to be a

powerful tool for image analysis. In [45, 51, 11], the MDL principle has been applied

to intensity-based segmentations of still images.

Leclerc [51] uses the MDL criterion to segment single images. Using a low-order

polynomial description of the intensity variation within each local region and a chain-

code representation of the region boundaries, a global cost function is constructed

in terms of coding length for the image. A local minimum of that cost function is

obtained by an iterative descent algorithm after linearization of a system of normal

equations. Successful image segmentations have obtained for two simple synthetic

images. However, the algorithm fails to give a truly region-based description for

the real images and behaves as an edge detector. The reason of this failure is that

the system is essentially a form of surface reconstruction with \line process". The

minimization of the cost function proceeds locally and no region labeling occurs.
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In contrast to Leclerc's image analysis system, a region-based segmentation al-

gorithm is proposed by Darrell [11]. The algorithm incorporates two mechanisms:

1) a cooperative estimation process, that produces a large set of hypotheses about

the scene's local structure and 2) a global optimization process that searches for the

subset of these hypotheses which constitutes the simplest and most likely global de-

scription of the image. In the cooperative estimation, an array of robust M-estimators

is applied to the image. In the global optimization stage, the redundant estimates

are eliminated by identifying hypotheses which overlap and o�er little or no encoding

reductions. Simulations are performed on simple synthetic 2-d and 3-d images. A

region-based segmentation is obtained for each case. One problem of this algorithm is

that it is not apparent as how to specify the initial region support for each estimator.

Also the problem of estimating the number of objects is not properly addressed.

5.3.6 Summary of the advantages of MDL

From above discussion, it is clear that the notion of an ideal coding length function,

(5.3.2), is a coding theoretic equivalent of a random process and the resultant esti-

mator is equivalent to the MAP estimator. Although equivalent, the coding length

interpretation is preferable due to the following reasons.

1. The coding length interpretation is valid even when the objects to

be coded are \deterministic" parameters, admitting no traditional

probabilistic interpretation. One of the advantages of the MDL approach is

the uniform manner in which one can combine purely stochastic models (such

as white noise) with deterministic models (such as the polynomials).

2. The coding length interpretation conveniently handles both integer-

valued structure parameters and real-valued model parameters. Typi-

cally, integer-valued structure parameters can denote model order. In addition,

integer-valued parameters describe the number of underlying models and local
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data structures. This advantage has made the MDL a natural framework for

the integration of parameter estimation and data segmentation.

3. Using MDL, we can estimate the least number of bits that are needed

to encode the observed data with regard to a particular data model.

When a particular coding scheme is speci�ed, there is a natural trade-o� be-

tween bits spent on model parameters and bits spent on data from that model.

This feature is intuitively appealing when the purpose of the estimation problem

is to encode the observed data.

4. By combining motion segmentation with motion parameter estimation, we can

estimate motion discontinuities more appropriately in the context of the

application at hand.

Based on the advantages mentioned above, The MDL principle is applied to the

moving object segmentation and motion estimation in the next chapter. A computa-

tional procedure for the MDL estimator based on region merging is developed. The

great potential of the MDL principle in source coding bit-rate reduction is demon-

strated.
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Chapter 6

SUMMARY AND CONCLUSION

This thesis addresses the problem of moving object estimation for image motion �elds

that contain discontinuities. We have approached the problem in two ways: adaptive

regularization, which includes error-weighted and anisotropic regularization where

segmentation is implicit, and the MDL principle, where the motion-based segmenta-

tion is explicit.

6.1 Image �eld estimation by regularization

6.1.1 Major results

The �rst contribution of the thesis, presented in Chapter 3 and 4, is the use of the

matching errors in the regularization smoothing functional to adaptively smooth the

motion �elds.

Block-matching is used in the proposed regularization algorithms since the match-

ing errors can be used for measuring the reliability of local measurements and for

guiding the global smoothing process as discussed in Sections 3.2 and 3.5. To sup-

port this concept, Sections 3.3 and 3.4 discussed the exploitable connections between

image-motion discontinuities and the matching errors among the di�erent types of

motion boundaries. Matching errors have also been used by Anandan and Singh but
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only for measuring the reliability of local measurements. The usage of local matching

information in the global smoothing process is novel, to the author`s knowledge.

The key formulation of error-weighted regularization presented in Chapter 3 is

the construction of the regularization functional �. As discussed in Section 3.6, � is

taken as the L

2

norm of the di�erence between the motion vector u and the error-

weighted average,
�
u, of its neighboring motion vectors. The weights used here are the

the inverses of the scaled matching-errors. By using this functional, global motion

information will be propagated to each u only from neighboring points which have

comparatively reliable measurements. As a result, oversmoothing across the motion

boundaries is avoided.

By exploiting the properties of piece-wise continuous functions as discussed in

Section 4.1 and noting the disadvantages of the isotropic smoothing functional as

discussed in Section 4.2.2, the new concept of anisotropic regularization is proposed

in this thesis.

In anisotropic regularization, multiple, spatially o�set windows (MOW) are used

for the local measurement process. The cost functional formulation of anisotropic

regularization is similar to that of error-weighted regularization except for the new

selective con�dence measures de�ned in Equation (4.3.4) which are based on matching

errors from MOW. The selective con�dence measures are designed for the regular-

ization functional to select the consistent neighboring motion information so that

anisotropic regularization smooths each pixel adaptively.

Anisotropic regularization has improved motion estimates over error-weighted reg-

ularization as compared in Section 4.4.3. But much more computation is used in the

MOW scheme. Therefore, the choice of regularization algorithms is dependent on the

implementation architecture used.

Compared to stochastic optimization based schemes where a line process is used,
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the major advantage of the two new regularization algorithms is that they are com-

putationally similar to standard regularization as used by Horn and Schunck [36] and

achieve improved performance as evidenced by the experimental results provided in

Sections 3.7 and 4.4.

6.1.2 Future research in image motion estimation

Regularization parameters

The regularization parameters in anisotropic and error-weighted regularization algo-

rithms have been chosen using Anandan's algorithm. In this method, regularization

parameters are implicitly speci�ed in terms of con�dence measures. Even though the

regularization parameters are spatially varying, the optimality of such a formulation

has not been proven. A recent study of regularization parameter optimization in

[80] in the context of image restoration may provide some insights into this problem.

However, as noted in Section 3.1, a tradeo� exists between parameter optimization

and computational considerations

Hierarchical approach

Multiple resolution image representation are widely used in image processing to speed

up computation and allow for progressive transmission [3, 16, 24]. But the low pass

�ltering operation in resolution reduction often spreads occlusion and disocclusion

regions and mixes the intensity information among di�erent moving surfaces. It

would be desirable to consider multiple resolution representations that properly avoid

smoothing over motion boundaries.

Interpolation of interlaced video images

In Section 3.7.3, it has been found from the experiments that the motion-compensated

interpolation error in interlaced video images is signi�cant for even �elds if the motion

information is estimated from odd �elds. This problem warrants further investigation

in order to obtain the recovered images with a higher quality.
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6.2 Moving object segmentation and estimation

by MDL

6.2.1 Major results

A signi�cant contribution of the thesis, presented in Chapters 5 and 6, is the applica-

tion of the minimum description length (MDL) principle to motion segmentation and

estimation on scenes with multiple moving objects. The importance of this contribu-

tion is evident by increasing demands for ultra low bit-rates for video image trans-

mission. The recent concept of object-oriented image sequence coding is reviewed in

Section 5.2. This thesis has suggested a new direction in the area of moving object

estimation for applications in object-oriented image sequence coding.

As discussed in Section 5.1, the MDL criterion is motivated by its uni�ed treatment

of the data �tting and parameter model terms found in a regularization framework

based on the ideal coding length and the explicit motion boundary representation.

More importantly, the MDL criterion is well-suited to object-oriented image sequence

coding, since the ideal coding length is minimized for a given distortion.

The aim of the MDL principle originally proposed by Rissanen is to derive a crite-

rion estimating both integer-valued structure parameters and real-valued parameters

of a stochastic model. The principle is to use the least number of bits necessary to

encode an observed data sequence generated by a stochastically modeled source. In

Sections 5.3, the MDL principle is described, and together with its relation to estima-

tion and coding, prior information, parameter coding and local data structures. To

use the MDL principle for moving object segmentation and estimation, this thesis has

straightforwardly extended the MDL principle to multiple data models as described

in Section 5.3.3. Existing applications of the MDL principle to intensity-based single

image segmentation are reviewed in Section 5.3.5. The present work is an important

extension of those early applications.
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The formulation of the new MDL estimator, presented in Section 6.1, uses a

motion-compensated coding system model for scenes with multiple moving objects as

a basis, and systematically establishes the ideal coding length functions for motion

parameters, motion boundaries and motion-compensated prediction errors. In the

implementation, the motion models are either linear a�ne or translational. Each

motion parameter is assumed to have a uniform distribution and is encoded by six

bits. A chain-coding scheme is assumed for representing object boundaries due to its

simplicity. A Gaussian distribution is assumed for the motion-compensated prediction

errors. The quantization constant introduced in this Gaussian distribution determines

the visual quality of recovered images by a decoder.

The minimization of the MDL estimator turns out to be di�cult. This thesis has

proposed a solution to the problem. The importance of this computational procedure

is that it provides a means to systematically quantify the great potential of object-

oriented image coding over block-oriented schemes. As discussed in Section 6.2, the

proposed computational procedure is based on a region-merging scheme. The image

is �rst divided into disjoint blocks. The local motion vectors from block matching

then are then used to obtain a coarse segmentation. Based on this initial segmenta-

tion, coding length reduction is used to direct the merging process using an adjacency

graph. The motion parameters within object boundaries are estimated based on solv-

ing a linear system of equations containing spatial and temporal intensity derivatives.

The computational complexity of the merging procedure is proportional to the object

size, the square of the number of objects in the sequence, and the square of the motion

model order.

Although the solution of the MDL estimator is not globally optimal, several exper-

imental comparisons presented in Section 6.3 between the block-oriented and object

oriented coding schemes verify the further coding rate reduction ability of object-

oriented coding schemes using this computational procedure. As opposed to �xed
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block-oriented coding, the new procedure's performance improves with decreasing

block-sizes. We have also shown experimentally that the a�ne motion model may be

more suitable for complex scene motions than the purely translational model.

6.2.2 Future research in the MDL estimator

Motion model order detemination in MDL estimator

In the present MDL estimator, we have only considered a �xed-order motion model.

A variable-order motion model can be readily accommodated using the MDL princi-

ple. Moving objects undergoing complex motion can therefore be described by more

parameters. An e�cient computational algorithm should be found to incorporate this

formulation other than by simply hypothesizing all possible motion model orders for

each moving object.

Computation of MDL estimator

The present merging scheme for the MDL estimator cannot be computed quickly

enough for processing video image sequences on-line. Optimizing the graph data

structures used in the merging process will reduce the computation required some-

what. To speed up the computation further, we might sacri�ce, to some degree, the

optimality of the MDL estimator's solution and use parallel merging schemes designed

with special-purpose hardware such as used in [82].

Recursive estimation

The present MDL estimator only utilizes two frames at a time. Recursive estimation

in the temporal direction will make more e�cient use of information contained in the

image sequence. The current segmentation and estimation of moving objects may po-

tentially be performed much more e�ciently by incorporating information in previous

frames. However, the straightforward approach described in Section 6.4.2 was not as

successful as expected. Therefore, recursive estimation is still an open problem.
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