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Abstract

This project presents a new method to compute three-dimensional trajectories
from both optical low and image plane position measurements derived from the esti-
mation of second-order intensity variations in image sequences. It is based on Nagel’s
optical flow computation approach in which optical flow is obtained by minimizing
the mean squared error differences between a second-order Taylor expansion of gray
values from one frame and the observed gray values within the same window from
the next frame. From his method, in the special case of a “gray value corner”, and
another special case of a “gray value extremum point”, we have developed a new
technique in which the measurement vector contains both position and image plane
velocity. The measurement vector can be approximately expressed as a first-order
Taylor expansion which is a function of parameters estimated from the measured

gray value surface.

Our goal is to estimate the three dimensional trajectory and structure of a moving
rigid object in an image sequence. The hybrid feature/flow-based recursive trajectory
and structure estimation algorithm, proposed by Blostein and Chann, is reviewed in
detail. This algorithm is used together with this new measurement equation we have
derived in this project. It is shown that accuracy of the 3-D motion estimation is
improved significantly. The effects of using the different values of parameters in the

measurement equation to the 3-1 motion are also demonstrated.
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Chapter 1

Introduction

Background

Motion analysis is a very important subject in computer vision. It includes estimating
the relative three-dimension(3-D) motion of a moving object with respect to the
camera from given image sequences. A number of real-world problems require the
estimation of 3-D motion. These include applications in video image compression,
industrial automation and inspection, robot assembly, autonomous vehicle navigation,

biomedical engineering and remote sensing.

In motion analysis, obtaining reliable information about the moving object is a
fundamental and important problem. The information contains the 3-D time-varying
position, orientation, translational and rotational velocity, which are extremely valu-
able for motion prediction. In this project, we focus on estimating the 3-D motion of
a moving object using a single camera. The camera is assumed to be stationary and
this moving object is a rigid-body that implies that the 3-D distance between any

pair of points never varies with time.

Usually, there are two phases in a complete 3-D motion analysis system based
on the use of measurement data obtained. The first phase is to compute the opti-
cal flow or/and establish the correspondence of discrete features. The second phase
is to use these data to determine the motion parameters. Blostein and Chann had

developed a hybrid feature/flow-based recursive 3-D trajectory and structure estima-



tion algorithm that focuses on the recovery of motion parameters. Unlike any other
approaches, this algorithm is the first ever to make use of both image plane coordi-
nates of discrete features and image plane velocity information and produce better
estimation of motion parameters than that of a purely feature-based algorithm. This

project addresses performance improvements for this hybrid algorithm.

Contribution

In our motion analysis research, we have derived the relationship between the mea-
surement of image plane coordinates of feature points and image plane velocity. The
relationship can be approximately expressed as a first order Taylor expansion in terms
of the parameters of an estimated gray-level surface from pixel observations, and the
error between estimated and actual parameters. It makes the joint computation of
feature point coordinates and optical flow numerically tractable. We are also inter-
ested in how we can use the image measurements for estimating 3-D motion of a
moving object from a sequence of images. We show that the estimation of these
parameters of an estimated gray level surface is unbiased and its error covariance
is known and does not change over time: We will show that the first-order term of
this Taylor expansion about the estimated parameters in which the expection of the
second term of right hand is equal to zero (Chapter 3). That means that the bias
between the measurement vector and the first term of the right hand side of this

equation, in terms of the estimation of these parameters, is equal to zero.

We will use this new measurement technique together with the hybrid feature/velocity-
based recursive algorithm in estimating 3-D motion of a moving object. From the
results of our simulations, we see obvious improvements in performance: smaller bias
and variance, increased stability, and faster convergence under the conditions of ran-
dom measured gray values, and a set of different gray value and image resolutions

used in our experiments.



Organization

This project report is organized as: Chapter 2 provides the relevant background of
3-D motion estimation, a brief introduction of the Kalman filtering which will be used
in the hybrid algorithm, and a detailed description of the hybrid feature/flow-based
3-D trajectory estimation algorithm. Chapter 3 presents details of the derivation that
the measurement equation can be approximately expressed as a Taylor expansion, and
discussion of the use of this equation. Chapter 4 shows the implementation details
and the simulation results from our experiment. Chapter 5 forms the conclusions

based on our experiment results.



Chapter 2

Background and the Hybrid
algorithm of 3-D motion
Estimation

In this chapter, we will briefly review relevant background material of 3-D motion
estimation. Then we will give a detailed description of the hybrid feature/flow-based
recursive 3-D trajectory and structure estimation algorithm. The background con-
tains basic characteristics of the previous approaches to 3-D estimation from digital
image sequences, the Kalman filter and its extended variations which are often used
in many 3-D motion algorithms and also used in our research. The details of the
hybrid algorithm include the imaging model, object model, motion model and system
model. This hybrid recursive 3-D motion estimation algorithm is core to this project,

and will be applied in Chapter 3 and Chapter 4.

2.1 Background of 3-D motion estimation

There are a number of different approaches developed for the recovery of 3-D motion
information (position, translation and rotational velocity). As Chann notes[3], all of
them can be classified into one of three main methods: feature-based, optical flow-
based and direct. The following is a description of the basic features of these main

approaches.



2.1.1 Feature-based Methods

Feature-based methods use a small number of salient feature-point coordinates on the
image plane from the image sequences to track and estimate 3-D motion. The features
are commonly chosen as corners, lines, and regions. The choice of features should not
affect the formulation of the solution. The procedures of feature-based approaches
contain three steps. The first is to extract the features of the moving object from one
frame. The second step is to find those same features in the next frame to determine
feature correspondence. Typically, the time interval between the first and second
frame is very small. The final step is to estimate motion and structure. As we can
see, obtaining these correspondences precisely is the key to feature-based methods.
There are two kinds of feature-based methods used in motion estimation: batch and

recursive.

Batch algorithms commonly put certain constraints on the object to obtain a set
of linear or nonlinear equations in terms of the motion parameters. The minimum
number of equations is at least as large as the number of motion parameters that
need to be estimated. Because of the existence of noise in the process of estimation,
the number of equations used is typically much more than the minimum in practice.
The use of a large number of equations increases the computational load. In many
real-time problems, recovery of 3-D motion parameters must be at real-time. In this
case, most batch algorithms are not applicable because of the large computational

requirements.

Recursive algorithms are widely used in real-time 3-D motion estimation because
they provide higher efficiency in computation. A recursive algorithm using a dynam-
ical system of equations requires only the previous state estimate and the current
measurement to produce the current estimate. It can reduce the processing data
significantly. The Kalman filter is the most commonly used recursive algorithm. We
also use it in our project. A conceptual introduction of Kalman filtering will be given

in the next section.



2.1.2 Optical-Flow-based methods

Unlike feature-based techniques, optical-flow-based methods recover 3-D motion infor-
mation from the measurement of optical flow. The first step of optical-flow-based ap-
proaches is always to compute the optical flow field u(z;, y;) = [ w(xi, y:) v(xiy) 7.
The optical flow at the coordinate (x;,y;) is the instantaneous velocity of the gray
level (brightness) pattern at this point. Because the optical flow equations can be al-
gebraically expressed as the functions of the motion parameters, after computing the
optical flow, 3-D motion parameters can be estimated. There is another difference
between feature-based and optical-flow-based methods. Usually, feature-based ap-
proaches assume a stationary observer and a moving object, while optical-flow-based

approaches commonly assume that an observer is moving within a static environment.

2.1.3 Direct methods

The third class are referred to as direct techniques. The characteristic of these meth-
ods is that there is no feature extraction and correspondence nor optical flow to be
computed before recovery 3-D motion and structure. Instead, 3-D motion parameters

can be obtained directly from the measurement of gray values at each pixel location.

2.2 Overview of Kalman filtering

We have mentioned previously that recursive algorithms are commonly applied in
real-time problems for estimating 3-D motion because of the advantage of high com-
putational efficiency. Kalman filtering is an important and extensively used recursive
algorithms. The Kalman filter produces an optimal estimate of the system state based
on all previous noisy measurements[5]. The hybrid algorithm used in this project is

built on Kalman filtering. It is therefore necessary to give a general overview.



2.2.1 State space model

For a given dynamic physical system, in which the state-space model can be described

by differential equation as:

dx(t)

S = (), 1) + W) 2.1)

where x(t) is the state of the system, w(#) is the process noise. The measurement

equation is expressed as:
y(t) = h(x(t),1) + v(1) (2.2)
where y(%) is the measurement, v(¢) is the measurement noise. The goal is to extract

the system state x(¢) from the noise added measurement y(#) and make the estimate,

x(1), close to x(t). The perfect estimate is x(¢) equal to x(t).

In a special case that both f(-) and A(-) are linear functions of the state variable,

the plant model, then, can be written as:

d’;_(tt) = F()x(t) +w(t) (2.3)
y(t) = H®Hx(t)+v(1) (2.4)

The implementation of this plant model on a digital computer requires discretization

of equations (2.3) and (2.4). It leads to:

Xk+1 — (I)(k + 1, k)Xk + W, Wi~ N(O, Qk) (25)
yi = Hxp+vy vy~ N0, Ry) (2.6)
where ®(k 4 1, k) = exp[(tg41 — tx) Fi], and exp[-] is the matrix exponential[5].
To unify the notation, we use x(k), y(k), F(k) to express xi, yi, ®(k + 1,k)
respectively. Then equations (2.5) and (2.6) can be rewritten as:
x(k+1) = F(k)x(k)+w(k) (2.7)
y(k) = H(k)x(k)+v(k) (2.8)

Next, we will introduce how the Kalman filter performs state estimation.



2.2.2 Discrete Linear Kalman Filter

The discrete linear Kalman filter is an elegant generalization of recursive least squares,
and it is convenient for digital computer implementation. The Kalman filter estimates

optimally the unknown system state from the noisy measurements.

Suppose there is a discrete system, whose plant model is described in equa-

tions (2.7) and (2.8). The Kalman filter equations are

Time Update:

x(k+1lk) = F(k)%(k|k) (2.9)
Plk+1k) = F(k)PEKFT(k) +Qk) (2.10)

Measurement Update:

X(k+1k+1) = %(k+1k) + K(k+ DY (k4 1) = H(k + 1)%(k + 1|E)] (2.11)
Plk+1lk+1) = [I—K(k+1)H(k+1)])P(k+1]|k)
= [U—K(k+DH(k+D]PE+ 1K - K(k+1D)H(k+1)]"

+K(k+1D)R(k+1)KT(k+1) P(0]0) = P(0) (2.12)

Kk+1) = Pk+1k)H"(k+1)
<[H(k+1)P(k+ 1EYH (k+1) + R(k + )] (2.13)

Note that we prefer using the latter form of equation (2.12) to ensure the positive
definiteness and symmetry of the error covariance matrix. In the formulation of
the linear Kalman filter, if there is no prior knowledge about the process noise and

measurement noise, wi and vy, are assumed to be temporally white Gaussian noise:

E{wwl} = {82’“ z; (2.14)
E{vwT} = {OR’f z;j (2.15)



without loss of generality, w and v are often assumed to be uncorrelated:

E{fwvI} =0 Vi,j (2.16)

The following is a summary of an algorithm that performs the Kalman filtering

equations (2.7) to (2.16).

1.

2.

10.

11.

12.

Initialize the step index k=0
Initialize the state estimate vector x(0/0)
Initialize the covariance matrix P(0]0) = P(0) of the state estimate error

Compute the next covariance of the state prediction error P(k + 1|k + 1) using
equation (2.10)

Compute the Kalman gain K (k + 1), using equation (2.13)

Compute the next covariance of state estimator error P(k 4 1|k + 1), using

equation (2.12)

Compute the next predicted state X(k 4 1|k), using equation (2.9)

Compute the measurement residual, Ay (k+1|k) = y(k+1)— H(k+1)x(k+1|k)
Compute the state estimate x(k + 1|k + 1), using equation (2.11)

Increment & by 1

Output the state estimate

Return to step 4

With each filter cycle, the estimate is updated and improved by incorporating a

new measurement vector.



2.2.3 Kalman Filtering for Nonlinear systems

In the case of systems not describable as a linear model, its plant model is given as:

x(k+1) = f(x(k), k) +w(k) (2.17)
y(k) = h(x(k), k) + v(k) (2.18)

where f(-) and A(-) are deterministic nonlinear functions depending on the system
state. In order to apply Kalman filtering to this nonlinear problem, we need to
linearize the nonlinear equations about the current estimate state x(k|k). To achieve
this, we only introduce the extended Kalman filter (EKF) and iterated extended
Kalman filter (IEKF), which are used in our project.

Extended Kalman Filter (EKF)

To obtain linearized process and measurement equations, one can apply the first-
order Taylor expansion about X(k|k), the current state estimate at time k. The
EKF is different from a “linearized Kalman filter” which is linearized about some
predetermined reference trajectory. One advantage of using the EKF is the avoidance
of a predetermined reference trajectory. The EKF is only suitable for small state
deviations x(k|k) = x(k) — x(k|k) and x(k + 1]|k) = x(k+ 1) — x(k + 1|k).

After linearization of a nonlinear plant model, there is a little change from the
basic Kalman filter equations. The prediction of state estimation equation (2.9), is
replaced by

xw+um:xwmygfwf@ﬁmr (2.19)
K

The measurement update equation (2.11), is replaced by
x(k+1k+1)=%(k+1k)+ K(k+ 1){y(k+1) — h[x(k + 1|k)]} (2.20)

The state coupling matrix

F = Y b) (2.21)

ka Xp=Kx

is the Jacobian of f(-) with respect to the state vector at x(k).

10



The input-to-output coupling matrix

dh(x, k)

Hy = (2.22)

ka Xp =X

is the Jacobian of h(-) with respect to the state vector at %(k).

Iterated Extended Kalman Filter (IEKF)

The iterated extended Kalman filter is developed based on the assumption that when
y(k+1) is obtained, the filtered estimates, x(k + 1|k + 1),are, in general, better than
the predicted estimates, X(k + 1]k). That is, one might achieve better results by re-
peating the linearization of the measurement function about the latest estimate until a
predefined condition is satisfied. The IEKF uses an iterator instead of equation (2.20)
in the EKF. This iterator is given by

Nig1 = X(k + k) + Kepr{yrer — h(ni) = Hpa [X(k + 1]k) —mi]} 2=0,1,--
(2.23)
where 5o = x(k + 1|k), and n;, = x(k + 1|k + 1). Obviously, when [ is equal to 1, the
IEKF reduced to the EKF.

2.3 The Hybrid Feature/Optical-flow-based Re-
cursive Algorithm

In previous sections of this chapter, we have introduced the basic characteristics of
feature-based and optical-flow-based techniques and the fundamental differences be-
tween them. In feature-based approaches, discrete features are extracted and tracked
over time; in optical-flow-based approaches, 2-D velocities of gray value patterns are

computed for every frame in an image sequence.

Blostein and Chann[1][2][3] have developed a recursive algorithm, which makes
use of both feature and optical flow measurements, to estimate 3-D motion trajectory
and structure based on Broida et al.’s pure feature-based algorithm[4]. Since this

project is a continuation of Blostein and Chann’s research, a detailed description of

11



this algorithm is necessary. In this algorithm, it is assumed that a stationary video
camera is used to observe a single moving rigid-body over time. The goal is to recover
the 3-D trajectory of this object from an extended image sequence captured by the
video camera. The imaging model, object model, motion model, and system plant

model will be examined in order.

2.3.1 Imaging model

The pin-hole camera model combined with the perspective projection is used. It
is sufficient for modelling the imaging process. Suppose that a coordinate frame is
attached to the camera, with its origin at the focal point and its z-axis coinciding

with the optical axis. The image plane is parallel to the z-y plane and is located
at Z = f, where f > 0, is the focal length of the camera. Let P = (X,Y,7) be a

3-D point and p = (x,y) be its projection onto the image plane via the perspective

projection [1][2][3][11][12].
L] e

where n, and n, are additive noise terms, the random error caused mainly from spatial

quantization. Without loss generality, a unity focal length is assumed, (i.e.,f =1).

2.3.2 Object Model

In order to observe a moving object, whose structure is known, through a stationary
camera, two coordinate systems are used. One is the camera-centred coordinate
system (CCCS) with the zaxis pointing in the direction of the optical axis. Another
is the object-centred coordinate system (OCCS), which is a moving frame attached

to the object.

Let the position vector of O, in the CCCS be given by
Snlt) = [ Xnlt) Yalt) Za(t) I" (2.25)
and the position vector of the i-th feature point in the OCCS be given by
Soi = [ Xoi Yoi Zoi | (2.26)

12



then the position vector of this feature point in the CCCS is given by
Sz(t) = SR(t) + R(t)Sm» (2.27)

where R(t) is the rotation matrix that aligns the OCCS with the CCCS. The quantity,
Sgr(t)is the origin of OCCS, and is not directly observable. Because of the assumption
of 3-D object rigidity, S,; is not dependent on time.

2.3.3 Motion model

In rigid-body motion there is no relative motion of points in or on the rigid-body. The
points must always maintain a fixed position relative to one another and all the points
move with the body as a whole. Motion of a rigid-body is completely characterized
by translational and rotational components. The moving position of each point in or
on the moving rigid-body can be represented by the same translational and rotational

transformation of the point from its initial position.

Translational motion

A linear model is used to describe the translation motion. The assumption is that the
object is moving at a constant velocity T'=[ T, T, T, ]!. The centre of rotation
is not affected by the rotational motion of the object. Suppose its initial location at

time ¢ = tg is known. Then its position at any time ¢ is given by

Sr(t) = Sg(to) + (t — to)T (2.28)

Rotational Motion

It is also assumed that this moving object is rotating about an axis though O, at a
constant rotational velocity w = [ w, w, w, ]T. The centre of rotation, O,, is not
affected by the rotational motion of the object. The orientation of the OCCS with
respect to the CCCS can be defined as the 3-D rotation which must align the OCCS

with the CCCS. The unit quaternion is used to express the orientation of a rotating

13



object in time.

q(t) = exp[(t — t0)Q2(w)]q(to) (2.29)
where
a(t) =[a(t) @) e) )] la@l]=1 (2.30)
which is a 4-parameter vector representing 3 degrees of freedom, and
0 W, —Wy Wy
Q=] 7@ 0wy (2.31)
9 wy —wy 0w, '
—Wwy; —wy —w, 0
where [ w, wy w. |1 is the angular velocity vector.
Note that the rotation matrix R can be expressed in terms of ¢,
@G -4 -G+ 2(q192 — q3q4) 2(q193 + 24)
R=| 2qe+eu) —ad+a-ad+a 2006 — a) (2.32)
2(0193 — 204) 2+ aa)  —a -G+ aGtd

In (2.32) the dependence on time is suppressed to simplify the notation. All quantities

are time-varying.

2.3.4 System Plant Model

3-D motion system consists of a rigid object translating and rotating continuously
over time. Measurements are obtained at uniform-spaced time intervals. The system
is modelled as equations (2.1) and (2.2). The problem is to estimate the system state
from the measurements. Discretization is required before implementation on digital
computer. Since both f(-) and h(-) are nonlinear functions, a linear Kalman filter may
not be applied. The extended Kalman filter (EKF) and iterated extended Kalman
filter (IEKF) are chosen in this project due to this nonlinear filtering problem. The
state coupling matrix F'(k) and the input-output coupling matrix H(k) are obtained
by using equation (2.21) and (2.22) respectively.

The State Variables

In a good model which describes the system, the state vector must contain sufficient

information to characterize the behaviour of the system. In this algorithm, the state

14



vector consists of the image plane coordinates of the OCCS origin, the translational

velocity, the unit quaternion representing the orientation of the object, the rotational

velocity, and the normalized coordinates of the feature points in the OCCS.

Xo1/zr(t)
Yoi/2r(1)
Zo1/zr(t)

XOM/ZR(t)
Yon /=r(1)
ZOM/ZR(t)

S1
S92
53
S4
S5
S6
S7
S8
S9

— 510

S11
512
513
S14
515

S1043M
S1143M

In (2.33) M is the number of the feature points.

L S1243M

(2.33)

The normalization factor zg(t) is used to eliminate the unknown scaling factor.

In equation (2.33), we denote states s;—s5 as the translational states, states sg—s12 as

the rotational states, and states si3—s1213p as the structural states.

Measurements of feature point position and optical flow

In a feature-based algorithm, measurements are normally image plane coordinates

of the feature point. Blostein and Chann have made a first step toward integrating

the feature-based and optical-flow-based approaches to 3-D motion estimation. They

have established the measurement vector that consists of feature point position and

its corresponding optical flow. However, they have considered the feature points

and optical flow measurements to be statistically independent.

15
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measurements are all derived from a single sensor, a video camera. In this report, we
propose a new measurement model that takes the correlation between feature point

and optical flow measurements into account.

The measurements of feature point can be obtained by using the perspective

projection.
e [ Xy /4
51 Yl/Zl
ve=| ' | = : (2.34)
M Xum/Zwm
Lym | | Yar/Zur |

where M is the number of the feature points. The measurement function is highly
non-linear in the state variables. It can be shown by examining the image plane

coordinates of the i-th feature point.

Xi Xp+ RS,
;= L= f e 2.35
: Zi  Zr+ R3S, ( )
}/i YR —I' RZSoi
;= L= e 2.36
y Zi  Zr+ R3Sy ( )

where Ry, Ry, and Rj3 are the first, second, third rows of the rotation matrix R,

respectively (see equation (2.32)).
Dividing the right hand side of (2.35) and (2.36) by Zg, equations (2.35), and (2.36)

can be expressed in terms of the state variables [3],

$1+ a;
_. 2.37
x e (2.37)
S92+ b;
i = 2.38
Y e (2.38)
where
Xm' i/oi Zoi
a = (@ =6 — 6+ 005 + 20w — aa) 7+ 2Ands — 6201)
R R R
= (Sé — 8? — 852; + 83)8104-32' + 2(s657 — S859) 511434
+2(s688 + $759)S1243i (2.39)

16



Xm' 1/02' Zoi

bi = 2qq2+ gsqa) - + (=i + 63 — 45 + 1) o~ + 2(q205 — 41q4)

ZRr ZR ZR
= 2(s6S7 + S859)S1043i + (—Sé + 8? - 852; + 83)8114-32'
—|—2(S788 — 8689)812+3Z’ (240)

0 o1

"+ (- -t et )

Xoi
¢ = 2(q1q3 - q2q4)— + 2(%93 + Q1q4)

ZR ZR ZR
= 2(s¢8s — S789)S1043i + 2(8788 + $659)S1143i
H(—sg — 57 + 55+ s5)s1243 (2.41)

Equation (2.34) is measurement equation of Broida et al.’s algorithm[4], which
consists of only feature point coordinates. Bolstein and Chann modified this equation
by adding the measurement of optical flow at the feature point[1][2][3]. The purpose of
adding optical flow to the measurements is to provide more information to the Kalman
filter such that the Kalman filter might produce a more accurate state estimate.
Differentiating the image coordinates (x;,y;) with respect to time yields the optical

flow equations:

dt dt \ 7, Z; 72 Zrn Zi Zrn Zi Zrn 7

dy; d(i@) Y. YiZ Yi Zp Yi Zrn Zi Zn (2.43)
Ui _= = — —_— = — — _= . — . . . .

dt  dt \Z; Z; 72 Zn Zi Zr 4 Zr 7

without losing generality, the focal length is assumed to be unity. Equations (2.42),

(2.43) need to be expressed in terms of state variables.

Obviously, we need to determine the velocity of the :** feature point with respect
to the camera, i.e., S(t) = [ X; X; X:]'. Differentiating (2.27) with respect to

time, yields

d d dR(t)
—S.(t) = —Sg(t) + —28.; 2.44
a0 = g orll) £ =S (2.44)
The time derivative of the rotation matrix is given by
d 0 —w. wy
—Rt)=| w., 0 —w, |R({) (2.45)
dt
—Wy Wy 0
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using the relationship

ZR Zr 1
- = 2.46
Zi  Zr+ RS 1+ 5—; -+ Soi (2.46)
We substitute (2.44), (2.45), and (2.46) into (2.42), and (2.43)[3]:
w = s34 ¢is11 — bisig B (85 4+ bis10 — a;s11)(s1 + by) (2.47)
1 —|— C; (1 —|— Ci)z
v = 84 — CiS10 + 4iS12 (85 4+ bis10 — a;s11)(s2 + by) (2.48)

1 + ¢ (1 + Ci)z
where a;, b;, and ¢; are defined in (2.39), (2.40), (2.41) respectively. Now, the new
measurement vector yi, which includes the coordinates (positions) and velocities

(optical flow) of the feature points, is established as:

€1
5]
Tpm

Ym

0

UpM
UM

The individual elements of the Jacobian matrix Hy can be obtained by differentiat-
ing (2.37), (2.38), (2.47), (2.48) with respect to each state variable. This was obtained
by Blostein and Chann [1][2][3].

2.4 Summary

In this chapter, we have introduced the basic characteristics of three main categories
methods for 3-D motion estimation and their differences. We have introduced the
concept of the Kalman filter with some its variations used in our project and the
procedures of performing Kalman filtering. Finally, we have described the hybrid

feature/flow-based recursive 3-D motion estimation algorithm in detail.
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Chapter 3

Measurement of Position and
Velocity from Second-order
Intensity Derivatives

We have introduced the hybrid measurement structure of feature point position and
optical flow which is a highly nonlinear function in terms of the state variables defined
in Chapter 2. We are also interested in how the optical flow and its coordinate on the
image plane are related to the observed gray values obtained from a digital camera.
In other words, we try to compute the optical flow and position on the image plane
from the spatiotemporal gray value patterns of image intensity. To make our results
tractable, we will then derive an approximation equation of this measurement that
is a function of the second- order intensity derivatives in image sequences. First,
we will briefly introduce the basic concepts of differential techniques for computing
optical flow. Then, we will describe and discuss Nagel’s approach[6] that computes
optical flow from second-order intensity variations of an observed gray value pattern.
Based on Nagel’s method, we will show that the measurement vector, which includes
optical flow and its coordinate position on the image plane, can be computed by
estimating the second-order derivative of the gray value pattern from a sequence
of images. Finally, we will discuss the applications of this approach to the hybrid
feature/flow-based algorithm proposed by Blostein and Chann[1][2].
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3.1 Differential Optical Flow techniques

It is well known that the measurement of optical flow is a fundamental problem in the
processing of time-varying image sequences. The local computation of optical flow is
an approximation to the 2-D field, which is a projection of the 3-D velocities of sur-
face points onto an imaging surface, from spatiotemporal models of image intensity.
There are many methods proposed for computing optical flow: differential techniques,
region-based matching, energy-based methods, and phase-based techniques[8]. Dif-
ferential techniques are used in our project, in which optical flow is computed from

spatiotemporal intensity derivatives in image sequences.

3.1.1 First-order Differential Methods

First-order differential techniques use first-order derivatives based on image trans-
lation. The spatiotemporal model[8][9][11][12], which is time-varying, is expressed
as:

g(x.1) = g(x — ut,0) 3.1)
where x = [z y |T is the coordinate in the x-y plane, and u = [ u v ]T is the

optical flow of the point.

It is assumed that the motion must be “small”. In other words, the time interval
between two frames must be very small. Then, from the Taylor series expansion, or
more generally from the assumption that the temporal derivative dg(x,t)/dt = 0, we

can easily derive the gradient constant equation as:
Vy(x,t)u+ ¢:(x,1) =0 (3.2)
or directly
9o(%, )u+ gy (%, 1)v + gi(x,1) = 0 (3.3)
where Vg(x,t) = [ g.(x,t) ¢,(x,%) ]T, is the spatial gradient vector field over the

image plane, and ¢;(x,t) is the partial time derivative of ¢(x,t). Usually, the notation

is simplified to:

Vyg(x,t) = Vg=1[g. g,



gt(X7 t) = G

As we can see from equation (3.2), there are two unknown components of u con-
strained by one linear equation. Therefore, we need more constraints to solve this

problem.

3.1.2 Second-order Differential Methods

Second-order differential approaches use second-order derivatives of g(x,?) to con-
strain optical flow components. It can be derived directly from equations (3.1),

(3.3)[8][9][12] that,

gxxu—l'gyxv‘l'gtx = 0 (34)
Gyt + Gy + gty = 0 (3'5)

with g,y = gye-

Equations (3.4), (3.5) can be rewritten as

[gm gxyHU]Jr[gm]:O (3.6)
oy Gy v Gty

where the symmetric matrix of second derivatives is called the Hessian of ¢(x,1),
expressed as H. Assuming dVg(x,t)/dt = 0, optical flow can be computed by using
equation (3.6) alone or together with equation (3.3). Second-order approaches can
recover 2-D velocity in most cases,but cannot solve for u where the “aperture prob-
lem” exists in local neighbourhood where DetH is equal to zero. A computational

method has been proposed in which the aperture problem can be avoided in most

cases. For the detail of this approach, the interested reader is referred to [9].

Differential techniques compute 2-D velocity under the assumption that u is con-
stant across at least two different areas with linear independent values for the gradient
Vg or/and H (i.e. VVyg). However, for the situation of abrupt change of u, for in-
stance, shadow edges and corners, which are commonly chosen as features in 3-D
motion analysis, differential methods of linear modelled gray value variations, which

are too simplistic around edges or corners, are not suitable in this kind of situation.
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Nagel had proposed a minimization approach that can deal with this kind of situation

for solving for a 2-D velocity vector u. We will discuss this in the next section.

3.2 Estimating 2-D Velocity with Local Minimiza-
tion

Nagel developed a local approach to inter-frame displacement estimation [6]. The
basic idea is to assume that g(xo,?1) is observed at xq in frame 1, and ¢(xo,1s) is
observed at xg in frame 2. A local environment around xg is assumed to have been
displaced between #; and ¢, by a vector u = (u,v)T. To determine the vector u,
we must minimize the squared differences Y [g(Xo,t2) — g(x — u,?1)]*. If the time
interval is small enough, u remains well within the chosen environment around x.
This minimization produces two coupled nonlinear equations for the two unknown
components of the displacement vector u. In a special case which known as a “gray
value corner”[6], these coupled equations can be simplified to obtain a closed-form
solution. We have discovered another special case of a “gray value extremum point”
when we simulated the gray level surface of the feature point. In that case, we can also
simplify these equations to get the closed-form as described in the following sections.
The solution of the two unknown components of vector u is in terms of the estimated
parameters of the second-order Taylor expansion modelled for the observed gray level

surface.

3.2.1 Parameters of the Observed Gray Value Surface Model

Assume that in an small observed window, the origin xo = [ 9 o ]T of the co-
ordinate system is the center of the small area of interest, i,e., x = [z y |7, the
observed gray level surface can be approximately expressed by a second-order Taylor
expansion|[6][11]
1 2
9(x) = g(x0) + 9o + 94y + F0urt
Ty TY + %gnyQ +ée (3.7)
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where ¢, g, are partial derivatives of g(x) with respect to « and y. ¢uz, gzy and gy,
are the second partial derivatives, and ¢ is random noise. Without loss of generality,

let the initial position xo = (0,0) and the gray level surface be modelled as
Fy) = fot fer b oy + 5 fot?
ey + 3 ot (33)
Then, the measurement or observed gray level g(x;,y;) can be modelled as
glwiyi) = f(xi,y:) +ng n~ N(0,07) (3.9)

with 2, = (1 — 1)mod(2k+ 1) —k,—k < a; < k,and y; = k— (¢ — 1)mod(2k + 1), —k <
y; < k, where k is an integer, ¢ = 1,2,..., N and N = (2k + 1)?, the total number
of raster points in the observed small window, which is shown in Figure 3.1. For

example, £ = 1 corresponds to 3 x 3 window, and k& = 2 corresponds to 5 x 5 window.

Ly
® e o
o« o o -
| | X
e o ' e

Figure 3.1: The observed window for estimating a gray-value surface

Then,
G =Af+n, (3.10)
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where

G = [g(z1,m1), 9(x2,52), - -, g(xn, yn)]E

1,2

I v w»n 3T1 T1iYr o FYq

1 1.2

Iz yo 3Ty XT2Y2  FY;
A =

1.2 1,2

L ox yn 3TN TNYN YN

and

F = o fos Fys Fows foys )"
For a given estimate of f, the squared error between G and Af is
e = tr[(G—Af)W(G — Af)"]
= (G —Af)"W(G — Af) (3.11)

where W is a known weight matrix given by W = 1/031. Then, setting

de? T
The least-squares estimate is
f=(ATWA)'ATWG (3.13)

which is the maximum-likelihood unbiased estimate. Under Gaussian noise assump-
tions,

f~ N[f,(ATWA)™"] (3.14)
i.e., F{e;} = 0, where e; = f —f. Note that ATWA is called the Gram or Grammian
matrix and the error covariance matrix of the parameter is the inverse of the Gram
matrix[7], i.e.,

cov(es) = (ATWA)™! (3.15)
which is a constant. For the window size of 3 x 3, which is used in our simulation,

cov(ey) is given as,

A0 0 0 —48 0 0—48 ]
0 12 0 0 0 0
0 012 0 0 0
Covler) =0y | s 0 0 144 0 0
0O 0 0 0 18 0
48 0 0 0 0 144
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3.2.2 Computing 2-D velocity by minimizing mean squared
error

Assuming that ¢(xg,t1) is observed at location xg in frame 1 at time 1, and ¢(xo, t2)
is observed at the same location in frame 2 at time #5, a local environment around xq
is displaced between time #; and time ¢, by the optical flow vectoru =[u v ]*. To
determine u, we want Y [g(x,#2) — g(x —u,?;)]?, summed over all x from the local
environment around Xg, to be minimized. The time interval is very small so that u

can remain well within the chosen small area.

Letting f; = [ flo fls fl, fles fls, fl,, | be the parameters of the gray-

value surface at time #;, then the summed squared error is equal to
1
2 lo(x; 1) = flo = [lo(w =) = fly(y = v) = 5 fTea(w = u)*

eyl =)y =) = 5 F Ly — )P (3.16)

The axes of the local coordinate system for the environment around xg should be
aligned with the principal curvature directions such that f1,, = 0. Taking partial

derivatives with respect to v and v, and setting them to zero, yields

DL+ flae(e — w)llg(x,t2) = flo = flo(e —u)

—fl,(y —v) — %flm(:p —u)?— %flyy(y —0)} =0 (3.17)
and
DLy + Flyy(y = o)lg(x,12) = flo = flo(z — u)
—f1,(y —v) — %flm(:p —u)® — §f1yy(y —0)*] =0 (3.18)
Simplication of equation (3.17) and (3.18) yields
[/l = flewu]lge — g1 + u(fLa f Lopu)
+o(fly = §f1yyv>] + 22 fLow[f2e = (fLle = flezu)] = 0 (3.19)
and
[f1y = flygvllge — 1 + u(fla flmu)
+o(fly — §flyyv)] + 2 f Ly [£2, — (f1, = flyv)] =0 (3.20)
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where ¢y and gy are the average gray value observed at time ¢, and ¢, respectively.
22 and y? are the average of all the raster points’ coordinates. Now, let xo be the
position of a gray value corner, where the axes of the local coordinate system align
with the principal coordinate system. The gradient passes through a maximum at

Xo, i.e.,

fl, = extremum and f1, =0

flee =0, fl,, = extremum # 0 (3.21)

By using these conditions to simplify this two coupled nonlinear equations, in (3.20)

we end up with

wo= g )L (3.22)
vo= _ny/flyy

which are in closed-form in terms of the parameters of the modelled gray level sur-
face. If one needs a numerical solution, the coupled nonlinear equation can be solved

directly to obtain the vector [u v ]T.

We remark that it is not required to use
gray value corner characteristics to extract features. However, we are interested in a

closed-form solution, from which we can derive what we need.

3.3 Estimating the coordinate of the 2-D Velocity
on x-y Plane

We have expressed the closed-form solution of v and v derived by Nagel, in terms
of the parameters of the gray level surface model at time #; and ?5, as shown in the

previous section.

Now, we try to find the position of this gray value corner on the image plane,
which is assumed to be the feature point of the object. Returning to the model of a
gray value surface, equation (3.8), taking partial derivatives with respect to u and v,

and using the gray value corner characteristics

gf(l', y) = extremum = M
Oz
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0
— = 0 3.23
we obtain the position for gray value corner feature points as

nyy(M — fo) + f2xyf2y
fofoyy - (f21’1/)2

(3.24)

fofoyy - (f21’1/)2

(3.25)

The choice of the feature point as a “gray value corner” can be used in measuring
the feature point coordinates and optical flow, but it has a weakness. In the course of
Nagel’s derivation, for the purposes of simplifying that coupled nonlinear equations,
Nagel imposed a condition that the axes of the local coordinate system must align with
the principal curvature so that f,, is equal to zero. Of course, one could achieve this
by rotating the local coordinate system a certain angle. After computing the optical
flow vector and the position of the feature point with respect to the local coordinate
system, we need to rotate the local coordinate system back to align with the camera-
centered coordinate system (CCCS). This will result in difficulty in measuring the
feature point position and optical flow because the rotational motion of the moving

object is changing over time.

To overcome this problem, we fix the local coordinate system and align it with
the CCCS. We then exploit the characteristics of another special case of a “gray
value extremum point” to compute the feature point optical flow and its coordinate

as described next.

Now, we discuss the situation in which there exists a brightest or darkest point in
a local area. In other words, there exists a extremum point on the gray level surface
in a small area of interest. We select this point as the feature point and try to find
the displacement vector u = [ v v |7 and its location x = [ # y ]T in the observed
small window. It is not convenient in practical applications to rotate the axes of the
local coordinate system for the environment around x¢ to align with the principal
curvature direction to force f,, equal to zero. We will therefore keep this term in our

derivation to compute optical flow u and its coordinate.
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Taking partial derivatives of equation (3.16) with respect to u and v, and setting
them to zero,

SIS e layly = 0) + sl = )llg(x,12) = o = f1ue =)
= ) = 3 lanle = ) = Lyl = )y = v) = 3Ly ly — )] =
(3.26)

and
DLy + flay(e =) + [l (y — 0)]lg(x,12) = flo — flo(x — u)
1 1
—fly(y —v) - §f1m’($ - u)2 — [loy(z —u)(y —v) — §flyy(y - v)z] =0
(3.27)
Simplication of Equations (3.26) and (3.27) yields a coupled nonlinear equation
[fle = floyv = flacu]lgz — g1 + u(fle flxxu)
+o(fl, — %flyyv) — flayuv] + 22 f1p [ 2. — (fle — floyv — flapu)] =0
(3.28)
and
[fly - fll’yu - flm’v][g? g1+ u(f flmu)
+o(f1, — %flyyv) — [layuv] + 92f1yy[f2y — (f1y = [loyu — flyv)] =0
(3.29)

We let dg = g» — g1, which approximates the partial derivative of the gray value
with respect to time. Now, letting xy denote the position of a gray value extremum
point projecting onto the image plane, by using the condition f1, = f1

=0
Yy 9
Floz, fley, fly,, # 0, Equation (3.28) and (3.29) become

1 1
—[[lueu + flyyv]ldg — §f1m’u2 — floyuv — §f1yyv2]
422 flon[ 20 + flogv + flopu] =0 (3.30)
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and

1 1
—[[layu + flyyv][dg — §flmuz — [loyuv — §f1yyv2]
‘szflyy [f2y + floyu + flyv] =0 (3.31)

Assume a gray value surface model f(x,1) as Equation (3.8), with f(x — udt, ;) =
f(x,t2), i.e., the intensity at spatial location x at time ¢ is the same at spatial location
(x —ut) at time #,[8][9][10][11], where dt = t3 — 1 is very small. Expanding this

function about x in a second-order Taylor series yields
f(thQ) - f(thl)
= [l [ )]
f1y v v ey fly v
1 2 1 2
= flyu+ flyo+ §flmu + flyyuv + §f1yyv (3.32)
The left hand side of equation (3.32) is the approximate partial derivative with

respect to time when dt is very small. If this local model holds around this extremum

point, then f1, = f1, =0, and we get
dg — %flmlﬁ — flyuv — %flyyv2 =0 (3.33)
Substituting Equation (3.33) into Equations (3.30) and (3.31) yields
Flost 4 flogo = —f2, (3.34)
floyu+ fly,o = —f2, (3.35)

then,

fzyflxy — foflyy
flxxflyy - f]‘gz;y

(3.36)

v = fofll’y B nyfll’l’ (337)

flxxflyy - f]‘gz;y

The position of the extremum point in the observed window is easily obtained

under the condition

0
a_xf(xvy) =0
0
a_yf(xvy) =0
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would result in

fznyxy — f2xf2yy
fofoyy - (f21’1/)2

(3.38)

x, y are computed at time t,.

3.4 Computing the Measurement Vector of Posi-
tion and Optical Flow

In the previous section, the optical flow vector u = [ u v ]T and the position vector
x = [ 2 y ]! have been described in terms of the parameters of the modelled gray
level surface, i.e., as functions of f. Let Y be the vector [ z y u v |T. By using a
Taylor expansion about the estimated f

Y(£) = Y(£) + I e (3.40)

where Y(f)=[ 4 § @ ©]7, and J is a Jacobian matrix defined as J = oY [Of|e_s.
Here, e = f — f is a Gaussian random vector with eg ~ N[0, (ATWA)~1],
e=Y(f) — Y(f) = J - ¢ is also a random vector, and

E(e)=E(J-e;) = JE(e;) = 0 (3.41)

cov(e) = cov(J|e_; - er)
= EJ|e_s-e-e" T s
= J|,_;B(er-ef )5 (3.42)
Note that E(ef-ef) = (ATWA)~!, which is the error covariance matrix of the

parameters f. Although e is unknown, cov(ef) remains invariant to f.

It we need to compute Y, we have to determine ef. We can use the Cholesky
decomposition to factor cov(eg) = S- ST = SIS, where S is a lower triangular

matrix, the matrix square root of (ATWA)~! and T is the identity matrix. Then,
Y(f)=Y{)+T-Sn/ (3.43)
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where n’ ~ N(0,1). We have shown that Y(f), the estimate of Y(f), is unbiased.
The error covariance is J - cov(eg)J?. Because the value of Jls_s is based on the
estimated f, the different f at different times yields different Jls_s, while cov(e;) is
always the same. In the next section, we assess how the new measurement error

covariance equation impacts the 3-D trajectory estimation results.

3.5 Summary and Discussion

We have shown that the measurement vector of feature point position and optical
flow is a function of the estimated vector f', which includes the parameters of the
measured spatiotemporal gray value pattern from image sequences. We have shown
that if we properly choose the moving object’s feature points as a “gray value corner”
or “gray value extremum point”, we could obtain the measurement vector by using
this new method of computing feature point location and the optical flow. We have
mentioned in Chapter 2 that the feature-based methods are based on feature extrac-
tion, followed by feature correspondence. Optical-flow-based methods depend upon
computing optical flow, for the recovery of 3-D motion information. As we can see,
obtaining reliable measurements of feature point position on the image plane, as well
as optical flow is very important for feature-based and optical-flow-based methods,

respectively.

Blostein and Chann had compared and generalized the strengths and weaknesses
of feature-based and optical-flow-based methods. Based on their research into 3-D
motion estimation, they had built a frame work of integrating the measurement of
feature point and of optical flow and developed the hybrid feature/flow-based recursive
3-D trajectory estimation algorithm. The remaining task, which is how to obtain the
measurements of feature point position and optical flow on the image plane, forms
the new contribution in this project report. A new method of measuring feature point
position and optical flow from image sequences has been developed in Section 3.3,
completing the hybrid feature/flow-based algorithm for use in practical applications.
From our research, we have also found that the measurement error is zero mean, but

the measurement errors are correlated. The values of this error covariance matrix are
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controlled by the gray-value resolution (see equations (3.40), (3.41), (3.42), (3.15)).

In summary, we have introduced the basic concept of differential techniques for
computing optical flow. We have presented Nagel’s approach of estimating optical
flow. Based on his approach, we have developed a new method of computing mea-
surement vectors of feature point position and optical flow in the special case of “gray
value corners”, we have also found another special case, “gray value extremum points”
and derived algorithms for computing optical flow as well as the coordinate of feature
point on the image plane. It is significant that if there exist gray-value “extremum
points” on the moving object, these points are selected as feature points. Finally,
we have discussed the application of this new measurement method in the hybrid

feature/flow-based algorithm for 3-D motion estimation.
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Chapter 4

Implementation Details and
Simulation Results

In Chapter 2, we have introduced the basic concepts of recursive estimation and
Kalman filtering, and presented details of the hybrid feature/optical-flow-based re-
cursive 3-D motion estimation algorithm. As we can see from Section 2.2, the ap-
plication of Kalman filtering requires the information of the process noise covariance
matrix, the measurement error covariance matrix, a reasonably accurate estimate of
the initial state vector and an initial estimate for the error covariance matrix. In this

chapter, we will present detailed simulation results of the algorithm.

4.1 The Synthetic Testbed

Blostein and Chann had developed a flexible synthetic testbed for evaluating the hy-
brid feature/flow-based 3-D trajectory estimation algorithm. Our simulation is based
on this hybrid 3-D recursive algorithm. We can use the synthetic testbed developed in
[3] in our experiments. The numerical computation package MATLAB[13] is used in
the implementation of the entire system. A global configuration file is applied to make
the modification of simulation parameters convenient. This synthetic system, used
in our experiment, contains a stationary “pin-hole” camera and a cube of 3 x 3 x 3.
All distances are measured in terms of focal lengths(FL). There are four arbitrarily

non-coplanar vertices chosen as the feature points (M = 4), which are assumed to be
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“gray value extremum points”. The trajectory of the object is generated using the
kinematic equations associated with the motion model. The propagation of the state

vector in time is obtained by means of numerical integration (second- and third-order

Runge-Kutta formulae in MATLAB).

4.2 Simulating Error Measurements

In Broida et al's algorithm[4], the measurement includes only the positions of the
observed feature points. The sources of error are due to spatial quantization and
feature extraction. Error measurements are simulated by perturbing the error free

values with random quantities.
pi(e)= pi+ry T~ N(O,azl) (4.1)

where p; is defined as error-free position measurement of the ' feature point, and r,
is modelled as white Gaussian noise, where o, is determined by the spatial (image)
resolution. In [4], the measurement error covariance matrix Ry is a constant diagonal

matrix

R, P (4.2)

| 0 O'Z |

In our project, the error measurements are based on equation (3.40). There are
two sources of noise that control the values of the error vector and error covariance
matrix: one is the spatial resolution, the other is the gray-value resolution, which

is the main factor to influence the accuracy of the measurements. The following

equation used is the error measurement of i feature point.
Yile) =Y+ J ¢y (4.3)

where YV; = [ pi ]T, the error-free measurement and J - &5 is the measurement

error. Next, we will present how to simulate the error measurements.
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First, we need to measure the gray values at the coordinate of the feature point
in an observed small window, sized 3 x 3 in our experiment (see Figure 3.1). At time
t =ty — dt, we obtain the estimate f;. Then, we repeat the process at time ¢t = ¢, to

obtain the estimate f;. The relation between time interval dt and At is given by
dt = c- At (4.4)

(see Figure 4.1), where At = tp41 — 1) is the measurement time interval for vector
Y: At = 1 is used in our simulation, and the scale factor ¢ can be chosen from
0.01 to 0.05. We assume that the observed gray value surface is a surface that has
a extremum point or “corner point”. Considering the spatial (image) resolution, the
standard deviation of the inter-pixel distance, in terms of the focal length is o,(given
in Table 4.1). The measured position of the extremum point of the gray value surface
projecting onto the x-y plane, which is also the position of the feature point, is given

as

pile) = l v ] _ l 8 ] tny ny ~ N(0,021) (4.5)

where [ 0 0 |7 is the origin of that observed window. For the purposes of examining
the performance of this hybrid algorithm with the error measurement (see equation
(3.41)) under a wide range of conditions, the measured gray values are simulated to
be random from 1 to 255 in our implementation. The following equation is used in

simulating the gray value surface.

flz,yleo,yo,0p) = fo+ fele —x0) + fuly —yo) + %fm(x — :1;0)2

(e = 20}y = 90) + 3 fuo(y — w0)” (1.6)

where (g, yo) is the position of the “gray value extremum point” or “gray value cor-
ner”, which is very close to the origin (0,0) of the small window (see Equation (4.5)).
We use equation (4.6) to assign gray values to the nine raster points of the observed

small window.

Since the motion of the object and brightness of the background may be chang-
ing all the time, the surface parameter f of equation (4.6) should be changing over

time. However, this time-variation is not convenient for simulation. For simplicity,

35



a Gaussian surface is used in our simulation. Obviously, the extremum point is the
peak point of the Gaussian surface. The following equation is used in simulation

9(x,ylzo, yo, o) = %exp{ 1 (2 —20)* + (y — yo)z]} (4.7)

2o _@

By simulating randomized measurements of gray values, the time-varying surface
parameter can be simulated. Then, from equations (3.9), (3.13), and least squares
estimation, we will obtain an estimate of f, so that the Jacobian matrix with respect
to the parameters of the gray value surface can be computed. The gray value reso-
lution, oy, is given in Table 4.2. The next problem is to simulate the random vector
¢, representing the estimation error of f. Since the error covariance of f, cov(ey), is

known and time-invariant, we use Cholesky decomposition to factorize it.
cov(eg) =5+ 5T =S15T (4.8)

where S is a lower triangular matrix, the square root of cov(ey), and [ is the identity

matrix. Finally, we obtain the measurement error:

Joeg=Jl_p- S n" n' ~ N(0,1) (4.9)

To examine how different spatial and gray-value resolutions affect the estimation
of state variables, a set of different spatial and gray-value resolutions are used in our
experiments (See Table 4.1, and Table 4.2). The image plane, as in [1][2][3], is chosen
to be a unit square (measured in terms of focal lengths). Its origin is located at
the centre. The spatial resolution is easily obtained for a unit square image plane,
for example, the spatial resolution of 256 x 256 pixels is 0, = 1/256 ~ 0.004. The
gray value resolution is obtained by converting the uniformly distributed error to the
normal distribution, for example, 8-bit gray value resolution achieves & + o,,0, =

\/[0.5 — (—0.5)]2/12 ~ 0.289, where x is the measured gray value.

4.3 Measurement Error Covariance Matrix

The value of the measurement error covariance matrix affects the estimation accuracy

of the Kalman filter. The following will show that how it influences the behaviour
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spatial resolution (pixels) | o, (in focal lengths)
256 x 256 0.004
512 x 512 0.002
1024 x 1024 0.001

Table 4.1: Spatial resolutions for experiments

gray-value resolution (bit) o,
8 0.2887
10 0.0722
12 0.018

Table 4.2: gray-value resolutions for experiments

of Kalman filtering. First, we introduce two matrix inversion lemmas, which will be
used here.

Lemma 1:
(A + AR A  Ag) ™t = ATl — ATl Apa(Agg + At AT Ar) T A AL (4.10)

Lemma 2:
AT Arg(Agg + Agt AT AL) ™! = (A + A AL Ay ) 7T AR AL (4.11)

where Aqq, Aga, Aja, Agp are n X n, m X m, n X m, m X n matrices respectively. Let
At = Pk + 1|k + 1), Ay = HT(k), Ayy = R(k), then, the measurement update of
the estimation error covariance equation (2.12), and the Kalman gain equation (2.12)

can be rewritten as:
Plk+1lk+1) = [Plk+1k)" +H 4+ DR (k+DH(E+ 1] (4.12)
K(k+1) = Plk+1k+1)H"(k+1)R " (k+1) (4.13)
From equation (4.13), we can see that the Kalman gain is inversely proportional to
the measurement error covariance R(k + 1), and directly proportional to the estima-

tion error covariance P(k + 1|k + 1). If we have error-free measurements (which is

impossible), i.e., R(k + 1) = 0, and after substituting into equation (4.13), we obtain
K(k+1) = P(k+1k)H  (k+D)[H(k+ 1) P(k+1|E)HT (k+1)]7" = H7 ' (k+1) (4.14)
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and equation (2.11) becomes

Bk 1k+1) = 2(k+ k) + H " (k+ D)y(k+1)— H(k+ 1) (k+1]k)] = 2(k+1]k+1)
(4.15)

which is the perfect estimate.

A small measurement error will increase the Kalman gain and the estimated state,
#(k + 1|k + 1), will weight the measurement more heavily. On the other hand, a
large measurement error will decrease the Kalman gain and the estimate state will
weight the measurement less, and the state estimate will depend more on the system
model. From the discussion above, we can see that accurate estimation measurement
error is very important for Kalman filtering. The measurement error covariance is

implemented based on the equation given as
Ry =J - cov(ep)JT (4.16)

Unlike that of Broida et al’s implementation of R; which is a constant diagonal
matrix for simplicity, our measurement is time-varying because of the time-varying

J|;_, even though cov(ey) is time-invariant.

4.4 Process Noise Covariance Matrix

The process noise covariance matrix is also important to the overall performance of
the Kalman filter. From equations (2.10), (2.12), (2.13), we can see that a large Q(k)
will increase P(k + 1|k + 1) and K(k 4 1), then, the state estimation will weight
the measurements more heavily. The existence of large Q(k) implies that the plant
(state) equation is not accurate in describing the system and the predicted state is
not reliable (see equation(2.9)), and the state estimate will be forced to depend more
on the measurements (see equation (2.11)). From the discussion about the effects of
the measurement error and process error on the Kalman filter, we can see that the
Kalman filter can trade off its Kalman gain automatically based on the value of the

measurement error and Process error.
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In our experiments as in [3], the process noise covariance matrix (k) is imple-

mented as a constant diagonal matrix with the diagonal element value of 5 x 107°.

4.5 1Initial State Estimation

In section 2.2, we have listed the steps of an algorithm for performing Kalman fil-
tering. The first, second, and third steps are to initialize the step index k£ = 0, the
state estimate vector, #(0]0), and the covariance matrix, P(0|0) = P(0), of the state
estimate error. The most common way of simulating initial state estimate is to per-
turb the true initial states with random quantities. In some practice, however, it is
not feasible because the amount of error added to each individual element in the true

initial vector must not be too large for obtaining reliable initial values.

As in [3], we implement the initial state estimate as
(i) = [L£ (14 r)elan(i) i=1,....813,...,12 4+ 3M (4.17)

where r is a random number which is uniformly distributed in the interval (0,1), and
e is the magnitude of error. It should be noted that there is no noise added to the
quaternion state of the initial vector because of the assumption that the OCCS always
initially aligns to the CCCS. The value of e is set as e = 0.2 in our experiments, which

implies the error in the initial state estimate in the range of 20%-40%.

The next problem is to determine the initial error covariance matrix P(0]0) =
P(0). This is not difficult because the value of error added initial state vector is

known. The Initial values of P(0) is implemented as
Py=dI (4.18)

where [ is (12 4+ 3M) x (12 + 3M) matrix and d is the largest component in vector
|Xo — Xo|. We want to examine the performance of Kalman filter when the error in

initial state values is controlled inside the range of 20%-40%.
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4.6 Simulation Results

4.6.1 Experiment Design

The experiments that we have designed are similar to [3]. Monte Carlo trials are
used in our simulations. The number of Monte Carlo trials is set as 30. Each trials
consists of 100 image frames, and the initial frame is not included. There are three
different experiments to be performed. Experiment 1 compares our hybrid algorithm
using measurements of feature point positions and optical flow from image sequences
with that of Broida’s feature-based algorithm[4]. Experiment 2 evaluates the filter
performance using different spatial resolutions and gray value resolutions when the
object moves at a constant translational velocity and a constant rotational velocity
in which the motion model is accurately described. Experiment 3 examines the filter
behaviour when there is a slight deviation from the motion model due to translational

acceleration.

The bias and variance of the estimated states is the criteria used to measure
the performance of the Kalman filter. Suppose we have obtained the value of one

particular state variable () at time ¢. The bias is calculated as

1 R
b= — Z:J?;Z(t) — (1) (4.19)
R =1
and the variance is calculated as
1 & )
v = T Z[:z;z(t) — x(t)] (4.20)
=1

where R is the total number of Monte Carlo trials, x(?) is the true value of this
particular state variable at time ¢, and the subscript ¢ denotes the trial number.
Since the central issue of this project is 3-D trajectory estimation, the states of
position (s; and s3), translational velocity (s3-s5), and rotational velocity (s10-512) are
extremely important. The bias and variance results presented later in this Chapter
will include these states only. Note that all the results corresponding to the position
and translational velocity states have been scaled by Zg(t), the true depth of the

object rotation centre.
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Both the extended Kalman filter(EKF) and iterated extended Kalman filter(IEKF)
have been used in our experiment. Only the results of the IEKF are shown because
the performance of IEKF is slightly better than that of EKF based on our simulation

results.

4.6.2 Experiment 1: Algorithm Comparison

In this experiment, we compared our hybrid feature/flow-based algorithm using mea-
surement of feature point positions and optical flow from image sequence with that
of Broida’s purely feature-based algorithm. The main difference between these two
algorithms is that Broida’s algorithm uses only feature point position measurements
on the image plane while our hybrid algorithm makes use of both image plane position
and optical flow measurements. The motion parameters used in these two algorithms
are the same, given in Table 4.3. The spatial resolution used is 512 x 512 pixels in
measuring the feature point on the image plane for both algorithms. The gray value
resolution used is 10 bits for our hybrid algorithm only. Because Broida’s algorithm
does not use gray value resolution in measuring the feature point positions, the object

is moving at a constant translational velocity and a constant rotational velocity.

Initial position Sgr(to)(F'L) [—6 10 28 ]F
Translational velocity T(FL/frame) |[0.05 —0.1 —0.2 |7
Rotational velocity w(radians/frame) | [ 0.03 0.04 0.05 ]*

Table 4.3: Motion parameters for Experiment 1 and 2

The simulation results are shown in Figure 4.1 (bias) and 4.2 (variance). The solid
line represents the result obtained by using our hybrid algorithm and the dashed line
represents the result obtained by using Broida’s algorithm. From the simulation re-
sults, we can see the obvious improvements achieved by the hybrid algorithm. The
estimates of using hybrid algorithm converge more quickly than that of using Broida’s,
especially the translational velocity states. We have also experimented with differ-

ent gray value resolutions. Even using a gray value resolution of 8 bits the hybrid
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algorithm still performs better than Broida’s algorithm.

4.6.3 Experiment 2: Constant Translation and Rotation

In this experiment, the motion of the object is assumed to be constant translation

and rotation. Table 4.3 gives the motion parameters used in this experiment.

We have carried out this experiment as two parts: Experiment 2.1 and Experi-
ment 2.2. In the former, we have selected an arbitrary value of spatial resolution (see
Table 4.1) and varied the gray-value resolution (see Table 4.2) to see the effects of
changing gray-value resolution on the state estimates. In the latter, we have arbi-
trarily chosen a gray-value resolution and varied the spatial resolution. The purpose
of this experiment is to examine the effects of using different spatial and gray-value
resolutions on the state estimates. The choice of spatial and gray-value resolution
affects the measurement error which will be propagated into the state estimate (see

equation (4.9), and discussion in section 4.3).

The simulation results of Experiment 2.1 are shown in Figure 4.3 (bias) and 4.4
(variance), where the spatial resolution 512 x 512 pixels is fixed and three different
values of gray-value resolution are used: the solid line, dashed line, and dash-dot
line represent 8-bit, 10-bit, and 12-bit resolution, respectively. The performance of
using these three different gray-value resolutions with same spatial resolution are all
stable and convergent. Not surprisingly, the behaviour of 8-bit resolution is worse
than that of 10-bit and 12-bit resolution. The behaviour of 10-bit is better and the
performance of 12-bit is the best. We have experimented with all pairs of spatial
resolutions and gray-value resolutions, and found that by fixing a spatial resolution,
the performance of 12-bit is the best. This is due to the measurement error covariance
matrix J-cov(s;)JT, where the value of cov(e;) is controlled mainly by the gray value

resolution (see Equation (3.15)).

The simulation results of Experiment 2.2 are shown in Figure 4.3 (bias) and 4.4
(variance), this time, the gray-value resolution of 10-bit is fixed with three different
spatial resolution. Similarly, the performance of 256 x 256 is good, that of 512 x 512
pixels is better, and that of 1024 x 1024 pixels is the best. Since the results using
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three different spatial resolutions are too close to be visually distinguishable, the mean

squared errors are listed in Table 4.4.

Spatial Resolution | Position Position Trans. Vel. | Trans. Vel.
(pixels) (x) (¥) (x) (v)

256 x 256 1.25 % 107% | 1.26 x 107° | 4.03 x 107® | 4.20 x 1078

512 x 512 1.24 x 107 | 1.24 x 107° | 4.03 x 107® | 4.18 x 1078

1024 x 1024 1.21 x 107 | 1.21 x 107° | 4.01 x 107® | 4.07 x 1078

Spatial Resolution | Trans. Vel. | Rot. Vel. Rot. Vel. Rot. Vel.
(pixels) () (x) (v) ()

256 x 256 5.53 x 1078 | 1.06 x 10=7 [ 1.02 x 10~ | 7.95 x 1073

512 x 512 5.53 x 1078 | 1.05 x 10=7 { 1.01 x 10~ | 7.90 x 10~®

1024 x 1024 5.51 x 1078 | 1.05 x 10=7 [ 1.01 x 10~ | 7.89 x 1073

Table 4.4: Mean squared error with gray value resolution of 10 bit

4.6.4 Experiment 3: Translational Acceleration

Experiment 2 simulates the motion model of the object at constant translational and
rotational velocity. In this experiment, we simulate a motion with translational ac-
celeration with this constant model, which means that the motion model does not
accurately describe the motion of the object. The purpose is to observe the perfor-
mance of the hybrid feature/flow-based algorithm in this kind of non-ideal situation.
The position of the rotation centre, at any time, is given by (4.20) where (a) denotes
the translational acceleration. Table 4.5 shows the motion parameters used in this

experiment.

Initial position Sgr(to)(F'L)
Translational velocity 7' (FL/frame)
Rotational velocity w(radians/frames)

[—=5 5 207

[0.05 —0.1 —0.2]"
[0.03 0.04 0.05]"

[ 0.0005 —0.001 0.002 |7

Translational acceleration a(FL/frame)

Table 4.5: Motion parameters for Experiment 3

All pairs spatial resolution and gray-level resolution were tried. Although the
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description of the motion model (process equation) is not accurate, the results are all
still stable and convergent. This is very important in practice. One could, of cause,
build a system model as accurate as possible. However, this would cause an increase
in the size of state vector, state propagation matrix, and the computational load. It
would increase the difficulty for the real-time application because of its decreasing
computational efficiency. Our simulation results have shown that we can obtain
good state estimates based on our relatively accurate measurements with a non-ideal
process model. In some practical problems, computational efficiency might be more
important than accuracy improvement of system model The simulation results are
shown in Figure 4.5 and 4.6, in which the spatial resolution 512 x 512 pixels, and

gray-value resolution of 10-bit have been used.

4.7 Summary

In this Chapter, we have examined the performance of this hybrid algorithm with
our new measurement equation with measurement error. We have experimented with
different pairs of spatial and gray-value resolution. Experiment results showed stable

and convergent performance, which are much better than those described in [4].

63



Chapter 5

Summary and Conclusion

We began this project report with the background to 3-D motion estimation. Two
main categories of approaches, feature-based and optical-flow-based, were discussed
with their fundamental differences: feature-based techniques recover 3-D motion in-
formation by extracting a number of 2-D features and then establishing inter-frame
correspondence, while optical-flow-based methods compute velocity fields using a
gray value spatiotempory model. The most popular recursive estimation algorithm,
Kalman filtering, is briefly introduced with time update equations, measurement up-
date equations, and filtering procedures. The details of the hybrid feature/ flow-based

recursive 3-1) motion estimation algorithm were completely presented.

The major contribution is the development of a new approach that can compute
both optical flow and position on the image plane given an image sequence. The
derivation of this measurement equation is based on Nagel’s approach that computes
optical flow from second-order intensity derivatives. In his approach, first, a second-
order Taylor expansion is used in modelling the measured gray-value surface within
small window of interested. The parameters estimated on this surface is obtained
by applying least squares estimation. Optical flow can then be computed in terms
of these estimated parameters by minimizing the mean squared difference between
two frames of a very small time interval and simplifying it under the assumption of
7gray value corner” with special constraints. We also found that in a special case

of the Gaussian surface we could obtain the optical flow expression in terms of the
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parameters. We have derived the equations of computing the positions in these two
cases, which are also in terms of the parameters. By using Taylor expansion about
the parameter estimate, the new measurement vector is structured with both optical

flow and position.

Another contribution is that we have combined the hybrid feature/flow-based re-
cursive 3-D trajectory estimation algorithm with this new measurement equation.
Our simulation results showed the performance of this hybrid algorithm combined
with our new measurement equation achieved significant improvement in estimating
all important trajectory states under a wide range of gray-value and spatial reso-
lutions. The hybrid algorithm provided reliable state estimates. Even when there
existed slight deviations which were not described in the system motion model, the
performance was still stable and convergent with fairly good state estimates based on

the measurements.
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