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AbstractThis project presents a new method to compute three-dimensional trajectoriesfrom both optical ow and image plane position measurements derived from the esti-mation of second-order intensity variations in image sequences. It is based on Nagel'soptical ow computation approach in which optical ow is obtained by minimizingthe mean squared error di�erences between a second-order Taylor expansion of grayvalues from one frame and the observed gray values within the same window fromthe next frame. From his method, in the special case of a \gray value corner", andanother special case of a \gray value extremum point", we have developed a newtechnique in which the measurement vector contains both position and image planevelocity. The measurement vector can be approximately expressed as a �rst-orderTaylor expansion which is a function of parameters estimated from the measuredgray value surface.Our goal is to estimate the three dimensional trajectory and structure of a movingrigid object in an image sequence. The hybrid feature/ow-based recursive trajectoryand structure estimation algorithm, proposed by Blostein and Chann, is reviewed indetail. This algorithm is used together with this new measurement equation we havederived in this project. It is shown that accuracy of the 3-D motion estimation isimproved signi�cantly. The e�ects of using the di�erent values of parameters in themeasurement equation to the 3-D motion are also demonstrated.
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Chapter 1IntroductionBackgroundMotion analysis is a very important subject in computer vision. It includes estimatingthe relative three-dimension(3-D) motion of a moving object with respect to thecamera from given image sequences. A number of real-world problems require theestimation of 3-D motion. These include applications in video image compression,industrial automation and inspection, robot assembly, autonomous vehicle navigation,biomedical engineering and remote sensing.In motion analysis, obtaining reliable information about the moving object is afundamental and important problem. The information contains the 3-D time-varyingposition, orientation, translational and rotational velocity, which are extremely valu-able for motion prediction. In this project, we focus on estimating the 3-D motion ofa moving object using a single camera. The camera is assumed to be stationary andthis moving object is a rigid-body that implies that the 3-D distance between anypair of points never varies with time.Usually, there are two phases in a complete 3-D motion analysis system basedon the use of measurement data obtained. The �rst phase is to compute the opti-cal ow or/and establish the correspondence of discrete features. The second phaseis to use these data to determine the motion parameters. Blostein and Chann haddeveloped a hybrid feature/ow-based recursive 3-D trajectory and structure estima-1



tion algorithm that focuses on the recovery of motion parameters. Unlike any otherapproaches, this algorithm is the �rst ever to make use of both image plane coordi-nates of discrete features and image plane velocity information and produce betterestimation of motion parameters than that of a purely feature-based algorithm. Thisproject addresses performance improvements for this hybrid algorithm.ContributionIn our motion analysis research, we have derived the relationship between the mea-surement of image plane coordinates of feature points and image plane velocity. Therelationship can be approximately expressed as a �rst order Taylor expansion in termsof the parameters of an estimated gray-level surface from pixel observations, and theerror between estimated and actual parameters. It makes the joint computation offeature point coordinates and optical ow numerically tractable. We are also inter-ested in how we can use the image measurements for estimating 3-D motion of amoving object from a sequence of images. We show that the estimation of theseparameters of an estimated gray level surface is unbiased and its error covarianceis known and does not change over time: We will show that the �rst-order term ofthis Taylor expansion about the estimated parameters in which the expection of thesecond term of right hand is equal to zero (Chapter 3). That means that the biasbetween the measurement vector and the �rst term of the right hand side of thisequation, in terms of the estimation of these parameters, is equal to zero.We will use this new measurement technique together with the hybrid feature/velocity-based recursive algorithm in estimating 3-D motion of a moving object. From theresults of our simulations, we see obvious improvements in performance: smaller biasand variance, increased stability, and faster convergence under the conditions of ran-dom measured gray values, and a set of di�erent gray value and image resolutionsused in our experiments. 2



OrganizationThis project report is organized as: Chapter 2 provides the relevant background of3-D motion estimation, a brief introduction of the Kalman �ltering which will be usedin the hybrid algorithm, and a detailed description of the hybrid feature/ow-based3-D trajectory estimation algorithm. Chapter 3 presents details of the derivation thatthe measurement equation can be approximately expressed as a Taylor expansion, anddiscussion of the use of this equation. Chapter 4 shows the implementation detailsand the simulation results from our experiment. Chapter 5 forms the conclusionsbased on our experiment results.
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Chapter 2Background and the Hybridalgorithm of 3-D motionEstimationIn this chapter, we will briey review relevant background material of 3-D motionestimation. Then we will give a detailed description of the hybrid feature/ow-basedrecursive 3-D trajectory and structure estimation algorithm. The background con-tains basic characteristics of the previous approaches to 3-D estimation from digitalimage sequences, the Kalman �lter and its extended variations which are often usedin many 3-D motion algorithms and also used in our research. The details of thehybrid algorithm include the imaging model, object model, motion model and systemmodel. This hybrid recursive 3-D motion estimation algorithm is core to this project,and will be applied in Chapter 3 and Chapter 4.2.1 Background of 3-D motion estimationThere are a number of di�erent approaches developed for the recovery of 3-D motioninformation (position, translation and rotational velocity). As Chann notes[3], all ofthem can be classi�ed into one of three main methods: feature-based, optical ow-based and direct. The following is a description of the basic features of these mainapproaches. 4



2.1.1 Feature-based MethodsFeature-based methods use a small number of salient feature-point coordinates on theimage plane from the image sequences to track and estimate 3-D motion. The featuresare commonly chosen as corners, lines, and regions. The choice of features should nota�ect the formulation of the solution. The procedures of feature-based approachescontain three steps. The �rst is to extract the features of the moving object from oneframe. The second step is to �nd those same features in the next frame to determinefeature correspondence. Typically, the time interval between the �rst and secondframe is very small. The �nal step is to estimate motion and structure. As we cansee, obtaining these correspondences precisely is the key to feature-based methods.There are two kinds of feature-based methods used in motion estimation: batch andrecursive.Batch algorithms commonly put certain constraints on the object to obtain a setof linear or nonlinear equations in terms of the motion parameters. The minimumnumber of equations is at least as large as the number of motion parameters thatneed to be estimated. Because of the existence of noise in the process of estimation,the number of equations used is typically much more than the minimum in practice.The use of a large number of equations increases the computational load. In manyreal-time problems, recovery of 3-D motion parameters must be at real-time. In thiscase, most batch algorithms are not applicable because of the large computationalrequirements.Recursive algorithms are widely used in real-time 3-D motion estimation becausethey provide higher e�ciency in computation. A recursive algorithm using a dynam-ical system of equations requires only the previous state estimate and the currentmeasurement to produce the current estimate. It can reduce the processing datasigni�cantly. The Kalman �lter is the most commonly used recursive algorithm. Wealso use it in our project. A conceptual introduction of Kalman �ltering will be givenin the next section. 5



2.1.2 Optical-Flow-based methodsUnlike feature-based techniques, optical-ow-based methods recover 3-D motion infor-mation from the measurement of optical ow. The �rst step of optical-ow-based ap-proaches is always to compute the optical ow �eld u(xi; yi) = [ u(xi; yi) v(xi; yi) ]T .The optical ow at the coordinate (xi; yi) is the instantaneous velocity of the graylevel (brightness) pattern at this point. Because the optical ow equations can be al-gebraically expressed as the functions of the motion parameters, after computing theoptical ow, 3-D motion parameters can be estimated. There is another di�erencebetween feature-based and optical-ow-based methods. Usually, feature-based ap-proaches assume a stationary observer and a moving object, while optical-ow-basedapproaches commonly assume that an observer is moving within a static environment.2.1.3 Direct methodsThe third class are referred to as direct techniques. The characteristic of these meth-ods is that there is no feature extraction and correspondence nor optical ow to becomputed before recovery 3-D motion and structure. Instead, 3-D motion parameterscan be obtained directly from the measurement of gray values at each pixel location.2.2 Overview of Kalman �lteringWe have mentioned previously that recursive algorithms are commonly applied inreal-time problems for estimating 3-D motion because of the advantage of high com-putational e�ciency. Kalman �ltering is an important and extensively used recursivealgorithms. The Kalman �lter produces an optimal estimate of the system state basedon all previous noisy measurements[5]. The hybrid algorithm used in this project isbuilt on Kalman �ltering. It is therefore necessary to give a general overview.6



2.2.1 State space modelFor a given dynamic physical system, in which the state-space model can be describedby di�erential equation as: dx(t)dt = f(x(t); t) +w(t) (2:1)where x(t) is the state of the system, w(t) is the process noise. The measurementequation is expressed as: y(t) = h(x(t); t) + v(t) (2:2)where y(t) is the measurement, v(t) is the measurement noise. The goal is to extractthe system state x(t) from the noise added measurement y(t) and make the estimate,x̂(t), close to x(t). The perfect estimate is x̂(t) equal to x(t).In a special case that both f(�) and h(�) are linear functions of the state variable,the plant model, then, can be written as:dx(t)dt = F (t)x(t) +w(t) (2.3)y(t) = H(t)x(t) + v(t) (2.4)The implementation of this plant model on a digital computer requires discretizationof equations (2.3) and (2.4). It leads to:xk+1 = �(k + 1; k)xk +wk wk � N(0; Qk) (2.5)yk = Hkxk + vk vk � N(0; Rk) (2.6)where �(k + 1; k) = exp[(tk+1 � tk)Fk], and exp[�] is the matrix exponential[5].To unify the notation, we use x(k), y(k), F (k) to express xk, yk, �(k + 1; k)respectively. Then equations (2.5) and (2.6) can be rewritten as:x(k + 1) = F (k)x(k) +w(k) (2.7)y(k) = H(k)x(k) + v(k) (2.8)Next, we will introduce how the Kalman �lter performs state estimation.7



2.2.2 Discrete Linear Kalman FilterThe discrete linear Kalman �lter is an elegant generalization of recursive least squares,and it is convenient for digital computer implementation. The Kalman �lter estimatesoptimally the unknown system state from the noisy measurements.Suppose there is a discrete system, whose plant model is described in equa-tions (2.7) and (2.8). The Kalman �lter equations areTime Update: x̂(k + 1jk) = F (k)x̂(kjk) (2.9)P (k + 1jk) = F (k)P (kjk)F T(k) +Q(k) (2.10)Measurement Update:x̂(k + 1jk + 1) = x̂(k + 1jk) +K(k + 1)[Y (k + 1)�H(k + 1)x̂(k + 1jk)] (2.11)P (k + 1jk + 1) = [I �K(k + 1)H(k + 1)]P (k + 1jk)= [I �K(k + 1)H(k + 1)]P (k + 1jk)[I �K(k + 1)H(k + 1)]T+K(k + 1)R(k + 1)KT (k + 1) P (0j0) = P (0) (2.12)K(k + 1) = P (k + 1jk)HT (k + 1)�[H(k + 1)P (k + 1jk)HT (k + 1) +R(k + 1)]�1 (2.13)Note that we prefer using the latter form of equation (2.12) to ensure the positivede�niteness and symmetry of the error covariance matrix. In the formulation ofthe linear Kalman �lter, if there is no prior knowledge about the process noise andmeasurement noise, wk and vk are assumed to be temporally white Gaussian noise:EfwiwTj g = ( Qk i = j0 i 6= j (2.14)EfvivTj g = ( Rk i = j0 i 6= j (2.15)8



without loss of generality, w and v are often assumed to be uncorrelated:EfwivTj g = 0 8i; j (2:16)The following is a summary of an algorithm that performs the Kalman �lteringequations (2.7) to (2.16).1. Initialize the step index k = 02. Initialize the state estimate vector x̂(0j0)3. Initialize the covariance matrix P (0j0) = P (0) of the state estimate error4. Compute the next covariance of the state prediction error P (k + 1jk + 1) usingequation (2.10)5. Compute the Kalman gain K(k + 1), using equation (2.13)6. Compute the next covariance of state estimator error P (k + 1jk + 1), usingequation (2.12)7. Compute the next predicted state x̂(k + 1jk), using equation (2.9)8. Compute the measurement residual, �y(k+1jk) = y(k+1)�H(k+1)x̂(k+1jk)9. Compute the state estimate x̂(k + 1jk + 1), using equation (2.11)10. Increment k by 111. Output the state estimate12. Return to step 4With each �lter cycle, the estimate is updated and improved by incorporating anew measurement vector. 9



2.2.3 Kalman Filtering for Nonlinear systemsIn the case of systems not describable as a linear model, its plant model is given as:x(k + 1) = f(x(k); k) +w(k) (2.17)y(k) = h(x(k); k) + v(k) (2.18)where f(�) and h(�) are deterministic nonlinear functions depending on the systemstate. In order to apply Kalman �ltering to this nonlinear problem, we need tolinearize the nonlinear equations about the current estimate state x̂(kjk). To achievethis, we only introduce the extended Kalman �lter (EKF) and iterated extendedKalman �lter (IEKF), which are used in our project.Extended Kalman Filter (EKF)To obtain linearized process and measurement equations, one can apply the �rst-order Taylor expansion about x̂(kjk), the current state estimate at time k. TheEKF is di�erent from a \linearized Kalman �lter" which is linearized about somepredetermined reference trajectory. One advantage of using the EKF is the avoidanceof a predetermined reference trajectory. The EKF is only suitable for small statedeviations ~x(kjk) = x(k)� x̂(kjk) and ~x(k + 1jk) = x(k + 1) � x̂(k + 1jk).After linearization of a nonlinear plant model, there is a little change from thebasic Kalman �lter equations. The prediction of state estimation equation (2.9), isreplaced by x̂(k + 1jk) = x̂(kjk) + Z tk+1tk f(x; � )d� (2:19)The measurement update equation (2.11), is replaced byx̂(k + 1jk + 1) = x̂(k + 1jk) +K(k + 1)fy(k + 1) � h[x̂(k + 1jk)]g (2:20)The state coupling matrix Fk = df(xk; k)dxk �����xk=x̂k (2:21)is the Jacobian of f(�) with respect to the state vector at x̂(k).10



The input-to-output coupling matrixHk = dh(xk; k)dxk �����xk=x̂k (2:22)is the Jacobian of h(�) with respect to the state vector at x̂(k).Iterated Extended Kalman Filter (IEKF)The iterated extended Kalman �lter is developed based on the assumption that wheny(k+1) is obtained, the �ltered estimates, x̂(k+1jk+1),are, in general, better thanthe predicted estimates, x̂(k + 1jk). That is, one might achieve better results by re-peating the linearization of the measurement function about the latest estimate until aprede�ned condition is satis�ed. The IEKF uses an iterator instead of equation (2.20)in the EKF. This iterator is given by�i+1 = x̂(k + 1jk) +Kk+1fyk+1 � h(�i)�Hk+1[x̂(k + 1jk)� �i]g i = 0; 1; � � �(2:23)where �0 = x̂(k + 1jk), and �l = x̂(k + 1jk + 1). Obviously, when l is equal to 1, theIEKF reduced to the EKF.2.3 The Hybrid Feature/Optical-ow-based Re-cursive AlgorithmIn previous sections of this chapter, we have introduced the basic characteristics offeature-based and optical-ow-based techniques and the fundamental di�erences be-tween them. In feature-based approaches, discrete features are extracted and trackedover time; in optical-ow-based approaches, 2-D velocities of gray value patterns arecomputed for every frame in an image sequence.Blostein and Chann[1][2][3] have developed a recursive algorithm, which makesuse of both feature and optical ow measurements, to estimate 3-D motion trajectoryand structure based on Broida et al.'s pure feature-based algorithm[4]. Since thisproject is a continuation of Blostein and Chann's research, a detailed description of11



this algorithm is necessary. In this algorithm, it is assumed that a stationary videocamera is used to observe a single moving rigid-body over time. The goal is to recoverthe 3-D trajectory of this object from an extended image sequence captured by thevideo camera. The imaging model, object model, motion model, and system plantmodel will be examined in order.2.3.1 Imaging modelThe pin-hole camera model combined with the perspective projection is used. Itis su�cient for modelling the imaging process. Suppose that a coordinate frame isattached to the camera, with its origin at the focal point and its x-axis coincidingwith the optical axis. The image plane is parallel to the x-y plane and is locatedat Z = f , where f > 0, is the focal length of the camera. Let P = (X;Y;Z) be a3-D point and p = (x; y) be its projection onto the image plane via the perspectiveprojection [1][2][3][11][12]. p = " xy # = fZ " XY #+ " nxny # (2:24)where nx and ny are additive noise terms, the random error caused mainly from spatialquantization. Without loss generality, a unity focal length is assumed, (i.e.,f = 1 ).2.3.2 Object ModelIn order to observe a moving object, whose structure is known, through a stationarycamera, two coordinate systems are used. One is the camera-centred coordinatesystem (CCCS) with the z-axis pointing in the direction of the optical axis. Anotheris the object-centred coordinate system (OCCS), which is a moving frame attachedto the object.Let the position vector of Oo in the CCCS be given bySR(t) = [ XR(t) YR(t) ZR(t) ]T (2:25)and the position vector of the i-th feature point in the OCCS be given bySoi = [ Xoi Yoi Zoi ]T (2:26)12



then the position vector of this feature point in the CCCS is given bySi(t) = SR(t) +R(t)Soi (2:27)where R(t) is the rotation matrix that aligns the OCCS with the CCCS. The quantity,SR(t) is the origin of OCCS, and is not directly observable. Because of the assumptionof 3-D object rigidity, Soi is not dependent on time.2.3.3 Motion modelIn rigid-body motion there is no relative motion of points in or on the rigid-body. Thepoints must always maintain a �xed position relative to one another and all the pointsmove with the body as a whole. Motion of a rigid-body is completely characterizedby translational and rotational components. The moving position of each point in oron the moving rigid-body can be represented by the same translational and rotationaltransformation of the point from its initial position.Translational motionA linear model is used to describe the translation motion. The assumption is that theobject is moving at a constant velocity T = [ Tx Ty Tz ]T . The centre of rotationis not a�ected by the rotational motion of the object. Suppose its initial location attime t = t0 is known. Then its position at any time t is given bySR(t) = SR(t0) + (t� t0)T (2:28)Rotational MotionIt is also assumed that this moving object is rotating about an axis though Oo at aconstant rotational velocity ! = [ !x !y !z ]T . The centre of rotation, Oo, is nota�ected by the rotational motion of the object. The orientation of the OCCS withrespect to the CCCS can be de�ned as the 3-D rotation which must align the OCCSwith the CCCS. The unit quaternion is used to express the orientation of a rotating13



object in time. q(t) = exp[(t� t0)
(!)]q(t0) (2:29)where q(t) = [ q1(t) q3(t) q3(t) q4(t) ]T jjq(t)jj = 1 (2:30)which is a 4-parameter vector representing 3 degrees of freedom, and
(!) = 12 26664 0 !z �!y !x�!z 0 !x !y!y �!x 0 !z�!x �!y �!z 0 37775 (2:31)where [ !x !y !z ]T is the angular velocity vector.Note that the rotation matrix R can be expressed in terms of q,R = 264 q21 � q22 � q23 + q24 2(q1q2 � q3q4) 2(q1q3 + q2q4)2(q1q3 + q2q4) �q21 + q22 � q23 + q24 2(q2q3 � q1q4)2(q1q3 � q2q4) 2(q2q3 + q1q4) �q21 � q22 + q23 + q24 375 (2:32)In (2.32) the dependence on time is suppressed to simplify the notation. All quantitiesare time-varying.2.3.4 System Plant Model3-D motion system consists of a rigid object translating and rotating continuouslyover time. Measurements are obtained at uniform-spaced time intervals. The systemis modelled as equations (2.1) and (2.2). The problem is to estimate the system statefrom the measurements. Discretization is required before implementation on digitalcomputer. Since both f(�) and h(�) are nonlinear functions, a linear Kalman �lter maynot be applied. The extended Kalman �lter (EKF) and iterated extended Kalman�lter (IEKF) are chosen in this project due to this nonlinear �ltering problem. Thestate coupling matrix F (k) and the input-output coupling matrix H(k) are obtainedby using equation (2.21) and (2.22) respectively.The State VariablesIn a good model which describes the system, the state vector must contain su�cientinformation to characterize the behaviour of the system. In this algorithm, the state14



vector consists of the image plane coordinates of the OCCS origin, the translationalvelocity, the unit quaternion representing the orientation of the object, the rotationalvelocity, and the normalized coordinates of the feature points in the OCCS.
x(t) =

2666666666666666666666666666666666666666664
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s1s2s3s4s5s6s7s8s9s10s11s12s13s14s15...s10+3Ms11+3Ms12+3M
377777777777777777777777777777777777777775 (2:33)

In (2.33) M is the number of the feature points.The normalization factor zR(t) is used to eliminate the unknown scaling factor.In equation (2.33), we denote states s1{s5 as the translational states, states s6{s12 asthe rotational states, and states s13{s12+3M as the structural states.Measurements of feature point position and optical owIn a feature-based algorithm, measurements are normally image plane coordinatesof the feature point. Blostein and Chann have made a �rst step toward integratingthe feature-based and optical-ow-based approaches to 3-D motion estimation. Theyhave established the measurement vector that consists of feature point position andits corresponding optical ow. However, they have considered the feature pointsand optical ow measurements to be statistically independent. In practice, these15



measurements are all derived from a single sensor, a video camera. In this report, wepropose a new measurement model that takes the correlation between feature pointand optical ow measurements into account.The measurements of feature point can be obtained by using the perspectiveprojection. yk = 266666664 x1y1...xMyM 377777775 = 266666664 X1=Z1Y1=Z1...XM=ZMYM=ZM 377777775 (2.34)where M is the number of the feature points. The measurement function is highlynon-linear in the state variables. It can be shown by examining the image planecoordinates of the i-th feature point.xi = XiZi = XR +R1SoiZR +R3Soi (2.35)yi = YiZi = YR +R2SoiZR +R3Soi (2.36)where R1, R2, and R3 are the �rst, second, third rows of the rotation matrix R,respectively (see equation (2.32)).Dividing the right hand side of (2.35) and (2.36) by ZR, equations (2.35), and (2.36)can be expressed in terms of the state variables [3],xi = s1 + ai1 + ci (2.37)yi = s2 + bi1 + ci (2.38)where ai = (q21 � q22 � q23 + q24)XoiZR + 2(q1q2 � q3q4)YoiZR + 2(q1q3 � q2q4)ZoiZR= (s26 � s27 � s28 + s29)s10+3i + 2(s6s7 � s8s9)s11+3i+2(s6s8 + s7s9)s12+3i (2.39)16



bi = 2(q1q2 + q3q4)XoiZR + (�q21 + q22 � q23 + q24)YoiZR + 2(q2q3 � q1q4)ZoiZR= 2(s6s7 + s8s9)s10+3i + (�s26 + s27 � s28 + s29)s11+3i+2(s7s8 � s6s9)s12+3i (2.40)ci = 2(q1q3 � q2q4)XoiZR + 2(q2q3 + q1q4)YoiZR + (�q21 � q22 + q23 + q24)ZoiZR= 2(s6s8 � s7s9)s10+3i + 2(s7s8 + s6s9)s11+3i+(�s26 � s27 + s28 + s29)s12+3i (2.41)Equation (2.34) is measurement equation of Broida et al.'s algorithm[4], whichconsists of only feature point coordinates. Bolstein and Chann modi�ed this equationby adding the measurement of optical ow at the feature point[1][2][3]. The purpose ofadding optical ow to the measurements is to provide more information to the Kalman�lter such that the Kalman �lter might produce a more accurate state estimate.Di�erentiating the image coordinates (xi; yi) with respect to time yields the opticalow equations:ui = dxidt = ddt �XiZi � = _XiZi � Xi _ZiZ2i = _XiZR � ZRZi � XiZR � ZRZi � _ZiZR � ZRZi (2.42)vi = dyidt = ddt �YiZi� = _YiZi � Yi _ZiZ2i = _YiZR � ZRZi � YiZR � ZRZi � _ZiZR � ZRZi (2.43)without losing generality, the focal length is assumed to be unity. Equations (2.42),(2.43) need to be expressed in terms of state variables.Obviously, we need to determine the velocity of the ith feature point with respectto the camera, i.e., _S(t) = [ _Xi _Xi _Xi ]T . Di�erentiating (2.27) with respect totime, yields ddtSi(t) = ddtSR(t) + dR(t)dt Soi (2:44)The time derivative of the rotation matrix is given byddtR(t) = 264 0 �!z !y!z 0 �!x�!y !x 0 375R(t) (2:45)17



using the relationship ZRZi = ZRZR +R3Soi = 11 + R3ZR � Soi (2:46)We substitute (2.44), (2.45), and (2.46) into (2.42), and (2.43)[3]:ui = s3 + cis11 � bis121 + ci � (s5 + bis10 � ais11)(s1 + bi)(1 + ci)2 (2.47)vi = s4 � cis10 + ais121 + ci � (s5 + bis10 � ais11)(s2 + bi)(1 + ci)2 (2.48)where ai, bi, and ci are de�ned in (2.39), (2.40), (2.41) respectively. Now, the newmeasurement vector yk, which includes the coordinates (positions) and velocities(optical ow) of the feature points, is established as:yk = 2666666666666666666664
x1y1...xMyMu1v1...uMvM

3777777777777777777775 (2:49)The individual elements of the Jacobian matrix Hk can be obtained by di�erentiat-ing (2.37), (2.38), (2.47), (2.48) with respect to each state variable. This was obtainedby Blostein and Chann [1][2][3].2.4 SummaryIn this chapter, we have introduced the basic characteristics of three main categoriesmethods for 3-D motion estimation and their di�erences. We have introduced theconcept of the Kalman �lter with some its variations used in our project and theprocedures of performing Kalman �ltering. Finally, we have described the hybridfeature/ow-based recursive 3-D motion estimation algorithm in detail.18



Chapter 3Measurement of Position andVelocity from Second-orderIntensity DerivativesWe have introduced the hybrid measurement structure of feature point position andoptical ow which is a highly nonlinear function in terms of the state variables de�nedin Chapter 2. We are also interested in how the optical ow and its coordinate on theimage plane are related to the observed gray values obtained from a digital camera.In other words, we try to compute the optical ow and position on the image planefrom the spatiotemporal gray value patterns of image intensity. To make our resultstractable, we will then derive an approximation equation of this measurement thatis a function of the second- order intensity derivatives in image sequences. First,we will briey introduce the basic concepts of di�erential techniques for computingoptical ow. Then, we will describe and discuss Nagel's approach[6] that computesoptical ow from second-order intensity variations of an observed gray value pattern.Based on Nagel's method, we will show that the measurement vector, which includesoptical ow and its coordinate position on the image plane, can be computed byestimating the second-order derivative of the gray value pattern from a sequenceof images. Finally, we will discuss the applications of this approach to the hybridfeature/ow-based algorithm proposed by Blostein and Chann[1][2].19



3.1 Di�erential Optical Flow techniquesIt is well known that the measurement of optical ow is a fundamental problem in theprocessing of time-varying image sequences. The local computation of optical ow isan approximation to the 2-D �eld, which is a projection of the 3-D velocities of sur-face points onto an imaging surface, from spatiotemporal models of image intensity.There are many methods proposed for computing optical ow: di�erential techniques,region-based matching, energy-based methods, and phase-based techniques[8]. Dif-ferential techniques are used in our project, in which optical ow is computed fromspatiotemporal intensity derivatives in image sequences.3.1.1 First-order Di�erential MethodsFirst-order di�erential techniques use �rst-order derivatives based on image trans-lation. The spatiotemporal model[8][9][11][12], which is time-varying, is expressedas: g(x; t) = g(x� ut; 0) (3:1)where x = [ x y ]T is the coordinate in the x-y plane, and u = [ u v ]T is theoptical ow of the point.It is assumed that the motion must be \small". In other words, the time intervalbetween two frames must be very small. Then, from the Taylor series expansion, ormore generally from the assumption that the temporal derivative dg(x; t)=dt = 0, wecan easily derive the gradient constant equation as:rg(x; t)u+ gt(x; t) = 0 (3:2)or directly gx(x; t)u+ gy(x; t)v + gt(x; t) = 0 (3:3)where rg(x; t) = [ gx(x; t) gy(x; t) ]T , is the spatial gradient vector �eld over theimage plane, and gt(x; t) is the partial time derivative of g(x; t). Usually, the notationis simpli�ed to: rg(x; t) = rg = [ gx gy ]T20



gt(x; t) = gtAs we can see from equation (3.2), there are two unknown components of u con-strained by one linear equation. Therefore, we need more constraints to solve thisproblem.3.1.2 Second-order Di�erential MethodsSecond-order di�erential approaches use second-order derivatives of g(x; t) to con-strain optical ow components. It can be derived directly from equations (3.1),(3.3)[8][9][12] that, gxxu+ gyxv + gtx = 0 (3.4)gxyu+ gyyv + gty = 0 (3.5)with gxy = gyx.Equations (3.4), (3.5) can be rewritten as" gxx gxygxy gyy # " uv #+ " gtxgty # = 0 (3:6)where the symmetric matrix of second derivatives is called the Hessian of g(x; t),expressed as H. Assuming drg(x; t)=dt = 0, optical ow can be computed by usingequation (3.6) alone or together with equation (3.3). Second-order approaches canrecover 2-D velocity in most cases,but cannot solve for u where the \aperture prob-lem" exists in local neighbourhood where DetH is equal to zero. A computationalmethod has been proposed in which the aperture problem can be avoided in mostcases. For the detail of this approach, the interested reader is referred to [9].Di�erential techniques compute 2-D velocity under the assumption that u is con-stant across at least two di�erent areas with linear independent values for the gradientrg or/and H (i.e. rrg). However, for the situation of abrupt change of u, for in-stance, shadow edges and corners, which are commonly chosen as features in 3-Dmotion analysis, di�erential methods of linear modelled gray value variations, whichare too simplistic around edges or corners, are not suitable in this kind of situation.21



Nagel had proposed a minimization approach that can deal with this kind of situationfor solving for a 2-D velocity vector u. We will discuss this in the next section.3.2 Estimating 2-D Velocity with Local Minimiza-tionNagel developed a local approach to inter-frame displacement estimation [6]. Thebasic idea is to assume that g(x0; t1) is observed at x0 in frame 1, and g(x0; t2) isobserved at x0 in frame 2. A local environment around x0 is assumed to have beendisplaced between t1 and t2 by a vector u = (u; v)T . To determine the vector u,we must minimize the squared di�erences P[g(x0; t2) � g(x� u; t1)]2. If the timeinterval is small enough, u remains well within the chosen environment around x0.This minimization produces two coupled nonlinear equations for the two unknowncomponents of the displacement vector u. In a special case which known as a \grayvalue corner"[6], these coupled equations can be simpli�ed to obtain a closed-formsolution. We have discovered another special case of a \gray value extremum point"when we simulated the gray level surface of the feature point. In that case, we can alsosimplify these equations to get the closed-form as described in the following sections.The solution of the two unknown components of vector u is in terms of the estimatedparameters of the second-order Taylor expansion modelled for the observed gray levelsurface.3.2.1 Parameters of the Observed Gray Value Surface ModelAssume that in an small observed window, the origin x0 = [ x0 y0 ]T of the co-ordinate system is the center of the small area of interest, i,e., x = [ x y ]T , theobserved gray level surface can be approximately expressed by a second-order Taylorexpansion[6][11] g(x) = g(x0) + gxx+ gyy + 12gxxx2+gxyxy + 12gyyy2 + " (3.7)22



where gx, gy are partial derivatives of g(x) with respect to x and y. gxx, gxy and gyyare the second partial derivatives, and " is random noise. Without loss of generality,let the initial position x0 = (0; 0) and the gray level surface be modelled asf(x; y) = f0 + fxx+ fyy + 12fxxx2+fxyxy + 12fyyy2 (3.8)Then, the measurement or observed gray level g(xi; yi) can be modelled asg(xi; yi) = f(xi; yi) + ng n � N(0; �2g) (3:9)with xi = (i�1)mod(2k+1)�k;�k � xi � k, and yi = k� (i�1)mod(2k+1);�k �yi � k, where k is an integer, i = 1; 2; : : : ; N and N = (2k + 1)2, the total numberof raster points in the observed small window, which is shown in Figure 3.1. Forexample, k = 1 corresponds to 3�3 window, and k = 2 corresponds to 5�5 window.
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Figure 3.1: The observed window for estimating a gray-value surfaceThen, G = Af + ng (3:10)23



where G = [g(x1; y1); g(x2; y2); : : : ; g(xN ; yN)]TA = 266664 1 x1 y1 12x21 x1y1 12y211 x2 y2 12x22 x2y2 12y22...1 xN yN 12x2N xNyN 12y2N 377775and f = [f0; fx; fy; fxx; fxy; fyy ]TFor a given estimate of f , the squared error between G and Af ise2 = tr[(G�Af)W(G �Af)T ]= (G�Af)TW(G�Af) (3.11)where W is a known weight matrix given by W = 1=�2gI. Then, setting@e2@f = 2ATW(G�Af) = 0 (3:12)The least-squares estimate is f̂ = (ATWA)�1ATWG (3:13)which is the maximum-likelihood unbiased estimate. Under Gaussian noise assump-tions, f̂ � N [f ; (ATWA)�1] (3:14)i.e., Ef"fg = 0, where "f = f� f̂ . Note that ATWA is called the Gram or Grammianmatrix and the error covariance matrix of the parameter is the inverse of the Grammatrix[7], i.e., cov("f ) = (ATWA)�1 (3:15)which is a constant. For the window size of 3 � 3, which is used in our simulation,cov("f) is given as,Cov("f ) = �2g 2666666664 40 0 0 �48 0 0 � 480 12 0 0 0 00 0 12 0 0 0�48 0 0 144 0 00 0 0 0 18 0�48 0 0 0 0 144 377777777524



3.2.2 Computing 2-D velocity by minimizing mean squarederrorAssuming that g(x0; t1) is observed at location x0 in frame 1 at time t1, and g(x0; t2)is observed at the same location in frame 2 at time t2, a local environment around x0is displaced between time t1 and time t2 by the optical ow vector u = [ u v ]T . Todetermine u, we want P[g(x; t2) � g(x� u; t1)]2, summed over all x from the localenvironment around x0, to be minimized. The time interval is very small so that ucan remain well within the chosen small area.Letting f1 = [ f10 f1x f1y f1xx f1xy f1yy ] be the parameters of the gray-value surface at time t1, then the summed squared error is equal toX[g(x; t2)� f10 � f1x(x� u)� f1y(y � v)� 12f1xx(x� u)2�f1xy(x� u)(y � v)� 12f1yy(y � v)2]2 (3.16)The axes of the local coordinate system for the environment around x0 should bealigned with the principal curvature directions such that f1xy = 0. Taking partialderivatives with respect to u and v, and setting them to zero, yieldsX[f1x + f1xx(x� u)][g(x; t2)� f10 � f1x(x� u)�f1y(y � v)� 12f1xx(x� u)2 � 12f1yy(y � v)2] = 0 (3.17)and X[f1y + f1yy(y � v)][g(x; t2)� f10 � f1x(x� u)�f1y(y � v)� 12f1xx(x� u)2 � 12f1yy(y � v)2] = 0 (3.18)Simplication of equation (3.17) and (3.18) yields[f1x � f1xxu][�g2 � �g1 + u(f1x � 12f1xxu)+v(f1y � 12f1yyv)] + x2f1xx[f2x � (f1x � f1xxu)] = 0 (3.19)and [f1y � f1yyv][�g2� �g1 + u(f1x � 12f1xxu)+v(f1y � 12f1yyv)] + y2f1yy [f2y � (f1y � f1yyv)] = 0 (3.20)25



where �g2 and �g1 are the average gray value observed at time t2 and t1, respectively.�x2 and �y2 are the average of all the raster points' coordinates. Now, let x0 be theposition of a gray value corner, where the axes of the local coordinate system alignwith the principal coordinate system. The gradient passes through a maximum atx0, i.e., f1x = extremum and f1y = 0f1xx = 0; f1yy = extremum 6= 0 (3.21)By using these conditions to simplify this two coupled nonlinear equations, in (3.20)we end up with u = �(�g2 � �g1 � 12f1yyv2)=f1x (3.22)v = �f2y=f1yywhich are in closed-form in terms of the parameters of the modelled gray level sur-face. If one needs a numerical solution, the coupled nonlinear equation can be solveddirectly to obtain the vector [ u v ]T . We remark that it is not required to usegray value corner characteristics to extract features. However, we are interested in aclosed-form solution, from which we can derive what we need.3.3 Estimating the coordinate of the 2-D Velocityon x-y PlaneWe have expressed the closed-form solution of u and v derived by Nagel, in termsof the parameters of the gray level surface model at time t1 and t2, as shown in theprevious section.Now, we try to �nd the position of this gray value corner on the image plane,which is assumed to be the feature point of the object. Returning to the model of agray value surface, equation (3.8), taking partial derivatives with respect to u and v,and using the gray value corner characteristics@@xf(x; y) = extremum=M26



@@yf(x; y) = 0 (3.23)we obtain the position for gray value corner feature points asx = f2yy(M � f2x) + f2xyf2yf2xxf2yy � (f2xy)2 (3.24)y = �f2xy(M � f2x) + f2xxf2yf2xxf2yy � (f2xy)2 (3.25)The choice of the feature point as a \gray value corner" can be used in measuringthe feature point coordinates and optical ow, but it has a weakness. In the course ofNagel's derivation, for the purposes of simplifying that coupled nonlinear equations,Nagel imposed a condition that the axes of the local coordinate systemmust align withthe principal curvature so that fxy is equal to zero. Of course, one could achieve thisby rotating the local coordinate system a certain angle. After computing the opticalow vector and the position of the feature point with respect to the local coordinatesystem, we need to rotate the local coordinate system back to align with the camera-centered coordinate system (CCCS). This will result in di�culty in measuring thefeature point position and optical ow because the rotational motion of the movingobject is changing over time.To overcome this problem, we �x the local coordinate system and align it withthe CCCS. We then exploit the characteristics of another special case of a \grayvalue extremum point" to compute the feature point optical ow and its coordinateas described next.Now, we discuss the situation in which there exists a brightest or darkest point ina local area. In other words, there exists a extremum point on the gray level surfacein a small area of interest. We select this point as the feature point and try to �ndthe displacement vector u = [ u v ]T and its location x = [ x y ]T in the observedsmall window. It is not convenient in practical applications to rotate the axes of thelocal coordinate system for the environment around x0 to align with the principalcurvature direction to force fxy equal to zero. We will therefore keep this term in ourderivation to compute optical ow u and its coordinate.27



Taking partial derivatives of equation (3.16) with respect to u and v, and settingthem to zero,X[f1x + f1xy(y � v) + f1xx(x� u)][g(x; t2)� f10 � f1x(x� u)�f1y(y � v)� 12f1xx(x� u)2 � f1xy(x� u)(y � v)� 12f1yy(y � v)2] = 0(3.26)andX[f1y + f1xy(x� u) + f1yy(y � v)][g(x; t2)� f10 � f1x(x� u)�f1y(y � v)� 12f1xx(x� u)2 � f1xy(x� u)(y � v)� 12f1yy(y � v)2] = 0(3.27)Simplication of Equations (3.26) and (3.27) yields a coupled nonlinear equation[f1x � f1xyv � f1xxu][ �g2 � �g1 + u(f1x � 12f1xxu)+v(f1y � 12f1yyv)� f1xyuv] + �x2f1xx[f2x � (f1x � f1xyv � f1xxu)] = 0(3.28)and [f1y � f1xyu� f1xxv][ �g2 � �g1 + u(f1x � 12f1xxu)+v(f1y � 12f1yyv)� f1xyuv] + �y2f1yy [f2y � (f1y � f1xyu� f1yyv)] = 0(3.29)We let dg = �g2 � �g1, which approximates the partial derivative of the gray valuewith respect to time. Now, letting x0 denote the position of a gray value extremumpoint projecting onto the image plane, by using the condition f1x = f1y = 0,f1xx; f1xy; f1yy 6= 0, Equation (3.28) and (3.29) become�[f1xxu+ f1xyv][dg � 12f1xxu2 � f1xyuv � 12f1yyv2]+�x2f1xx[f2x + f1xyv + f1xxu] = 0 (3.30)28



and �[f1xyu+ f1yyv][dg � 12f1xxu2 � f1xyuv � 12f1yyv2]+�y2f1yy [f2y + f1xyu+ f1yyv] = 0 (3.31)Assume a gray value surface model f(x; t) as Equation (3.8), with f(x� udt; t1) =f(x; t2), i.e., the intensity at spatial location x at time t is the same at spatial location(x� ut) at time t0[8][9][10][11], where dt = t2 � t1 is very small. Expanding thisfunction about x in a second-order Taylor series yieldsf(x; t2)� f(x; t1)� " f1xf1y #T " uv #+ " uv #T " f1xx f1xyf1xy f1yy # " uv #= f1xu+ f1yv + 12f1xxu2 + f1xyuv + 12f1yyv2 (3.32)The left hand side of equation (3.32) is the approximate partial derivative withrespect to time when dt is very small. If this local model holds around this extremumpoint, then f1x = f1y = 0, and we getdg � 12f1xxu2 � f1xyuv � 12f1yyv2 = 0 (3:33)Substituting Equation (3.33) into Equations (3.30) and (3.31) yieldsf1xxu+ f1xyv = �f2x (3.34)f1xyu+ f1yyv = �f2y (3.35)then, u = f2yf1xy � f2xf1yyf1xxf1yy � f12xy (3.36)v = f2xf1xy � f2yf1xxf1xxf1yy � f12xy (3.37)The position of the extremum point in the observed window is easily obtainedunder the condition @@xf(x; y) = 0@@yf(x; y) = 029



would result in x = f2yf2xy � f2xf2yyf2xxf2yy � (f2xy)2 (3.38)y = f2xf2xy � f2yf2xxf2xxf2yy � (f2xy)2 (3.39)x, y are computed at time t2.3.4 Computing the Measurement Vector of Posi-tion and Optical FlowIn the previous section, the optical ow vector u = [ u v ]T and the position vectorx = [ x y ]T have been described in terms of the parameters of the modelled graylevel surface, i.e., as functions of f . Let Y be the vector [ x y u v ]T . By using aTaylor expansion about the estimated f̂Y(f) � Y(̂f ) + Jjf=f̂ � "f̂ (3:40)where Y(̂f ) = [ x̂ ŷ û v̂ ]T , and J is a Jacobian matrix de�ned as J = @Y=@f jf=f̂ .Here, "f = f � f̂ is a Gaussian random vector with "f �N[0; (ATWA)�1]," = Y(f) �Y(̂f ) = J � "f is also a random vector, andE(") = E(J � "f ) = JE("f) = 0 (3:41)cov(") = cov(Jjf=f̂ � "f )= E[Jjf=f̂ � " � "TJT jf=f̂ ]= Jjf=f̂E("f � "Tf )JT jf=f̂ (3.42)Note that E("f � "Tf ) = (ATWA)�1, which is the error covariance matrix of theparameters f . Although "f is unknown, cov("f ) remains invariant to f .If we need to compute Y, we have to determine "f . We can use the Choleskydecomposition to factor cov("f ) = S � ST = SIST , where S is a lower triangularmatrix, the matrix square root of (ATWA)�1, and I is the identity matrix. Then,Y(f) = Y(̂f ) + J � Sn0 (3:43)30



where n0 � N(0; 1). We have shown that Y(̂f ), the estimate of Y(f), is unbiased.The error covariance is J � cov("f )JT . Because the value of Jjf=f̂ is based on theestimated f , the di�erent f̂ at di�erent times yields di�erent Jjf=f̂ , while cov("f̂ ) isalways the same. In the next section, we assess how the new measurement errorcovariance equation impacts the 3-D trajectory estimation results.3.5 Summary and DiscussionWe have shown that the measurement vector of feature point position and opticalow is a function of the estimated vector f̂ , which includes the parameters of themeasured spatiotemporal gray value pattern from image sequences. We have shownthat if we properly choose the moving object's feature points as a \gray value corner"or \gray value extremum point", we could obtain the measurement vector by usingthis new method of computing feature point location and the optical ow. We havementioned in Chapter 2 that the feature-based methods are based on feature extrac-tion, followed by feature correspondence. Optical-ow-based methods depend uponcomputing optical ow, for the recovery of 3-D motion information. As we can see,obtaining reliable measurements of feature point position on the image plane, as wellas optical ow is very important for feature-based and optical-ow-based methods,respectively.Blostein and Chann had compared and generalized the strengths and weaknessesof feature-based and optical-ow-based methods. Based on their research into 3-Dmotion estimation, they had built a frame work of integrating the measurement offeature point and of optical ow and developed the hybrid feature/ow-based recursive3-D trajectory estimation algorithm. The remaining task, which is how to obtain themeasurements of feature point position and optical ow on the image plane, formsthe new contribution in this project report. A new method of measuring feature pointposition and optical ow from image sequences has been developed in Section 3.3,completing the hybrid feature/ow-based algorithm for use in practical applications.From our research, we have also found that the measurement error is zero mean, butthe measurement errors are correlated. The values of this error covariance matrix are31



controlled by the gray-value resolution (see equations (3.40), (3.41), (3.42), (3.15)).In summary, we have introduced the basic concept of di�erential techniques forcomputing optical ow. We have presented Nagel's approach of estimating opticalow. Based on his approach, we have developed a new method of computing mea-surement vectors of feature point position and optical ow in the special case of \grayvalue corners", we have also found another special case, \gray value extremumpoints"and derived algorithms for computing optical ow as well as the coordinate of featurepoint on the image plane. It is signi�cant that if there exist gray-value \extremumpoints" on the moving object, these points are selected as feature points. Finally,we have discussed the application of this new measurement method in the hybridfeature/ow-based algorithm for 3-D motion estimation.
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Chapter 4Implementation Details andSimulation ResultsIn Chapter 2, we have introduced the basic concepts of recursive estimation andKalman �ltering, and presented details of the hybrid feature/optical-ow-based re-cursive 3-D motion estimation algorithm. As we can see from Section 2.2, the ap-plication of Kalman �ltering requires the information of the process noise covariancematrix, the measurement error covariance matrix, a reasonably accurate estimate ofthe initial state vector and an initial estimate for the error covariance matrix. In thischapter, we will present detailed simulation results of the algorithm.4.1 The Synthetic TestbedBlostein and Chann had developed a exible synthetic testbed for evaluating the hy-brid feature/ow-based 3-D trajectory estimation algorithm. Our simulation is basedon this hybrid 3-D recursive algorithm. We can use the synthetic testbed developed in[3] in our experiments. The numerical computation package MATLAB[13] is used inthe implementation of the entire system. A global con�guration �le is applied to makethe modi�cation of simulation parameters convenient. This synthetic system, usedin our experiment, contains a stationary \pin-hole" camera and a cube of 3 � 3 � 3.All distances are measured in terms of focal lengths(FL). There are four arbitrarilynon-coplanar vertices chosen as the feature points (M = 4), which are assumed to be33



\gray value extremum points". The trajectory of the object is generated using thekinematic equations associated with the motion model. The propagation of the statevector in time is obtained by means of numerical integration (second- and third-orderRunge-Kutta formulae in MATLAB).4.2 Simulating Error MeasurementsIn Broida et al's algorithm[4], the measurement includes only the positions of theobserved feature points. The sources of error are due to spatial quantization andfeature extraction. Error measurements are simulated by perturbing the error freevalues with random quantities.pi(") = pi + rp rp � N(0; �2pI) (4:1)where pi is de�ned as error-free position measurement of the ith feature point, and rpis modelled as white Gaussian noise, where �p is determined by the spatial (image)resolution. In [4], the measurement error covariance matrix Rk is a constant diagonalmatrix Rk = 266666666664 �2p 0. . . �2p �2p . . .0 �2p 377777777775 (4:2)In our project, the error measurements are based on equation (3.40). There aretwo sources of noise that control the values of the error vector and error covariancematrix: one is the spatial resolution, the other is the gray-value resolution, whichis the main factor to inuence the accuracy of the measurements. The followingequation used is the error measurement of ith feature point.Yi(") = Yi + J � "f (4:3)where Yi = [ pi ui ]T , the error-free measurement and J � "f is the measurementerror. Next, we will present how to simulate the error measurements.34



First, we need to measure the gray values at the coordinate of the feature pointin an observed small window, sized 3� 3 in our experiment (see Figure 3.1). At timet = tk � dt, we obtain the estimate f1. Then, we repeat the process at time t = tk toobtain the estimate f2. The relation between time interval dt and �t is given bydt = c ��t (4:4)(see Figure 4.1), where �t = tk+1 � tk is the measurement time interval for vectorY : �t = 1 is used in our simulation, and the scale factor c can be chosen from0:01 to 0:05. We assume that the observed gray value surface is a surface that hasa extremum point or \corner point". Considering the spatial (image) resolution, thestandard deviation of the inter-pixel distance, in terms of the focal length is �p(givenin Table 4.1). The measured position of the extremum point of the gray value surfaceprojecting onto the x-y plane, which is also the position of the feature point, is givenas pi(") = " xioyio # = " 00 #+ np np � N(0; �2pI) (4:5)where [ 0 0 ]T is the origin of that observed window. For the purposes of examiningthe performance of this hybrid algorithm with the error measurement (see equation(3.41)) under a wide range of conditions, the measured gray values are simulated tobe random from 1 to 255 in our implementation. The following equation is used insimulating the gray value surface.f(x; yjx0; y0; �p) = f0 + fx(x� x0) + fy(y � y0) + 12fxx(x� x0)2+fxy(x� x0)(y � y0) + 12fyy(y � y0)2 (4.6)where (x0; y0) is the position of the \gray value extremum point" or \gray value cor-ner", which is very close to the origin (0; 0) of the small window (see Equation (4.5)).We use equation (4.6) to assign gray values to the nine raster points of the observedsmall window.Since the motion of the object and brightness of the background may be chang-ing all the time, the surface parameter f of equation (4.6) should be changing overtime. However, this time-variation is not convenient for simulation. For simplicity,35



a Gaussian surface is used in our simulation. Obviously, the extremum point is thepeak point of the Gaussian surface. The following equation is used in simulationg(x; yjx0; y0; �p) = 12��2 exp�� 12�2 h(x� x0)2 + (y � y0)2i� (4:7)By simulating randomized measurements of gray values, the time-varying surfaceparameter can be simulated. Then, from equations (3.9), (3.13), and least squaresestimation, we will obtain an estimate of f̂ , so that the Jacobian matrix with respectto the parameters of the gray value surface can be computed. The gray value reso-lution, �g, is given in Table 4.2. The next problem is to simulate the random vector"f , representing the estimation error of f . Since the error covariance of f , cov("f), isknown and time-invariant, we use Cholesky decomposition to factorize it.cov("f) = S � ST = SIST (4:8)where S is a lower triangular matrix, the square root of cov("f), and I is the identitymatrix. Finally, we obtain the measurement error:J � "f = J jf=f̂ � S � n0 n0 � N(0; I) (4:9)To examine how di�erent spatial and gray-value resolutions a�ect the estimationof state variables, a set of di�erent spatial and gray-value resolutions are used in ourexperiments (See Table 4.1, and Table 4.2). The image plane, as in [1][2][3], is chosento be a unit square (measured in terms of focal lengths). Its origin is located atthe centre. The spatial resolution is easily obtained for a unit square image plane,for example, the spatial resolution of 256 � 256 pixels is �p = 1=256 � 0:004. Thegray value resolution is obtained by converting the uniformly distributed error to thenormal distribution, for example, 8-bit gray value resolution achieves x + �g; �g =q[0:5� (�0:5)]2=12 � 0:289, where x is the measured gray value.4.3 Measurement Error Covariance MatrixThe value of the measurement error covariance matrix a�ects the estimation accuracyof the Kalman �lter. The following will show that how it inuences the behaviour36



spatial resolution (pixels) �p (in focal lengths)256 � 256 0.004512 � 512 0.0021024 � 1024 0.001Table 4.1: Spatial resolutions for experimentsgray-value resolution (bit) �g8 0.288710 0.072212 0.018Table 4.2: gray-value resolutions for experimentsof Kalman �ltering. First, we introduce two matrix inversion lemmas, which will beused here.Lemma 1:(A11 +A12A�122A21)�1 = A�111 �A�111A12(A22 +A21A�111A12)�1A21A�111 (4:10)Lemma 2: A�111A12(A22+A21A�111A12)�1 = (A11 +A12A�112A21)�1A12A�122 (4:11)where A11, A22, A12, A21 are n� n, m�m, n�m, m� n matrices respectively. LetA�111 = P (k + 1jk + 1), A12 = HT (k), A22 = R(k), then, the measurement update ofthe estimation error covariance equation (2.12), and the Kalman gain equation (2.12)can be rewritten as:P (k + 1jk + 1) = [P (k + 1jk)�1 +HT (k + 1)R�1(k + 1)H(k + 1)]�1 (4.12)K(k + 1) = P (k + 1jk + 1)HT (k + 1)R�1(k + 1) (4.13)From equation (4.13), we can see that the Kalman gain is inversely proportional tothe measurement error covariance R(k + 1), and directly proportional to the estima-tion error covariance P (k + 1jk + 1). If we have error-free measurements (which isimpossible), i.e., R(k +1) = 0, and after substituting into equation (4.13), we obtainK(k+1) = P (k+1jk)HT (k+1)[H(k+1)P (k+1jk)HT (k+1)]�1 = H�1(k+1) (4:14)37



and equation (2.11) becomesx̂(k+1jk+1) = x(k+1jk)+H�1(k+1)[y(k+1)�H(k+1)x̂(k+1jk)] = x(k+1jk+1)(4:15)which is the perfect estimate.A small measurement error will increase the Kalman gain and the estimated state,x̂(k + 1jk + 1), will weight the measurement more heavily. On the other hand, alarge measurement error will decrease the Kalman gain and the estimate state willweight the measurement less, and the state estimate will depend more on the systemmodel. From the discussion above, we can see that accurate estimation measurementerror is very important for Kalman �ltering. The measurement error covariance isimplemented based on the equation given asRk = J � cov("f)JT (4:16)Unlike that of Broida et al's implementation of Rk which is a constant diagonalmatrix for simplicity, our measurement is time-varying because of the time-varyingJ jf=f̂ , even though cov("f ) is time-invariant.4.4 Process Noise Covariance MatrixThe process noise covariance matrix is also important to the overall performance ofthe Kalman �lter. From equations (2.10), (2.12), (2.13), we can see that a large Q(k)will increase P (k + 1jk + 1) and K(k + 1), then, the state estimation will weightthe measurements more heavily. The existence of large Q(k) implies that the plant(state) equation is not accurate in describing the system and the predicted state isnot reliable (see equation(2.9)), and the state estimate will be forced to depend moreon the measurements (see equation (2.11)). From the discussion about the e�ects ofthe measurement error and process error on the Kalman �lter, we can see that theKalman �lter can trade o� its Kalman gain automatically based on the value of themeasurement error and process error. 38



In our experiments as in [3], the process noise covariance matrix Q(k) is imple-mented as a constant diagonal matrix with the diagonal element value of 5� 10�6.4.5 Initial State EstimationIn section 2.2, we have listed the steps of an algorithm for performing Kalman �l-tering. The �rst, second, and third steps are to initialize the step index k = 0, thestate estimate vector, x̂(0j0), and the covariance matrix, P (0j0) = P (0), of the stateestimate error. The most common way of simulating initial state estimate is to per-turb the true initial states with random quantities. In some practice, however, it isnot feasible because the amount of error added to each individual element in the trueinitial vector must not be too large for obtaining reliable initial values.As in [3], we implement the initial state estimate asx̂o(i) = [1� (1 + r)e]xo(i) i = 1; : : : ; 8; 13; : : : ; 12 + 3M (4:17)where r is a random number which is uniformly distributed in the interval (0; 1), ande is the magnitude of error. It should be noted that there is no noise added to thequaternion state of the initial vector because of the assumption that the OCCS alwaysinitially aligns to the CCCS. The value of e is set as e = 0:2 in our experiments, whichimplies the error in the initial state estimate in the range of 20%{40%.The next problem is to determine the initial error covariance matrix P (0j0) =P (0). This is not di�cult because the value of error added initial state vector isknown. The Initial values of P (0) is implemented asP0 = d2I (4:18)where I is (12 + 3M) � (12 + 3M) matrix and d is the largest component in vectorjx̂0 � x0j. We want to examine the performance of Kalman �lter when the error ininitial state values is controlled inside the range of 20%{40%.39



4.6 Simulation Results4.6.1 Experiment DesignThe experiments that we have designed are similar to [3]. Monte Carlo trials areused in our simulations. The number of Monte Carlo trials is set as 30. Each trialsconsists of 100 image frames, and the initial frame is not included. There are threedi�erent experiments to be performed. Experiment 1 compares our hybrid algorithmusing measurements of feature point positions and optical ow from image sequenceswith that of Broida's feature-based algorithm[4]. Experiment 2 evaluates the �lterperformance using di�erent spatial resolutions and gray value resolutions when theobject moves at a constant translational velocity and a constant rotational velocityin which the motion model is accurately described. Experiment 3 examines the �lterbehaviour when there is a slight deviation from the motion model due to translationalacceleration.The bias and variance of the estimated states is the criteria used to measurethe performance of the Kalman �lter. Suppose we have obtained the value of oneparticular state variable x̂(t) at time t. The bias is calculated asb = 1R RXi=1 x̂i(t)� x(t) (4:19)and the variance is calculated asv = 1R RXi=1[x̂i(t)� x(t)]2 (4:20)where R is the total number of Monte Carlo trials, x(t) is the true value of thisparticular state variable at time t, and the subscript i denotes the trial number.Since the central issue of this project is 3-D trajectory estimation, the states ofposition (s1 and s2), translational velocity (s3-s5), and rotational velocity (s10-s12) areextremely important. The bias and variance results presented later in this Chapterwill include these states only. Note that all the results corresponding to the positionand translational velocity states have been scaled by ZR(t), the true depth of theobject rotation centre. 40



Both the extendedKalman �lter(EKF) and iterated extended Kalman �lter(IEKF)have been used in our experiment. Only the results of the IEKF are shown becausethe performance of IEKF is slightly better than that of EKF based on our simulationresults.4.6.2 Experiment 1: Algorithm ComparisonIn this experiment, we compared our hybrid feature/ow-based algorithm using mea-surement of feature point positions and optical ow from image sequence with thatof Broida's purely feature-based algorithm. The main di�erence between these twoalgorithms is that Broida's algorithm uses only feature point position measurementson the image plane while our hybrid algorithm makes use of both image plane positionand optical ow measurements. The motion parameters used in these two algorithmsare the same, given in Table 4.3. The spatial resolution used is 512 � 512 pixels inmeasuring the feature point on the image plane for both algorithms. The gray valueresolution used is 10 bits for our hybrid algorithm only. Because Broida's algorithmdoes not use gray value resolution in measuring the feature point positions, the objectis moving at a constant translational velocity and a constant rotational velocity.Initial position SR(t0)(FL) [ �6 10 28 ]TTranslational velocity T (FL/frame) [ 0:05 �0:1 �0:2 ]TRotational velocity !(radians/frame) [ 0:03 0:04 0:05 ]TTable 4.3: Motion parameters for Experiment 1 and 2The simulation results are shown in Figure 4.1 (bias) and 4.2 (variance). The solidline represents the result obtained by using our hybrid algorithm and the dashed linerepresents the result obtained by using Broida's algorithm. From the simulation re-sults, we can see the obvious improvements achieved by the hybrid algorithm. Theestimates of using hybrid algorithm converge more quickly than that of using Broida's,especially the translational velocity states. We have also experimented with di�er-ent gray value resolutions. Even using a gray value resolution of 8 bits the hybrid41



algorithm still performs better than Broida's algorithm.4.6.3 Experiment 2: Constant Translation and RotationIn this experiment, the motion of the object is assumed to be constant translationand rotation. Table 4.3 gives the motion parameters used in this experiment.We have carried out this experiment as two parts: Experiment 2.1 and Experi-ment 2.2. In the former, we have selected an arbitrary value of spatial resolution (seeTable 4.1) and varied the gray-value resolution (see Table 4.2) to see the e�ects ofchanging gray-value resolution on the state estimates. In the latter, we have arbi-trarily chosen a gray-value resolution and varied the spatial resolution. The purposeof this experiment is to examine the e�ects of using di�erent spatial and gray-valueresolutions on the state estimates. The choice of spatial and gray-value resolutiona�ects the measurement error which will be propagated into the state estimate (seeequation (4.9), and discussion in section 4.3).The simulation results of Experiment 2.1 are shown in Figure 4.3 (bias) and 4.4(variance), where the spatial resolution 512 � 512 pixels is �xed and three di�erentvalues of gray-value resolution are used: the solid line, dashed line, and dash-dotline represent 8-bit, 10-bit, and 12-bit resolution, respectively. The performance ofusing these three di�erent gray-value resolutions with same spatial resolution are allstable and convergent. Not surprisingly, the behaviour of 8-bit resolution is worsethan that of 10-bit and 12-bit resolution. The behaviour of 10-bit is better and theperformance of 12-bit is the best. We have experimented with all pairs of spatialresolutions and gray-value resolutions, and found that by �xing a spatial resolution,the performance of 12-bit is the best. This is due to the measurement error covariancematrix J �cov("f)JT , where the value of cov("f) is controlled mainly by the gray valueresolution (see Equation (3.15)).The simulation results of Experiment 2.2 are shown in Figure 4.3 (bias) and 4.4(variance), this time, the gray-value resolution of 10-bit is �xed with three di�erentspatial resolution. Similarly, the performance of 256� 256 is good, that of 512� 512pixels is better, and that of 1024 � 1024 pixels is the best. Since the results using42
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(b)Figure 4.1: Experiment 1: Results of Monte Carlo simulations (bias)43
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(d)Figure 4.1: Experiment 1: Results of Monte Carlo simulations (bias)44
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(f)Figure 4.1: Experiment 1: Results of Monte Carlo simulation (bias)45
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(h)Figure 4.1: Experiment 1: Results of Monte Carlo simulation (bias)46
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(b)Figure 4.2: Experiment 1: Results of Monte Carlo simulations (variance)47
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(d)Figure 4.2: Experiment 1: Results of Monte Carlo simulations (variance)48
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(f)Figure 4.2: Experiment 1: Results of Monte Carlo simulation (variance)49
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(h)Figure 4.2: Experiment 1: Results of Monte Carlo simulation (variance)50



three di�erent spatial resolutions are too close to be visually distinguishable, the meansquared errors are listed in Table 4.4.Spatial Resolution Position Position Trans. Vel. Trans. Vel.(pixels) (x) (y) (x) (y)256 � 256 1:25� 10�6 1:26 � 10�6 4:03 � 10�8 4:20 � 10�8512 � 512 1:24� 10�6 1:24 � 10�6 4:03 � 10�8 4:18 � 10�81024 � 1024 1:21� 10�6 1:21 � 10�6 4:01 � 10�8 4:07 � 10�8Spatial Resolution Trans. Vel. Rot. Vel. Rot. Vel. Rot. Vel.(pixels) (z) (x) (y) (z)256 � 256 5:53� 10�8 1:06 � 10�7 1:02 � 10�7 7:95 � 10�8512 � 512 5:53� 10�8 1:05 � 10�7 1:01 � 10�7 7:90 � 10�81024 � 1024 5:51� 10�8 1:05 � 10�7 1:01 � 10�7 7:89 � 10�8Table 4.4: Mean squared error with gray value resolution of 10 bit4.6.4 Experiment 3: Translational AccelerationExperiment 2 simulates the motion model of the object at constant translational androtational velocity. In this experiment, we simulate a motion with translational ac-celeration with this constant model, which means that the motion model does notaccurately describe the motion of the object. The purpose is to observe the perfor-mance of the hybrid feature/ow-based algorithm in this kind of non-ideal situation.The position of the rotation centre, at any time, is given by (4.20) where (a) denotesthe translational acceleration. Table 4.5 shows the motion parameters used in thisexperiment.Initial position SR(t0)(FL) [ �5 5 20 ]TTranslational velocity T (FL/frame) [ 0:05 �0:1 �0:2 ]TRotational velocity !(radians/frames) [ 0:03 0:04 0:05 ]TTranslational acceleration a(FL/frame) [ 0:0005 �0:001 0:002 ]TTable 4.5: Motion parameters for Experiment 3All pairs spatial resolution and gray-level resolution were tried. Although the51
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(b)Figure 4.3: Experiment 2: Results of Monte Carlo simulations (bias)52
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(b)Figure 4.4: Experiment 2: Results of Monte Carlo simulations (variance)56
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(d)Figure 4.4: Experiment 2: Results of Monte Carlo simulations (variance)57
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(f)Figure 4.4: Experiment 2: Results of Monte Carlo simulation (variance)58
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(b)Figure 4.5: Experiment 3: Results of Monte Carlo simulations (bias)60
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(d)Figure 4.5: Experiment 3: Results of Monte Carlo simulations (bias)61
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(f)Figure 4.5: Experiment 3: Results of Monte Carlo simulation (bias)62
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(h)Figure 4.5: Experiment 3: Results of Monte Carlo simulation (bias)63
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(b)Figure 4.6: Experiment 3: Results of Monte Carlo simulations (variance)64
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(d)Figure 4.6: Experiment 3: Results of Monte Carlo simulations (variance)65
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(f)Figure 4.6: Experiment 3: Results of Monte Carlo simulation (variance)66
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(h)Figure 4.6: Experiment 3: Results of Monte Carlo simulation (variance)67



description of the motion model (process equation) is not accurate, the results are allstill stable and convergent. This is very important in practice. One could, of cause,build a system model as accurate as possible. However, this would cause an increasein the size of state vector, state propagation matrix, and the computational load. Itwould increase the di�culty for the real-time application because of its decreasingcomputational e�ciency. Our simulation results have shown that we can obtaingood state estimates based on our relatively accurate measurements with a non-idealprocess model. In some practical problems, computational e�ciency might be moreimportant than accuracy improvement of system model The simulation results areshown in Figure 4.5 and 4.6, in which the spatial resolution 512 � 512 pixels, andgray-value resolution of 10-bit have been used.4.7 SummaryIn this Chapter, we have examined the performance of this hybrid algorithm withour new measurement equation with measurement error. We have experimented withdi�erent pairs of spatial and gray-value resolution. Experiment results showed stableand convergent performance, which are much better than those described in [4].
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Chapter 5Summary and ConclusionWe began this project report with the background to 3-D motion estimation. Twomain categories of approaches, feature-based and optical-ow-based, were discussedwith their fundamental di�erences: feature-based techniques recover 3-D motion in-formation by extracting a number of 2-D features and then establishing inter-framecorrespondence, while optical-ow-based methods compute velocity �elds using agray value spatiotempory model. The most popular recursive estimation algorithm,Kalman �ltering, is briey introduced with time update equations, measurement up-date equations, and �ltering procedures. The details of the hybrid feature/ ow-basedrecursive 3-D motion estimation algorithm were completely presented.The major contribution is the development of a new approach that can computeboth optical ow and position on the image plane given an image sequence. Thederivation of this measurement equation is based on Nagel's approach that computesoptical ow from second-order intensity derivatives. In his approach, �rst, a second-order Taylor expansion is used in modelling the measured gray-value surface withinsmall window of interested. The parameters estimated on this surface is obtainedby applying least squares estimation. Optical ow can then be computed in termsof these estimated parameters by minimizing the mean squared di�erence betweentwo frames of a very small time interval and simplifying it under the assumption of"gray value corner" with special constraints. We also found that in a special caseof the Gaussian surface we could obtain the optical ow expression in terms of the69



parameters. We have derived the equations of computing the positions in these twocases, which are also in terms of the parameters. By using Taylor expansion aboutthe parameter estimate, the new measurement vector is structured with both opticalow and position.Another contribution is that we have combined the hybrid feature/ow-based re-cursive 3-D trajectory estimation algorithm with this new measurement equation.Our simulation results showed the performance of this hybrid algorithm combinedwith our new measurement equation achieved signi�cant improvement in estimatingall important trajectory states under a wide range of gray-value and spatial reso-lutions. The hybrid algorithm provided reliable state estimates. Even when thereexisted slight deviations which were not described in the system motion model, theperformance was still stable and convergent with fairly good state estimates based onthe measurements.
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