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Abstract

This thesis addresses the problem of how to remove the smear in a high-resolution

airborne spotlight SAR image, which is caused by the target's constant translational

motion. Applications include automatic ship identi�cation from real-time airborne

spotlight SAR images. A mathematical model for the two-dimensional impulse re-

sponse of the image smearing process, which is a function of the target velocity is

developed. An algorithm employing a Kalman �lter is used to estimate the target

velocity. With the estimated target velocity, the smear is removed by inverse �ltering

the phase of the smeared image. The main part of this thesis proposes a new algo-

rithm of target velocity estimation, which uses target centroid measurements taken

from subaperture images. Radar imagery simulations are used to study the rela-

tionship between target centroid measurement noise and target velocity. No a priori

knowledge of target velocity is required for the velocity estimation in this algorithm.

To evaluate the performance of the estimator, mismatched measurement noise is used

in the Kalman �lter, as we do not know the true target velocity. The target velocity

variance is calculated analytically for comparison purposes. The accuracy of velocity

estimation is found to be inversely proportional to the magnitude of the true velocity.

It is shown that with appropriate subaperture integration time intervals, it is possible

to restore the smeared images despite the mismatched measurement noise.
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Chapter 1

Introduction

1.1 Introduction

The important advantages of microwave radar are that microwaves can penetrate

cloud cover, and imaging can be performed at night. However, an impractically large

antenna is necessary for a conventional microwave radar to achieve high resolution.

Using synthetic aperture radar (SAR) technique, high-resolution images can be cre-

ated from data collected by a small antenna [2] [10]. SAR technology is used in not

only military but also civilian applications. There are three modes of SAR: stripmap-

ping, spotlight mode and inverse SAR (ISAR). The radar platform can be either

airborne or spaceborne. Spotlight mode SAR is used for imaging a relatively small

patch and can achieve a very high resolution.

The project for this thesis is ship identi�cation using images from airborne spot-

light SAR. The imaging targets are ships moving in the sea. To obtain the correct

ship classi�cation results, high-resolution SAR images are needed. In spotlight SAR,

a long integration time is necessary for a high-resolution image. However, the ship

motion during the long integration time will smear the high-resolution image, which

is undesired. How can we get the unsmeared high resolution images for moving ships?

This is the the problem we are going to solve in this thesis.

In this thesis, a mathematical model for smear e�ect in airborne spotlight SAR

images is examined �rst. Then a motion compensation scheme is proposed such

that smeared images can be restored. The investigation is focussed on constant

1



translational ship motion. The performance of the proposed scheme is discussed and

evaluated.

1.2 Summary of Contributions

This thesis makes the following contributions:

1. A mathematical model of the smear e�ect due to a target's constant transla-

tional motion is derived for airborne spotlight SAR. The image degradation is

investigated from a mathematical model �rst, and then con�rmed by simulated

images.

2. A novel method is developed to achieve motion compensation such that smeared

high-resolution spotlight SAR images of moving targets can be restored. The

motion compensation is achieved by target velocity estimation. No a priori

knowledge of ship velocity is required for the velocity estimation in this method.

3. The analytical target centroid estimation variances for both unsmeared and

smeared images are derived. The analysis is veri�ed with results from Monte-

Carlo simulations.

1.3 Thesis Outline

The thesis is organized as follows. Background material on SAR, especially on spot-

light SAR, is presented in Chapter 2. The proposed scheme for obtaining unsmeared,

high-resolution spotlight SAR images is described in Chapters 4 and 5. Chapter 4

discusses ship centroid estimation. Chapter 5 discusses ship velocity estimation by

Kalman �ltering from ship centroid estimation. Image restoration of the smeared

spotlight SAR images are examined in Chapter 5 as well. Finally, Chapter 6 sum-

marizes the results and conclusions of the thesis and makes suggestions for future

work.

2



Chapter 2

SAR Image Formation

2.1 Introduction

In this chapter, the synthetic aperture radar (SAR) image formation background

material is presented. First, real-aperture radar is examined. Next, three types of

SAR { stripmapping mode, spotlight mode and inverse SAR { are examined from a

signal-processing point of view, as opposed to the traditional Doppler point of view.

Particular emphasis is put on spotlight mode SAR, since it is the focus of this thesis.

Speckle phenomenon and speckle reduction in SAR images are presented as well.

2.2 Real-Aperture Radar

A simpli�ed geometry of a side-looking real-aperture radar is shown in Figure 2.1.

The radar is carried on a platform which is moving at speed V at a constant altitude.

The radar platform can be either airborne or spaceborne. We assume a broadside

geometry in which the radar beam is directed perpendicular to the 
ight path of the

platform. The radar transmits the pulses and the return echoes are sampled. The

coordinate along the line of sight of the radar is termed slant range. The coordinate

perpendicular to range is called cross-range. Figure 2.1 shows the relationship between

slant range and ground range. Slant range indicates the distance between the radar

and the target. Ground range is the slant range projected onto the ground plane. In

this thesis, unless indicated otherwise, the term range means slant range.

3



Footprint

Ground Range

Slant Range

Radar Flight Path

Radar

Cross Range

Figure 2.1: Geometry of a side-looking real-aperture radar

2.2.1 Range Resolution

A radar determines the target's range by measuring the time that a transmitted signal

travels the roundtrip distance between the radar and the target. The range resolution

of the radar is de�ned as the minimum range separation of two points that can be

distinguished as separate by the system. To resolve two points in range from the

radar echoes, the arrival time of the leading edge of the pulse echo from the more

distant point should be later than the arrival time of the trailing edge of the echo

from the nearer point. If the time duration of the radar pulse is � and the speed of

light is C, the minimum separation of the two resolvable points is C�=2.

To achieve a reasonable range resolution, say 3m, the duration of the pulse should

be 10

�8

sec, which would be too short to deliver adequate energy per pulse to produce

a su�cient echo signal-to-noise ratio (SNR) for reliable detection. A technique known

as pulse compression is commonly employed to achieve high range resolution with long

duration pulses. Instead of a short duration pulse, a large-bandwidth dispersed-energy

pulse is transmitted, and the received signal is pulse compressed so as to compress the

4



energy into a much narrower pulse. The duration of the compressed pulse is related

to the bandwidth of the transmitted signal. The range resolution is then determined

by the compressed pulse, as if it had been the transmitted pulse. Matched �ltering

(cross correlation) and deramp-FFT are two popular approaches to achieve pulse

compression [20] [25].

The linear FM chirp signal is the most commonly used waveform in imaging radar

systems, since it can achieve both long duration and broad bandwidth. The long

duration is required to deliver adequate energy per pulse, and the broad bandwidth

is required to achieve high range resolution. A linear FM chirp with duration �

c

is

described by Refs(t)g with

s(t) = exp[j(!

0

t+ �t

2

)];��

c

=2 � t � �

c

=2; (2:1)

where � is the chirp rate, and !

0

is the RF center frequency. Although the signal

has duration �

c

, after pulse compression, it can behave like a pulse with duration

equivalent to 1=B, where

B = ��

c

=� (2:2)

is the bandwidth of the signal (in Hertz). As a result, the range resolution of the

radar is

�R = C=2B: (2:3)

It is obvious that high range resolution can be obtained by increasing the bandwidth

of the transmitted signal.

2.2.2 Cross-range Resolution

To determine the target's position in cross-range, the real-aperture radar requires

the footprint be con�ned to a very narrow strip of cross-range space. As the radar

platform moves, the information at di�erent cross-range positions can be collected.

Like range resolution, cross-range resolution is the minimum cross-range separa-

tion of two resolvable targets. For real-aperture radar, two targets with the same

slant range R, can be resolved only if they are not both in the radar footprint at

the same time. That is to say, the cross-range resolution is the width of the radar's

5



footprint. If the diameter of the radar antenna is D, the width of the radar's foot-

print is R�=D, where � is the wavelength of the illuminating source. Therefore the

achievable cross-range resolution is R�=D.

To obtain a reasonable cross-range resolution, say 3m, with R = 100km and

microwave wavelength � = 3cm, it turns out that D = 1000m, which means an

impractically large antenna must be used. However, by using SAR signal processing

techniques, small antennas can be used to obtain high cross-range resolution. It is

the improved cross-range resolution that distinguishes the SAR from the real-aperture

radar. SAR resolves targets in the range dimension in the same way as real-aperture

radar, and both of them achieve the range resolution given in Equation (2.3).

2.3 Synthetic Aperture Radar

The key observation that led to the development of SAR is Doppler frequency shift

[2] [8]. Two point targets at the same range but di�erent cross-range, have di�erent

velocities relative to the radar. Therefore, the returned signals from the two targets

will have di�erent Doppler frequency shifts. Although SAR research began with a

true Doppler frequency shift analysis (a true Doppler e�ect does exist due to the

relative motion of the radar and the target), the Doppler e�ect is not a requirement

for SAR imaging. As we will show later, the SAR imaging mechanism can be totally

explained from a signal processing viewpoint [6] [8] [10] [17] [23] [25] instead of from

a Doppler viewpoint.

There are three modes of SAR: stripmapping SAR, spotlight mode SAR and

inverse SAR (ISAR). For stripmapping and spotlight mode SAR, the radar platform

may be either airborne or spaceborne. The distance between the sensor and the target

in spaceborne SAR is one or two orders of magnitude larger than that in airborne

SAR. As a result, the signal processing algorithms for spaceborne SAR are generally

more complicated than for airborne SAR.
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2.4 Stripmapping SAR

The oldest and most widely known form of SAR is stripmapping SAR [8] [10] [25]

in which the antenna remains �xed with respect to the radar platform so that the

antenna beam sweeps out a strip on the ground. The path over which the aircraft 
ies

in order to transmit and receive the collection of pulses becomes the synthetic aperture.

The time in which the aircraft 
ies the synthetic aperture is called integration time.

As the platform moves, a sequence of closely spaced pulses is transmitted so that each

point in the scene is illuminated by many pulses. The returned signals are processed

using a 2-D correlation algorithm (matched �ltering) to produce a high resolution

SAR image.

Figure 2.2 shows an intuitive way to understand stripmapping SAR. It is from

this viewpoint that a large aperture antenna can be substituted with antenna array.

Although the very large aperture antenna necessary for real-aperture radar never

physically exists, we can use a series of identical small aperture antennas which are

evenly distributed in space to form the large aperture antenna. The signal received

by the large antenna is equal to the summation of the signals received by the small

antennas. One way to achieve the e�ect of the antenna array is to let a small antenna

be sequentially positioned along the line which de�nes the antenna array. Data col-

lected by the small antenna must be processed as if it were from one element of the

antenna array.

The 2-D correlation operation required for a digital stripmapping SAR processor

can be expressed as

O(n;m) =

X

i

X

j

s(i; j)S

�

(i� n; j �m;n); (2:4)

where s is the 2-D range-compressed received signal, S is the reference function which

is the range-compressed system response to an isolated point target, and S

�

is the

complex conjugate of S. The pixel indices i and j are in the region of support of

s(i; j). The range-compression (Section 2.2.1) in stripmapping SAR is achieved by

matched �ltering. O(n;m) represents the complex-valued output image sampled at

range position n and cross-range position m. The third variable in the reference

function denotes that S is range-varying.
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Figure 2.2: Antenna array synthesize a large aperture antenna

The achievable cross-range resolution in stripmapping SAR is D=2, where D is

the diameter of the antenna aperture. It is achieved when the synthetic aperture

is equal to the width of the footprint in cross-range, because this is the maximum

distance for which a given point on the ground is in the footprint from all points along

the synthetic aperture. The width of the footprint in cross-range is �R=D (Section

2.2.2), thus a �ner cross-range resolution requires a larger synthetic aperture. An

important condition that accompanies the resolution limit D=2 is that pulses must

be transmitted with spacing along the 
ight path also equal to D=2 [17]. This is

determined from the sampling theorem to avoid spectral aliasing. Thus for a given

platform velocity, the �ner cross-range resolution requires a higher pulse repetition

frequency.

In stripmapping SAR, the size of the footprint is proportional to the range. To

achieve the same cross-range resolution, spaceborne SAR needs a much larger syn-

thetic aperture than airborne SAR. Therefore two non-ideal e�ects, range curvature

and range walk cannot be ignored in spaceborne SAR. Range curvature can be de�ned

as the di�erence between the range of a stationary point when it is at the center of

the footprint, and its range when it is at either edge. The physical reason for range
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Figure 2.3: Collection geometry of spotlight mode SAR

walk is that a spaceborne SAR takes a much longer time to travel the much larger

synthetic aperture. As a result, the movement of the target caused by planetary rota-

tion becomes noticeable. Range walk can be de�ned as the di�erence in the range to

a point when it leaves the footprint relative to when it enters. Range walk and range

curvature together constitute range migration. If the total range migration exceeds

the range resolution, which is often the case for spaceborne SAR, it must be compen-

sated for in the processing algorithm to avoid image degradation. Range migration

correction is only necessary for very high resolution airborne SAR. Therefore, the

need to correct for range migration is the primary di�erence between airborne and

spaceborne SAR.

2.5 Spotlight Mode SAR

Stripmapping mode SAR may not be well-suited to all collection scenarios. For the

situation where it is desired to image a relatively small patch of the ground with

high resolution, spotlight mode SAR [6] [17] [23] is usually a better choice. Figure

2.3 shows the collection geometry for spotlight mode SAR. The antenna is steered to

continuously illuminate a single patch of terrain. Thus, the target area is illuminated

from di�erent angles. Spotlight mode SAR is able to provide higher resolution than
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stripmapping SAR because the synthetic aperture in spotlight mode can be larger

than that in stripmapping mode (the synthetic aperture required in stripmapping

mode is the width of the radar footprint in cross-range direction).

Munson and his colleagues [23] �rst analysed the spotlight mode SAR using the

projection-slice theorem from computer-aided tomography (CAT), and found that

spotlight mode SAR is a narrow-band version of CAT. It was shown that the imaging

principle employed in spotlight mode SAR is tomographic, rather than Doppler-based.

However, in [23], a 2-D terrain re
ectivity function was assumed rather than a more

general 3-D re
ectivity function.

In the following section, a 3-D formulation for spotlight mode SAR [17] is �rst

examined in detail using 3-D extensions of the projection slice theorem. Demodulation

errors and autofocus are then discussed.

2.5.1 Extensions of Projection-Slice Theorem

Extensions of the projection-slice theorem from two to three dimensions produce two

alternate versions: the linear trace version and the planar slice version. These two

versions are used to explain the 3-D tomographic image formation for spotlight mode

SAR.

Consider a complex-valued function in 3-D denoted by g(x; y; z), with its 3-D

Fourier transform given by

G(X;Y;Z) =

Z Z Z

g(x; y; z)e

�j(xX+yY+zZ)

dxdydz (2:5)

Linear trace version:

As shown in the top part of Figure 2.4, the linear trace version involves a 1-D projec-

tion function formed by integrating g(x; y; z) over two spatial dimensions associated

with viewing angles � and  . The theorem states that the 1-D Fourier transform of

the projection function is equal to the 3-D Fourier transform G(X;Y;Z) evaluated

along a line. As shown in the bottom part of Figure 2.4, the angular orientation of

the line in the Fourier transform domain is the same as that of the projection function

in the spatial domain. The linear trace version relates linear projection functions to

traces of the 3-D Fourier transform.
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Planar slice version:

As shown in the top part of Figure 2.5, the planar slice version involves a 2-D pro-

jection function obtained from integrating g(x; y; z) along a single spatial dimension.

The bottom part of Figure 2.5 shows a planar slice of the 3-D Fourier transform

taken at the same angular orientation as the planar projection of g(x; y; z) above.

The theorem states that the planar slice in the Fourier transform is equivalent to the

2-D Fourier transform of the planar projection function.

2.5.2 Spotlight SAR Image Formation

Assume that the 3-D re
ectivity function of the scene is modelled by the complex

function g(x; y; z) with amplitude function jg(x; y; z)j and phase function

6

g(x; y; z).

The radar energy is assumed to be non-penetrating, so the function g(x; y; z) is gener-

ally constrained to be zero everywhere except on a surface, and also to be zero at every

point on this surface which is shadowed. Furthermore, it is assumed that g(x; y; z) is

constant over the range of frequencies and range of viewing angles � employed by the

radar.

The collection geometry in Figure 2.6 describes the scenario that the radar trans-

mits and receives signals at an azimuthal angle � and a grazing angle  . The waveform

transmitted by the radar is assumed to be a linear FM chirp pulse given by Refs(t)g,

where s(t) is described by (2.1).

The returned signal corresponding to radar position (�;  ) is

r

�; 

(t) = A Ref

Z

u

1

�u

1

p

�; 

(u)s(t�

2(R + u)

C

)dug; (2:6)

where A is a scale factor that accounts for propagation attenuation and other e�ects.

R is the distance from the radar to the center of the patch. u is the slant range,

and u

1

is the maximum slant range for any target illuminated by the beam. p

�; 

(u)

is the projection function involving 2-D integration of g(x; y; z) over a plane surface

associated with viewing angles (�;  ). R + u is the distance from the radar to the

projection integration plane. To be precise, the surfaces of integration are sections

of spheres, since points on the target equidistant from the radar lie on a section of

sphere. However, this spherical section can be approximated by a plane, if the patch
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radius L satis�es the following condition [17]:

L � �

x

0

q

2R=�; (2:7)

where �

x

0

is the cross-range resolution.

Substitution for s(t) from (2.1) into (2.6) gives

r

�; 

(t) = A Ref

Z

u

1

�u

1

p

�; 

(u)e

j!

0

(t��

0

�

2u

C

)+�(t��

0

�

2u

C

)

2

)

dug; (2:8)

where the modulation time �

0

=

2R

C

. However, (2.8) is not valid for all t due to the

time restriction of the transmitted signal. The return from the near-edge target exists

during �

0

��

p

=2��

c

=2 � t � �

0

��

p

=2+�

c

=2. The quantity �

p

= 2(

2u

1

C

) is the di�erence

in two-way propagation delay between a target at the near-edge and a target at the

far-edge of the illuminated patch. The return from the far-edge target exists during

�

0

+�

p

=2��

c

=2 � t � �

0

+�

p

=2+�

c

=2. Thus, the common time segment during which

the chirp returns from all targets which exist in the patch simultaneously is

�

0

� �

c

=2 + �

p

=2 � t � �

0

+ �

c

=2 � �

p

=2: (2:9)

14



In spotlight mode SAR, the size of the illuminated terrain is assumed small such that

�

c

� �

p

: (2:10)

Using (2.10), (2.9) is simpli�ed to

�

0

� �

c

=2 � t � �

0

+ �

c

=2: (2:11)

Thus, the expression of returned signal (2.8) is valid for the time period in (2.11).

Deramp processing is then employed to process the returned signal r

�; 

(t). For

a given pulse, �

0

can be determined from the onboard electronic navigation system.

The �rst step in deramp processing is to modulate the returned signal with delayed

in-phase and quadrature versions of the transmitted FM chirp,

c

I

(t) = cos(!

0

(t� �

0

) + �(t� �

0

)

2

) (2:12)

and

c

Q

(t) = � sin(!

0

(t� �

0

) + �(t� �

0

)

2

): (2:13)

The second step is to low-pass �lter the mixer outputs. As a result, the c

I

(t) and

c

Q

(t) output signals can be represented in complex signal notation as

�r

�; 

(t) =

A

2

Z

u

1

�u

1

p

�; 

(u)e

j[�

2u

C

2

�

2u

C

(!

0

+2�(t��

0

))]

du: (2:14)

The quadratic phase term in (2.14) can be ignored if the patch radius L satis�es the

following condition [17]:

L � �

x

0

!

0

=(2

p

��); (2:15)

where �

x

0

is cross-range resolution.

Ignoring the quadratic phase term, (2.14) is rewritten as

�r

�; 

(t) =

A

2

Z

u

1

�u

1

p

�; 

(u)e

�j

2u

C

(!

0

+2�(t��

0

))

du: (2:16)

Furthermore, letting the spatial frequency

U =

2

C

(!

0

+ 2�(t� �

0

)); (2:17)

Equation (2.16) can be written as

�r

�; 

(t) =

A

2

Z

u

1

�u

1

p

�; 

(u)e

�juU

du =

A

2

P

�; 

(U); (2:18)
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where P

�; 

(U) is the Fourier transform of p

�; 

(U). Incorporating (2.11) into (2.17),

we obtain a restricted interval in terms of U ,

2

C

(!

0

� ��

c

) � U �

2

C

(!

0

+ ��

c

): (2:19)

From the linear trace version of the projection-slice theorem, �r

�; 

(t) represents a line

segment of G(X;Y;Z) at angular orientation (�;  ), where the frequency interval is

determined by (2.19).

As the radar platform moves through the synthetic aperture, a set of processed

radar pulses can be collected over a range of angular orientations. Each processed

pulse produces values of G(X;Y;Z) along a certain line segment, the direction of

which is determined by the � and  values associated with that pulse transmission

point. The collection of pulses will sweep out a ribbon surface in the 3-D Fourier

transform space. The precise shape of the ribbon is determined by the platform 
ight

trajectory. The spatial-frequency domain in which the ribbon surface exists is often

referred to as the phase-history domain.

If the 
ight path is a straight line through the synthetic aperture, the ribbon

surface, as shown in Figure 2.7, lies in a plane. This plane is determined by the line
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of the 
ight path and the center of the patch, and it is called the slant plane. In Figure

2.7, all the processed return signals from di�erent angles provide a set of samples of

G(X;Y;Z) lying on a polar grid imposed on an annulus segment in the slant plane.

The entire annulus is o�set from the origin by an amount of 2!

0

=C = 4�=�. The

spatial extent of the annulus in the radial direction is 4��

c

=C, which is proportional

to the bandwidth of the transmitted chirp. The angular extent is 4���=�, which is

determined by the range of viewing angles in the synthetic aperture geometry.

The inverse Fourier transform of the data in the slant plane can produce a 2-D SAR

image. Consider coordinate axes (X

0

; Y

0

) in the slant plane. The center pulse of the

aperture de�nes the Y

0

dimension, while the X

0

axis is orthogonal and also lies in the

slant plane. The Y

0

dimension corresponds to slant range spatial frequencies, while

X

0

corresponds to cross-range spatial frequencies. The 2-D inverse Fourier transform

of the data in the slant plane produces an image with x

0

and y

0

axes of cross-range

and slant range. From the planar slice version of the projection-slice theorem, we

know that such a SAR image is an orthogonal projection of the 3-D scene into the

slant plane, since the Fourier data G(X;Y;Z) in the slant plane is equal to the 2-D

Fourier transform of the projection of g(x; y; z) onto the slant plane.

We de�ne the slant plane patch as the ground patch projected onto the slant plane.

The patch radii in (2.7) and (2.15) are in fact slant plane patch radii. Theoretically,

an interpolation from the polar collection raster to a Cartesian grid is needed as

preprocessing to allow use of the FFT. However, this interpolation can be skipped if

the slant plane patch size in the range and cross-range dimensions meet the following

conditions [17]:

L

range

� 4�

2

x

0

=� (2:20)

and

L

cross�range

� 4�

x

0

�

y

0

=�; (2:21)

where �

x

0

is the cross-range resolution, and �

y

0

is the range resolution. In general, low-

resolution images can be successfully formed by Fourier-transforming the polar data

directly, without �rst performing polar-to rectangular resampling. However, in high-

resolution imaging situations, the polar-to-rectangular resampling step is essential.

In spotlight mode SAR image formation, it may seem surprising that acceptable
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images can be obtained from a small amount of Fourier data [24]. This is possible be-

cause the scene re
ectivity in SAR is complex-valued with highly random-like phase,

and can be expressed as

f(x; y) = m(x; y)e

j�(x;y)

: (2:22)

The Fourier transform of e

j�

will have an extremely broad bandwidth due to the

randomness of �. The Fourier transform of f , which is the convolution of the Fourier

transforms of m and e

j�

, will contain magnitude information over a large part of the

frequency plane. The random phase acts to modulate the magnitude information

over a wide region in Fourier space so that the magnitude of the re
ectivity, which

is the SAR image, may be recovered from the small number of Fourier samples.

However, this reconstruction is a speckled version of the scene re
ectivity that does

not match the true re
ectivitymagnitude point-for-point. The phenomenon of speckle

and speckle reduction will be examined in detail in Section 2.7 and 2.8.

2.5.3 Resolution in Spotlight SAR

It is the extent of the Fourier data annulus in both dimensions that determines the

spatial resolutions that can be achieved in the reconstructed image following Fourier

inversion. The spatial extent in the range dimension is

�Y

0

=

2

C

2�B; (2:23)

where the bandwidth of the signal B (in Hertz) is given by (2.2). Thus the range

resolution is

�

y

0

=

2�

�Y

0

=

C

2B

: (2:24)

As a result, the larger B is, the �ner the range resolution becomes.

The nominal cross-range extent is determined by the radius

4�

�

and the angular

extent �� of the annulus. Since �� is typically very small in spotlight mode SAR

collections, the spatial extent in cross-range dimension can be approximated by

�X

0

=

4�

�

��: (2:25)

Thus the cross-range resolution is

�

x

0

=

2�

�X

0

=

�

2��

: (2:26)
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As a result, the larger �� is, the �ner the cross-range resolution becomes.

In the SAR literature, it is common to refer to an area of size �

x

0

by �

y

0

in the

reconstructed image as a resolution cell.

Though the range resolution in (2.24) is the same as that in (2.3), which is range

resolution achieved after pulse compression, it seems that there is no range compres-

sion in the image formation of spotlight mode SAR. However, the 2-D inverse Fourier

transform can be separated and computed as two 1-D inverse Fourier transforms: one

in the range direction, and the other in the cross-range direction. The deramp pro-

cessing followed by the 1-D inverse Fourier transform in range direction constitutes

deramp-FFT, which is one of the pulse compression approaches.

From sampling theory, the minimum spacing of samples along the synthetic aper-

ture to prevent aliasing in the reconstructed image is equal to D=2, one-half of the

diameter of the physical antenna. It turns out that the same rate is required in

stripmapping and spotlight mode SAR. The best cross-range resolution achievable in

stripmapping is D=2, while this resolution is increased in the spotlight mode SAR.

However, if a large array of samples spanning the desired range and cross-range

phase-history extent is downsampled to a similar-sized rectangular grid with fewer

samples in each dimension, the resulting image will have the desired resolution but

will cover a physically smaller region of scene.

2.5.4 Airborne and Spaceborne SAR

In spotlight mode SAR, the 
ight path of the platform can be assumed to be a

straight line through the synthetic aperture for airborne SAR, while the trajectory of

a spaceborne SAR platform cannot be described as a straight-line. Thus for airborne

SAR, the phase-history data is simply collected on a plane in the 3-D Fourier space,

while it is collected on a non-planar ribbon for spaceborne SAR. An out-of-plane

correction is needed for spaceborne SAR to produce a well focussed image. In this

thesis, only airborne SAR is considered.
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2.5.5 Demodulation Errors and Autofocus

In Section 2.5.2, one assumption dealing with robust image formation is that for each

radar pulse, the demodulation time �

0

= 2R=C in reference signals (2.12) and (2.13)

is known precisely. Errors in estimating R cause demodulation errors. The standard

approach for estimating R for each pulse is to employ electronic navigation systems

that use inertial measurement units (IMUs) placed on board the collection platform.

Even with modern IMU systems, however, the determination of platform position

to the required tolerances can prove to be a di�cult task. Platform position uncer-

tainty and other e�ects can cause demodulation errors. For example, propagating

radar energy through atmospheric turbulence can cause random delays in the signal.

Demodulation errors manifest themselves in exactly the same way from pulse to pulse.

These demodulation errors cause the range-compressed signal to be altered by a

constant phase, and shifted by an amount equal to the platform position uncertainty.

Usually the shift in the range-compressed pulse is small enough to be ignored. Thus

the e�ect of the demodulation error can be modelled as each range-compressed pulse

multiplied by a constant phase. Because a spotlight mode SAR collection comprises

many pulses, and each pulse is generally subjected to a di�erent error in demodulation

time, a 2-D phase function is induced on the range-compressed phase-history data.

This phase function is constant in the range dimension, but can have an arbitrary

variation in the cross-range dimension.

The phase errors caused by demodulation errors can be removed by autofocus

algorithms. There are several practical autofocus techniques [6] [17]. Inverse �ltering

is the simplest approach. This method needs a strong point-like target that is well-

isolated from other surrounding targets. However, such a target is often di�cult to

�nd in real defocused SAR images. Mapdrift (MD) (also referred to as subaperture-

based technique) and phase di�erence (PD) are parametric methods. These two

approaches assume that the phase-error function in the cross-range dimension can be

completely described by a �nite polynomial expansion, and both use SAR image data

to estimate the polynomial coe�cients. Phase gradient autofocus (PGA) is a non-

parametric approach that exploits the redundancy of the phase-error function in the

range dimension. It is a robust autofocus method. All four of these approaches make

20



use of the property that the phase error is constant in the range dimension, and only

varies in the cross-range dimension. In contrast, prominent point processing (PPP) is

an approach that does not use this property. PPP requires three prominent points in

the SAR image. The signal from the �rst prominent point provides a reference signal

to compensate for translational motion e�ects. Signals from two additional prominent

points provide an estimate of rotational motion. It may be di�cult, however, to �nd

three prominent points in some SAR images.

2.6 Inverse SAR (ISAR)

In spotlight-mode SAR, a �xed ground patch is imaged by sequentially illuminat-

ing the patch from di�erent viewing angles. Inverse SAR (ISAR) is the identical

problem with the antenna �xed and the target patch moving. That is, ISAR images

rotating targets with a �xed antenna. The main problem in this con�guration is

motion compensation for targets that migrate through more than one resolution cell

per illumination time. Signi�cant blurring of images occurs if motion is not correctly

compensated. The PPP autofocus technique can be modi�ed to achieve motion com-

pensation in ISAR. ISAR can be interpreted as a tomographic reconstruction problem

after the motion compensation.

2.7 Speckle in SAR Images

In this section, we �rst present certain de�nitions for SAR images. The SAR image

obtained by taking the inverse fast Fourier transform (IFFT) of the phase-history

data is the complex image, since the result of the IFFT is normally complex-valued.

However, when SAR images are displayed, intensity images are shown. Intensity

images are the squared magnitude of complex images.

In SAR intensity images, the intensity distribution is not smooth. Instead, there

are bright and dark spots called speckle, such that the SAR images do not match

the true scene re
ectivity magnitude point to point. Speckle occurs in any form of

coherent imaging system, and is due to the roughness of the target surface at the

21



same order of the illuminating wavelength. For spotlight mode SAR, speckle can be

explained from the random phase in the scene re
ectivity (Equation (2.22)) and the

narrow-band feature of the image formation [23]. Due to the narrow-band feature,

the response of spotlight SAR system to a point re
ector is approximately a modu-

lated 2-D sinc pulse having the width of a resolution cell. Therefore, responses from

adjacent point re
ectors in the same resolution cell will overlap and interfere either

constructively or destructively. Speckle is formed by random-phased summation of

the impulse responses of many point re
ectors within a given resolution cell.

The mathematical model for speckle is described in [8] and [9]. If the complex

image is denoted as v(x; y), the corresponding intensity image is I(x; y) =j v(x; y) j

2

,

where x and y indicate the image pixel position. The statistical property of v(x; y) is

modelled as a complex Gaussian random variable. The real and imaginary parts of

v(x; y) are independent and zero-mean Gaussian with the same variance �

2

. There-

fore, the image intensity I(x; y) has an exponential density given by

p(I) =

8

>

<

>

:

1

I

0

exp(

�I

I

0

) I � 0

0 otherwise

(2:27)

where I

0

= 2�

2

. The mean and variance of the intensity I are:

E(I) = I

0

(2:28)

VAR(I) = I

2

0

(2:29)

We can see that the standard deviation of the speckle intensity is equal to the mean

I

0

. Therefore, the 
uctuations of intensity about the mean are quite large, which can

make visual interpretation di�cult.

2.8 Speckle Reduction

In most applications, speckle is an undesired phenomenon because it reduces image

interpretability. A detailed treatment of speckle reduction is beyond the scope of this

thesis. A general overview of speckle reduction is presented here, however.

As we know from Section 2.7, the image intensity has an exponential density due

to the speckle. In fact, the image intensity I(x; y) in (2.27), where x and y are the
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pixel index in a 2-D image, can be represented as a multiplicative noise model [16],

I(x; y) = u(x; y)I

0

(x; y): (2:30)

I

0

(x; y) is the mean intensity of pixel (x; y), and u(x; y) is a signal-independent white

noise process having a normalized exponential distribution with unit mean and unit

variance,

p(u(x; y)) =

8

>

<

>

:

exp(�u(x; y)) u(x; y) � 0

0 otherwise

(2:31)

The speckle reduction problem can be stated as follows: estimate I

0

(x; y) from the

speckled image I(x; y).

Speckle reduction can be considered as the reduction of signal-dependent noise.

There are two approaches to reduce signal-dependent noise [21]. One approach is to

transform I(x; y) into a domain where the noise becomes additive signal-independent

noise and then to reduce the signal-independent noise. The other approach is to

reduce the signal-dependent noise directly in signal domain.

2.8.1 Transformation to Additive Signal-Independent Noise

Multiplicative noise �rst can be transformed to additive noise by taking logarithms [21],

log I(x; y) = log I

0

(x; y) + log u(x; y): (2:32)

If we denote log I(x; y) by I

0

(x; y), and denote log I

0

(x; y) and log u(x; y) similarly,

(2.32) becomes

I

0

(x; y) = I

0

0

(x; y) + u

0

(x; y); (2:33)

where u

0

(x; y) is signal-independent additive noise. If we assume that I

0

0

(x; y) and

u

0

(x; y) are samples of zero-mean stationary random processes, we can use a Wiener

�lter [1] [12] [21] to get the optimum linear minimum mean-square error (MSE) esti-

mate of I

0

0

(x; y). The Wiener �lter in frequency domain is expressed as:

W (u; v) =

S

I

0

0

(u; v)

S

I

0

0

(u; v) + S

u

0

(u; v)

(2:34)

where (u; v) are the Fourier mates of (x; y). S

I

0

0

(u; v) is the power spectrum of signal

I

0

0

(x; y), while S

u

0

(u; v) is the power spectrum of noise u

0

(x; y). As a result, the esti-

mation

^

I

0

(x; y) can be obtained by taking the exponential of

^

I

0

0

(x; y), where

^

I

0

0

(x; y) is
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Figure 2.8: Speckle Reduction using Wiener Filter
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Figure 2.9: Wiener �lter for non-zero mean I

0

0

(x; y) and u

0

(x; y)

the estimation of I

0

0

(x; y) from Wiener �lter, and

^

I

0

(x; y) is the estimation of I

0

(x; y).

This is shown in Figure 2.8.

However, if I

0

0

(x; y) has a mean of m

I

0

0

and u

0

(x; y) has a mean of m

u

0

, then m

I

0

0

and m

u

0

are �rst subtracted from I

0

(x; y). The resulting signal I

0

(x; y)� (m

I

0

0

+m

u

0

)

is �ltered by Wiener �lter. The signal mean m

I

0

0

is then added to the �ltered signal.

This is shown in Figure 2.9. In this case, the Wiener �lter in frequency domain is

expressed as:

W (u; v) =

S

I

0

0

�m

I

0

0

(u; v)

S

I

0

0

�m

I

0

0

(u; v) + S

u

0

�m

u

0

(u; v)

(2:35)

Implementation of Wiener �lter requires a priori knowledge of the power spectrum

of the signal and the noise. The method to estimate the signal and noise power

spectrum is given in [11] [13].

24



2.8.2 Reduction of Signal-Dependent Noise in Signal Do-

main

The multiplicative noise model in (2.30) can also be written directly as an additive

noise model:

I(x; y) = I

0

(x; y) + [u(x; y)� 1]I

0

(x; y)

= I

0

(x; y) + d(x; y) (2.36)

where the additive noise d(x; y) is signal-dependent. The criterion for estimating

^

I

0

(x; y) is minimization of the mean square error:

error = E[(I

0

(x; y)�

^

I

0

(x; y))

2

]; (2:37)

where

^

I

0

(x; y) is the estimator of I

0

(x; y). If we assume that the signal I

0

(x; y) and

the signal-dependent noise d(x; y) are samples of stationary random processes, then

the optimum linear minimum mean square error estimate of I

0

(x; y) is

^

I

0

(x; y) = m

I

0

+ [I(x; y)�m

I

]
 h(x; y) (2:38)

H(u; v) =

S

I

0

I

(u; v)

S

I

(u; v)

(2:39)

where h(x; y) indicates a �lter, and its expression in frequency domain is given by

H(u; v). Parameter m

I

0

= E[I

0

(x; y)] and m

I

= E[I(x; y)]. S

I

0

I

(u; v) is the cross

power spectrum of I

0

(x; y) and I(x; y), and S

I

(u; v) is the power spectrum of I(x; y).

In fact, (2.38) is a Wiener �lter solution.

If I

0

(x; y) and d(x; y) are not stationary, the �lter in (2.38) and (2.39) may be im-

plemented locally in an adaptive manner, where S

I

0

I

(u; v) and S

I

(u; v) are estimated

locally [18] [19] [22].
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Chapter 3

Impulse Response of Moving Targets in

Spotlight Mode SAR

3.1 Introduction

For the image formation algorithm in Section 2.5.2, it is assumed that there is no mov-

ing target in the scene. As we know from Equation (2.26), for the given wavelength

and radar velocity, the only way to achieve high cross-range resolution in spotlight

mode SAR is to use a long integration time. As a result, if the target's motion during

the long integration time exceeds the resolution cell, a smeared image will be pro-

duced using the image formation algorithm in Section 2.5.2. To restore the smeared

images, it is necessary to examine the mathematical model of the smear e�ect due to

target motion.

3.2 Mathematical Model for Moving Targets

A simple collection geometry in slant plane termed broadside is shown in Figure

3.1. The radar 
ight path is level and the center pulse is launched perpendicular

to the 
ight path. In broadside SAR image, the slant range axis is de�ned to be

perpendicular to the 
ight path, since the center pulse is launched perpendicular to

the 
ight path. In addition to the time variable t, we de�ne another time variable t

0

,

which represents the aperture time. It is assumed that the center pulse is launched

at t

0

= 0. R

0

is the distance between the radar and the patch center at t

0

= 0. The
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radar flight path

Vradar

Vc

Vr

R0

target velocity

t’=0

aperture time t’

y’

x’

patch

Figure 3.1: broadside collection geometry in slant plane

target is moving at slant range velocity v

r

and cross-range velocity v

c

. We assume the

target only has a translational motion, without any rotational motion. Furthermore,

we assume the target is in the patch during the integration time.

For the purpose of examining the smear e�ect of moving targets in SAR images,

we can assume that the scene re
ectivity is zero except on the moving targets. This

assumption can be justi�ed since we do not care about the image of the scene back-

ground. For a translational moving target, the returned signal at radar position (�;  )

is

r

�; 

(t) = ARef

Z

u

1

�u

1

p

�; 

(u)s(t�

2(R + u+�u(u))

C

)dug: (3:1)

(3.1) is a modi�cation of (2.6), where (2.6) is the returned signal expression for the

stationary target. The distance from the radar to the projection integration plane is

R + u if the target is stationary, while it is changed to R + u + �u(u) if the target

is moving. �u is the slant range variation due to the target motion. We need to

specify a position for the target if it is stationary. A straightforward way to specify

this position is to assume that the stationary target is at the same position as that

of the moving target at t

0

= 0.
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In this case, (3.1) is valid for the same time interval as in (2.11), that is

�

0

� �

c

=2 � t � �

0

+ �

c

=2: (3:2)

Using the same reference signals as (2.12) and (2.13) to deramp process (3.1), the

processed returned signal becomes

�r

�

(t) =

A

2

Z

u

1

�u

1

p

�

(u)e

j[�

2(u+�u(u))

C

2

�

2(u+�u(u))

C

(!

0

+2�(t��

0

))]

du: (3:3)

 is omitted to simplify the notation, since the radar 
ight path is level in the col-

lection geometry, which means  is the same for every pulse.

If the moving target is in the patch during the integration time, and the patch

size satis�es (2.15), the quadratic phase term in (3.3) can be ignored. Thus (3.3) is

simpli�ed to

�r

�

(t) =

A

2

Z

u

1

�u

1

p

�

(u)e

j[�

2(u+�u(u))

C

(!

0

+2�(t��

0

))]

du: (3:4)

As in Section 2.5.2, let the spatial frequency

U =

2

C

(!

0

+ 2�(t� �

0

)); (3:5)

and (3.4) can be written as

�r

�

(t) =

A

2

Z

u

1

�u

1

p

�

(u)e

�j(u+�u(u))U

du: (3:6)

Obviously, U has the same interval as in (2.19), that is

2

C

(!

0

� ��

c

) � U �

2

C

(!

0

+ ��

c

): (3:7)

(3.6) could not be further simpli�ed since we do not know the form of �u.

Now we investigate the slant range variation �u. An extended target can be

considered to be composed of many point targets. Thus, we �rst examine the slant

range variation for a point target.

In Figure 3.1, we de�ne the patch center as the origin of the slant plane. A

moving point target is at position (x

0

; y

0

) at t

0

= 0. That is to say, the point target

is at (x

0

; y

0

) if it is stationary, where x

0

is the cross-range coordinate, and y

0

is the

slant range coordinate. The point target is moving at slant range velocity v

r

and

cross-range velocity v

c

. The slant range variation �u for this point is the distance
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di�erence between the radar to the moving point and the radar to the point if it is

stationary. For a radar pulse sent out at aperture time t

0

, �u is expressed as:

�u =

q

(R

0

+ y

0

+ v

r

t

0

)

2

+ (V

radar

t

0

� v

c

t

0

� x

0

)

2

�

q

(R

0

+ y

0

)

2

+ (V

radar

t

0

� x

0

)

2

:

(3:8)

In airborne spotlight SAR geometry, the patch size is relative small, thus R

0

� x

0

and R

0

� y

0

. If the radar velocity is much much greater than the point velocity, and

(x

0

; y

0

) is close to the patch center, �u can be approximated as (Appendix A):

�u � v

r

t

0

�

V

radar

v

c

R

0

t

02

: (3:9)

From (3.9), we can see that �u is independent of x

0

and y

0

, thus �u is space-

invariant. That is to say, �u is independent of location if the point (x

0

; y

0

) is sta-

tionary. As a result, for a moving extended target (only translational motion), all

the points on the target experience the same slant range variation since every point

moves at the same velocity. This conclusion can be justi�ed if we consider that the

projection functions p

�

(u) are integrated on planes, and the target has only transla-

tional motion. Therefore, �u is not a function of u. However, �u varies from pulse

to pulse. Using (3.9), (3.6) can be expressed as

�r

�

(t) =

A

2

e

�j�uU

P

�

(U): (3:10)

From the linear trace version of the projection-slice theorem, �r

�

(t) represents a line

segment of G(X;Y;Z) at angles (�;  ) multiplied by an error phase term. The error

phase term is related to �u, which indicates the target's motion. Thus, the phase-

history expression for the moving target G

�

(U) can be expressed as

G

�

(U) = e

�j�uU

G(U); (3:11)

where G(U) is the phase-history expression if the target is stationary.

As the radar platform moves through the synthetic aperture, a set of processed

returned signals can be collected over a range of angular orientations in the phase-

history domain. Consider coordinate axes (X

0

; Y

0

) in the slant plane, the center pulse

is used to de�ne Y

0

, withX

0

orthogonal and lying in the plane. Then Y

0

corresponds to

slant range spatial frequencies, and X

0

corresponds to cross-range spatial frequencies.
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After the polar-to-rectangular resampling (in many cases, the e�ects of the polar to

rectangular resampling on the phase-error analysis are negligible), the 2-D phase-

history data for the moving target G

�

(X

0

; Y

0

) is expressed as

G

�

(X

0

; Y

0

) = e

�j�uY

0

G(X

0

; Y

0

): (3:12)

The spatial frequency Y

0

is speci�ed by

2

C

(!

0

� ��

c

) � Y

0

�

2

C

(!

0

+ ��

c

). The

extent of the data in the X

0

dimension is approximated as

4�

�

��, thus X

0

is speci�ed

by �

2�

�

�� � X

0

�

2�

�

��. G(X

0

; Y

0

) is the 2-D phase-history data if the target is

stationary.

Now we need to express �u in terms of the spatial frequency X

0

and Y

0

. As we

know, �u is a function of t

0

, and t

0

is related to X

0

. Thus �u can be expressed in

terms of X

0

. To �nd the relationship between t

0

and X

0

, we assume that T is the

integration time. For the broadside collection geometry in Figure 3.1, X

0

varies from

2�

�

�� to �

2�

�

�� while t

0

varies from �T=2 to T=2. The relationship between X

0

and

t

0

is expressed by

X

0

= �

t

0

T

4�

�

��: (3:13)

Substituting (3.9) and (3.13) into (3.12), the 2-D phase-history data for the moving

target can be rewritten as

G

�

(X

0

; Y

0

) = e

jv

r

T�

4���

X

0

Y

0

e

V

radar

v

c

R

0

(

T�

4���

)

2

X

02

Y

0

G(X

0

; Y

0

): (3:14)

From Section 2.5.2, we know that if the target is stationary, the phase-history data

will be equal to G(X;Y;Z) in the slant plane. From (3.14) we see that the phase-

history data for the moving target is equal to the phase-history data for the stationary

target multiplied by a phase-error term. It is the phase-error term that causes the

SAR image for moving targets to be smeared.

To obtain the slant plane SAR images for moving targets, we take the inverse

Fourier transform ofG

�

(X

0

; Y

0

). If we denoteH(X

0

; Y

0

) = e

jv

r

T�

4���

X

0

Y

0

e

V

radar

v

c

R

0

(

T�

4���

)

2

X

02

Y

0

,

the smeared slant plane image for the moving target is given by

g

�

(x

0

; y

0

) = IFFT

X

0

;Y

0

fH(X

0

; Y

0

)g 
 g(x

0

; y

0

); (3:15)

where 
 indicates the discrete convolution operation [26]. x

0

and y

0

are the image

domain variables for cross-range and slant range. g

�

(x

0

; y

0

) is the smeared image,
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and g(x

0

; y

0

) is the unsmeared slant plane image when the target is stationary. From

(3.15), we see that the smeared slant plane image is the unsmeared slant plane image

convolved with the impulse response due to target motion, where the unsmeared slant

plane image is an orthogonal projection of the 3-D scene onto the slant plane when

the target is stationary.

3.3 Impulse Response Function

In this section, we are going to examine the impulse response, which is inverse Fourier

transform IFFT

X

0

;Y

0

fH(X

0

; Y

0

)g in (3.15). X

0

is the spatial frequency for cross-range,

while Y

0

is the spatial frequency for slant range. In fact, IFFT

X

0

;Y

0

fH(X

0

; Y

0

)g is

the SAR image for a point target which is at the patch center if it is stationary.

The DFT of a discrete signal is the sampled version of the inverse Fourier transform

of the corresponding continuous signal. Thus IFFT

X

0

;Y

0

fH(X

0

; Y

0

)g can be examined

from F

�1

X

0

;Y

0

fH(X

0

; Y

0

)g if we look at X

0

and Y

0

as continuous variables. Considering

X

0

and Y

0

as continuous variables, F

�1

X

0

;Y

0

fH(X

0

; Y

0

)g can be rewritten as:

F

�1

X

0

;Y

0

fH(X

0

; Y

0

)g = F

�1

X

0

;Y

0

fH

1

(X

0

; Y

0

)g � F

�1

X

0

;Y

0

fH

2

(X

0

; Y

0

)g; (3:16)

where

H

1

(X

0

; Y

0

) = e

jv

r

T�

4���

X

0

Y

0

; (3:17)

and

H

2

(X

0

; Y

0

) = e

V

radar

v

c

R

0

(

T�

4���

)

2

X

02

Y

0

: (3:18)

the symbol � indicates the continuous convolution operation. Therefore, we can exam-

ine F

�1

X

0

;Y

0

fH(X

0

; Y

0

)g from F

�1

X

0

;Y

0

fH

1

(X

0

; Y

0

)g and F

�1

X

0

;Y

0

fH

2

(X

0

; Y

0

)g. H

1

(X

0

; Y

0

) is

only related to v

r

and H

2

(X

0

; Y

0

) is only related to v

c

. As a result, F

�1

X

0

;Y

0

fH

1

(X

0

; Y

0

)g

represents the e�ect of v

r

, and F

�1

X

0

;Y

0

fH

2

(X

0

; Y

0

)g represents the e�ect of v

c

.

In Appendix B, F

�1

X

0

;Y

0

fH

1

(X

0

; Y

0

)g and F

�1

X

0

;Y

0

fH

2

(X

0

; Y

0

)g are examined. We

show that v

r

causes a image shift in cross-range dimension, which is similar to that in

stripmapping SAR [31]. The amount of shift is v

r

R

0

=V

radar

, which is proportional to

v

r

. If the amount of shift exceeds the size of radar footprint (patch size), the image

may be reshifted by an integral number of the radar footprints to satisfy the a priori
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Parameter Spotlight mode

radar height 3km

radar ground range at t

0

= 0 100km

patch size in slant plane (D) 2km�2km

slant range resolution (�

y

0

) 0.5m

cross-range resolution (�

x

0

) 0.5m

radar frequency (f

0

) 9.5GHz

radar pulse (FM chirp) width (�

c

) 4� 10

�4

sec

radar velocity (V

radar

) 200m/sec

Table 3.1: Spotlight mode SAR parameters used in this thesis

condition that the target was, in fact, in the radar footprint when it was illuminated

by the radar. v

r

causes the image to be smeared in the cross-range dimension as

well. The smear length is

��

c

!

0

v

r

V

radar

R

0

, which is proportional to v

r

. The velocity v

c

causes the image to be smeared in the cross-range dimension, where the smear length

is proportional to v

c

. The moving target is smeared in the range dimension in the

image domain as well. The smear length is related to the target's moving distance in

the range dimension during the integration time, which is related to both v

r

and v

c

.

3.4 SAR Parameters

The important spotlight SAR parameters used in this thesis are listed in Table

3.1. The radar is at the west of the patch at t

0

= 0. From the parameters in this

table, we can calculate some related parameters:

� The radar grazing angle:  = arctan(3=100) = 1:72degree

� The wavelength of the illuminating source: � = C=f

0

= 0:032m

� The nominal range: R

0

=

p

100

2

+ 3

2

= 100:045km

� The LFM bandwidth B: �

y

0

= C=2B ) B = 300MHz
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� The chirp rate �: B = ��

c

=� ) � = 2:36� 10

12

rad

2

=sec

2

� The antenna aperture d: D = R

0

�=d) d = 1:58m

� The integration time T : �

x

0

= �=(2��) and �� = V

radar

T=R

0

) �� = 0:032rad and T = 15:8sec

� The radar pulse repetition frequency(PRF): PRF = V

radar

=(d=2) = 253Hz

� Number of samples in range: D=�

y

0

= 4000

� Number of samples in cross-range: D=�

x

0

= 4000

We need to check whether the assumptions in the SAR image formation are valid

with these parameters.

� One assumption we have for the SAR image formation is (2.10), which is �

c

� �

p

.

With the above parameters, �

p

= 4u

1

=C = 4� 1000=C = 1:33 � 10

�5

sec� �

c

.

� The projection functions are approximated by integration on planes if the slant

plane patch radius L satis�es (2.7), which is L � �

x

0

q

2R=�. This condition

is most severe when R is at its minimum. For the broadside collection ge-

ometry, R reaches its minimum at t

0

= 0. Thus with the above parameters,

R

min

= 100:045km, and �

x

0

q

2R

min

=� = 1250m. Since our slant plane patch

radius is 1000m, which is smaller than 1250m, the projection functions can be

approximated to be integrals on planes.

� The quadratic phase term in (2.14) can be ignored if the slant plane patch radius

L satis�es (2.15), which is L � �

x

0

!

0

=(2

p

��). With the above parameters,

�

x

0

!

0

=(2

p

��) = 5480:4m. Since our patch radius 1000m is much less than this

bound, we can ignore the quadratic phase term.

3.5 Simulation Results

With the parameters in Section 3.4, a computer was used to simulate the impulse

response for moving targets. The impulse response is also the SAR image for a point
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target which is at the patch center if it is stationary. The image size in the following

�gures is 400m � 400m.

Figure (3.2) shows the impulse responses for a point target at di�erent velocities.

The upper-left �gure is the SAR image for the stationary point target. It is the

unsmeared image for the point target. The point is in the middle of the image, and

has no smear.

The upper-right �gure is the SAR image if the point target moves at v

r

= 0:2m=sec

and v

c

= 0. It is shown that the point target, which is supposed to be at the patch

center, is shifted in the cross-range dimension. The amount of shift is around 100m,

which is equal to v

r

R

0

=V

radar

. The point is smeared in the cross-range dimension as

well. The smear length is about 3.2m, which is equal to

2��

c

!

0

v

r

V

radar

R

0

. The smear

length in the range dimension is equal to the target's moving distance in the range

dimension during the integration time. Since v

c

= 0, the target's moving distance in

the range dimension is v

r

T = 3:16m.

The bottom-left �gure is the SAR image if the point target moves at v

r

= 0 and

v

c

= 0:2m=sec. It is shown that the point is smeared in the cross-range dimension

as well as in the range dimension, but there is no image shift. The smear length in

the range dimension is equal to the target's moving distance in the range dimension

during the integration time. Since v

r

= 0, the target's moving distance in the range

dimension is

V

radar

v

c

R

0

(

T

2

)

2

= 0:025m, which is much smaller than the range resolution.

This is the reason that the smear in the range dimension is not obvious in this �gure.

The bottom-right �gure is the SAR image if the point target moves at v

r

=

0:2m=sec and v

c

= 0:2m=sec. We can see the smear e�ect in this �gure is the

combination of the smear in upper-right �gure and bottom-left �gure. From the

image, we can also see that the point target moves at a 45 degree heading.

The simulated SAR images show that the smear e�ect due to the target motion

cannot be ignored in high resolution SAR images, even with small target velocities.

This is a consequence of the long integration time required for a high resolution image.

The target motion during such a long time may exceed the size of the resolution cell

even with a small velocity. As a result, a smeared image is produced using the

conventional image formation.
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Figure 3.2: impulse responses for a point target with di�erent velocities
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3.6 Summary

In this section, the mathematical model for the smear e�ect due to a target's constant

translational motion has been investigated for airborne spotlight SAR. Simulated

images are used to highlight the main sources of degradation.

The conclusions on smear e�ect from this chapter are:

� If the target is close to the patch center at aperture time t

0

= 0, and the target

velocity is much smaller than the radar velocity, then the phase history data for

the moving target is equal to the phase-history data for the stationary target

multiplied by a phase-error term. The phase-error term is related to the target

velocity. As a result, in the image domain, the smeared image for the moving

target is the unsmeared image convolved with an impulse response due to target

motion.

� The target slant range velocity v

r

causes an image shift in the cross-range di-

mension. The image shift amount is v

r

R

0

=V

radar

. If the amount of shift exceeds

the size of radar footprint (patch size), the image may be reshifted by an integral

number of radar footprints.

� The target slant range velocity causes image smear in the cross-range dimension.

The smear length is

��

c

!

0

v

r

V

radar

R

0

.

� The target cross-range velocity, v

c

, causes an image smear in the cross-range

dimension, where the smear length is proportional to v

c

.

� The moving target is smeared in the range dimension in the image domain. The

smear length is related to the target's moving distance in the range dimension

during the integration time, which is related to both the slant range and the

cross-range velocity.
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Chapter 4

Ship Centroid Estimation

4.1 Introduction

In Chapter 3, we have shown that we cannot ignore the smear e�ect caused by target

motion in a high resolution SAR image, even if the target is moving at low velocity.

This is a consequence of the long integration time required for high resolution images.

In practice, we deal with a moving target whose velocity we do not know. How can

we restore the smeared image with unknown target motion? This is the focus of the

next two chapters.

In this chapter, the state of the art for restoring smeared images due to target

motion is reviewed. Then, an overview of the method developed here to remove the

smear due to target motion is presented. The �rst step in this method, ship centroid

estimation is examined in this chapter. Simulation results and conclusions for the

ship centroid estimation variance are given at the end of the chapter.

In ship centroid estimation, analytical expressions of the centroid estimation vari-

ance for both unsmeared and smeared images are derived. The work for unsmeared

images is a generalization of [4] and [27], while the work for smeared images, to the

best of our knowledge, does not appear in the literature. These analyses are veri�ed

by simulation results from Monte-Carlo runs.
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4.2 Literature Review

When conventional SAR image formation is applied to a scene with moving targets,

the images of the moving targets are typically mislocated in cross-range, and smeared

in range and cross-range due to phase errors induced by the motion. The amount of

mislocation and smear are related to the target velocity during the integration time.

To restore the smeared images due to target motion, we may consider autofocus

(refer to Section 2.5.5). Can autofocus be applied to remove the smear due to target

motion? Unfortunately, most of the autofocus methods cannot. Recall that autofocus

is a restoration algorithm that can remove the smear due to demodulation error. De-

modulation error is normally caused by radar platform motion. Although the smear

due to radar platform motion and target motion are both caused by the relative

motion between the radar platform and target, reasonable knowledge of radar plat-

form motion can be provided by an inertial navigation system, while target motion

is generally unknown. The most important reason why autofocus cannot be applied

to remove smear due to target motion is that the phase error in the phase-history

domain caused by radar platform motion has a di�erent form from that caused by

target motion. In the mathematical model for demodulation error, the phase error

in the phase-history domain is constant in the range dimension, and only varies in

the cross-range dimension. However, in the mathematical model for a moving target,

Equation (3.14) shows that the phase error is a function of both range spatial fre-

quency Y

0

and cross-range spatial frequency X

0

instead of being constant in range.

Most of the autofocus algorithms make use of the property that the phase error due

to demodulation error is constant in the range dimension, thus they cannot be used

to remove the smear caused by target motion.

Prominent point processing (PPP) is the only autofocus method that can be

applied to remove the smear due to target motion [33]. As one of the autofocus

methods, PPP does not exploit the property that the phase error is constant in the

range dimension. In PPP, signals from three prominent points on the target are

tracked across the synthetic aperture. These signals are used as reference signals to

estimate and compensate for the target's translational and rotational motion. The

�rst prominent point is used to measure and remove translational motion e�ects,
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which makes the �rst point become the scene center. The second prominent point

estimates and removes the e�ects of any nonuniformity in the rotation rate relative

to this new scene center. The third prominent point provides a measure of the actual

rotation rate. This measurement leads to an estimate of the cross-range scale factor

of the resulting image. These motion estimates are used to eliminate motion-induced

phase errors, and thus remove the smear. The advantage of PPP is that it can deal

with both translational and rotational target motion. However, the disadvantage of

this algorithm is that the performance of the algorithm depends on the availability

of target prominent points. The chosen prominent points should have high signal-

to-background ratio. In real SAR images, such prominent points are not easy to

�nd. In addition, PPP assumes a rigid-body relationship between the three selected

prominent points.

The algorithm described in [15] was used to remove smear caused by a target's

nonuniform rotation. The integration time was divided into small consecutive sec-

tions. The rotation velocity was assumed to be uniform for the small section. The

low-resolution images for the small sections were corrected for changes in rotation

rates between the consecutive sections. Comparison of changes in the angular posi-

tion and the scale of the successive target images yielded the change in the rotation

rate. A �nal, high-resolution, compensated image was provided by combining the cor-

rected low-resolution images. The �nal image obtained would be the image formed

if the rotation rate was not varying. This algorithm only compensates for rotational

motion, and does not consider translational motion. However, this method uses sub-

aperture processing to estimate the rotation velocity.

Inverse SAR (ISAR) is similar to spotlight SAR, except that in ISAR, the radar is

�xed while the target is moving. Motion compensation for targets is also an important

issue in ISAR. We brie
y review the important literature for motion compensation

in ISAR.

Among motion compensation methods used in ISAR, the phase correction method

exploits the phase changes of reference points, analogous to PPP [31]. Another

method is to estimate the target velocity via centroid tracking [14]. The algorithm

provided in [14] compensates for a target's radial motion, where the radial velocity
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may not be constant. This is achieved by estimating the radial motion of the tar-

get centroid. However, the algorithm estimates the target velocity by a second-order

least squares method with only two centroid measurements, and it is questionable

whether two centroid measurements can yield good velocity estimation. In addition,

the target centroid estimation procedure used was not detailed in the paper.

4.3 An Overview of the Proposed Method

In this thesis, the SAR imaging targets are moving ships at sea. We assume that

the dominant ship motion is translational. The rotational motion is assumed to be

small enough to be ignored. This assumption is reasonable since a ship's pitch, yaw

or roll frequencies may be very low if the sea is calm. Thus, only the smear caused

by a ship's translational motion is considered. In addition, in this thesis, we assume

that the ship is moving at a constant translational velocity during the long integration

time in SAR imaging, and the ship is close to the patch center at aperture time t

0

= 0.

With the above assumptions, Equation (3.14) shows that the error phase term in

the phase-history domain is a function of the target velocity. Once we have accurate

knowledge of the target velocity, we can compensate the phase error and restore

the smeared images. Therefore, in our proposed method, �rst the ship velocity is

estimated, and then the smeared high-resolution image is restored.

Ship velocity is estimated by subaperture processing. The long integration time is

divided into a set of consecutive short integration times. Low-resolution subaperture

images are formed for the short integration time. The ship centroid is estimated for

each subaperture image. Thus, a set of ship centroid measurements can be obtained

from the subaperture image sequence. The ship velocity is estimated from these

centroid measurements using a Kalman �lter. Although the subaperture images have

low resolution and may be smeared by ship motion, the smears are not severe due to

the minimal target movement during the short integration time. In addition, from

the simulation results in Section 3.5, we can see that the smear caused by target

motion is symmetric around the unsmeared image. Therefore, we can estimate the

ship centroids in subaperture images to a certain accuracy even though smears may
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exist.

Using the estimated ship velocity, the phase error is compensated in the phase-

history domain for the high-resolution image. The restored high-resolution image is

formed from the compensated phase-history data. Since the estimated ship velocity

from the Kalman �lter may not be perfectly correct, we may not restore the smeared

image perfectly. Because variances of the ship velocity estimates can be obtained

from the Kalman �lter, we will be able to assess how well we can restore the smeared

high resolution image.

4.4 The Radar Imagery Generator (RIG)

The Radar Imagery Generator (RIG) is a simulation tool for creating SAR im-

agery [32]. The target model database used for RIG is that of [28]. Given the

speci�cations of the geometric model between the radar and the target, the target

motion parameters and the radar parameters, SAR intensity images of target scenes

can be simulated by RIG. However, the RIG images are not similar to real SAR im-

ages. RIG does not consider the random phase in the scene re
ectivity, thus RIG

images do not have any speckle. As a result, we can consider the RIG images as

providing the mean intensity of the speckled SAR images.

We can simulate the speckled SAR intensity images from the RIG images, if we

consider the RIG images as mean intensity images. The pixel intensity in the speckled

SAR image is a realization of a random variable that is exponentially distributed by

that pixel's mean intensity. One way to obtain a realization of such an exponential

random variable is to �nd out the corresponding complex Gaussian random variable.

In Section 2.7, the variance of the real and imaginary part of the complex Gaussian

random variable �

2

can be expressed by the pixel mean intensity I

0

:

�

2

= I

0

=2: (4:1)

Since the real and imaginary parts of the complex Gaussian random variable are zero-

mean, we can generate a realization of the complex image. The squared magnitude

of the complex image will be used as our simulated speckled SAR intensity image.
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4.5 Centroid Estimation

Consider a target consisting of N pixels. Each pixel is denoted by a single index i,

i = 1; : : : ; N . If each point has an intensity I

i

, then the target centroid is de�ned as

x

nc

=

P

i

x

ni

I

i

P

i

I

i

; (4:2)

where x

ni

is the nth coordinate of point i.

If the pixel intensities are random variables, the target centroid measurement in

(4.2) will also be random. The expressions for the variance of the centroid measure-

ment are given in [4] and [27]. However, in [4], the pixel intensity I

i

is assumed to be

Gaussian. In [27], to avoid use of the correlation coe�cient between the denominator

and numerator in (4.2), the authors use the coordinate system origin as the target

true centroid which is not generally known. In addition, the e�ect of image quantiza-

tion is not considered in [27]. In this section, the general expression for the centroid

measurement variance will be given.

Suppose that I

i

are independent random variables with mean �

i

and standard

deviation �

i

. In order to calculate the expectation and variance of x

nc

, we consider

x

nc

as the ratio

M

n

S

where both M

n

and S are random variables. The expectation and

variance of x

nc

can be approximated as [29]:

E(x

nc

) =

�

M

n

�

S

�

r�

M

n

�

S

�

2

S

+

�

M

n

�

3

S

�

2

S

; (4:3)

V AR(x

nc

) =

�

2

M

n

�

2

S

�

2�

M

n

�

3

S

r�

M

n

�

S

+

�

2

M

n

�

4

S

�

2

S

; (4:4)

where

M

n

=

X

i

x

ni

I

i

(4:5)

S =

X

i

I

i

(4:6)

�

M

n

= E(M

n

) (4:7)

�

S

= E(S) (4:8)

�

2

M

n

= V AR(M

n

) (4:9)

�

2

S

= V AR(S); (4:10)
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r�

M

n

�

S

= E[(M

n

� �

M

n

)(S � �

S

)] (4:11)

and r is the correlation coe�cient between M

n

and S.

The centroid measurement in (4.2) does not consider the e�ect of image quanti-

zation. To include this e�ect, an extra random variable due to the image resolution

must be added to (4.2). The error due to the quantized image resolution can be

characterized by a random variable which is uniformly distributed within the image

resolution size. Consequently, the target centroid measurement is expressed as

x

0

nc

= x

nc

+ �: (4:12)

The random variable � is uniformly distributed within [��x

n

=2;�x

n

=2], where �x

n

denotes the image resolution of the nth coordinate. It is easy to show that E(�) = 0

and V AR(�) = (�x

n

)

2

=12. As a result, the variance of the centroid measurement is:

V AR(x

0

nc

) = V AR(x

nc

) + (�x

n

)

2

=12: (4:13)

4.6 Ship Centroid Estimation without Smear Ef-

fect

The ship pixel intensity I

i

in an unsmeared SAR image can be modelled as an in-

dependent random variable with exponential distribution. The parameter of the

exponential distribution is the mean intensity of the pixel, where we assume the RIG

images provide the mean intensity.

Since I

i

is independent of I

j

if i 6= j, Equations (4.7) to (4.10) can be rewritten

as:

�

M

n

= E(

X

i

x

ni

I

i

) =

X

i

x

ni

E(I

i

) (4:14)

�

S

= E(

X

i

I

i

) =

X

i

E(I

i

) (4:15)

�

2

M

n

= V AR(

X

i

x

2

ni

I

i

) =

X

i

x

2

ni

V AR(I

i

) (4:16)

�

2

S

= V AR(

X

i

I

i

) =

X

i

V AR(I

i

) (4:17)
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r�

M

n

�

S

= Ef[

X

i

x

ni

(I

i

� E[I

i

])][

X

j

(I

j

�E[I

j

])]g (4.18)

=

X

i

x

ni

V AR(I

i

) (4.19)

To derive (4.19) from (4.18), the following relationship is used:

Ef[I

i

� E(I

i

)][I

j

� E(I

j

)]g =

8

>

<

>

:

V AR(I

i

) i = j

0 i 6= j

(4:20)

This is due to the independence between I

i

and I

j

when i 6= j.

Substituting Equations (4.14) to (4.19) into (4.4) and (4.13), we obtain the vari-

ance of the centroid estimation for an unsmeared ship.

4.7 Pixel Intensity Model for Smeared SAR Im-

ages

If the smear due to the ship motion cannot be ignored in SAR images, we cannot

model the image pixel intensity as independent random variables. The smeared image

can be modelled as the discrete convolution (circular convolution) of the unsmeared

image and the impulse response due to ship motion. Without loss of generality, we

consider the unsmeared SAR image and the impulse response as 1-D data sequences

with the same length N . Therefore the resultant smeared image will be a 1-D data se-

quence with lengthN . We denote the unsmeared complex image as fv

i

g

N�1

i=0

, while the

corresponding unsmeared intensity image as fI

0

i

g

N�1

i=0

with mean intensity fI

0

i0

g

N�1

i=0

.

The complex-valued impulse response is denoted as fh

i

g

N�1

i=0

, and the smeared inten-

sity image is fI

i

g

N�1

i=0

. The pixel intensity I

i

in the smeared image can be expressed

as

I

i

=j

N�1

X

m=0

v

(m)

N

h

(i�m)

N

j

2

; 0 � i � N � 1: (4.21)

The notation (n)

N

is used to denote n modulo N . To have more insight to (4.21), we

rewrite (4.21) into a simple way:

I

i

=j

N�1

X

m=0

v

m

h

m

j

2

: (4:22)
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Since v

m

and h

m

are complex numbers,

P

N�1

m=0

v

m

h

m

is complex. With � denoting

complex conjugate, (4.22) can be expanded as:
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m
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] (4.23)

where Re[�] denotes the real part of a complex number.

From (4.23), we can see that the pixel intensity in the smeared image is the

weighted summation of the unsmeared image pixel intensity, where the weight is

related to the impulse response. Thus, correlations exist between the pixel intensities

in the smeared image, even though the unsmeared image intensities are modelled as

independent random variables. The smeared image intensities should therefore be

modelled as correlated random variables.

4.8 Ship Centroid Estimation with Smear E�ect

Since the smeared image pixel intensities cannot be modelled as independent random

variables, we cannot use the equations in Section 4.6 to evaluate the centroid esti-

mation variance for a smeared image. In this section and Appendix C, the target

centroid estimation variance for a smeared image will be given. To our knowledge,

the following expressions do not appear in the literature.

With the pixel intensity model in (4.23), the variance of centroid estimation in

smeared images can be obtained by substituting (4.23) into the equations in Section

4.5. Recalling that the pixel intensities are not independent random variables in

smeared images, Equations (4.7) to (4.10) are rewritten as:
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Equations (4.24) to (4.28) are easy to evaluate numerically if E(I

i

), V AR(I

i

) and

E[(I

i

� E(I

i

))(I

j

� E(I

j

))] are known. Expressions for E(I

i

), V AR(I

i

) and E[(I

i

�

E(I

i

))(I

j

� E(I

j

))] are quite lengthy to derive and are given in Appendix C. It is

interesting to note that the centroid estimation variance for an unsmeared ship in

Section 4.6 is a special case of the variance for a smeared ship given in this section.

If we consider the impulse response sequence fh

i

g

N�1

i=0

as a unit-sample sequence,

Equations (4.24) to (4.28) will be the same as (4.14) to (4.19).

The computational complexity of the centroid estimation variance for a smeared

image is proportional to N

4

, where N is the number of pixels in the image.

4.9 Experimental Results for Ship Centroid Es-

timation

In this section, results are provided for subaperture time images that are smeared

due to ship motion. To be precise, the impulse responses due to ship motion are

di�erent for di�erent subapertures, since the radar imaging geometries are di�erent.

When a long synthetic aperture is divided into a set of subapertures, only one of the
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subapertures may be of broadside geometry (see Section 3.2), while the others are

non-broadside. In non-broadside (also referred as squinted) imaging geometry, the

center pulse is not launched perpendicular to the radar 
ight path. Compared to the

images from broadside geometry, image rotations exist in images from non-broadside

geometry [17]. The rotation angle is the same as the squint angle from the broadside

case. However, in our case, the angle diversity for the long synthetic aperture is

small (�� = 0:032rad = 1:83 degrees for the parameters in Section 3.4). Thus, image

rotations in the subaperture images are small enough to be ignored, and the impulse

responses for di�erent subapertures can be considered to be the same as that of the

broadside case. The impulse response due to target motion for the broadside case is

given in Section 3.2.

Using the SAR parameters given in Section 3.4, two sets of simulations were

conducted for ship centroid estimation. Integration times for subaperture were chosen

to be 0.3sec and 1.5sec, respectively, for the two sets. In each set, di�erent ship

headings (0, 45 and 90 degrees) were considered. The ship heading angle is the angle

moving clockwise from north. A heading of 0 degrees means only cross-range velocity

exists if the ship is moving, a 45 degree heading means that both range and cross-

range velocity exist, and a 90 degree heading consists purely of range velocity. For

each ship heading, di�erent ship velocities were considered. The case of ship velocity

v = 0 is equivalent to the unsmeared image case, while v 6= 0 case is smeared image

case. The results for ship centroid estimation variance are given in Tables 4.1 to 4.6.

The results in these tables are only the V AR(x

nc

) part in (4.13), and the variances

due to the image resolution have to be added to get the total centroid estimation

variances. For 0.3sec integration time, results from Monte-Carlo runs (300 runs) are

compared with the analytical results. However, as explained in the next paragraph,

for 1.5sec integration time, only results from Monte-Carlo runs (300 runs) are given

for the smeared image case, while results from both Monte-Carlo runs and analysis

are given for the unsmeared image case. Analytical calculations for unsmeared and

smeared images used equations in Section 4.6 and 4.8, respectively. Selected ship

images and impulse responses for each case are shown in Figures 4.1 to 4.6. In our

simulations, the image shift in cross-range dimension due to ship slant range velocity
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has been removed, since this shift does not a�ect centroid estimation variance.

The analytically derived centroid estimation variance for smeared images of 1.5sec

integration time was not conducted due to the excessively long CPU time required

for the calculations. As mentioned in Section 4.8, the computational complexity of

the calculation for a smeared image is proportional to N

4

, where N is the number of

image pixels. Due to the �ner cross-range resolution for 1.5sec integration time, the

number of ship pixels in a 1.5sec integration time image is larger than that in a 0.3sec

integration time image. For example, as shown in Figure 4.1 and Figure 4.4, the

ship size in the image for the case of 0.3sec integration time with 0 degrees heading,

is about 10 � 27 pixels. In the corresponding image for 1.5sec integration time, the

ship size is about 30 � 27 pixels, which is three times as large as that of the 0.3sec

case. To �nd the analytical centroid estimation variance for the smeared image of

0.3sec integration time and 0 degrees ship heading, requires about 1 hour CPU time

on an Ultrasparc 1 work station. Thus, about 3

4

= 81 CPU hours are needed for the

analytical calculation for the smeared image of 1.5sec integration time.

The range resolution of SAR images is related only to the bandwidth of the radar

transmitted FM chirp (recall Section 2.5.3), thus with the parameters in Section 3.4,

the range resolution is 0.5m for both integration times. As a result, the variance

due to the image range resolution is 0.02m

2

. However, the cross-range resolution is

dependent on the integration time. The cross-range resolution is 26.5m for 0.3sec

integration time, and 5.26m for 1.5sec integration time. The variance due to the

image cross-range resolution is 58.5m

2

for 0.3sec integration time, and 2.30m

2

for

1.5sec integration time.

The ship velocity in the tables and �gures in this section refers to ship ground

velocity. However, ship velocity in the slant plane is needed for the simulations. The

slant plane velocity is the ground velocity projected onto the slant plane. If the

ground velocity is denoted as v, the ship heading angle is ', and the radar grazing

angle is  as shown in Figure 2.6, then the slant range velocity is v

r

= v sin' cos ,

and the cross-range velocity is v

c

= v cos'.

The same ship model is used in Figures 4.1 to 4.6. However, due to the �ner

cross-range resolution for 1.5sec integration time, the ship for 1.5sec has more pixels
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in cross-range direction than the ship for 0.3sec. Since the range resolutions are the

same for both 0.3sec and 1.5sec integration time, the images have the same number

of pixels in the range direction.

As expected, the analytical results for both the unsmeared and smeared images

in Tables 4.1 to 4.6 are close to the Monte-Carlo results. In addition, the variances

from Monte-Carlo runs are somewhat larger than the analytical results, which is as

expected.

Comparing the results for the 0.3sec and 1.5sec integration times, we observe that

the centroid estimation variance for 1.5sec is lower than that for 0.3sec. The variance

decrease in the cross-range for 1.5sec integration time is due to the �ner cross-range

resolution. The decrease in the range direction is because in 1.5sec integration time

images, there are more pixels in the same range line, which gives us more information

about where the range centroid is. As a result, lower centroid estimation variances

are obtained for 1.5sec integration time.

Comparing the centroid estimation variance in Tables 4.1 to 4.3 for 0.3sec inte-

gration time, we can see that the variance in the range direction increases, while the

variance in the cross-range decreases when the ship heading changes from 0 degrees to

90 degrees. The reason for this is that, generally speaking, with the same image res-

olution, the larger the target size is, the more uncertainty in the centroid estimation,

which leads to a higher centroid estimation variance. In Figures 4.1 to 4.3, we can

see that when the ship heading turns from 0 degrees to 90 degrees, the pixel number

increases in the range direction, and decreases in the cross-range direction. That is to

say, the ship size is getting larger in range and getting smaller in cross-range. Thus,

the centroid estimation variance increases in range and decreases in cross-range. The

same thing happens to the results for 1.5sec integration time in Tables 4.4 to 4.6.

It can be observed that, the smear e�ect increases the centroid estimation variance,

with respect to both Monte-Carlo and analytical results in Tables 4.1 to 4.6. This

observation is more obvious for cross-range variance. However, the range variances do

not always increase with increasing ship velocity. This phenomenon can be explained

as follows: we believe that on one hand, the smear due to the ship motion will enlarge

the ship size which leads to an increase of the centroid estimation variance. On the
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other hand, the smear may have some smoothing e�ect on the speckle, which leads

to a decrease of the centroid estimation variance. These two e�ects o�set each other.

For the short integration time in subaperture images, the cross-range resolution is

low, and the variance increase from the smeared ship size is a dominant e�ect. Thus

the cross-range centroid estimation variance increases with increasing ship velocity.

In the range dimension, since the range resolution is high, the variance decrease due

to the smoothing e�ect on the speckle cannot be ignored compared to the variance

increase from the smeared ship size. Thus the range centroid estimation variance

may not always increase with increasing ship velocity. Observing the results in the

tables, we can see that the range variance decreases from v = 0 to v = 4m=sec, and

increases from v = 4m=sec to v = 8m=sec. The range variance for v = 8m=sec is

higher than that for v = 0, which implies that eventually the smear e�ect enlarges

the range centroid estimation variance.

For the ship heading of 0 degrees, in Table 4.1 and Table 4.4, the range centroid

estimation variance does not change much since there is no slant range velocity and

thus little smear in range dimension. However, for the ship heading of 90 degrees, the

slant range velocity causes smear in cross-range dimension which leads to an increase

in the cross-range centroid estimation variance.

The cross-range centroid estimation variance is extremely small for the unsmeared

image with 0.3sec integration time and 90 degrees ship heading. As we can see from

Figure 4.3, in this case, the ship image becomes a line due to the low cross-range

resolution, and the ship image only occupies one pixel in the cross-range dimension.

As a result, the cross-range variance is extremely small. However, it will not be so

small if we add the variance due to the image resolution.

We can observe that for the same ship velocity increase, the cross-range centroid

estimation variances for the 0.3sec case increase faster than for the 1.5sec case. This

is because the cross-range resolution is much coarser in the 0.3sec case than in the

1.5sec case.

As a whole, the conclusions from the experimental results are:

� For the ship centroid estimation variance in smeared and unsmeared images,

the analytical results from Section 4.6 and 4.8 are close to the results from
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Monte-Carlo runs.

� With the same ship velocity and ship heading, the centroid estimation variances

are smaller for 1.5sec integration time than for 0.3sec integration time, due to

the higher resolution in 1.5sec case.

� With the same subaperture integration time and ship heading, the centroid

estimation variance increases when the ship velocity increases.

� With the same image resolution, the centroid estimation variance is larger for

a larger size ship.

� With the same ship velocity increase, the increase in the centroid estimation

variance is larger for 0.3sec subaperture integration time than for 1.5sec case.

The reason for this is that 1.5sec integration time images have higher resolution.
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Ship Speed(m/sec) Range(m

2

) Cross-range(m

2

)

Monte-Carlo Eq. (4.4) Monte-Carlo Eq. (4.4)

v = 0 0.0860 0.0803 13.1175 12.8541

v = 2 0.0832 0.0803 13.0122 12.8550

v = 4 0.0849 0.0803 13.5699 12.8589

v = 6 0.0857 0.0803 14.0341 12.8646

v = 8 0.0838 0.0803 14.6126 12.8735

v = 10 0.0873 0.0803 14.7600 12.8849

Table 4.1: Centroid estimation variance for subaperture integration time 0.3sec and

ship heading 0 degrees (V AR(x

nc

) in Eq. (4.13))

4.10 Summary

In this chapter, the �rst step in our proposed method, ship centroid estimation is ex-

amined. Both analysis and simulation results of ship centroid estimation variance for

unsmeared and smeared images are given. The analysis is veri�ed by the simulation

results from Monte-Carlo runs. The most important conclusions on the ship centroid

estimation variance we have quanti�ed from this chapter are:

� With the same ship velocity, the centroid estimation variance is smaller for

suitably long subaperture integration times.

� With the same subaperture integration time, the centroid estimation variances

increase with increasing ship velocity.
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Ship Speed(m/sec) Range(m

2

) Cross-range(m

2

)

Monte-Carlo Eq. (4.4) Monte-Carlo Eq. (4.4)

v = 0 1.1313 1.0734 3.8428 3.8310

v = 4 1.0500 1.0224 5.5668 4.8980

v = 8 1.1597 1.0740 8.3242 8.0156

Table 4.2: Centroid estimation variance for subaperture integration time 0.3sec and

ship heading 45 degrees (V AR(x

nc

) in Eq. (4.13))

Ship Speed(m/sec) Range(m

2

) Cross-range(m

2

)

Monte-Carlo Eq. (4.4) Monte-Carlo Eq. (4.4)

v = 0 2.1748 2.0366 3.62e-8 2.91e-11

v = 4 2.0835 1.9200 5.5973 4.8840

v = 8 2.3991 2.2799 14.2874 12.3754

Table 4.3: Centroid estimation variance for subaperture integration time 0.3sec and

ship heading 90 degrees (V AR(x

nc

) in Eq. (4.13))

Ship Speed(m/sec) Range(m

2

) Cross-range(m

2

)

Monte-Carlo Monte-Carlo

v = 0 0.0204 2.4685

v = 4 0.0205 2.6831

v = 8 0.0200 2.9136

Table 4.4: Centroid estimation variance for subaperture integration time 1.5sec and

ship heading 0 degrees (V AR(x

nc

) in Eq. (4.13)). The analytical centroid estimation

variance (Eq. (4.4)) in range and cross-range dimension at v = 0 is 0.0200m

2

and

2.3248m

2

respectively.
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Ship Speed(m/sec) Range(m

2

) Cross-range(m

2

)

Monte-Carlo Monte-Carlo

v = 0 0.4350 1.1467

v = 4 0.3775 1.5588

v = 8 0.5055 2.7804

Table 4.5: Centroid estimation variance for subaperture integration time 1.5sec and

ship heading 45 degrees (V AR(x

nc

) in Eq. (4.13)). The analytical centroid estimation

variance (Eq. (4.4)) in range and cross-range dimension at v = 0 is 0.3901m

2

and

1.0370m

2

respectively.

Ship Speed(m/sec) Range(m

2

) Cross-range(m

2

)

Monte-Carlo Monte-Carlo

v = 0 0.6250 0.0889

v = 4 0.5137 1.0302

v = 8 0.7570 3.2884

Table 4.6: Centroid estimation variance for subaperture integration time 1.5sec and

ship heading 90 degrees (V AR(x

nc

) in Eq. (4.13)). The analytical centroid estimation

variance (Eq. (4.4)) in range and cross-range dimension at v = 0 is 0.5954m

2

and

0.0809m

2

respectively.
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Figure 4.1: Images of ship with heading of 0 degrees and integration time 0.3sec
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Figure 4.2: Images of ship with heading of 45 degrees and integration time 0.3sec
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Figure 4.3: Images of ship with heading of 90 degrees and integration time 0.3sec
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Figure 4.4: Images of ship with heading of 0 degrees and integration time 1.5sec
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Figure 4.5: Images of ship with heading of 45 degrees and integration time 1.5sec
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Figure 4.6: Images of ship with heading of 90 degrees and integration time 1.5sec
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Chapter 5

Ship Velocity Estimation

5.1 Introduction

In this chapter, the second and third step in our proposed method, ship velocity

estimation and SAR image restoration, will be examined. A set of ship centroid

estimates can be obtained from the subaperture image sequence. In the following, we

estimate the ship velocity from these centroid estimates recursively using a Kalman

�lter. A general overview of Kalman �lter theory is given �rst. Then the Kalman

�lter model for ship velocity estimation is set up. Since the measurement noise

covariance matrix in our Kalman �lter does not match the true measurement noise,

it is interesting to see whether we can still estimate the ship velocity well by the

Kalman �lter. Finally, SAR image restoration using the estimated ship velocity will

be investigated.

5.2 Discrete Linear Kalman Filter

Kalman �ltering is an optimal state estimation process applied to a dynamic system

that involves random perturbations. Quoting Chui[7], \the Kalman �lter gives a lin-

ear, unbiased, and minimum error variance recursive algorithm to optimally estimate

the unknown state of a dynamic system from noisy data taken at discrete real-time

intervals". A general overview of the discrete linear Kalman �lter is necessary back-

ground for this chapter. The detailed treatment of Kalman �lter theory can be found
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in [3] [5] [7] [30].

5.2.1 Kalman Filter Algorithm

Consider a linear stochastic system with state equation:

X

t+1

= F

t

X

t

+G

t

U

t

; t = 0; : : : ; (5.1)

and observation (measurement) equation:

Y

t

= H

t

X

t

+ V

t

; t = 0; : : : : (5.2)

X

t

represents the state of the system at time t, and U

t

represents the process noise

or input disturbance to the system at time t. Y

t

is the output of the system at time

t, while V

t

is the observation (measurement) noise at time t.

The problem we want to solve is: we have an observation sequence from the

stochastic system Y

0

; : : : ; Y

t

, and we wish to estimate the state of the systemX

t

from

the observation sequence. The Kalman �lter gives us a solution of how to determine

the optimal estimate

^

X

t

of X

t

. The optimality criterion used in the Kalman �lter is

the minimum-mean-norm-squared-error (MMSE), which can be expressed as

^

X

t

= E

min

fjj

^

X

t

�X

t

jj

2

g: (5:3)

It can be shown that the optimum estimate

^

X

t

is:

^

X

t

= EfX

t

j Y

0

; : : : ; Y

t

g: (5:4)

In the Kalman �lter, it is assumed that the input sequence fU

t

g

1

t=0

and the obser-

vation noise fV

t

g

1

t=0

are independent sequences of independent zero-mean Gaussian

random vectors. It is also assumed that the initial conditionX

0

is a Gaussian random

vector independent of fU

t

g

1

t=0

and fV

t

g

1

t=0

.

With Y

t

0

denoting the sequence Y

0

; : : : ; Y

t

, the estimates of X

t

and X

t+1

given

observations Y

t

0

can be expressed respectively as

^

X

tjt

4

= EfX

t

j Y

t

0

g and

^

X

t+1jt

4

=

EfX

t+1

j Y

t

0

g. With the above assumptions,

^

X

tjt�1

and

^

X

tjt

are given recursively by

the following equations:

^

X

tjt�1

= F

t�1

^

X

t�1jt�1

t = 1; : : : (5.5)
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and

^

X

tjt

=

^

X

tjt�1

+K

t

(Y

t

�H

t

^

X

tjt�1

) t = 1; : : : (5.6)

with the initialization

^

X

0j0

4

= EfX

0

g. The matrixK

t

, called the Kalman gain matrix,

is given by

K

t

= �

tjt�1

H

T

t

(H

t

�

tjt�1

H

T

t

+R

t

)

�1

; (5:7)

where �

tjt�1

4

= COV (X

t

j Y

t�1

0

) is the covariance matrix of the prediction error

X

t

�

^

X

tjt�1

, conditioned on Y

t�1

0

. R

t

4

= COV (V

t

) is the covariance matrix of the

t

th

measurement noise. The role of the Kalman gain can be easily seen from (5.6).

If the Kalman gain is too small, the contribution of the current measurement will

be ignored, and we trust the previous estimate

^

X

tjt�1

much more than we trust the

observation. If the Kalman �lter gain is too large, the �lter will weigh the current

measurement more.

If we use �

tjt

denoting the covariance matrix of the �ltering error X

t

�

^

X

tjt

condi-

tioned on Y

t

0

, �

tjt�1

can be computed jointly with �

tjt

from the following recursion:

�

tjt�1

= F

t�1

�

t�1jt�1

F

T

t�1

+G

t�1

Q

t�1

G

T

t�1

t = 1; : : : (5.8)

�

tjt

= �

tjt�1

�K

t

H

t

�

tjt�1

t = 1; : : : (5.9)

with the initialization �

0j0

4

= COV (X

0

). Matrix Q

t

4

= COV (U

t

) is the covariance

matrix of the tth process noise.

It can be shown that the predicted measurement is

^

Y

tjt�1

= H

t

^

X

tjt�1

; (5:10)

and the covariance matrix of the measurement prediction error Y

t

�

^

Y

tjt�1

, conditioned

on Y

t�1

0

is

S

t

= H

t

�

tjt�1

H

T

t

+R

t

t = 1; : : : (5.11)

The measurement prediction error Y

t

�

^

Y

tjt�1

is also called the innovation sequence.
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5.2.2 Steady-State Kalman Filter

Equations (5.9) and (5.8) can be combined into a single recursion, known as the

discrete-time Riccati equation:

�

t+1jt

= F

t

�

tjt�1

F

T

t

�F

t

K

t

H

t

�

tjt�1

F

T

t

+G

t

Q

t

G

T

t

t = 1; : : : (5.12)

As we can see, the covariance equations (5.9), (5.8) and (5.12) are independent of

the measurements and can be iterated forward o�-line (i.e. , without processing any

measurements).

If the system is time-invariant (F, G and H are constant) and the noises are sta-

tionary (Q andR are constant), then the solution to the Riccati equation will converge

to a positive de�nite matrix

�

� as t!1 if the system is completely controllable and

observable. The resulting constant covariance matrix

�

� yields the steady-state gain

for the Kalman �lter,

�

K =

�

�H

T

(H

�

�H

T

+R)

�1

. Once the steady state is reached,

the Kalman �lter is governed by the time-invariant version.

The observability and controllability of the system are the conditions for the exis-

tence of the steady-state solution. A useful interpretation of this condition is given in

[3]. Observability guarantees the existence of the steady-state solution, and control-

lability causes the steady-state solution to be positive de�nite. The observability and

controllability of the system can be veri�ed as follows [5] [7]. A system with constant

F and H is completely observable if and only if the following matrix M has rank n

where n is the dimension of the state vector X

t

:

M =

2

6

6

6

6

6

6

6

4

H

HF

.

.

.

HF

n�1

3

7

7

7

7

7

7

7

5

: (5:13)

A system with constant F and G is completely controllable if and only if the following

matrix W has rank n, where n is the dimension of the state vector X

t

:

W =

h

G;FG; : : : ;F

n�1

G

i

: (5:14)
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5.2.3 Consistency of State Estimators

State estimator

^

X

tjt

is called consistent if it is unbiased and its state estimation errors

satisfy

Ef[X

t

�

^

X

tjt

][X

t

�

^

X

tjt

]

T

j Y

t

0

g = �

tjt

: (5:15)

That is to say, the estimation errors should be \consistent" with the �lter-calculated

covariance matrix. As we know, the system model consists of the dynamic state

equation, the measurement equation, the initial state, and the statistical properties

of the random noises. If all of these are completely accurate, then (5.15) holds exactly.

In practice, however, all models contain some approximations, and (5.15) may not

hold. For example, we get a sequence of observations from a system. To estimate the

system state, we set up a system model. If our system model is exactly the same as

the true system, then (5.15) will hold. However, if our system model does not match

the true system, (5.15) will not hold. Therefore, (5.15) can be used to check whether

the system model matches the true system.

The most common criteria for consistency of a �lter are [3]:

1. The state errors should be zero-mean (unbiased) and their covariances are com-

patible with the �lter-calculated covariance matrices.

2. The innovations should be zero-mean and their covariances are compatible with

the �lter-calculated covariance matrices.

Denoting the �ltering error as

~

X

t

= X

t

�

^

X

tjt

, we de�ne the normalized state

estimation error squared,

�

t

=

~

X

t

t

�

�1

tjt

~

X

t

: (5:16)

If the �lter is consistent (criterion 1), �

t

has a Chi-square distribution with n degrees

of freedom, where n is the dimension of the state vector X

t

. This criterion can only

be tested by simulation, where the true state is available.

Denoting the measurement prediction error as ~v

t

= Y

t

�

^

Y

tjt�1

, we de�ne the

normalized innovations squared,

�

0

t

= ~v

t

t

S

�1

t

~v

t

: (5:17)
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If the �lter is consistent (criterion 2), �

0

t

has a Chi-square distribution with n

0

degrees

of freedom, where n

0

is the dimension of the measurement vector Y

t

. The normalized

state estimation error squared and normalized innovations squared have no units.

5.3 Kalman Filter for Ship Velocity Estimation

5.3.1 State Equation and Measurement Equation

As we know from Chapter 3, the ship slant range velocity causes a image shift in the

cross-range direction. The amount of shift is v

r

R

0

=V

radar

, where R

0

is the distance

between the radar and the patch center at aperture time t

0

= 0. If the amount

of shift exceeds the size of radar footprint (patch size), the image may be reshifted

by an integral number of patch sizes to satisfy the condition that the ship was in

the radar footprint when it was illuminated by the radar. Therefore, in the cross-

range dimension, the actual ship position is di�erent from its image position if ship

slant range velocity exists. To distinguish between actual ship position and its image

position, we use two sets of coordinates. Coordinates (x

00

; y

00

) denote the actual ship

position, which is the ship position in the slant patch. Coordinates (x

0

; y

0

) denote

the ship image position. Axes x

00

and x

0

denote cross-range direction, while y

00

and y

0

denote range direction. In addition, we let the patch center be the origins of the two

coordinates.

We denote the subaperture integration time as �, the ship slant range velocity as

v

r

, and the ship cross-range velocity as v

c

. If we choose the the image position of the

ship centroid and the ship velocity as the state variables, the state equation is set up

as:
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(5:18)

Since the maneuver strategies of the ship are unknown to us, one way to model the

ship motion is to assume that the ship undergoes random accelerations. We use u

x
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and u

y

to represent the random accelerations in cross-range and range direction. It

is reasonable to assume the accelerations are i.i.d. from subaperture to subaperture,

and are zero-mean Gaussian. It is assumed that u

x

and u

y

are uncorrelated. If

u

x

� N(0; �

2

px

), u

y

� N(0; �

2

py

), the covariance matrix of the process noise Q can be

written as:

Q =

0

B

@

�

2
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0

0 �

2

py

1

C

A

(5:19)

In state equation (5.18), the term �

�

V

radar

R

0

in matrix G re
ects the e�ect of range

velocity on the image cross-range position.

If we choose the ship centroid measurements from the subaperture images as the

measurement variables, then the measurement equation can be set up as:

0

B

@

z

x;n

z

y;n

1

C

A

=

0

B

@

1 0 0 0

0 1 0 0

1

C

A

| {z }

H

0

B

B

B

B

B

B

B

@

x

0

n

y

0

n

v

c;n

v

r;n

1

C

C

C

C

C

C

C

A

+

0

B

@

�

x

�

y

1

C

A

; (5:20)

where z

x;n

and z

y;n

are the centroid measurements in cross-range and range dimension

respectively at subaperture n, and �

x

and �

y

are the ship centroid measurement noises.

We assume that the measurement noises are i.i.d. from subaperture to subaperture,

and are zero-mean Gaussian. It is reasonable to assume that the measurement noise

in range and cross-range �

x

and �

y

are uncorrelated, and �

x

� N(0; �

2

x

), �

y

� N(0; �

2

y

).

The variances of the ship centroid measurement noise �

2

x

and �

2

y

have been investigated

in Chapter 4. The covariance matrix of the measurement noise R can be written as:

R =

0

B

@

�

2

x

0

0 �

2

y

1

C

A

: (5:21)

With the state equation (5.18) and the measurement equation (5.20), we can see

that the system is time-invariant and the noises are stationary. It is easy to show

that both of the matricesM andW in (5.13) and (5.14) have rank 4, thus the system

is completely observable and controllable. As a result, the system has a steady-state

solution.

We remark that the state equation (5.18) holds under a certain assumption. Equa-

tion (5.18) is derived from the equations of ship actual position. For the ship actual
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positions in the subapertures, we have:
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(5:22)
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v

c;n+1
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+ u
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� (5:24)

v

r;n+1

= v

r;n

+ u

y

� (5:25)

For the ship image position, the range image position is the same as the actual

range position. Thus the state equation for the ship range image position in (5.18) is

given by

y

0

n+1

= y

0

n

+ v

r;n

�+

�

2

2

u

y

: (5:26)

However, the cross-range image position is di�erent from the actual cross-range posi-

tion if the ship has slant-range velocity. The relationship between the image position

and the actual position in cross-range dimension can be expressed as:

x

0

= (x

00

�
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D

2

) modulo D �

D

2

; (5:27)

where D is the patch size in cross-range dimension. In (5.27), terms +

D

2

and �

D

2

are added since the patch center is assumed to be origins of coordinates (x

0

; y

0

) and

(x

00

; y

00

). We de�ne A modulo D as:

A modulo D = A� nD; (5:28)

where n is an integer which makes 0 � A+ nD < D.

At subaperture n + 1, the cross-range image position can be expressed as:
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Substituting (5.22) and (5.25) into (5.29), we have
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If we assume that
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then (5.30) can be rewritten as:
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since x

0

n

= (x

00

n

�

v

r;n
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D

2

) modulo D �

D

2

. Equation (5.32) is the state equation

for the ship cross-range image position in (5.18).

The assumption in (5.31) can be rewritten as:

((x

00

n

�

v

r;n

V

radar

R

0

+

D

2

) modulo D + v

c;n

�+

�

2

2

u

x

�

u

y

�

V

radar

R

0

) modulo D

= (x

00

n

�

v

r;n

V

radar

R

0

+

D

2

) modulo D + v

c;n

�+

�

2

2

u

x

�

u

y

�

V

radar

R

0

(5.33)

since (A+ B) modulo D = (A modulo D +B) modulo D. Thus, the assumption in

Equation (5.33) is valid if
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That is to say, the assumption in (5.31) holds if the summation of the ship movement

during � and the perturbation in cross-range � = v
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radar
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0

, does not
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) modulo D exceed region [0,D). This usually holds when j�j

is small compared to D, and (x
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) modulo D is not at the boundary 0

or D.

5.3.2 Simulating Noisy Measurements

In RIG images, the target centers-of-mass are located at the center of the images.

Thus, we cannot get the actual ship centroid measurements from the images produced

by RIG. As a result, the ship centroid measurement from the subaperture images

must be simulated by (5.18) and (5.20). To simulate the noisy measurement, we

have to determine the process noise covariance matrix Q and the measurement noise

covariance matrix R.

The process noise covariance matrix and the measurement noise covariance matrix

play important roles in the overall performance of a Kalman �lter. The Kalman gain is

directly proportional to the process noise covariance matrix and inversely proportional
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to the measurement noise covariance matrix. This makes sense because if we do not

trust our state model, then Q will be large. A large Q will increase the Kalman

gain, which will force the �lter to weigh the measurement more. Conversely, if the

measurements are very noisy, then R will be large. A large R will decrease the

Kalman gain, which will allow the �lter to weigh the measurement less. Therefore, it

is important to estimate both the Q and R accurately.

However, the \proper amount" of process noise is application-dependent and no

systematic procedure exists for determining it. In our study, the ship is assumed to

be moving at a nearly constant velocity. Thus we choose the variances of the random

accelerations in range and cross-range to be very small, which is 1 � 10

�8

m

2

=sec

2

.

Therefore,

Q =

0
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1� 10
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0

0 1� 10
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1
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: (5:35)

The variances of the ship centroid measurement noise have been given in Chapter

4. The measurement noise is caused by two sources, one is the image noise (the image

pixel intensity is noisy), and the other is the image resolution. The measurement noise

from image noise is a�ected by the statistical properties of the ship pixel intensity,

the ship shape, and the ship velocity. Therefore, the centroid measurement noise vari-

ances may vary from subaperture to subaperture. However, in our study, it is assumed

that the ship rotational motion is small enough to be ignored. Thus the ship shape in

the subaperture image sequence does not change signi�cantly, and the centroid mea-

surement noise does not change signi�cantly from subaperture to subaperture with

the same ship velocity. As a result, we can assume that the measurement noise co-

variance matrix is time-invariant. We use the average centroid measurement variance

of the subaperture image sequence to determine the measurement noise covariance

matrix R.

5.3.3 Initialization of Kalman Filter

Recall from Section 5.2.3, a Kalman �lter is called consistent if the state estimation

errors are compatible with the �lter-calculated covariance. To make a Kalman �lter

consistent, it is important for the initial state covariance �

0j0

to re
ect its accuracy
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realistically. If we initialize �

0j0

with a small value, but a large error actually exists

in the initial estimate, then the error will persist for a long time. It is because the

small �

0j0

leads to a low Kalman gain, and thus the new measurement receives a low

weighting.

How can we initialize the Kalman �lter properly if we only have the ship cen-

troid measurements from the subaperture images? A practical way to initialize the

Kalman �lter can be done as follows [3]. We denote the �rst two measurements as

(z

x;�1

; z

y;�1

)

T

and (z

x;0

; z

y;0

)

T

. The initial state estimate
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is:
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The initial covariance matrix �
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is:
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This method guarantees consistency of the Kalman �lter [3].

5.4 Experimental Results for Ship Velocity Esti-

mation

The ship centroid measurement noise is caused by two sources, image noise and

image resolution. As shown in Section 4.9, the measurement noise due to image noise

is related to the statistical properties of image pixel intensity and the ship velocity.

The measurement noises increase with increased ship velocity.

When we simulate the observations, we assume that we know the statistical prop-

erties of the pixel intensities and the ship velocity. Thus, the exact measurement
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ship heading 45 degrees range(m

2

) cross-range(m

2

)

v = 4, 0.3sec integration time 1.0300 4.8133

v = 4, 1.5sec integration time 0.3823 1.6597

v = 8, 0.3sec integration time 1.0750 8.0226

v = 8, 1.5sec integration time 0.5066 2.7503

Table 5.1: Centroid measurement noise variances used in the simulations in this

section (V AR(x

nc

) in Eq. (4.13))

noise variances are used in the measurement noise covariance matrix R when the ob-

servations are simulated. However, when we use a Kalman �lter to estimate the ship

velocity from the observations, it is unreasonable to assume that we know the exact

measurement noises, since it is unreasonable to assume that we know the statistical

properties of image pixel intensities and the ship velocity. Therefore, the centroid

measurement noise due to image resolution is used as the measurement noise in our

Kalman �lter model for the ship velocity estimation. The measurement noise vari-

ances due to image resolution can be easily calculated from the SAR parameters. As

a result, it is necessary to determine how well the Kalman �lter can estimate the

ship velocity when the measurement noise covariance matrix in our model does not

perfectly re
ect the true measurement noise. In addition, we assume that the process

noise covariance matrix can be estimated correctly. That is to say, the same process

noise covariance matrix is used for the observation simulation and in the Kalman

�lter model for ship velocity estimation.

The measurement noise variances, due to image noise, required for the observation

simulations in this section are listed in Table 5.1. The variance in this table is the

average noise variance of the subaperture image sequence, and it is obtained with

300 Monte-Carlo runs. With the SAR parameters in Section 3.4, the integration time

for a high-resolution image is 15.8sec. Thus, there are 53 subaperture images with

subaperture integration time 0.3sec, and 11 subaperture images with subaperture

integration time 1.5sec.
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In Figures 5.1 to 5.20, the performance of a Kalman �lter with both perfect and

imperfect measurement noise are investigated for integration times 0.3sec and 1.5sec,

with ship heading 45 degrees and ship velocity 4m/sec. Figures 5.1 to 5.6 (0.3sec

integration time), and Figures 5.13 to 5.16 (1.5sec integration time) show the results

for the cases in which we assume that the measurement noise is known exactly when

we use the Kalman �lter to estimate the ship velocity. Figures 5.7 to 5.12 (0.3sec

integration time), and Figures 5.17 to 5.20 (1.5sec integration time) show the results

for the cases in which only the measurement noise due to image resolution is used as

the measurement noise for the Kalman �lter. For each case, the bias and the variance

of ship velocity estimation are given. The consistency performance from Monte-Carlo

runs is given for subaperture integration time 0.3sec.

The bias and the variance of the state estimation from Monte-Carlo runs are

calculated as

b =

1

N

N

X

i=1

(x̂

tjt;i

� x

t

) (5:41)

and

v =

1

N

N

X

i=1

(x̂

tjt;i

� x

t

)

2

(5:42)

where N is the number of Monte-Carlo runs, x

t

is the true state value at time t, and

x̂

tjt

is the state estimation.

The consistency of the Kalman �lter is checked from the results of Monte-Carlo

runs. Recall in Section 5.2.3, we de�ne the normalized state estimation error squared

�

t

and the normalized innovations squared �

0

t

. In our simulation, 25 Monte-Carlo runs

are conducted. Thus 25 independent samples of the random variable �

t

and �

0

t

are

obtained for every t.

The sample mean of the normalized state estimation error squared is:

��

t

=

1

25

25

X

i=1

�

i

t

: (5:43)

In our Kalman �lter model, the dimension of the state vector is 4. Therefore, if the

state estimation errors are consistent with �lter-calculated covariances,

P

25

i=1

�

i

t

should

have a Chi-square density with 25 � 4 = 100 degrees of freedom. For a 100-degree-

of-freedom Chi-square random variable, the 95% con�dence region is

Pf�

2

100

2 [74:2; 129:6]g = 0:95: (5:44)
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Dividing the above results by 25, the 95% con�dence region for ��

t

is [2:968; 5:184].

The sample mean of the normalized innovations squared is:

��

0

t

=

1

25

25

X

i=1

�

0i

t

: (5:45)

In our Kalman �lter model, the dimension of the measurement vector is 2. Therefore,

if the �lter is consistent,

P

25

i=1

�

0i

t

should be Chi-square distributed with 25 � 2 = 50

degrees of freedom, For a 50-degree-of-freedom Chi-square random variable, the 95%

con�dence region is

Pf�

2

50

2 [32:3; 71:4]g = 0:95: (5:46)

Dividing the above results by 25, the 95% con�dence region for ��

t

is [1:292; 2:856].

From Figures 5.1 to 5.4 and Figures 5.13 to 5.16, we can see that with perfect

measurement noise, the Kalman �lter can estimate the ship velocity well. The bias

and the variance of the velocity estimation from 100 Monte-Carlo runs are close to

zero after some frames. The velocity estimation variance from 100 Monte-Carlo runs

matches with the �lter-calculated variance in Figures 5.3, 5.4, 5.15 and 5.16. The

consistency of the Kalman �lter is veri�ed by Figures 5.5 and 5.6, which show the

average normalized state error squared and innovation squared from 25 Monte-Carlo

runs. The dotted lines indicate the 95% con�dence region, and we can see that almost

all the points fall inside the con�dence region.

From Figures 5.7 to 5.10 and Figures 5.17 to 5.20, we can see that with imperfect

measurement noise, the Kalman �lter can still estimate the ship velocity well, since

the bias and the variance of the velocity estimation from 100 Monte-Carlo runs are

close to zero after some frames. However, from Figures 5.9, 5.10, 5.19 and 5.20,

we can see that the velocity estimation variance from 100 Monte-Carlo runs does

not match the �lter-calculated variance. The inconsistency of the Kalman �lter is

veri�ed by Figures 5.11 and 5.12, which show the average normalized state error

squared and innovation squared from 25 Monte-Carlo runs. The dotted lines indicate

the 95% con�dence region, and we can see that all the points fall far away outside the

con�dence region, indicating a mismatch between our Kalman �lter model and the

true system. This inconsistency is because the measurement noise covariance matrix

in our system model does not re
ect the true measurement noise.
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In Figures 5.10 and 5.20, for the cross-range velocity estimation, the mismatch

between the variance from the Monte-Carlo runs and the �lter-calculated variance is

not that obvious. This is because the cross-range resolution in subaperture images is

low, which leads to a large measurement noise. As a result, the measurement noise

caused by image noise is small compared to the noise caused by image resolution,

and the imperfect noise is close to the perfect noise in the cross-range. Thus, the

performance of the mismatched �lter is close to that of a matched �lter for cross-

range velocity estimation.

In Figures 5.21 and 5.22, the ship velocity estimation variances from 100 Monte-

Carlo runs are shown on a log scale for 0.3sec and 1.5sec integration time with im-

perfect measurement noise at ship velocity 4m/sec. There are 53 subaperture images

with the subaperture integration time 0.3sec, and 11 subaperture images with the

subaperture integration time 1.5sec. From Figures 5.21 and 5.22, we can see that the

velocity estimation variances at 11 frames for 1.5sec are smaller than the variances at

53 frames for 0.3sec, when the ship velocity is 4m/sec and ship heading is 45 degrees.

The numerical results are give in Table 5.2.

From Figures 5.21 and 5.22, we can see that with the same frame number, the

velocity estimation variance for the 1.5sec case is smaller than that for the 0.3sec

case. This is because with the same ship velocity, the centroid estimation variance

for 1.5sec is smaller than that for 0.3sec, as we mentioned in the conclusion of Section

4.9. Therefore, there is a tradeo� on how to choose the subaperture integration time.

More ship centroid measurements can be obtained to make the Kalman �lter converge

if we choose a short subaperture integration time. However, the measurement noise

can be reduced if we choose a suitably long subaperture integration time. From Figure

5.21 and 5.22, we can �nd out the proper frame number and subaperture integration

time with the given velocity estimation variances.

In Figure 5.23 and 5.24, the ship velocity estimation variances with di�erent true

ship velocities v = 4m=sec and v = 8m=sec, for 1.5sec subaperture integration time

are given on a log scale. We can see that the smaller the true ship velocity is,

the smaller the estimation variance is, which means the better we can estimate the

velocity. This observation is a result of the conclusion in Section 4.9: with the same
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ship heading is 45 degrees range(m

2

=sec

2

) cross-range(m

2

=sec

2

)

v = 4, 0.3sec int.time, 53 frame 0.0020 0.0546

v = 4, 1.5sec int.time 11 frame 0.0012 0.0149

v = 8, 1.5sec int.time 11 frame 0.0017 0.0195

Table 5.2: Ship velocity estimation variance with imperfect measurement noise from

100 Monte-Carlo runs

subaperture integration time, the smaller the ship velocity is, the smaller the ship

centroid measurement noise variance is. This observation is obvious with cross-range

velocity estimation in Figure 5.24, while not obvious with range velocity estimation in

Figure 5.23. This is because the increase of measurement noise variance in cross-range

is much larger than that in range (see Table 5.1), when the ship velocity increases

from 4m/sec to 8m/sec.

The results in Figures 5.21 to 5.24 and Table 5.2 are from Monte-Carlo runs.

Since our Kalman �lter model for the ship velocity estimation does not match the

true system, it is not necessary to consider the �lter-calculated results.

The conclusions we obtained from this section are:

� Despite a mismatch between the measurement noise in our Kalman �lter and

the true measurement noise, we can still estimate ship velocity well.

� No a priori knowledge of ship velocity is required for the velocity estimation.

� With the same ship velocity, 1.5sec subaperture integration time can achieve

more accurate ship velocity estimation than 0.3sec integration time within

15.8sec.

� With the same subaperture integration time, the smaller the true ship velocity

is, the better we can estimate the velocity. This follows from the conclusion in

Section 4.9: with the same subaperture integration time, the smaller the ship

velocity is, the smaller the ship centroid measurement noise variance is.
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Figure 5.1: The bias of ship slant range velocity estimation at ship speed v=4m/sec

and heading 45 degrees with integration time 0.3sec (100 Monte-Carlo runs with

perfect measurement noise)
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Figure 5.2: The bias of ship cross-range velocity estimation at ship speed v=4m/sec

and heading 45 degrees with integration time 0.3sec (100 Monte-Carlo runs with

perfect measurement noise)
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Figure 5.3: The variance of ship slant range velocity estimation at ship speed

v=4m/sec and heading 45 degrees with integration time 0.3sec (100 Monte-Carlo

runs with perfect measurement noise). The �gure is plotted on a log scale.
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Figure 5.4: The variance of ship cross-range velocity estimation at ship speed

v=4m/sec and heading 45 degrees with integration time 0.3sec (100 Monte-Carlo

runs with perfect measurement noise). The �gure is plotted on a log scale.

78



0 10 20 30 40 50 60 70 80
2.5

3

3.5

4

4.5

5

5.5

frame

no
rm

al
iz

ed
 e

rr
or

 a
ve

ra
ge

Figure 5.5: Average of normalized state error squared from 25 Monte-Carlo runs with

95% con�dence region for integration time 0.3sec, ship speed v=4m/sec and heading

45 degrees, with perfect measurement noise
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Figure 5.6: Average of normalized innovation squared from 25 Monte-Carlo runs with

95% con�dence region for integration time 0.3sec, ship speed v=4m/sec and heading

45 degrees, with perfect measurement noise
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Figure 5.7: The bias of ship slant range velocity estimation at ship speed v=4m/sec

and heading 45 degrees with integration time 0.3sec (100 Monte-Carlo runs with

imperfect measurement noise)
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Figure 5.8: The bias of ship cross range velocity estimation at ship speed v=4m/sec

and heading 45 degrees with integration time 0.3sec (100 Monte-Carlo runs with

imperfect measurement noise)
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Figure 5.9: The variance of ship slant range velocity estimation at ship speed

v=4m/sec and heading 45 degrees with integration time 0.3sec (100 Monte-Carlo

runs with imperfect measurement noise). The �gure is plotted on a log scale.
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Figure 5.10: The variance of ship cross-range velocity estimation at ship speed

v=4m/sec and heading 45 degrees with integration time 0.3sec (100 Monte-Carlo

runs with imperfect measurement noise). The �gure is plotted on a log scale.
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Figure 5.11: Average of normalized state error squared from 25 Monte-Carlo runs

with 95% con�dence region for integration time 0.3sec, ship speed v=4m/sec and

heading 45 degrees, with imperfect measurement noise
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Figure 5.12: Average of normalized innovation squared from 25 Monte-Carlo runs

with 95% con�dence region for integration time 0.3sec, ship speed v=4m/sec and

heading 45 degrees, with imperfect measurement noise
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Figure 5.13: The bias of ship slant range velocity estimation at ship speed v=4m/sec

and heading 45 degrees with integration time 1.5sec (100 Monte-Carlo runs with

perfect measurement noise)
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Figure 5.14: The bias of ship cross-range velocity estimation at ship speed v=4m/sec

and heading 45 degrees with integration time 1.5sec (100 Monte-Carlo runs with

perfect measurement noise)
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Figure 5.15: The variance of ship slant range velocity estimation at ship speed

v=4m/sec and heading 45 degrees with integration time 1.5sec (100 Monte-Carlo

runs with perfect measurement noise). The �gure is plotted on a log scale.
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Figure 5.16: The variance of ship cross-range velocity estimation at ship speed

v=4m/sec and heading 45 degrees with integration time 1.5sec (100 Monte-Carlo

runs with perfect measurement noise). The �gure is plotted on a log scale.
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Figure 5.17: The bias of ship slant range velocity estimation at ship speed v=4m/sec

and heading 45 degrees with integration time 1.5sec (100 Monte-Carlo runs with

imperfect measurement noise)
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Figure 5.18: The bias of ship cross range velocity estimation at ship speed v=4m/sec

and heading 45 degrees with integration time 1.5sec (100 Monte-Carlo runs with

imperfect measurement noise)
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Figure 5.19: The variance of ship slant range velocity estimation at ship speed

v=4m/sec and heading 45 degrees with integration time 1.5sec (100 Monte-Carlo

runs with imperfect measurement noise). The �gure is plotted on a log scale.
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Figure 5.20: The variance of ship cross-range velocity estimation at ship speed

v=4m/sec and heading 45 degrees with integration time 1.5sec (100 Monte-Carlo

runs with imperfect measurement noise). The �gure is plotted on a log scale.
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Figure 5.21: The comparison of ship slant range velocity estimation variance for

integration time 0.3sec and 1.5sec at ship speed v=4m/sec and heading 45 degrees

(100 Monte-Carlo runs with imperfect measurement noise). The �gure is plotted on

a log scale.
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Figure 5.22: The comparison of ship cross-range velocity estimation variance for

integration time 0.3sec and 1.5sec at ship speed v=4m/sec and heading 45 degrees

(100 Monte-Carlo runs with imperfect measurement noise). The �gure is plotted on

a log scale.
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Figure 5.23: The comparison of ship slant range velocity estimation variance for ship

speed at v=4m/sec and v=8m/sec, heading 45 degrees with integration time 1.5sec

(100 Monte-Carlo runs with imperfect measurement noise). The �gure is plotted on

a log scale.
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Figure 5.24: The comparison of ship cross-range velocity estimation variance for ship

speed at v=4m/sec and v=8m/sec, heading 45 degrees with integration time 1.5sec

(100 Monte-Carlo runs with imperfect measurement noise). The �gure is plotted on

a log scale.
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5.5 Application to Spotlight SAR Image Restora-

tion

In Chapter 3, Equation (3.14) shows that in the phase-history data of smeared images,

the error phase term is a function of ship velocity. Thus, if we have accurate knowledge

of ship velocity, we can compensate the phase error term, and restore the high-

resolution smeared images. In the previous sections, we used a Kalman �lter to

estimate the ship velocity from the ship centroid estimations. In this section, we will

use the estimated ship velocity to compensate the phase error term, and see how well

we can restore the smeared image.

Assume the true ship velocity is v

r

in range and v

c

in cross-range, while the

estimated velocity from the Kalman �lter is v̂

r

and v̂

c

. Recall the phase-history data

for the smeared image can be expressed as:

G

�

(X

0

; Y

0

) = H(X

0

; Y

0

)G(X

0

; Y

0

); (5:47)

where H(X

0

; Y

0

) = e

jv

r

T�

4���

X

0

Y

0

e

V

radar

v

c

R

0

(

T�

4���

)

2

X

02

Y

0

is the phase error term due to ship

motion, and G(X

0
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0

) is the phase-history data of the unsmeared image. To restore

the smeared image, we use the estimated ship velocity to compensate the phase error

term. The compensated phase-history data
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v
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� v̂

c

. H

�

(X

0

; Y

0

) is the residual phase error term. If the estimated ship velocity

is exactly equal to the true velocity, then H

�

(X

0

; Y

0

) = 1, and the compensated

phase-history data

^

G(X

0

; Y

0

) is equal to the phase-history data of the unsmeared

image. However, if the estimated ship velocity from the Kalman �lter is not perfectly

accurate, the residual phase error term H

�

(X

0

; Y

0

) will exist. As a result, we may

not remove the smear completely.
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The restored image ĝ(x

0

; y

0

) can be obtained with the inverse Fourier transform

of the compensated phase-history data
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Therefore, the restored image is the unsmeared image convolved with an error term

which is caused by the inaccuracy of the estimated ship velocity. In Section 5.4, the

variances of ship velocity estimation from the Kalman �lter were obtained. With the

variances of the estimated velocity, we have information concerning �v

r

and �v

c

, and

are able to assess how well we can restore the smeared image.

5.6 Experimental Results for Spotlight SAR Im-

age Restoration

In Section 5.4, we found that we can estimate the ship velocity well by Kalman �l-

ter even with the mismatched measurement noise covariance matrix. Ship velocity

estimation variance was obtained from Monte-Carlo runs. Since the state estima-

tion errors are not consistent with the �lter-calculated covariance matrix, there is no

meaning to use the �lter-calculated variance as the ship velocity estimation variance.

To assess how well we can restore a high-resolution smeared image, we assume the

estimated ship velocities are v̂

r

= v

r

��

vr

and v̂

c

= v

c

��

vc

, where v

r

and v

c

are the true

velocities, �

vr

and �

vc

are the standard deviations of the velocity estimations. Figure

5.25 shows unsmeared and smeared high-resolution images (0:5m � 0:5m resolution

with the parameters in Section 3.4). Figure 5.26 to 5.27 show the results of the

restoration for ship velocity v = 4m=sec and v = 8m=secwith ship heading 45 degrees.

The ship velocity estimation variances are from Table 5.2. The more accurate the

estimated ship velocity is, the better we can restore the smeared image. The resultant

images show that we cannot obtain perfect unsmeared high-resolution images if the

ship velocities are not estimated exactly. However, within the velocity estimation

accuracy from the Kalman �lter, we can restore the smeared images to an extent

which is good enough for ship classi�cation.
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The restored images we obtained contain speckle noise. Speckle reduction tech-

niques in Section 2.8 can be used to improve the resultant image quality.
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Figure 5.25: Images with ship heading 45 degrees and resolution 0:5m � 0:5m
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Figure 5.26: Restored images with ship speed 4m=sec and heading 45 degrees
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Figure 5.27: Restored images with ship speed 8m=sec and heading 45 degrees

94



5.7 Summary

In this chapter, we used a Kalman �lter to estimate ship velocity from ship centroid

estimations of the subaperture images, and then used the estimated ship velocity to

restore the smeared high-resolution SAR image. The results show that even when the

measurement noise covariance matrix in our Kalman �lter does not match the true

measurement noise, we can still estimate the ship velocity well. No a priori knowledge

of ship velocity is required for the ship velocity estimation. The performance of the

Kalman �lter and the conclusions for the velocity estimation have been given in

Section 5.4. Unsmeared high-resolution images can be obtained only if we have an

accurate knowledge of ship velocity. However, within the velocity estimation accuracy

from the Kalman �lter, we may restore the smeared image to an extent which is good

enough for ship classi�cation.
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Chapter 6

Summary

In the �nal chapter, we summarize the research contributions in this thesis, and

propose a number of ways in which this thesis work may be further extended.

6.1 Summary

We �rst recapitulate the problem wanted to solve in this thesis. In spotlight mode

SAR, a long integration time is necessary for a high-resolution image. However, if our

imaging target is a moving ship at sea, the ship's motion during the long integration

time will smear the image. How can we get an unsmeared, high-resolution spotlight

SAR image? In this thesis, a novel method is provided to solve the problem.

The contributions of this thesis are:

1. A mathematical model of the smear e�ect due to a target's constant transla-

tional motion is derived in Chapter 3 for airborne spotlight SAR. It is found

that in the phase-history domain, the data for a smeared image is equal to the

data for an unsmeared image multiplied by a phase error term. The image

degradation is investigated from the mathematical model �rst, and then con-

�rmed by the simulated images. The relationship between image degradation

and target velocity is quanti�ed.

2. A novel method is developed in Chapters 4 and 5 to achieve motion compen-

sation, and thus obtained unsmeared, high-resolution spotlight SAR images for
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moving ships. In our method, the ship velocity is estimated by a Kalman �l-

ter from ship centroid measurements obtained from subaperture images. The

estimated ship velocity is used to compensate the phase error term in the phase-

history data for a smeared image. Thus, an unsmeared, high-resolution image

can be obtained. No a priori knowledge of ship velocity is required for the

velocity estimation in this method.

In the experiments, a mismatched measurement noise covariance matrix is used

in the Kalman �lter to estimate the ship velocity, since we do not know the true

ship velocity. However, it is shown that we can still estimate the ship velocity

with reasonable accuracy by Kalman �lter with the mismatched measurement

noise. The design implications are that the subaperture integration time may

be optimized using the methods developed in this thesis. In the examples given

in the thesis, the smaller the true ship velocity, the better we can estimate the

ship velocity. In addition, we found that with the same ship velocity, 1.5sec

subaperture integration time can achieve more accurate ship velocity estimates

than a 0.3sec integration time within a 15.8sec total integration time.

3. The variance of target centroids have been analytically derived for both un-

smeared and smeared images in Chapter 4. The derivation for unsmeared im-

ages is more general than the work reported in [4] and [27], while the derivation

for smeared images, to the best of our knowledge, does not appear in the open

literature. These analyses are veri�ed by simulation results from Monte-Carlo

runs.

6.2 Future Work

1. In Chapter 5, the measurement noise covariance matrix in the Kalman �lter

for ship velocity estimation does not re
ect the true measurement noise, since

the true measurement noise is related to the true ship velocity which we do not

know. More work is needed to estimate the ship centroid measurement noise

from the subaperture images, such that the Kalman �lter model re
ects the

true system more closely.
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2. The restored high-resolution ship images from the proposed scheme can be used

as the input to a ship classi�er to enable automatic ship identi�cation.

3. The proposed scheme may be modi�ed to apply to stripmapping SAR im-

ages. Since the image formation of stripmapping SAR is di�erent from that

of spotlight SAR, a mathematical model of smear e�ect due to target motion

in stripmapping SAR has to be derived �rst.

98



Appendix A

Approximation of �u

In this Appendix, the approximation for the slant range variation �u is shown in

detail. The expression of the slant range variation �u is shown in Equation (3.8),

which is
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Both of the terms are expanded by Maclaurin series to second order. The �rst term

is

q

(R

0

+ y

0

+ v

r

t

0

)

2

+ (V

radar

t

0

� v

c

t

0

� x

0

)

2

=

q

(R

0

+ y

0

)

2

+ x

2

0

+ t

0

(R

0

+y

0

)v

r

�x

0

(V

radar

�v

c

)

p

(R

0

+y

0

)

2

+x

2

0

+

t

02

2

v

2

r

+(V

radar

�v

c

)

2

p

(R

0

+y

0

)

2

+x

2

0

�

t

02

2

[(R

0

+y

0

)v

r

�x

0

(V

radar

�v

c

)]

2

[(R

0

+y

0

)

2

+x

2

0

]

3=2

;

and the second term is

q

(R

0

+ y

0

)

2

+ (V

radar

t

0

� x

0

)

2

=

q

(R

0

+ y

0

)

2

+ x

2

0

+ t

0

�x

0

V

radar

p

(R

0

+y

0

)

2

+x

2

0

+

t

02

2

V

2

radar

p

(R

0

+y

0

)

2

+x

2

0

�

t

02

2

(x

0

V

radar

)

2

[(R

0

+y

0

)

2

+x

2

0

]

3=2

:

Therefore, (A.1) is rewritten into:

�u = t

0

(R

0

+ y

0

)v

r

+ x

0

v

c

q

(R

0

+ y

0

)

2

+ x

2

0

+

t

02

2

v

2

r

+ v

2

c

� 2V

radar

v

c

q

(R

0

+ y

0

)

2

+ x

2

0

�

t

02

2

(R

0

+ y

0

)

2

v

2

r

� 2v

r

x

0

(R

0

+ y

0

)(V

radar

� v

c

) + x

2

0

v

2

c

� 2x

0

V

radar

v

c

[(R

0

+ y

0

)

2

+ x

2

0

]

3=2

:(A.2)

99



In airborne spotlight SAR collection geometry, R

0

� y

0

and R

0
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0

. If x
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With the approximation in (A.3), (A.2) can be simpli�ed to:
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In airborne spotlight SAR, the patch size is usually relative small. To make sure

that the moving point target is in the patch during the long integration time, we

assume that the target's velocity is small. If V
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, and with the

assumptions on x
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As a result, �u is not related to x

0

and x

0

. Equation (A.5) is the same as Equation

(3.9).

100



Appendix B

Impulse Response Function

In this Appendix, we are going to examine the inverse Fourier transform F
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The 2-D inverse Fourier transform of F (U; V ) is de�ned as
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which can be viewed as two successive 1-D inverse Fourier transforms.
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where the sinc function is de�ned as
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As we can see in (B.9), f(x
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) is shifted in cross-range dimension, which means the

image is shifted by
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Since f(x
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) is of rectangular shape, the image is smeared in cross-range dimension as

well, where the smear length is given by
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Calculating the above integral at y

0

= 0 numerically, Figures B.1 and B.2 show

the results with the parameters in Table 3.1. Figure B.1 shows the integral result

for v

c

=0.2m/sec, while Figure B.2 shows the result for v

c

=0.5m/sec. We can see

that there is no image shift in cross-range dimension. However, there is smear in

cross-range dimension, where the smear length is proportional to v

c

.
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Figure B.1: Eq. (B.11) with v
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=0.2m/sec
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Appendix C

Related Calculation in Centroid

Estimation for Smeared Image

In this Appendix, the expressions for E(I

i

),V AR(I
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) and E[(I
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))(I
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� E(I
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))]

are given, which are needed in Section 4.8 for the analysis of the centroid estimation

variance in smeared images.

Recall that I

i

is pixel intensity in smeared images. It is a weighted summation of

pixel intensities in the corresponding unsmeared images as shown in (4.23). Here, we

write down (4.23) again:
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represents the impulse response due to the target motion. fI

0

i

g

N�1

i=0

represents

the unsmeared image pixel intensity with mean intensity fI
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, while fv
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is

the unsmeared complex image. fI
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are independent random variables. From

Section 2.7, we know that
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(C:3)

In addition, if we express v

i

as v

i

= a

i

+ b

i

i, then a

i

and b

i

are independent and

zero-mean Gaussian random variables with equal variance I
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=2. We denote a
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and b
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� N(0; I

0

i0

=2).
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C.1 E(I
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)

From (C.1) and (C.2), we have
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Since a
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As a result, (C.4) becomes
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C.2 V AR(I
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With the expression of E(I
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To �nd out the second term in (C.9), we suppose h
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Recall that for a zero-mean Gaussian random variable x � N(0; �
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With the same reason, we have
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As a result, the second term in (C.9) becomes
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Since I
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are independent, the third term in (C.9)

E[(I

0

k

� I

0

k0

)(I

0

j

� I

0

j0

)] = 0: (C:15)

With v

k1

,v

k2

,v

j1

and v

j2

are independent random variables, it can be shown that the

fourth and �fth term in (C.9) are

E(Re[h

k1

h

�

k2

v

k1

v

�

k2

]Re[h

j1

h

�

j2

v

j1

v

�

j2

]) = 0 (C:16)

107



and

Ef(I

0

l

� I

0

l0

)Re[h

k

h

�

j

v

k

v

�

j

]g = 0: (C:17)

Therefore, V AR(I
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Due to the independence of fI
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As a result, (C.21) becomes
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