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Abstract

To meet growing demand for wireless access to voice, data and multimedia traffic,

future generations of wireless networks need to provide heterogenous services with high

data rate and guaranteed quality-of-service (QoS). Many enabling technologies to ensure

QoS have been investigated, including cross-layer admission control, error control and

congestion control.

In this thesis, we study the cross-layer admission control (AC) problem. While previous

research on cross-layer AC policies focuses on single-antenna systems, which does not

capitalize on the significant benefits provided by multiple antenna systems, in this thesis

we investigate cross-layer AC policy for a code-division-multiple-access (CDMA) system

with antenna arrays at the base station (BS). Error control schemes, such as automatic

retransmission request (ARQ), are also exploited to further improve the spectral efficiency.

In the first part of this thesis, a circuit-switched network is considered and an exact out-

age probability is developed, which is then employed to derive the optimal call admission

control (CAC) policy by formulating a constrained semi-Markov decision process (SMDP).

The derived optimal CAC policy can maximize the system throughput with guaranteed QoS

requirements in both physical and network layers.

In the second part, a suboptimal low-complexity CAC policy is proposed based on an

approximate power control feasibility condition (PCFC) and a separate reduced-outage-

probability algorithm. Comparison between optimal and suboptimal CAC policies shows
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that the suboptimal CAC policy can significantly reduce the computational complexity at a

cost of slightly degraded performance.

In the third part, we extend the above research on AC policies to packet-switched net-

works. A novel semi-Markov decision process (SMDP) is formulated by taking into ac-

count ARQ protocols. Packet-level AC policies are then proposed. The proposed packet-

level AC policies exploit the error control capability provided by ARQ schemes, while

simultaneously guaranteeing QoS requirements in the physical and packet levels.

In the fourth part, we propose a CAC policy in a more complicated connection-oriented

packet-switched network, which can guarantee QoS requirements in physical, packet and

call levels. By considering joint optimization across different layers, the proposed optimal

CAC policy provides a flexible way to handle multiple QoS requirements, while at the same

time, maximizing the overall system throughput.
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Chapter 1

Introduction

1.1 Motivation

Recently, there has been significant growth in the use of wireless communications. The suc-

cess of the second-generation (2G) mobile systems, such as GSM, IS-95 and US-TDMA

(IS-136), prompted the development of third-generation (3G) mobile systems [44]. 3G

systems were designed to provide high-data-rate multimedia mobile services with var-

ied quality-of-service (QoS) requirements. The standard requirements specify a data rate

of 384 Kb/s for outdoor devices moving at high speeds, and2 Mbps for devices mov-

ing at pedestrian speeds [22]. During the evolution from 2G to 3G, a range of wire-

less networks and systems, including General Packet Radio Service (GPRS), cdma2000

(www.tiaonline.org), wideband CDMA (WCDMA) [58], WiFi, WiMax, HomeRF, Blue-

tooth and infostations [22], have been developed. Researchers are currently developing

programs for beyond 3G networks.

Future generations of wireless networks will enable heterogeneous services, such as

voice, data, wireless broadband access, video chat, high definition TV content, digital video

broadcasting (DVB) and other streaming services, with QoS constraints and a variety of
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data rates that may even reach up to the order of a gigabit per second [22].

The quality-of-service (QoS) and high data rate requirements for future wireless net-

works [29], together with the rapidly increasing number of mobile subscribers and the de-

mand for multimedia services, pose new technical challenges. The limited radio resource

and hostile wireless communication environment [66], such as multipath fading, interfer-

ence and user mobility, degrade the QoS and as a result further increase the challenges.

Therefore, improving spectrum utilization subject to QoS guarantees is a major design ob-

jective for future wireless networks. To achieve this goal, call admission control (CAC)

is increasingly becoming important, which represents a good compromise between high

resource utilization and satisfactory service provisioning [88].

Various CAC approaches for controlling QoS are proposed in the literature, e.g., [19]

[27] [41] [45] [56], and a comprehensive survey on CAC policies is provided in [4]. In order

to guarantee the QoS requirements in different layers while simultaneously maximizing

the long-term system throughput, it is necessary to perform a joint optimization over the

physical layer and the upper layers, i.e., the CAC policy should be designed across layers.

There are a lot of work on the cross-layer CAC policy design. To mention a few, in [24]

and [73], optimal call admission control policies at the network layer and the power control

in physical layer are discussed for an integrated voice/data DS-CDMA system with a lin-

ear minimum mean-square estimation (LMMSE) receiver. In [88], an effective bandwidth

based CAC scheme is proposed for the uplink of a CDMA cellular system that supports

heterogeneous data traffic with self-similarity [88]. In [99], optimal admission control

schemes are proposed in CDMA networks with variable bit rate packet multimedia traffic.

In [52], a multicriterion reinforcement learning (MCRL)-based adaptive admission control

method is proposed for a low-density parity-check (LDPC) multi-rate multiuser system,

in which the admission control problem with multiple QoS constraints is formulated as a
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multicriterion decision problem, and hence can be solved by the MCRL algorithms.

These algorithms integrate the AC policy design with a specific physical-layer signal

model, and as a result, are able to guarantee QoS requirements while optimizing system

performance across physical and upper layers, which leads to an improved spectral effi-

ciency. However, the above mentioned work on cross-layer CAC design only considers

single antenna systems, which lack the performance benefits provided by multiple antenna

systems [61] [79].

Antenna arrays are one of the key techniques that can mitigate the multipath fading

and interference, and as a result can help to achieve the requirements for high speed data

services in 3G and beyond wireless systems [61]. It has been proven that with multiple

antennas at the transmitter and/or receiver side, spatial diversity as well as capacity gain can

be achieved [5] [11] [26] [33] [39]. When designing CAC policy across different layers, the

significant performance gain in physical layer can lead to a significant performance gain in

upper layers, and as a result, the overall system throughput can be dramatically improved.

Currently, in the literature, the cross-layer CAC design and multiple antenna systems are

investigated separately, and hence the benefits from both techniques are not fully employed.

Another technique to mitigate fading and interference, which leads to an increased ca-

pacity, is automatic retransmission request (ARQ) [36] [74] [90]. An ARQ scheme retrans-

mits an incorrectly received packet until it is correctly received or the maximum number

of retransmissions is reached. ARQ provides an alternative way in improving the sys-

tem throughput and is widely adopted in wireless networks. However, to the best of our

knowledge, no admission control design in the literature incorporates ARQ, which lacks a

powerful error control capability.
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Although antenna arrays, ARQ and cross-layer CAC design are very effective in im-

proving the system performance as well as the spectral efficiency, they are designed indi-

vidually in the existing literature. To fully exploit the benefits provided by these techniques,

we investigate the cross-layer admission control problem in the presence of both antenna

arrays and error control schemes. The objective is to investigate admission control (AC)

policies which maximizes the overall system throughput, while simultaneously guaran-

teeing QoS requirements. The system throughput is defined as the number of correctly

received sessions per unit time. For a circuit-switched network, the termsessiondenotes a

call, while for a packet-switched network, the termsessionrepresents a packet.

1.2 Thesis Overview

This thesis includes seven chapters that investigate the cross-layer admission control prob-

lem for CDMA beamforming systems. Chapter 2 briefly reviews the background and the

related literature, and Chapter 7 summarizes the results and indicates possible future di-

rections. The main body of this thesis consists of Chapters 3-6, which are organized as

follows:

Chapter 3 investigates how to develop an optimal cross-layer CAC policy for multi-

ple antenna systems. With multiple antennas at the base station (BS), spatial filtering is

employed at the receiver to suppress interference, which results in a fluctuating signal-to-

interference ratio (SIR), leading to a non-zero outage probability in the physical layer. In

this chapter, an exact approach is studied to control the outage probability. Based on this

exact approach, an optimal admission control policy is proposed by formulating a con-

strained semi-Markov decision process (SMDP). The proposed CAC policy can maximize

the overall system throughput while simultaneously guaranteeing QoS requirements in both
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physical and network layers.

The above optimal CAC policy requires high computational complexity. In Chapter

4, an approximate approach is studied to control the outage probability, which includes

a linear approximate power control feasibility condition (PCFC) and a separate reduced-

outage-probability (ROP) algorithm. Based on this approximate approach, a suboptimal

call admission control (CAC) policy is proposed. Compared with the optimal CAC policy,

the suboptimal CAC policy can dramatically reduce the complexity with slightly degraded

performance.

In the above two chapters, CAC policies are proposed for circuit-switched networks

in which the resource requirements for each accepted user remain unchanged during the

whole connection. Circuit-switched networks feather the first and the second generation

of wireless communications. With the significant growth of the internet and increasing

demands for wireless data services, packet-switching technology is currently employed to

provide multimedia services to mobile users [88]. In Chapter 5, we investigate admission

control policies for a packet-switched network, in which admission control is performed at

the packet level and a separate call connection is not necessary. Admission control policies

block packets instead of blocking the whole call connection, and as a result, can efficiently

utilize resources for bursty traffic. In this chapter, to take into account the impacts of

a truncated ARQ scheme, a novel semi-Markov decision process (SMDP) formulation is

required. An optimal AC policy as well as a low-complexity suboptimal AC policy are then

discussed.

In Chapter 6, we investigate the admission control problem in a more complicated

connection-oriented packet-switched network. In contrast to the packet-switched network

discussed in Chapter 5, in which the connection for each call is not established and the

QoS requirements in the call level are ignored, in Chapter 6, a connection for each call
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is employed and call level QoS requirements are also taken into account. We propose an

optimal CAC policy which employs the benefits provided by both multiple antennas and

ARQ schemes. The proposed policy is capable of maximizing the system throughput while

simultaneously satisfying all the QoS requirements in the physical layer as well as packet

and call levels.

In this thesis, we focus on a single-cell system, in which the uplink and downlink are

treated in one cell. User mobility, handoff and backbone networks are ignored.

Throughout this thesis, a code-division-multiple-access (CDMA) system is considered,

which has shown promise in mitigating the multipath fading and interference, and as a

result achieves a high capacity. We here consider a CDMA system because of its strong

interaction among different layers, while for frequency-division-multiple-access (FDMA)

and time-division-multiple-access (TDMA) systems, user capacity is determined by fixed

resources such as frequency and time slots, and therefore, CAC design for FDMA/TDMA

systems can be performed relatively independently of the physical layer design. For some

multiple access systems, such as orthogonal frequency-division multiple access (OFDMA),

there may still exist a strong interaction across different layers. For example, user capacity

in an OFDMA system depends on QoS requirements, system parameters and resource al-

location schemes. We remark that the proposed AC policies for CDMA multiple antenna

systems in this thesis can be further extended to FDMA, TDMA, OFDMA as well as other

multiple access systems provided that the user capacity region, i.e., the maximum number

of users that the system can accommodate, is available.

1.3 Contributions

The primary contributions of this thesis are as follows:
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• An exact approach is provided for beamforming systems to ensure the physical layer

QoS, and based on this exact approach, an optimal maximum-throughput CAC policy

is proposed which guarantees QoS requirements in both physical and network layers.

While cross-layer CAC design and multiple antenna systems are extensively studied

in the literature, it is the first time that these two aspects are jointly considered, so

that the benefits provided by both techniques can be fully exploited. In contrast to

existing cross-layer CAC policies, which only optimize network layer performance,

our proposed optimal CAC policy can also optimize the system throughput, which

represents overall system performance across different layers.

• An approximate approach is provided to ensure physical layer QoS, and based on

this approximate approach, a low-complexity suboptimal CAC policy is proposed.

While the optimal CAC policy requires high computational complexity, especially

for this system under consideration that lacks a closed-form analytical expression

for outage probability, the proposed suboptimal CAC policy can dramatically reduce

complexity. This low-complexity suboptimal policy can also be applied to more

general systems, which provides a simple yet effective approach to an otherwise very

complicated problem.

• The packet admission control problem is formulated as a novel semi-Markov decision

process (SMDP) by considering the impacts of ARQ, and based on the formulated

SMDP, packet admission control policies are then derived. While ARQ is widely em-

ployed in practical wireless systems to mitigate transmission errors, in the literature

there is no semi-Markov decision process formulation which incorporates ARQ. Our

formulated SMDP makes it possible to employ the powerful semi-Markov decision

process model to solve the packet-level AC problem for systems utilizing ARQ.
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• An optimal call-level admission control policy is designed for packet switched net-

works. This policy provides a novel framework for joint optimization among multiple

antennas in the physical layer, ARQ schemes in the data-link layer and cross-layer

CAC design in the network layer. As a result, multiple QoS requirements can be

handled more flexibly to achieve maximum system throughput.
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Chapter 2

Background

This chapter briefly reviews the pertinent background and related literature.

2.1 Multiple Access

In communication networks, a multiple access scheme allows several sessions to share the

same communication channel.

Frequency division multiplexing access (FDMA) and time division multiplexing access

(TDMA) are two well-known multiple access approaches which are widely used in nar-

rowband systems such as GSM and IS-136. In FDMA or TDMA, the available channel is

divided into several sub-channels which occupy non-overlapping frequency bands or time

slots. Each sub-channel is assigned to each user upon request. The narrowband network us-

ing FDMA or TDMA can be simplified and approximated by a collection of point-to-point

non-interfering links, and the physical-layer issues are essentially point-to-point ones [83].

FDMA and TDMA systems suffer from some weaknesses. For example, all users are

assumed to transmit continuously, which is not true for circuit-switched voice and bursty

traffic transmission. Also, TDMA and FDMA systems have hard capacity limits, which

depend on the number of frequency bands or time slots. To mitigate these weaknesses,
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CDMA and OFDMA are proposed and are widely used in current and future envisioned

wireless networks, in which all transmitted signals are spread across the available band-

width. The key feature of these systems is universal frequency reuse: the same frequency

band is used in every cell [83], and different users are not necessarily occupying orthogonal

sub-channels.

For a CDMA system, which is based on direct-sequence spread-spectrum, a user’s in-

formation stream is modulated by pseudonoise sequences. Each communication will be

allocated the entire spectrum all of the time. CDMA uses codes to identify individual

transmission sessions. In CDMA systems, interference is the most significant factor in de-

termining system capacity and call quality. Any techniques which can suppress interference

can increase capacity. Therefore, CDMA systems have a soft capacity.

In an OFDMA system, on the other hand, a user’s information is spread by hopping in

the time-frequency grid and the transmissions within a cell can be kept orthogonal. How-

ever, adjacent cells share the same bandwidth and inter-cell interference exists [83].

In the above, we have discussed dedicated channel assignment methods, in which each

user can be assigned a different channel for some period of time. However, some users

do not require continuous transmission, so dedicated channelization can be extremely in-

efficient from a resource utilization viewpoint. An alternative to overcome this disadvan-

tage is random access [59]. In random access, the multiple users compete for a set of

channels [63]. The signals from different users may be transmitted simultaneously over

the same channel. Since these signals are not distinguished by specific time slot, fre-

quency band, code sequences or spatial filtering via beam-forming, the receiver cannot

separate them. As a result, when more than one user attempts to use the same channel

simultaneously, these transmissions collide and interfere with one another. When a colli-

sion occurs, the information is lost and must be re-transmitted. To resolve conflicts, and
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minimize re-transmissions and delay, protocols are needed to handle the random access

and re-transmission. Some typical protocols are Aloha [2], slotted Aloha [17], as well as

CSMA/CD (carrier sense multiple access with collision detection) [48]. Discussion of the

stability issues of random access protocols can be found in [3].

2.2 CDMA

In FDMA and TDMA systems, the available channel is partitioned into independent single-

user sub-channels, and as a result, a system designed for single-user communications is

directly applicable and no new problems are encountered [63]. For a CDMA system, in-

terference mitigation and power control for one user impact the performance of other users

as well. Therefore, for CDMA systems, there are strong interactions among the design for

different users. In the following, we briefly discuss some related background on CDMA.

2.2.1 Single-user detection and multiuser detection

In CDMA, the transmitted signals from multiple users occupy the same time slots and fre-

quency bands, and are distinguished by non-orthogonal code sequences. At the transmitter,

the signal is spread by unique spreading codes, and then transmitted in a channel, which is

below noise level. The receiver uses a correlator to despread the desired signal. Spreading

codes are noise-like pseudo-random codes. The spreading factor is the ratio of the chip rate

to baseband information rate.
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The receiver can perform independent detection for each user, or joint detection for mul-

tiple users. For independent detection, the receiver only knows the code sequence of the de-

sired user, and regards the signals from all the other users as interference. Independent sig-

nal detection schemes are easy and simple to implement. However, the independent detec-

tion, in combination with tight power control, is only optimal under a white Gaussian noise

model for the multiple-access interference (MAI) [22]. Furthermore, it cannot increase

system capacity with an increase of users [63]. To effectively mitigate interference and

improve channel capacity, significant research has occurred on joint detection, also known

as multi-user detection [62] [86] [87] [89]. In multiuser detection, the code sequences for

all the multiple users are available at the receiver, and the receiver employs the underly-

ing structure of the received spread signals to mitigate the MAI, and as a consequence,

improve the system capacity [89]. An optimal multi-user receiver has exponential com-

putation complexity [63], so sub-optimal multi-user detection methods have been studied,

including the de-correlating detector [64], MMSE detector [63], successive interference

cancellation (SIC) and multistage interference cancellation (MIC) detectors [15] [60] [84].

2.2.2 Voice activity

Voice activity [35] is one of the very important advantages for CDMA, which can be em-

ployed to mitigate the interference and hence increase the capacity.

Voice activity implies that a voice user may transit between an active state (ON-state)

and an inactive state (OFF-state). When the user is at OFF state, i.e., the user is in a silent

period, transmission is suppressed for that user, and the resources allocated to that user

can be temporarily released to other users. Voice activity factor, which represents the time

percentage that a voice user is active, is typically chosen from35%to 40%[13].

With considerations of voice activity, a voice user can be modeled as an ON/OFF
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Markov model. The transition probability from an ON state to an OFF state is denoted

by α, and the transition probability from OFF state to ON state is denoted byβ . The

stationary probability that a voice user is in ON state can be obtained by [99]

Pv =
β

α +β

and the stationary probability that a voice user is in OFF state is1− pv. Among theK1

voice users, the number of state ON users has a Binomial distribution with success ratepv.

2.2.3 Power control

Different from TDMA/FDMA, in which power control can be performed user by user,

power control in CDMA system must be jointly performed for multiple users, since CDMA

systems are interference-limited and suffer from a phenomenon known as the near-far effect

where strong users significantly degrade the performance of the weak users [97].

Reverse link power control methods in 3G WCDMA and cdma2000 include open loop

and closed loop. For open loop power control, a mobile adjusts the transmitted power ac-

cording to its received level from the base station, while closed loop power control includes

inner loop and outer loop power control. Inner loop power control aims to keep the mobile

as close to its target SIR as possible. The uplink outer loop power control is responsible for

setting a target SIR.

In this thesis, we discuss a signal-to-interference ratio (SIR)-based power control in

which the transmitted power for each user is adjusted adaptively to achieve a target SIR.

With a temporally matched filter receiver, i.e., single user detection, the achieved signal-to-

interference ratio at the base-station (BS) for a desired userk can be obtained as

SIRk =
W
Rk

pkh2
k

∑i 6=k pih2
i +η0W

(2.1)
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whereW andRk denote the bandwidth and data rate for desired userk, pi andhi denote

the transmitted power and the channel gain for useri, respectively, andη0 denotes the

one-sided power spectral density of background additive white Gaussian noise (AWGN).

To reduce the interference to other cell, power control scheme aims to minimize the

total transmitted power from all the users while satisfying the QoS requirements in terms

of SIR. As shown in [68], an optimal power solution satisfying the above requirements

should achieve the target SIR with equality, i.e.,

γk =
W
Rk

pkh2
k

∑i 6=k pih2
i +η0W

(2.2)

wherek = 1, ..,K, andγk denotes the target SIR for userk.

By grouping the aboveK equations, we have the following matrix form

[IK−Q]p = u (2.3)

whereIK is a K−dimensional identity matrix, power vectorp = [p1h2
1, .., pKh2

K]t , (.)t de-

notes transpose,

Q =




0 γ1R1
W ... γ1R1

W

γ2R2
W 0 ... γ2R2

W

... ... ... ...

γKRK
W

γKRK
W ... 0




(2.4)

andu is a diagonal matrix with theith element asη0γiRi .

The optimal power solution can be obtained by solving the aboveK equations [68]

pk =
η0W

(1+ W
γkRk

)[1−∑K
i=1

1
1+ W

γiRi

]
(2.5)

wherek = 1, ..,K.
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The positivity of the power solution implies the following power control feasibility

condition
K

∑
i=1

1

1+ W
γiRi

< 1 (2.6)

which limits the maximum number of users that a system can accommodate under the QoS

constraints.

We remark that if the condition in (2.6) holds, we say the system is feasible [94]. In-

equality (2.6) is thus referred to as the power control feasibility condition (PCFC). With

this condition, a positive power solution is always available which can satisfy QoS.

In a practical system, a central power control scheme according to (2.5) may not be

easy to implement, and in this case a distributed power control scheme can be employed,

in which the transmitted power for useri at time instantk+ 1 can be iteratively updated.

According to the Foschini-Miljanic algorithm [34], an iteration function is given as follows

pi(k+1) =
γi

SIRi(k)
pi(k) (2.7)

wherepi(k) andSIRi(k) denote the transmitted power and the received SIR for useri at

time instantk, respectively. For a feasible system, the Foschini-Miljanic algorithm in (2.7)

converges from any initial power to the desired power in (2.5) [94].

In summary, CDMA is interference limited system, and the capacity can be increased

by suppressing the interference. By employing multiuser detection, voice activity, power

control, antenna arrays and any other interference mitigation techniques, much higher sys-

tem capacity can be achieved than that in FDMA and TDMA.
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2.3 Base Station Beamforming

A beamforming performs spatial filtering to separate signals that have overlapping fre-

quency content but originate from different spatial locations [85]. The objective is to esti-

mate the signal arriving from a desired direction in the presence of noise and interfering sig-

nals [85]. With beamforming at the base station (BS), interference can be dramatically sup-

pressed, and as a result, the physical layer performance, in terms of signal-to-interference

ratio (SIR), can be improved. In this section, we briefly review the pertinent background

and literature on beamforming, and then illustrate how the physical layer performance can

be improved by employing antenna arrays at the BS.

2.3.1 Antenna arrays at the BS

To perform beam-forming, knowledge of the array response vector is required at the BS,

which contains the relative phases of the received signals at each array element [93]. For

example, with aM-element circularly antenna array at the BS, the array response vector

for useri, denoted byai , can be written as [93]

ai =

[
1
M

e
j

π cos(θi )
2sin( π

M ) ,
1
M

e
j

π cos(θi−2π/M)
2sin( π

M ) , ..,
1
M

e
j

π cos(θi−2π(M−1)/M)
2sin( π

M )

]t

(2.8)

which j =
√−1 and(.)t denotes transpose. The AoAs for different users are assumed to

be independent and identically uniformly distributed in[0,2π].

At the BS, a beam-forming receiver consists of an array of small non-directional an-

tenna elements, which can simulate a large directional antenna. By varying the amplitudes

and phases of the elements in this array, the main beam of this synthesized directional

antenna can be controlled [40]. The combined relative amplitude and phase shift for an
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antenna element is expressed as complex-valued weight or beam-forming weighting coef-

ficient.

Under the assumption that the distance between the desired mobile and the base station

is large relative to the carrier wavelength, the incoming signals from that mobile can be

treated as plane waves. By further assuming that the distance between adjacent antennas is

half of the wavelength, the beam pattern can be derived. Denoteai as the array response

vector for a mobilei with direction of arrivalθk, wk as the beam-forming weight vector

for a desired mobilek with direction of arrivalθd, andM the number of antenna elements

in this array. Once the array response vector is obtained for a particular geometry, the

beam-forming pattern can be created as follows [93],

φ2
ik =

∣∣wH
k ai

∣∣2 (2.9)

where(.)H denotes the conjugate transpose, andφ2
ik is the fraction of interfereri’s signal

passed by a desiredk user’s beam-forming weights of the antenna array.

We remark that the above beam pattern can be modified to include mutual coupling and

scattering [93]. For a desired userk, when mutual coupling and scattering are taken into

account, Equation (2.9) becomes [93]

φ2
ik =

∣∣∣∣
(Z−1wk)H

‖Z−1wk‖
(Y iai)
‖Y iai‖

∣∣∣∣
2

(2.10)

where‖.‖ denotes norm,Z−1 is the inverse of mutual impedance matrixZ [93], andY i

is a diagonal matrix with elements{υir i1, ..,υir iM}, in which υi denotes the path loss and

shadowing effects factor for useri, andr im represents Rayleigh fading random variables for

useri at array elementm , wherem= 1, ..,M, which depends on the given angle spread,M.

The detailed calculation ofφ2
ik can be found in [93].

In this thesis, to highlight the cross-layer design across different layers, we consider
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an environment without mutual coupling and scattering for simplicity. However, cross-

layer CAC design for a beamforming system with mutual coupling and scattering can be

extended straightforward by using beam pattern in (2.10).

The above beam-pattern has a main lobe directed towardsθk. Therefore, the signal

of the desired mobile is easily passed through the beam-pattern while signals from the

interfering mobiles located at other angles-of-arrival are suppressed [93].

There are different ways to choose beamforming weights according to what criterion is

used. Some commonly used criteria for adaptive beam-forming include minimum mean-

square error (MMSE), maximum-SIR and minimum-variance.

2.3.2 Literature review

The use of beamforming in wireless communications has received a lot of interest. Op-

timum combining was studied in [91], and conventional fixed beamforming techniques

are studied in [80]. Power control in beamforming wireless networks has been discussed

in [32] and [96]. In [93], the performance of CDMA systems employing antenna arrays is

investigated under more realistic signal propagation assumptions, where the performance

degradation in digital beamforming due to the combination of mutual coupling, scatter, and

imperfect power control and its impact on uplink CDMA system capacity is quantified.

In [32], the joint problem of power control and beamforming is considered, in which an

algorithm is provided for computing the transmission powers and the beamforming weight

vectors. In [98], two commonly used receiver processing-based interference management

methods: multiuser detection and receiver beamforming have been studied. In [85] an

overview of beamforming is provided from a signal processing perspective. In [57], the ca-

pacity improvement of multicell CDMA cellular system with BS antenna array is studied

for both the downlink and the uplink. In [76], the behavior of smart antennas is explored in
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Figure 2.1. Transmitter and receiver structure for a CDMA beamforming system.

power controlled CDMA systems by analyzing and comparing the performance of optimal

beamforming and spatially matched filter beamforming.

2.3.3 Employing beamforming to improve SIR

Beamforming can improve the SIR as well as channel capacity. In the following, we illus-

trate this point by giving a simple example.

Consider a CDMA beamforming system which hasM antennas at the BS and a single

antenna for each user. A temporal matched-filter receiver is employed at the base station.

Suppose there areK active users in the system, and a channel with slow fading is assumed.

The transmitter-receiver structure is presented in Figure 2.1. The source bit stream is

coded and modulated to an information symbol streambi(t), which has a symbol rate of

R symbols/s. The symbol stream is then spread to a wideband sequence with chip rate

of Rc symbols/s. For useri, the wideband sequence, denoted bysi(t), is given bysi(t) =
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∑nbi(n)ci(t − nT), wherebi(n) is the coded symbol stream, andci(t) is the spreading

sequence. The spread signal,si(t), multiplied by
√

Pi , is then transmitted over the fading

channel, wherePi denotes the transmitted power for useri which is decided by power

control scheme.

We assume the signature sequences of the interfering users appear as mutually uncorre-

lated noise. As shown in [32], the received signal-to-interference ratio (SIR) for a desired

userk can be written as

SIRk =
W
Rk

pkφ2
kk

∑i 6=k piφ2
ik +η0W

(2.11)

whereW andRk denote the bandwidth and data rate for userk, respectively, and the ratio

W
Rk

represents the processing gain;pi = PiG2
i denotes the received power for useri, andη0

denotes the one-sided power spectral density of background additive white Gaussian noise

(AWGN); the parameterφ2
ik is defined in (2.9), which captures the effects of beamforming.

In this thesis, we consider a spatially matched filter receiver, i.e.,wk = ak.

The achieved SIR is a random process depending on the realizations of AoA as well as

beamforming weights. With an increasedM, φ2
ik is reduced, which leads to an improved

SIR. Therefore, increasing the number of antennas at the BS can suppress the interference,

and as a result, increase capacity.

2.4 Layered Architecture

Traditionally, a wireless network is organized as a series of relatively independent layers.

The purpose of each layer is to offer certain services to the higher layers, shielding those

layers from the details of how the offered services are actually implemented [78]. The

layered architecture makes a network easy to standardize and flexible to update.

Layered architecture has been very successful for wire-line networks, and is the default
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Figure 2.2. Open-system-interconnection (OSI) layered architecture

architecture for wireless networks [46]. A well-known and widely used architecture is

the open system interconnection (OSI) model. The seven-layer OSI structure is shown in

Figure 2.2. In this thesis, we mainly focus on the designs across the lower three layers. The

detail for the other layers can be found in [9].

The physical layer, which is the bottom layer in the OSI architecture, provides trans-

mission, reception and processing of signals [51]. This layer aims to transmit bits over

a communication channel. In wireless networks, the physical layer combats fading with

channel coding, spread-spectrum, and multiple antennas [51].

The QoS in the physical layer can be represented by a target bit-error-rate (BER) or

packet-error-rate (PER), which can be equivalently mapped to a target SIR requirement. In

a wireless communication network, we must allow for outage, defined as the probability

that a target SIR, or equivalently, a target bit-error-rate (BER) or target packet-error-rate

(PER), cannot be satisfied. Therefore, in this thesis, the QoS measurement in the physical
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layer is represented by a target outage probability. We consider two types of outage prob-

ability constraints: worst-state-outage-probability (WSOP) constraint, denoted byρw, and

average-outage-probability (AOP) constraint, denoted byρav. While the WSOP constraint

is very conservative which ensures that at any time instant and at any system state this out-

age probability constraint cannot be violated, the AOP constraint is less restrictive and only

ensures a long-run average outage probability.

The data-link layer lies immediately above the physical layer, which can realize reliable

transmission of groups of bits. The data entering this layer is first broken into groups of

bits, e.g., packet, and overhead bits are added in each group (frame) to ensure error-free

transmission. For multi-access communications, there is a need for a sub-layer to manage

the media access control (MAC), which lies in the data-link layer [9]. Packet-level access

control is performed at the MAC layer.

The layer above the data-link is the network layer, which controls network-related op-

erations. This layer deals with routing, admission control and base station assignment

(handoff). In current cellular wireless networks, the network layer assigns mobile stations

to access points (base stations), and once a mobile is assigned to an access point, all com-

munication occurs with that access point. Therefore, routing is not considered to be a major

problem in cellular wireless networks [51].

The network-layer QoS requirements include call-level QoS and packet-level QoS. The

call-level QoS can be represented by blocking probability and connection delay, while

the packet-level QoS requirements can be characterized by packet delay and packet loss

probability.

As we mentioned previously, layered architecture is the default architecture for wireless

networks. It is being realized that the original layering concept is not very efficient for

wireless networks, due to the fact that wireless channels are dynamically time-varying,
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and have inherent coupling between different layers [28]. Furthermore, the future wireless

communications aim to provide heterogeneous service while satisfying QoS constraints in

all the layers. Obviously, it is difficult for traditional independent-layer-design in wireless

network to meet all the QoS constraints without interactions across layers, or meet the QoS

constraints at a high cost (energy, bandwidth, etc.). This motivates cross-layer design for

wireless networks [22].

2.5 Call Admission Control

When a user requests to access the network, the system decides if the user can be accepted.

This is known as call admission control (CAC).

In cellular wireless communications, CAC is performed by an admission controller at

the mobile switching center (MSC) [100]. Traffic of admitted calls is then controlled by

other radio resource management (RRM) techniques such as scheduling, handoff, power,

and rate control schemes [4]. Without loss of generality, in this thesis, the termuseris not

distinguished from the termcall. For example, when a user generates a voice call and a

data call at the same time, it is considered as twousers, or equivalently, twocalls.

CAC in wireless networks has been receiving a lot of attention, e.g., [6] [8] [19] [23]

[27] [30] [37] [38] [41] [45] [49] [95], due to the growing popularity of wireless commu-

nications and the central role that CAC plays in QoS provisioning in terms of the signal

quality, call blocking and dropping probabilities, packet delay and loss rate, and transmis-

sion rate [4].

There are many ways to categorize the current CAC policies. For example, CAC can

be classified into parameter-based policies and measurement-based policies [4]. For a
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parameter-based policy, the incoming call is admitted or rejected based on some predic-

tive or analytical assessment of the QoS constraints, while for a measurement-based policy,

the incoming call may start transmission by transmitting some probing packets or using re-

duced power, and then deciding if the call can be admitted based on the QoS measurements

during the initial transmission attempt [4].

The various CAC policies proposed for wireless networks can also be categorized into

complete-sharing (CS) based CAC policies, threshold-based CAC policies, and cross-layer

CAC policies [73]. In this thesis, we employ this approach to categorize the CAC policies.

For CS-based CAC policies, the incoming user can be admitted if and only if the phys-

ical layer SIR constraints can be satisfied, while for threshold-based CAC, the incoming

user can be accepted if a system performance related threshold is not exceeded. A cross-

layer CAC policy, which is very different from the above two CAC approaches, makes the

admissibility decisions by solving a constrained optimization problem across layers.

Various CS-based and threshold-based CAC approaches for controlling signal quality

are proposed in the literature. In [19] [27] [41] [45] [56], the incoming call is admitted

if the interference level is less than a predefined threshold value. In [37] [45] [55] [92],

the admission is based on the number of users or resource utilization factor. In [30], the

maximum number of admissible users is determined using the effective bandwidth concept.

In [6] [20], the incoming call is admitted if a feasible power allocation is determined.

In [47] [49] [61], the total transmitted/received power is used as the admission criterion.

For complete-sharing-based CAC policy, e.g., [27] [45] [56], the incoming user is ac-

cepted if and only if the physical layer performance, e.g., signal-to-interference (SIR) ratio,

can be satisfied, in which the users with heterogenous services are not distinguished, and

QoS in network and packet levels are ignored.

For threshold-based policies, e.g., [55] [92], a performance related threshold for each
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traffic class is specified. Whenever this threshold is not exceeded, the incoming user can

be accepted. Although threshold-based policies can distinguish different traffic classes

by selecting thresholds to achieve bounds on outage and blocking probabilities [65], the

threshold-setting process for the different classes is somewhat ad hoc [65], and may per-

form poorly in practice [73].

Recently, the admission control problem of ensuring multiple quality-of-service (QoS)

requirements in different layers is receiving much attention, which motivates the cross-layer

CAC design. In [24] and [73], CAC policies at the network layer and the power control

at the physical layer are jointly designed for a DS-CDMA system with a linear minimum

mean-square estimation (LMMSE) receiver. In [88], an effective bandwidth based CAC

scheme is proposed for a CDMA cellular system that supports heterogeneous data traffic

with self similarity [88]. In [99], optimal CAC schemes are proposed in CDMA networks

with variable bit rate packet multimedia traffic. In [52], a multicriterion reinforcement

learning (MCRL)-based adaptive admission control method is proposed, in which the ad-

mission control problem with multiple QoS constraints is formulated as a multicriterion

decision problem.

Cross-layer CAC policies can be determined by optimizing some objective function

subject to signal quality constraints, and are usually solved by semi-Markov decision pro-

cess (SMDP). In this thesis, we will focus primarily on SMDP-based cross-layer AC design.

2.6 Cross-Layer SMDP-based CAC Policy

Before we discuss how to formulate and solve the CAC problem by a SMDP, we first

need to introduce key definitions related to Markov chains and Markov decision processes

(MDP).
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If the future probabilistic behavior of a process depends only on the present state of the

process and is not influenced by its history, the process has a Markovian property [81]. A

Markov chain [67] is a random sequence in which a Markovian property holds, i.e., the

current state information is sufficient to predict the future stochastic process. A Markov

chain can be employed to represent a dynamic system provided that the next state of the

system depends only on the current state. In practical systems, we may have a dynamic

system evolving over time where the state transition probabilistic law depends on not only

the state, but also on the decision taken at that state. With sequentially made decisions,

costs are also incurred which can represent QoS requirements and performance. With fixed

decision epoches, the above system model is referred to as a Markov decision process

(MDP). In many optimization problems, such as the AC problem investigated in this thesis,

the times between consecutive decision epoches are not identical but are random. In this

case, the system can be modeled by a semi-Markov decision process (SMDP).

In summary, a MDP is a Markov chain with action-dependent transition probabilities,

while a semi-Markov decision process is a random process that changes state in accordance

with a Markov decision process but takes a random amount of time between transitions.

Semi-Markov decision processes (SMDP) occur widely in economics and operations re-

search [65]. For the AC problem we investigate, we track arrival and departure processes

whose instants of initiation are Poisson distributed and whose durations are independent

and exponentially distributed [65]. Then the system state, represented by the number of

users in progress at any time, is a semi-Markov decision process.

A semi-Markov decision process can be employed to model the cellular system [21],

and the CAC problem can be formulated as a SMDP by indicating the following compo-

nents: state, decision epoch, action, dynamic statistics and policy. The SMDP components
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are presented in the following and summarized in Table 2.1. The detailed SMDP formula-

tion can be found in [81].

State space, decision epoch and action space

In the admission problems, the discrete-value (finite) state at timet can be expressed to

include the number of accepted users,

s(t) = [n1
q(t),n

1
s(t), ..,n

J
q(t),n

J
s(t)] (2.12)

wheren j
s(t) andn j

q(t) represent the number of simultaneously transmitting users (number

of servers) and the number of users waiting in the queue of classj at timet, respectively,

j = 1, ..,J, andJ is the total number of user classes. Note that there may be other parameters

in the system state definition. In the above,s(t) denotes the system state at timet. By

dropping the time index, (2.12) also defines a system states.

The state space is defined as the set of all possibles which satisfies some QoS require-

ments. We remark that for the SMDP-based CAC policies there are two ways to guarantee

the QoS requirements: one is to restrict the state space, and another is to add constraints to

the optimization problem.

Decision epochs are defined as the instances when the stochastic processs(t) changes

state. For an admission control problem, decision epoches include the time instances that

arrivals and departures occur.

At each decision epoch, an action is chosen that determines how the admission control

will perform at the next decision moment [24]. In general, an action can be defined as

a = [a1,d1, ..,aJ,dJ]

wherea j denotes the action for classj if an arrival occurs,j = 1, ..,J. If a j = 0, the new

arrival is placed in the buffer provided that the buffer is not full, or is blocked if the buffer is
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full; if a j = 1, the arrival is admitted which can be transmitted immediately, and the number

of servers of classj is increased by one. The quantityd j denotes the action for classj if

a departure occurs. Ifd j = 0, no users that are queued in the buffer are made active, i.e.,

transmitted, and the number of servers in classj is decreased by one; ifd j = 1, maintain

the number of servers by admitting the user at the head of the buffer as an active user.

The action space can be defined as the set of all possible actions,

A = {a : a∈ {0,1}2J}

and for anys∈ S, the admissible action spaceAs is defined as [24]

{a∈ A : a j = 0, if s+(0,0, .., 0,1︸︷︷︸, ..,0,0) /∈ S, and(a1, ..,aJ) 6= (0,0, ..0) if s= (0, ..,0)}
(2.13)

which ensures that after taking this action, the next transition state is still in the feasible

spaceS.

State dynamics

The state dynamics of a SMDP are completely specified by stating the transition probabili-

ties and the expected holding time. The transition probability, denoted bypsy(a), is defined

as the probability that the state at the next decision epoch isy if action a is selected at the

current states. The expected holding time, denoted byτs(a), is the expected time until the

next decision epoch after actiona is chosen in the present states [24].

Policy

For any given states∈S, an actiona, which decides if a new call at the next decision epoch

can be accepted (transmitted), is selected according to a specified policyR. A stationary
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policy R is a function that maps the state space into the admissible action space, where the

class of admission policies can be defined as [99]

R = {R : S→ A|Rs∈ As,∀s∈ S}.

Different policies incur different costs. The average cost criterion employed in this

thesis for a given policyR and initial states0 is given as follows:

JR(s0) = lim
t→∞

1
T

E{
∫ T

0
c(s(t),a(t))dt}

wherec(s(t),a(t)) can be interpreted as the expected cost until the next decision epoch [24].

An optimal policyR∗ should minimize or maximize the above average cost function

JR(s0) for any initial states0 subject to QoS constraints, which can be obtained by analyzing

and solving the above SMDP. There are several approaches to solve SMDP, such as value

iteration, policy iteration and linear programming.

2.7 Data-Link Layer Analysis: Automatic Retransmission

Request

Due to multi-path fading and multiple access interference, wireless channel has strong

error prone characteristics. An efficient way to mitigate transmission error is to apply au-

tomatic retransmission request (ARQ) protocol. An ARQ scheme requests retransmissions

for those packets received in error. Since retransmissions are activated only when neces-

sary, ARQ is quite effective in improving system throughput relative to using only forward

error coding (FEC) at the physical layer [54].

ARQ protocols can be categorized as stop-and-wait ARQ, Go-back-n ARQ, selective

repeat ARQ and ARPanet ARQ, etc [9]. Since only finite delays and buffer sizes can be
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Table 2.1. Components of a SMDP.

SMDP components Definition

State State is the parameter which represents the characters of the system.

In a CAC problem, the state is often represented by the number of

accepted users. A state is feasible if some specific QoS requirements

can be satisfied under this state.

State space State space is the set of all feasible states.

Decision epochs At each decision epoch, the network makes a decision that may occur

in the time interval(tk, tk+1].

Action Action is a decision which indicates if a user can be

accepted or not. An action is admissible if this action ensures that

after taking this action, the next transition state is still in state space.

Admissible action space Admissible action space is the set of admissible actions.

Expected holding time Expected holding time is the expected time until the next decision

epoch after action is chosen in the present state.

Transition probability Transition probability is the probability that the state transits

from one state to another for a specific action at the current state.

Policy Policy is a mapping rule from the state space to the action space,

which is chosen according to some criterion.
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afforded in practice, the maximum number of ARQ retransmissions, denoted byLmax, has

to be bounded, which can be specified by dividing the maximum allowable system delay

over the round trip delay required for each retransmission [54]. To minimize delays and

buffer sizes in practice, in this thesis, we employ a truncated ARQ protocol which has been

widely adopted to limit the maximum number of retransmissions [54]. For a truncated

ARQ scheme, a packet transmits until it is correctly received or the maximum number of

retransmissions is reached. The procedure for a truncated ARQ scheme is presented in

Figure 2.3.

We define two kinds of packet-error-rates (PERs): overall PER and instantaneous PER.

Overall PER, denoted byPERj
overall, is defined as the probability that a classj packet is

incorrectly received after its maximum number of retransmissions is reached, i.e., an error

occurs in each of theL j +1 transmission rounds, whereL j denotes the maximum number

of retransmissions. Instantaneous PER, denoted asPERj
in(l), is defined as the probability

that an error occurs in a single transmission roundl of a classj packet.

Under the assumption that each retransmission round is independent from the others,

the achieved overall PER can be expressed as [54]

PERj
overall =

L j+1

∏
l=1

PERj
in(l)

≤ ρ j (2.14)

whereρ j denotes the target PER for classj.

To ensure the above inequality, we require

PERj
in(l)≤ (ρ j)

1
L j+1 . (2.15)

Obviously, with a given instantaneous PER, the overall PER can be reduced when the
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number of retransmissions is increased. However, with an increased number of retransmis-

sions, delay is also increased due to retransmissions. In general, with an average instan-

taneous PER,pe, j , the average number of transmissions for a classj packet, denoted by

N j
ARQ, can be approximated by

N j
ARQ = (1− pe, j)+2pe, j(1− pe, j)+ ...+L j(pe, j)L j−1(1− pe, j)+(L j +1)(pe, j)L j

= 1+ pe, j +(pe, j)2 + ...+(pe, j)L j−1 +(pe, j)L j .

(2.16)

For a given instantaneous PER, the number of retransmissions,L j , represents the trade-

off between the overall PER and delay.

In the above, we have discussed a standard ARQ protocol, i.e., if a packet cannot be

received correctly, it is discarded and retransmitted [69]. Recently, hybrid ARQ schemes

are attracting a lot of attention [43], in which the receiver combines all transmissions of a

packet to improve the likelihood of decoding success [43]. Hybrid ARQ schemes, e.g., [7]

[16] [53] [82], are capable of improving the spectral efficiency. However, these schemes

may incur high complexity when a cross-layer design is of interest. In this thesis, a standard

ARQ scheme is employed for simplicity, while the extension to hybrid ARQ schemes is left

for future work.

2.8 Summary

In this chapter, we briefly reviewed some related background, in which multiple access,

CDMA, base-station beamforming, layered architecture, call admission control, semi-Markov

decision process and automatic retransmission request are introduced.
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Chapter 3

Maximum-Throughput Optimal Call Admission

Control

3.1 Introduction

Current wireless systems, such as those based on the Universal Mobile Telecommunica-

tions System (UMTS), aim to provide high data-rate multimedia services with guaranteed

quality-of-service (QoS) constraints in physical and network layers. This requires a cross-

layer design of the call admission control (CAC). Previous research on cross-layer CAC

focuses on single-antenna systems, which does not capitalize on the significant benefits

provided by multiple antenna systems. In this chapter, we investigate the admission control

problem for a code-division-multiple-access (CDMA) beamforming system.

For multiple antenna systems, the spatial channel response, parameterized by the angle-

of-arrival (AoA) information, is employed at the receiver to suppress interference. The re-

sulting signal-to-interference ratio (SIR) is a random process determined by the realizations

of AoAs. The large fluctuations in this spatially filtered SIR can lead to a significant outage

probability in the physical layer, defined as the probability that the target SIR cannot be sat-

isfied. Existing methods for cross-layer admission control in the current literature treat the
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SIR as quasi-static and do not work well for multiple antenna systems. Therefore, design-

ing an optimal CAC policy for multiple antenna systems can be a very challenging problem

since the outage probability must be controlled jointly with the network layer operation.

In this chapter, we develop an exact outage probability in the presence of both voice

activity and multiple antennas. Based on this exact outage probability, an optimal CAC

policy is proposed by formulating a constrained semi-Markov decision process. The pro-

posed CAC policy can maintain arbitrary outage probability constraints as well as other

QoS requirements, while simultaneously optimizing the overall system throughput. To the

best of our knowledge, the CAC design which maximizes the overall system throughput

across different layers has not been addressed in the literature.

The rest of this chapter is organized as follows. The signal model and problem formu-

lation are presented in Sections 3.2 and 3.3, respectively. Section 3.4 discusses the physical

layer performance and provides an analytical expression for outage probability. Optimal

CAC policies for single-class and multiple-class systems are proposed in Sections 3.5 and

3.6, respectively. Numerical results are presented in Section 3.7.

3.2 Signal Model

In CDMA systems, the uplink is interference limited while the downlink is power limited.

Usually, the admission requests for uplink and downlink directions are asymmetric and

are treated independently [50]. The model considered in this thesis is for the uplink only.

However, with an appropriate physical layer model for power allocation, the methodology

can be extended to the downlink CAC problem.
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3.2.1 Traffic model

We consider a single-cell CDMA beamforming system which supportsJ classes of users,

characterized by different data rates and QoS requirements. As mentioned in Section 2.5,

in this thesis, the termuseris not distinguished from the termcall.

Without loss of generality, we assume class1 is voice traffic. Voice activity indicatorsκi

can be one or zero corresponding to an active or inactive status. It is assumed that the voice

activity indicators have independent and identical distributions, and the time percentage of

κi = 1 is defined as the voice activity factor, denoted bypv.

The traffic model is shown in Figure 3.1. In the admission control process considered

here, the mobile stations send requests for services to the base station. The base station

queues these requests locally and decides which requests can be accepted. Whenever an

incoming call arrives, the CAC policy implemented at the BS is employed to decide if this

call can be accepted, stored in the buffer, or blocked if the buffer is full. Each class of

users shares a common buffer with sizeB j for class j. The aggregate arrival process for

all user calls is modeled by a Poisson process with arrival rateλ j for each classj, where

j = 1, ..,J. The number of simultaneously accepted users in classj is denoted byn j
s, which

is a random variable. We assume that the time duration of a call follows an exponential

distribution with mean duration1µ j
, and the initial angle-of-arrivals (AoAs) of mobile users

follow a uniform distribution within the service area.

From the above traffic, the total arrival rate is expressed as∑J
j=1λ j , and the total depar-

ture rate is expressed as∑J
j=1n j

sµ j . The overall traffic intensity, denoted byrt , can then be

represented by

rt =
∑J

j=1λ j

∑J
j=1n j

sµ j
.

which depends on the number of simultaneously accepted calls in the system.
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Figure 3.1. Signal model in the network layer.

We remark that if the above assumptions on memoryless Poisson and exponential dis-

tributions do not hold, the CAC problem formulated in this chapter is a generalized semi-

Markov process (GSMP), instead of a semi-Markov decision process (SMDP). While an

optimal solution for this GSMP problem is hard to obtain, the linear programming approach

discussed in this chapter provides a sub-optimal solution to an otherwise very complicated

problem [73].

For a circuit-switched network considered in this chapter, the network layer QoS is

just the call-level QoS, which can be characterized by blocking probability and connection

delay. From Little’s Theorem [9], connection delay can be equivalently represented by the

average number of users waiting in the queue.
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3.2.2 Signal model at the physical layer

We consider a CDMA beamforming system which hasM antennas at the BS and a single

antenna for each user. We assume that there areK accepted users in the system, communi-

cating over a channel with slow fading.

To focus on the CAC design across physical and upper layers, in the following, we

neglect the effects due to multi-path. However, the proposed schemes in this paper can be

extended straightforwardly to the case where multi-path exists, provided that the multi-path

delay profile information can be obtained.

As shown in Chapter 2, with a temporal matched-filter receiver, the received signal-to-

interference ratio (SIR) for a desired userk can be written as

SIRk =
W
Rk

pkφ2
kk

∑i 6=k piφ2
ik +η0W

(3.1)

whereW andRk denote the bandwidth and data rate for userk, respectively, and the ratioWRk

represents the processing gain;pi denotes the received power for useri, andη0 denotes the

one-sided power spectral density of background additive white Gaussian noise (AWGN);

the parameterφ2
ik captures the effects of beamforming, defined asφ2

ik =
∣∣wH

k ai
∣∣2, in which

wk andai denote the weighting factor for a desired userk and the array response vector for

useri, respectively, and(.)H denotes Hermitian. In the following, we consider a spatially

matched filter receiver, i.e.,wk = ak.

The communication reliability in the physical layer can be represented by a target bit-

error-rate (BER) or packet-error-rate (PER), which can be equivalently mapped to a target

SIR requirement. In a wireless communication network, we must allow for outage, defined

as the probability that a target SIR, or equivalently, a target bit-error-rate (BER) or target

packet-error-rate (PER), cannot be satisfied. The QoS measurement in the physical layer is

represented by a target outage probability.
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In this chapter, we consider two types of outage probability constraints: worst-state-

outage-probability (WSOP) constraint, denoted byρw, and average-outage-probability (AOP)

constraint, denoted byρav. While WSOP constraint is very conservative which ensures that

at any time instance and at any system state this outage probability constraint cannot be vi-

olated, the AOP ensures a long-run average outage probability constraint, which may be

more practical.

3.3 Problem Formulation

The overall system throughput, defined as the number of correctly received calls per second,

can be evaluated by [54]

Throughput = ∑
j
(1−P j

b)(1−Pav
out)λ j (3.2)

whereP j
b andPav

out denote the blocking probability for classj and average-outage-probability,

respectively.

In this chapter, we aim to investigate the cross-layer CAC problem which incorporates

the benefits provided by multiple antennas and voice activity. The objective is to maximize

the overall system throughput, while simultaneously guaranteeing QoS requirements in

terms of average-outage-probability, worst-state-outage-probability, blocking probability

and connection delay.

The above optimal CAC problem is a constrained optimization problem, which can be

solved by formulating a semi-Markov decision process [81].
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3.4 Physical Layer Investigation: Outage Probability

This section investigates physical layer performance. We first provide an exact power con-

trol feasibility condition and an exact system state which ensure zero-outage. Then a sim-

plified system state is introduced, which leads to a non-zero outage probability.

3.4.1 Exact power control feasibility condition and system state

With n j
s users for classj, the total number of users in the system, denoted byK, can be

expressed as∑J
j=1n j

s. Letting the SIR for an arbitrary userk, given in (3.1), achieve its

target value, we have

γk =
W
Rk

pkφ2
kk

∑i 6=k piφ2
ik +η0W

(3.3)

in which γk denotes the target SIR for userk, wherek = 1,2, ..,K.

By grouping the aboveK equations, we have the following matrix equation

[IK−QF]p = Qu (3.4)

whereIK is aK−dimensional identity matrix, power vectorp = [p1, .., pK]t , u = η0W[1, ..,1]t ,

(.)t denotes transpose,Q is aK-dimensional diagonal matrix with theith non-zero element

as
γiRi
W

1+ γiRi
W

, andF is aK by K matrix in which the element at theith row and thejth column

can be expressed asFi j =
φ2

i j

φ2
ii
.

To ensure a positive solution for power vectorps, we require the following feasibility

condition [76],

υ(QF) < 1 (3.5)

whereυ(.) denotes the maximum eigenvalue, which is real-valued since the matrices are

symmetric.

We remark that (3.5) represents a sufficient and necessary condition in which the target

SIRs of all users can be satisfied with zero outage probability.
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The exact system state, introduced in Chapter 2, denoted bysexact, which characterizes

the physical layer performance, is defined as

sexact= [n1
q,n

1
s,A1, ..,n

j
q,n

J
s,AJ] (3.6)

wheren j
s andn j

q denote the numbers of users in the system and in the queue, respectively,

andA j denotes a1-by-n j
s matrix which represents the AoA realizations forn j

s users in the

system.

The outage probability for an exact system statesexact can be zero or one depending on

whether (3.5) holds. By appropriately choosing the system states, zero-outage probability

can be guaranteed.

3.4.2 Outage probability for a simplified system state

A system state is feasible if and only if the condition in (3.5) can be satisfied. Due to

randomly distributed initial AoAs and user mobility, the AoA realizations in the above

system state can take any value within, say,[0,2π), and the state space, formed from the

set of all feasible system states, has an infinite dimension. Therefore, a SMDP approach,

which requires a finite-size state space, cannot be applied.

By allowing outage in the physical layer, from here on, we simplify the system state in

(3.6) to

s= [n1
q,n

1
s, ..,n

j
q,n

J
s]. (3.7)

which is independent of AoA and, as a result, leads to a finite-size feasible space. In the

following, system state refers to the above simplified system state.

With this simplified system state, one cannot tell if (3.5) holds, since no AoA real-

izations are specified. Instead, for this simplified state, a non-zero outage probability is
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introduced, which can be expressed as

Pout(s) = Prob{υ(QF)≥ 1}. (3.8)

where Prob{A} denotes the probability of event A.

With voice activity, (3.8) is modified to

Pout(s) =
n1

s

∑
m=0

p(m)Prob{υ(QmFm)≥ 1} (3.9)

whereQm andFm are the parametersQ andF with m active voice users in states, m =

1, ..,n1
s, andp(m) denotes the probability thatm out ofn1

s users are active, expressed as

p(m) =
(

n1
s

m

)
pm

v (1− pv)n1
s−m. (3.10)

As shown in Appendix B, for a single antenna system, the outage probability in (3.9)

can be written in a simplified closed-form as follows

Pout(s) =





1 if n2
s > D2 ∪ n3

s > D2 ∪ ... ∪ nJ
s > DJ

0 if n1
s < D1

(
1−∑J

j=2
n j

s
D j

)

1− I1−pv

(
n1

s−A,A+1
)

otherwise.

(3.11)

where∪ denotes union,D j = 1+ W
γ jRj

, xay denotes the maximum integer less thana, A =

xD1

(
1−∑J

j=2
n j

s
D j

)
y, and Ip(c,b) represents a regularized incomplete beta function with

parametersp,c,b.

For a multiple antenna system, the outage probability in (3.9) is very complicated,

which can be evaluated numerically as

Pout(s) =
n1

s

∑
m=0

p(m)
∫ 2π

0
..

∫ 2π

0
f
(
θ 0

1 , ..,θ 0
N

)
Prob

{
υ(QmFm)≥ 1|θ 0

1 ..θ 0
N

}
dθ 0

1 ..dθ 0
N

(3.12)
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in which θ 0
i is the initial angle of arrival (AoA) for useri, wherei = 1, ..,N andN denotes

the total number of active users, which can be obtained byN = m+∑J
j=2n j

s; f
(
θ 0

1 , ..,θ 0
N

)

denotes the joint probability density function (PDF) ofθ 0
1 , ..,θ 0

N, f (θ 0
i ) denotes the PDF of

θ 0
i , and Prob(A|B) denotes conditional probability.

The above conditional probability in (3.12) can be obtained by time averaging via

Prob{υ(QmFm)≥ 1|θ 0
1 , ..,θ 0

N}= lim
T→∞

1
T

∫ T

0
1−δ

(
1−υ (QmFm(t)) |θ 0

1 , ..,θ 0
N

)
dt (3.13)

whereFm(t) is Fm at timet, and

δ (x) =





1 if x > 0

0 otherwise.
(3.14)

Lacking a closed form analytical expression, the exact outage probability for multiple

antenna systems, given in (3.12), can be very hard to evaluate. In a practical system, the

outage probability can be obtained by time averaging via

Pout(s) = lim
Nr→∞

1
Nr

Nr

∑
i=1

{
1−δ (1−υ(QiF i))

}
(3.15)

whereNr is the number of independent AoA realizations, andQi andF i denoteQ andF

for the ith AoA realization, respectively.

Based on this state outage probability, the worst-state outage probability, denoted by

Pw
out, and the average outage probability, denoted byPav

out, can be expressed, respectively, as

Pw
out = max

s∈S
Pout(s) (3.16)

Pav
out = ∑

s∈S

PsPout(s) (3.17)

wherePs denotes the steady-state probability that the system is at states andS represents

the set of all feasible system states.
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3.5 Optimal CAC Policy for a Single-Class System

Before discussing the optimal CAC problem for multi-class systems, we first derive the op-

timal admission policy for a single-class system, in which all the users have the same QoS

requirements and follow the same transmission rate. Although this single-class assumption

seems impractical in current and future multimedia wireless networks, it provides some

insights for the more complicated multiple service class wireless networks.

For single-class traffic, the optimal CAC policy is simplified to a threshold-based policy.

With a thresholdKth, whenever the number of accepted users reaches this threshold, the

incoming user would be blocked. Therefore, the problem to derive the optimal CAC policy

for a single-class system becomes to find the optimal threshold, denoted byKopt
th , which

maximizes the throughput subject to the WSOP, AOP and blocking probability constraints.

For simplicity, no buffer is employed and the connection delay constraint is ignored here.

For single-class system, the system state, which is a scaler, denoted bys, is just the

number of the total accepted users, and the state space can be expressed as

S= {s;s≤ Kth}. (3.18)

In terms of the physical layer QoS, the outage probability for any statescan be obtained

by (3.9). As presented in (3.16) and (3.17), the average and worst-state outage probabilities

for a given thresholdKth can be derived as

Pav
out = ∑

0≤s≤Kth

PsPout(s)

Pw
out = Pout(Kth) (3.19)

wherePs denotes the steady-state probability, given by [12]

Ps =





(Bv)s
s!

∑
Kth
i=0

(Bv)i
i!

when 0≤ s≤ Kth

0 otherwise.

(3.20)
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whereBv = λ
µ , in which λ andµ represent the arrival and departure rates for voice users,

respectively. We note thatBv represents the traffic load, and can be interpreted as the

arrival-to-departure-rate ratio.

With Poisson arrival and departure, using queuing analysis, the blocking probability for

single-class traffic with thresholdKth can be derived as [12]

Pb =
BKth

v /Kth!

∑Kth
j=0B j

v/ j!
. (3.21)

As shown in (3.2), the overall system throughput with thresholdKth can be expressed

as

Throughput=
Kth

∑
s=0

P(s)(1−Pb)(1−Pout(s)). (3.22)

Inserting Equation (3.21) into (3.22), we obtain the analytical system throughput for a

given threshold as follows

Throughput=
Kth

∑
s=0

P(s)(1− BKth
v /Kth!

∑Kth
j=0B j

v/ j!
)(1−Pout(s)) (3.23)

wherePout(s) is given in (3.9).

Therefore, the optimal threshold can be derived by solving the following optimization

problem

Kopt = arg max
Kth∈K th

Throughput (3.24)

where Throughput is given in (3.23), andK th is given by

K th = {Kth, where ∑
0≤s≤Kth

PsPout(s)≤ ρav,

max
0≤s≤Kth

Pout(s)≤ ρw and
BKth

v /Kth!

∑Kth
j=0B j

v/ j!
≤Ψ}.

(3.25)

With this optimal thresholdKopt, the system throughput can be maximized.
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3.6 Optimal Call Admission Control Policy for Multiple-

Class Networks

In the above, we have shown that the optimal CAC policy for single-class systems can be

simplified to a threshold-based policy. For multiple-class traffic, due to the interaction be-

tween the multiple class traffic and the lack of the analytical results on blocking probability

and steady-state probability, the threshold-based CAC policy cannot be applied.

To derive the optimal CAC policy for multiple-class networks, we need to solve a con-

strained optimization problem as presented in Section 3.3. This constrained optimization

problem can be achieved by formulating the CAC problem as a semi-Markov-decision-

process (SMDP) if the Markovian property holds, and then solved by linear programming

(LP) [24].

3.6.1 SMDP components

We track the arrival and departure processes whose instants are assumed to be Poisson

distributed and whose durations are independent and exponentially distributed [65]. In view

of these assumptions, the system state, describing the total number of users in progress at

any time, has the Markovian property that the future behavior of the process depends only

on the present state and is independent of the past history [81]. In this sense, the CAC

problem can be formulated as a SMDP. A SMDP includes the following components: state

space, decision epoch, action space, dynamic statistics and policy [99]. By considering the

signal model and optimization problem discussed in Section 3.3, the components of our

formulated SMDP can be obtained as follows.
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State space

The state space, denoted byS, includes all the possible state vectorss. The state space

together with the SMDP constraints should ensure the QoS requirements. We express the

QoS requirements in terms of blocking probability, connection delay, AOP and WSOP.

Among the above four QoS requirements, only the WSOP requirement can be guaranteed

by restricting the state space, i.e.,

S=
{

s= [n1
q,n

1
s, ..,n

J
q,n

J
s], wherePout(s)≤ ρw andn j

q≤ B j
}

(3.26)

wherePout(s) is given in (3.9),ρw denotes the WSOP constraint andB j is the buffer size

for classj.

The formulation of the above state space can be summarized as follows:

• Compute the maximum number of accepted users for each class, denoted byMmax
j .

The search procedure forMmax
j is presented in Figure 3.2.

• An enlarged state space, denoted byS̄, can be formulated as

S̄=
{

s= [n1
q,n

1
s, ..,n

J
q,n

J
s] : ns, j ≤Mmax

j ,n j
q≤ B j , for j = 1, ..,J

}
;

• The aboveS̄can be truncated to the desired state spaceSas follows:

– Initialize S= {};

– EvaluatePout(s) for s∈ S̄according to (3.15);

– If Pout(s)≤ ρw, thenS= S+{s}.

• We remark that in the above step, it is unnecessary to evaluate each system state in

S̄, since ifs∈ S, then alls
′ ∈ S̄such thats

′ ≤ sare also inS. Similarly, if s is not inS,

then alls
′ ∈ S̄such thats

′ ≥ s are also not inS.
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Figure 3.2. Search procedure forMmax
j .
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For a system without WSOP constraint, i.e.,ρw = 1, the above state space would have

a size of infinity. To formulate a finite-size state space, as shown in [99], we can limit the

number of users by a large numberG,

S= {s= [n1
q,n

1
s, ..,n

J
q,n

J
s],∑

j
n j

s < G andn j
q≤ B j}

whereG can be decided by the system, which represents a tradeoff between complexity

and performance.

Let s(t) denote the system state at timet, wheres(t) ∈ S. Since the arrivals and depar-

tures are random,{s(t)}t∈IR+ is a finite-size stochastic process [99].

Decision epoch and Action space

Decision epochs are chosen to be the set of all arrival and departure instances. At each

decision epoch,tk, k = 1,2, .., the network takes an action for each possible user arrival or

departure that may occur in the time interval(tk, tk+1]. The action, denoted bya, indicates

if the incoming user or the user waiting in the queue can be transmitted. An actiona is

denoted bya, which can be expressed as

a = [a1,d1..,aJ,dJ] (3.27)

wherea j can be1 or 0, corresponding to decisions of acceptation or rejection, respectively,

andd j can be one or zero, corresponding to decisions of making a user in the queue active

(i.e., transmitted), or maintaining the queue unchanged, respectively.

For anys∈S, the admissible action spaceAs is defined as the set of all possible actions,

which ensures that after taking one action in the admissible action space, the next transition

state is still in state spaceS,

As = {a∈ A : a j = 0, if s+(0, .., 0,1︸︷︷︸, ..,) /∈ S

and(a1, ..,aJ) 6= (0, ..,0) if s= (0, ..,0)}.
(3.28)
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Dynamic statistics

Dynamic statistics can be characterized by expected holding time and transition probability.

The expected holding time, denoted byτs(a), is the expected time until the next decision

epoch after actiona is chosen in the present states. As discussed in [24],τs(a) can be

expressed by the inverse of the cumulative event rate, while the cumulative event rate is

just the sum of the rates for all arrival and departure processes, i.e.,

τs(a) =

(
J

∑
j=1

λ ja j +
J

∑
j=1

λ j(1−a j)δ (B j −n j
q)+

J

∑
j=1

µ jn
j
s

)−1

(3.29)

whereδ (x) is defined in (3.14).

The transition probability, denoted bypsy(a), is the probability that the state at the next

decision epoch isy if actiona is selected at the current states. The decomposition property

of a poisson process can be employed to derive the transition probability, which indicates

that an event of certain type occurs with a probability equal to the ratio between the rate of

that particular type of event and the total cumulative event rate, i.e.,1
τs(a) [24].

By using the decomposition property, the transition probability can be represented by

psy(a) =





λ ja jτs(a) if y = s+ej
s

λ j(1−a j)δ (B j −n j
q)τs(a) if y = s+ej

q

µ jn
j
s(1−d j)τs(a)+ µ jn

j
sd j(1−δ (n j

q))τs(a) if y = s−ej
s

µ jn
j
sd jδ (n j

q)τs(a) if y = s−ej
q

(3.30)

in which ej
s represents a vector with a dimension of2J, which contains only zeros except

for position2 j which contains a1, andej
q represents a vector with a dimension of2J, which

contains only zeros except for position2 j−1 which contains a1.

For each given states∈ S, an actiona∈ As is chosen according to a policyR. A policy

defines a mapping rule from the state space to the action space [99], i.e.,

R= {Rs : S→ A|Rs∈ As,∀s∈ S}.
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whereA denotes the set of all admissible action space.

A brief description of the above SMDP components is summarized in Table 3.1, and a

detailed SMDP formulation can be found in [81].

3.6.2 QoS constraints

As discussed previously, we have QoS constraints in terms of blocking probability, con-

nection delay, average outage probability and worst-state outage probability constraints.

Among the QoS requirements, WSOP constraint can be satisfied by restricting the state

space, and there are blocking probability, connection delay and AOP constraints, which

should be incorporated into the SMDP constraints.

In the following, we take the average cost as the performance criterion. For any policy

R with an initial system states0, wheres0 ∈ S, the achieved long-run blocking probability

for classj, where j = 1, ..,J, can be expressed as

P j
b = lim

T→∞

1
T

E

{∫ T

0
Pb(s(t),a(t))dt

}

≤ Ψ j (3.31)

whereE[.] denotes expectation,Ψ j denotes the blocking probability constraint for classj,

andPb(s(t),a(t)) denotes the expected cost function in terms of blocking probability for

states(t) and actiona(t), which can be obtained as

Pb(s(t),a(t)) = (1−a j(t))(1−δ (B j −n j
q(t))). (3.32)

Similarly, the achieved long-run connection delay can be expressed as

Delayj = lim
T→∞

1
T

E

{∫ T

0
n j

q(t)dt

}

≤ D j , j = 1, ..,J (3.33)

whereD j denotes the connection delay constraint for classj.
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Table 3.1. Formulating the optimal CAC problem as SMDP.

SMDP components Notation Expression for optimal CAC

System state s s= [n1
q,n

1
s, ..,n

J
q,n

J
s].

State space S S=
{

s, wherePout(s)≤ ρw andn j
q ≤ B j

}

whereρw denotes the WSOP constraint

andB j is the buffer size for classj

Decision epochs tk The set of all arrival and departure instances.

Action a a = [a1,d1..,aJ,dJ], wherea j = 1 represents the

decision to accept a classj user, whilea j = 0

represents a rejection;d j(t) can be one or zero,

corresponding to decisions of making a user in the queue active.

Admissible As As = {a : a j = 0, if s+ej
s /∈ S, and

action space (a1, ..,aJ) 6= (0, ..,0) if s= (0, ..,0)},

in whichej
s represents a2J- dimensional vector, which

contains only zeros except for position2 j which contains a1.

Expected τs(a) τs(a) =
(

∑J
j=1 λ ja j +∑J

j=1 λ j(1−a j)δ (B j −n j
q)+∑J

j=1 µ jn
j
s

)−1
.

holding time

Transition psy(a) Given in (3.30).

probability

Policy R R= {Rs : S→ A|Rs∈ As,∀s∈ S}

whereA denotes the set of all admissible action space.

Constraints Pav
out ≤ ρav, Delayj ≤ D j , and P j

b ≤Ψ j .
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The achieved long-run average-outage-probability (AOP) can be represented by

Pav
out = lim

T→∞

1
T

E

{∫ T

0
Pout(s(t))dt

}

≤ ρav (3.34)

whereρav denotes the AOP constraint.

3.6.3 Deriving an optimal policy by solving the SMDP

The policy can be chosen according to a certain performance criterion, such as minimizing-

blocking-probability or maximizing-throughput. Here we aim to find an optimal policyR∗

which maximizes the throughput for any initial system state.

The overall system throughput, defined as the number of correctly received calls per

unit time, can be expressed by

Throughput =
J

∑
j=1

λ j(1−P j
b)(1−Pav

out)

= lim
t→∞

1
T

E

{∫ T

0

J

∑
j=1

λ j(1−Pb(s(t),a(t)))(1−Pout(s(t)))dt

}
(3.35)

wherePb(s(t),a(t)) is given in (3.32).

Under the assumption that the embedded chain is a unichain [81], which is a common

assumption in the CAC problem, an optimal CAC policy exists [99]. For the problem

above, in terms of the decision variableszsa,s∈S,a∈As, the following linear programming

(LP) problem [10] can be formulated as:

max
zsa≥0,s,a

∑
s∈S

∑
a∈As

J

∑
j=1

λ j(1− (1−a j)(1−δ (B j −n j
q)))(1−Pout(s))τs(a)zsa (3.36)

subject to the set of constraints

∑
a∈Am

zma−∑
s∈S

∑
a∈As

psm(a)zsa = 0,m ∈ S (3.37)
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∑
s∈S

∑
a∈As

τs(a)zsa = 1 (3.38)

∑
s∈S

∑
a∈As

(1−a j)(1−δ (B j −n j
q))τs(a)zsa ≤ Ψ j , j = 1, ..,J (3.39)

∑
s∈S

∑
a∈As

n j
qτs(a)zsa ≤ D j , j = 1, ..,J (3.40)

∑
s∈S

∑
a∈As

Pout(s)τs(a)zsa ≤ ρav. (3.41)

In the above LP formulation, the decision variableszsa represent the normalized fre-

quency of taking actiona when the system is in states, i.e.,zsa = Nsa
T , whereNsa denotes

the number of times that the actiona is taken when the system is in statesover a long time

periodT. From the definition ofzsa, it is easy to observe thatτs(a)zsa represents the steady-

state probability that the system is at states and actiona is chosen. The objective function

in (3.36) is to maximize the system throughput, which is obtained from (3.35). The first

constraint is the balance equation, and the second constraint ensures the sum of all the

steady-state probabilities to be one. The latter three constraints represent the QoS require-

ments in terms of blocking probability, connection delay and average-outage-probability,

respectively, which are obtained directly from inequalities (3.31)(3.33)(3.34).

Since the sample path constraints are included in the above linear programming ap-

proach, the optimal policy resulting from the SMDP is a randomized policy [99]: the op-

timal actiona∗ ∈ As for states, whereAs is the admissible action space, is chosen proba-

bilistically according to the probabilitieszsa/∑a∈As zsa.

We remark that the above randomized CAC policy allows for resources to be more

flexibly reserved for potential arriving traffic, and as a result, can optimize the long-run

performance.

54



3.7 Numerical Examples

3.7.1 Simulation parameters

In the following examples, a circular antenna array with a uniformly distributed AoA is

employed at the BS. The total bandwidth isB = 3.84MHz. A two-class system is consid-

ered in which the SIR requirements are given byγ1 = 10 dB andγ2 = 7 dB, and the data

rates are set toR1 = 48 kbps andR2 = 144 kbps, respectively. The arrival and departure

rates for class1 and class2 are denoted byλ1 = 1, λ2 = 0.5, µ1 = 0.25, andµ2 = 0.1375,

respectively. For simplicity, it is assumed that there is no user mobility.

We note that compared with beamforming systems, single antenna systems encounter

an infeasibility problem more easily, i.e., the QoS requirements may not be satisfied by

any CAC policy. Since we aim to quantify the performance difference between single and

multiple antenna systems, this infeasibility situation should be avoided. Therefore, unless

specified, we employ relatively relaxed blocking probability constraints, which are set to

0.25and0.45 for classes 1 and 2, respectively.

The simulation implementation is presented in Appendix A.

3.7.2 Performance for single-voice-class systems

In the following, a single-voice-class system is considered, in which the SIR and rate re-

quirements are given byγ = 10 dB andR= 48 kbps, respectively. Voice activity factor is

set topv = 3/8. The arrival rateλ is 1.

In this example, we aim to illustrate the relationship between the achieved QoS and the

chosen threshold. From (3.17), it is known that the average outage probability depends on

the traffic model. For a heavy traffic, i.e., highBv, the achieved AOP is very close to WSOP.

To illustrate this point, highBv is chosen in the following example. No buffer is employed
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in the system.

Figure 3.3 present the blocking probability, the outage probability and the overall sys-

tem throughput as a function of threshold. DifferentBv are investigated. We observe that

the blocking probability can be reduced dramatically by increasing the threshold, which,

however, increases the outage probability. The threshold should be chosen appropriately

by considering the above impacts.

From Figure 3.3, it is also found that the worst-state-outage-probability remains un-

changed no matter how heavy the traffic load becomes, while the average-outage-probability

strongly depends on the traffic load. For any chosen threshold, the achieved average-

outage-probability is lower than worst-state-outage-probability. However, with an increased

traffic loadBv, the average-outage-probability approaches the worst-state-outage-probability.

When the traffic load exceeds a certain level, e.g.,Bv = 60 in the system we investigate,

the average-outage-probability can be approximated by the worst-state-outage-probability,

since under this high traffic load, the system would stay in the worst-state with a probability

of almost 1.

From Figure 3.3, we also observe that when the threshold exceeds a certain cutoff level,

denoted asLcuto f f, the achieved average outage probability is not monotonically degraded

by the increased threshold. Instead, for a certain traffic load, all states beyond the cutoff

level have very little impact on the achieved-outage-probability. The cutoff level is decided

by the traffic load. For example, whenBv = 10, the cutoff level is around20, while this

cutoff level is increased to60whenBv = 60.

The overall system throughput is also presented in Figure 3.3, which represents the

tradeoff between physical layer and network layer performance. It is observed that there

exists an optimal threshold which can achieve the maximum throughput. For example,

when traffic load is30, with outage probability constraintρw = 0.5, ρav = 0.1, blocking
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probability constraintΨ = 0.1, we have the optimal thresholdKopt
th = 37, which achieves a

maximum throughput of0.83.

3.7.3 Performance for two-class systems

In the above, we have studied the performance for single-class networks. Now we inves-

tigate the long-run average performance in terms of blocking probability, average outage

probability and overall system throughput for two-class networks.

Consider a system in which WSOP is relatively relaxed, e.g.,0.5. This relaxed WSOP

constraint is used to limit state space, and the link reliability is ensured by average-outage-

probability constraint (AOP). We investigate a system with AOP constraint over[10−4,10−2].

Figure 3.4 shows the analytical and simulated performance for a two-antenna system, in

whichP j
b andPav

out denote the achieved blocking probability and average-outage-probability,

respectively. The analytical results are derived from linear programming, while the sim-

ulation results are obtained by Monte-Carlo simulation. It is observed that the simulation

results are very close to the analytical results.

From Figure 3.4, we also observe that the blocking probability for class 1 is not mono-

tonically reduced withρav. Instead, with a relaxedρav from ρav = 10−2 to 5×10−2, the

blocking probability is increased for class 1. This can be explained by the fact that under

this certainρav, although more users can be accepted in the system, to achieve a maxi-

mum throughput, the space should be reserved for class 2 users by blocking more class 1

connections.
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Figure 3.4. Performance comparison between simulation and analytical results withpv = 1.

3.7.4 Comparison between multiple antenna and single antenna sys-

tems

Figure 3.5 compares the analytical performance for single antenna and two-antenna sys-

tems, obtained through linear programming (LP) approach, in whichPb is obtained by

(P1
b +P2

b )/2. It is observed that the system performance can be dramatically improved by

employing antennas at the BS.

As mentioned before, allowing for outage probability in the physical layer can reduce

the overall blocking probability and improve the throughput. For single antenna systems,

the outage is introduced by employing voice activity, while for beamforming systems, out-

age is introduced by both voice activity and randomly distributed AoAs. From Figure 3.5, it

is also observed that allowing outage for multiple antenna systems provides a more flexible
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Figure 3.5. Performance comparison between single antenna and two-antenna systems with

pv = 3/8.

way to handle QoS requirements. For example, when average-outage-probability (AOP)

constraint is relaxed from10−4 to 10−2, the overall blocking probability for single antenna

system can be reduced from0.27 to 0.17, i.e., reduced by37%, while for a two-antenna

sysstem, the blocking probability can be reduced from0.14 to 0.016, i.e., reduced by88%.

3.7.5 Comparison between proposed and existing CAC policies

Table 3.2 presents the simulation results for the proposed SMDP-based CAC policy and an

existing complete-sharing (CS)-based policy, in whichΨ1 = 0.02, Ψ2 = 0.15, ρav = 0.05,

M = 2, B1 = B2 = 0 andpv = 1. For a CS-based CAC policy, an incoming user is accepted

if and only if the exact PCFC can be satisfied.
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From the simulation results, it is observed that a SMDP-based CAC policy can guar-

antee the QoS requirements in terms of blocking probability and outage probability, while

for a CS-based CAC policy, the achieved blocking probability for class 1 is0.04, which

exceeds its constraint of0.02. This can be explained by the fact that a SMDP-based CAC

policy has the capability of flexibly allocating resources according to QoS requirements

and may block some users to reserve spaces for other users, while for a CS-based CAC

policy, the incoming user is accepted whenever there is enough space in the physical layer

and no heterogeneous traffic is distinguished.

In Table3.2, it is also observed that the achieved system throughput for a CS-based pol-

icy is even larger than the maximum-throughput SMDP-based policy. This is because: 1)

The worst-outage-probability constraint is guaranteed for SMDP-based CAC policy, while

no such constraint is imposed for CS-based policy, which relaxes the state space and in-

creases the acceptance probability; 2) For a SMDP-based CAC policy, the information for

AoA realizations is not required at the decision epoch, while for a CS-based CAC, this

information must be exploited to design the policy, which improves the system throughput,

while at the same time also increases the latency.

We remark that for a CS-based CAC policy, the outage probability can be reduced to

zero for a system without user mobility. For a practical system with user mobility, non-zero

outage probability is introduced, and a CS-based CAC policy cannot guarantee the outage

probability constraint, while for a SMDP-based policy, the outage probability evaluation

in (3.9) can be easily extended to include user mobility and QoS in terms of blocking

probability and outage probability can both be satisfied.
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Table 3.2. Comparison between SMDP-based CAC and CS-based CAC policies.

CAC policies P1
b P2

b Pav
out Throughput

CS-based policy 0.0417 0.0742 0 1.4212

SMDP-based policy 0.0197 0.0991 0.0481 1.3619

3.7.6 Numerical example in a practical UMTS system

In the following, we evaluate the performance of the proposed CAC policies using actual

UMTS system [42] parameters. Wideband CDMA (WCDMA) radio access is employed

with a chip rate of3.84 Mcps and we consider two service classes: real-time voice and

video classes. Voice and video sessions can be modeled as independent Poisson arrival pro-

cesses and their durations are assumed to be exponentially distributed. These services are

represented by a constant-bit-rate flow with37.5% voice activity (VA) in circuit-switched

mode over dedicated channels. The maximum data transmission rate for these two classes

are32kbps and128kbps, respectively. As determined by experiment, both voice and video

services have a mean duration of3 minutes [25], corresponding to a departure rate of

0.0056. The arrival rates for class 1 and class 2 users are assumed to be both0.02, re-

spectively.

In Figure 3.6, we compare the performances for single and multiple antenna systems in

which optimal CAC policy is employed,ρw = 0.5 andB1 = B2 = 0. The performances with

and without voice activity are also studied. It is observed that employing voice activity and

multiple antennas can improve the system performance. For example, with a single antenna

at the BS, i.e.,M = 1, employing VA can improve the throughput10%, from0.034to 0.037.

By employing two antennas at the BS, the system throughput can be further improved by

14%, from 0.037to 0.042.
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Figure 3.6. Blocking probabilities, outage probability and system throughput for an optimal

CAC policy.

From Figure 3.6, it is also observed that with voice activity, when the average-outage-

probability (AOP) constraint is relaxed from10−4 to 10−2, the overall blocking probability

for a single antenna system can be reduced by39%, from 0.167to 0.101, while for a two-

antenna system, the blocking probability can be reduced by96%, from 0.064 to 0.0028.

Therefore, as we mentioned previously, relaxing outage constraints in multiple antenna

systems provides a more flexible way to handle QoS requirements.

From this example, we conclude that the proposed optimal CAC policy may perform

well in a practical system.

Throughout the thesis, we employ Matlab optimization toolbox to solve the admission

control policy. The time required to solve the problem strongly depends on the size of

the feasible state space. Table 3.3 presents the sizes of the state space as well as the time
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Table 3.3. Size of feasible state space and CPU time required to solve the LP problem

Size of state spaceCPU time in seconds

Single antenna systems without voice activity 49 1.5

Two-antenna systems without voice activity 143 13

Two-antenna systems with voice activitypv = 3/8 367 87

required to solve the LP problem. It is observed that employing multiple antennas and voice

activity can increase the size of the feasible state space which leads to an increased CPU

processing time. This represents a tradeoff between the improved system performance and

the computational complexity.

3.8 Conclusions

We investigate the cross-layer admission control problem for a CDMA beamforming sys-

tem. A maximum-throughput optimal CAC policy is proposed, which optimizes the long-

term system performance while simultaneously guaranteeing all the QoS requirements.

The proposed optimal CAC policy is capable of achieving a significant performance gain

in terms of blocking probability, outage probability and system throughput, compared with

the case of single antenna systems. The multiple QoS requirements can be flexibly handled

by employing the tradeoff between network and physical layer performance.
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Chapter 4

Low-Complexity Suboptimal Call Admission

Control

4.1 Introduction

In the previous chapter, we have proposed an optimal CAC policy, which can achieve a

maximum system throughput while simultaneously guaranteeing QoS. This optimal CAC

policy requires information on outage probability for each system state. For most systems

of interest, outage probability must be evaluated numerically, which increases the compu-

tational complexity.

In this chapter, we propose a low-complexity sub-optimal CAC policy. In contrast to

the optimal CAC policy in which AOP is ensured by evaluating the outage probability for

each system state and adding a SMDP constraint, the proposed suboptimal CAC policy

guarantees the average outage probability constraint by deriving an approximate power

control feasibility condition (PCFC), which limits the number of users that a system can

accommodate, and then employing a separate reduced-outage-probability (ROP) algorithm.

The rest of this chapter is organized as follows. Signal model and problem formulation

are discussed in Sections 4.2 and 4.3, respectively. In Sections 4.4 and 4.5, the outage
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control is designed which includes the derivation of an approximate PCFC and ROP al-

gorithms. The cross-layer CAC policy is then derived in Section 4.6, and the numerical

results are presented in Section 4.7.

4.2 Signal Model

4.2.1 Traffic model

In this chapter, we consider the same signal model as the one in Chapter 3, i.e., a single-cell

CDMA beamforming system which supportsJ classes of users. Requests for connections

are assumed to be Poisson distributed, with ratesλ j , j = 1, ..,J. The call durations are

assumed to have an exponential distribution with mean duration1
µ j

, j = 1, ..,J. Without

loss of generality, class1 is assumed to be voice class with voice activity factorpv.

Whenever an incoming user arrives, the CAC policy decides if this user can be accepted,

stored in the buffer, or blocked if the buffer is full. Each class of users shares a common

buffer with sizeB j for classj. Network layer QoS is characterized by blocking probability

and connection delay constraints.

4.2.2 Signal model at the physical layer

We consider a CDMA beamforming system which hasM antennas at the BS and a single

antenna for each user. Suppose there areK active users in the system, and a channel with

slow fading is assumed.

As shown in Chapter 3, the received signal-to-interference ratio (SIR) for a desired user

k can be written as

SIRk =
W
Rk

pkφ2
kk

∑i 6=k piφ2
ik +η0W

(4.1)
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whereW andRk denote the bandwidth and data rate for userk, respectively, and the ratio

W
Rk

represents the processing gain;pi = PiG2
i denotes the received power for useri, andη0

denotes the one-sided power spectral density of background additive white Gaussian noise

(AWGN); the parametersφ2
ii andφ2

ik are defined as

φ2
ik =

∣∣wH
k ai

∣∣2 (4.2)

which capture the effects of beamforming. With a spatially matched filter receiver, we have

wk = ak.

Physical layer QoS can be represented by a target average outage probability, denoted

by ρ j
av, where j = 1, ..,J. The achieved outage probability for classj is denoted byP j

out.

4.3 Problem Formulation

In this chapter, we aim to derive a low-complexity CAC policy which can guarantee the

QoS requirements in terms of average outage probability, blocking probability and con-

nection delay, while simultaneously minimizing the blocking probability. We note that

for the suboptimal CAC policy, the system throughput cannot be directly maximized due

to the unavailable information on outage probability. Alternatively, a minimum-blocking-

probability criterion is employed in this chapter, which is equivalent to the maximum-

throughput criterion for a fixed outage probability.

4.4 Power Control Feasibility Condition

For an optimal CAC policy discussed in the previous chapter, to formulate the state space,

the outage probability based on an exact PCFC should be evaluated for each possible state,

which leads to high computation complexity.
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In order to reduce the complexity, we now derive an approximate PCFC to formulate

the state space. This approximate PCFC can be represented by a linear function in terms of

the maximum number of users that the system accommodates, and therefore can achieve a

dramatically reduced complexity.

4.4.1 Approximate PCFC

A system state is defined ass = [n1
q,n

1
s..,n

J
q,n

J
s], wheren j

q andn j
s denote the number of

accepted users in the queue and in the server, respectively. DenoteK j , where j = 1, ..,J, as

the number of active users in classj.

Under the assumption that class1 is the voice class, as discussed previously,K1 has a

Binomial distribution with parameter[n1
s, pv]. The number of active users in classj, where

j = 2, ..,J, is just the number of accepted users in that class, i.e.K j = n j
s.

Without loss of generality, we consider an arbitrary useri in class1, wherei = 1, ..,K1,

the SIR requirements of useri can be written as

SIRi ≥ γi (4.3)

whereγi denotes the target SIR for useri.

By considering specific traffic classes and letting SIR achieve its target value, the ex-

pression in (4.1) can be written as follows,

γi =
piφ2

ii
W
R1

∑K1
l=1,l 6=i pl φ2

il +∑K2
l=1 pl φ2

il + ..∑KJ
l=1 pl φ2

il +σ2

whereσ2 , η0W denotes the noise variance, andpi represents the received power for user

i.

Since users in the same class have the same target SIR requirements, it is reasonable to

assume that the same class users have the same received power. By denoting the received
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power in classj asp j , the above expression can be written as

γi =
p1φ2

ii
W
R1

p1(K1−1)β1 +∑J
j=2 p jK jβ j +σ2

(4.4)

whereβ1 = 1
K1−1 ∑K1

l=1,l 6=i φ
2
il andβ j = 1

K j
∑

K j
l=1φ2

il for j = 2, ..,J.

By exchanging the numerator and denominator, Equation (4.4) is equivalent to

p1(K1−1)β1 +∑J
j=2 p jK jβ j +σ2

p1
W

γ1R1

= φ2
ii (4.5)

wherei = 1, ..,K1.

Summing the aboveK1 equations, and calculating the sample average, we obtain

p1(K1−1)α1 +∑J
j=2K j p jα j +σ2

p1
W

γ1R1

=
1

K1

K1

∑
i=1

φ2
ii (4.6)

whereα1 = 1
K1

∑K1
i=1β1 andα j = 1

K1
∑K1

i=1β j .

When the number of users is large enough, the aboveα1, ..,αJ can be approximated by

their mean values, and (4.6) can be further simplified as

E1[φdes]

=
p1(K1−1)E11[φint ]+∑J

j=2K j p jE1 j [φint ]+σ2

p1
W

γ1R1

(4.7)

in whichEcn[φint ] is the expected fraction of an interferer user in classn passed by a beam-

forming weight vector for a desired user in classc, wherec,n = 1, ..,J, while E j [φdes] is

the expected fraction of a desired user in classj passed by its beamforming weight vector,

where j = 1, ..,J.

The AoAs of active users in the system are assumed to have identically independent

distributions, which are independent of a user’s specific class. Therefore, it is reasonable to

assume thatEcn[φint ] is also independent of specific classesc andn, which can be denoted

by E[φint ]. Similarly, E j [φdes] is independent of classj, and can be denoted byE[φdes].
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E[φdes] andE[φint ] represent the expected fractions of the desired user’s power and inter-

ference, respectively.

From the above discussion, (4.7) can be written as

p1(K1−1)E[φint ]+∑J
j=2K j p jE[φint ]+σ2

p1
W

γ1R1

= E[φdes].

By exchanging the numerator and denominator of the above equation, we have

p1
W

γ1R1

p1(K1−1) E[φint ]
E[φdes]

+∑J
j=2K j p j

E[φint ]
E[φdes]

+ σ2

E[φdes]

= 1.

(4.8)

The QoS requirement for class1 in (4.8) can be extended to any classj,

p j
W

γ jRj

p j(K j −1) E[φint ]
E[φdes]

+∑J
c=1,c6= j Kcpc

E[φint ]
E[φdes]

+ σ2

E[φdes]

= 1 (4.9)

where j = 1, ..,J.

The power solution can be obtained by solving the aboveJ equations [68]

p j =
σ2

E[φint ]

(1+ W

γ jRj
E[φint ]
E[φdes]

)[1−∑J
j=1

K j

1+ W

γ j Rj
E[φint ]
E[φdes]

]
(4.10)

where j = 1, ..,J.

Positivity of power solution implies the following power control feasibility condition

J

∑
j=1

K j

1+ W

γ jRj
E[φint ]
E[φdes]

< 1. (4.11)

As shown in [93],E[φint ] andE[φdes] can be determined numerically for a beamforming

system.

With this condition, the transmitted power for each user can be adjusted to meet the

target SIR requirement. From (4.10), the transmitted power of useri in class j can be
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represented by

pi
j =

σ2

E[φint ]

Gi(1+ W

γ jRj
E[φint ]
E[φdes]

)[1−∑J
j=1

K j

1+ W

γ j Rj
E[φint ]
E[φdes]

]
(4.12)

whereGi denotes the channel gain for useri in class j, wherei = 1, ..,K j , and j = 1, ..,J.

We have derived the power control feasibility condition in terms ofK j , which is the

number of active users for classj, where j = 1, ..,J. In an admission problem, we need

to derive a PCFC in terms ofn j
s, which limits the maximum number of accepted users for

class j, where j = 1, ..,J. In this case, the approximate PCFC in (4.11) can be modified as

follows

n1
spv

1+ W

γ1R1
E[φint ]
E[φdes]

+
J

∑
j=2

n j
s

1+ W

γ jRj
E[φint ]
E[φdes]

< 1. (4.13)

We note that the above approximated power control feasibility condition is independent

of the angle of arrivals, and thus can provide a less-complicated offline-CAC policy, which

does not require the estimation of the current AoA realizations of each user.

4.4.2 Accuracy of the approximate PCFC

In the derivation of the above PCFC, it is assumed that the users in the same class have the

same powers, andα j in (4.6) can be estimated by its mean value. It is obvious that the above

assumptions are reasonable for a large number of users. However, for a randomly arriving

and departing process, the number of users varies with time, and as a result may not be

always large, which impacts the accuracy of the approximate PCFC. With this approximate

PCFC, the instantaneous SIR fluctuates around the target SIR which leads to an outage

probability in the physical layer. Next we discuss how to mitigate the outage probability.
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4.5 ROP Algorithms

In the previous section, we derive an approximate PCFC which limits the maximum number

of users that the system can accommodate. This approximation, however, increases outage

probability. Reduced-outage-probability (ROP) algorithms are then employed to ensure a

target outage probability constraint.

In this section, we propose two simple ROP algorithms, denoted by ROP-I and ROP-II,

respectively, which can reduce the outage probability to a tolerably small level by adjusting

ROP parameters.

4.5.1 ROP-I

The proposed ROP-I algorithm aims to reduce the outage probability by reducing the target

SIR.

For a given transmission scheme with a target bit-error-rate (BER) or packet-error-rate

(PER) requirement, an equivalent target SIR,γ j , j = 1, ..,J, can be obtained. The power

control feasibility condition based on this target SIR,γ j , is shown as follows

n1
spv

1+ W

γ1R1
E[φint ]
E[φdes]

+
J

∑
j=2

n j
s

1+ W

γ jRj
E[φint ]
E[φdes]

< 1. (4.14)

The target transmitted power can be derived according to (4.12). At the transmitter,

instead of using the original transmission scheme with target SIRγ j , the transmitter adjusts

its modulation and coding scheme to reduce the target SIR by a decrease-factor, denoted by

αdec, whereαdec< 1. Without loss of generality, we assume the same decrease-factorαdec

for all users. With an appropriately chosenαdec, the outage probability constraints can be

guaranteed.

Figure 4.1 illustrates the ROP-I algorithm as well as how to choose an appropriate ROP

parameterαdec, in which α0 denotes the initial ROP parameter,P j
out andρ j

av denote the

72



achieved AOP and AOP constraint for classj, respectively,[ρ j
av− ρ̄ j ,ρ j

av+ ρ̄ j ] denotes the

allowed interval on the achieved AOP, and∆ represents the adjustment step for the ROP

parameters. By following the search procedure in Figure 4.1, an appropriateαdec can be

obtained, which can reduce the outage probability to a tolerable level.

We remark that in the case of ROP-I, the network-layer performance remains same with

the decrease ofαdec. Therefore, the outage probability can be reduced to a very small level

without affecting network-layer performance. However, there is a cost in spectral efficiency

due to the enhanced modulation and coding schemes. The tradeoff in ROP-I is between the

power efficiency and spectral efficiency.

4.5.2 ROP-II

The proposed ROP-II algorithm aims to reduce the outage probability by imposing a more

restrictive PCFC, which is based on an increase target SIR. We useαinc ≥ 1 to denote the

increase-factor. For simplicity,αinc is chosen to be the same for all the users. By increasing

the target SIR for classj to αincγ j , the power control feasibility in (4.13) is revised to

n1
spv

1+ W

αincγ1R1
E[φint ]
E[φdes]

+
J

∑
j=2

n j
s

1+ W

αincγ jRj
E[φint ]
E[φdes]

< 1 (4.15)

and the target transmitted power in (4.12) is modified to

pi
j =

σ2

E[φint ]

Gi(1+ W

αincγ jRj
E[φint ]
E[φdes]

)[1−∑J
j=1

K j

1+ W

αincγ j Rj
E[φint ]
E[φdes]

]
. (4.16)

With an appropriately chosenαinc, the outage probability constraint can be satisfied.

The ROP-II algorithm as well as the search procedure forαinc are illustrated in Figure 4.2.

The shortcoming of the proposed ROP-II algorithm is that the network layer perfor-

mance, in terms of blocking probability and connection delay, degrades withαinc. The
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Adjust transmission scheme¾

Figure 4.1. Suboptimal CAC policy based on ROP-I.

parameterαinc represents the tradeoff between network-layer and physical-layer perfor-

mances.

4.6 Suboptimal CAC Policy based on the Approximate PCFC

and ROP

The CAC policy is performed at the BS, and the following information is necessary to de-

rive an admission control policy: traffic model in the system, such as arrival and departure
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Figure 4.2. Suboptimal CAC policy based on ROP-II.
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rate, and QoS requirements in both physical and network layers.

Similar to the optimal CAC policy, the suboptimal CAC policy can be obtained by

formulating and solving a SMDP.

With an appropriately chosen ROP-I parameter,αdec, which is presented in Figure 4.1,

the state space can be rewritten as

S=





s : n j
q≤ B j , j = 1, ..,J;

n1
spv

1+ W

γ1R1
E[φint ]
E[φdes]

+
J

∑
j=2

n j
s

1+ W

γ jRj
E[φint ]
E[φdes]

< 1





(4.17)

where system states is defined in (3.7).

With an appropriately chosen ROP-II parameter,αinc, which is presented in Figure 4.2,

the state space can be rewritten as

S=





s : n j
q≤ B j , j = 1, ..,J;

n1
spv

1+ W

αincγ1R1
E[φint ]
E[φdes]

+
J

∑
j=2

n j
s

1+ W

αincγ jRj
E[φint ]
E[φdes]

< 1





. (4.18)

The other components of a SMDP remain the same as the SMDP formulation for opti-

mal CAC policy, which are summarized in Table 4.1.

After formulating the CAC problem as a SMDP, the suboptimal CAC policy can be

obtained by a linear programming approach. We remark that the maximum-throughput

criterion employed in the optimal CAC policy requires the evaluation of outage probability

for each state, and as a result is inappropriate for the suboptimal CAC policy. We instead

aim to find a policyR∗ which minimizes the blocking probability for any initial system

state, i.e.,

R∗ = argmin
R∈R

lim
t→∞

1
T

E

{∫ T

0

J

∑
j=1

λ j(1−a j(t))(1−δ (B j −n j
q(t)))dt

}

while simultaneously guaranteeing QoS.

The suboptimal CAC policy can be obtained by solving the following LP problem:

max
zsa≥0,s,a

∑
s∈S

∑
a∈As

J

∑
j=1

η j(1−a j)(1−δ (B j −n j
q))τs(a)zsa (4.19)
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Table 4.1. Components of the suboptimal CAC policy.

SMDP components Notation Expression

System state s s= [n1
q,n

1
s, ..,n

J
q,n

J
s]

State space S Given in (4.17) or (4.18)

Decision epochs tk The set of all arrival and departure instances.

Action a Given in (3.27)

Admissible action space As Given in (3.28)

Expected holding time τs(a) Given in (3.29)

Transition probability psy(a) Given in (3.30)

Policy R R= {Rs : S→ A|Rs∈ As,∀s∈ S}

Constraints P j
b ≤Ψ j and Delayj ≤ D j .

subject to the constraints (3.37)-(3.40), whereη j denotes the weighting factor for classj.

In the above optimization problem, there is no explicit outage probability constraint.

Instead, the outage probability constraint is guaranteed by adjusting the ROP parameter.

The suboptimal CAC policies based on ROP-I and ROP-II as well as the search procedures

for the ROP parameters are illustrated in Figures 4.1 and 4.2, respectively.

In comparing the optimal and suboptimal CAC policies, some remarks are in order:

• Complexity: as shown in (3.15), to derive the outage probability for an optimal CAC

policy, multiplication of twoK-by-K matrices as well asNr eigenvalue computations

are required, whereNr can be large, e.g.,Nr = 1000, to ensure accuracy. This results

in very high computational complexity, while for a suboptimal CAC policy, a linear

PCFC is employed to decide if a system state is feasible, which only requiresJ

summations andJ multiplications, whereJ≤ 10, a significant reduction.
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• QoS guarantee: both optimal and suboptimal CAC policies can ensure network-layer

QoS requirements. However, regarding the physical layer QoS, the optimal CAC

policy can ensure the more stringent WSOP constraint as well as an AOP constraint,

while the suboptimal CAC policy can only ensure an AOP constraint.

• Performance gain: the suboptimal CAC policy relies on a separate ROP algorithm to

mitigate the outage probability, which may degrade the network layer performance

or reduce the spectral efficiency.

• Measurement: for the suboptimal CAC policy, outage measurements are necessary to

monitor the ROP parameter, which introduces a delay. For the optimal CAC policy,

no such procedure is required.

4.7 Numerical Examples

In this section, we first evaluate the performance of the proposed suboptimal CAC policy,

which is then compared with single antenna systems. After that, the performance compar-

isons between suboptimal and optimal CAC policies are presented. Finally, we compare

the proposed suboptimal policy with the existing CS-based policy.

4.7.1 Simulation parameters

In the following examples, we consider a circular antenna array with a uniformly distributed

AoA. We remark that the proposed CAC policies can be applied to any other array geometry

and AoA distribution. For simplicity, it is assumed that there is no user mobility.

In our examples, a two-class system is considered. The SIR requirements for each class

are given asγ1 = 10 dB andγ2 = 7 dB, and the rate for each class is set toR1 = 48 kbps
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Table 4.2. Simulation parameters.

W 3.84 MHz η0 10−6

R1 48 kbps R2 144 kbps

λ1 1 λ2 0.5

µ1 0.25 µ2 0.1375

Ψ1 0.1 Ψ2 0.1

D1 1.5030 D2 1.5750

η1 0.5 η2 0.5

Table 4.3. Numerical values ofE[φdes] andE[φint ] for a beamforming system.

M 1 2 3 4 5 6

E[φdes] 1.0 1.0 1.0 1.0 1.0 1.0

E[φint ] 1.0 0.5463 0.3950 0.3241 0.2460 0.2058

andR2 = 144kbps. The total bandwidth isW = 3.84MHz, and the AWGN noise can be

characterized by spectral densityη0 = 10−6.

The arrival and departure rates for class1 and class2 users are denoted byλ1 = 1, λ2 =

0.5, µ1 = 0.25andµ2 = 0.1375, respectively. In the network layer, the blocking probability

constraints for the two classes are set toΨ1 = Ψ2 = 0.1, unless specified otherwise. The

constraints on connection delay are set to1.67 and3.5 seconds, respectively, which can

be equivalently represented by the average queue length,D1 = 1.5030andD2 = 1.5750.

Numerical values of parametersE[φdes] andE[φint ], derived in [93], are shown in Table 4.3.

Simulation parameters are summarized in Table 4.2.
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4.7.2 CAC policy based on ROP-I algorithm

For a SMDP-based CAC policy combined with ROP-I, Table 4.4 and Figures 4.3-4.4

present the blocking probability, the outage probability and the system throughput as a

function of the decrease-factor, respectively. Two and six antennas are employed at the BS,

respectively, and no buffer is employed for both classes. In this example, the case of single

antenna is not included due to the infeasible buffer configuration for a SMDP formulation.

It is observed that with a decreasedαdec, the outage probability and the system throughput

can be improved while simultaneously maintaining the network layer performance in terms

of blocking probability. For example, with six antennas at the BS, when the decrease-factor

is decreased from1 to 0.7 by an enhanced modulation and coding scheme, the outage prob-

ability for class 1 users can be decreased from0.4438to 0.0013, i.e., decreased by99.7%,

and the throughput can be improved from0.84 to 1.5, i.e., improved by78.6%, while re-

maining the blocking probability within a very small level. As observed, the throughput

can be improved by either increasing number of antennas, or decreasing decrease-factor.

We note that the above performance gain in terms of reduced outage probability is

achieved at a necessary loss in spectral efficiency due to enhanced modulation and coding.

With an decreasedαinc, the spectral loss is increased. From the above simulation results, it

is observed that the spectral loss can be reduced by increasing the number of antennas at the

BS. For a given number of antennas, an appropriate chosen parameterαdeccan mitigate the

outage probability to the desired level while simultaneously minimizing the spectral loss.

For example, with six antennas at the BS with an average outage probability constraint

ρ1
av = ρ2

av = 0.03and adjustment step∆ = 0.1, by following the procedure shown in Figure

4.1, we can obtainαdec = 0.8, which introduces the least spectral efficiency loss while

guaranteeing the outage probability constraints.
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Figure 4.3. Suboptimal CAC policy based on ROP-I: outage probability.
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Figure 4.4. Suboptimal CAC policy based on ROP-I: system throughput.
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Table 4.4. Suboptimal CAC policy based on ROP-I: blocking probability.

Decrease-factorαdec 0.5 0.6 0.7 0.8 0.9 1.0

P1
b (M = 2) 0.0302 0.0304 0.0292 0.0273 0.0266 0.0262

P2
b (M = 2) 0.0459 0.0428 0.0446 0.0424 0.0427 0.0409

P1
b (M = 6) 0 0 0 1.8×10−4 0 0

P2
b (M = 6) 0 0 0 0 0 0

4.7.3 CAC policy based on ROP-II algorithm

We now investigate the performance for suboptimal CAC policy based on ROP-II. With

ROP-II, the power control feasibility condition is derived based on the increased target

SIRs,αincγ j , where j = 1,2, and as a result, both the network layer performance and the

outage probability are affected by the increase-factorαinc.

The blocking probability, the average outage probability and the system throughput

are numerically presented in Table 4.5 and Figures 4.5-4.6, respectively, as a function of

αinc, in which buffer sizes are set toB1 = B2 = 0. It is observed that asαinc is increased,

outage probability decreases significantly. Although there is a degradation in blocking

probability, the overall system throughput can be improved. For example, withαinc = 1.2

andM = 2, the outage probability can be reduced from0.5023 to 0.1728, i.e., reduced

by 65.6%, and the system throughput can be improved from0.71 to 1.11, i.e., increased

by 56.3%. Although the blocking probability is increased from0.0389 to 0.0957, this

degradation can be reduced by increasing the number of antennas. For example, with the

same ROP parameterαinc = 1.2, increasing the number of antennas toM = 6, the blocking

probability is only increased from0 to 6.1×10−5, which can be neglected.

For a given number of antennas, an appropriately chosenαinc can guarantee a desired
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Table 4.5. Suboptimal CAC policy based on ROP-II: blocking probability.

Increase-factorαinc 1 1.05 1.1 1.15 1.2

Pb (M = 2) 3.9×10−2 5.1×10−2 5.1×10−2 7.6×10−2 9.6×10−2

Pb (M = 4) 0 0 6×10−4 1.6×10−3 1.9×10−3

Pb (M = 6) 0 2.7×10−4 9.0×10−5 0 6.1×10−5
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Figure 4.5. Suboptimal CAC policy based on ROP-II: outage probability.
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Figure 4.6. Suboptimal CAC policy based on ROP-II: system throughput.

outage probability constraint while minimizing the degradation in the network layer. For

example, withM = 4, ρ1
av = ρ2

av = 0.05, desired interval̄ρ1 = ρ̄2 = 0.01, and adjustment

step∆ = 0.1, by following the procedure shown in Figure 4.2, we can obtain the ROP

parameterαinc = 1.3 which introduces least performance degradation in the network layer

while satisfying the outage probability constraints.

4.7.4 Comparison between single and multiple antenna systems

In the following, we demonstrate that the proposed suboptimal CAC policy for beamform-

ing systems can achieve a significant performance gain compared with single antenna sys-

tems.

As shown in [24], single antenna systems encounter infeasible buffer problem easily,

i.e., for some buffer configurations, the system parameters cannot meet all the constraints of
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Table 4.6. Single antenna system: analytical and simulation blocking probabilities and

connection delays when SMDP-based CAC is employed.

[B1,B2] Pb-LP Pb-sim nq-LP nq-sim Pout-sim Throughput-sim

[0,0] 0.2846 0.2828 0 0 0 1.1023

[0,1] 0.2562 0.2507 0.1807 0.1828 0 1.1152

[1,0] 0.2571 0.2602 0.0903 0.0989 0 1.1717

[1,1] 0.2242 0.2289 0.2834 0.3007 0 1.1774

Table 4.7. Two antenna system: analytical and simulation blocking probabilities and con-

nection delays when SMDP-based CAC is employed.

[B1,B2] Pb-LP Pb-sim nq-LP nq-sim Pout-sim Throughput-sim

[0,0] 0.0364 0.0413 0 0 0.0862 1.3165

[0,1] 0.0243 0.0262 0.0380 0.0471 0.0863 1.3329

[1,0] 0.0280 0.0307 0.0320 0.0408 0.0877 1.3296

[1,1] 0.0173 0.0148 0.0416 0.0474 0.0824 1.3558
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the SMDP. To give a quantitative comparison between single and multiple antenna systems,

we next relax the blocking probability constraints to[0.4,0.4]. A beamforming system with

ROP-I algorithm and decrease-factor0.8 is employed.

The analytical and simulation results are depicted in Tables 4.6 and 4.7 for single-

antenna and two-antenna systems, respectively, wherenq-LP andnq-sim denote the ana-

lytical and simulation results for the average queue length, respectively,Pb-LP andPb-sim

denote the analytical and simulation results for the blocking probability, respectively, and

Pout-sim denotes the simulation results for the average outage probability. It is observed that

the simulation results are very close to the analytical results, and compared with single an-

tenna systems, employing beamforming with only two antennas at the BS can dramatically

reduce the blocking probability and connection delay. For example, when no buffering is

employed, the blocking probability is0.2846for a single antenna system, while this value

is decreased to0.0364for the case of two antennas.

It is important to note that if the blocking probability constraints are set to[0.1,0.1], the

buffer configurations in Table 4.6 are all infeasible, i.e., for these buffer configurations, the

system parameters cannot meet all the constraints of the SMDP. Therefore, extra computa-

tion and time are needed to search for a feasible buffer configuration. When two antennas

are employed at the BS, a buffer of very small size, or even no buffering at all, leads to the

satisfaction of all QoS requirements. Therefore, employing antennas at the BS simplifies

the search procedure for a feasible buffer configuration, i.e., reduces the complexity of a

SMDP-based policy.

4.7.5 Comparison between suboptimal and optimal CAC policies

We now compare the proposed suboptimal CAC policy with the optimal CAC policy dis-

cussed in Chapter 3. Consider a system in whichρw = 0.5, B1 = B2 = 0 and pv = 1.
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Figure 4.7. Comparison between the optimal and sub-optimal CAC policies withpv = 1.

The relaxed WSOP constraint is used to limit the state space, and the link reliability is

ensured by the AOP constraint. Figure 4.7 compares the blocking probability, the average-

outage-probability and the system throughput for sub-optimal and optimal CAC policies

for a two-antenna system, in whichP j
b andPav

out denote the achieved blocking probability

for classj and the average-outage-probability, respectively.

It is observed that for a given average-outage-probability constraint, the proposed opti-

mal CAC policy can achieve a performance gain in terms of lowered blocking probability

and improved system throughput. For example, with an AOP constraint of0.035, compared

with the suboptimal CAC policy, the proposed optimal CAC policy can reduce the blocking

probability 60%, from 0.15 to 0.06, and increase the throughput10%, from 1.24 to 1.37

calls/second. With an increased AOP constraint, the throughput gain becomes even larger.

From Figure 4.7, we note that since the objective is to maximize the overall system
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throughput subject to QoS, it is possible that blocking probability for one class may not

decrease monotonically with the average outage probability constraint.

4.7.6 Comparison between proposed and existing CAC policies

As discussed in Chapter 3, complete-sharing (CS)-based CAC policy is employed widely

due to its simplicity. For a simple CS-based CAC policy, when a call arrives, the power

control feasibility condition in (4.14) or (4.15) is evaluated by incorporating information of

this newly arrived call. If this feasibility condition holds, the call is accepted. Otherwise,

the call is stored in a buffer, or blocked if the buffer is full. The shortcoming of this

CAC policy is that QoS requirements in the network layer are ignored. In this section, we

illustrate the difference between our proposed CAC policy and a CS-based CAC policy.

Without loss of generality, we now restrict the blocking probability constraints for both

classes to0.02 , and all the other parameters remain unchanged. The results for a sub-

optimal SMDP-based CAC policy and a CS-based CAC policy are shown in Table 4.8, in

which two antennas are employed at the BS, and ROP-I algorithm with decrease-factor

of 0.8 is employed. In Table 4.8,P j
b denotes the blocking probability for classj packets,

where j = 1,2, andPb denotes the overall blocking probability. It is observed that for a CS-

based CAC policy, the blocking probability constraint cannot be guaranteed. For example,

when the buffer size is[1,2], the blocking probability for class 1 packets is0.0213, which

exceeds its constraint0.02. When the buffer size is[2,1], the blocking probability for class

2 packets is0.0229, which exceeds its blocking probability constraint0.02. However, for

the same buffer sizes, SMDP-based CAC policy can always guarantee blocking probability

constraints for both classes. We also observe that compared with the CS-based policy, the

proposed SMDP-based CAC policy achieves a lower blocking-probability.
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Table 4.8. Comparison between SMDP-based CAC and CS-based CAC policies.

[B1,B2] CS:P1
b CS:P2

b CS:Pb SMDP:P1
b SMDP:P2

b SMDP:Pb

[1,2] 0.0213 0.0080 0.0147 0.0133 0.0104 0.0118

[2,1] 0.0108 0.0229 0.0169 0.0118 0.0157 0.0137

4.8 Conclusions

In this chapter, we propose a low-complexity suboptimal call admission control (CAC) pol-

icy, which is based on an approximated power control feasibility condition, represented by

a linear function. This approximation, however, increases outage probability in the physical

layer. We propose two simple ROP algorithms to mitigate the outage probability. Cross-

layer CAC policy based on the approximate PCFC and ROP algorithms is then proposed

which can guarantee both physical and network layer QoS requirements. Compared with

the optimal CAC policy, the suboptimal CAC policy can dramatically reduce the complex-

ity, at a cost of a slightly degraded performance.

In this chapter and the previous chapter, we have proposed optimal and suboptimal CAC

policies for beamforming systems. Compared with the case of single antenna systems, the

proposed CAC policies can achieve a significant performance gain in terms of blocking

probability, connection delay and system throughput, and as a result provides a solution to

the capacity limitation problem for future wireless networks.
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Chapter 5

Packet Admission Control Policies for

Packetized Systems with ARQ

5.1 Introduction

The previous chapters focus on a circuit-switched network in which a user occupies its

allocated channel during the whole connection. In addition to the circuit-switched ser-

vices that have dominated earlier generation networks (e.g., voice telephony), there are

now a significant number of packet-switched services [77]. Future wireless networks are

expected to provide high-rate multimedia services based on packet-switched technology. In

this chapter, we extend the previous research to a packet-switched network, and investigate

packet-level admission control (AC) policies. To further improve the capacity, a truncated

ARQ scheme is employed. Truncated ARQ is an error-control protocol which retrans-

mits an error packet until correctly received or a maximum number of retransmissions is

reached.

In the current third generation (3G) system, the application of more efficient methods

for packet data transmission such as high speed uplink packet access (HSUPA) has become

more important [14]. In HSUPA, a threshold-based call admission control (CAC) policy is
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employed, which admits a user request if the load reported is below the CAC threshold. Al-

though the CAC decision can be improved upon by taking advantage of resource allocation

information [14], and it is simple to implement, it is well known that the threshold-based

CAC policy cannot satisfy QoS requirements in the upper layer [73]. In this chapter, we

propose a packet-level AC policy with guaranteed QoS requirements in both physical and

packet levels.

Similar to call level admission control, for a packet-switched connectionless service, a

packet admission control policy decides if an incoming packet can access to the network

while still maintaining the quality-of-service (QoS) requirements. In a practical network,

blocking a packet instead of blocking the whole call can be more spectrally efficient, espe-

cially for bursty traffic. The proposed AC policy can be derived offline and then stored in

a lookup table. Whenever an arrival or departure occurs, an optimal action can be obtained

by table lookup, resulting in low enough complexity for admission control at the packet

level.

As discussed in the previous two chapters, we have proposed two approaches to ensure

the physical layer outage probability constraints: an exact approach and an approximate ap-

proach. The exact approach, which is discussed in Chapter 3, depends on the outage prob-

ability evaluation for each possible system state, while the approximate approach, which is

discussed in Chapter 4, is based on an approximate power control feasibility condition and

a ROP algorithm. In this chapter, we use the exact approach to derive the packet-level AC

policy. The AC policy in this chapter can be straightforwardly extended to an approximate

approach analogous to Chapter 4. Details can be found in [72].

The rest of this chapter is organized as follows. The signal model and problem for-

mulation are presented in Sections 5.2 and 5.3, respectively. Section 5.4 investigates the

physical layer performance and provides an analytical expression for outage probability.
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optimal and suboptimal AC policies are proposed in Section 5.5. Numerical results are

presented in Section 5.6.

5.2 Signal Model

5.2.1 Traffic model

We consider a single-cell CDMA system which supportsJ classes of packets, characterized

by different QoS requirements, wherej = 1, ..,J. Requests for packet access of classj are

assumed to be Poisson distributed, with arrival ratesλ j , j = 1, ..,J.

The admission control (AC) is performed at the BS. An AC policy is derived offline,

and stored in a lookup table. When a packet is generated at the mobile station (MS), the

MS sends an access request to the BS. In this request, the class of this packet is indicated.

After receiving the request, the BS makes a decision, which is then sent back to the MS, on

whether the incoming packet should be either accepted, queued in the buffer, or blocked.

Similarly, whenever a packet departs, the BS decides whether the packet in the queue can

be served (transmitted).

Once a packet is accepted, its first transmission round will be performed, and then the

receiver will send back an acknowledgement (ACK) signal to the transmitter. A positive

ACK indicates that the packet is correctly received while a negative ACK indicates an

incorrect transmission.

If a positive ACK is received or the maximum number of retransmissions, denoted

by L j , is reached, the packet releases the server and departs. Otherwise the packet will

be retransmitted. Therefore, the service time of a packet can comprise at mostL j + 1

transmission rounds. Each transmission round includes the actual transmission time of the

packet and the waiting time of an ACK signal (positive or negative). The duration of a
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transmission round for a packet in classj is assumed to have an exponential distribution

with mean duration1
µ j

, j = 1, ..,J. However, in this chapter, a sub-optimal solution is also

provided for a generally distributed duration.

If the packet is not accepted by the AC policy, it will be stored in a queue buffer provided

that the queue buffer is not full. If the buffer is full, the packet will be dropped, leading

to a packet loss. Each class of packets shares a common queue buffer, andB j denotes the

queue buffer size of classj.

The QoS requirements in the packet level can be represented by the target packet loss

probability and packet access delay, denoted byΨ j andD j for classj, respectively. Packet

loss probability is defined as the probability that a incoming packet is dropped, while packet

access delay is just the waiting time in the queue buffer, which can be equivalently repre-

sented by the average queue length. For each classj, where j = 1, ..,J, there aren j
s pack-

ets physically present in the system, which have the same target packet-error-rate (PER),

packet loss probability, and packet access delay constraints.

We note that there are two types of buffers in the system: queue buffers and server

buffers. The queue buffer accommodates queued incoming packets, while the server buffer

accommodates transmitted packets in the server in case any packet in the server requires

retransmission. For simplicity, we assume that the size of the server buffer is large enough

such that all the packets in the server can be stored. In the following, the generic term

bufferrefers to the queue buffer.

5.2.2 Signal model at the physical layer

We consider an uplink CDMA beamforming system, in whichM antennas are employed

at the BS and a single antenna is employed for each mobile station. There areK accepted

packets in the system, and a channel with slow fading is assumed.
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As shown in the previous chapters, the received signal-to-interference ratio (SIR) for a

desired packetk can be written as

SIRk =
W
Rk

pkφ2
kk

∑i 6=k piφ2
ik +η0W

. (5.1)

In a wireless communication network, we must allow for outage, defined as the proba-

bility that a target SIR, or equivalently, a target packet-error-rate (PER), cannot be satisfied.

The QoS requirement in the physical layer can be represented by a target outage probability.

5.3 Problem Formulation

The average system throughput, defined as the number of correctly received packets per

second, can be evaluated by [54]

Throughput = ∑
j
(1−P j

L)(1−Pav
out)(1−PERj)λ j

(5.2)

whereP j
L , Pav

out andPERj denote the packet loss probability, the average outage probability,

and the packet-error-rate for classj, respectively.

In this chapter, we aim to derive an optimal AC policy which incorporates the benefits

provided by multiple antennas and ARQ schemes. The objective is to maximize the overall

system throughput given in (5.2), while simultaneously guaranteeing QoS requirements in

terms of outage probability, packet loss probability and packet access delay.

With ARQ, the retransmissions improve the physical layer performance, while at the

same time it may also degrade the network layer performance due to the increased dura-

tion of each packet. The cross-layer AC design should consider both positive and negative

impacts of ARQ. Furthermore, with retransmissions, the duration of a packet is not expo-

nentially distributed, which violates the Markovian property of the previously formulated
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SMDP. In order to exploit the benefits of ARQ while still maintaining the Markov property,

it is necessary to formulate a novel SMDP.

5.4 Outage Probability in the Presence of ARQ

The system states can be represented by

s= [n1
q,k

1,1, ..,k1,L1+1

︸ ︷︷ ︸, ...,n
J
q,k

J,1, ...,kJ,LJ+1

︸ ︷︷ ︸] (5.3)

wherek j,i denotes the number of active packets in classj which is under theith transmission

round, or equivalently, under the(i−1)th retransmission;n j
q denotes the queue length, i.e.,

the number of packets in the queue buffer of classj. The number of classj packets can be

obtained asn j
s = ∑

L j+1
i=1 k j,i , and the total number in the system is obtained asK = ∑J

j=1n j
s.

As mentioned before, the QoS requirement in the physical layer can be represented by

target outage probability, defined as the probability that a target packet-error-rate (PER),

or equivalently a target SIR, cannot be satisfied. In the following, we first derive the target

SIR corresponding to a target PER. Then the outage probability is discussed.

5.4.1 Derivation of target SIR

We define two kinds of PERs: overall PER and instantaneous PER. Overall PER, denoted

by PERj
overall, is defined as the probability that a classj packet is incorrectly received after

its maximum number of retransmissions is reached, i.e., an error occurs in each of the

L j + 1 transmission rounds, whereL j denotes the maximum number of retransmissions.

Instantaneous PER, denoted asPERj
in(l), is defined as the probability that an error occurs

in a single transmission roundl of a classj packet.

Under the assumption that each retransmission round is independent from the others,
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the achieved overall PER can be expressed as [54]

PERj
overall =

L j+1

∏
l=1

PERj
in(l)

≤ ρ j (5.4)

whereρ j denotes the target PER for classj.

To ensure the above inequality, we require

PERj
in(l)≤ (ρ j)

1
L j+1 . (5.5)

In general, given the above target instantaneous PER, it is not an easy task to derive

the target signal-to-interference ratio (SIR). Fortunately, there are approximations in the

literature. The instantaneous PER for packet lengthNp can be approximately expressed in

terms of instantaneous SIR as [54]

PERj
in(l) = aexp(−g×SIRj) (5.6)

for SIRj ≥ γ0 dB, whereSIRj is the achieved SIR, given in (5.1);a, g, andγ0 are constants

depending on the chosen modulation and coding scheme. In the above expression, the

interference is assumed to be additive white Gaussian noise, which is reasonable in a system

with a large number of interferers.

Combining (5.5) and (5.6), we have

SIRj ≥ 1
g
[lna− ln((ρ j)

1
L j+1)] (5.7)

whereln(.) denotes natural logarithm, and the right hand side of the above inequality is the

target SIR, i.e.,

γ j =
1
g
[lna− ln((ρ j)

1
L j+1)]. (5.8)
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5.4.2 Outage probability

As shown in (3.8), given a target SIR in (5.8), the outage probability for a system statesby

including the impact of ARQ can be represented by

Pout(s) = Prob{υ(QF)≥ 1} (5.9)

where Prob{A} denotes the probability of event A,υ(.) denotes the maximum eigenvalue,

Q is a K-dimensional diagonal matrix with theith non-zero element asγiRi
W , i = 1, ..,K,

andF is a K by K matrix in which the element at theith row and thejth column can be

expressed asFi j =
φ2

i j

φ2
ii

for i 6= j, andFi j = 0 for i = j.

With this state outage probability, the worst-state outage probability, denoted byPw
out,

and the average outage probability, denoted byPav
out, can be expressed as follows

Pw
out = max

s∈S
Pout(s) (5.10)

≤ ρw

Pav
out = ∑

s∈S

PsPout(s) (5.11)

≤ ρav

whereρw and ρav denote the WSOP and AOP constraints, respectively;Ps denotes the

steady-state probability that the system is in states andS represents the set of all feasible

system states. The above outage probability constraints can be guaranteed by formulating

the state spaceSand adding SMDP constraints, which will be discussed in Section 5.5.

5.5 Cross-layer AC Policies

In the previous section, we have analyzed the outage probability in the presence of ARQ.

In the following, we discuss how to derive AC policies in the packet level. An optimal
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semi-Markov decision process (SMDP)-based AC policy, as well as a low-complexity gen-

eralized semi-Markov process (GSMP)-based AC policy are discussed.

5.5.1 SMDP-based AC policy

Traditionally, the decision epoches are chosen as the time instances that a session arrives

or departs. For a packet level AC policy, the decision epoches can be chosen to be the time

instances that a packet arrives or departs. However, with this decision epoch, the duration

of each packet may include several transmission rounds due to ARQ retransmissions, and

as a result, the time duration until next system state may not be exponentially distributed,

which violates the Markov properties required by a SMDP.

In the following, we choose a different decision epoch and then formulate a novel

SMDP. The decision epoch is chosen as the arrival and departure of each transmission

round. Based on these decision epoches, the time duration until the next state remains ex-

ponentially distributed. The components of a Markov decision process, such as state space,

action space and dynamic statistics, are modified accordingly to represent the character-

istics of different transmission rounds. The formulation of this SMDP as well as its LP

solution are now described.

State space

Classj packets are divided intoL j +1 subclasses, in which the state of theith subclass can

be represented by the number of packets which are under theith round transmission, i.e.,

the(i−1)th retransmission, wherei = 1, ..,L j +1.

In admission problems, the discrete-value (finite) state at timet, s(t), can be written as

s(t) = [n1
q(t),k

1,1(t), ..,k1,L1+1(t)︸ ︷︷ ︸, ...,n
J
q(t),k

J,1(t), ...,kJ,LJ+1(t)︸ ︷︷ ︸]
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wherek j,i(t) represents the number of packets in classj and subclassi served in the system,

andn j
q(t) denotes the number of packets in the queue buffer of classj. Since the arrival

and departure of packets are random,{s(t), t > 0} represents a finite state stochastic process

[24]. From here on, we will drop the time index.

The state spaceS is comprised of any state vectors, in which worst-state outage proba-

bility requirements can be satisfied,

S= {s, wherePout(s)≤ δw,andn j
q≤ B j}.

wherePout(s) is given in (5.9), andδw, n j
q andB j denote the target WSOP, the queue length

and the buffer size, respectively.

The formulation of the above state space can be summarized as follows:

• Compute the upper bound of the number of the accepted packets for each class and

each transmission round. We note that this maximum number only depends on the

corresponding class, and is same for each transmission round. Without loss of gen-

erality, we derive this number for transmission round1 in class j, denoted byMmax
j .

The search procedure forMmax
j is presented in Figure 5.1;

• An enlarged state space, denoted byS̄, can be formulated as

S̄=
{

s= [n1
q,k

1,1, ..,k1,L1+1

︸ ︷︷ ︸, ...,n
J
q,k

J,1, ...,kJ,LJ+1

︸ ︷︷ ︸] : k j,i ≤Mmax
j ,n j

q≤ B j , j = 1, ..,J

}
;

• The aboveS̄can be truncated to the desired state spaceSas follows:

– Initialize S= {};

– EvaluatePout(s) for s∈ S̄according to (5.9);

– If Pout(s)≤ ρw, thenS= S+{s}.
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km,i = 0 andnm
q = 0

for m= 1, ..,J andi = 1, ..,Lm

?
s= [n1

q,k
1,1, ..,k1,L1+1

︸ ︷︷ ︸, ...,n
J
q,k

J,1, ...,kJ,LJ+1

︸ ︷︷ ︸]

?

EvaluatePout(s) according to (5.9)

?!!!!!!!

aaaaaaa

aaaaaaa

!!!!!!! -

?
Yes

No

k j,1 = k j,1 +1

Mmax
j = k j,1

?
Stop

6
-

¾

Pout(s)≤ ρw?

Figure 5.1. Search procedure forMmax
j .
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• We remark that in the above step, it is unnecessary to evaluate each system state in

S̄, since ifs∈ S, then alls
′ ∈ S̄such thats

′ ≤ sare also inS. Similarly, if s is not inS,

then alls
′ ∈ S̄such thats

′ ≥ s are also not inS.

Action space

At each states, an action is chosen that determines how the admission control will perform

at the next decision moment [24]. In general, an action, denoted asa, can be defined as a

vector of dimension∑J
j=1L j +2J

a = [a1,d
1
1, ...,dL1+1

1︸ ︷︷ ︸ .....,aJ,d
1
J , ...,dLJ+1

J︸ ︷︷ ︸]

wherea j denotes the action for classj if an arrival occurs,j = 1, ..,J. If a j = 0, the new

arrival is placed in the buffer provided that the buffer is not full, or is blocked if the buffer

is full; if a j = 1, the arrival is admitted as an active packet, and the number of servers of

classj is incremented by one.

The quantitydi
j , where1≤ i ≤ L j , denotes the action for classj packet if theith trans-

mission round is finished, and is received correctly. Ifdi
j = 0, where1≤ i ≤ L j , k j,i is

decremented by one, and no packets that are queued in the buffer are made active; ifdi
j = 1,

the number of servers is maintained by admitting a packet at the buffer as an active packet.

We note that whenever a classj packet is not received correctly and the maximum

number of retransmissions is not reached, it is automatically retransmitted.

The quantityd
L j+1
j denotes the action for classj packet if a connection has finished

its (L j + 1)th transmission round. Ifd
L j+1
j = 0, no packets that are queued in the buffer

are made active, andk j,L j+1 is decremented by one; ifd
L j+1
j = 1, the number of servers is

maintained by admitting a packet at the buffer as an active packet.

The admissible action space for states, denoted byAs, can be defined the set of all
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feasible actions. A feasible action ensures that after taking this action, the next transition

state is still in spaceS [24].

State dynamicspsy(a) and τs(a)

The state dynamics of a SMDP are completely specified by stating the transition probabil-

ities of the embedded chainpsy(a) and the expected holding timeτs(a): psy(a) is defined

as the probability that the state at the next decision epoch isy if action a is selected at the

current states, while τs(a) is the expected time until the next decision epoch after actiona

is chosen in the present states [24].

Derivations ofτs(a) andpsy(a) rely on the statistical properties of arrival and departure

processes [24]. Since the arrival and departure processes are both Poisson distributed and

mutually independent, it follows that the cumulative process is also Poisson, and the cu-

mulative event rate is the sum of the rates for all constituent processes [24]. Therefore, the

expected sojourn time,τs(a), can be obtained as the inverse of the event rate,

τs(a)−1 =

λ1a1 +λ1(1−a1)δ (B1−n1
q)+

L1+1

∑
i=1

µ1(k1,i)+ ......+

λJaJ +λJ(1−aJ)δ (BJ−nJ
q)+

LJ+1

∑
i=1

µJ(kJ,i). (5.12)

To derive the transition probabilities, we employ the decomposition property of a Pois-

son process, which states that an event of a certain type occurs with a probability equal

to the ratio between the rate of that particular type of event and the total cumulative

event rate 1
τs(a) [24]. Transition probabilitypsy(a) is shown in Table 5.1, whereρ j

in de-

notes the target instantaneous packet-error-rate for classj packets. The set of vectors
{

q j ,b j ,c j
i , r

j
i ,e

j
i , f

j ,g j
}

represents the possible state transitions from current states. Each
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vector in this set has a dimension of∑J
j=1L j +2J, and contains only zeros except for sev-

eral positions. The non-zero positions of this set of vectors, as well as the possible state

transitions represented by these vectors, are specified in Tables 5.2 and 5.3, respectively, in

which we note that∑ j−1
t=1 Lt = 0 for j = 1.

Table 5.1. Expression of transition probabilitypsy.

y psy(a)

y = s+q j λ ja jτs(a)

y = s+b j λ j(1−a j)δ (B j −n j
q)τs(a)

y = s+c j
i , where1≤ i ≤ L j (1−ρ j

in)[µ jk j,i(1−di
j)τs(a)]+

(1−ρ j
in)[µ jk j,idi

j(1−δ (n j
q))τs(a)]

y = s+ r j
i , where1≤ i ≤ L j (1−ρ j

in)µ jk j,idi
jδ (n j

q)τs(a)

y = s+ej
i , where1≤ i ≤ L j ρ j

inµ jk j,iτs(a)

y = s+ f j µ jk j,L j+1d
L j+1
j δ (n j

q)τs(a)

y = s+g j µ jk j,L j+1(1−d
L j+1
j )τs(a)+

µ jk j,L j+1d
L j+1
j (1−δ (n j

q))τs(a)

otherwise 0

Policy, performance criterion and expected cost function

A policy R defines a mapping rule from state spaceS to action spaceA. In the following,

we take the average cost as the performance criterion. For any policyRwith an initial state

s0, the average cost can be expressed as [99]

JR(s0) = lim
t→∞

1
T

E

{∫ T

0
c(s(t),a(t))dt

}
(5.13)
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Table 5.2. Definition of vectors in Table 5.1: each vector defined in this table has a dimen-

sion of∑J
j=1L j +2J, which contains only zeros except for the specified positions.

Vector Non-zero positions

q j Position2( j−1)+∑ j−1
t=1 Lt +2 contains a1.

b j Position2( j−1)+∑ j−1
t=1 Lt +1 contains a1.

c j
i , i = 1, ..,L j Position2( j−1)+∑ j−1

t=1 Lt + i +1 contains a−1.

r j
i , i = 1, ..,L j Position2( j−1)+∑ j−1

t=1 Lt +1 contains a−1,

position2( j−1)+∑ j−1
t=1 Lt + i +1 contains a−1,

and position2( j−1)+∑ j−1
t=1 Lt +2 contains a1.

ej
i , i = 1, ..,L j Position2( j−1)+∑ j−1

t=1 Lt + i +1 contains a−1,

and position2( j−1)+∑ j−1
t=1 Lt + i +2 contains a1.

f j Position2( j−1)+∑ j−1
t=1 Lt +L j +2 contains a−1,

position2( j−1)+∑ j−1
t=1 Lt +1 contains a−1,

and position2( j−1)+∑ j−1
t=1 Lt +2 contains a1.

g j Position2( j−1)+∑ j−1
t=1 Lt +L j +2 contains a−1.

whereE[.] denotes expectation, andc(s(t),a(t)) is the expected cost function which rep-

resents the expected cost until the next decision epoch whena(t) is chosen at the current

system states(t).

When the average cost in (5.13) represents packet loss probability or packet access

delay, the corresponding expected cost functions, denoted byc j
l (s,a) andc j

d(s,a), respec-

tively, can be derived as [24]

c j
l (s,a) = (1−a j)(1−δ (B j −n j

q)) (5.14)

c j
d(s,a) = n j

q (5.15)
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in which the detailed derivation can be found in [24].

If the average cost in (5.13) represents average-outage-probability, the expected cost

function, denoted bycout(s,a), can be written as

cout(s,a) = Pout(s) (5.16)

which is given in (5.9).

If the average cost in (5.13) represents throughput, the expected cost function, denoted

by cthr(s,a), can be expressed as

cthr(s,a) =
J

∑
j=1

λ j(1−c j
l (s,a))(1−cout(s,a))(1−PERj

overall). (5.17)

The optimal policy can be chosen according to a certain performance criterion. In the

following, we aim to find an optimal policyR∗ which maximizes the throughput for any

initial state, i.e.,

R∗ = argmax
R∈R

lim
t→∞

1
T

E

{∫ T

0
Cthr(s(t),a(t))dt

}
.

whereR represents the set of all possible policies.

Deriving an optimal policy by solving the SMDP

An optimal AC policy can be obtained by using the decision variableszsa,s∈ S,a∈ As, in

solving the following linear programming (LP) problem:

max
zsa≥0,s,a

∑
s∈S

∑
a∈As

J

∑
j=1

cthr(s,a)τs(a)zsa (5.18)

subject to the set of constraints

∑
a∈Am

zma−∑
s∈S

∑
a∈As

psm(a)zsa = 0,m∈ S (5.19)

∑
s∈S

∑
a∈As

τs(a)zsa = 1 (5.20)
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∑
s∈S

∑
a∈As

(1−a j)(1−ζ (B j −n j
q))τs(a)zsa ≤ Ψ j (5.21)

∑
s∈S

∑
a∈As

Pout(s)τs(a)zsa ≤ ρav (5.22)

∑
s∈S

∑
a∈As

n j
qτs(a)zsa ≤ D j (5.23)

whereΨ j , ρav andD j denote the target packet loss probability, target average outage prob-

ability and target packet access delay, respectively.

In the above LP formulation,τs(a)zsa represents the steady-state probability that the

system is at states and an actiona is chosen. The first constraint is the balance equation,

and the second constraint ensures the sum of all the steady-state probabilities to be one. The

latter three constraints represent the QoS requirements in terms of packet loss probability,

average-outage-probability and packet access delay, respectively. The worst-state-outage-

probability constraint, if any, is already included in the state spaceS.

Since the sample path constraints are included in the above linear programming ap-

proach, the optimal policy resulting from the SMDP is a randomized policy [99]: the op-

timal actiona∗ ∈ As for states, whereAs is the admissible action space, is chosen proba-

bilistically according to the probabilitieszsa/∑a∈As zsa.

We remark that the above randomized AC policy allows for resources to be more flex-

ibly reserved for potential arriving traffic. The decision variables,zsa, wheres∈ S and

a ∈ Ax, act as the long-run fraction of decision epoches at which the system is in states

and actiona. At each states, there exists a set of feasible actions, and each action induces

a different costc(s,a). The long-run performance can be optimized by appropriately allo-

cating these time fractions, and the allocation leads to a randomized AC policy. When a

deterministic policy is desired, a constraint regarding the decision variableszsa should be

imposed into the above optimization problem, in order to ensure that at each states, there

is one and only one non-zero decision variable. It is obvious that the more constraints we

impose, the worse the achieved performance becomes. We choose a randomized AC policy
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in order to achieve long-run optimal performance.

5.5.2 GSMP-based AC policy

In the above, we provide an optimal SMDP formulation. The state space has dimension of

2J+∑J
j=1L j for J classes of traffic. For largeJ and retransmission number, this leads to a

computation problem of excessive size.

In order to reduce complexity, we consider the decision epoch as the time instances that

a packet arrives or departs. As we discussed previously, based on these decision epoches,

the time interval until the next state is not exponentially distributed. Therefore, we have

a generalized semi-Markov process (GSMP). While an optimal solution for this GSMP

problem is hard to obtain, a linear programming approach provides a sub-optimal solution

[73].

In the formulated GSMP, decision epoches are chosen as the time instances that a packet

arrives or departs. The arrival process for classj is assumed to have a Poisson distribution

with arrival rateλ j . The duration of the classj packets may have a general distribution,

and the mean duration of each packet can be derived as

Cj =
1
µ j

N j
ARQ

=
1
µ j

(
1+(ρ j)

1
L j+1 + ..+(ρ j)

L j
L j+1

)
(5.24)

whereCj is the packet duration,N j
ARQ is the average number of transmissions for a classj

packet, which is derived in (2.16), andµ j denotes the departure rate for each transmission

round for the classj packets. When deriving (5.24), we approximate the instantaneous

PER by its upper bound, given in (5.5).

The state spaceSis comprised of any state vectors, which satisfies outage requirements,

S= {s= [n1
q,k

1, ...,nJ
q,k

J] :, wherePout(s)≤ δw,andn j
q≤ B j}
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wherek j denotes the number of active packets for classj.

At each decision epoch, an action is chosen asa = [a1,d1.....,aJ,dJ], wherea j denotes

the action for classj if an arrival occurs,j = 1, ..,J andd j denotes the action for classj

packet if a packet in this class departs. The admissible action space for states, denoted by

As, can be defined as the set of all feasible actions.

The state dynamics of a SMDP are completely specified by stating the transition proba-

bilities of the embedded chainpsy(a) and the expected holding timeτs(a), which are given

in [24]- [73].

In summary, the formulation of a GSMP is very similar to the AC problem formulation

in the previous chapters and in the literature, e.g., [24] [73], except that the state space and

the mean duration of a packet are modified to incorporate the impacts of ARQ schemes.

After formulating the AC problem as a GSMP, the AC policy, which minimizes the

packet loss probability, can be obtained by using the decision variableszsa,s∈ S,a ∈ As

from linear programming which is presented in (5.18).

For the GSMP-based AC policy, the dimension of the state space is reduced from2J+

∑J
j=1L j to 2J. In a low instantaneous PER region, the GSMP-based solution proposed

in the above is very close to the SMDP-based AC policy. Intuitively, when the PER is

very low, retransmission occurs only occasionally, and the duration of a packet would be

very close to an exponential distribution. In this case, the LP approach would provide a

nearly-optimal solution to the above GSMP.

We remark that unlike the SMDP-based AC policy in which the transmission round is

assumed to have an exponential distribution, the GSMP-based AC policy discussed in the

above can be applied to a system with a generally distributed transmission round.
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5.5.3 Complexity

SMDP or GSMP-based AC policies are always calculated offline and stored in a lookup

table. Whenever an arrival or departure occurs, an optimal action can be obtained by table

lookup using the current system state. This facilitates the implementation of packet-level

admission control.

Once system parameters change, an updated policy is required. However, in the system

we investigate, the policy only depends on buffer sizes, long-term traffic model and QoS

requirements. These parameters are generally constant for the provision of a given profile

of offered services. Therefore, a SMDP or GSMP-based policy has a very reasonable

computation complexity.

5.6 Numerical Examples

In the following examples, a two-class system is considered. The data rates are set toR1 =

144kbps andR2 = 384kbps. The arrival and departure rates for class1 and class2 packets

are denoted byλ1 = 0.5, λ2 = 0.25, µ1 = 0.3, and µ2 = 0.2, respectively. The packet

loss probability constraints for both classes are set toΨ1 = Ψ2 = 0.05, unless specified

otherwise, and the packet access delay constraints for class1 and class2 packets are set

to 1.67 and3.5 seconds, respectively. The average outage probability constraint is set to

ρav = 0.05 and the worst-state outage probability isρw = 0.5. Two antennas are employed

at the BS, i.e.,M = 2. The total bandwidth is3.84MHz.

For the exact approach employed in this chapter, it is necessary to numerically evaluate

the outage probability for each possible system state, which increases the computational

complexity. In the following examples, we employ an outage probability approximation to
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reduce the complexity,

Pout(s) = Q

[
1−E[υ ]√

Var(υ)

]
(5.25)

whereQ(α) = 1√
2π

∫ ∞
α e−

x2
2 dx, E[υ ] andVar(υ) denote the expectation and variance of

random variableυ(QF), which can be obtained as follows:

E[υ ] =
J

∑
j=1

1
W

γ jRjn
j
sE[F ]

Var[υ ] =
1
K

J

∑
j=1

n j
s[

1
W

γ jRj ]2Var[F ] (5.26)

whereE[F ] andVar[F ] denote the expectation and variance ofFi j , which can be evaluated

numerically. Table 5.4 presents these numerical values for a uniform circular array, which

are derived in [75]. The derivation of the above approximation can be found in Appendix C.

We remark that our proposed AC policies can be applied straightforwardly to other outage

probability evaluations.

In the following, we investigate the long-run average performance in terms of packet

loss probability, packet access delay, average outage probability and overall system through-

put as a function of the overall PER constraint, denoted by PER in the figures.

5.6.1 Performance of the SMDP-based AC policy

We first investigate the performance for a SMDP-based AC policy, in whichL1 = 0, L2 = 1,

ρ1 = ρ2, and no buffer is employed. Figure 5.2 compares the performance for the system

with ARQ and the system without ARQ when the SMDP formulation is employed and no

buffer is allowed. In both cases, the QoS requirements in terms of packet loss probability

and average outage probability, denoted byP j
L andPav

out, j = 1,2, respectively, can be sat-

isfied. It is observed that the performance can be improved by allowing retransmissions.

For example, with a PER constraint of10−3, employing ARQ can reduce the packet loss
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Figure 5.2. Performance of a SMDP-based AC policy.

probability for class1 from 0.0077to 0.0012, i.e., reduced by84.4%, reduce the outage

probability from0.0071 to 0.0004, i.e., reduced by94.4%, while improving the system

throughput from0.7352to 0.7476, i.e., improved by1.69%.

5.6.2 Performance of the GSMP-based AC policy

Now we study the performance for a GSMP-based AC policy in whichρ1 = ρ2, L1 = L2,

andB1 = B2 = 1. We investigate the performance forL j = 0,1 and2, respectively. The

results for largeL j can be extended straightforwardly.

Table 5.5 compares the overall packet loss probability, denoted byPL, for differenceL j .

We observe that for a small target PER region, which is reasonable in a practical system,

the packet loss probability can be dramatically reduced with an increasedL j .

Figure 5.3 shows the delay, the outage probability and the throughput for differentL j .
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Figure 5.3. Performance of a GSMP-based AC policy.

The delay presented here is the overall delay which is the sum of the packet access delay

and the mean transmission delay. It is observed that ARQ increases the transmission delay

and as a result, may increase the overall delay. This delay degradation can be very small in a

small PER region due to the only occasionally occurring retransmissions. From Figure 5.3,

it is also observed that the performance in terms of the outage probability and the system

throughput can be improved by increasingL j . However, whenL j is increased beyond a

certain level, e.g.,L j = 1 in the investigated system, the performance improvement is very

small. Therefore, there is no need to employ an ARQ with largeL j .
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Figure 5.4. Performance comparison between SMDP and GSMP-based AC polices.

5.6.3 Comparison between SMDP and GSMP-based AC policies

Figure 5.4 compares the performance between SMDP and GSMP AC policies, in which

L1 = 0, L1 = 1, and no buffer is employed. Figure 5.4 demonstrates that for a small num-

ber of retransmissions, SMDP and GSMP-based AC policies have similar performance.

Although performance comparison for largeL j is not presented here since a SMDP-based

AC policy would involve excessive computation, it is expected that for low PER, these two

AC policies would still have similar performance. For a high PER, however, the packet

duration is far from exponentially distributed, and thus linear programming cannot provide

an optimal solution to a GSMP and its performance would be inferior to that of SMDP.
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5.6.4 Comparison between exact and approximate approaches

As mentioned previously, the packet admission control policy proposed in this chapter

uses the exact approach which can guarantee an exact outage probability constraint while

maximizing system throughput. An AC policy based on an approximate PCFC and ARQ-

based ROP algorithms, termed as approximate approach, is presented in [72].

Figure 5.5 compares the performance between the proposed AC policy with an ex-

act approach and the AC policy employing an approximate approach which is presented

in [72]. GSMP formulation is employed withL j = 1 andB j = 0 for j = 1,2. Although

the average outage probability for the exact approach is inferior to approximate approach,

it is observed that the exact approach is able to achieve a lower packet loss probability and

a higher throughput. This inferior average outage probability is due to the fact that for

the exact approach only a required outage probability is ensured and no excessive outage

probability reduction is desired, while for an approximate approach, the AC policy allows

excess outage probability reduction, which wastes system resources. Therefore, for an ex-

act approach, the resources can be more efficiently utilized to maximize the overall system

throughput. Another advantage of the exact approach is that we can guarantee all QoS

requirements for an arbitrary choice of ARQ parameters, while the approximate approach

in [72] can only ensure the QoS requirements under certain ARQ parameters.

5.7 Conclusions

In this chapter, we investigate the cross-layer AC problem for packetized networks which

incorporate a truncated ARQ scheme. With retransmissions, the Markovian property is

violated and as a result the formerly formulated SMDP cannot be applied. We formu-

late a novel semi-Markov decision process and propose an optimal AC policy as well as a
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Figure 5.5. Comparison between proposed and existing PAC policies.

reduced-complexity GSMP-based AC policy. It can be shown that the proposed AC poli-

cies are capable of satisfying QoS requirements in both physical and packet levels, and

within a reasonably small PER region, system performance can be dramatically improved

by employing ARQ.
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Table 5.3. Representation of vectors in Table 5.1: each defined vector represents a possible

state transition from current states.

Notation Event State transition

s+q j New arrival for classj An increase in subclass

which is accepted. 1 of classj by 1.

s+b j New arrival for classj An increase in

which is queued. queuej by 1.

s+c j
i , Departure of a class A decrease in subclassi

i = 1, ..,L j j and subclassi packet, for classj by 1.

correctly received and

no queue is made active.

s+ r j
i , Same as above, except A decrease in queuej by 1,

i = 1, ..,L j that a packet in class a decrease in subclassi for classj by 1,

j queue is made active. and an increase in subclass1 for classj by 1.

s+ej
i , Departure of a classj An increase of subclassi +1 for classj by 1,

i = 1, ..,L j subclassi packet, and a decrease in subclassi of classj by 1.

incorrectly received.

s+ f j Departure of a classj A decrease in subclassL j +1 for classj by 1,

subclassL j +1 packet; a packet a decrease in queuej by 1,

in classj queue is made active. and an increase in subclass1 for classj by 1.

s+g j Same as above except A decrease in subclassL j +1 for classj by 1.

that no packet in classj queue

is made active.
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Table 5.4. Numerical values ofE[F ] andVar[F ] for a beamforming system.

M 1 2 3 4

E[F ] 1.0000 0.54628 0.39504 0.32405

Var[F ] 1.0000 0.42735 0.24374 0.21897

Table 5.5. Packet loss probability for a GSMP-based AC policy.

Target PER 5×10−4 5×10−3 1×10−2

PL with L j = 0 1.15×10−2 1.19×10−3 1.1×10−3

PL with L j = 1 5.43×10−4 6.19×10−5 1.86×10−4

PL with L j = 2 1.24×10−4 0 6.79×10−5
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Chapter 6

Call Admission Control Policy for Packetized

Systems with ARQ

6.1 Introduction

The proposed AC policy in Chapter 5, while dramatically improving system performance

by employing both multiple antennas and ARQ, is designed at the packet level, in which call

level QoS, such as blocking probability and connection delay, is ignored. Therefore, this

packet level AC policy cannot work well for a connection oriented packet based network.

Moreover, AC policies performed at the packet level, instead of at the call level, may incur

implementation difficulties. This fact motivates an investigation into a call level admission

control policy for packet-switched networks with guaranteed QoS constraints at physical,

call and packet levels.

To the best of our knowledge, design of optimal CAC policy for a packetized CDMA

beamforming system with ARQ has not been addressed previously. For example, in [52]

[99], packet traffic is studied in a single-antenna CDMA system, in which the proposed

CAC policies treat the SIR as quasi-static and do not adequately incorporate multiple an-

tenna systems. In [88], the proposed CAC policy considers QoS requirements in different
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layers. However, there is no automatic retransmission request (ARQ) incorporated in the

CAC design.

In this chapter, we propose an optimal CAC policy for a packet-switched network, in

which both multiple antennas and ARQ schemes are employed. The CAC policy decides

whether an incoming call can be accepted. Each accepted call generates a sequence of

packets, which are then transmitted over channel. The erroneously received packets are

retransmitted until they are correctly received or a prescribed number of maximum allowed

retransmissions is reached. There exists a performance tradeoff across different layers.

For example, improving call level performance allows more accepted calls, which leads to

an increased aggregate packet generation rate. When the packet generation rate exceeds

the packet departure rate, extra packets should be dropped, degrading packet level perfor-

mance. Although packet level performance can be improved by increasing the number of

allocated channels, the physical layer performance degrades with an increased number of

channels due to multi-access interference. The proposed cross-layer CAC policy is de-

signed to determine these tradeoffs across different layers.

In Chapter 5, the ARQ and admission control schemes are both performed at the packet

level. In this chapter, the admission control is performed at the call level, while retransmis-

sions are still performed at packet level, as is widely adopted in practical systems.

The rest of this chapter is organized as follows: The signal model and problem formu-

lation are presented in Sections 6.2 and 6.3, respectively. In Sections 6.4 and 6.5, packet-

level and physical-layer QoS requirements in terms of packet loss probability and outage

probability are analyzed, respectively. An optimal CAC policy is derived in Section 6.6.

Numerical results are presented in Section 6.7.
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Figure 6.1. Signal model for packet-switched networks.

6.2 Signal Model

6.2.1 Traffic model

The signal model is illustrated in Figure 6.1. We consider a single-cell uplink CDMA

beamforming system withM antennas at the BS. Assume that there areJ classes of statis-

tically independent traffic in the network. Each class of traffic is distinguished from others

by its arrival rate, departure rate, transmission data rate and required QoS. The arrival pro-

cess of the aggregate calls is modeled by a Poisson process with rateλ j for each classj,

where j = 1, ..,J. The duration for each call is assumed to have exponential distribution

with mean 1
µ j

.

Whenever a call arrives, the CAC policy, derived offline and implemented as a lookup

table, decides whether the incoming call can be accepted. Denotena, j as the number of

accepted users for classj, where j = 1, ..,J. The system state, representing the number of
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accepted users for each class, is defined ass= [na,1, ..,na,J]. To reduce the size of the state

space, no queue buffer is implemented at the call level, which implies that if the incoming

call is not accepted immediately, it is blocked.

6.2.2 Signal model at the packet level

For each accepted call, the modelling of packet generating traffic is still an open problem.

As shown in [52], the user traffic may be modelled as an ON/OFF Markov process. Under

this model, the user transits between the ON and OFF states during the whole call con-

nection. When a user is in an ON state, packets are generated with a ratera, j packets per

second and when the user is at OFF state, no packets are generated.

For a classj call, the transition probabilities from ON state to OFF state, or from OFF

state to ON state, are denoted byα j andβ j , respectively. Denotep j
ON as the probability

that a classj user is in the ON state, which can be obtained byp j
ON = β j

α j+β j
. Given

na, j accepted users, the number of users in the ON state, denoted byno, j , is a Binomial

distributed random variable. Withno, j users in the ON state, the overall arrival rate for

classj is given byno, j ra, j .

In contrast to a circuit-switched network, in which each user is allocated a dedicated

channel with a fixed transmission data rate, for a packet switched network, no dedicated

channels are allocated. Instead, all the generated packets from classj users share a given

number of channels, which are termedvirtual channels. The number of virtual channels,

denoted byKs, j , are decided by the number of accepted users, the traffic model as well as

the QoS requirements.

All the generated packets from classj users are allocated to theKs, j virtual channels by

a packet access scheme. The packets in each virtual channel are then transmitted with rate

rd, j in a packet-by-packet fashion. Before transmission, the allocated packets for a classj
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virtual channel is stored in a packet queue buffer, with buffer sizeB j , where j = 1, ..,J.

In this chapter, we consider a truncated ARQ scheme which retransmits an erroneous

packet until it is successfully received or the number of maximum allowed retransmis-

sions, denoted byL j for class j packets, is reached, wherej = 1, ..,J. Once a packet is

received, the receiver sends back an acknowledgement (ACK) signal to the transmitter. A

positive ACK indicates that the packet is correctly received while a negative ACK indi-

cates an incorrect transmission. If a positive ACK is received or the maximum number of

re-transmissions, denoted byL j , is reached, the packet releases the virtual channel and a

packet in the queue can then be transmitted. Otherwise the packet will be retransmitted.

6.2.3 Signal model at the physical layer

Similar to the previous chapters, we consider a CDMA beamforming system withM an-

tennas at the base station (BS). At the receiver, a spatial-temporal matched-filter receiver is

employed. WithK = ∑J
j=1Ks, j virtual channels, there are at mostK packets simultaneously

transmitted. The received signal-to-interference ratio (SIR) for a desired packetk, where

k = 1, ..,K, can be written as

SIRk =
W
Rk

pkφ2
kk

∑K
i=1,i 6=k piφ2

ik +η0W
(6.1)

whereW andRk denote the bandwidth and the data rate for the virtual channel allocated

to packetk, respectively, and the ratioWRk
represents the processing gain;pk = PkG2

k de-

notes the received power, in whichPk andGk denote the transmitted power and link gain,

respectively;η0 denotes the one-sided power spectral density of background additive white

Gaussian noise (AWGN);φ2
ik denotes the fraction of packeti’s signal passed by the beam-

forming weights for desired packetk, which can be expressed asφ2
ik =

∣∣aH
k ai

∣∣2, in which

ai denotes the normalized array response vector for packeti, and(.)H denotes conjugate
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transpose.

6.3 Problem Formulation

The call-level and physical-layer QoS can be characterized by blocking probability and

outage probability, respectively, while the packet-level QoS can be represented by packet

loss probability, defined as the probability that a packet in an accepted call cannot be deliv-

ered to the receiver. Other packet level QoS constraints, such as packet access delay, can

be ensured by packet access control, which is not discussed in this thesis.

To characterize the overall system performance across different system layers, we de-

fine the system throughput as the number of correctly received packets per second, which

can be expressed by

Throughput

= ∑
j

λ j(1−P j
b)(1−Pav

out)p j
ONra, j(1−P j

L)(1−PERj
overall)

(6.2)

whereP j
b , Pav

out, P j
L andPERj

overall denote the blocking probability, the average outage prob-

ability, the packet loss probability and the packet error rate for classj, respectively.

In this chapter, we aim to derive an optimal CAC policy which is capable of maximiz-

ing the above system throughput, while simultaneously guaranteeing QoS requirements at

physical, packet and call levels.

6.4 Packet-Level Design

A system states is defined ass= [na,1, ..,na,J], which represents the number of accepted

users. In this section, we discuss how to chooseKs, j for a given system state to guarantee
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the packet level QoS requirements in terms of packet loss probability. For simplicity, we

first consider the case of zero buffer, i.e.,B j = 0. The results are then extended to nonzero

buffer sizes.

6.4.1 Departure rate with retransmissions

Without ARQ, the duration for a packet can be expressed asNp
Rj

, whereNp denotes the

packet length andRj denotes the transmission rate. With ARQ, the packet duration, denoted

by Cj , is the summation of the original packet duration and the duration for at mostL j

retransmissions. The mean duration can be expressed from (5.24),

Cj =
Np

Rj
(1+(ρ j)

1
L j+1 + ..+(ρ j)

L j
L j+1)

(6.3)

in seconds.

The packet departure rate for each virtual channel, denoted byrd, j , can be obtained by

rd, j =
1

Cj

=
Rj
Np

1+(ρ j)
1

L j+1 + ..+(ρ j)
L j

L j+1

(6.4)

in packets per second.

6.4.2 Packet loss probability

In the following, we assume thatB j = 0 and the incoming packets are allocated equally to

theKs, j virtual channels, e.g., in a round-robin fashion. For each allocated virtual channel,

the packet arrival rate can be expressed asno, j ra, j/Ks, j , and the packet departure rate for

each virtual channel,rd, j , is given in (6.4).
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To obtain the packet loss probability for givenna, j , we first express the packet loss

probability for a givenno, j as

P j
l (no, j ,Ks, j)

=





0 if no, j ra, j ≤ Ks, j rd, j

no, j ra, j−Ks, j rd, j
no, j ra, j

if no, j ra, j > Ks, j rd, j .

(6.5)

Then the packet loss probability for a givenna, j can be obtained by

P j
L(na, j ,Ks, j) =

na, j

∑
i=0

Prob{no, j = i}P j
l (i,Ks, j) (6.6)

≤ ν j (6.7)

whereν j denotes the packet loss probability constraint, and Prob{no, j = i} denotes the

probability thati out of na, j accepted users are in the ON state, which has Binomial distri-

bution

Prob{no, j = i}= (p j
ON)i(1− p j

ON)na, j−i (6.8)

for 0≤ i ≤ na, j .

6.4.3 ChoosingKs, j

In the above analysis, we assume that the packet generation traffic is modeled by an

ON/OFF Markov process and buffer sizes are all zero. Under these assumptions, with a

given number of accepted usersna, j and packet-level QoS constraints,Ks, j is chosen to

satisfy (6.7).

For a general system, virtual channel can be approximated by aG/G/1/1+B j queue,

whereG denotes the general distributed arrival and departure processes. Given a nonzero

B j , Equation in (6.6) should be replaced by a corresponding packet loss probability formula

by analyzing the G/G/1/1+B j queue, and thenKs, j can be chosen according to (6.7).
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We note that for a given system states= [na,1, ..,na,J], an increase in the chosenKs, j

can lead to an improved packet-level performance. However, largeKs, j introduces more

mutual interference, which degrades the physical layer performance. The choice ofKs, j

represents the tradeoff between physical-layer and packet-level performances.

In the above, we only consider the packet-level QoS requirement in terms of packet loss

probability. As discussed previously, other packet-level QoS requirements, such as packet

access delay and delay jitter, can be satisfied by performing packet access control.

6.5 Physical-Layer QoS: Outage Probability

Physical-layer performance is determined by the number of virtual channels, i.e.,Ks, j . In

the previous section, a lower bound ofKs, j is given in (6.7), and an exactKs, j can then

be determined by system resource allocation schemes, e.g., packet access control. In this

section, we discuss how to ensure the physical-layer QoS requirements in terms of worst-

state outage probability and average outage probability for beamforming systems in which

Ks, j , where j = 1,2, ..,J, are known for each possible system state.

As discussed in the previous chapters, the outage probability constraints can be ensured

by employing exact or approximate approaches. In the following, we employ the exact

approach to guarantee the outage probability.

We first derive the outage probability for a given system states= [na,1, ..,na,J], in which

totally ∑J
j=1Ks, j channels are allocated. The outage probability for a given state is defined

as the probability that a target PER, or equivalently a target SIR, cannot be satisfied. As

shown in (5.8), the target SIR for a given PER constraintρ j , can be obtained as follows

γ j =
1
g
[lna− ln((ρ j)

1
L j+1)] (6.9)

in whicha, g are constants depending on the chosen modulation and coding scheme [54].
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Letting each transmitted packet achieve its target SIR, we have the following matrix

form

[IK−QF]p = Qu (6.10)

whereIK is aK−dimensional identity matrix, power vectorp = [p1, .., pK]t , u = η0B[1, ..,1]t ,

(.)t denotes transpose,Q is aK-dimensional diagonal matrix with theith non-zero element

as
γiRi
W

1+ γiRi
W

, andF is aK by K matrix in which the element at theith row and thejth column

can be expressed asFi j =
φ2

i j

φ2
ii
.

To ensure a positive solution for power vectorp, we require the following feasibility

condition,

υ(QF) < 1 (6.11)

whereυ(.) denotes the maximum eigenvalue, which is real-valued since the matrices are

symmetric. Under the above feasibility condition, the power solution can be obtained by

p = [IK−QF]−1Qu (6.12)

where(.)−1 denotes matrix inversion.

Therefore, the outage probability for a given system states, in which totally K =

∑J
j=1Ks, j virtual channels are allocated, can be obtained as follows

Pout(s) = Pout(Ks,1, ..,Ks,J)

= Prob{υ(QF)≥ 1} (6.13)

where Prob{A} denotes the probability of event A.

Based on this state outage probability, the worst-state outage probability, denoted by

Pw
out, and the average outage probability, denoted byPav

out, can be expressed as follows

Pw
out = max

s∈S
Pout(s) (6.14)
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≤ ρw

Pav
out = ∑

s∈S

PsPout(s) (6.15)

≤ ρav (6.16)

whereρw and ρav denote the WSOP and AOP constraints, respectively;Ps denotes the

steady-state probability that the system is in states andS represents the set of all feasible

system states, which will be discussed in Section 6.6.

6.6 Optimal CAC Policy

The QoS requirements in the network layer can be characterized by blocking probability,

defined as the probability that an incoming call is blocked. The network-layer QoS as well

as the other QoS should be guaranteed by a cross-layer CAC design.

In this chapter, we assume that the arrival process is Poisson distributed, the call dura-

tion is exponentially distributed and the call arrival and departure processes are indepen-

dent. Under these assumptions, the process has the Markovian property that the future

behavior of the process depends only on the present state and is independent of the past

history [81]. In this sense, the CAC problem can be obtained by employing the SMDP

approach.

6.6.1 SMDP components

As discussed previously, a semi-Markov decision process includes the following compo-

nents: system state, state space, action, action space, decision epoch, holding time, transi-

tion probability, policy and constraints.

System state is represented by the number of accepted users, i.e.,s = [na,1, ..,na,J].
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A state is considered feasible if and only if this state can satisfy the worst-state-outage-

probability and packet-loss-probability constraints. The state space includes all feasible

system states, and can be expressed as

S= {s;Pout(s) < ρw, andP j
L(na, j ,Ks, j)≤ ν j}.

The formulation of the above state space can be summarized as follows:

• Compute the maximum number of accepted users for each class, denoted byMmax
j .

The search procedure forMmax
j is presented in Figure 6.2;

• An enlarged state space, denoted byS̄, can be formulated as

S̄=
{

s= [na,1, ..,na,J] : na, j ≤Mmax
j for j = 1, ..,J

}
;

• The aboveS̄can be truncated to the desired state spaceSas follows:

– Initialize S= {};

– For each states∈ S̄, choose appropriateKs, j for eachj based on (6.7);

– EvaluatePout(s) based on (6.13);

– If Pout(s)≤ ρw, thenS= S+{s}.

• We remark that in the above step, it is unnecessary to evaluate each system state in

S̄, since ifs∈ S, then alls
′ ∈ S̄such thats

′ ≤ sare also inS. Similarly, if s is not inS,

then alls
′ ∈ S̄such thats

′ ≥ s are also not inS.

After formulating the state space, a virtual-channel-table can then be obtained via (6.7),

which assigns a required number of virtual channels to each possible system state.

The other components of a SMDP, including action, action space, decision epoch, the

holding time, the transition probability, the policy and the constraints are summarized in

Table 6.1.
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In the admission control problem discussed in this chapter, we have QoS requirements

in terms of blocking probability, packet loss probability, AOP and WSOP. While WSOP

and packet loss probability requirements can be guaranteed by formulating the state space

as shown in Table 6.1, the other QoS requirements can be guaranteed by SMDP constraints.

6.6.2 Deriving an AC policy by linear programming

The policy can be chosen according to a certain performance criterion, such as minimizing-

blocking-probability or maximizing-throughput. Here we aim to find an optimal policyR∗

which maximizes the throughput for any initial system state.

As formulating the admission problem as a SMDP, an optimal CAC policy can be ob-

tained by using the decision variableszsa,s∈ S,a∈ As, in solving the following linear (LP)

problem:

max
zsa≥0,s,a

∑
s∈S

∑
a∈As

J

∑
j=1

λ ja j(1−Pout(s))P
j

ONra, j(1−P j
L)(1−ρ j)τs(a)zsa

(6.17)

subject to the set of constraints

∑
a∈Am

zma−∑
s∈S

∑
a∈As

psm(a)zsa = 0,m∈ S

∑
s∈S

∑
a∈As

τs(a)zsa = 1

∑
s∈S

∑
a∈As

(1−a j)τs(a)zsa ≤ Ψ j , j = 1, ..,J

∑
s∈S

∑
a∈As

Pout(s)τs(a)zsa ≤ ρav

whereΨ j andρav denotes the blocking probability and AOP constraints, respectively.

In the above LP formulation,τs(a)zsa represents the steady-state probability that the
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system is at states and an actiona is chosen. The objective function in (6.17) is to max-

imize the system throughput, the first constraint is the balance equation, and the second

constraint ensures the sum of all the steady-state probabilities to be one. The latter two

constraints represent the QoS requirements in terms of blocking probability and average

outage probability, respectively.

6.6.3 Implementation of the cross-layer CAC design

The cross-layer CAC design can be implemented as follows:

• Derive the CAC policy offline:

– Formulate the state space according to the procedure in Section 6.6.1. Then

derive a virtual channel table based on (6.7), which assigns a required number

of virtual channels to each system state;

– Formulate other SMDP components according to Table 6.1;

– The policy can then be derived according to (6.17);

– Implement the CAC policy as a lookup table;

– Whenever parameters change, repeat the above procedure to update the CAC

lookup table and virtual channel table.

• Call level implementation: whenever a call arrives, the lookup table is employed

to decide whether this packet can be accepted. The current state information, repre-

sented by the number of accepted users, and the virtual channel table, are then passed

to the packet level.

• Packet level implementation:
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– The current state information and the virtual channel table are obtained from

call level;

– For each system state, chooseKs, j according to the virtual channel table;

– For each incoming packet in classj, allocate the incoming packets to theKs, j

virtual channels equally;

– The packets in theith virtual channel, wherei = 1, ..,Ks, j , are transmitted over

the channel. An erroneous packet is retransmitted until it is correctly received

or the maximum number of retransmissions is reached;

– The chosenKs, j information is passed to the physical layer.

• Physical layer implementation:

– Ks, j is obtained from packet level;

– Power is adjusted to the desired level, which is given in (6.12).

6.7 Numerical Examples

In the following examples, we consider a packet-switched network with two-class multi-

media services. A circular antenna array and a uniformly distributed AoA are assumed.

A QPSK and convolutionally coded modulation scheme with rate1
2 and packet length

Np = 1080is assumed at the transmitter. Under this scheme, the parameters ofa, g and

γ0 in Equation (5.6) can be obtained from [54]. For simplicity,B1 = B2 = 0 is employed.

Simulation parameters are summarized in Table 6.2.

Without loss of generality, we chooseKs, j to be the minimum number satisfying (6.7).

The chosenKs, j can ensure the packet level QoS requirement while simultaneously mini-

mizing the outage probability in the physical layer.
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na,i = 0 for i = 1, ..,J
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Choose appropriateKs, j based on (6.7)
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Figure 6.2. Search procedure forMmax
j .
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Table 6.1. Formulating the optimal CAC problem as a SMDP.

SMDP components Notation Expression

System state s s= [na,1, ..,na,J].

State space S S= {s;Pout(Ks,1, ..,Ks,J) < ρw,

andP j
L(na, j ,Ks, j)≤ ν j}.

Decision epochs tk The set of all arrival and departure instances.

Action a a = [a1, ..,aJ], wherea j = 1 represents the

decision to accept a classj call, whilea j = 0 represents a rejection.

Admissible As As = {a : a j = 0, if s+ej
s /∈ S, anda 6= 0 if s= 0}

action space in whichej
s represents aJ- dimensional vector,

which contains only zeros except for positionj which contains a1.

Expected τs(a) τs(a) =
(

∑J
j=1 λ ja j +∑J

j=1 µ jn
j
s

)−1
.

holding time

Transition psy(a) psy(a) = λ ja jτs(a), if y = s+ej
s;

probability and psy(a) = µ jn
j
sτs(a), if y = s−ej

s.

Policy R R= {Rs : S→ A|Rs∈ As,∀s∈ S}

whereA denotes the set of all admissible action space.

Constraints Pav
out ≤ ρav and P j

b ≤Ψ j

whereΨ j denotes the blocking probability constraint for classj.
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Table 6.2. Simulation parameters.

W 3.84 MHz a 90.2514

g 3.4998 γ0 1.0942 dB

R1 32 kbps R2 128 kbps

λ1 0.01 λ2 0.003

µ1 0.005 µ2 0.00125

ra,1 50 ra,2 200

P1
ON 0.4 P2

ON 0.6

ρw 0.5 M 2

In the following, we first illustrate the performance for different packet loss probabil-

ity constraints, in which the proposed policy and the policy for circuit-switched networks,

discussed in Chapter 3, are compared. We then present the performance gain for the pro-

posed CAC policy with ARQ over the system without ARQ schemes, such as the policies

discussed in [52] [88].

6.7.1 Performance for a packet-switched network

In the following, we compare the performance for different packet loss probability con-

straints, in which no ARQ schemes are employed. Since a strict packet loss probability

constraint introduces a large blocking probability, which may lead to infeasibility in (6.18),

we now relax the blocking probability constraints to0.5 for both classes to ensure problem

feasibility. The target SIR for class1 and class2 users are set to10and7 dB, respectively.

Figures 6.3-6.6 compare the blocking probability, the average outage probability, the

average packet loss probability and the system throughput for different packet-loss-probability
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constraints, respectively. For simplicity, we assume the packet loss probability constraints

are the same for both classes, which are denoted byPloss constraintin the figures. From

these figures, we observe that the performance in one layer strongly depends on the QoS

constraints of the other layers. For example, given an average outage probability constraint,

relaxing the packet-loss-probability constraint can dramatically reduce the blocking proba-

bility in the network layer, while simultaneously improving the overall system throughput.

This is because with the same physical layer performance, a large packet loss probabil-

ity constraint allows more users to access the network. In the system we investigate, with

ρav = 10−2, relaxing packet loss probability constraint from0 to 0.05can reduce the block-

ing probability from10−1 to 10−3, i.e., reduced by99%, while improving the throughput

from 0.5 to 0.545, i.e., improved by9%.

We note that the achieved packet loss probability in Figure 6.5 is obtained by averaging

the measurements over a long-term period, whilePloss constraintdenotes the maximum

allowed packet loss probability for each system state.

In a circuit-switched network discussed in Chapter 3, a zero packet-loss-probability can

be ensured. As observed in Figures 6.3-6.6, in a packetized system which allows a non-zero

packet loss probability, this zero packet loss probability leads to an inefficient utilization

of the system resource and as a result degrades the call level performance as well as the

overall system throughput.

6.7.2 Performance by employing packet retransmissions

Figures 6.7-6.9 compare the performance between a system without ARQ and a system

with ARQ. In these figure, ARQ= i is equivalent toL1 = L2 = i. The blocking probability

is set to0.1 for both classes and the target overall PERs are set toρ1 = 10−4 andρ2 = 10−6,

respectively. The packet loss probability constraints are set to0.05 for both classes.
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From Figure 6.7, it is observed that with ARQ, the blocking probability and outage

probability can be reduced. This represents a tradeoff between transmission delay and

system performance. For example, withρav = 10−3, employing an ARQ scheme with

L j = 1can decrease the blocking probability from10−3 to10−4, i.e., reduced by90%, while

simultaneously reducing the outage probability from10−3 to almost10−6, i.e., reduced by

99%.

In the above, we have studied the physical and network layer performance by employing

ARQ. We now investigate how ARQ schemes affect the packet level performance. As

shown in (6.4), with an increasedL j , the departure rate is decreased due to retransmissions,

which increases the packet loss probability. However, at the same time, an increasedL j also

reduces the transmission error, allowing more virtual channels simultaneously presented in

the system, which in turn decreases the packet loss probability. Therefore, the packet loss

probability is determined by the above positive and negative impacts of ARQ. If the positive

impact dominates, the packet loss probability is reduced by employing ARQ, as shown in

the upper figure in Figure 6.8. Otherwise, if the negative impact dominates, the packet loss

probability is degraded by employing ARQ, as shown in the lower figure in Figure 6.8. We

note that the above degradation is not very significant. As shown in Figure 6.9, with ARQ,

the overall system throughput can be improved.

Although increasingL j may further improve the system performance, it dramatically

increases the computational complexity of the SMDP-based CAC policy. From Chapter 5,

it is observed that whenL j exceeds a certain level, further increasingL j cannot improve

the performance significantly. Therefore, there is no need to choose a largeL j . A detailed

discussion on the impact of ARQ and how to chooseL j can be found in [72], in which a

packet-level AC is discussed which employs an ARQ-based ROP algorithm. In this chapter,

we only discuss the CAC policy for a givenL j .
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6.8 Conclusions

In this chapter, an optimal CAC policy is proposed for a packet-switched CDMA beam-

forming system in the presence of ARQ. Compared with the previously proposed packet-

level AC policy, in which the call level QoS is ignored, the proposed CAC policy can ensure

all the QoS requirements in call, packet and physical levels. Furthermore, the proposed pol-

icy is performed at the call level, instead of at the packet-level, which is more practical to

implement. Compared with the CAC policy for circuit-switched networks, the proposed

CAC policy allows dynamical allocation of the limited resources, and as a result, is capable

of efficiently utilizing the resources and flexibly handling the multiple QoS requirements.
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Chapter 7

Summary, Conclusions and Future Work

In this chapter, we summarize the major contributions in this thesis and suggest several

topics for future research.

7.1 Summary and Conclusions

We have investigated cross-layer admission control problem in the presence of both multi-

ple antenna and error control schemes.

In Chapter 3, we study an exact approach to ensure physical layer QoS requirements.

Based on this exact approach, an optimal CAC policy is proposed, which can maximize

the system throughput while simultaneously guaranteeing QoS requirements in both phys-

ical and network layers. The proposed cross-layer CAC policy provides a flexible way to

trade off physical and network layer performance to optimize the overall system through-

put. When average-outage-probability (AOP) constraint is relaxed from10−4 to 10−2, it is

possible to reduce the blocking probability88%for a two-antenna system, and increase the

throughput10%. Therefore, allowing for outage probability in the physical layer within its

constraint can reduce the overall blocking probability and may improve the system through-

put. In this chapter, it has been established that compared with the case of single antenna

142



systems, employing multiple antennas and voice activity at the BS can dramatically im-

prove the system performance in terms of blocking probability, outage probability and sys-

tem throughput. For example, with a single antenna at the BS, employing voice activity can

improve the throughput10%. By employing two antennas at the BS, the system throughput

can be further improved by14%.

In Chapter 4, an approximate approach, which includes an approximate PCFC and a

ROP algorithm, is studied to ensure the physical layer QoS requirements. Based on this

approximate approach, a low-complexity sub-optimal CAC policy is proposed which can

guarantee both physical and network layer QoS requirements. Comparison between op-

timal and suboptimal CAC policies shows that suboptimal CAC policy has a slightly de-

graded performance. For example, with an AOP constraint of0.035, using suboptimal CAC

policy degrades the blocking probability from0.06 to 0.15, and decreases the throughput

from 1.37 to 1.24 calls/second, i.e., by10%. However, by employing suboptimal CAC

policy, the complexity can be reduced fromNr eigenvalue computations toJ summations

andJ multiplications, where typicallyNr ≥ 1000andJ≤ 10, a significant reduction.

In Chapters 3 and 4, it is also shown that the proposed optimal and suboptimal CAC

policies can guarantee QoS requirements in both physical and network layers, while for an

existing CS-based CAC policy, QoS constraints in the network layer may be violated.

In Chapter 5, we apply the above approaches to a packet-switched network which em-

ploys a truncated ARQ scheme to mitigate transmission errors. We focus on packet-level

AC problem, and QoS requirements in the call level is ignored. By considering the im-

pact of packet-level retransmissions, we formulate a new semi-Markov decision process,

and an optimal SMDP-based admission control policy is then proposed. A suboptimal

low-complexity GSMP-based AC policy is also discussed in this chapter. Simulation re-

sults show that the SMDP and GSMP-based policies can achieve similar performance for a
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small target packet-error-rate (PER) region. It is also found that within a reasonably small

PER region, physical layer and packet level performance can be improved by employing

ARQ. For example, compared with the system without ARQ, when the target PER is10−2,

employing ARQ withL j = 1, whereL j denotes the maximum number of retransmissions,

can reduce the packet loss probability from10−3 to 10−4. The performance can be further

improved by increasing the maximum number of retransmissions, which unfortunately in-

creases the computational complexity. From the simulation results, we observe that when

the maximum number of retransmissions is increased beyond a certain level, e.g.,L j = 1

in the system investigated, the performance is not improved significantly. Therefore, there

is no need to employ ARQ schemes with a largeL j .

In Chapter 6, optimal call-level AC problem is investigated in a connection-oriented

packet-based network. In contrast to the proposed admission control policies in Chapter 5,

in which call-level QoS requirements are ignored, in Chapter 6, the proposed CAC policy

can guarantee all the QoS requirements in physical, packet and call levels. It has been

shown that compared with the CAC policies in circuit-switched networks, allowing a non-

zero packet loss probability within its constraint leads to an efficient utilization of system

resources, and as a result, improves the call level performance as well as overall system

throughput. The impact of ARQ schemes are also investigated in this chapter. With ARQ,

the call-level and physical-layer performance can be improved. For example, it is possible

to reduce the blocking probability from10−3 to 10−4 by employingL j = 1, while simulta-

neously reducing the achieved outage probability from10−3 to almost10−6. The impact of

ARQ schemes on the packet level performance, however, is not straightforward: with ARQ,

the packet departure rate is decreased, which degrades packet-level performance, while at

the same time, ARQ increases the number of virtual channels, which improves the packet-

level performance. The overall packet level performance may be degraded (improved) by
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employing ARQ if the above negative (positive) impact dominates. In summary, the pro-

posed CAC policy in this chapter allows dynamical allocation of limited resources, and as a

result, is capable of utilizing resources more efficiently with guaranteed QoS requirements

in physical, packet and network layers.

7.2 Future Work

Several possible future directions of investigation are listed as follows:

• In this thesis, we considered a matched-filter receiver in the physical layer. Although

in some of our previous work, e.g., [70] [71], we have studied suboptimal policies

for a linear-minimum-mean-square-error (LMMSE) receiver, these policies can only

be applied to a large system [31]. In the future, one may consider extending this

cross-layer CAC research to multiuser receivers with an arbitrary system size.

• For the exact approach discussed in Chapter 3, our proposed optimal policy depends

on the outage probability evaluation for each possible system state, which leads to

high computational complexity for the system that lacks a closed-form analytical

expression for outage probability. In the future, any progress on simplifying this

analytical expression for outage probability would help to dramatically reduce the

complexity of the proposed optimal algorithms.

• The AC policies proposed in this thesis are based on the assumptions that session

arrival and departure processes have independent Poisson distributions. With gener-

ally distributed arrival/departure process, we need to formulate a generalized semi-

Markov decision process. Although the linear programming approach discussed in

this thesis provides a suboptimal solution, a more accurate solution applicable to

GSMP would be of great interest.
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• In this thesis, we employ an ARQ scheme to mitigate transmission error, which re-

quires a feedback channel from the BS to each mobile user carrying acknowledge-

ment (ACK) information, leading to inefficient resource utilization and latency. Re-

cently, rateless codes [18] are attracting significant attention due to their powerful er-

ror control capability while requiring no acknowledgement feedback. One interesting

topic in the future is to design a cross-layer admission control policy by employing

rateless codes instead of ARQ.
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Appendix A

Simulation implementation

In the thesis, we give the simulation results in terms of blocking probability, connection

delay, outage probability, system throughput, etc. In this appendix, we discuss how to

obtain these simulation results. We first present the simulation procedure for a dynamic

system with random arrival and departure processes, and then briefly discuss how to obtain

the simulation results for a dynamic system.

A.1 Dynamic system simulation

For a dynamic system with random arriving and departure processes, state transitions are

triggered by call arrivals or departures. The dynamic system with Poisson arrival and ex-

ponential duration can be simulated as follows:

1. Initial time indexi = 0;

2. System state can be represented by the number of accepted calls for classj and the

number of calls waiting in the queue for classj, denoted byn j
s andn j

q, respectively,

where j = 1, ..,J;

3. Given current time instantti and current system state, the time duration until the next
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decision epoch can be simulated through a uniformly distributed random variable,

∆t =−log(u)/(
J

∑
j=1

λ j +
J

∑
j=1

µ jn
j
s)

whereu denotes a uniformly distributed random variable over range(0,1), andlog

denotes natural logarithm. This is a direct result from the fact that∆t has an expo-

nential distribution with mean 1
∑J

j=1 λ j+∑J
j=1 µ jn

j
s
;

4. At next decision epoch, a classj call arrives with probability λ j

∑J
j=1 λ j+∑J

j=1 µ jn
j
s
, and a

classj call departs with probability µ jn
j
s

(∑J
j=1 λ j+∑J

j=1 µ jn
j
s)

;

5. Update time indexi = i + 1, and the next decision epochti+1 can be obtained by

ti+1 = ti +∆t.

6. Repeat step 2 to step 5 untili is equal to the maximum number of decision epoches

N.

A.2 Evaluate the performance in a dynamic system

We have discussed how to simulate a dynamic system. Now we give detailed steps on

evaluating the system performance in a dynamic system.

The simulation results in terms of blocking probability, denoted byP j
b , can be expressed

as

P j
b =

The number of blocked calls for classj over durationT
The number of total arriving calls for classj over durationT

. (A.1)

The connection delay can be equivalently represented by the average queue length,

denoted byn j,av
q , which can be obtained by

n j,av
q =

1
N

N

∑
i=1

n j
q(ti)

160



wheren j
q(ti) denotes the queue length at time instantti , andN is the maximum number of

decision epoches. In this thesis,N is chosen to be50,000 to ensure the accuracy of the

evaluated performance.

The outage probability, denoted byPav
out, can be evaluated by

Pav
out =

1
N

N

∑
i=1

Pout(s(ti))

in whichPout(s(ti)) denotes the outage probability at time instantti , obtained by

Pout(s(ti)) =





1 if υ(QF)≥ 1

0 otherwise
(A.2)

whereυ(.) denotes maximum eigenvalue, and matrixQ andF are defined in Chapter 3.

With the above expressions, the system performance can be evaluated by following

the steps illustrated in Table A.1, which consists two parts: a dynamic system simulator

based on the approach discussed in the previous section, and a system performance recorder

for 50,000 decision epoches, i.e.,50,000 arrival and departure instants. Table A.1 also

employs the processing steps for arrival and departure events, which are illustrated in Table

A.2 and A.3, respectively.
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Table A.1. Evaluate the performance by simulation

System SetN j
B = 0, Nj = 0, whereN j

B andNj denote the number of blocked calls

Initialization and the number of totally arriving calls for classj, respectively,j = 1, ..,J.

Step 0: Set time indexi = 0, and the initial state is denoted bys(t0).

Setn j
s(t0) = 0 andn j

q(t0) = 0.

Step 1: Current system state can be obtained bys(ti) = [n1
s(ti),n

1
q(ti), ..,n

J
s(ti),n

J
q(ti)].

Step 2: From policy lookup table, choose an actiona for the current states(ti).

a = [a1, ..,aJ, ..,d1, ..,dJ], wherea j decides if the incoming call can be accepted,

andd j decides if the call waiting in the queue can be transmitted.

Step 3: Use dynamic system simulator discussed in A.1 to decide the incoming

event and the transition duration. Time index is updated toi = i +1.

Step 4: If an arrival event occurs, follow the arrival processing steps ;

illustrated in Table A.2; if a departure event occurs,

follow the departure processing steps illustrated in Table A.3;

Step 5: The system states(ti)) as well as

parametersN j
b, Nj , n j

q(s(ti)) andPout(s(ti)) are updated.

Step 6: Repeat step 1 to step 5 untili ≥ 50,000.

Step 7: Evaluate the performance by time averaging:P j
b = N j

b
Nj

,

Pav
out =

1
N ∑N

i=1Pout(s(ti)), n j,av
q = 1

N ∑N
i=1n j

q(ti).
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Table A.2. Arriving processing procedure

Step 1: SetNj = Nj +1. The action is given bya = [a1, ..,aJ, ..,d1, ..,dJ].

Step 2: If a j = 1, go to step 3; otherwise, go to step 4.

Step 3: Update the system states(ti) with n j
s(ti) = n j

s(ti−1)+1 andn j
q(ti) = n j

q(ti−1).

Go to Step 5.

Step 4: If the current queue buffer is full, setN j
b = N j

b +1,

and the system state remains unchanged, i.e.,s(ti) = s(ti−1);

Otherwise, update the system state withn j
q(ti) = n j

q(ti−1)+1 andn j
s(ti) = n j

s(ti−1).

Step 5: EvaluatePout(s(ti)) based on (A.2).

Table A.3. Departure processing procedure

Step 1: The action is given bya = [a1, ..,aJ, ..,d1, ..,dJ].

Step 2: If d j = 1, go to step 3; otherwise, go to step 4.

Step 3: If the current queue buffer is not empty, update the state with

n j
q(ti) = n j

q(ti−1)−1 andn j
s(ti) = n j

s(ti−1), then go to step 5; otherwise, go to step 4.

Step 4: Update the system states(ti) with n j
s(ti) = n j

s(ti−1)−1, andn j
q(ti) = n j

q(ti−1)

Step 5: DerivePout(s(ti)) based on (A.2).
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Appendix B

Exact Outage Probability for Single Antenna

Systems Employing Voice Activity

In this appendix, we derive an exact outage probability for single antenna systems by con-

sidering voice activity.

As shown in (2.6), power control feasibility condition (PCFC) for single antenna sys-

tems, which represents the number of simultaneously transmitted users, can be derived

as [68]
J

∑
j=1

n j
s

D j
≤ 1 (B.1)

whereD j = 1+ W
γ jRj

.

The PCFC in (B.1) represents the user capacity without employing voice activity, in

which the SIR requirements of all users can be satisfied, and as a result, can achieve zero

outage probability.

Let κi denote a binary random variable representing useri’s voice activity indicator,

wherei = 1, ..,K1. It is assumed thatκi ’s have independent and identical distributions with

success ratepv, which can be expressed aspv = Pr{κi = 1}= 1−Pr{κi = 0}.
By allowing outage probability and employing voice activity, the above PCFC can be
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revised as
n1

s

∑
i=1

κi
1

D1
+

J

∑
j=2

n j
s

D j
< 1. (B.2)

Given a system states= [n1
q,n

1
s, ..,n

J
q,n

J
s], outage probability, denoted byPout, can be

obtained by

Pout(s) = Pr





n1
s

∑
i=1

κi

D1
+

J

∑
j=2

n j
s

D j
≥ 1





= Pr





n1
s

∑
i=1

κi ≥ D1

(
1−

J

∑
j=2

n j
s

D j

)

 . (B.3)

Denotex = ∑n1
s

i=1κi, andA = xD1

(
1−∑J

j=2
n j

s
D j

)
y, wherexay denotes the maximum

integer less thana. The above probability can be further expressed as

Pout(s) = Pr{x > A}

=





1 if n2
s > D2∪n3

s > D2∪ ...∪nJ
s > DJ

0 if n1
s < D1

(
1−∑J

j=2
n j

s
D j

)

1−Fx(A) otherwise

(B.4)

in which ∪ denotes union, andFx(.) denotes the cumulative density function (CDF) of

random variablex. Sinceκi has Bernoulli distribution with success ratepv, random variable

x has a Binomial distribution. The CDF ofx can be further expressed as

Fx(A) =
A

∑
m=0

fx(m)

=
A

∑
m=0

(
n1

s
m

)
pm

v (1− pv)n1
s−m

= I1−pv

(
n1

s−A,A+1
)

(B.5)

whereIp(c,b) represents a regularized incomplete beta function with parametersp,c,b. In

the above, Equation (B.5) is directly obtained from the definition of a regularized incom-

plete function [1].
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Therefore, the outage probability in (B.4) can be expressed as

Pout(s) =





1 if n2
s > D2∪n3

s > D2∪ ...∪nJ
s > DJ

0 if n1
s < D1

(
1−∑J

j=2
n j

s
D j

)

1− I1−pv

(
n1

s−A,A+1
)

otherwise.

(B.6)
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Appendix C

Derivation of an Approximate Outage

Probability

As presented in (5.9), the outage probability for a given system states by including the

impact of ARQ can be represented by

Pout(s) = Prob{υ(QF)≥ 1} (C.1)

where Prob{A} denotes the probability of event A,υ(.) denotes the maximum eigenvalue,

Q is a K-dimensional diagonal matrix with theith non-zero element asγiRi
W , i = 1, ..,K,

andF is a K by K matrix in which the element at theith row and thejth column can be

expressed asFi j =
φ2

i j

φ2
ii

for i 6= j, andFi j = 0 for i = j.

Owing to the properties of nonnegative matrices, the eigenvalueυ(QF) can be esti-

mated by [76],

υ(QF) =
1
K

K

∑
i=1

K

∑
j=1

(QF)i, j

=
1

∑J
j=1n j

s

J

∑
j=1


Rjγ j

W

t j+n j
s

∑
m=t j+1

K

∑
i=1

Fmi
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where(QF)i, j denotes the entry of matrixQF at theith row and thejth column, and

t j =





∑ j−1
l=1 nl

s if j > 1

0 if j = 1.
(C.2)

As shown in [75], by using the central limit theorem, random variableυ(QF) has an

approximately Gaussian distribution. Therefore, the outage probability in (C.1) becomes

Pout(s) = Prob{υ(QF)≥ 1}

= Q

[
1−E[υ ]√

Var(υ)

]
(C.3)

whereQ(α) = 1√
2π

∫ ∞
α e−

x2
2 dx, E[υ ] andVar(υ) denote the expectation and variance of

random variableυ(QF), which can be obtained as follows:

E[υ ] =
J

∑
j=1

1
W

γ jRjn
j
sE[F ]

Var[υ ] =
1
K

J

∑
j=1

n j
s[

1
W

γ jRj ]2Var[F ] (C.4)

whereE[F ] andVar[F ] denote the expectation and variance ofFi j , which can be evaluated

numerically. Table 5.4 presents these numerical values for a uniform circular array, which

are derived in [75].

The accuracy of the above outage probability approximation has been shown in [75].
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