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Abstract

CDMA (Code Division Multiple Access) with multiuser detection at the basestation
is an effective way to increase the system capacity. Multiuser detectors are extremely
sensitive to time delay estimation errors (delay mismatch) in near-far environments.
The required accuracy of time delay estimation is beyond that of current single-user
or multi-user delay estimation algorithms, so it is very important to investigate delay-

robust CDMA multiuser detection methods operating under delay mismatch.

In the first part of this thesis, a delay-robust multistage successive interference
cancellation (SIC) multiuser detector that is near-far resistant under delay mismatch
is proposed. The detector is based on a linear SIC implementation of the decorre-
lating detector, which can be shown to be equivalent to the space alternating gen-
eralized expectation-maximization (SAGE) algorithm, which has guaranteed local
convergence. While other multiuser detectors that are robust to delay mismatch have
a capacity limit of 50% of the spreading factor, and can only be applied to rectangu-
lar chip pulse shapes, our proposed delay-robust SIC has a capacity close to 100% of
the spreading factor, and can be applied to general band-limited chip pulse shapes,
e.g., the square-root raised cosine pulse. The delay-robust SIC’s asymptotic mul-
tiuser efficiency (AME) and bit error rate (BER) are both analyzed and confirmed
by computer simulation. For larger delay errors, a local decorrelation operation is
inserted into the delay-robust SIC iterations to improve its performance. This delay-
robust SIC can also be used for delay error estimation, whose root mean square error

(RMSE) performance is compared to the Cramér-Rao lower bound (CRLB).

In the second part of this thesis, we propose a new soft-decision function to be
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used in multistage SIC detectors. The soft-decision function combines the desirable
convergence properties of the linear-soft decision function with the noise reduction
of the hard-limiter decision function. The result is a SIC detector with both good
noise performance and convergence. This soft-decision function has been combined
with amplitude time-averaging. The steady-state performance is analyzed and con-
firmed by PN (pseudo-noise) chip level simulation. We then incorporate this new
soft-decision function and amplitude averaging in the delay-robust SIC. For the case
of a highly loaded system, the superiority of soft-decision and amplitude averaging
is shown by simulation. Since a delay-robust SIC with soft-decision and amplitude
averaging can also be used as a delay error estimator, we further propose applying
these techniques to a multi-user delay tracking receiver. Since the time delay error de-
tector in the delay-robust SIC is similar to a single-branch realization of an early-late
delay tracking loop in a conventional single-user receiver, we have combined the delay
tracking loop into a multiuser detector. Tracking performance is demonstrated for
both rectangular and square-root raised cosine PN chip pulse shapes. The multiuser
detection and delay tracking for time-varying multi-path fading channel is consid-
ered and the tracking performance of the delay-robust SIC is evaluated by computer

simulation.

The third part of the thesis considers the application of CDMA multiuser detection
methods to multi-antenna systems known as MIMO (multiple input multiple output)
systems, e.g., the BLAST (Bell Labs Layered Space-Time) system, by observing the
similarity between a linear MIMO system and a synchronous CDMA multiuser sys-
tem. An ordered SIC method was proposed by other researchers for bit detection
in BLAST systems. However, its complexity is too high for high-rate applications.
We apply a decorrelating decision-feedback CDMA multiuser detection method to
BLAST systems. Since only one matrix decomposition is performed at the begin-
ning of the algorithm, the computational complexity is greatly reduced. However,

BLAST’s decision-feedback ordering is according to decreasing signal power, not in
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the optimum decreasing signal-to-noise ratio (SNR) ordering. We further propose us-
ing a series of numerically stable unitary transformations to reorder the decomposed
matrices. We show that complexity is an order lower than that of the ordered SIC

while its stability is improved as well.

v



Acknowledgements

It is my great pleasure to thank my supervisor, Dr. Steven D. Blostein, for his
excellent guidance and support throughout this thesis research.

I would like to thank my thesis defense committee members, Dr. M. Ibnkahla,
Dr. T. J. Lim (University of Toronto), Dr. P. J. McLane and Dr. G. Takahara
(Mathematics and Statistics) for their taking time to review my thesis and for their
helpful suggestions to improve this thesis.

To my colleagues and friends at [PCL and Queen’s, whose help and friendship
make Queen’s a wonderful place to spend four years.

Finally, I would like to thank my wife, Feng, for her encouragement and patience
throughout my Ph.D. study and research at Queen’s.

This work was supported financially by the Canadian Institute for Telecommuni-
cations Research (CITR), the School of Graduate Studies and Research at Queen’s

University and the Ontario Graduate Scholarship in Science and Technology.



Contents

Abstract
Acknowledgements

List of Figures

List of Important Symbols

1 Introduction
1.1 Motivation . . . . . . . ..
1.2 Summary of Contributions . . . . . .. .. .. ... ... L.

1.3 Thesis Overview . . . . . . . . . e,

2 Overview and Objectives
2.1 CDMA Multiuser Detection . . . . ... ... ... ... ... ....
2.2 CDMA Time Delay Estimation . . ... ... ... ..........
2.3 CDMA Multiuser Detection under Delay Mismatch . . . . . . .. ..
2.4 Improved CDMA Multiuser Detection in the Presence of Time Delay

2.5 Objectives . . . . . . L

3 Multiuser Receivers that are Robust to Delay Mismatch
3.1 Introduction . . . .. .. ..
3.2 System Model . . . . . . ..o
3.3 Delay-Robust Multiuser Detectors . . . . . . . ... .. .. ... ...

vi

il

XV

12
15

17
19



3.4

3.5
3.6
3.7
3.8

3.3.1 Prediction Error Approach . . . . ... ... ... 25

3.3.2 Two Virtual User Approach . . . ... ... ... ... .... 26
3.3.3 Hybrid Approach . . . . .. ..o 26
3.3.4 Delay-Robust Decorrelating Detector . . . . . . .. ... ... 27
3.3.5  Multistage Delay-Robust Decorrelating Detector . . . . . . . . 28
3.3.6  Delay-Robust SIC Detector . . . ... ... ... ... .... 29
3.3.7 Convergence of the Delay-Robust SIC . . . . .. .. ... ... 32
Performance Analysis . . . . . . .. ... Lo oL 34
341 AMEand BER . . ... ... ... ... .00 34
3.4.2 Time Delay Error Variance Bound . . . .. .. .. ... ... 37

3.4.3 Probability of the Integer and Fractional Uncertainty Delay Es-

timate . . . ... L 39
3.4.4  TImplementation Complexity . . . . .. ... ... ... .... 40
Larger Delay Errors . . . . . . . .. ... . o 40
Delay-Robust SIC Detector for Band-limited Chip Pulse Shapes . . . 43
Numerical and Simulation Results . . . . .. ... ... .. ... ... 45
Conclusion . . . . . . . . L 52

4 Soft-Decision Interference Cancellation and Multiuser Delay Track-

ing
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

4.9

56
Introduction . . . . . ..o 57
System Model . . . . . . . ... o 59
SIC Multiuser Detector with Amplitude Averaging . . . . .. .. .. 60
A Steady-State Performance Analysis . . . . .. .. ... ... ... 65
Modification for Phase Exror . . . . . . . ... ... 69
Soft-Decision Delay-Robust SIC . . . . . ... ... .. .. ... ... 71
Multiuser Delay Tracking Based on Delay-Robust SIC . . . . . . . .. 74
Multiuser Channel and Delay Tracking for Unknown Multipath Fading
CDMA Channels . . . . .. ... 77
Numerical and Simulation Results . . . . .. ... ... .. ... ... 78

Vil



4.9.1  Soft-Decision Multistage SIC . . . . .. . ... ... ... ... 79
4.9.2  Soft-Decision Multistage Delay-Robust SIC . . . . . .. .. .. 84
4.9.3 Delay Tracking Based on Delay-Robust SIC . . . . .. .. .. 88
4.9.4  Delay Tracking for Unknown Fading Channels . . . . . .. .. 92
410 Discussion . . . .. ..o e e 93
411 Conclusion . . . . . . . . e 95

5 Application of Multiuser Receiver Structures to Multi-Antenna Sys-

tems 96
5.1 Introduction . . . . . . . ... 96
5.1.1  Application to Antenna Array CDMA Systems. . . . . . . .. 97

5.1.2  Application to MIMO Systems . . . . . ... .. .. ... ... 98

5.2 System Model . . . . . ..o 99
5.2.1  Ordered SIC Method . . . . . . ... ... ... ... ..... 101

5.2.2  Other Detection Algorithms . . . . .. ... ... ... .... 102

5.3 Decorrelating Decision-feedback Methods . . . . . . .. ... ... .. 102
5.3.1  Original Decorrelating Decision-Feedback Method . . . . . . . 102

5.3.2  Modified Decorrelating Decision-Feedback Method . . . . . . . 104

5.3.3 Implementation Issues . . . . . . ... ... 108

5.4 Simulation Results . . . .. .. ..o oo 111
5.5 Conclusion . . . . . ... 114

6 Conclusions and Future Work 115
6.1 Thesis Summary . . . . . . .. 115
6.2 Future Directions . . . . . . .. .. o L 117
6.2.1 Time Delay Estimation for Time Varying Fading Channels . . 117

6.2.2  Multiuser Receivers in Multi-cell Systems . . . . . . .. .. .. 118

6.2.3 Multiuser Detection for Fast Fading Channels . . . .. .. .. 119

A Derivation of the Cramér-Rao Lower Bound (CRLB) 121

Vil



B Calculation of Integer and Fractional Uncertainty Delay Estimate
Probability 123

Bibliography 124

Vita 140

X



List of Figures

2.1
2.2

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

Multiuser Detector . . . . . . . . . ...

Linear Multiuser Detector . . . . . . . . . . . . . . .. .. .. ...

Sampling of the chip-matched filter response for rectangular chip-pulse
shapes. The solid arrows represent the error in chip-matched filter
response at the sampling points due to time delay mismatch. . . . . .
Bit Error rate (BER) of user 1 as a function of the delay error standard
deviation o,. Near-far ratio20dB. . . .. .. ... ... ... ....
Bit Error rate (BER) of single user channel as a function of the delay
error standard deviation o,. . . . . . . . . ... ...
Sampling of the chip-matched filter response for truncated band-limited
chip-pulse shapes. The solid arrows represent the first order derivative
of the chip-matched filter response at the sampling points with esti-
mated timing delay. . . . . . . ..o oo
Asymptotic multiuser efficiency (AME) as a function of near-far ratio
foro, =0.17,. K =5users. . . . . . . o v .
Asymptotic multiuser efficiency (AME) as a function of number of
users for o, = 0.17.. Near-far ratio20dB. . . . .. .. .. ... ...
Bit Error rate (BER) of user 1 for o, = 0.17.. Proposed delay-robust
SIC detector with K =5 users. Near-far ratio 20dB. . . . . . . . ..
Bit Error rate (BER) of user 1 for o, = 0.17.. Proposed delay-robust
SIC detector with K = 10 users. Near-far ratio 20 dB. . . . . . . ..

25

41

42

44

46

47

48



3.9

3.10

3.11

3.12

3.13

3.14

3.15

4.1
4.2

4.3

4.4

4.5

4.6

Bit Error rate (BER) of user 1 for o, = 0.17.. Proposed delay-robust
SIC detector with K = 20 users. Near-far ratio 20 dB. . . . . . . ..
RMSE and Cramér-Rao lower bound (CRLB) of user 1’s delay error
estimate for o, = 0.17, and K = 5 users. Near-far ratio = 20 dB.

Integer and fractional uncertainty delay estimates. Bit Error rate
(BER) of user 1 for o, = 0.17. and K = 10 users. Near-far ratio
20dB. ..
Integer and fractional uncertainty delay estimates. Bit Error rate
(BER) of user 1 for o, = 0.157, and K = 10 users. Near-far ratio
20dB. . L
Asymptotic multiuser efficiency (AME) as a function of the delay error
standard deviation o,. Near-far ratio 20dB. . . . . .. .. ... ...
Bit Error rate (BER) of user 1 as a function of the delay error standard
deviation o,. Near-far ratio20dB. . . .. .. ... ... ... ....
Band-limited chip pulse shapes. Bit Error rate (BER) of user 1 for
o, =0.17, and K =5 users. Near-far ratio20dB. . . .. .. .. ..

The interference cancellation unit for user k. . . . . . . .. ... ...
The decision functions for interference cancellation multiuser detectors
(SIC and PIC). . . .. ..
The SNR loss for the proposed SIC detector compared to the single
user detector as a function of the thresholds 0 < ¢ < 1. K = 20 users.
SNR = 10 dB. ¢ =1 represents the unit-clipper. . . . . . . ... ...
Bit error rate (BER) of user 1 for proposed SIC detector with phase

errors. K = 20 users. Near-far ratio = 10 dB. The threshold is ¢ = 0.5.

Interference cancellation unit of delay-robust SIC for user k at the
(4 D)ststage. . . . o
Bit error rate (BER) of user 1 for proposed SIC detector and other
SIC detectors. K = 20 users. Near-far ratio = 10 dB. The threshold

x1

50

51

52

53

54

54

99

62

63

68

70

74



4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

Bit error rate (BER) of user 1 for proposed decision function compared

with linear-clipper and tanh(-). K = 20 users. Near-far ratio = 10 dB.

Bit error rate (BER) of user 1 for proposed SIC detector with K = 20
users. Near-far ratio = 10 dB. The thresholds are ¢ = 0.0, 0.5, 0.8 and
1.0 respectively. ¢ = 0.0 represents the hard-limiter. ¢ = 1.0 represents

the unit-clipper. . . . . . . ..

Bit error rate (BER) of user 1 for proposed SIC detector with K = 20
users. Near-far ratio = 10 dB and 0 dB. The thresholds are ¢ = 0.2
and 0.5, respectively. . . . . .. ..o L oo

Bit error rate (BER) of user 1 for proposed SIC detector as a function
of the number of SIC stages. K = 20 users. Near-far ratio = 10 dB.
The threshold is e=0.5. . . . . .. ... ... ..

Bit error rate (BER) of user 1 for proposed SIC detector and other SIC
detectors as a function of the number of users. SNR = 10 dB. Near-far

ratio = 10 dB. The threshold ise=0.5. . . . . . . . . .. ... ...

Bit error rate (BER) of user 1 for robustified SIC detector. K = 20
users. Near-far ratio = 10 dB. The threshold is ¢ = 0.5. The time

delay has an error of 0, = 0.17.. . . . . . .. ... .. ... .....

Bit error rate (BER) of user 1 for robustified SIC detector. K = 20
users. Near-far ratio = 10 dB. The threshold is ¢ = 0.5. The time

delay has an error of 0, = 0.57.. . . . . . .. ... ... .......

Bit error rate (BER) of user 1 for delay-robust SIC and standard SIC
detectors. K = 20 users. Near-far ratio = 10 dB. Soft decision function

is used with threshold e=0.5. . . . . . . . . . . . . ... ... ...

Root Mean Square Error (RMSE) of user 1 for proposed SIC detector
compared to the Cramér-Rao Lower Bound (CRLB). K = 20 users.
Near-far ratio = 10 dB. The threshold is ¢=0.5. . . . .. ... ...

xii

80

81

82

83

83

84

85

86



4.16

4.17

4.18

4.19

4.20

4.21

5.1

5.2

5.3

Delay tracking curves of delay-robust SIC. K' = 20 users. Near-far
ratio = 10 dB. The weakest user has SNR = 14 dB. Soft decision
function is used with threshold e=0.5. . . . . .. . . . . ... ...

Bit error rate (BER) of user 1 for delay-robust SIC detector in tracking
time delays. K = 20 users. Near-far ratio = 10 dB. Soft decision
function is used with threshold ¢=0.5. . .. ... .. ... ... ..

Delay tracking curves of delay-robust SIC. K" = 20 users. Near-far ratio
= 10 dB. The weakest user has SN R = 3 dB. Soft decision function is
used with threshold ¢ =0.5. . . .. .. .. .. ... ... . ......

Delay tracking curves of delay-robust SIC for band-limited chip pulses.
K = 20 users. Near-far ratio = 10 dB. The weakest user has SNR = 14
dB. Soft decision function is used with threshold ¢ =0.5. . . . . ..

Delay tracking curves of delay-robust SIC for Rayleigh fading channels.
Normalized Doppler fading rate is fp7T' = 0.01. K = 20 users. Near-far
ratio = 5 dB. The weakest user has SNR = 14 dB. A linear decision

function is used. . . . . . ...

Channel amplitude and phase tracking curves of delay-robust SIC for
Rayleigh fading channels for the weakest user. Normalized Doppler
fading rate 1s fpT = 0.01. K = 20 users. Near-far ratio = 5 dB. The
weakest user has SVR = 14 dB. Linear decision function is used. The
solid line is the true delay and the dashed line is the delay tracking

results. ... .

Model of BLAST space-time systems. My < Mp. . . . .. ... ...
Correlator and the decision-feedback detector. . . . . . . . . . . ...

Average symbol error rate of the original and modified decorrelating
decision-feedback (DDF) detectors for BLAST system with My = 4

transmit antennas, Mpr = 4 receive antennas and 4-QQAM modulation.

X111

111



5.4 Average symbol error rate of the original and modified decorrelating
decision-feedback (DDF) detectors for BLAST system with My = 8
transmit antennas, Mpr = 8 receive antennas and 16-QAM modulation. 112

5.5 Average symbol error rate of the original and modified decorrelating
decision-feedback (DDF) detectors for BLAST system with My = 4
transmit antennas, Mpr = 6 receive antennas and 4-QQAM modulation. 113

5.6 Average symbol error rate of the original and modified decorrelating
decision-feedback (DDF) detectors for BLAST system with My = 8

transmit antennas, Mpr = 12 receive antennas and 16-QAM modulation.114

X1V



List of Important Symbols

Okl complex channel attenuation for user & through lth path
Nk asymptotic efficiency of multiuser detector for user &

o? variance of additive white Gaussian noise

0 phase shift of user k

T relative time delay of user &

Tkl relative time delay of user k through lth path

ax(?) amplitude of the ith bit of kth user
bi(7) ith data bit of kth user

b(z) bit vector for the sth data bit of all the users
b bit vector over a block of M bits
sk(t) normalized spreading waveform of kth user

cx(J) jth chip of kth user

ck spreading code vector of kth user

ci(pr,t) cx right-shifted by (¢« — 1)N + p chips

dx(7) signature vector of user k for the ith data bit

D signature matrix of all users over a block of M bits

Ady(i)  the error vector, first derivative of signature vector of user k for
the ith data bit

e combined error vector of user k using bit decision-feedback

over a block of M bits

XV



=
3

spatial-temporal channel vector for the mth receive antenna in BLAST
spatial-temporal channel matrix for flat fading channels in BLAST

bit index

user index

number of users in the system

path index

number of paths

processing gain for CDMA

block length in asynchronous CDMA

number of transmit antenna elements in BLAST

number of receive antenna elements in BLAST

additive white Gaussian noise vector

spreading chip pulse shape

cross-correlation matrix for synchronous single-path channels

kjth component in R

cross-correlation matrix for asynchronous multipath channels

kjth sub-matrix in R, denoting cross-correlation between users k and j
received continuous signal

received signal vector after chip-matched filtering and chip-rate sampling

received signal vector after bit-matched filtering and bit-rate sampling

xVi



Chapter 1

Introduction

1.1 Motivation

Wireless communications has been undergoing rapid development for the past two
decades. With the high demand of high speed wireless access to information and a
growing number of users, current wireless communication technologies and standards
need further improvement to satisfy the ever increasing demand.

Code division multiple access (CDMA) cellular systems are effective in making
the most use of existing spectrum. The cellular concept enables reusing the same
frequency bands at different physical locations. CDMA provides the largest cell ca-
pacity for a specified frequency band in a multicell environment, since its frequency
reuse factor is one, i.e., the same frequency band can be reused in the adjacent cells
and thus frequency planning is not required. One of the second generation wireless
standards, 15-95, uses narrow-band CDMA, whose voice capacity is 4-6 times that of
digital TDMA (time division multiple access) or FDMA (frequency division multiple
access) systems [30]. This capacity improvement is due to voice activity, spatial isola-
tion and the reuse of the same spectrum over all the cells. The third generation (3G)
wireless communication system, with standards IMT-2000 (cdma2000 and UMTS),
is based almost exclusively on wide-band CDMA to support both voice and data ser-
vices [1] [17]. The 3G wireless also includes features that support capacity increasing

technologies such as multiuser detection and adaptive antenna arrays. Optional short



spreading codes can be used in the uplink direction to facilitate multiuser detection
at the basestation. Dedicated pilot symbols in the uplink for each user can be used

for the adaptive antenna array [17].

The conventional CDMA receiver is a filter matched to the signature waveform of
the desired user, which is optimum under white Gaussian noise conditions. Due to
the multiple-access interference (MAI) from other users in the same cell (intracell in-
terference), and the MAI from adjacent cells (intercell interference), the conventional
matched filter receiver is near-far limited. Its performance degrades greatly when the
interfering users have much stronger received powers than that of the desired user.
The 1S-95 system must therefore use precise power control to make the received power
levels of all users at the base station to be about the same, which is difficult to do in

practice.

Verdi’s novel work [120] showed that the near-far problem is not inherent to
CDMA, but can be solved by using an optimum maximum likelihood (ML) multiuser
detector. The outputs of matched filters at the base station provide sufficient statistics
to detect all users’ signals. The matched filters followed by a Viterbi decoder is an
jointly optimum ML multiuser detector, but its complexity is exponential in the
number of users. Suboptimum multiuser detectors were developed, including the
linear decorrelating detector (decorrelator) [67], linear minimum mean squared error
(MMSE) detector [68], parallel interference cancellation (PIC) detector [119] and the

successive interference cancellation (SIC) detector [84].

All the above multiuser detectors have assumed that the receiver knows the ex-
act time delays of all the users in a cell. In practical systems, time delays must be
estimated at the receiver. Several time delay estimation algorithms have come forth,
including the sliding correlation delay estimator [86] [87], two approximate ML algo-
rithms, the approximate maximum likelihood (AML) algorithm [48] [61] and the large
sample maximum likelihood (LSML) algorithm [134], subspace-based algorithms [4]
[110] and MMSE-based algorithms [71].

Since time delays cannot be estimated exactly at the receiver due to the MAI



and noise, there always exists timing delay estimation errors (delay mismatch). The
performance of multiuser detectors under delay mismatch has been studied for the
ML detector [34], the decorrelating detector [85] [136] and the multistage detectors
[34] (PIC [8] [53] and SIC [13]). Wang simulated a SAGE-based space-time multiuser
decorrelating detector bit error rate (BER) performance under delay mismatch in
his Ph.D. thesis [123]. When the delay mismatch is minor, the multiuser detector
may still perform better than the conventional matched filter receiver. However the
matched filter receiver is more robust to delay mismatch: BER performance does
not degrade as steeply as in the case of multiuser detectors [8] [13] [34] [85]. Some
modified multiuser detectors have shown some robustness to timing errors. However,
they are either not truly near-far resistant or have a capacity limit of less than half
of the spreading factor. A multiuser detector that is not affected by the near-far
problem under delay mismatch and has capacity larger than 50% of the spreading

factor does not exist in the open literature.

Multistage successive interference cancellation (SIC) is one of the most efficient
ways to perform multiuser detection as it can be applied to both long code and short
code CDMA systems. Linear multiuser detectors such as the decorrelating detector
and the MMSE detector, on the other hand, need to perform matrix inversion every
symbol for long code CDMA, so are not suitable for such systems. The complexity
of multistage SIC is lower compared to that of the decorrelating detector. However,
the use of a hard-limiter decision function for data bit decision in the SIC iterations
leads to error propagation, which cause a bit error rate (BER) error floor. A number
of methods have been proposed to combat error propagation, including partial can-
cellation [19] and soft-decision [45]. However, those methods need complex control of

the parameters which are impractical and may not lead to adequate performance.

Linear space-time coding is a low complexity multiple input multiple output
(MIMO) system to achieve high spectral efficiency over rich scattering wireless chan-
nels. One important MIMO system concept is the Bell Labs layered space-time system
(BLAST), which requires that the number of receive antennas to be larger than the

3



number of transmitting antennas. Recently, BLAST has been generalized to the case
where the number of receiving antennas can be less than the number of transmitting
antennas. The original ordered SIC detection method is too complex to be used for
the high-rate applications, and its iterated nulling and cancellation can lead to nu-
merical instability for large numbers of antennas. A square-root method which has
reduced complexity and increased numerical stability was reported in [38]. We pro-
pose to apply decision-feedback multiuser detection methods originally proposed for
synchronous CDMA systems to the detection in BLAST systems. To get optimum
decision-feedback ordering, which is the same as optimum SIC ordering, we further
propose using a series of numerically stable unitary transformations to permute the
decision-feedback matrix. This provides further complexity reduction and numerical

stability increase over the square-root method.

1.2 Summary of Contributions

This thesis investigates the problem of improving existing CDMA multiuser detection
methods to be robust to time delay errors as well as the problem of reducing the
complexity of BLAST detection. We develop a robust SIC multiuser receiver that is
near-far resistant under time delay estimation errors. A new soft-decision function
to improve the BER performance of multistage SIC receivers is incorporated into the
delay-robust SIC framework. A new reduced complexity BLAST detection method
is also proposed based on our improvements to decision-feedback CDMA multiuser

detection methods. The primary contributions are summarized as follows:

e An equivalent two-virtual-users model is introduced for the discrete-time re-
ceived multiuser signal when there are time delay errors for the case of a rect-
angular transmitted chip pulse shape. A delay-robust SIC detector is proposed.
The delay-robust SIC is generalized to general band-limited chip pulse shapes.

4



e A new soft-decision function is proposed to mitigate the disastrous error prop-
agation of the hard-limiter function in multistage SIC. The steady-state perfor-
mance of the new soft-decision SIC with amplitude averaging is analyzed. The
new soft-decision function is combined with the delay-robust SIC technique to

also mitigate time delay errors.

e The delay-robust SIC is applied to delay error estimation. The Cramér-Rao
lower bound (CRLB) is derived as its performance lower bound. The delay-
robust SIC is applied to track the time delays of multiple users in CDMA fading

channels.

e A CDMA decision-feedback multiuser detection method is improved and applied
to the linear MIMO - BLAST (Bell Labs Layered Space-Time) system, to reduce

computational complexity and improve numerical stability.

1.3 Thesis Overview

This thesis consists of six chapters, which describe the problem of robust CDMA
multiuser detection under time delay errors, improvements to CDMA multistage SIC
detection by using a new soft-decision function, and complexity reduction using a
modified decision-feedback method for the BLAST system.

In Chapter 2, existing multiuser detection algorithms, approaches to timing delay
estimation methods for the asynchronous MAT CDMA channel, performance analysis
of different multiuser detection algorithms under time delay errors (delay mismatch)
and improved multiuser detectors for mismatched delay are reviewed.

Chapter 3 proposes a robust method for multiuser detection when there exists
time delay error. We introduce a two-virtual-user equivalent model. A delay-robust
decorrelator is derived based on this model which has a capacity limit of half the
spreading factor. An alternative expression for the two virtual user model is derived,
and a multistage delay-robust decorrelator is obtained which has a larger system ca-

pacity than the delay-robust decorrelator. We apply the space-alternating generalized



expectation-maximization (SAGE) algorithm [24] to derive an efficient delay-robust
SIC implementation of the multistage delay-robust decorrelator. Asymptotic mul-
tiuser efficiency (AME) [67], BER, and CRLB are derived for the delay-robust SIC.
The delay-robust SIC is extended both to integer PN chip delay uncertainty for rect-
angular chip pulse shapes and to generalized band-limited chip pulse shapes.

Chapter 4 introduces a new soft-decision function to be used in the multistage SIC
detector. We first compare the advantages and disadvantages of the existing decision
functions, then combine their advantages to arrive at our proposed new soft-decision
function, which is a generalization of the unit-clipper [78] [133]. Time averaged am-
plitude estimation is used in the soft-decision SIC to improve performance over the
decorrelator. Steady-state performance is analyzed and confirmed by computer sim-
ulations. The combination of the new soft-decision function with the delay-robust
SIC technique of Chapter 3 gives improved performance, especially at high-load re-
gions. Multi-user delay tracking and detection for both static channel and fast fading
multipath channel is addressed.

In Chapter 5, we apply the CDMA multiuser detection methods to multiple an-
tenna systems. We first introduce the ordered SIC and other detection methods for the
BLAST linear space-time system. Their complexity and numerical stability are com-
pared. We then apply the decision-feedback method which was originally proposed
for synchronous CDMA systems to the BLAST system, by observing the similarity
between the BLAST and CDMA systems. To obtain optimal decision-feedback order-
ing, we modify the decision-feedback method through a series of numerically stable
uniform transformations. The BER performance is investigated by simulation.

Finally, Chapter 6 summarizes the conclusions and provides possible directions

for future research.



Chapter 2

Overview and Objectives

The first section introduces multiuser detection methods. CDMA time delay estima-
tion methods and their achievable performance are reviewed in Section 2.2. Section
2.3 reviews the performance of various CDMA multiuser detectors under delay mis-
match and Section 2.4 presents modified multiuser detection methods to compensate

for delay mismatch. In Section 2.5, the objectives of the thesis are stated.

2.1 CDMA Multiuser Detection

We assume that the CDMA channel is asynchronous and binary phase shift keying
(BPSK) modulation is used. The received signal at the basestation after downcon-

verting to the baseband is

r(t) = S(t,b) + n(1) (2.1)

where
K

Ms

ak Sk t — ZTb — Tk) (22)
k=1

Il
—

7

n(t) is white Gaussian noise with power spectral density o;

3k(t) is the normalized signature waveform of user k of duration [0, 73);
Ty 1s the symbol interval;

ag(1) is the received signal amplitude of the kth user in the ith symbol

interval;
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Figure 2.1: Multiuser Detector

b = {b(:) = [bi(2),...,bx(¢)], bp(s) e {-1,1}, k=1,....,K; i =1,..., M}
is the transmitted bit sequence vector of the K users;
The length of b is M K

T 1s the time delay of user k, where it is assumed that 0 < 7, < T}.

The receiver front-end can be identical for both conventional single-user detector
and the multiuser detectors, which is comprised of a bank of K matched filters,
matched to the users’ spreading waveforms. However, we note that other kinds of
receiver front-ends such as chip matched filter that matched to the chip waveform,
can also be used in single-user and multiuser detectors. The outputs of the bank of
K matched filters are sampled at the symbol rate and collected into a K-dimensional
vector for the ith time interval, y (i) = [y1(¢),...,yx(i)]T, where y.(z) is for the ith
bit of the kth user

. (2+1)Tb+7k _ .
yeli) = / r(1)3n(t — iTy — m)dt (2.3)
Ty+Ts
— / S(t,b)au(t — iTy — m)dt + / n(O)3n(l —iTy — m)dt (2.4)
M of such K-vectors are concatenated into a longer signal vector Y = [y(1)T,... y(M)T]T.

The conventional single-user detector uses a decision function following each matched
filter and makes symbol decisions separately, treating the MAI terms as white noise.

Performance degrades rapidly when the near-far ratio increases, where the near-far

8



ratio is defined as the ratio of the received signal powers between the strongest user
and the weakest user.

The multiuser detectors perform joint detection based on matched filter outputs
Y, which are sufficient statistics for detection of all K users’ transmitted symbols [22]
[75].

Verdd first developed the optimum multiuser detector [120]. If the transmitted
sequences of symbols are equiprobable, the maximum-likelihood (ML) detection is
the the same as optimum maximum a posterior (MAP) detection [89] [120]. The
maximum-likelihood (ML) multiuser detector selects the sequence b that maximizes
the conditional probability P [{r(¢),t € R} | b], and consists of a bank of K" matched
filters followed by a Viterbi algorithm [89]. The Viterbi algorithm has 2K~ states,

2MK) " exponential in the number of users.

and complexity O(
Because the complexity of ML multiuser detector is too high, suboptimum mul-
tiuser detectors with linear complexity have been proposed.
The linear multiuser detector performs a linear transformation on the matched
filter output vector Y, as in Fig. 2.2. There are two kinds of linear multiuser detec-
tors: the decorrelating detector [67] and the minimum mean squared error (MMSE)

detector [68].

The received signal vector can be expressed in matrix form as
Y =RAb+n (2.5)

The noise vector n is a zero-mean (Gaussian random vector with auto-correlation

matrix o?R, where R is a MK x MK symmetric block-Toeplitz matrix:

R(0) R(—1) 0
R(1) R(0) R(-1)
R=| 0 R(1) RO 0 (2.6)
R(-1)
0 0 R(1) R(0)
and A isa MK x MK diagonal matrix:
A =diag (Ja(1),...,ax(1),...,a (M), .., ax(M)]) (2.7)

9
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Figure 2.2: Linear Multiuser Detector

In (2.6), the (k, 7)th element of the K x K signal correlation matrix R(l) is:

o0

Rii(D) :/ Su(t — )3, (L + 1Ty — 7)dt (2.8)

— 00

and R(/) has the following properties:

R(I) = 0,V|l|>1 (2.9)
R(-l) = R™(]) (2.10)

Let T be a linear transformation matrix. The decision vector is
d=TY (2.11)

For the decorrelating detector, the linear transform matrix T is the inverse of the

correlation matrix [67]

T=R" (2.12)
The decision vector is then
d=R"'(RAb+n)=Ab+ R 'n (2.13)
The noise vector R™'n has covariance matrix
E[(R'n)(R"'n) ] =c*R7! (2.14)

10



where the noise power is enhanced by R™!.
Since BPSK modulation is used, the decisions are made by the sign of the decision

vector

b = sign (d) = sign (Ab + R 'n) (2.15)

Since the symbol decision of the kth user is not affected by the energies of the
interfering users, the decorrelating detector is near-far resistant [67]. A multiuser
detector is said to be near-far resistant only if its near-far resistance is not zero [67].
The linear transformation matrix T for the MMSE detector is chosen to minimize

the mean squared error between the transmitted symbol and the symbol estimation

[68]

A A

T = min E[(b - b)"(b — b)] (2.16)

The solution to the above equation is
T=(R+o*ATA))! (2.17)

The MMSE detector maximizes the output signal-to-interference ratio (SIR). Per-
formance is superior to that of the decorrelating detector because the MMSE detector
does not have the noise enhancement problem of decorrelating detector [70] [89]. As
the noise vanishes, the MMSE detector converges to the decorrelating detector. When
the noise goes to infinity, the MMSE detector degrades to the conventional matched
filter single-user receiver.

[terative multistage receivers have received significant interest recently. This is
a suboptimum solution for maximizing the log-likelihood function [78] [113] [119]
[124]. At each stage, the estimated interference from other users is subtracted before
estimating the desired user’s transmitted data bit.

Assume the jth stage estimate of bits by(m) to be I;EC])(m) for user k. The (5 +1)st
stage estimate of by(m) is then

bV (m)=arg  max {Q(b)} (2.18)
bi(m)=b1) (m)

11



where Q(b) is the log-likelihood function
Q(b) = 2b"Y —b"Rb (2.19)

Using a hard decision detector, this can be calculated as:

b (m) = sign [y (m))] (2.20)

where

. I’( A . A . k_l A .
g (m) =y (m)— 3 Ru(1)b (m—1)=3" Rig(0)6 (m) =37 Ryy(—1)b ) (m+1)
I=k+1 £k =1

(2.21)

(1)

The initial estimate I;k (m) can be obtained from the conventional detector output
b (m) = sign [y, (m) (2.22)

Depending on the interference cancellation procedure used in each stage, there are
two kinds of multistage iterative receivers: successive interference cancellation (SIC)
[84] and parallel interference cancellation (PIC) [119].

For multistage SIC receiver, the signals of users are detected and cancelled in
the order of decreasing powers at each stage. The SIC is similar in structure to the
space-alternating generalized expectation-maximization (SAGE) based receiver [24]
[78] [124].

The PIC differs from SIC in that it detects the transmitted bits of all users in
parallel at each stage [119]. The PIC is similar in structure to the expectation-
maximization (EM) based receiver [23] [78]. Although PIC is more complex than SIC
[84], PIC can use parallel computation to reduce processing delay [8].

When a linear decision function is used in the multistage interference cancellation
detector, the linear SIC and PIC correspond to applying the Gauss-Seidel and Jacobi

iteration to approximate the matrix inversion [37] [93] [125].

2.2 CDMA Time Delay Estimation

All the multiuser detectors described in the previous section have assumed exact

knowledge of user time delays. Once the time delays are known, other parameters such

12



as the channel attenuation and phase offsets can be easily obtained [74]. Therefore, an
important problem of CDMA multiuser detection is to accurately estimate all users’
time delays.

Existing delay estimation methods include the sliding correlation algorithm [87],
maximum-likelihood (ML) algorithms [90] [110], approximate ML, (AML) algorithms
[5] [134], subspace-based algorithms [4] [110] and minimum mean squared error (MMSE)
based algorithms [69] [71] [105] [106]. For an observation length of 100 symbols, cur-
rent sliding correlation delay estimation methods [87] can achieve a delay estimation
error within one fifth of a chip duration, 0.2 7., and the subspace-based MUSIC
algorithm can achieve 0.03 T, [110], where T, is the chip interval.

Sliding correlation is the conventional method of time delay estimation [86] [87],
which is only optimum for the single-user channels with additive white Gaussian noise.
Since performance is affected by the multiple access interference (MAI), it is near-far
limited.

The sliding correlation algorithm requires an all ones training sequence. The
received signal is correlated with different shifts of the desired user’s code sequence.
The time delay is estimated to be at the correlation peak. For a training sequence
length of 100 symbols, the sliding correlation algorithm can achieve a root mean
squared error (RMSE) of 0.27,, where T is the chip interval [110].

The maximum-likelihood (ML) estimator maximizes the log-likelihood function

over all parameters, i.e., data bits, amplitudes and time delays of all users [90] [110]:

pML
#ML 1 = grg min||Y — RADb|? (2.23)
éML E

a

Eq. (2.23) jointly estimates the time delays 7, complex amplitudes a and data bits b.
Since the ML estimator exploits the full structure of the problem, it may achieve the
Cramér-Rao lower bound (CRLB) [110]. Since (2.23) is a mixed type optimization
problem with both continuous and discrete valued parameters, its maximization is

difficult to obtain. Similar to the ML, multiuser detector, complexity is exponential

13



in the number of users.

A suboptimum solution of the above ML problem is by alternatively iterating
between an expectation-maximization (EM) algorithm which estimates complex am-
plitudes and time delays, and a multistage detection algorithm which detects the data
bits [55] [90]. This requires an initial estimate which is reasonably close to the true

parameter value to be able to converge.

The approximation that all parameters are treated as a continuous signal simplifies
the problem of mixed type parameter maximization. There are two kinds of simpli-
fied maximum-likelihood algorithms based on this approximation: the approximate
maximum likelihood (AML) algorithm [48] [61] and the single-user maximum likeli-
hood algorithm [5] [134]. Because of the approximation, it has been observed that
the performance of those estimators may not be as high as that of the ML, estimator
[110].

The complexity of the AML algorithm is lower than that of the ML algorithm.
However, the AML algorithm estimates all users” delays simultaneously, so it is still

a difficult multi-dimensional maximization problem [48] [61].

The single-user maximum-likelihood algorithm is less computationally complex
than the AML as it uses a one-dimensional search to find the time delay [5] [134].
For the desired user, a training sequence is transmitted. The MAI is approximated as
colored Gaussian noise, and whitened by a whitening filter before delay estimation.
Only one user’s delay can be estimated at a time by the single-user ML algorithm.

Subspace-based methods were originally used in array signal processing problems.
Only recently have they been applied to CDMA delay estimation [4] [110] using the
well known MUItiple SIgnal Classification (MUSIC) algorithm [99]. The advantage
of subspace-based estimation is that no training sequences are needed and all users’
delays can be estimated simultaneously. The disadvantage is that performance is
unsatisfactory when the SNR is low [4] [134], and cannot be used when K > N,

since there is no dimensionality left for the noise subspace.

The dimensionality limitation problem described above was solved recently by
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a differential correlation MUSIC (DC-MUSIC) algorithm, which can be used when
the number of users is larger than half the spreading gain [94]. The MUSIC delay
estimator was also extended from rectangular chip pulse shapes to bandlimited chip
pulse shapes in [83].

Minimum mean squared error (MMSE) interference suppression can also be used
for both timing acquisition and data bit demodulation. MMSE-based delay estimation
algorithms use either a training sequence [71] [105] [106] or blind adaptation [69].

The training based adaptive MMSE delay estimator was proposed in [105] and
analyzed in [106].

The blind adaptive MMSE delay estimator requires only the knowledge of the
desired signature sequence [69]. However, it is sensitive to the choice of internal

parameters.

2.3 CDMA Multiuser Detection under Delay Mis-

match

Since time delays cannot be estimated exactly at the receiver in practice, there always
exists some amount of time delay estimation error (delay mismatch). Compared to
amplitude mismatch and phase mismatch, delay mismatch has a more severe impact
on the performance of multiuser detectors [34]. If the delay mismatch is larger than
one half of the chip interval, the multiple access interference (MAI) may not be
canceled, but instead may actually be increased [13].

The impact of timing errors on detector performance was investigated for the
ML detector in [34], for the linear decorrelating detector in [85] [136], and for the
multistage detectors (including PIC [8] and SIC [13]).

The performance degradation of the linear multiuser detector especially the linear
decorrelating detector due to timing errors was analyzed in both [85] and [136].

Denote the estimated time delay for user k as 7, and the delay error as 7, = 7, —7%.

It can be assumed that the delay estimates of different users are independent. The
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delay error can be modeled as a zero-mean Gaussian random variable with variance
2
o, [14].
Analogous to Equation (2.8), define the elements of the estimated correlation

matrices as

Rii(l) = /°° Su(l — 7)3,(L + 1T — ;)dt (2.24)
Ek](l) = /OO §k(t—’f'k)§j(t—|-lT—7A']‘)dt (225)

When delay mismatch exists, the matched filter front-end is aligned with the
estimated time delay and its output is sampled at the estimated time delay. The

sampled matched filter output expressed in vector form is

Y = RAb +n (2.26)
where ) )
R(0) R(-1) R(—-2M)
. RQ) f{.(()) R(—2M +1) (227
R(2M) -~ R(1) R(0)
The noise vector is zero-mean Gaussian with covariance matrix E[nnfl] = %7%

Where R is similar to R with fm’kj(l) replacing ]%kj(l).
For the linear detectors, the data bit estimate and decision for the kth users’s ith

bit are given by
dy(i) = uj Ty = ufﬂ»TfZAb +u,Tn (2.28)

and

A

bi(i) = sign (di(i)) (2.29)

where uy; is a unit vector with a '1” in the ((« + M)K + k)th position and zeros

elsewhere, and the noise term is a zero-mean Gaussian random variable with variance
T 2 No T mpmT
El(u;;Tn)*] = 7Uk,¢TRT Ui (2.30)
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Based on the above model, two bit error rate (BER) analyses were carried out
using a direct approach [85] [136] and a Taylor series expansion approach [136].

The impact of timing errors on multistage detectors was studied by [8] [34] [53]
on PIC, and by [13] on SIC.

In [8], a PIC multistage detector was examined. To simplify the analysis, it is
assumed that each user has the same timing error ¢, 0 < € < T.. A closed-form
expression for probability of bit error is obtained for the multistage PIC detector
based on a Gaussian approximation for the multiple-access interference.

A similar approach is adopted in [13] to analyze the performance degradation of
multistage SIC detector due to timing errors. However, the timing errors are assumed
to be i.i.d. zero mean Gaussian random variables with variance o2 in [13].

Wang simulated the BER performance of a SAGE-based space-time multiuser
decorrelating detector under delay mismatch [123]. It was found that delay mismatch
as small as éTc can severely degrade space-time multiuser detector performance [123].
This observation is also consistent with our simulation results in Fig. 3.13.

The robustness of multiuser detectors under both synchronization and phase errors
was simulated in [81], which compares the decorrelating detector, the MMSE detector,
the SIC, the PIC and the conventional matched filter. Simulation results show that
synchronization errors have caused more severe performance degradation than phase
errors. All multiuser detectors are equally sensitive to the time delay errors, and
they are all near-far limited. The decision statistics of multiuser detectors depend on
the powers of the interfering users under delay mismatch, so it is important to apply

strict power control to minimize the impact of time delay errors [136].

2.4 Improved CDMA Multiuser Detection in the

Presence of Time Delay Error

There are two approaches to improve the robustness of a multiuser detector in the

presence of time delay errors: one is based on stochastic delay error modeling, and
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the other is based on deterministic delay error modeling.

The research on robust multiuser detection based on stochastic delay error mod-
eling has been focused mainly on the MMSE detector. Modified MMSE multiuser
structures that are robust to delay mismatch were proposed in [14] [46] [82].

An MMSE receiver for quasi-synchronous CDMA is proposed in [46], which aver-
ages over all possible delay offsets. The delays are assumed to be uniformly distributed
over a small fraction of a chip duration. Performance when the signal-to-noise ratio
(SNR) is low is analyzed.

For moderate to large signal-to-noise ratios, an improved MMSE detector that is

robust to delay errors was proposed in [14]. The improved linear MMSE receiver w

for bit 0 of the first user satisfies
By {(w'r = b, (0))w'r} =0 (2.31)

where b = [b;(—1),51(0),51(1),...,bx(=1),bx(0),bx(1)]T and 7 = [7,...,7x]T.

In (2.31), By, 5 is averaged over all possible data bits, noise, and delay errors.
This improved MMSE detector takes into account the timing errors, so its average
BER is lower than that of the original MMSE, FE}, 5, which only averages over data
bits and noise.

In [82], the linear transformation matrices of the MMSE and the decorrelating
detector are modified where the correlation matrix R is expanded by a Taylor series
when the timing error is small.

Although the stochastic approach improves the average BER for a large delay error
distribution, the residual MAI caused by timing error is not completely eliminated
and the detector is therefore not near-far resistant.

The research on robust multiuser detector based on deterministic delay error mod-
eling has been focused mainly on the decorrelating detector. The decorrelating detec-
tor [46] and delay-independent decorrelating detector [40] for the quasi-synchronous
CDMA (QS-CDMA) channel was proposed for a rectangular chip pulse shaped CDMA

system.
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The chip-asynchronous user signal is modeled as the sum of signals from two
equivalent chip-synchronous virtual users. The multiple-access interference (MAI) is
completely rejected when the true delay and estimated delay are in the same chip
interval. However, because they double the number of PN codes used, the noise
enhancement problem of the decorrelating detector is more severe, and their capacity

will not exceed 50% of the spreading factor [40].

2.5 Objectives

The objectives of this thesis are to develop a base-station multiuser receiver for an
asynchronous CDMA channel when the estimated time delay has mismatch. The
time delay error in a synchronous CDMA system can be viewed as a special case of
the asynchronous CDMA system. The delay-robust multiuser detector should have a
large capacity and be near-far resistant.

The decision function used in the multistage SIC receiver determines performance.
No accurate analysis exists in how close the multistage soft-decision SIC performance
approaches the optimum multiuser detector. We would like to investigate a soft-
decision function that has good performance and is easy to analyze.

Multi-user delay tracking is a difficult task because of the MAI. A practical mul-
tiuser delay tracking detector will be investigated.

Recently, there is much interest to apply CDMA multiuser detection methods to
multiple antenna system. We consider the application to a linear multiple input mul-
tiple output (MIMO) system that has similarity with a synchronous CDMA system.
One promising example of a linear MIMO system is the Bell Labs Layered Space-
Time (BLAST) System. An ordered SIC CDMA multiuser detection method was
applied to the BLAST. However, its complexity is too high since after each SIC step
the cancellation ordering has to be recomputed. This thesis wraps up by proposing

a reduced complexity detection method for BLAST which has the same performance

as the ordered SIC method.
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Chapter 3

Multiuser Receivers that are Robust to

Delay Mismatch

We investigate a new delay-robust multiuser signal detector for asynchronous CDMA
uplink channels under delay mismatch in this chapter. We first formulate a delay-
robust decorrelating detector by dividing each user into two virtual users with rectan-
gular chip pulse shapes. To increase the system capacity, a multistage version of the
delay-robust decorrelating detector is derived, which can achieve capacity of up to
M/(M +1) of the spreading factor, where M is the observation block length. We fur-
ther propose a delay-robust successive interference cancellation (SIC) implementation
of the multistage delay-robust decorrelator. The proposed delay-robust SIC detector
adds a residual error signal estimation and cancellation procedure onto the standard
SIC detector, so its computational complexity is close to that of the standard SIC.
Performance is investigated via analysis and simulation. Computer simulation results
showed that our proposed delay-robust SIC detector outperforms the conventional
decorrelating detector when delay estimation error is present, and its performance is
close to that of the decorrelating detector with perfect time delay information. Fi-
nally, we generalize the delay-robust SIC detector to the case of non-rectangular chip

pulse shapes.
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3.1 Introduction

We consider multiuser detection for the asynchronous CDMA uplink under delay
mismatch using a similar approach as in [40] and [46], using chip-matched sampling
and filtering. We assume that the delays of all users are estimated to within the
same chip interval of the true delay. Our proposed delay-robust multiuser detector
is insensitive to time delay estimation errors, with a capacity close to 100% of the
spreading factor, and can be applied to band-limited chip pulse shapes as well.

Without loss of generality, we consider an asynchronous single-path uplink CDMA
channel, assuming K active users. We note that an L-path, K-user system can be
modeled as an equivalent single-path system with K x L users.

For rectangular chip pulses, the equivalent discrete-time user signal can be ex-
pressed as the sum of signals from two equivalent virtual users. We divide the two
virtual users into an estimated virtual user with signature waveform at the estimated
delay, and one error virtual user with signature waveform as the error vector corre-
sponding to the difference between the true time delay and the estimated time delay.
Thus, we view a signal from one propagation path as signals arriving from two virtual
paths. Since the time delay error will only affect the amplitude of those two virtual
users’ signals, and since it is well known that the decorrelating detector does not re-
quire user amplitude information, it is possible to design a delay-robust decorrelating
detector for those 2K virtual users and eliminate the MAT completely [40]. However,
the delay-robust decorrelator has a capacity limitation of 50% of the spreading factor.

To increase capacity beyond 50% of the spreading factor, we use a block of M sym-
bols, and apply the new delay-robust decorrelating detector on a block in a multistage
fashion. In each stage, M separate error vectors are combined into an M-symbol long
error vector using tentative data bit decision-feedback from the current stage. The
result is an equivalent (M + 1)K /M user CDMA system, and the system capacity is
increased to M/(M + 1) of the spreading factor.

Since the multistage decorrelating detector is extremely complex to compute, we
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propose a delay-robust successive interference cancellation (SIC) implementation. At
each SIC iteration, the interference due to time delay error is estimated and cancelled.
We also show that the delay-robust SIC is a maximum-likelihood estimate of the data
bits and the time delay error introduced interference. This estimate can be computed
through the space alternating generalized expectation-maximization (SAGE) algo-
rithm [24] with known convergence properties.

Unlike [14] and [46], the delay-robust SIC detector does not require an assumed
delay error distribution, so it is near-far resistant under arbitrary delay error distribu-
tions. We also propose this delay-robust SIC as a delay error estimator, and its root
mean square error (RMSE) performance is compared to the Cramér-Rao lower bound
(CRLB). For large time delay errors, the delay-robust SIC is improved by applying
a local decorrelation operation into the delay-robust SIC iterations to decouple the
estimated user signal and the time delay introduced interfering signal of the same
user. The delay-robust SIC technique is then generalized to band-limited chip pulse
shapes.

This chapter is organized as follows. In Section 3.2, the system models are de-
scribed. Section 3.3 proposes the delay-robust SIC multiuser detector under delay
mismatch, which is analyzed in Section 3.4. Section 3.5 considers the large delay
mismatch case. Section 3.6 generalizes the new detector to band-limited chip pulse

shapes, while Section 3.7 provides simulation results.

3.2 System Model

We consider a basestation uplink receiver that has knowledge of the spreading codes
of all users. It is assumed that the time delays of all users are under acquisition, i.e.,
estimated to within half chip interval of the true delays. For clarity and brevity, we
consider a single-path channel. However, the method can be extended to the case of

multipath channels in a straightforward manner.

Using a similar system model to that of [67], the received signals are assumed to

22



be carrier phase synchronized and coherently received, so the equivalent base-band

signal is real

r(t) = Eiak(z')bk(z)gk(t_ iT — 1) +n(t) (3.1)

k=1
where ay(i) € R and bi(2) € {41, —1} are the kth user’s received signal amplitude and

data bit for the ¢th time interval respectively, 7 € [0,7') is the kth user’s propagation
delay, T' is the bit duration, K is the total number of users and n(t) is the white
Gaussian noise. We note that carrier phase-synchronized M AT is a worst-case scenario.

We consider only rectangular chip pulse shapes here. The more general case
of band-limited chip pulse shapes is considered later in Section 3.6. In (3.1), the

normalized signature waveform of user k, 3;(1), is

N-1
Sk(t) = 2% cr(7)h(t = 5T (3.2)
i=
where N = T/T. is the spreading factor, T, is the chip duration, {ck(j)}éy:_ol is the
spreading code, and h(t) is a rectangular pulse with duration [0, 7).

The decorrelating detector for asynchronous CDMA channels in [67] is based on an
infinite-length bit sequence. Near-far resistance is destroyed, however, when applied
to a finite-length observation window, because of the edge effect [101]. To focus on
the effect of timing errors, we eliminate edge effects by using an isolation bit insertion
(IBI) receiver [135], where a blank bit interval is inserted into the bit stream every
M bit intervals. We want to recover the M transmitted data bits from each user,
and select the received signal observation window to be (M + 1)T sec. long for
demodulation.

Assuming that the channel changes relatively slowly, we can model the received
signal power as a constant for this (M+1)-bit interval, i.e., ar(i) = ap fori =1,..., M.

After chip-matched filtering and chip-rate sampling, in vector form we obtain the

discrete-time received signal:

M+1 K
where
r=[c"(1)eT(2) ... eT(M +1)]7 € RM+DN (3.4)
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n=[Mn71)n?2) ... nT(M +1))T € RIM+DN (3.5)
The vector r(m) in (3.4) for the mth observation interval is
r(m)=[r(mN+1)r(mN +2) ... r(mN + N)]T e RN (3.6)
The noise vector n is a zero-mean Gaussian random vector with

E[HIIH] = UZ[(M+1)N

Assume the actual (true) time delay of the kth user is 7, = (pg + 0x)7., where
pr €40,1,..., N —1} is an integer and d;, € [0, 1) is the fractional part. The received
signature waveform of the ith bit of the kth user, di(i) € RIM*+YUN | can be expressed

as the combination of two adjacent shifted versions of user spreading codes [110]

dk(z) = Cskck(pk + 1, Z) + (1 — 5k)ck(pk, Z) (39)

where ¢; € RM+UN {5 the kth user’s spreading code vector for the (M + 1)T second
interval defined as
ek = [ex(0) ex(1) ... (N —=1) 00 ... 0]" (3.10)

MN
In (3.9), ci(pk, ) is defined as ci right-shifted by (i — 1)N 4 pi chips. The chip-

matched filtered and sampled signal of (3.3) can be expressed in more compact matrix-
vector form as

r=DAb+n (3.11)
where b = [bT(1) bT(2) ... bT(M)]T, b(i) = [bi(2) bz(s) ... bk(:)]T is the data
bit vector for the ith interval, A = Ip; ® a is an MK x MK diagonal matrix
of received signal amplitudes, where ® denotes the Kronecker product, and a =

diag(ay,az,...,ax). The code matrix is

D =[di(1) ...dg(1) dy(2) ... dg(2) ... dy(M) ... dg(M)] € RIM+HDNXMEK
(3.12)
The decorrelating detector (decorrelator) with perfect time delay information is

constructed as [67]

b = sign ([D"D]"'D"r) (3.13)
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Figure 3.1: Sampling of the chip-matched filter response for rectangular chip-pulse
shapes. The solid arrows represent the error in chip-matched filter response at the

sampling points due to time delay mismatch.

3.3 Delay-Robust Multiuser Detectors

3.3.1 Prediction Error Approach

Denote the estimated time delay of the kth user as 7, = (k—l—gk)Tc, where p, €
{0,1,...,N —1} and S € [0,1) is the fractional part. Here we have assumed that all
true delays and estimated delays occur in the same chip sampling interval (fractional
delay uncertainty) where py = py for 1 <k < K. The kth user’s signature waveform
for the ith interval di(i) can be expressed as the weighted sum of two signals, as

shown in Fig. 3.1.

di(i) = Ore(pe +1,4) + (1 = di)ek(pe, 1)
= [Skck(]?k +1,1) + (1 — b )ex(pr, i)} + (85 — 0 [er(pr + 1,3) — ci(pr, )]
E (i) + (6, — 6p)Ady (1) (3.14)

From (3.14), we can view each user as the combination of two virtual users, one

with estimated code vector ak(z), and the other with error code vector Adg(7).
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3.3.2 Two Virtual User Approach

Similar to [40] and [46], these two virtual users can also be the chip-synchronous

adjacent shifted versions of that user’s spreading code signal, i.e.,

dp(i) = dker(pe +1,4) + (1 — di)ex(p, 1)
E Gdhy (i) + (1= dk)dbyy (4) (3.15)

Since a rectangular chip pulse is used, the expressions in (3.14) and (3.15) are

exact [82].

3.3.3 Hybrid Approach

However, pr, = pi. is not always satisfied since the fractional delay error may across the
integer chip boundary (integer fractional delay uncertainty). Consider the example
that the true delay is 2.047. while the estimated delay is at 1.95T., the estimated
integer delay is one unit smaller than the true integer delay, p, = pr—1. Alternatively,
rather than (3.14), the kth user’s signature waveform for the ith interval di(z) can be

expressed as a mixture between the previous two cases, i.e.,

de(i) = (1= 8k)ck(pe,i) + Sec(pr + 1,1)
= (1= &) [(wer(pr, i) + (1 = d)ex(ps — 1,1))
+(1 = &) (el i) — exlpr — 1,4))] + deex(pr + 1,4)
© (1= 8) [de(i) + (1 — 6e) Ad(i)] + drew(pr + 1,1) (3.16)

Each user can now be viewed as the combination of three virtual users with code
vectors (;lk(z), Ady(2) and cx(pr + 1,7). We denote the vector cx(pr + 1,7) of the
third virtual user as the guard vector. The robust SIC detector based on (3.16) uses
a similar technique as the prediction error approach.

The above decomposition has the advantage in that it contains the additional

term ci(pr + 1,7), which allows for fractional delay error correction across integer
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chip boundaries. Its disadvantage over Eg. (3.14) is noise enhancement when there

is no integer chip error.

3.3.4 Delay-Robust Decorrelating Detector

For simplicity, we consider fractional delay uncertainty only. In view of (3.14), the

vector of received signal (3.11) is modified as
r=D'A'b +n (3.17)

where b’ = [bT(1) bT(2) ... bT(M) bT(1) bT(2) ... bT(M)]T € R*™ME A’ =
Iy ® &, a = diag(ay,aq, ..., ak,(6; — 51)a1, (69 — 52)@, ceoy (Ok — SK)GK ), and

code matrix

D' = [di(1) ... dg(1) di(2) ... dg(2) ... di(M) ... dx(M)
Adi(1) ... Adg(1) Ady(2) ... Adg(2) Ady(M) ... Adx(M))]

c R(M-}-I)NXQMI( (318)
We can now construct a delay-robust decorrelating detector as
b’ = sign ([D'"D'|"'D"r) (3.19)

Since the signal energy in the error signal (signal in the error vector direction) may
be small, we only use the signal energy in the estimated virtual user for bit detection,

le.,

A

be(i) = bi(i) | k=1,....,K,andi=1,...,.M (3.20)

Since (3.19) is a decorrelating detector, it does not depend on amplitude infor-
mation and is near-far resistant under delay mismatch. However, since each user is
decomposed into two virtual users, the total number of users that can be detected is
upper bounded by N/2, where N is the spreading factor [40]. The computational com-
plexity of delay-robust decorrelating detector is dominated by the doubled dimension

matrix inversion, which is 8 times that of the standard decorrelating detector.
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3.3.5 Multistage Delay-Robust Decorrelating Detector

One possible way to improve capacity and performance is to use a multistage version
of the above delay-robust decorrelating detector. At each stage, the M error vectors
of each user for different bit interval are combined into a "long” error vector based

on the tentative data bit decision-feedback, Z;k(i), as
M A
=1

We construct a new code matrix D”, but with a smaller dimension than that of

(3.18)

A

D" = [dy(1) ... dg(1) dy(2) ... dg(2) ... dy(M) ... dg(M)
e ... eg] € RIMFINX(M+DK (3.22)
The vector of received signal (3.11) is expressed in D" as
r=D"A"b" +n (3.23)
The multistage delay-robust decorrelating detector is implemented by the follow-

ing procedure:

(1) Use the standard decorrelating detector (3.13) with estimated time

delay to obtain the initial estimate:

A

b = sign ([D"D]"'D"r) (3.24)
where D is defined as in (3.12) but with ak(z) replacing dg () for all k and
i

(2) Construct code matrix D” using (3.21) and (3.22) based on the ten-
tative data bit decisions from the previous stage.

(3) Obtain tentative data bit decisions for the next stage via

b” = sign([D""D"]'D""r) (3.25)

(4) If the change of b” from the previous stage is small enough, end the

calculation. Otherwise go to step (2).
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The number of users that can be supported is now MiHN. For moderate block
lengths, such as M = 9, the capacity is now 90% of the spreading factor. Usually
the above multistage delay-robust detector converges to a fixed point in 3-4 itera-

tions. However, the inversion of a (M + 1)K x (M + 1)K matrix in (3.25) is still

computationally complex.

3.3.6 Delay-Robust SIC Detector

The decorrelating detector is the maximum-likelihood estimator when the user am-
plitude information is unknown at the receiver [67]. The linear successive interference
cancellation (SIC) receiver is a computationally attractive iterative implementation
of the decorrelating detector with proven convergence properties [93] [125]. Since our
proposed delay-robust SIC is based on a linear SIC implementation, where reordering
of the users according to signal-to-noise ratio (SNR) at each iteration is not necessary
[93], reordering is not performed here to reduce complexity. However, we note that
although the delay-robust implementation is based on improving a linear SIC, it is
not a linear SIC as a nonlinear decision is made in its iterations.

We propose the following multistage delay-robust SIC implementation of the above

multistage delay-robust decorrelating detector:

Initialization:
Set:

Adi(2) = elp+1,1) — alp, i), I<I<SK1<i<M
di(i) = el +1,0) + (1= &)er(pn,i), 1<I<K1<i<M
a%3i) = 0, 1<I<K1<i<M
W) = 0, 1<I<K(1<i<M
Aa, = 0, 1<I<K

Iteration:

For y =0,1,... do:

For k=1,2,..., K do:
Steps (1) through (4):
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(1) Estimate user k’s received signal for the (j + 1)st
iteration by subtracting other users’ reconstructed sig-
nals and the error signals from the received signal:

. —_ I( . e . —— .

rt! = Z Pty J+1 ]+1)_ 3 (f§+Aa?e§)—Aa2efc
=1 =k+1
(3.26)

where e] = Y M Ady(i)bi (i) and # = SM, b (i)l (i)d, (i)
forl > k,and e]™' = M Ad;(i)b (1), 8T = M, BT
At ()di(7) and BT(i) = sign ((di—gee(1))Hri™) for
[ < k.
(2) Update user k’s signal amplitudes and data bits:

A (i) = abs (@) HT) (3.27)

A

b (i) = sign ((di(i)" £i™) (3.28)

where abs( ) and sign( ) take the absolute value and
the sign, respectively.
(3) Estimate the error signal of the kth user due to

timing error as:
At =t 4 Aazke,C (3.29)
(4) Update the amplitude of the error signal:
et = EAd ()b+ (4)

Iy 1 . ,
Ba," = (ef™)T(Ar(") (3.30)

Ifforall k =1to K and i = 1 to M, |a}"" (1) — al(i)| are below

a threshold, end the calculation.

The standard multistage linear SIC is an iterative version of the decorrelating

detector, and it is guaranteed to converge to the decorrelating detector [93]. Our
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delay-robust SIC adds an error signal estimation and cancellation procedure to the
standard linear SIC. When the tentative data bit decision-feedback at the jth iteration
are all correct, then the estimated error vector signal will have an interference cancel-
lation factor of 100%. When some bits of the tentative data bit decision-feedback are
incorrect, the estimated amplitude of the error signal will be smaller than the actual
value, which is equivalent to soft cancellation with a factor less than 100%. So this
delay-robust SIC implicitly incorporates soft interference cancellation into its itera-
tions, and will likely converge to the multistage delay-robust decorrelating detector
output. In the case when it does not converge to global maximum, good performance
will still be expected: strong users are more likely to have an accurate residual error
signal estimate and cancellation. As a result, error signal due to delay mismatch
will be mostly cancelled out, and the local maximum will be close to the multistage

delay-robust decorrelating detector output.

The proposed delay-robust SIC detector adds modest complexity to the standard
multistage linear SIC detector, but with interference caused by the timing errors
dramatically reduced. Its capacity is close to the ideal decorrelating detector with

the perfect time delay estimates, when the block size M is not too small.

The above delay-robust SIC detector can be extended to multipath channels as
well. Fach path is divided into two virtual paths, and the delay error introduced
interference is estimated and cancelled for each path. The multipath signals are com-
bined using maximum ratio combining before the data bit decision. The complexity

increase from the single path case is proportional to the number of multipaths.

We note that since Aay = ap(dp — Sk) from (3.14), the estimate of the error
vector amplitude Aay at (7 + 1)st iteration in (3.30) can be used to improve the
delay estimate. The delay error §; — Sk can be estimated as &zk/ak. Since the true
amplitude a; is not known, a; can be approximated as the time average of amplitude
estimates over an M-bit long window: a; & ﬁZf\i ax(1), where ax (i) is obtained

from (3.27).
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3.3.7 Convergence of the Delay-Robust SIC

To give insight into the convergence of the delay-robust SIC, we derive the algorithm
by maximizing the log-likelihood function and employing the space alternating gener-
alized expectation-maximization (SAGE) algorithm [24] as applied to the space-time
decorrelation detector [122] [124].

The SAGE algorithm is a computational tool for maximum-likelihood estimation.
This method divides the parameters to be estimated into several smaller hidden-data
spaces specified by index sets, and sequentially updates these groups of parameters.

The derivation of the delay-robust SIC CDMA detector based on SAGE algorithm
follows the procedure of [122] [123] [124]. If we choose user index k as the index set,

the admissible hidden-data space for index & is
vy (i) ~ N(ap(i)bp(i)dp(i), 0’ Ipr), fori=1,..., M (3.31)

and
M
=1

At the jth iteration, given the amplitude estimations , aj(¢), data bit decisions,

i)i(z), and the amplitude estimates of the error signals, &l;, for k = 1,..., K and
i =1,..., M, the conditional expectation of r7 (i) and Ar} is obtained as
M K

K .M
—S"Aq; Y b(m)Ady(m) , fori=1,...,M (3.33)
=1 m=1
and
s M K X Ko _ M
Ar, =r— > Y aj(m)bj(m)di(m) — > Adq Y b/(m)Adi(m) (3.34)
m=1 {=1 I=1,l#k m=1

The log-likelihood function of the received signal vector r is

In(r) = —(M + )Nino® — L (r — D'AW)(r - D'AD)  (3.35)

g
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The log-likelihood function of #; (i) and E‘i after removing the fixed terms is

QS (1), ..., £5(M), Ar,) = ——{(E( 3(i) — an(i)be(i)dy (i) + Ar,
—AakZbk JAdy(i <;<f~5<z’>—ak<z'>bk<z'>&k<é>>

(3.36)

The maximization step (M-step) of SAGE maximizes the conditional expectation

while keeping the other parameters fixed:
it (m) = af(m), 6™ (m) = b](m) for (1,m) # (k,1) (3.37)
The maximization results at the next iteration are given by

A bt Rat ' = arg max QEN(1),... #5(M),Ar)  (3.38)

ag, bk Aak

AG - . NP S A

Since the correlation between M (#5 (1) —ax(i)br(i)dr(i)) and Ar, —Aap M, bi(i)
Ady(2) is very small when the time delay error is small, we assume those two vectors
to be uncorrelated. With this assumption, equating the derivative of (3.38) to zero

with respect to ax(i)bi(7), for i =1,..., M, we get
it (b (1) = dif (D) (9) (3.39)
Since bg(1) € {—1,41}, the data bit decisions are given by
B () = sign (401 (1)E5(0) (3.40)
and the amplitude estimates are given by
A (i) = abs (A (0)i5() (3.41)
Equating the derivative of (3.38) to zero with respect to Aay, we get

Nay = be“ )Ad,(i))7Ar, (3.42)

33



Equations (3.33), (3.34) and (3.37) are similar to equations (3.26) and (3.29),
so steps (1) and (3) of the delay-robust SIC are equivalent to the expectation step
(E-step) of the SAGE algorithm.

Equations (3.40), (3.41), (3.42) and (3.37) are similar to equations (3.27),(3.28)
and (3.30), so steps (2) and (4) of the delay-robust SIC are equivalent to the maxi-
mization step (M-step) of the SAGE algorithm.

The SAGE algorithm produces a monotonically non-decreasing sequence of likeli-
hood functions at each iteration, and is guaranteed to converge at least to a fixed
stationary point or a local maximum [24]. Improved convergence rate over the
expectation-maximization (EM) algorithm has been demonstrated by sequentially
updating less informative hidden-data spaces in [122] [124]. Therefore, it is expected
that the delay-robust SIC will converge at a fast rate.

3.4 Performance Analysis

In this section, we derive the the asymptotic multiuser efficiency (AME) [120] and bit
error rate (BER) performance for the delay-robust SIC detector. We also calculate the
Cramér-Rao lower bound (CRLB) for the delay-robust SIC as a delay error estimator
and calculate the probability of the occurrence of an integer and fractional uncertainty
delay estimate. Implementation complexity is then compared to other delay-robust

multiuser detection methods.

3.4.1 AME and BER

Performance of CDMA multiuser detection methods can be measured by asymptotic
multiuser efficiency (AME) [120]. AME is the asymptotic signal power loss of the
multiuser detector compared to the single-user channel receiver as the background
noise vanishes. The value of AME falls in the range [0,1]. The AME of the ML
multiuser detector is 1, which means the ML, multiuser detector has no loss compared

to the single-user lower bound. The AME of the conventional matched-filter is 0,
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which means it may not correctly detect transmitted data bits regardless how large

the signal power is. The AME for user k is defined as [120]

P
e = Sup Ogrgl:limﬂ<—l—oo (3.43)

o—0 Q(\/ng)
where a; is the received signal amplitude of user k, o? is the white Gaussian noise
variance, Py(o) is the BER of user k at the multiuser detector output and Q(z) =
[ Ame S dy.

For the fractional chip uncertainty delay estimate case, the AME and BER of
the proposed delay-robust decorrelating detector are obtained similarly as the decor-

relating detector [67]. The BER and AME for the ith bit of the kth user of the

decorrelating detector with perfect time delay are, respectively [67]

Pyi(o) = Q (U \/(DHD)(Z-L)KM) (3.44)

and

) 1 1
R et el
where (DHD)(_il—l)K-}-k denotes the [ (1 — 1)K + k,(: — 1)K + k ]th element of the
matrix (DFD)~1.
For the delay-robust decorrelating detector and the multistage decorrelating de-

tector ( assume that at convergence, its tentative decision-feedback data bits are all

correct), the AME and BER can be defined similarly as [67]

a

Pri(o) = Q( = ) (3.46)
J\/(D/HD/)(il—l)Ix"+k
and
1
Mkyi = - (3.47)
(D/HD/)(il—l)I&"+k

In [76], it was shown that for a K-user CDMA system using independent and

identically distributed random spreading codes with spreading factor N, the average

AME of a decorrelating detector is ng = % Similar asymptotic results were
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obtained in a large-system analysis of a synchronous CDMA system with random
spreading codes in [118] [121]. Therefore, the AME is inversely proportional to the
number of users. The delay-robust decorrelating detector has an equivalent of 2K
users. The multistage decorrelating detector described in Section 3.3 assuming correct
tentative decision-feedback data bits has an equivalent of %K users. The robust
SIC detector is an iterative implementation of the multistage decorrelating detector,
so its performance would be upper bounded by the multistage decorrelator.

Note that in (3.27) we have estimated ax(z) independently at different time in-
tervals, 1 < ¢ < M, which corresponds to use a linear decision function. If we use
the constant amplitude property to average the a(¢)s, i.e., ap = ﬁzf\il ag(1), or
use exact amplitude information ay (if it is available), then there will be less noise
enhancement, and the delay-robust SIC detector may outperform the corresponding
decorrelating detector (this will be shown in Chapter 4). However, convergence of
such a smoothing procedure is not guaranteed.

The BER and AME for the ¢th bit of the kth user of the decorrelating detector with
estimated time delay is calculated using the same method as in [85]. The conditional

BER based on estimated time delay can be shown to be [85]

T (MAP)-1T
1 0 (u,m(D D) DDAb) (3.48)

for = g be{—l,l};fibw):l o /DD s
where u;; € RME is a unit vector with a ’1” in the ((+ — 1)K + k)th position and
zeros elsewhere.

Denote u;(D7D)"'DD = x" = [x7(1) ... x"(M)] and x(i) = [21(i) ... zx(i)]".
The total BER, P, is calculated by averaging the conditional BER F,|; over the dis-

tribution of delay estimation errors. Since F,. is dominated by the Q-function with

the smallest argument, the conditional AME for the ith bit of the kth user is

Modlr = maz’ {0, mali)es Az(l’f#_(f’“ |$l(‘7)|al} (3.49)
ak\/(DHD)(i—l)Ix"+k

The average AME for the ith bit of the kth user is the conditional AME ny

averaged over the distribution of the delay errors. As the AME of the decorrelating
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detector with estimated delay depends on the powers of the other users, it is not
near-far resistant.

To calculate the AME of the delay-robust SIC for the numerical results in Section
3.7, we use Eq. (3.49) with D" replacing D to calculate the conditional AME, and
then average over different delay errors. In the conditional AME calculation, we

perform the following steps (1) - (3):

(1) The delay-robust SIC algorithm is used to obtain the data bit estimates
bi(1).
(2) These b(z) are substituted into (3.21) and (3.22) to obtain the code

matrix D”.

(3) The conditional AME of the delay-robust SIC is calculated using Eq.
(3.49) with D” replacing D.

The steps (1) - (3) are run a large number of times, typically hundreds, with
different time delays for each run to get an estimate of the average AME for the
delay-robust SIC. We note that in Eq. (3.49), the noise power o2 is not used since
it approaches zero in the definition of (see Eq. (3.43)) the AME. We also note that
(3.45) and (3.47) are just special cases of (3.49) where the off-diagonal elements z;(7)

are exactly zero for (1,7) # (k,1).

3.4.2 Time Delay Error Variance Bound

To assess the proposed detector’s robustness to time delay errors, we compare the
observed time delay error variance to the Cramér-Rao lower bound (CRLB). The
CRLB gives the lower bound on the variance for a scalar parameter or covariance
matrix for parameter vectors that any unbiased estimator can attain [88]. Since our
delay-robust SIC detector is an iterative implementation of the multistage delay-
robust decorrelating detector with the correct tentative data bits decisions, and the
decorrelating detector performs a linear transformation, it is easy to see that the

decorrelating detector is an unbiased estimator and so the delay-robust SIC detector
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is approximately unbiased as an iterative calculation of the multistage delay-robust
decorrelating detector. The CRLB can therefore be used as a meaningful measure of
the performance of the delay-robust SIC detector, and is derived as follows.

Let the kth user’s signal amplitude be ag, then by (3.14) the kth user’s signal can

be decomposed into two terms as

Define the amplitudes of the error signal as Aay, = a(dy, — Sk) Clearly the time delay
error is proportional to Aay.

For the problem we are considering, the parameters to be estimated are noise
variance o2, user amplitudes a = [a; ay.. .aK]T and the amplitudes of the error
signals, Aa = [Aa; Aa,.. .AaK]T. These parameters to be estimated are organized

in a vector
¢ =[o? aT Aa’]" (3.51)
The observed data is the received vector r = [rT(1) rT(2) ... vT(M + 1)]T
RMFDN i (3.3). The log-likelihood function is
InQ(x) = —(M + 1)Nlno® — - (r —da— Ad Aa)f(r —da—Ad Aa)  (3.52)
o
where
M
: =1
and
M
=D Adi(i)bi (i) . Z Ady(i E Adg (1)bk (1 (3.54)
=1

The details of the derivation of the CRLB are in Appendix A. It is shown that the

T
CRLB is the inverse of the Fisher information matrix J = £ [(al%?p(r)) (al%?p(r)) €
RO+2K)x(142K) " which can be written as
(M +1)N/e* O 0
J = 0 Jaa JaAa (355)

0 Jan JAaAa
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where the matrices Jaa, Jana, Jaana € REXK are defined as

2 HH
Jaa = ;a d d a (356)
2 HH
Jana = —a"d"Ad Aa (3.57)
a
2
Jaaaa = Aa"Ad"Ad Aa (3.58)
ag

We note that the CRLB is conditioned on known data symbols bi(7) and is inter-
preted as the lower variance bound given the knowledge of by(7). In Section 3.7, the

CRLB will be compared to simulated delay-robust SIC performance.

3.4.3 Probability of the Integer and Fractional Uncertainty

Delay Estimate

When the estimated delay is not in the same chip interval of the true delay, i.e.,
Pr # pr, and the delay-robust SIC detector designed for fractional delay uncertainty
case 1s used for this integer and fractional delay uncertainty case, there will be residual
MALL If this residual MAI is not eliminated, the performance will degrade.

For MUSIC-based delay estimation, it is shown in [110] that the probability of
pr # pi is very small for SNR; = 15 dB and M = 100 observation lengths at near-
far ratio of 20 dB. So in [15], this case is not included in performance evaluation of
the MUSIC-based delay estimator. However, it is interesting to know how large the
probability that pp # pp will be, if we assume the delay error is Gaussian distributed
and can across chip boundaries, and a uniformly distributed actual delay position in
a chip interval.

Assuming that the delay estimate error is a zero-mean Gaussian random variable

with variance 0., the per-user probability that py # pr is obtained as (see Appendix
B)

P:Q{Q(U%)Jr ;g_w(l—e‘ﬁ)} (3.59)

In Section 3.7, we choose o, = 0.1, corresponding to P ~ 2Z= = 0.08.

era
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3.4.4 Implementation Complexity

In this subsection, we calculate the computational complexity of the proposed delay-
robust SIC and compare it to those of other multiuser detectors.

Note that in the decorrelation in the initialization step there are MK 2 x 2 ma-
trices, each constructed from multiplying 2 x N and N x 2 matrices, and therefore is
O(MNK). Assume that the delay-robust SIC needs .J iterations. Each iteration of
the robust SIC algorithm takes O(M N K') computations, so the total complexity is
O(JMNK). Usually J = 10 is enough to get close to steady-state performance. No
reordering according to SNR is performed in the algorithm.

The decorrelating detector has complexity O(M?3K?). The SIC implementation
of the decorrelating detector is of complexity O(JMNK) [93], assuming that the
number of SIC stages is the same as that of the delay-robust SIC. The delay-robust
decorrelating detector [46] and [40] has complexity O(M?K?). The improved MMSE
(IMMSE) multiuser detector [14] [46] has complexity at least O(M?3K?).

Successive interference cancellation (SIC) is a low complexity suboptimum CDMA
multiuser detection method and has been considered to be practical for actual CDMA
basestation implementation [100]. Although the delay-robust SIC approximately dou-
bles both computational complexity and processing delay of those of standard SIC
algorithm [84], its complexity is still far less than those of other delay-robust multiuser

detectors.

3.5 Larger Delay Errors

The previous delay-robust SIC algorithm is developed under the assumption that the
time delay error is small, i.e., with standard deviation o, = 0.17.. Although this
time delay estimation error is typical of the current multi-user delay estimators, and
some multi-user delay estimators have a smaller standard deviation than 0.17%, it is
beneficial to evaluate the performance of the delay-robust SIC under larger time delay

estimation errors. In this subsection, we simulate the delay-robust SIC performance
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as a function of the time delay error for rectangular chip pulse shapes, and observe
when the delay-robust SIC breaks down. Based on the simulation results, we find the
reason for breakdown and propose an enhancement to the delay-robust SIC so that

it can operate under larger time delay error conditions.

Bit Error Rate, SNR = 14 dB
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Figure 3.2: Bit Error rate (BER) of user 1 as a function of the delay error standard

deviation o,. Near-far ratio 20 dB.

In Fig. 3.2, the BER performance of the delay-robust SIC and the delay-robust
decorrelator are simulated as a function of the time delay error standard deviation
from o, = 0.07. to 0.87. for both K = 5 users and K = 10 users. As a comparison,
curves for the decorrelator with estimated delay information are also shown for the
K = 5 user case. The delay error is truncated to lie within +0.57, as all users are
assumed under acquisition. As we can see, the BER of the delay-robust SIC gets
worse as o, increases. This degradation slows after o, reaches 0.57.. However, the
BER of the delay-robust decorrelator remains constant.

We conjecture that the reason for this difference is that when the time delay er-
ror becomes larger, correlation between the signal at the estimated vector direction

and the residual interference signal due to timing error in the error vector direction
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Figure 3.3: Bit Error rate (BER) of single user channel as a function of the delay

error standard deviation o.

becomes larger. Since the delay-robust decorrelator performs decorrelation between
those two signals, it is not affected by this correlation. To prove that the degrada-
tion is mainly caused by the residual self-interference introduced by timing error, we
simulated a single-user scenario where the matched-filter receiver is matched to the
estimated time delay. The BER is shown as a function of the delay error standard
deviation o, in Fig. 3.3. Almost the same amount of BER increase is observed for
the single-user case without decorrelation as the delay-robust SIC in the multi-user
case. In Fig. 3.3, we also simulated a decorrelator which decouples the two signals
from the same user. Due to the decorrelation, the desired signal is not affected by

the residual self-interference, and so the BER curve is almost constant.

We therefore propose to insert a local decorrelation operation between the sig-
nals of the same user into the delay-robust SIC algorithm. Denote ak_dec(i) =
D()[D(:)"D(:)]7'[1 0]7, where D(i) = [ak(z) Adg(i)]. The decorrelation [D(i)7D(4)] ™
is used to separate the signals in the ak(z) and Adg(7) directions, to prevent the self-

interference from the residual signal due to timing error. Note this local decorrelation
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is similar to the local multipath decorrelation used to decouple multipath signals from
the same user in the multistage SIC receiver in [123] and [126].

The original delay-robust SIC in Section 3.3.6 is modified by replacing dk( ) with
d,_ dec() in (3.27) and (3.28) to incorporate the local decorrelation. We remark that
dk—dec(i) only needs to be calculated once at the beginning of the algorithm.

When o, < 0.27., the self-interference from the timing error residual signal is
small, and it is advantageous to use ak(z) instead of ak_dec(i) in (3.27) and (3.28) to
avoid noise enhancement due to the extra decorrelation step. The performance of the

improved delay-robust SIC under large timing errors is shown in Section 3.7.

3.6 Delay-Robust SIC Detector for Band-limited
Chip Pulse Shapes

Few research results have been reported on delay-robust multiuser detectors with
different chip pulse shapes. In [16], an approach similar to the IMMSE detector of [14]
was extended to a pulse-shaping system, and a modified maximum-likelihood sequence
detection (M-MLSD) is derived by averaging over the time delay error distributions.
In this section, we will construct a generalized system model for a band-limited chip
pulse shapes CDMA system, and extend the proposed robust SIC detector of Section
3.3 to this general case.

The system model is similar to the one used in [16] and [125]. The received signal
is

EZak 1)8p(t —iT — 71,) + n(t) (3.60)

t k=1

The normalized signature waveform of user k is 3x()

Z Ot —3T.) (3.61)

where t(t) is a band-limited chip pulse shape and the other symbols are the same

as in (3.2). In the simulations, a square-root raised cosine pulse shape is used for
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Figure 3.4: Sampling of the chip-matched filter response for truncated band-limited
chip-pulse shapes. The solid arrows represent the first order derivative of the chip-

matched filter response at the sampling points with estimated timing delay.

the chip-pulse waveform, ¢(¢). The receiver front-end is a chip-matched filter with
impulse response ¢*(t). After chip-matched filtering and chip-rate sampling, equation

(3.60) can be expressed in vector form as

M+1 K

i=1 k=1

For the general chip pulse shapes, the received signature waveform of the ith
bit of the kth user, di(7), is the convolution of the user spreading codes with the

chip-matched filter response at the sampling points, i.e.,
dy(i) = ci(pr,1) * 8k (3.63)

where vector gy is the kth user’s chip-matched filter response at the chip-rate sampling
points, as shown in Fig. 3.4. If the chip-matched filter response is truncated to length
PT,, then the vector g; will be of length P, and the signature waveform d(z) will

have N + P — 1 non-zero elements. The mth element of g is given by

gu(m) = /OO O(r — 8T (mT, — 7)dr | m e {l,2,...,P}  (3.64)

The error vector Adg(z) for the band-limited chip pulse shape is the convolution
of the user spreading codes with the first derivative vector f; of the kth user’s chip-

matched filter response at the sampling points, i.e.,
Adk(l) = Ck(pk, Z) * fk (365)
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with elements

0 0
fulm) = E/_oo DT — STI (t — 7)dr e, m e {1,2,....,P} (3.66)

The kth user’s signature waveform for the ith interval dg(7) is first-order Taylor

expanded as

d(i) ~ di(i) + (8% — 65) Ady(4) (3.67)

The expansion is not exact unlike the expression (3.14) derived for the case of rect-
angular chip pulse shapes. Actually the case of rectangular chip pulse shapes can be
viewed as a special case of the band-limited chip pulse, with P = 2, g = [(1 — 8k) 5k]
and f, = [—11].

After we obtain (3.65) and (3.67), the delay-robust SIC detector of Section 3.3
can be applied by substitution into (3.14). Since the Taylor expansion of (3.67) is not
exact, there will be some residual interference. As will be shown in Section 3.7, this
interference is not large as long as the timing error is small enough so that first-order

Taylor expansion is a good approximation.

3.7 Numerical and Simulation Results

In this section, through simulation we compare the performance of the delay-robust
SIC multiuser detector to that of the decorrelating detector with and without perfect
time delay estimates. Performance results for large delay error and for band-limited
chip pulse shapes are also included.

Throughout the simulations, we will assume as in [85] that the delay estimation
errors are independent zero-mean Gaussian random variables with equal standard
deviation o, = 0.17. for all users if not otherwise stated. Gold code sequences of
length 31 and a block size of M = 9 are used. The power of the first user is fixed
at unity, and different near-far ratios P,/P; are obtained by varying the power of
other users, where P, = ai. The signal-to-noise ratio (SNR) is defined for the first

user as SNR = P;/a?. Unless otherwise stated, the estimated time delays have only
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fractional chip uncertainty and rectangular chip-pulse shapes are used. Although a
Gaussian delay error distribution is used for the simulations, we note the delay-robust

SIC detector operation does not depend on the delay error distribution.
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Figure 3.5: Asymptotic multiuser efficiency (AME) as a function of near-far ratio for

o, = 0.1T,. K = 5 users.

In Figures 3.5-3.15, the Decorrelator(True Delay) curves refer to the decorrelat-
ing detector with true time delays, Eq. (3.13). Decorrelator(Est. Delay) refers to
the decorrelating detector with estimated time delays, Eq. (3.24), Robust SIC refers
to the delay-robust SIC detector of Eqs. (3.14), (3.26)-(3.30), Robust Decorrela-
tor refers to the delay-robust decorrelating detector with 2K virtual users of Eq.
(3.19). As expected, the delay-robust decorrelators employing virtual users as in
(3.14) have almost identical BERs compared to that using (3.15). In all figures,
therefore, only the curves of the delay-robust decorrelator using (3.14) will be shown.
The Decorrelator(True Delay, Analytical), Robust SIC(Analytical) and Robust Decor-
relator(Analytical) curves refer to the analytical bit error rate (BER) calculated using
the Q-function, with the SNR adjusted by a factor of 2/3, to account for the chip-

asynchronous loss for rectangular chip pulses [70]. These analytical curves serve to
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confirm the accuracy of the BER simulation curves.

The asymptotic multiuser efficiency (AME) simulations in Figs. 3.5 and 3.6 are
calculated for user 1. The power of other users are equal and the near-far ratio is
defined as P,/P;. The result is obtained through 500 Monte Carlo runs with an

independent realization of delay at each run.
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Figure 3.6: Asymptotic multiuser efficiency (AME) as a function of number of users

for o, = 0.17,. Near-far ratio 20 dB.

In Fig. 3.5, the number of users is K’ = 5 and the near-far ratio is increased from
0 to 30 dB. The multistage delay-robust decorrelating detector with correct data bit
decisions serves as the upper bound for the delay-robust SIC detector. As shown,
the AME of the proposed delay-robust SIC detector is between the AME value of
decorrelating detector with true delays and the delay-robust decorrelating detector,
and stays constant as the near-far ratio increases. Therefore this delay-robust SIC
detector exhibits near-far resistance under delay mismatch. As the near-far ratio
increases, the AME of the decorrelating detector with estimated time delays decreases

toward zero.

Fig. 3.6 compares the AME performance as the number of users is increased from
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Figure 3.7: Bit Error rate (BER) of user 1 for o, = 0.17.. Proposed delay-robust SIC
detector with K = 5 users. Near-far ratio 20 dB.

3 to 31. The near-far ratio is fixed at 20 dB. As expected from Section 3.4.1, the
delay-robust SIC can support Mi_HN = 19—0 x 31 ~ 28 users (AME is greater than zero).
The decorrelator with estimated delays can only support 5 or 6 users while the delay-
robust decorrelator can support 16 users, about half the spreading factor, N/2. It can
also be observed that as the number of users increases, the AME of the delay-robust
decorrelator approaches zero at twice the rate compared to the decorrelator with true

delays, while the delay-robust SIC decrease is close to that of the decorrelator with

true delays.

For the BER and AME simulations in Figures 3.7-3.15, the near-far ratio is defined
as the power ratio of the second user to the first user, P,/P;. The second user is the
strongest user, and the user of interest, the first user, has the lowest received power.
The near-far ratio is 20 dB and all other users have unequal power ratio uniformly
distributed between 20 dB and 0 dB. The BER is averaged over 500 different delay
realizations. For each delay realization, a large number (i.e., 500) of Monte Carlo

simulations are run, with the transmitted data bits generated independently for each
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run.

In Fig. 3.7, the results show that with 5 users the BER of the delay-robust SIC
detector (Section 3.3.1) is lower than that of the delay-robust decorrelator and is close
to the BER of the ideal decorrelator with known time delays. At a BER of 1072, the
loss compared to the ideal decorrelator is about 0.2 dB. The BER of the decorrelator
with estimated delays is larger than 1072 in large SNR, which makes it completely
unusable in this severe near-far condition. We find that the proposed delay-robust
SIC detector converges in 15 iterations, where we define convergence of the robust SIC
detector to occur when the difference in estimated value of signal amplitude between

two consecutive iterations is less than 0.1%.
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Figure 3.8: Bit Error rate (BER) of user 1 for o, = 0.17.. Proposed delay-robust SIC
detector with K" = 10 users. Near-far ratio 20 dB.

While in Fig. 3.7, the performance improvement of the delay-robust SIC detector
over the delay-robust decorrelator is not large for 5 users, in Fig. 3.8 we increase the
number of users to K = 10. The BER improvement is now obvious.

We have claimed that the delay-robust SIC detector has a capacity of over 50%

of the spreading factor. To show this, a system with 20 users is simulated in Fig.
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Figure 3.9: Bit Error rate (BER) of user 1 for o, = 0.17.. Proposed delay-robust SIC
detector with K" = 20 users. Near-far ratio 20 dB.

3.9. The difference between the delay-robust SIC detector and the decorrelator with
true delays is significant. This can be explained by the AME values of Fig. 3.6, in
which the AME of the delay-robust SIC detector is about half of that of the ideal

decorrelator.

In Fig. 3.10, we compare the standard deviations of the time delay error estima-
tion of the weakest (first) user by the delay-robust SIC detector and the multistage
delay-robust decorrelating detector with correct data bit decisions to the Cramér-Rao
lower bound (CRLB). The near-far ratio is 20 dB. The number of users is K = 5. The
result is obtained through 500 Monte Carlo simulations. The root mean square error
(RMSE) of the delay-robust SIC detector and the multistage delay-robust decorre-
lating detector with correct data bit decisions are almost identical. Since the decor-
realting detector output is an unbiased estimate, this means that the delay-robust
SIC detector output is approximately unbiased. Their standard deviations have a
constant gap compared to the CRLB as the SNR changes. This performance gap is

the result of the noise enhancement in the decorrelating detector.
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Figure 3.10: RMSE and Cramér-Rao lower bound (CRLB) of user 1’s delay error

estimate for o, = 0.17, and K = 5 users. Near-far ratio = 20 dB.

In Fig. 3.11, performance of the two proposed approaches are compared for o, =
0.17.. Robust SIC(Guard Vector) refers to the delay-robust SIC detector using (3.16)
of Section 3.3.3, Robust SIC(No Guard Vector) refers to the delay-robust SIC detector
using (3.14) of Section 3.3.1 in both integer and fractional uncertainty delay conditions
where the fractional delay error may across integer chip boundary. From Fig. 3.11,
as the SNR gets larger, the delay-robust SIC detector (Guard Vector) of Eq. (3.16)
outperforms the delay-robust SIC detector (No Guard Vector) of Eq. (3.14) and as
expected since there is little noise enhancement, but at a cost of reduced capacity,
which is now reduced to MiHN. In Fig. 3.12, we increase the delay error standard

deviation o, from 0.17. to 0.157. to make the error floor of the delay-robust SIC

detector (No Guard Vector) more obvious.

In Figs. 3.13 and 3.14, we simulated the AME and BER of the delay-robust SIC.
When o, > 0.27,, ak_dec(i) (defined in Section 3.5) is used in (3.27) and (3.28). When
or < 0.27,, ak(z) is used in (3.27) and (3.28). From the results, our delay-robust SIC

is usable as long as the estimated time delay is within £0.57 of the true delay (under
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Figure 3.11: Integer and fractional uncertainty delay estimates. Bit Error rate (BER)
of user 1 for o, = 0.17, and K = 10 users. Near-far ratio 20 dB.

acquisition), although its performance is best when o, < 0.17...

Fig. 3.15 shows simulation results of the delay-robust SIC detector for band-
limited chip-pulse shapes with K = 5 users and the SNR = af [*_t(¢)*dt/a*T..
From Fig. 3.15, the delay-robust SIC detector has a lower BER than the delay-
robust decorrelating detector. Although both the BERs of the delay-robust SIC
detector and the delay-robust decorrelating detector show significant improvement
over the decorrelating detector with estimated delays, there is a larger performance
gap compared to the ideal decorrelator, due to the residual error in the first-order

Taylor expansion in (3.67).

3.8 Conclusion

In this chapter, we have proposed a delay-robust SIC detector that is robust to time

delay estimation errors under near-far conditions. The BER and AME performance
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Figure 3.12: Integer and fractional uncertainty delay estimates. Bit Error rate (BER)
of user 1 for o, = 0.157, and K = 10 users. Near-far ratio 20 dB.

measures are derived and simulated. The receiver is near-far resistant when the esti-
mated delay is close to that of the true delay. Performance is only slightly inferior to
a decorrelating detector with perfect delay estimates, but better than a decorrelat-
ing detector with estimated delays. User capacity is greater than the 50% capacity
limit of the synchronous delay-robust decorrelating detector [40] [46], and the AME is
improved as well. This delay-robust SIC detector is also equivalent to iterative max-
imization of the log-likelihood function using the SAGE algorithm, so convergence to
at least a fixed point is guaranteed. The delay-robust SIC can also be used as a delay
error estimator, and its root mean square error (RMSE) performance is compared
to the CRLB. For large delay errors and rectangular chip pulses, a local decorrela-
tion step is incorporated into the delay-robust SIC to improve performance. Finally,
this delay-robust SIC detector, when generalized to band-limited chip pulse shapes,

exhibits some performance degradation due to incomplete interference cancellation.
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Figure 3.13: Asymptotic multiuser efficiency (AME) as a function of the delay error

standard deviation o,. Near-far ratio 20 dB.
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Chapter 4

Soft-Decision Interference Cancellation

and Multiuser Delay Tracking

Both the successive interference canceller (SIC) and the parallel interference can-
celler (PIC) belong to a family of low complexity multiuser detection methods for
DS-CDMA systems. In Chapter 3, we have investigated a proposed delay-robust
multistage SIC that employs a linear decision function (linear SIC) for the estimated
virtual users. However, the performance of a multistage SIC, in general, depends
on the decision function used in the interference cancellation iterations, e.g. hard
decision, soft decision or linear decision may be employed. Due to error propagation,
the multistage SIC with hard data bit decisions may perform more poorly than a
multistage SIC with linear or soft decision functions. We propose and analyze a fam-
ily of generalized unit-clipper bit decision functions that are a mixture of linear and
hard decisions. Performance within 0.4 dB of the single-user bound can be obtained.
We then employ results in Chapter 3 to robustify the new soft-decision SIC to time
delay errors as large as half a PN chip, and evaluate performance. We also consider a
sliding window version of the delay-robust SIC as a multi-user delay tracking receiver.
Tracking performance is simulated for both rectangular chip and square-root raised

cosine chip pulses, in both AWGN and multipath fading channels.
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4.1 Introduction

The SIC and PIC regenerate and cancel interference from other users before data
detection of the desired user. The decision function used in the SIC may be hard,
soft, or linear. If the regeneration and cancellation of other users’ signals use a hard
decision function, the interference could actually double from error propagation of in-
correct hard decisions [45]. Methods including soft or linear interference cancellation
and partial interference cancellation have been proposed to mitigate this error prop-
agation [19]. However, the linear SIC reduces to the decorrelating detector, which is
inferior to the upper bound performance that SIC can achieve with an ideal decision
function [93]. The performance of partial interference cancellation methods depend on
the cancellation weights at each stage and the decision functions used. The selection
of the optimum weights for the multiple stages can therefore be complex [130].

The SIC with hard or soft decision functions requires signal amplitude to perform
interference cancellation. Since the true amplitude information is not available, it
needs to be estimated at the receiver. When the channel changes slowly, it is shown
in [84] that an SIC receiver incorporating amplitude estimation by averaging over
several bits can potentially result in a significant bit error rate (BER) performance
improvement. In fact, the single-user BER lower bound may be reached if perfect
amplitude information is available. Although amplitude averaging is a known tech-
nique, its performance depends on the decision function used in multistage SIC. For
example, if hard decisions are used, error propagation may dominate over amplitude
estimation errors.

Since linear (soft) decision interference cancellation has no error propagation and
will converge to the decorrelating detector, hard decision interference cancellation
can completely cancel interference when the hard decisions are correct. We seek to
combine the advantages of hard and soft decision functions. In our proposed decision
function, when the instantaneous signal amplitude estimation is small compared to
the averaged amplitude, linear decision cancellation is used. Otherwise hard decision

cancellation is employed. We therefore take advantage of amplitude averaging and
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achieve performance close to that of the single user bound.

Our proposed detector is similar in principle to the two-stage decorrelating de-
tector of [131], where hard decisions made from the first stage decorrelator are used
only when highly reliable. While [131] uses either multi-dimensional search or decor-
relation in the second stage, we propose to incorporate the two stages into the SIC
iterations to gain a computational advantage, i.e., the two-stage decorrelator [131]
has computational complexity proportional to the third power of the number of users
[67] while the proposed multistage SIC has computational complexity linear in the
number of users [93]. Moreover, the two-stage decorrelator performance is affected by
time delay estimation errors [85], while the soft-decision multistage SIC can be made

robust to time delay errors as described in Section 4.6.

We consider the proposed decision function in the context of SIC with amplitude
averaging. We note that this technique may also be applied to PIC as well, but
will not be discussed further. In the following sections we describe the system model,
propose a new decision function with amplitude averaging in the SIC receiver, analyze

performance and provide comparisons through bit simulations.

Since the delay-robust SIC proposed in Chapter 3 is based on improving the linear
decision SIC implementation of decorrelator, the amplitude averaging is not utilized.
In this chapter, the SIC with amplitude averaging is robustified as in Chapter 3 to

operate under time delay estimation errors.

We also propose using the delay-robust SIC with soft-decision and amplitude aver-
aging for multiuser delay tracking, since the delay error information can be estimated
by the delay-robust SIC and thus be used to improve the current delay estimate for the
next detection. The tracking ability is shown for both rectangular and band-limited
chip pulses. For multipath fading CDMA channels, since the multipath decorrelating
detector can eliminate MAI completely before channel estimation [109], we extend
the linear decision delay-robust SIC of Chapter 3 to tracking the multipath delays for

all the users of the system.
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4.2 System Model

We consider the basestation receiver for the asynchronous uplink CDMA channel with
binary phase shift keying (BPSK) modulation. It is assumed that the user data are
transmitted in blocks, with a block length M.

In Chapter 3, we assume that all users are carrier phase-synchronized which cor-
responding to the worst case MAI. In this chapter, we will consider the random user

carrier phases. The equivalent baseband received signal for one block is similar to

Eq. (3.1) .

r(t) = Z E ak(i)eﬁ’“(i)bk(iﬁk(t — T — 71) + n(t) (4.1)

=1 k=1
except for the addition of the kth user’s carrier phase shift for the :th time interval

as 0x(1) € [0,27). Other parameters ax(7), bg(7), 7, T and K are the same as in Eq.
(3.1). The white Gaussian noise n(?) in Eq. (4.1) is complex valued, while n(?) in Eq.
(3.1) is real valued. The time delays, phase shifts and spreading codes of all users are
assumed to be known at the basestation receiver.

In (4.1), the normalized signature waveform of user k, 3(¢), is the same as in Eq.
(3.2).

It is also assumed that the channel changes relatively slowly compared to observa-
tion length (M +1)T', so that the received signal amplitude and phase shift parameters
can be modeled as constants, i.e., ax(i) = a and 0;(i) = 05 for e = 1,..., M. Due to
asynchronism 75, € [0,T), we note that the observation interval must be [0, (M +1)T').

After chip-matched filtering and chip-rate sampling, the received signal is dis-

cretized and the (M + 1)T" observations can be organized into the vector
M K
r=> > ae!’by(i)d(i) + n (4.2)
i=1 k=1
Eq. (4.2) is similar to Eq. (3.3) except that here we also consider phase shifts e/%.
dx(7), r, n are defined in Section 3.2.
The received signal vectors r(z) over the (M 4 1)T observation intervals, 1 =

1,...,M + 1, provides sufficient statistics for detecting the transmitted data bits

from the K users.
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4.3 SIC Multiuser Detector with Amplitude Av-

eraging

Successive interference cancellation (SIC) is a low complexity suboptimal multiuser
detector for CDMA systems. The signal corresponding to a particular user is first
estimated by subtracting other users’ regenerated signals from the original received
signal. After data bit decisions are successively made based on these estimated sig-
nals, the estimated signals are regenerated and then the process repeats. To obtain
accurate interference cancellation performance, the regenerated signal subtractions
occur in decreasing order of signal power. We note that (1) this ordering can be ap-
proximated by only sorting in the first SIC stage, and (2) ordering with O(Klog, K)
complexity/stage does not substantially increase the O(K N)/stage computational
complexity of the SIC.

The SIC need users’ amplitude information for data bit decisions and interference
cancellation. Since the received signal amplitude is not known, it should be esti-
mated. One approach is the linear SIC receiver, in which the ith signal’s amplitude
and data bits are estimated as the composite signal by (i) (i) [84] [93]. This is equiv-
alent to estimating amplitude in bit-by-bit fashion. The MAT and noise will affect
the accuracy of the amplitude estimate, where the error may be modeled as zero-
mean Gaussian noise. In [84], it was shown in theory that amplitude estimation by
averaging over M bits can reduce the noise variance by a factor of M, and results in
a corresponding BER performance improvement. The single-user BER lower bound
may also be approached for static channels if the number of bits used for averaging

is large enough.

However, with averaged amplitudes, the multistage SIC receiver performance de-
pends on the decision functions used in the interference cancellation iterations, as
explained earlier. In the following, we will discuss some of the known decision func-

tions and propose an improved decision function.

Suppose an SIC receiver with amplitude averaging starts interference cancellation
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at stage 7 = 1. During the (j+1)st stage, the SIC first performs steps (1) to (3) on
user k = 1, then repeats the same steps on users k = 2 until user £ = K. Compared
to the delay-robust SIC in Section 3.3.6, the steps (1) to (3) here incorporate the
carrier phase shift 8, estimates the time-averaged amplitude over the block and uses
a soft-decision function fy..(-). However, the time delay is assumed exactly known

here so delay-robust technique is not used.

Step (1): We estimate user k’s received signal for bits « = 1,..., M in
one block. For the ith bit, the k-th user’s received signal is estimated by

subtracting other users’ regenerated signals from the received signal r(z)

of (4.2):
. k_l M . - A - I{ M . CA -
B ==Y S ha T ) di) - YD D e albi (i)du(d)
=1 :1=1 I=k+1 =1

Step (2): Obtain the averaged amplitude estimate by averaging the in-
stantaneous estimate of user k’s amplitudes over the M-bit block after

despreading with PN sequence d(7):

af"! = 23" abs (Re (77 (du(i))" 1))
i=1
where abs( ) and Re( ) denote the absolute value and the real part, re-

spectively.

Step (3): For each bit in the block, 7 = 1,..., M, obtain the normalized
soft data bit estimate and make a data bit decision. For the :th bit, the
soft data bit estimate is normalized with respect to the averaged amplitude
Eli-H:
b (i) = Re (7% (du(0)) T 17) /ey
The data bit decision is made by the decision function fy..(+):
b (i) = Faeel B () (4.3)

The interference canceller for user k is depicted in Figure 4.1. The above mul-

tistage SIC is performed either for a desired number of cancellation stages, or is
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Interference cancellor for user k

From chip-pulse
matched filter

To other users’ interference cancellors

Figure 4.1: The interference cancellation unit for user k.

terminated when there is no significant change from the previous stage. Note if the

perfect amplitude information were available, step (2) may be omitted.

Several possible decision functions fu..(-) are depicted in Fig. 4.2. The hard-
limiter decision function [78] of Fig. 4.2(a) utilizes only the sign of the soft data bit
estimate, i)fl(z) = Sign(gfl(i)). Assume for example that the correct data bit is
+1. If its soft estimate is a small negative number close to zero due to MAI and
noise, i.e., —0.1, the hard decision will be —1. From this example, we can observe
that interference may actually be amplified by the hard-limiter. This may cause error
propagation, which could result in the SIC to converge to a local maximum. Partial
interference cancellation [19] has been proposed to mitigate this error propagation,

but its parameters can be difficult to optimize.

The hyperbolic tangent (tanh) [78] decision function of Fig. 4.2(c) has been shown
to be optimum in the single-user case when the interference and noise are Gaussian,
which may not accurately model MAI of CDMA systems. In any case, hyperbolic
tangent performance is only slightly better than that of the hard-limiter [78].

The null-zone decision function [45] of Fig. 4.2(d) improves the hard-limiter by

using sign information only when the soft bit estimate has a large enough amplitude.
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Figure 4.2: The decision functions for interference cancellation multiuser detectors

(SIC and PIC).

The linear decision function [84] [93] of Fig. 4.2(b) does not make hard bit de-
cisions. This linear SIC' converges to the decorrelating detector as the number of
interference cancellation stages goes to infinity [93]. Linear SIC performance is there-

fore limited by decorrelating detector noise enhancement [67].

The limiter in the unit-clipper decision function [78] [133] of Fig. 4.2(e) improves
performance over the linear SIC. However, the unit-clipper cancels only the part of
the noise above the amplitude limit. It has been shown in [113] that a multistage
interference cancellation receiver with a unit-clipper function is equivalent to the (0,1)-
constrained maximum-likelihood (ML) solution of the optimum multiuser detection,

subject to a box-constraint.

To improve the tradeoff between linear SIC noise enhancement and error propa-

gation from hard limiting, we propose to generalize the unit-clipper to the following
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function depicted in Fig. 4.2(f):

1, b>c
b= fue®) =3 b, be[-cd (4.4)
-1, b< —c

where the threshold 0 < ¢ < 1. The effect of the choice of ¢ on the performance of
the SIC using the above proposed decision function will be analyzed in Section 4.4

and simulated in Section 4.9.

The decision function (4.4) makes a linear bit decision when the value of the
normalized soft bit estimate is small, and so will exhibit desirable convergence similar
to that of the linear SIC. Otherwise, it makes a hard bit decision, which will be correct
with high probability.

The performance of the proposed SIC in (4.4) can also be compared to an SIC
using a Gibbs sampler [98]. The Gibbs sampler introduces randomness into the SIC
cancellation, where the hard data bit decision is made by choosing a sample from
a conditional probability density function (pdf) of the soft data bit estimate. For
example, if the soft bit estimate is b = 0.5, the Gibbs sampler draws a sample which
will be +1 with probability 88%. With perfect power control and perfect amplitude
information, the SIC using a Gibbs sampler achieves BER performance within 0.5 dB
of the single user bound [98]. While our SIC uses deterministic soft decisions, it may
reach a fixed point faster than [98], although [98] may convergence to a lower steady-
state error. Under a 10 dB near-far ratio and with imperfect amplitude information,
the soft-decision SIC achieves a BER performance within 0.4 dB of the single-user
bound as will be described in Section 4.9. While the number of iterations may not
be identical, the Gibbs sampler has the same order of computation as that of the

proposed SIC.
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4.4 A Steady-State Performance Analysis

In this section, we analyze the steady-state performance of the proposed SIC detector
after convergence. It has been shown by simulation [9] [45] that convergence is ap-
proximately achieved after about five iterations for multistage SIC with null-zone and
hard-limiter decision functions. The multistage SIC with the proposed soft-decision

function also converges in about five iterations, as will be described in Section 4.9.

After convergence, the residual interference can be assumed to be Gaussian-
distributed, and the interference introduced by individual users can be assumed to be

mutually independent [9]. Let the interference variance from one bit of user k be o}.

2

, 1s the sum of the K users’ interference

The total interference and noise variance o
variances and the channel noise variance ¢, i.e., 0 = Y8 o2 4 03,

For the multistage linear SIC detector, denote the interference and noise variance
of the estimated received signal of user k at the input of the correlator be o2 at con-
vergence. After correlation, the variance of the reconstructed signal ejek&kl;k(i)dk(i)

will be 07 = 0?/N due to spreading gain N. Therefore it can be shown [9] that o is

the solution to:

o2
o? = Kﬁ + JJQV (4.5)

That is, 02 = 1_1%0]2\,. For a spreading factor N = 31 and K = 20 users, the
performance loss of the linear soft-decision SIC detector relative to the single-user
lower bound is 4.5 dB.

For the proposed decision function Fig. 4.2(f), let user £’s amplitude be ay.
Without loss of generality, let user k’s transmitted data bit be by(i) = +1. Its
unnormalized correlator output yiz(i) = Re (e77%(di(i))? t4(s)) = ELkIN)k(i) can be
modelled as a Gaussian random variable with mean a; and variance o%. User k’s
decision region for the unnormalized correlator output yx(i) can be partitioned into
(1) a hard-decision region(cag, +0c), (2) a linear decorrelator region [—cag, cay| and
(3) a bit-error region (—oo, —cag). The reconstructed signal of user k for interference

cancellation is e/% Ezkj)k(i)dk(i). This leads to three cases:
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Case (1): The unnormalized correlator output yx(¢) falls in hard-decision region

(cag, +o0) with probability {1 -Q (@)}, where Q(z) = [~ \/%e_%dy. The data

bit decision is correct, i.e, I;k(z) = bi(i). Its regenerated signal for interference cancel-
lation is €% by (1)dy(2), which uses the averaged amplitude for all 7 = 1,2,..., M.
The introduced interference variance can be calculated as the second moment of the
difference between the reconstructed signal and the true signal ¢/%azby(i)d(7), i.e.,

0.2

~ MN

Vary = %E [(axbili) — aibi()’] (4.6)

where N is due to spreading gain and M is due to averaging gain.

Case(2): The unnormalized correlator output yx(¢) falls in the linear decorrelator
region [—cay, cag] with probability [Q (%) -Q (%)} The regenerated sig-
nal €%y, (i)dg(7) uses the instantaneous amplitude estimate abs(yx(7)), which has a
variance Vary = 0?/N due to spreading gain only.

Case (3): The unnormalized correlator output yi(¢) falls in bit-error region (—oo, —cay)
with probability @ (ﬁl—tm) Since a wrong hard bit decision is made, ?)k(z) = —bi(7).
The regenerated signal for interference cancellation is €%y (—by(:))dg(7). Assum-
ing that the data bit error and the amplitude estimation error are independent, the

introduced interference variance can be calculated as

Vary = I [(as(~be(i)) — axb(i))"]

_ % {E [(Qakbk(z')ﬂ +E {(&kbk(i) — akbk(i)ﬂ}

(2ax)? o? (2ax)?

— ~

N MN =~ N

(4.7)

Combining the above cases, the average interference variance contribution from

one bit of user k£ conditioned on its amplitude ay, is:

o = [-0(U22)] 2 o o (2222) o (222) 2

L0 ((1 +Uc)ak) (2?\1;)2 (48)

If the received user signals have unequal powers, we assume that the received

amplitudes ap are uniformly distributed between a,,;, and a,,;, X, where a,.;, =
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min{ay,...,ax} is the amplitude of the weakest user, and X > 1 is the ratio of
max{ay,...,ax}/amin. The average interference variance contribution from user k
can be calculated by averaging (4.8) over the distribution of aj, which is uniform in
[@miny Gmin X ]

Denote the expectation

0 o8] -t o () o)

b2 a2

min b2(aminx)2]

262 — e 202

+ﬁ [e— (4.9)

and by using the approximation Q(t) ~ \/;—ﬂe

bak 1 amin X bak
g(b) = Eak lazQ (7)] = —amln(X — 1) /amm az (7) dak

0-3 1 _b2a$nin _b2(ami'nx)2
D e 207 —e T 27 (4.10)

42

%

AV 2mb3 amzn(X -
Substituting (4.9) and (4.10) into (4.8), the total interference * for all K users

including the channel noise variance a3 is the solution to

K

o = Y B lod(an)] + 0%

< {0-su-a) gy U -0 ru ) G+ e +af K
tol (4.11)

For example, for an amplitude averaging length of M = 9 bits, SNR of 10 dB,
near-far ratio of 10 dB, spreading factor of N = 31 and number of users K = 20,
the loss to the single-user bound is about 0.35 dB for threshold ¢ = 0.5, 0.68 dB for
¢ = 0.8, and 1.93 dB for ¢ = 1.0. The value ¢ = 1.0 is a special case where our
proposed decision function reduces to the unit-clipper decision function.

Alternatively, if the received user powers are all equal under ideal power control,
ie.,ar=afor k=1,..., K, then (4.8) need not be averaged. Instead of (4.11), the
total interference and noise variance is given as

ot = éak(aw +ox = Hl -« ((1 F C)aﬂ z\jjv

g
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Figure 4.3: The SNR loss for the proposed SIC detector compared to the single user
detector as a function of the thresholds 0 < ¢ < 1. K = 20 users. SNR = 10 dB.

¢ = 1 represents the unit-clipper.

o152 a5 () )
+ok (4.12)

Modifying the above example to a near-far ratio of 0 dB corresponding to equal
user powers, the loss to the single user bound is about 0.51 dB for ¢ = 0.5, 1.18 dB for
¢ = 0.8, and 1.93 dB for ¢ = 1.0. Comparing to the previous example, the proposed

SIC detector performs worse under equal received power conditions.

It is also interesting to calculate the performance loss to the single-user bound
when the decision function used is ideal, i.e., decision error free, with the amplitude
be averaged. Similar to the decorrelator, after correlation, the variance of the recon-

structed signal e’% &kgk(i)dk(i) will be 6} = 0?/(M N) due to spreading gain N and
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averaging gain M. Therefore o2 is the solution to:

0_2

MN

cl=K + 0']2\7 (4.13)

That is, 0% = ﬁ‘ﬁv- For a spreading factor N = 31 and K = 20 users, the

performance loss (])\?Vthe error-free decision SIC detector relative to the single-user
bound is 0.3 dB. This loss is due to the noise term in the averaged amplitude compared
to the noise-free true amplitude information.

It is possible to analytically solve (4.11) and (4.12), but they are nonlinear equa-
tions, so we resort to numerical solutions. In Fig. 4.3, the SNR loss to the single
user lower bound as a function of the thresholds at SNR = 10 dB is calculated by
solving the corresponding equations. The curve for the near-far ratio 10 dB case is
calculated using (4.11), while the curve for the near-far ratio 0 dB case is calculated
using (4.12). Since our analysis may underestimate the SNR loss when ¢ is close to
zero, we should choose ¢ as large as possible when the performance loss is roughly the
same. From Fig. 4.3, a suitable choice of the threshold ¢ is near 0.5 for near-far ratio
10 dB case. Under a near-far ratio of 10 dB, the analyzed SNR loss compared to the
single user bound is 0.35 dB and 1.93 dB for thresholds ¢ = 0.5 and 1.0, respectively.
Thus, the generalized unit-clipper results in a 1.6 dB improvement.

Note that the SNR loss at ¢ = 0.5 for near-far ratio 10 dB, compared to the error-
free decision SIC is only 0.1dB, which means that the proposed soft-decision function
is quite insensitive to the value of ¢ and there will be no significant gain in further

optimization.

4.5 Modification for Phase Error

In Section 4.3, the multistage soft-decision SIC algorithm is developed based-on the
assumption that the carrier phase shifts are exactly known at the receiver. In practice,
the phase shift will also have an estimation error. However, the multiuser detector
performance is not sensitive to the small phase shift errors as it is to the timing delay

estimation errors [14].
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Figure 4.4: Bit error rate (BER) of user 1 for proposed SIC detector with phase
errors. K = 20 users. Near-far ratio = 10 dB. The threshold is ¢ = 0.5.

Let the estimated phase shifts for the users be ék, k=1,...,K. In this section,

we modify the algorithm in Section 4.3 for the estimated phase shifts:

Step (1): We estimate user k’s received signal for bits « = 1,..., M in
one block. For the ith bit, the k-th user’s received signal is estimated by

subtracting other users’ regenerated signals from the received signal r(z)

of (4.2):
' k=1 M K M .
f'fH =r— Z eﬂla bﬁ'1 (0)d; (i) — Z Z eﬁlal]bf(i)dz(i)
I=1 i=1 I=k+1 i=1

Step (2): Obtain the averaged amplitude estimate by averaging the in-
stantaneous estimate of user k’s amplitudes over the M-bit block after

despreading with PN sequence d(7):
™ = LS sign (Rele () ) ) E

=1
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where Re( ) denote the real part.

Step (3): For each bit in the block, 7 = 1,..., M, obtain the normalized
soft data bit estimate and make a data bit decision. For the :th bit, the

soft data bit estimate is normalized with respect to the averaged amplitude
Ezi—H:

B (i) = Re (7% (de(i))” #7)/Re (e eifhay’ ™)

The data bit decision is made by the decision function fy..(+):
b (i) = faee(BT (1))

In the simulation results, we will show that the multistage soft-decision SIC using
the estimated phase shifts has almost the same BER performance as using the true
phase shifts. We assume a given constant phase error as in [81]. In Fig. 4.4, the
phase shift estimation errors are set to +10° and £20°, where the single user lower
bound corresponds to the no-phase-error case. We can see that phase error has little
impact on the performance of the multistage SIC multiuser receiver: the BER curves
are almost identical for no phase error and a phase error of 10°, and even for phase
errors as large as 20°, the degradation is small. Similar results were observed in [8].

Although we have assumed that an initial phase shift estimate is available, this
assumption can be relaxed in practice. Since the receiver has the knowledge of the
modulation, i.e., BPSK or QPSK is used, by using one or several short training bits,

the phase shifts can be easily estimated given the time delay information as in [74].

4.6 Soft-Decision Delay-Robust SIC

In the previous sections, we have assumed that users’ time delay information is known
exactly by the soft-decision multistage SIC receiver with amplitude averaging. When
there are time delay estimation errors, the delay-robust multiuser detection method
presented in Chapter 3 based on linear SIC can be improved by the proposed soft-

decision framework in Section 4.5.
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We first briefly review robustness to time delay error results in Chapter 3. Fol-
lowing this, we incorporate the proposed soft-decision function.

Denote the estimated time delay of the kth user as 7, = (pr + Sk)Tc. It is assumed
that all users are acquired so that the estimated time delays are within +0.57.. of the
true time delays, i.e., |7 — 7| < 0.5T..

Since the chip-rate sampling time instants are chosen arbitrarily at the receiver,
the relative position of the estimated and true time delays can be divided two cases:
in the same sampling interval and in two adjacent sampling intervals.

If the true delay and the estimated delay are in the same chip sampling interval,
then they have the same integer part, i.e, pp = pp for 1 < k < K. The kth user’s
discretized signature waveform for the ith interval dg(z) in (3.9) can be expressed in
a prediction error form as the weighted sum of two signals ak(z) and Adg(2) as in Eq.
(3.14):

d(i) = dg(i) + (6, — 6,)Ady(i) (4.14)

where the (M 4 1)N-dimensional vector Ad(¢) is denoted as the error vector. Note
that M N entries of (4.14) have zero value.

If the true delay and the estimated delay happen to fall in adjacent sampling
intervals, without loss of generality, we may assume that we have the situation where

pr = pr — 1. di(i) can instead be expressed as the weighted sum of three signals

N

di(7), Adg(7) and cg(pr + 1,7) as in Eq. (3.16):
di (i) = (1= 6) [di(i) + (1 = 5) Ad(i)] + Seer(pr + 2.1) (4.15)

where the vector cx(pr + 2,1) is denoted as the guard vector.

Since the receiver cannot know whether the estimated and true time delays are in
the same sampling interval, the delay-robust SIC detector uses (4.15) to cancel two
residual MAT terms for each user, corresponding to the error vector and the guard
vector. If the estimated and true time delays are in the same sampling interval, then
the estimated signal corresponding to the guard vector will contribution noise terms

only, i.e., the negative effect of using (4.15) instead of (4.14) is the noise enhancement.
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Figure 4.5: Interference cancellation unit of delay-robust SIC for user k at the (j+1)st

stage.

At the jth SIC stage, the non-zero terms of error vectors of each user in (4.14)

(M+1)

are concatenated into an R N long error vector based on the tentative data bit

decisions, i)k(i), as in Eq. (3.21):
M ~ -
Z Ady(i)by (1) (4.16)

Similarly the M guard vectors in (4.15) are combined into a long guard vector as:

M
wl = 3 enlpe +2,0)b](0) (4.17)
i=1
Denote the amplitude estimate of ei as f,ﬁ, and the amplitude estimate of ui as iﬂc

The soft-decision SIC in Section 3.3 can be robustified by subtracting the estimated

signals due to timing errors in step (1). Step (1) can be replaced by:

Step (1R):

.. 1 ,

p=gp e )
1 4 .

it = (P ()

k_l M . . A -
HF = e e T Y T )
=1 =1
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~ S (el + i + 3 i) (a1
I=k+1 i=1

The interference cancellation unit for the kth user at stage (j + 1) is as shown

in Fig. 4.5. It can be shown from Fig. 4.5 that through the added timing error

estimation and cancellation, the proposed delay-robust SIC approximately doubles

both computational complexity and processing delay, compared to the standard SIC

algorithm [84]. As a function of the number of users, the complexity and processing

delay are of the same order of magnitude as the standard SIC.

4.7 Multiuser Delay Tracking Based on Delay-Robust
SIC

In this section, we proposed a sliding window version of the delay-robust SIC as a
delay tracking mode multiuser detector.

Existing multiuser delay tracking receivers can be categorized into two types:
those based on extended Kalman filter (EKF) [10] [47] [62] and those based on delay-
locked loops (DLL) combined with interference cancellation [55] [56]. Both types of
delay trackers require accurate initialization or they will not converge.

The EKF-based delay tracker of [10] [62] can track both complex channel gain and
timing delay variations. However, in simulation results, only the ability to track two
users is demonstrated. The largest number of users that can be tracked simultaneously
has not been investigated. The minimum mean squared error EKF (MMSE-EKF)
delay tracker of [47] uses K disjoint (separate) EKFs for the K users, which lowers
complexity compared to [10] [62] which track the users’ parameters jointly. The
MAT is modeled as colored Gaussian noise and suppressed by a whitening filter. The
MMSE-EKF’s performance closely matches that of the ideal MMSE detector, and
also demonstrates a tracking capability of a large number of users. However, the
MMSE-EKF is a one-shot detector, which is inherently suboptimal [49]. The EKF-

based delay tracker also has high computational complexity since it needs to update
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the inverse of its innovation matrix every symbol.

The parallel interference cancellation (PIC) based delay tracker combines PIC
with delay-locked loops (DLL) [51] [55] [56] [57]. Based on a finite memory length
approximation [101], the PIC-based delay tracker can track a large number of users
under ideal power power control conditions. However, when the near-far ratio in-
creases to 10 dB, performance breaks down since the delay error introduced residual

interference from strong users results in the weak users making wrong bit decisions.

This motivates using a delay-robust SIC for delay tracking. The early-late delay
locked loop 1s widely used in single-user receivers for tracking time delay variations
[89]. Since the error vector used in the robust SIC is equivalent to a single-branch
implementation of the early-late delay-locked-loop, the delay-robust SIC implicitly
combines the DLL into the SIC iterations. Due to robustness to delay errors even
under severe near-far conditions, the tracking ability of the weak users is greatly

improved.

If the channel is constant or slowly varying, the channel can be accurately esti-
mated. A soft-decision function can be used in the delay-robust SIC to deliver close
to single-user lower bound bit error rates (BER). For fast fading channels, we may
use a linear decision function combined with a delay-robust SIC to achieve robustness

to both fading and time delay errors.

Related research appears recently in [35] and [129]. However, [129] assumes a fixed
global timing error identical for all users and rectangular pulses. The method in [129]
does not utilize the error vector combined with decision-feedback to estimate different
users’ random timing error. In [129] performance is evaluated under ideal power
control conditions. Here, we consider drifting timing errors that differ among users
and arbitrary bandlimited pulses. We evaluated performance under severe near-far
conditions. Although the local reference adjustment (Scheme 3) in [129] appears to be
somewhat similar to our proposed method in updating the user signature sequence
according to the estimated timing error, this updating is not used in the random

timing error estimation procedure. Thus, the two algorithms are quite different and

75



[129] cannot be generalized to the proposed method in this paper. In [35], it is assumed
that the data is known, while we consider that the data symbols are unknown and to
be estimated iteratively in the timing error estimation procedure. Although [35] can
also be used in a decision-directed fashion as in [36], we emphasize that data detection

and timing error estimation must be performed jointly for best performance.

We note that since &lk = a(0 — Sk) from (4.14), &Lk can be used to improve
the delay estimate. When there are large delay errors, we can always use ak_dec(i) in
(3.27) and (4.3) first to bring the delay error within 0.27,. and apply the delay-robust
SIC again using ak(z) for a second pass. Almost all current CDMA delay estimation
methods can provide delay error less than 0.27, [4] [5] [87] [110] [134], so the first step

is usually not needed.

We propose using a sliding window version of the delay-robust SIC as a multiuser
delay tracker. The values computed during the previous window can be used as an
initial guess for the current window computation so the complexity can be reduced
[50]. Tt is required that all users are initially under acquisition, i.e., within +0.57 of
the true delay. This initial acquisition can be obtained by using other delay estimation
algorithms [4] [5] [87] [110] [134].

The delay-robust SIC based multiuser delay tracker can be implemented in two
steps:

step(1): The delay-robust SIC using the local decorrelator (;lk_dec('i,) to estimate
the delay error, and refine the delay error with in 0.27, of the true delay.

step(2): The delay-robust SIC with no local decorrelator ak(z) to track the time
varying user delays. The delay update is performed in 0.057, steps. When the delay
error estimate is larger than £0.057, the user time delay is updated by +0.057. and
slide to the next window and the step(2) repeats.

We note that there are implementation advantages when the time delays are up-
dated in small steps, i.e., 0.057.: the re-calculation of the user signature sequence
according to (4.14) is avoided if the time change is small. It also avoids the suddenly

large change due to impulse noise or interference. When using sliding window version,
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we assume that the user data bits are transmitted continuously and no blank bits are
inserted in the data stream. The change from the blank bit insertion mode to the
continuous transmission mode will have little performance degradation, as [49] has
shown that when the observation window is larger than 8 symbols, the edge effect is
not obvious. This will also be shown by BER simulation results between the dynamic

tracking and static mode in Section 4.9.3.

4.8 Multiuser Channel and Delay Tracking for Un-
known Multipath Fading CDMA Channels

In Section 4.7, we have assumed that the complex channel gain (amplitude and phase)
remains constant while the user time delays are varying. However, in practical wide-
band CDMA mobile channels, the user time delays vary relatively slowly compared
to the variation of the complex channel gains. The system model in Eq. (4.1) can be
modified for the multipath fading channel to be:

M K L

r=> > opi(1)br(i)diy(i) + n (4.19)

=1 k=1 I1=1
where the amplitude and carrier phase shift are absorbed into the complex channel
gain for the [th path of the kth user, ag;(¢). The channel is assumed to remain
constant for the duration of a bit interval, and varies from bit to bit. For simplicity,
the number of multipaths are assumed to be the same for all users, L.

However, channel estimation for a fast fading multiuser CDMA channel is a diffi-
cult problem, since the effect of MAI must be suppressed or eliminated to obtain an
accurate channel estimate for the desired user.

One sub-optimum solution is the multipath decorrelating detector pre-filter. The
multipath decorrlating detector can be used first to decorrelate each path of each
user before channel estimation. The channel estimator works on these MAI-free
decorrelator outputs [108] [109]. The price paid for this MAl-free decorrelation is

the noise enhancement and reduced system capacity, since each user is detected as L
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users.

The proposed delay-robust SIC based multiuser delay tracking receiver can also be
applied to the multipath fading channel, under the condition that the fading channel
gains for all the users are already known. The long error vector e, in delay-robust

SIC in Eq. (4.16) is now modified for the [th path as:

M
ert = > Ady(1)br(i) o) (4.20)
=1
As we have pointed out in Section 4.3, the linear decision multistage SIC is an

iterative implementation of the decorrelator. The data bit bx(z) and complex channel

gain ay(2) are estimated as a composite signal oy () at stage (j + 1):
o (1) = (dea(i) " FL3 (4.21)
and ey, at stage (5 + 1) is:
. 1 M . 1
el =D Ady(i)o (i) (4.22)
=1

Therefore, for fading channels, the delay-robust SIC using a linear decision func-
tion can also be used to track the time delays of all users. The tracking results are

shown in Section 4.9.4.

4.9 Numerical and Simulation Results

Throughout the simulations, Gold code sequences of length N = 31 are used. The
signal-to-noise ratio (SNR) is defined with respect to the user of interest, user 1.
The near-far ratio is defined as the power ratio between the strongest user and user
1, which is fixed at 10 dB. All other users have an amplitude uniformly distributed

between that of the strongest user and the weakest user.

4.9.1 Soft-Decision Multistage SIC

In this subsection, we compare the different decision functions described in Section

4.3. In this simulation, a block size of M = 9 bits is used. An additive white Gaussian
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noise (AWGN) channel is simulated. The number of users is K = 20 to account for
a highly-loaded system.

o BER, K=20
10 3 T T 7

107E

| = Linear SIC

[| = Null-Zone SIC, c=0.5
10°H -o- Proposed SIC, ¢ = 0.5

f| —— Single User (Simulation)
[| — Single User Bound

5

6 I 1 I I I

0 2 4 6 8 10 12
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Figure 4.6: Bit error rate (BER) of user 1 for proposed SIC detector and other SIC
detectors. K = 20 users. Near-far ratio = 10 dB. The threshold is ¢ = 0.5.

Fig. 4.6 compares the bit error rate (BER) performance of the linear SIC, null-
zone SIC and the proposed SIC detector with threshold ¢ = 0.5. At a BER of 1073,
the proposed SIC with ¢ = 0.5 has a performance loss of about 0.4 dB compared to
the single-user BER curve. The BER curve of the SIC using the null-zone decision
function with fixed threshold ¢ = 0.5 exhibits an error floor due to the error prop-
agation effects. Adaptive adjustment of ¢ for each user at each stage is required to
improve null-zone performance [45].

In Fig. 4.7, the BER of the multistage SIC with proposed soft-decision function
is compared with that with linear-clipper and hyperbolic tangent (tanh(-)) decision

functions. The linear-clipper is defined as:

1, b>c
b= fuc(d) =14 b/, be[—cd (4.23)
-1, b< —c
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Figure 4.7: Bit error rate (BER) of user 1 for proposed decision function compared

with linear-clipper and tanh(-). K = 20 users. Near-far ratio = 10 dB.

which is a pair-wise linear approximation of the log-likelihood ratio based hyper-
bolic tangent decision function [111]. From the figure, our proposed decision function
results a better approximation to the tanh(-) function, where their BER curves are
almost identical. However, our proposed decision function has implementation advan-
tages compared to the tanh(-) function: the SIC with the proposed decision function
either keeps the estimated signal amplitude (linear decision region) or uses the average
amplitude (hard decision region) for interference cancellation, which has minimum
computational complexity; the SIC with tanh(-) function needs to either calculate
the hyperbolic tangent function values or use a look-up table for these values, then
multiply them by the average amplitude.

In Fig. 4.8, the proposed SIC detector with various threshold values ¢ = 0.0 (hard-
limiter), 0.5, 0.8, 1.0 (unit-clipper) are shown. The BER curve of the hard-limiter
also exhibits an error floor due to error propagation. At a BER of 1072, the losses
relative to the single-user bound are 0.40 dB for ¢ = 0.5 and 2.1 dB for ¢ = 1.0, which

are very close to the analytically derived results of 0.35 dB and 1.93 dB, as shown in
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Figure 4.8: Bit error rate (BER) of user 1 for proposed SIC detector with K = 20
users. Near-far ratio = 10 dB. The thresholds are ¢ = 0.0, 0.5, 0.8 and 1.0 respectively.

¢ = 0.0 represents the hard-limiter. ¢ = 1.0 represents the unit-clipper.

Fig. 4.3.

In Fig. 4.9, we compared the BER for ¢ = 0.2 and ¢ = 0.5 at near-far ratios of 0
dB and 10 dB, respectively. For the 10 dB near-far ratio, the BERs for ¢ = 0.2 and
¢ = 0.5 are almost identical, which agrees with Fig. 4.3. However, for 0 dB near-far
ratio, the analysis results of Fig. 4.3 underestimate SNR loss for small ¢, at large
SNR. So, in the following simulations, we select ¢ = 0.5.

Fig. 4.10 shows the BER curves of the proposed SIC detector with threshold
value ¢ = 0.5 from stages 1 to 5. The largest improvements are in early stages, while
the BER curves of stages 4 and 5 are almost identical, showing that convergence is
approximated after five stages.

In Fig. 4.11, the BER of the different SIC receivers are compared as a function
of the number of users at 10 dB SNR. The thresholds for both the null-zone and the

proposed decision functions are ¢ = 0.5.
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Figure 4.9: Bit error rate (BER) of user 1 for proposed SIC detector with K
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Figure 4.10: Bit error rate (BER) of user 1 for proposed SIC detector as a function

of the number of SIC stages. K = 20 users. Near-far ratio = 10 dB. The threshold is

c=0.5.
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Figure 4.11: Bit error rate (BER) of user 1 for proposed SIC detector and other SIC
detectors as a function of the number of users. SNR = 10 dB. Near-far ratio = 10

dB. The threshold is ¢ = 0.5.
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4.9.2 Soft-Decision Multistage Delay-Robust SIC

In this subsection, we assess the performance of the proposed detector in Section
4.6. In this simulation, the conditions are the same as that described in Section 4.9.1
except that estimated time delays are used at the receiver. The time delay errors are
modeled as zero-mean Gaussian random variables truncated to be within the interval

+0.57..

BER, K = 20, Time delay error standard deviation = 0.1 Tc

10° ¢ . \ T

[| — - Decorrelator (True Delay)

_.| | = Decorrelator (Estimated Delay)
10 "H -~ Proposed SIC Robust, ¢ = 0.5

f| —+ Single User (Estimated Delay)

ri — Single User (True Delay)

6 I I I I I
0 2 4 6 8 10 12
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Figure 4.12: Bit error rate (BER) of user 1 for robustified SIC detector. K = 20
users. Near-far ratio = 10 dB. The threshold is ¢ = 0.5. The time delay has an error
of o, =0.1T..

In Fig. 4.12, the standard deviation of the time error is o, = 0.17,, which is typical
of current timing estimation methods for CDMA. Our robustified soft-decision SIC
(that employs (4.18)) performs within 1.2 dB of the single user case.

In Fig. 4.13, the extreme case of o, = 0.57. is shown. Usually the estimated time
delay will have an error much smaller than in this case. However, our robustified
soft-decision SIC performs almost the same as a decorrelating detector containing
true time delay information, although it exhibits an error floor as the SNR gets

larger.
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Figure 4.13: Bit error rate (BER) of user 1 for robustified SIC detector. K = 20
users. Near-far ratio = 10 dB. The threshold is ¢ = 0.5. The time delay has an error
of o, = 0.57,.

In Fig. 4.14, we compare the BER performance of the delay-robust SIC and the
standard SIC detectors [84] under two different delay error conditions of o, = 0.17,
and o, = 0.27,, respectively. As shown, the delay-robust SIC is much more insensitive
to the o, increase. This indicates that it is advantageous to jointly estimate delay

errors and detect data symbols.

In Fig. 4.15, we compared the root mean square error (RMSE) of the delay
error estimation by the delay-robust SIC to the CRLB derived in Section 3.4.2 for
o, = 0.17T. and 0.57.. The delay error estimator is approximately unbiased, so it is
meaningful to compare its RMSE to the CRLB. The CRLB is conditioned on the user
amplitudes, data bits and delays, and is averaged over different runs to get the average
curve. For comparison, we also show the RMSE of the unbiased estimator assuming
ideal decision-feedback. The CRLB and the RMSE of the unbiased estimator are
not affected by the value of o,. When SNR is larger than 15 dB, the RMSEs of the

delay-robust SIC and the unbiased estimator are almost identical for o, = 0.17., so
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Figure 4.14: Bit error rate (BER) of user 1 for delay-robust SIC and standard SIC
detectors. K = 20 users. Near-far ratio = 10 dB. Soft decision function is used with

threshold ¢ = 0.5.

the delay-robust SIC based estimator is approximately unbiased, and it is meaningful
to compare its RMSE to the CRLB. As we can see, there is a gap between the
RMSE curve and the CRLB. This gap is due to decorrelator noise enhancement.
The robustness of the delay-robust SIC is justified by its decreased RMSE as the
SNR increases, since the time delay error introduced interference is increased as we
increase the SNR while keeping the near-far ratio fixed. Even with o, = 0.5T,, the

RMSE also decreases as the SNR increase, so robustness is achieved.
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Figure 4.15: Root Mean Square Error (RMSE) of user 1 for proposed SIC detector
compared to the Cramér-Rao Lower Bound (CRIL.B). K = 20 users. Near-far ratio =
10 dB. The threshold is ¢ = 0.5.
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4.9.3 Delay Tracking Based on Delay-Robust SIC

In this subsection, we evaluate the tracking performance of the proposed delay tracker
based on delay-robust SIC as described in Section 4.7. For simulating the tracking
of multiuser time delays, data symbols are assumed to be transmitted continuously.

We let sliding window length be M = 9 symbols.

Delay Tracking for Rectangular Chip Pulse, SNR = 14 dB
12 T T T T T T T

11

10r-
Weakest User

Delay (Tc)

Strongest User

3 1 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450 500
Symbols

Figure 4.16: Delay tracking curves of delay-robust SIC. K = 20 users. Near-far ratio
= 10 dB. The weakest user has SNR = 14 dB. Soft decision function is used with
threshold ¢ = 0.5.

In this simulation, rectangular chip pulses are used for Figs. 4.16 to 4.18. We
tracked a total of K' = 20 users’ delays. The SNR of the weakest user is 14 dB. Both
the weakest and strongest users’ delay tracking curves are shown in Fig. 4.16, where
the solid line and the dashed line represent actual and estimated delay trajectories,
respectively. The initial acquisition has a delay error standard deviation of 0.57..
The spreading factor is N = 31. The time update step of the delay tracking is 0.057.

We assume the delay varies with time as a first-order Gauss-Markov process as in
[62]:

T(m+1) =7(m) + w(m) 4+ u(m) (4.24)
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Figure 4.17: Bit error rate (BER) of user 1 for delay-robust SIC detector in tracking
time delays. K = 20 users. Near-far ratio = 10 dB. Soft decision function is used

with threshold ¢ = 0.5.

where w(m) is a zero-mean noise process with variance o2, and u(m) is a deterministic
scalar that models global drift. We use o2 = 0.01c%. The global time variation u(m)
is selected to change at a rate of 0.0057, per symbol. Assuming a propagation speed
of 3.0 x 10® m/s, this is equivalent to %% x 3.0 x 10* ~ 5 x 10* m/s, or 1.8 x 10°

km /h [10].

As we can see, the delay-robust SIC based delay tracking receiver can track the
time delays for both strongest and weakest users. In Fig. 4.17, the BER of the delay-
robust SIC using dynamic tracking is compared to the BER of the delay-robust SIC
in the static model of 4.9.2. The time delay variation in the tracking model adds only

a small amount of noise, and the BER error floor is not obvious.

From Fig. 4.17, the delay tracking multiuser receiver has a BER of approximately
20% for the weakest user at an SNR of 3 dB. Even for such high BER, the delay-
robust SIC based delay tracker can still follow the delay variation as shown in Fig.

4.18.
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Delay Tracking for Rectangular Chip Pulse, SNR = 3 dB
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Figure 4.18: Delay tracking curves of delay-robust SIC. K = 20 users. Near-far ratio
= 10 dB. The weakest user has SNR = 3 dB. Soft decision function is used with
threshold ¢ = 0.5.

In Fig. 4.19, a square-root raised cosine chip pulse with roll-off factor 0.35 is
used. The SNR of the weakest user is 14 dB. Since band-limited chip pulse is more
sensitive to the time delay errors, the initial acquisition delay error standard deviation
is reduced to 0.17,, and the update step is smaller, 0.017.. We found that for band-
limited chip pulses, the delay tracking algorithm cannot track the time variations of
Section 4.9.3, so we used more mild conditions, i.e., we set o2 10 dB lower and reduce

the global drift to 0.0017,. per symbol.
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Figure 4.19: Delay tracking curves of delay-robust SIC for band-limited chip pulses.
K = 20 users. Near-far ratio = 10 dB. The weakest user has SNR = 14 dB. Soft

decision function is used with threshold ¢ = 0.5.
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4.9.4 Delay Tracking for Unknown Fading Channels

In this subsection, we evaluate the tracking performance of the proposed delay tracker
described in Section 4.8 for a fast fading channel. It is assumed that the user time

delays vary relatively slowly compared to the variation of the complex channel gains.

Delay Tracking for Fading Channel
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Figure 4.20: Delay tracking curves of delay-robust SIC for Rayleigh fading channels.
Normalized Doppler fading rate is fpT = 0.01. K = 20 users. Near-far ratio = 5 dB.
The weakest user has SN R = 14 dB. A linear decision function is used.

The delay-robust SIC with a linear decision function is used to track the delay
variations. Since the data symbol b;(7) and complex channel gain oy (¢) are estimated
as a composite signal 05 (2), data detection is not possible before knowing ay ;(z). The
tracking results are shown in Fig. 4.20 for the weakest and strongest users. The SNR
of the weakest user is 14 dB. The time variation is the same as in Section 4.9.3. Time-
correlated Rayleigh fading channel gains are generated using the fading simulator of
[132] with normalized Doppler fading rate of fpT = 0.01. Because of the noisy
estimate 0y(¢), the tracking performance of the weakest user is reduced. Note that
this simulation is approximately equivalent to a K = 10 user system with L = 2

paths for each user.
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Figure 4.21: Channel amplitude and phase tracking curves of delay-robust SIC for
Rayleigh fading channels for the weakest user. Normalized Doppler fading rate is
fpT =0.01. K = 20 users. Near-far ratio = 5 dB. The weakest user has SNR = 14
dB. Linear decision function is used. The solid line is the true delay and the dashed

line is the delay tracking results.

By assuming exact knowledge of the transmitted data symbol by (i), the complex
channel gain is tracked in Fig. 4.21 for user 1. The delay-robust SIC decorrelates
the fading signal for different users, and can be used to track both delay and channel
variations. The decorrelated multiuser signals can be used for channel estimation and

data detection by the methods in [127].

4.10 Discussion

Although we have demonstrated delay tracking using noisy estimates of the composite
signal, it is desirable to have smoothed estimates. In addition, for multipath fading
channels, it is advantages to coherently combine the multipath signals before data

detection. Coherent diversity combining requires the channel estimates ay(2), not
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just the composite signal og,(¢) [107] [109].

In [109], the multipath decorrelator is followed by K L adaptive channel estimators
using the least mean square (LMS) algorithm assuming the channel fading follows the
Gauss-Markov model. In [127], disjoint Kalman filtering channel estimation is applied
where each user uses a Kalman filter to estimate its channel coefficients based also on
the MAl-free decorrelator outputs. However, the use of the multipath decorrelator or
multipath linear MMSE receiver as the front-end for the channel estimator can only
be applied to the case of relatively few users because the loss of degrees of freedom

in the signal subspace as the number of users gets large [52] [58].

Multiuser channel estimation that does not use a multipath decorrelator front-
end may have less noise enhancement and larger capacity for relatively slow fading
where there is no severe tracking problem. In [107], pilot symbols are periodically
inserted for channel estimation using a Hamming windowed finite impulse response
(FIR) low-pass filter to approximate the optimal Wiener filter. Interpolation is used
to obtain the channel estimate for other symbols for the multistage SIC receiver [107].
The performance of a pilot symbol aided channel estimator with interpolation for a
single user channel was analyzed in [12]. In [55] [56], a PIC-based channel estimator
uses a decision-directed linear predictor and a linear smoother. The decision-directed
linear predictor and linear smoother was previously proposed for a single user channel

estimation [64].

As seen from Section 4.9.3, the user delay variation in a practical system is far
less than that used in our simulations. In our simulations, we have averaged the
time delay error over a block of M = 9 symbols to filter out the noise. Although
the delay-robust SIC based multiuser delay tracker does track the multiuser delay
variations, it sometimes loses tracking because of the small block length used. In
practice, the delay error can be averaged over a larger block, i.e., M = 70 symbols, to
have better tracking performance. In practical implementations, the block averaging

may be replaced by exponential weighting with a forgetting factor less than unity.

The channel estimation and delay tracking can be separated by using different
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block lengths for prediction and smoothing by using our delay-robust SIC technique,
in a similar manner to the PIC-based delay tracker [55] [56]. This provides an al-
ternative to the extended Kalman filter (EKF) based channel and delay trackers [10]
[47] [62]. The extended Kalman filter was introduced since the time delay is a non-
linear function of the user signature sequence. When channel and delay estimation
are separated, the simpler Kalman filter can be used for the channel estimation, while
the delay tracking can be handled by the delay-robust SIC using a longer smoothing
length.

4.11 Conclusion

We have proposed and analyzed a family of improved bit decision procedures for the
SIC. These new decision functions combine the advantages of the unit-clipper and
the hard-limiter decision functions. By using time-averaged amplitude estimation,
the noise in the amplitude estimate can be greatly reduced. BER performance within
0.4 dB of the single-user bound has been shown both by simulation and analysis.
The previously proposed unit-clipper (c=1) [78] [133] can incur a performance loss of
more than 2 dB. Our analysis enables optimization of the threshold parameter in the
decision function. This new SIC with amplitude averaging was then made robust to
time delay estimation errors up to half a PN chip. The delay-robust SIC is also used

for multiuser delay tracking in both known and unknown fading channels.
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Chapter 5

Application of Multiuser Receiver

Structures to Multi-Antenna Systems

In previous chapters, we have considered CDMA multiuser detection for systems with
a single antenna at the receiver. In this chapter, we consider the application of mul-
tiuser detection to multiple antenna systems. A straightforward extension of single
antenna CDMA to multiple antenna CDMA requires that the users’ array response
vectors are known or estimated. This was considered in [122] - [124]. Alternatively, we
may exploit certain similarities between multiple input multiple output (MIMO) sys-
tems and the synchronous CDMA system, and modify previously developed CDMA
multiuser detection methods to MIMO systems. We consider the latter case here in
this chapter. In particular, we consider the Bell Labs Layered Space-Time (BLAST)
system, which is a linear MIMO system. We propose a stable reduced-complexity de-
tection method for BLAST by modifying the CDMA decorrelating decision-feedback

multiuser detection to obtain optimal detection ordering.

5.1 Introduction

The CDMA multiuser receiver structures we have investigated so far are for the
single receiver antenna system. To improve performance or to increase throughput,

the receiver is usually equipped with multiple antennas. It is therefore important
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to apply the multiuser detection methods to multiple antenna systems. One type of
multiple antenna system employs closely spaced antennas, with one half a wavelength
spacing. The second kind of multiple antenna system is the multiple input multiple
output (MIMO) system, where the transmitter sends multiple streams of data through
the multiple transmitting antennas, spaced several wavelengths apart to ensure low
inter-element correlation. The receiver also utilizes multiple receiving antennas for

data detection.

5.1.1 Application to Antenna Array CDMA Systems

Although the application of multiuser detection to antenna array CDMA systems
is straightforward, the main difficulty is in the parameter estimation, i.e., the array
response vector estimation for each signal path of each user. The “spatial” dimension
can increase the received signal-to-noise (SNR) ratio and thus improve the multiuser
receiver performance. The spatial-temporal detector proposed in [73] first passes the
received signal vector through a K dimensional beamformer. The outputs of the
K beamformers are then input into a bank of K matched filters. The symbol-rate
sampled matched filter outputs are sufficient statistics to detect the block of bits b.

Another approach [122] - [124] uses an iterative method to estimate the channel
attenuation and array response vectors. The estimated parameters are used in a
maximum-SNR beamformer followed by a multistage detector. The iterative method
used is either the EM or SAGE algorithm. The effect of time delay errors on this
iterative spatial-temporal multiuser detector is investigated in [123], where it is found
that performance is sensitive to time delay errors as small as é chip.

Since the delay-robust SIC investigated in the previous chapters is also based on
iterative computation, it is possible to apply delay-robust techniques to an antenna
array CDMA multiuser detector. We will not elaborate on the extension of delay
robust to antenna array CDMA system in this chapter. Rather we focus on ap-
plying CDMA multiuser detection for the emerging MIMO systems, which promise

significant capacity increases for future generation wireless systems [65] [77].
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5.1.2 Application to MIMO Systems

Multiple input multiple output (MIMO) systems that use multiple transmit and re-
ceive antennas to transmit a high data rate over the wireless channel form an active
research area [65] [77]. MIMO systems for flat fading channels may be categorized as
those involving: space-time trellis coding [114] [115], space-time block coding [116]
[117], space-time differential coding [41] [44], and linear space-time coding (or map-

ping) [25] [26] [32].

The Bell Labs Layered Space-Time (BLAST) is linear space-time coding architec-
ture well-suited for high-rate wireless communications [25]. We denote an (Mr, MR)
BLAST system as having M7 antennas at the transmitter and Mp antennas at the
receiver. When Mp<Mp, there exists an ordered SIC algorithm to detect the trans-
mitted information symbols from each transmit antenna [26] [32], instead of the ex-
ponentially complex maximume-likelihood search over all possible transmitted symbol
combinations. Th ordered SIC is not the same as the SIC CDMA detector [84] in the
previous chapters. The ordered SIC uses iterative zero-forcing or MMSE nulling and

cancellation of interference, while the CDMA SIC uses only interference cancellation.

The main computation in using the ordered SIC algorithm for BLAST symbol
detection is the determination of the optimal ordering of the nulling and cancellation
steps, and the computation of the corresponding nulling vectors. This method will
be reviewed in Section 5.2.1. These steps have computational complexity of order
O(M7). When the number of transmit and receive antennas is large, i.e, My > 18,
the repeated use of the pseudo-inverse to calculate the nulling vectors may lead to

numerical instability [38].

Since BLAST is a linear space-time coding system, there exist efficient detection
algorithms and recently there has been much research activity in extending and im-
proving BLAST [11] [39] [79] [128]. In [11], adaptive modulation for each transmit
antenna was proposed to increase the multiple-input multiple-output (MIMO) sys-

tem’s spectral efficiency. The detection method used for this adaptive modulation
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BLAST is also an ordered SIC. A high-rate linear space-time code of [39] is an exten-
sion of BLAST to the case where the number of receive antennas, Mg, is less than
the number of transmit antennas, Mr. The detection algorithms of BLAST are the
same as those of its extensions [39] [79] and [128], so it is important to develop an
efficient and stable detection algorithm.

A square-root algorithm based on QR decomposition of the channel matrix and
unitary transformations is used in [38] to avoid the repeated computation of the
nulling vectors. Instead, the QR decomposition is computed only once. Not only is
computation complexity reduced, but also the numerical robustness is improved by
this square-root algorithm.

In this chapter, we propose to further reduce the complexity of the algorithm in
[38]. Motivated by the decorrelating decision-feedback multiuser detection algorithm
originally proposed for synchronous code division multiple access (CDMA) systems
[20], we interpret an (Mg, M) BLAST system as an Mp-user CDMA system with

spreading factor Mg, as first suggested in [26].

5.2 System Model

In the following, we assume that My < Mg to facilitate simple ordered SIC at the

receiver.

At the transmitter, the incoming information stream is serial-to-parallel converted
to Mt sub-streams. Each sub-stream is associated with a transmit antenna. At each
time instant, one symbol from each sub-stream is transmitted from its corresponding
transmit antenna, resulting in Mt symbols transmitted simultaneously. The system
model for BLAST is shown in Fig. 5.1.

The wireless channel is assumed to be rich-scattering and flat-fading. The fad-
ing between each transmit and receive antenna pair are assumed independent. The
channel is also assumed quasi-static, and the channel parameters are assumed to have

been estimated at the receiver by transmitting a short training sequence before the
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Figure 5.1: Model of BLAST space-time systems. My < Mp.

detection procedure [72].
The received signal at the Mg receive antennas can be organized into a vector

after matched filtering and symbol rate sampling:
x = [21...20m5]" (5.1)

The transmitted signal from the M7 transmit antennas can also be organized in

vector form:

s=[s1...50m]" (5.2)

The received signal x can be expressed as a linear combination of the transmitted

signal s:

x=Hs+v (5.3)

where H € CMr*Mr g the complex channel matrix, and v € CM= is the spatially and
temporarily white zero-mean Gaussian noise vector collected from the Mp receive
antennas, with auto-correlation o?I.

The elements of H are independent of one other due to the rich-scattering envi-
ronment. The channel matrix H can be partitioned into its columns corresponding

to the My transmitted signals, and it is denoted as HM7:

HY" = [hy...hy,] (5.4)
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5.2.1 Ordered SIC Method

We first briefly describe the ordered SIC method for symbol detection in BLAST
[32]. The ordered SIC uses an iterative nulling and cancellation procedure in the
decreasing signal-to-noise (SNR) ordering. In this chapter, we only consider the
zero-forcing (ZF) criterion for nulling to simplify the algorithm description. The
formulation using minimum mean-squared error (MMSE) criterion for nulling vector
computation would be a straightforward extension.

The algorithm consists of the following steps repeated Mp times:
For K = My to 1:

Step 1 Calculate the inverse of the correlation matrix as (R¥)~! = (Hf*HX) -1,

Step 2 Since the users’ signal-to-noise ratios (SNR) are inversely propor-
tional to their respective diagonal entries of (R®)~!, find the smallest
diagonal entry. Let a be the index of the smallest diagonal entry. Re-
order H® such that the a-th column and the last (K-th) column are

interchanged:
H" =[h;...hx .. hg_h,] = [HEVh,] (5.5)

where the deflated channel matrix HE=1 is the same as HX' with the

last column h, deleted.

Step 3 Calculate the pseudo-inverse matrix (HX')t. Let the nulling vector
w be the last row of (HX")!. The transmitted signal is detected as the

closest point in the signal constellation
Sk = dec(wx)

where dec(+) is the slice function, which depends on the modulation used.

Step 4 Perform interference cancellation by subtracting the detected signal

from the received signal:
X — X — é]{h]{
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It has been proved in [26] that choosing the signal with the largest SNR at each
step for nulling and cancellation achieves the global optimization that minimizes the
probability of symbol errors. So the optimal ordering is the ordering of decreasing
SNR .

Since at each step of the above algorithm, a pseudo-inverse of the deflated channel

matrix is computed which is of order O(M3), the total complexity of the algorithm
is 24—7M% for the case of My = Mp.

5.2.2 Other Detection Algorithms

A sphere decoding algorithm based on the lattice sphere packing representation of
the BLAST system can achieve maximum-likelihood performance [18]. However, this
algorithm has complexity approximately proportional to (2Mr)®, which limits its
application.

An efficient square-root algorithm avoids the repeated computation of nulling
vectors by QR decomposition [38]. The optimal ordering and the nulling vectors
are all computed by unitary transformations on the QR decomposed matrices. This

method has computational complexity %M% for the case of My = Mgp.

5.3 Decorrelating Decision-feedback Methods

5.3.1 Original Decorrelating Decision-Feedback Method

The original decorrelating decision-feedback multiuser detector was used for detecting
multiple user signals of a synchronous CDMA system [20]. By making a connection
between a BLAST system and a synchronous CDMA system, decorrelating decision-
feedback methods can be applied to the BLAST systems as well. The CDMA decorre-
lating decision-feedback method is similar to a generalized decision feedback equalizer
(GDFE) which is applied to the BLAST system [31]. The GDFE is equivalent to the

ordered SIC method when the optimal detection ordering is known in advance.
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Figure 5.2: Correlator and the decision-feedback detector.

The received signal vector x is correlated with the conjugate transpose of the
channel matrix. This correlation is analogous to the matched filter bank front-end of

a CDMA multiuser receiver. The correlator output y € CM7 is:
y=Hx=Rs+z (5.6)

where R = H*H is a M1 x M7 cross-correlation matrix, and z is a zero-mean Gaussian
noise vector with auto-correlation o2R.

The cross-correlation matrix can be Cholesky decomposed as R = LL*, where L
is a lower triangular matrix and L* is its conjugate transpose. A filter with impulse

response L' is applied to the correlator outputs y of (5.6) to whiten the noise:
y=L'y=L*s+n (5.7)

Since L* is upper triangular, the k-th component of ¥ can be expressed as:
My
gk = L;ksk + Z L;Z»SZ’ + ng (58)
i=k+1
which contains only interference from (My — k) signals.

The last component g3z, contains no interference, so a decision for this transmitted
signal can be made first: Sy, = dec(gar,). The next signal can be detected by
subtracting the interference contribution from the Myp-th signal using the previous
decision, i.e., 8x7,—1 = dec(Ynrp—1 — Lig,_1.a1,.5Mm7)- This procedure is repeated until

all signals are detected. Its structure is depicted in Fig. 5.2.
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The above decorrelating decision-feedback method first cancels the interference
using the feedback of previous decisions, and then makes a decision on the current
signal. The detection and decision-feedback are performed in decreasing ordering of
received signal energies in the original decorrelating decision-feedback CDMA mul-
tiuser detector in [20]. The Cholesky decomposition is calculated only once, so re-
peated calculation of the pseudo-inverse is avoided. A question that needs to be
asked is whether the decreasing energy ordering for decorrelating decision-feedback
the same as that of BLAST, i.e., the decreasing SNR ordering.

In the BLAST system, the received energies correspond to the column norms of
the channel matrix H. In a CDMA system, the cross-correlation between the different
user codes can be designed to be equal, so decreasing energy ordering is the same as
decreasing SNR ordering. However, in the BLAST system, the “spreading codes”
values are actually channel gains, which are random and generally do not have equal
cross-correlations. We therefore propose a modification to the original decorrelating

decision-feedback method to obtain the optimal ordering.

5.3.2 Modified Decorrelating Decision-Feedback Method

The original cross-correlation matrix R, or its corresponding Cholesky decomposition
matrices L and L*, have to be reordered for optimal detection ordering. In this
subsection, we propose a modified decorrelating decision-feedback detector where the
detected signal has the largest SNR at every step.

The inverse of the cross-correlation matrix is R™' = L™*L~!, where L~! can be
easily calculated from the lower triangular matrix L by back-substitution, and L™
is the conjugate transpose of L™'. The signal to be detected with the largest SNR
corresponds to the signal with the smallest diagonal entry of R™!. Note that we do not
need to calculate R™! to find the smallest diagonal entry, since the diagonal entries
of R™! are equal to the column norms of L™! using the property hat R™!' = L—L™.

We find the smallest column norm of L™!, and then reorder the columns of L™ by

interchanging the smallest column-norm column with the last (Mp-th) column. The
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rows of L, corresponding to columns of L™, as well as both the corresponding rows
and columns of R are interchanged in the same way. Interchanging two columns of a
matrix can be performed by post-multiplication by a unitary permutation matrix P,
and interchanging two rows of a matrix can be performed by pre-multiplication by a

unitary permutation matrix P*, so the matrices after reordering are:
P*RP = (P"L)(L"P) (5.9)

In the following, we exploit the fact that there exists a unitary matrix ¥ that
transforms L*P into upper triangular form [33]. Similarly, its conjugate transpose

¥* transforms P*L into lower triangular form:
P*RP = (P"LY")(XL*P) (5.10)

The following symmetry property (Claim 1) is very useful to lower triangularize
the reordered inverse matrix L™'P.

Claim 1: Lel X be the unitary matriz thal transforms L*P to upper triangular
form, then the reordered inverse matriz L™'P is transformed to lower triangular form
by the same 3.

Proof:

I=PP = (P°L)(L"'P) = (P'LY")(SL'P) (5.11)

where we have used the property that for unitary matrix: ¥*¥ = I. Since ¥L*P is
upper triangular, its conjugate transpose P*LX* is in lower triangular form. Since
YL7!'P is the inverse of P*LX*, it also must be lower triangular.0

Instead of finding the unitary transformation based on the L™'P directly, we may
use L*P to find X to increase numerical stability.

In addition to finding the smallest norm, reordering and triangularization using
(5.9), (5.10) and (5.11) for the first step, the following Claims 2 and 3 ensure that
it is sufficient to use deflated Cholesky factors L(M7=1) and (L(MT_I))_1 for the next

step.
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Claim 2: We can reduce P*LY* to matriz LMT=1) g5

LWMr-1) g
= P*L¥~ (5.12)
X X
where X represents entries that are irrelevant,

LMr=0,Mr—1)x — RMr—1) gpng RMr=1) = HMr—UDxHM7-1) s the cross-correlation

matriz for the reordered and deflated channel matric HMT=Y) ysing the notation in

(5.5).
Proof: This proof is similar to that of [38]. By substituting (5.12) into (5.10), we

obtain:

P*RP =

_ ] (5.13)

By (5.5), it is also true that:

H(MT—I)*
P*'RP = [ HMr=1) h, ]
h?
[ HMr-)xg(Mr—1)
= (5.14)
X X
Thus, the upper triangular matrix L(M7=1* retains all the information contained in

the deflated channel matrix HMr=1) O

Claim 3: The inverse lower triangular matriz XL™'P can be expressed in reduced

form as
(L(MT—I))—I 0
SL'P = (5.15)
X X
where (L(MT_l))—*(L(MT—l))—l — (R(MT_l))_l.
Proof: Let
B o
=3L'P
X X
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Then by (5.11):

I = (PLY%)(SL'P)

L0y o | [ B x
N X X 0 X
[ LMr-)B 0
= (5.16)
0 1
From the above equation
LMr-1g = [(Mr-1) (5.17)

Thus, B = (LMr=1)=1_ Since (RMr=1))=1 = (LMr=D)=>(L(Mr=1))=1 "B retains all
the information to calculate (RM7=1)=! and to find the largest SNR for the next
step. O

The complete algorithm of the modified decorrelating decision-feedback detection
for BLAST systems can be described by the following steps:

Initialization:

Cholesky decompose R = LL* and invert matrix L by back-substitution.
Let LM = L.

Iterations:

For K = My to 1

1. Find the column of (LX)~! with the smallest column norm, and reorder
it to the last column via the transformation (L®)~'P. Similarly reorder

the columns of L** by LX*P.

2. Find a unitary matrix ¥ that transforms L¥*P to upper triangular
form XLA*P. Similarly compute lower triangular matrix X(L%)71P. ¥

can be realized by a series of Givens rotations [33].
Detection:

Perform decorrelating decision-feedback detection in Eq. (5.7) with the

reordered matrices [20].
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5.3.3 Implementation Issues

In a practical implementation, we do not need to calculate the cross-correlation matrix
R first to get its Cholesky decomposition matrix L. Rather we can perform a QR
decomposition on the channel matrix H directly to get L. Let the QR decomposition
be H = QF, where Q is orthonormal and F is upper triangular. Since Q*Q = I, we
have H*H = (F*Q*)(QF) = F*F. Then we can conclude that L = F*.

Although both algorithms utilize a QR decomposition, and our research was par-
tially inspired by [38], our modified decorrelating decision-feedback method is different
from the square-root algorithm in [38]. The square-root algorithm uses both the ma-
trix Q for nulling vector calculation and the inverse matrix F~! for optimal ordering.
The square-root algorithm performs repeated triangularization on the inverse matrix
F~'. Even with back-substitution, this may lead to instability, so [38] adopts a com-
putationally complex series of transformations to avoid computing F~! directly by

inverting F.

Our method utilizes symmetry properties, so we can perform repeated triangu-
larization on the conjugate transpose matrix L*, while the inverse matrix L™! is
triangularized by symmetry by the same transformation. As the accuracy require-
ment on L~! is relaxed, it can be computed by simple back-substitution. Another
possible advantage of the proposed method is that there should be less rounding error

effects in a fixed-point implementation, since normally L has larger entry values than

| P

The dominant computation of the modified decorrelating decision-feedback re-
ceiver is in the QR decomposition, the matrix inversion and the reordering and tri-

angularization of matrices L* and L™,

The computation complexity for QR decomposition is 2MZ(Mgr— Mr/3) [33]. The
computational complexity to calculate L™! by back-substitution is M3 /3. At the i-th

step, finding the smallest column norm takes :?/2 operations, and triangularization
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of the two matrices takes 2M7i. So the total complexity for the My steps is

= 1. : L s 3 T3
Z(ﬁz + 2Mri) = EMT + M3 = 6MT (5.18)

=1

Thus, the total complexity for the algorithm is:
5
EM% + 2MZ Mp (5.19)

When My = Mg, it is 16—7M%, which is less than ?M% of the square-root algorithm
[38] and 2L M} of the ordered SIC algorithm [32].

As an example, for an My = Mg = 14 antenna BLAST system, 1 Mbit/sec data
rate can be transmitted over a 30 kHz channel. The transmission symbol rate is
24.34 ksymbol/sec for each transmit antenna, and 16-QAM modulation is used. The
training sequence length is Ly = 32 symbols, and the payload sequence length is
Lp = 100 symbols. The channel estimation requires 2M7p Mglog, Lt computations,
when the training sequence is taken as columns of an Ly x Ly fast Fourier transform
(FFT) matrix. The payload processing complexity is 2MpMpgLp.

The computational complexity for the different steps of the ordered SIC algorithm
is given in Table 5.1 [38].

Flops/burst | MegaFlops/s | %
channel estimation 7,840 1.44 0.65
nulling vectors and ordering | 1,036,000 190.8 86.3
payload processing 156,800 28.9 13.1
TOTAL 1,200,000 221.2 100

Table 5.1: Complexity of Ordered SIC Algorithm

From Table 5.1, the nulling vector and optimum ordering calculation is the domi-
nant calculation, 190 MFlops/sec, nearly 90% of the total 221 MFlops/sec complexity.
For the square-root algorithm, the optimum ordering calculation complexity reduces
to 19 MFlops/sec, and the total complexity is reduced to 50 MFlops/sec, as shown
in Table 5.2 [38].
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Flops/burst | MegaFlops/s | %
channel estimation 7,840 1.44 2.9
nulling vectors and ordering 106,100 19.5 39.1
payload processing 156,800 28.9 58.0
TOTAL 270,400 49.8 100

Table 5.2: Complexity of Square-Root Algorithm

The relative complexity of our modified decorrelating decision-feedback algorithm
is shown in Table 5.3. The optimum ordering calculation complexity reduces to 5.72
MFlops/sec and the total complexity is further reduced to 36.1 MFlops/sec. Note
that the payload processing dominates the computation, occupies more than 80%,

which is a desirable result.

Flops/burst | MegaFlops/s | %
channel estimation 7,840 1.44 4.0
nulling vectors and ordering 31,100 5.72 15.9
payload processing 156,800 28.9 80.1
TOTAL 195,740 36.1 100

Table 5.3: Complexity of Modified Decorrelating Decision-Feedback Algorithm

If instead of zero-forcing nulling, MMSE-nulling is required, then the decorrelating
decision-feedback receiver can be modified to a MMSE decision-feedback receiver
either by Cholesky decomposition on matrix (R + al), where o > 0, or by QR
decomposition on the augmented channel matrix directly as in [38].

The application of turbo processing to the space-time coding system has received
significant recent interest. This system uses a simple convolutional or turbo code
combined with simple space-time mapping to achieve the large capacity of the MIMO

Rayleigh fading channels with a large number of antennas. Linear space-time coding
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such as that of BLAST is used as the component code for turbo space-time coding
systems due to its simplicity [3]. In symbol detection using turbo processing, the
optimal ordering according to the SNR is still required [3]. Therefore our simplified
algorithm to find the optimal ordering can also be applied to the turbo space-time

coding systems.

5.4 Simulation Results

MT:4 transmit and MR:4 receive antennas with 4—-QAM

T
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Figure 5.3: Average symbol error rate of the original and modified decorrelating
decision-feedback (DDF) detectors for BLAST system with My = 4 transmit anten-

nas, Mg = 4 receive antennas and 4-QQAM modulation.

Throughout the simulations, ¢-QAM constellations are used. The average energy per
bit is fixed to unity, so the average energy per symbol is F, = 2(¢ — 1)/3 as in [18].
The channel matrix is simulated as zero-mean complex Gaussian with variance 0.5
per dimension. The additive zero-mean white Gaussian noise (AWGN) is complex-

2

valued, with variance o2 per dimension, where o2 is subject to the following equation
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18 ]
o = Mrk, 10~ 568
2log, q

(5.20)

MT:8 transmit and MR:8 receive antennas with 16-QAM
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Figure 5.4: Average symbol error rate of the original and modified decorrelating
decision-feedback (DDF) detectors for BLAST system with My = 8 transmit anten-

nas, Mpr = 8 receive antennas and 16-QAM modulation.

With optimal ordering, the symbol error rate (SER) performance of the ordered
SIC detector, the square-root algorithm and the proposed modified decorrelating
decision-feedback detector are identical under float-point simulation. However, the
impact of the reordering on performance was not quantified in [32] and [38]. In
Figs. 5.3 and 5.4, we compare the average symbol error rates (SER) of the origi-
nal decorrelating decision-feedback (DDF) detector and the modified decorrelating
decision-feedback detector with optimal ordering.

In Fig. 5.3, the number of transmit and receiver antennas are My = Mp = 4, and
4-QAM modulation is used. We observe that the SER of the optimal ordered DDF
detector is lower than the original DDF without optimal ordering. In the simulations,
the frequency of occurrence that the optimal ordering is the same as the original

ordering is less than 30% of all channel realizations.
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Figure 5.5: Average symbol error rate of the original and modified decorrelating
decision-feedback (DDF) detectors for BLAST system with My = 4 transmit anten-

nas, Mpr = 6 receive antennas and 4-QAM modulation.

In Fig. 5.4, simulation results for My = Mp = 8 antennas, and 16-QQAM mod-
ulation are shown. As the number of transmit and receive antennas increases, the
frequency of occurrence that the optimal ordering is the same as the original ordering
decreases to less than 1% of all channel realizations. This explains the larger perfor-
mance improvement of the modified decorrelating decision-feedback detector over the

original decorrelating decision-feedback detector in Fig. 5.4 versus that in Fig. 5.3.

The results for the case when there are more receive antennas than transmit
antennas is simulated in Fig. 5.5 for My =4, Mg = 6 and 4-QAM modulation, and
in Fig. 5.6 for My =8, Mpr = 12 and 16-QAM modulation
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Figure 5.6: Average symbol error rate of the original and modified decorrelating
decision-feedback (DDF) detectors for BLAST system with My = 8 transmit anten-

nas, Mpr = 12 receive antennas and 16-QAM modulation.

5.5 Conclusion

A modified decorrelating decision-feedback detection method is proposed and applied
to the BLAST space-time system. The repeated computation of matrix pseudo-
inverses is avoided by decorrelating decision-feedback detection. By exploiting the
symmetry in triangularizing the conjugate transpose and the inverse matrix, increased
numerical stability and decreased computational complexity are achieved. Although
the proposed algorithm, the square-root algorithm and the ordered SIC algorithm
have the same performance when the numerical precision is infinite, future research
should be conducted to compare their performances in a fixed-point DSP implemen-

tation.
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Chapter 6

Conclusions and Future Work

This chapter summarizes the major contributions in this thesis and presents possible

future directions which could be extensions of the research presented in this thesis.

6.1 Thesis Summary

This thesis has investigated improvements to existing multiuser detection methods by
using advanced signal processing. The multistage SIC detector was made robust to
time delay errors, and a new soft-decision function was proposed to further enhance
the delay-robust SIC detector performance. This new soft-decision function may also
be applied to other SIC or PIC type CDMA multiuser detectors, e.g., the SAGE-based
spatial-temporal decorrelator. An improvement was made to the CDMA multiuser
decision-feedback method and this improved decision-feedback detection was applied
to a high-rate linear space-time MIMO system, the BLAST system.

In Chapter 3, we considered enhancing the multistage SIC detector with an ad-
ditional timing delay error signal estimation and cancellation procedure using a ten-
tative decision-feedback. We found in Section 3.3 that the SIC can be robusitified
to timing errors at the sacrifice of only a modest amount of system capacity. The
asymptotic efficiency of the delay-robust SIC was analyzed in Section 3.4. It was
shown that the delay-robust SIC is near-far resistant regardless the timing error dis-

tribution, whereas other multiuser detectors would be near-far limited with timing
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errors present. The delay-robust SIC was first derived for rectangular chip pulse
shapes, and later generalized to band-limited chip pulse shapes in Section 3.6. This
delay-robust SIC can also be used for time delay error estimation since time delay
error is implicitly estimated by this algorithm. The CRLB for the delay error estima-
tion was calculated in Section 3.4, and time delay estimation accuracy was compared
to the CRLB, where it was found that estimation accuracy exceeded the CRLB due

to noise enhancement in decorrelation.

The delay-robust SIC of Chapter 3 is based on a multistage SIC implementa-
tion of the decorrelating detector using a linear decision function. The decorrelator’s
noise enhancement increased the BER of the delay-robust SIC to well above the
single-user bound, and introduced time error variance well above the CRLB. This
noise enhancement problem is more serious if the system is highly loaded. In Section
4.3, we compared several known decision functions and proposed a new soft-decision
function to combine the advantages of different known decision functions. The SIC
using the new proposed soft-decision function reduced both error propagation effects
of the hard-limiter decision function as well as noise enhancement of the linear-soft
decision function. Even when assuming that amplitude information must be esti-
mated by time-averaging, the multistage SIC using the new soft-decision function
still achieves performance within one dB of the single-user bound. This performance
is both calculated by a steady-state analysis in Section 4.4 and confirmed by computer
simulation in Section 4.9. In Section 4.6, the new soft-decision function is applied to
the delay-robust SIC proposed in Chapter 3. It was found that the new soft-decision
delay-robust SIC has improved performance when there are large numbers of users

and larger delay errors.

We also applied the delay-robust SIC for multiuser delay tracking and data de-
tection in a multipath fading channel. In Section 4.7, it is shown that for a slowly
varying or constant channel, the soft-decision function can be effective to reduce noise
enhancement. In Section 4.8, fast fading channels are considered, and a linear deci-

sion function is used in the delay-robust SIC based delay tracker to decorrelate the
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multiuser fading signals. Both time delay variation and channel fading are tracked
by this linear decision function. The tracking performance for both rectangular and
band-limited chip pulse shapes are investigated in Section 4.9.

In Section 5.1, we make a connection between a linear space-time MIMO sys-
tem, i.e., the BLAST system, and a synchronous CDMA system. In Section 5.3,
we applied the decision-feedback multiuser detection method used in CDMA to the
BLAST system, to reduce computation and increase numerical stability. To achieve
the optimal signal power ordering, the decision-feedback matrix is permuted by a
series numerically stable unitary transformations. It is proven that these transforma-
tions guarantee optimal ordering. Implementation complexity of several methods are
compared in Section 5.3.3, and numerical results are provided in Section 5.4. It was
found that the proposed improved decision-feedback detection uses the optimal or-
dering and achieves identical BER performance as that of the more complex ordered

SIC method [26] [32], under the ideal float-point implementation.

6.2 Future Directions

Although this thesis has investigated the problem of improved multiuser detection
for asynchronous CDMA system with time delay errors and with application to the
space-time coding systems, there are several issues that remain to be explored. In

this section, we discuss several important areas which require further study.

6.2.1 Time Delay Estimation for Time Varying Fading Chan-

nels

It is usually assumed that the relative time delays for all the users are known at the
basestation receiver. However, in practical applications, we have to estimate these
parameters. Previous studies show that the BER performance of multi-user receivers
degrades significantly due to time delay estimation errors for single-antenna single-

path systems
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Current time delay estimation algorithms for multiuser CDMA systems require
that the channel remains unchanged during the estimation period. However, the
practical wireless channel is time-varying due to the movement of mobile terminals.
Therefore, it is important to investigate efficient time delay estimation methods that
operate under fading channels. It is observed that using multiple antennas at the
basestation can increase the signal dimensionality and thus may be used to reduce
the required estimation period. Using multiple antennas for delay estimation may also
improve the delay estimation accuracy since the time delay and direction of arrival

(DOA) are coupled and can thus be estimated jointly.

6.2.2 Multiuser Receivers in Multi-cell Systems

Most of the known multi-user detection methods considered only single-cell system,
where the user spreading codes of the same cell (intra-cell users) are all known. How-
ever, one important advantage of CDMA systems is that no frequency planning is
required so that the same frequency can be used in adjacent cells. In practical multi-
cell environments, the multiple access interference (MAI) from the users in other
cells (inter-cell users) is a fraction f of the MAIs from intra-cell users, typically is
f = 0.55. Since the spreading codes of inter-cell users are unknown at the basesta-
tion, and joint multiuser detection of inter-cell users is complex even if all spreading
codes were known, inter-cell MAI limits the capacity improvement of the multiuser
detection to (1 + f)/f = 2.8 for f = 0.55.

Thus, it is important to suppress inter-cell MAI. Blind multiuser detection meth-
ods such as the minimum output energy (MOE) receiver, which is the blind equiva-
lent to MMSE multiuser detection, can suppress strong inter-cell MAls, since it treats
intra-cell MAls and inter-cell MAIs the same. However, MOE performance depends
on the assumption that the signal subspace dimensionality of the strong MAls are less
than the spreading factor, and so is unlikely to perform satisfactorily in a multi-cell
environment.

Another approach is to use an adaptive MMSE receiver as the front-end instead
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of the matched-filter in current multiuser detectors [91] [92]. This adaptive MMSE
front-end is followed by a multiuser detection stage. However, it will has the same
drawback as the MOE.

Using an antenna array at the basestation provides another kind of signal subspace
dimensionality, which can be used to better separate users’ signals. The adaptive
antenna array multiuser receivers of [28] [43] were proposed for a single-cell system.
However, it may be possible to apply adaptive methods to multi-cell systems.

An adaptive antenna array feedforward /feedback multiuser detector based-on train-
ing can also suppress inter-cell MATIs [104]. This is the extension of the adaptive
feedforward /feedback architecture of the single antenna case [103] to the multiple
antenna case. However, in [104] it is assumed that the channel and MAls remain
unchanged during the training and the detection periods. Application is therefore
limited to packet-based transmission at high rates.

In summary, for multi-cell CDMA systems, the use of adaptive antenna arrays with
CDMA multiuser detection may be effective to suppress inter-cell interference. Future
research needs to be performed in the development of adaptive array algorithms that

can be combined with or incorporated into the multiuser detector.

6.2.3 Multiuser Detection for Fast Fading Channels

For fast fading CDMA channels, pilot symbols can be used to assist in channel esti-
mation as in the single user channel case [12]. The effect of using decision-feedback
of information symbols combined with pilot symbol estimation requires investigation
for different Doppler fading conditions. Since 3G wireless standards propose to use
pilot symbols to ease channel estimation and use turbo codes to lower the bit error
probability and required transmission power level, combining pilot-assisted channel
estimation and turbo decoding is worth investigation [60].

Mobile velocity estimation can be utilized in forming more accurate state equa-
tions for Kalman filtering. The performance compare of Kalman filtering and linear

prediction and smoothing methods under multiuser detection needs investigation.
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Long-range prediction of fading signals may be helpful for CDMA multiuser de-
tection in fading channels [21]. A canonical time-frequency representation of the fast
fading channel was proposed in [6] and [97] to exploit joint multipath-Doppler diver-
sity for a single-user CDMA channels. This canonical time-frequency representation is
similar to the basis expansion models and diversity techniques in [29]. The canonical
time-frequency representation was also used for multiuser detection in fast fading mul-

tipath channels [96] and for multiuser timing estimation in multipath fading channels

[95].
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Appendix A

Derivation of the Cramér-Rao Lower

Bound (CRLB)

The derivation of the CRLB follows the procedure of [110]. The log-likelihood function

is

1
InQ(r) = —(M +1)Nino> — —(r—da— Ad Aa)’(r—da—AdAa) (A1)

g

The gradients
alnQ(r)
o2
alnﬂ(r) _ 3lnf(r) (A 2)
877/) da ’
alnQ(r)
dAa

are given as

omQ(r)  (M+1)N 1 4

7 R i— + —nn (A.3)
dnQ(r) 2 4.4
S o2? d"n (A.4)
dlnUr) 2 y.oooy
A JQAa Ad"n (A.5)
It can be shown that the (1,1) block of matrix J is
anQ(r)\*| (M +1)N
[y "

Since 22%0) i yuncorrelated with all other gradients, the (1,2) and (1,3) blocks of

do?

matrix J are all zeros.
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is

To calculate the other blocks in matrix J, the general expression of the calculation

2 2 2
E[(;fﬁn) (;fQHn)H] = =gy, (A7)

(2
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Appendix B

Calculation of Integer and Fractional

Uncertainty Delay Estimate Probability

The conditional probability that p. # pr when the true fractional delay d; = z is

Ple) = O(2) + oA ="

o o

Since x is uniformly distributed in [0,1), the average probability that py # p}, is

1

P:/O1 [Q(%HQ( J‘””)] dng/olg(%) da (B.2)

We note that through integration by parts

[ oEyie =z oD+ [(a e (B3
, 20 T=ux ot ] T 2#076 T .
Substitute (B.3) into (B.2), we obtain
P=200(—)+ (1~ ¢ ) (B4
— e — e Ir .
Or 2w
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