
REGION-ORIENTED VIDEO CODING USING QUADTREE

OPTIMIZATION AND THE MDL PRINCIPLE

By

Paul C. Wareham

A thesis submitted to the

Department of Electrical and Computer Engineering

in conformity with the requirements

for the degree of Master of Science (Engineering)

Queen’s University

Kingston, Ontario, Canada

August, 2002

Copyright  Paul C. Wareham, 2002



ii

Abstract

A novel approach is presented to find a sub-optimal image segmentation for low bit-rate

video coding using a Minimum Description Length (MDL) cost function. The theory

necessary to derive an appropriate cost function is described based on probabilistic

models for the image prediction error and motion parameters.  A key feature of this

approach is the use of an MDL cost function to incorporate bit-rate minimization into the

criterion for region segmentation.  We apply this theory to the design of a bit-stream level

interframe motion-compensated video coding system using a quad-tree optimization

procedure with variable order motion modeling.  A computationally feasible approach is

illustrated which could potentially be implemented in real-time with appropriate hard-

ware.
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Chapter 1 

Introduction

1.1 Introduction

With video being a ubiquitous part of modern multimedia communications, efficient

video coding remains an important area of research.  The proliferation of personal com-

puters and communication devices combined with the evolution of digital networks

makes the integration of video with audio and data over the information superhighway a

natural extension.  Where the telephone and the cellular telephone have revolutionized

voice communications, the incorporation of video in the communications sector is an-

other milestone in technological history.  Examples include the videophone, videoconfer-

encing, multimedia, security monitoring, video on CD, digital video disk, video-on-

demand, video mail, and high definition television.

When compared to audio or text information, video signals demand a huge amount

of information.  The adoption of modern compression standards such as JPEG, MPEG,

H.26X demonstrates the need for standardization of the video coding techniques.  The

H.263 standard allows the transmission of real-time video using conventional telephone

lines (POTS) with acceptable quality.  The H.263 standard represents a significant step in
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making the videophone a reality, while making use of existing telecommunications

infrastructure.

The region-oriented approach has earned significant attention recently by researchers

in the area of low bit-rate and very low bit-rate video coding.  The adoption of these

techniques can translate to lower overall bit-rate consumption while maintaining percep-

tual quality.  This is increasingly important as the demand for robust low-rate video

streams continues to grow, particularly for wireless mobile and satellite applications.

First generation video coding standards such as ITU-T H.261, H.263, and MPEG suffer

from overly simplistic region segmentation and motion modeling.  The fixed block-type

region boundaries do not take into account the actual content of the scene.  Additionally,

these image blocks are assumed to undergo independent uniform translation.

Region-oriented techniques are based on modeling images as a combination of non-

stationary visual primitives, such as contours, textures, and motion.  The advantage of

these methods compared to object-oriented and 3-D model-based methods is that they do

not require a priori information of the image content.  Also, they are characterized by

lower computational complexity which is a critical factor for low power implementation.

The following thesis presents a novel approach to find a sub-optimal image segmen-

tation for video coding using a Minimum Description Length (MDL) cost function. A

design is presented for a bit-stream level interframe motion-compensated video coding

system using a quad-tree optimization procedure with variable order motion modeling.

The codec incorporates bit-rate optimization into the criteria for region segmentation.

The primary objective of this work is the presentation of practical alternatives leading to
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improvements over existing video coding standards at very low bits rates, particularly

under 30 kbits/s.

1.2 Summary of Contributions

The contributions contained within this thesis are:

1. A novel approach is proposed for finding sub-optimal image segmentations

achieving bit-rate minimization applied to efficient coding of digital video se-

quences.

2. Several possible extensions of first generation video coding standards are pro-

posed leading to improved video quality at low bit rates.  Accordingly, a video

codec structure is presented and justified by theoretical analysis.  A cost function

formulation is shown along with a minimization procedure to achieve bit-rate op-

timization.

3. A software based video codec was designed to evaluate the performance of the

new codec and serve as a basis for future experimentation.  The performance of

the codec is evaluated against modern videoconferencing standards.

4. The region-oriented video coding approach taken in this thesis is also shown to be

highly parallelizable, potentially leading to fast hardware implementation.

1.3 Outline of the Thesis

This thesis is organized into five chapters.  Chapter 1 presents an introduction to the

subject matter and sets the overall context as well as motivation for the research.  Back-
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ground material on modern video coding algorithms, region-oriented coding, and the

MDL principle is provided in Chapter 2.  Chapter 3 describes the design of a bit-stream

video codec based on quadtree segmentation and the MDL principle.  Statistical model-

ing used in the development of the cost function is explained and validated.  Finally, an

MDL cost function formulation is presented which serves as the basis of the optimization

procedure.  Chapter 4 discusses the experimental results of the video codec in terms of

overall PSNR performance versus the modern H.263 algorithm.  A variety of video

sequences are used for comparison purposes.  Finally, in Chapter 5, a summary of the

results and conclusions of the thesis are given as well as suggestions for future investiga-

tion.
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Chapter 2 

Background

2.1 Video Coding

2.1.1 Applications

Videoconferencing and videotelephony have a wide range of applications including:

• desktop and room-based conferencing;

• video over the Internet and over telephone lines;

• surveillance and monitoring;

• telemedicine (medical consultation and diagnosis at a distance);

• computer-based training and education.

In each case, video information (and perhaps audio as well) is transmitted over telecom-

munications links, including networks, telephone lines, ISDN and wireless. Video has a

high bandwidth and so these applications require video compression or video coding

technology to reduce the bandwidth before transmission.
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2.1.2 Standards

Standards are essential for practical communications.  Without a common language that

both the transmitter and the receiver understand, communication is impossible.  For

multimedia communication that involves transmission of video data, standards play an

even more important role.  Not only does a video coding standard have to specify a

common language, or formally known as the bitstream syntax, the language also has to be

efficient for compression of video content.  This is due to the relatively large amount of

bits required to transmit uncompressed video data.

In our discussions of standards we focus on the standards developed by International

Telecommunication Union - Telecommunication Standardization Sector (ITU-T), for-

merly called the Consultative Committee of the International telephone and Telegraph

(CCITT).  These include H.261, H.263, and a more recent effort, informally known as

H.263+, to provide a new version of H.263, i.e., H.263 Version 2, in 1998.  These video

codec standards form important components of the ITU-T H-Series Recommendations

that standardize audiovisual terminals in a variety of network environments.

For multimedia communication, there are two major standard organizations: the In-

ternational Telecommunication Union - Telecommunication Standardization Sector

(ITU-T), and the International Organization for Standardization (ISO).  Recent video

coding standards defined by these two organizations are summarized in Table 2.1.  These

standards differ mainly in the operating bit-rates due to the applications they are origi-

nally designed for, although all standards can essentially be used for all applications at a

wide range of bit rates.  In terms of coding algorithms, all standards in Table 2.1 follow a
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similar framework, and differ only in the ranges of parameters and some specific coding

modes.  In this chapter, we will focus on the standards developed by ITU-T: H.261,

H.263, and H.263 Version 2.

Standards

Organization

Video Coding

Standard

Typical Range of Bit

Rates

Typical Applications

ITU-T H.261 p×64 kbits/s, p=1…30 ISDN Video Phone

ISO IS 11172-2

MPEG-1 Video

1.2 Mbits/s CD-ROM

ISO IS 13818-2

MPEG-2 Video

4-80 Mbits/s SDTV, HDTV

ITU-T H.263 64 kbits/s or below PSTN Video Phone

ISO CD 14496-2

MPEG-4 Video

24-1024 kbits/s

ITU-T H.263 Version 2 < 64 kbits/s PSTN Video Phone

ITU-T H.263L < 64 kbits/s -

Table 2.1: Video Coding Standards

2.2 H.261 Standard

2.2.1 Introduction

H.261 is a video coding standard defined by the ITU-T Study Group XV (SG15) for

video telephony and video conferencing applications [13].  It emphasizes low bit-rates

and low coding delay.  It was originated in 1984 to be used for audiovisual services at bit

rates around m×384 kbits/s, where m is between 1 and 5.  In 1988, the focus shifted to bit

rates of around p×64 kbits/s, where p is from 1 to 30.  Therefore, H.261 also has an
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informal name called p×64 (pronounced as p times 64).  H.261 was approved in Decem-

ber 1990.  The coding algorithm used in H.261 is basically a hybrid of motion compensa-

tion to remove temporal redundancy and transform coding to reduce spatial redundancy.

Such a framework forms the basis of all video coding standards that were developed

later.  Therefore, H.261 has very significant influence on many other existing and evolv-

ing video coding standards.

2.2.2 Source Picture Formats

Digital video is composed of a sequence of frames, which occur at a particular rate.  For

H.261, the frame rate is specified to be 30000/1001 (approximately 29.97) frames per

second.  Each frame is composed of a number of samples.  These samples are referred to

as pixels (picture elements), or simply pels.  For a video coding standard, it is important

to understand the picture sizes that the standard applies to, and the position of samples.

H.261 is designed to deal with two picture formats: the common intermediate format

(CIF) and the quarter CIF (QCIF).  Refer to Table 2.2 for a summary of a variety of

picture formats.  At such a resolution, the picture quality is not very high.  It is close to

the quality of a typical video cassette recorder, and is much less than the quality of the

broadcast television.  This is because H.261 is designed for video telephony and video

conferencing, in which typical source material is composed of scenes of talking persons,

so-called head and shoulder sequences, rather than general TV programs that contain a lot

of motion and scene changes.
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Sub-

QCIF

QCIF CIF 4CIF 16CIF

No. of Pixels per Line 128 176 352 704 1408

No. of Lines 96 144 288 576 1152

Uncompressed Bit Rate 4.4Mbs 9.1 Mb/s 37 Mb/s 146 Mb/s 584 Mb/s

Table 2.2: Picture Formats Supported by H.261 and H.263

In H.261, each sample contains a luminance component, called Y, and two chrominance

components, called CB and CR.  The values of these components are defined as in [4].  In

particular, “Black” is represented by Y=16, “White” is represented by Y=235, and the

range of CB and CR is between 16 and 240, with 128 representing zero color difference

(i.e., grey).  A picture format, as shown in Figure 2.1, defines the size of the image, hence

the resolution of the Y pels.  The chrominance pels, however, typically have a lower

resolution than the luminance pels, in order to take advantage of the fact that human eyes

are less sensitive to chrominance.  In H.261, the CB and CR pels are specified to have half

the resolution, both horizontally and vertically, of that of the Y pels.  This is commonly

referred to as the 4:2:0 format.  Each CB or CR pel lies in the center of four neighboring Y

pels, as shown in Figure 2.1.  Note that block edges lie in-between rows or columns of Y

pels.
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Y pels

CB and CR pels

Block edge

Figure 2.1  Positions of Samples for H.261

2.2.3 Blocks, Macroblocks & Group of Blocks

Typically, a frame is not encoded in its entirety.  Instead, it is divided into blocks that are

processed one by one, both by the encoder and the decoder, in a scan order as shown in

Figure 2.2.  This approach is often referred to as block-based coding.

Figure 2.2  Illustration of block-based coding

In H.261, a block is defined as a group of 8×8 pels.  Because of the downsampling in

the chrominance components, one block of CB pels and one block of CR pels correspond

to four blocks of Y pels.  The collection of these six blocks is called a macroblock (MB),

as shown in Figure 2.3, with the order of blocks marked as 1 to 6.  A MB is treated as one

unit in the coding process.
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1 2 5 6

3 4

Y CB CR

Figure 2.3 A macroblock

A number of MBs are grouped together and called a group of blocks (GOB).  For H.261,

a GOB contains 33 MBs, as shown in Figure 2.4.  The resulting GOB structures for a

picture, in the CIF case and the QCIF case, are shown in Figure 2.5.

1 2 3 4 5 6 7 8 9 10 11

12 13 14 15 16 17 18 19 20 21 22

23 24 25 26 27 28 29 30 31 32 33

Figure 2.4  A group of blocks (GOB)

GOB 1 GOB 2

GOB 3 GOB 4

GOB 5 GOB 6 GOB 1

GOB 7 GOB 8 GOB 3

GOB 9 GOB 10 GOB 5

GOB 11 GOB 12 QCIF

CIF

 Figure 2.5  GOB structures

2.2.4 The Compression Algorithm

Compression of video data typically involves two principles: the reduction of spatial

redundancy and the reduction of temporal redundancy.  H.261 uses the discrete cosine

transform to remove spatial redundancy, and motion compensation to remove temporal

redundancy.

Transform coding has been widely used to remove redundancy between data sam-

ples.  In transform coding, a set of data samples are first linearly transformed into a set of
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transform coefficients.  These coefficients are then quantized and entropy coded.  A

proper linear transform can de-correlate the input samples, and hence remove the redun-

dancy.  Another way to look at this is that a properly chosen transform can concentrate

the energy of input samples into a small number of transform coefficients, so that result-

ing coefficients are easier to encode than the original samples.

The most commonly used transform for video coding is the discrete cosine transform

(DCT) [1][35].  Both in terms of objective coding gain and subjective quality, DCT

performs very well for typical image data.  The DCT operation can be expressed in terms

of matrix multiplication:

WhereX  represents the original image block, andY  represents the resulting DCT coeffi-

cients.  The elements of C , for an 8×8 image block, are defined as

After the transform, the DCT coefficients inY are quantized.  Quantization implies loss

of information, and is the primary source of compression.  The quantization step size

depends on the available bit rate, and can also depend on the coding modes.  Except for

the intra DC coefficients that are uniformly quantized with a step size of 8, the “dead

zone” is used to quantize all other coefficients in order to remove noise around zero.  The

input-output relations for the two cases are shown in Figure 2.6.

Y C XC=
T (2.1)

( )
C k

m n

mn n
=

+







cos

2 1

16

π
  where k

n

n
=

=



1 2 2 0

1 2

( ) when 

otherwise
(2.2)
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original

quantized

original

quantized

Quantization
without dead zone

Quantization
with dead zone

Figure 2.6  Quantization with and without “dead zone”

The quantized 8×8 DCT coefficients are then converted into a one-dimensional (1D)

array for entropy coding.  Figure 2.7 shows the scan order used in H.261 for this conver-

sion.  Most of the energy concentrates on the low frequency coefficients, and the high

frequency coefficients are usually very small and are quantized to zero before the scan-

ning process.  Therefore, the scan order in Figure 2.7 can create long runs of zero coeffi-

cients, which is important for efficient entropy coding, as we will discuss in the next

paragraph.

DC

Figure 2.7  Scan order of the DCT coefficients

The resulting 1D array is then decomposed into segments, with each segment containing

one or more (or none) zeros followed by a nonzero coefficient. Let an event represent the
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pair of (run, level), where “run” represents the number of zeros and “level” represents the

magnitude of the nonzero coefficient.  This coding process is sometimes called “run-

length coding.”  Then, a variable length Huffman coding table is built to represent each

event by a specific codeword. In H.261, this table is often referred to as a two-

dimensional (2D) VLC table because of its 2D nature, i.e., each event representing a pair

of (run, level).

At the decoder, all the above steps are reversed one by one.  Note that all the steps

can be exactly reversed except for the quantization step, which is where the loss of

information arises.

2.2.5 Motion Compensation

The transform coding described in the previous section removes spatial redundancy

within each frame.  It is therefore referred to as intra coding.  However, for video mate-

rial, inter coding is also very useful.  Typical video material contains a large amount of

redundancy along the temporal axis.  Video frames that are close in time usually have a

large amount of similarity.  Therefore, transmitting the difference between frames is more

efficient than transmitting the original frames.  This is similar to the concept of differen-

tial coding and predictive coding.  The previous frame is used as an estimate of the

current frame, and the residual, the difference between the estimate and the true value, is

coded.  When the estimate is good, it is more efficient to code the residual than to code

the original frame.  Consider the fact that typical video material is composed of moving

objects.  Therefore, it is possible to improve the prediction result by first estimating the

motion of each region in the scene.  More specifically, the encoder can estimate the
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motion (i.e., displacement) of each block between the previous frame and the current

frame.  This is often achieved by matching each macroblock in the current frame with the

previous frame to find the best matching area.  This area is then offset accordingly to

form the estimate of the corresponding block in the current frame.  Now, the residue has

much less energy and therefore is much easier to code.  This process is called motion

compensation (MC), or more precisely, motion-compensated prediction [29][30].  This is

illustrated in Figure 2.8.  The residue is then coded using the same process as that of intra

coding.

Previous Frame
(Reference Frame)

Current Frame

Macroblock

Figure 2.8  Motion Compensation

Frames that are coded without any reference to previously coded frames are called

intra frames, or simply I-frames.  Frames that are coded using a previous frame as a

reference for prediction are called predicted frames, or simply P-frames.  However, a P-

frame may contain also intra coded blocks. For a certain block, it may be impossible to

find a good enough matching area in the reference frame to be used as prediction.  In this

case, direct intra coding of such a block is more efficient.  This situation happens often
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when there is occlusion in the scene, or when the motion is very heavy, i.e., when there is

a high degree of fast motion in a scene, or multiple moving objects.

Motion compensation saves the bits for coding the DCT coefficients.  However, it

does imply that extra bits are required to carry information about the motion vectors.

Efficient coding of motion vectors is therefore also an important part of H.261.  Because

motion vectors of neighboring blocks tend to be similar, differential coding of the hori-

zontal and vertical components of motion vectors is used.  That is, instead of coding

motion vectors directly, the previous motion vector is used as a prediction for the current

motion vector, and the difference, in both the horizontal component and the vertical

component, is then coded using a motion vector VLC table.  Short codewords are used to

represent small difference, because these are more likely events.

2.2.6 Summary

The coding algorithm used in H.261 can be shown as block diagrams in Figure 2.9 and

Figure 2.10.  At the encoder, the input picture is compared with the previously decoded

frame with motion compensation.  The difference signal is DCT transformed and quan-

tized, and then entropy coded and transmitted.  At the decoder, the decoded DCT coeffi-

cients are inverse DCT transformed and then added to the previously decoded picture

with motion compensation.

Since the prediction of the current frame is composed of blocks at various locations

in the reference frame, the prediction itself may contain coding noise and blocking arti-

facts.  These artifacts may cause a higher prediction error.  It is possible to reduce the

prediction error by passing the predicted frame through a lowpass filter before it is used
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as the prediction for the current frame.  This filter is referred to as a loop filter, because it

operates inside the motion compensation loop.

DCT

Motion

Compensation

QQ

Inverse

DCT

Loop

Filter

Video In

Figure 2.9  Block diagram of a video encoder

Motion

Compensation

Inverse

DCT

Loop

Filter

Figure 2.10  Block diagram of a video decoder

2.2.7 Reference Model

As in all video coding standards, H.261 specifies only the bit-stream syntax and how a

decoder should interpret the bit-stream to decode the image.  Therefore, it specifies only

the design of the decoder, not how the encoding should be done.  For example, an en-

coder can simply decide to use only zero motion vectors and let the transform coding take

all the burden of coding the residual.  This may not be an efficient encoding algorithm,

but it does generate a standard-compliant bit-stream.

Therefore, to illustrate the effectiveness of a video coding standard, an example en-

coder is often provided by the group that defines the standard.  For H.261, such an exam-
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ple encoder is called a reference model (RM), and the latest version is RM 8 [40].  It

specifies details about motion estimation, quantization, decisions for inter/intra coding

and MC/no MC, buffering, and the rate control.

2.3 H.263 Standard

2.3.1 Introduction

H.263 [14] was defined by ITU-T SG15, the same group that defined H.261.  The activi-

ties of H.263 started around November 1993, and the standard was adopted in March

1996.  The main goal of this endeavor was to design a video coding standard suitable for

applications with bit rates below 64 kbits/s.  For example, when sending video data over

the public service telephone network (PSTN) and mobile networks, the video bit rates

typically range from 10 to 24 kbits/s.  During the development of H.263, it was identified

that the near-term goal would be to enhance H.261 using the same general framework,

and the long-term goal would be to design a video coding standard that may be funda-

mentally different from H.261 in order to achieve further improvement in coding effi-

ciency.  As the standardization activities move along, the near-term effort became H.263

and H.263 Version 2 (or H.263+ and H.263++), and the long-term effort is now referred

to as H.263L.  H.263 Version 2 maintains bit-stream compatibility with H.263 and the

same basic coding algorithm structure (hybrid-DCT), while H.26L considers more radi-

cally different approaches.

In essence, H.263 combines the features of H.261 together with MPEG, and is opti-

mized for very low bit-rates.  In terms of signal to noise ratio (SNR), H.263 can provide 3
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to 4 dB gain over H.261 at bit-rates below 64 kbits/s.  In fact, H.263 provides superior

coding efficiency to that of H.261 at all bit rates.  When compared with MPEG-1, H.263

can give 30% bit-rate saving.

2.3.2 H.263 vs. H.261

Since H.263 was built on top of H.261, the main structures of the two standards are

essentially the same.  The major differences are:

1. H.263 supports more picture formats, and uses a different GOB structure.

2. H.263 uses half-pel motion compensation, but does not use loop filtering as in H.261.

3. H.263 uses 3D VLC for coding of DCT coefficients.

4. In addition to the basic coding algorithm, four options that are negotiable between the

encoder and the decoder provide improved performance.

5. H.263 allows the quantization step size to change at each MB with less overhead.

2.3.3 Picture Formats, Samples, and the GOB Structure

In addition to CIF and QCIF as supported by H.261, H.263 also supports sub-QCIF, 4CIF

and 16CIF.  Resolutions of these picture formats can been found in Table 2.2.  Chromi-

nance subsampling and the relative positions of chrominance pels are the same as those

defined in H.261.  However, H.263 uses different GOB structures.  These are shown in

Figure 2.11 for various formats.  Unlike H.261, a GOB in H.263 always contains at least

one full row of MBs.
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GOB 0 GOB 0

GOB 1 GOB 1

GOB 2 GOB 2

GOB 3 GOB 3

GOB 4 GOB 4

GOB 5 GOB 5

GOB 6 GOB 6

GOB 7 GOB 7

GOB 8 GOB 8

GOB 9 QCIF

GOB 10

GOB 11

GOB 12 GOB 0

GOB 13 GOB 1

GOB 14 GOB 2

GOB 15 GOB 3

GOB 16 GOB 4

GOB 17 GOB 5

CIF sub-QCIF

Figure 2.11  GOB structures for H.263

2.3.4 Half-Pel Prediction and Motion Vector Coding

A major difference between H.261 and H.263 is the half-pel prediction in the motion

compensation.  This concept is also used in MPEG.  While the motion vectors in H.261

can have only integer values, H.263 allows the precision of motion vectors to be at half

pixel.  For example, it is possible to have a motion vector with values (4.5, -2.5).  When a

motion vector has non-integer values, bilinear interpolation is used to find the corre-

sponding pel values for prediction.

The coding of motion vectors in H.263 is more sophisticated than that in H.261.  The

motion vectors of three neighboring MBs (the left, the above, and the above-right, as

shown in Figure 2.12) are used as predictors.  The median of the three predictors is used

as the prediction for the motion vector of the current block, and the prediction error is

coded and transmitted.  However, around a picture boundary or GOB boundary, special

cases are needed.  When only one neighboring MB is outside the picture boundary or

GOB boundary, a zero motion vector is used to replace the motion vector of that MB as
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the predictor.  When two neighboring MBs are outside, the motion vector of the only

neighboring MB that is inside is used to as the prediction.  These are shown in Figure

2.13.

MV2

MVMV1

MV3
MV: Current motion vector
MV1, MV2, MV3: predictors
prediction = median(MV1,MV2,MV3)

Figure 2.12  Prediction of motion vectors

MV1

MVMV1

MV1MV2

MV(0,0)

MV3 MV2

MV

(0,0)

MV1

Picture boundary or GOB boundary

Figure 2.13  Motion vector prediction at picture/GOB boundaries

2.3.5 Run Length Coding of DCT Coefficients

H.263 improves the run-length coding used in H.261 by giving an extra term “last” to

indicate whether the current coefficient is the last nonzero coefficient of the block.

Therefore, a set of (run, level, last) represents an event and is mapped to a codeword in

the VLC table, hence the name 3D VLC.  With this scheme, the EOB (end of block) code

used in H.261 is not needed anymore.
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2.3.6 Negotiable Options

H.263 specifies four options that are negotiable between the encoder and the decoder.  At

the beginning of each communication session, the decoder signals the encoder which of

these options the decoder has the capability to decode.  If the encoder also supports some

of these options, it may enable those options.  However, the encoder does not have to

enable all the options that are supported by both the encoder and decoder.  The four

options in H.263 are: the unrestricted motion vector mode, the syntax-based arithmetic

coding mode, the advanced prediction mode, and the PB-frame mode.

2.3.7 Unrestricted Motion Vector Mode

This is the first one of the four negotiable options defined in H.263.  In this option,

motion vectors are allowed to point outside of the picture boundary.  In this case, edge

pels are repeated to extend to the pels outside so that prediction can be done.  Significant

coding gain can be achieved with unrestricted motion vectors if there is movement

around picture edges, especially for smaller picture formats like QCIF and sub-QCIF.  In

addition, this mode allows a wider range of motion vectors than H.261.  Large motion

vectors can be very effective when the motion in the scene is caused by heavy motion,

e.g., motion due to camera movement.
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2.3.8 Syntax-Based Arithmetic Coding (SAC)

In this option, arithmetic coding [54] is used, instead of VLC tables, for entropy coding.

Under the same coding conditions, using arithmetic coding will result in a bit-stream

different from the bit-stream generated by using a VLC table, but the reconstructed

frames and the SNR will be the same.  Experiments show that the average bit-rate saving

is about 3-4% for inter frames, and about 10% for intra blocks and frames.

2.3.9 Advanced Prediction Mode

In the advanced prediction mode, overlapped block motion compensation (OBMC) [33]

is used to code the luminance of P-pictures, which typically results in fewer blocking

artifacts.  This mode also allows the encoder to assign four independent motion vectors to

each MB.  That is, each block in a MB can have an independent motion vector.  In gen-

eral, using four motion vectors gives better prediction, since one motion vector is used to

represent the movement of a 8×8 block, instead of a 16×16 MB.  Of course, this implies

more motion vectors, and hence requires more bits to code the motion vectors.  There-

fore, the encoder has to decide when to use four motion vectors and when to use only

one.  Finally, in the advanced prediction mode, motion vectors are allowed to cross

picture boundaries as is the case in the unrestricted motion vector mode.
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2.3.10 PB-Frame Mode

In the PB-frame mode, a PB-frame consists of two pictures coded as one unit, as shown

in Figure 2.14.  The first picture, called the P-picture, is a picture predicted from the last

decoded picture.  The last decoded picture can be either an I-picture, a P-picture, or the P-

picture of a PB-frame.  The second picture, called the B-picture (B for bi-directional), is a

picture predicted from both the last decoded picture as well as the P-picture that is cur-

rently being decoded.  As opposed to the B-frames used in MPEG, PB frames do not

need separate bi-directional vectors.  Instead, forward vectors for the P-picture is scaled,

and added to a small delta-vector, to obtain vectors for the B-picture.  This results in

lower bit rate overhead for the B-picture.  For relatively simple sequences at low bit rates,

the picture rate can be doubled with this mode with minimal increase in the bit rate.

However, for sequences with heavy motion, PB-frames do not work as well as B-

pictures.  Also, note that the use of PB-frame mode increases the end-to-end delay, so it

may not be suitable for two-way interactive communication.

I or P B-picture P-picture

PB frame

Figure 2.14  The PB-frame mode
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2.3.11 Test Model Near-Term (TMN)

Similar to H.261, there are documents drafted by ITU-T SG15 that describe example

encoders, i.e., the test models.  For H.263, these are called TMN, where N indicates that

H.263 is a near-term effort in improving H.261.  The latest version is TMN11 [49].

TMN11 specifies the details of the advanced motion prediction, the overlapped block

motion compensation, the choice between the 8×8 mode and 16×16 mode for motion

vectors, the syntax-based arithmetic coding, the use of the PB frame mode, handling in

error prone packet environments, and Rate-Distortion Optimization.

2.4 Region-Oriented Video Coding

2.4.1 Introduction

The region-oriented approach has earned significant attention recently by researchers in

the area of low bit-rate and very low bit-rate video coding.  The adoption of these tech-

niques can translate to lower overall bit-rate consumption while maintaining perceptual

quality.  First generation video coding standards such as ITU-T H.261, H.263, and MPEG

suffer from overly simplistic region segmentation.  The fixed block-type region bounda-

ries do not take into account the actual content of the scene.

Region-oriented techniques are based on modeling images as a combination of non-

stationary visual primitives, such as contours, textures, and motion.  The advantage of

these methods compared to object-oriented and 3-D model-based methods [2][52], is that

they do not require a priori information of the image content.  Also, they are character-
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ized by lower computational complexity, which is a critical factor for low power imple-

mentation.

In current standards [13][14], motion compensation and encoding of the prediction

error is block-based.  However, the new MPEG-4 standard [20] provides content based

functionalities in addition to efficient video coding.  To fulfill this task a source model is

needed that adapts better to the scene contents than blocks.  In so-called object-based

image coding techniques [28][16][7], the partition of images into a fixed block structure

is replaced by arbitrarily shaped regions that are related either to texture/color  [41][24]

or to motion [45].  The shape of the regions has to be transmitted as additional side

information.  The efficiency of such a region-based coding scheme depends very much

on properly adjusting the amounts of bits used for region coding.

2.4.2 MDL-Based Segmentation

Zheng and Blostein [57] proposed a new optimality criterion based on the minimum

description length (MDL) principle and was developed for moving object estimation and

segmentation for region-oriented video coding applications.  Using this MDL estimator,

the cost minimized is the sum of the ideal coding lengths for the motion parameters,

boundaries and motion-compensated predictive errors of all moving objects in a scene.

An optimization procedure to obtain a sub-optimal MDL estimator was shown based on a

region-merging framework.  A number of experimental comparisons showed a significant

ideal coding rate reduction of the object-oriented coding scheme using an MDL estimator

over a standard block-oriented scheme.  This work demonstrated the theoretical potential
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of the MDL-based estimator and serves as a foundation for a key element of the algo-

rithms developed in this thesis.

The common drawback of current moving object estimation is that the choice of the

optimality criterion does not directly match the requirements of the image sequence

coding process.  A superior approach is to integrate the coding requirements into the

criterion used for moving object estimation. The optimal trade-off between motion

compensated prediction error information and the motion vector data is an active area of

research and various techniques have been investigated [42][10].  The minimum descrip-

tion length (MDL) principle minimizes the coding cost for the data to be compressed, and

therefore seems to be a natural choice to combine moving object estimation with image

sequence coding.

The MDL principle was originally proposed by Rissanen [37][38][39] and is de-

scribed in Section 2.5.  MDL provides a framework for estimating both integer-valued

structure parameters and real-valued parameters that specify a model for the data source.

Using MDL, we can estimate the least number of bits that are needed to encode the

observed data with regard to a particular data model.  When a particular coding scheme is

specified, there is a natural trade-off between bits spent on model parameters and bits

spent on data from that model. This feature is intuitively appealing when the purpose of

the estimation problem is to encode the observed data.

By combining motion segmentation with motion parameter estimation, we can esti-

mate motion discontinuities more appropriately in the context of the application at hand.

Based on the advantages mentioned, the MDL principle can be applied to the moving

object segmentation and motion estimation [57].  In [32], a technique is shown for re-
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gion-oriented video coding based on the minimization of an MDL criterion where the

motion-compensated prediction error is coded together with a segmentation map and

motion parameters.  The MCPE is coded using entropy coding of the quantized MCPE as

well as DCT-based coding. The region segmentation is approximated by a polygonal

approximation allowing reduced segmentation coding cost.  The polygonal representation

minimizes the MDL criterion yielding an optimal approximation in terms of compression.

2.4.3 Rate-Distortion Optimization

A solution for the optimum trade-off by applying rate-distortion theory has been pre-

sented for region based motion compensation [45].  The regions are optimized with

respect to a Lagrangian cost function by variation of the region contours.  The resulting

optimal contours do not necessarily coincide with the actual contours of the objects in the

scene.  However, for the optimized regions the improvement in distortion and the re-

gion’s rate are well balanced in a rate-distortion sense.  The improvement that has been

achieved with a coding scheme using optimized regions is demonstrated in [45].  It was

shown that motion compensation with rate-distortion optimized regions offers about 2 dB

better PSNR (Peak-Signal-to-Noise-Ratio, see Equation 4.1) than block-based motion

compensation.  In both cases a block-based DCT-coder was used for coding the predic-

tion error image.

A rate-distortion framework is proposed in [27] that defines a jointly optimal motion

vector estimation and quadtree segmentation for video coding.  This technique attempts

to achieve maximum reconstructed frame quality under the constraint of a target bit-rate

for the coding of the motion vector information, quadtree segmentation, and the motion-
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compensated prediction error.  Extending this concept, [56] proposes a generalized rate-

distortion optimized approach for the joint selection of coding parameters; namely the

quadtree structure, the motion parameters, the mode and the MCPE quantizer selection

associated with each tree node.  The problem is formulated using the Lagrange multiplier

method and solved using dynamic programming where the Viterbi Algorithm is used to

find the optimal solution.

2.5 MDL Principle

The MDL principle was originally proposed by Rissanen [37][38][39]. MDL provides a

framework for estimating both integer-valued structure parameters and real-valued

parameters that specify a model for the data source.  The principle is to use the least

number of bits necessary to encode an observed data sequence x generated by a stochasti-

cally modeled source.  This principle leads to an optimal parameter estimator with mini-

mum coding length for the observed data as the optimality criterion.  The coding length

obtained by such an estimator corresponds to a notion of information in the data x rela-

tive to the class of models [38].  This notion of information consists of two terms: 1)

Shannon's probabilistic notion of information, which describes the observations x gener-

ated by the stochastically modeled source and 2) Kolmogorov's algorithmic notion of

information [47], which describes the nonrandom selection of the models or parameters.

It is Kolmogorov's algorithmic notion of information that extends the classical maximum

likelihood criterion and permits estimation of the number of parameters without a sepa-

rate hypothesis test.  This mixture model of information provides the common measure of

complexity that can be assigned to both the data models and parameters.
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2.5.1 Relation between estimation and coding

In the coding problem, we are given a string of observed data points 

€ 

x
t
,t =1,...,n , each

truncated to some finite precision, and the objective is to re-describe the data with a

suitably designed code as efficiently as possible, i.e., with a short coding length. In

estimation, which is a fundamental problem in signal processing and related fields, we

seek an explanation of the observations, or, rather, of the underlying mechanism, which

we believe has generated the observed data.  More precisely, we select a parametrically

defined statistical model described by a probability density function, 

€ 

Pθ (x) , for the data

x, and try to estimate the vector parameter 

€ 

θ = (θ
1
,...,θ

m
)  from the observations, where m

is an integer variable to be estimated.  The use of the probability density functions is

motivated by the fact that each observed realization

€ 

x
i
 is always expressed in finite

precision, with q fractional binary digits.

By representing the number 

€ 

x
i
 using binary notation, we see that the entire sequence

x can be written down using nq bits.  But such a trivial coding or description of the

observed sequence does not take into account the possible correlations that exist between

the numbers 

€ 

x
i
 nor the relative frequency with which each observation occurs.  If such

dependencies were taken advantage of, we might be able to reduce the total number of

binary digits in the description of x.  The dependencies between data can often best

described by a parametric model, and the coding length L(x) of the data x will be a

function of those model parameters.  The shortest coding length should result if the true

parameters are used in the code design.
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Rissanen [39] has shown that a one-to-one relation exists between the coding length

function L(x) and the negative base-two logarithm of the probability density function

€ 

Pθ (x)  used to describe the data model, i.e.,

where 

€ 

θ  is a parameter vector which specifies a whole class of PDFs.  If we pick just any

“model” 

€ 

Pθ (x)  within the class, and encode the data x with 

€ 

−logPθ (x) bits, then the mean

coding length 

€ 

− P
θ 0
(x)logPθ (x)∑ , where the sum is over all data sequences x of length n

and 

€ 

θ 0  denotes the "true" parameter, cannot be smaller than the entropy, which is defined

as 

€ 

− P
θ 0
(x)logP

θ 0
(x)∑ .  Moreover, equality is achieved only when 

€ 

θ = θ 0 .  Therefore, if

the observed data sequence has probability 

€ 

Pθ (x)  with 

€ 

θ  regarded as known, then the

minimum coding length for the observed data is 

€ 

−logPθ (x) bits.  This coding length is

called the ideal coding length.  If 

€ 

θ  is unknown, and we wish to design the shortest code,

we clearly have to estimate 

€ 

θ  so as to minimize the ideal coding length 

€ 

−logPθ (x).  This

is an alternative interpretation of the familiar Maximum Likelihood (ML) estimator.

We have not yet considered the problem of obtaining a compact description of. 

€ 

θ .

Without any cost assigned to encoding the parameters we could, in principle, bring the

mean coding length 

€ 

− P
θ 0
(x)logPθ (x)∑  as near to the entropy 

€ 

− P
θ 0
(x)logP

θ 0
(x)∑  as we

like by increasing the complexity of the model, i.e., the dimension of 

€ 

θ .  This is one

reason why the correct model structure cannot be determined by the ML estimator.  This

problem can be solved by including the number of bits spent on encoding the parameters

into the ideal coding length function.  The interpretation of this solution can be identified

with Maximum A Posteriori (MAP) estimation [25] as discussed below.

€ 

L(x) = −logPθ (x) (2.3)
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When we include the ideal coding length for the parameters into the total coding

length function, we have

where 

€ 

L(θ) denotes the ideal coding length for the parameters.  The problem of efficient

encoding of the model parameters, 

€ 

θ , is much different from encoding the random

observations x because 

€ 

θ  cannot be readily modeled by probability distributions.  By

similar arguments as used for the data model term, Rissanen has shown in [39] that 

€ 

2
−L(θ )

defines a prior distribution function for the parameters under certain conditions.  That is

where the code length function L(θ) satisfies the Kraft Inequality [47] with equality.

As examples, if the parameter is a constant vector known to the decoder, we will not

need to encode it at the transmitter, so 

€ 

L(θ) = 0  and 

€ 

P(θ) =1.  If the parameter is known

to range uniformly over a finite set of M values, then we will need

€ 

log(M) bits to encode

it and with 

€ 

P(θ) =1/M .

Using equations (2.4) and (2.5), we can write the total coding length function as

or in a more familiar form

€ 

L(x) = − logPθ (x)+ L(θ ) (2.4)

€ 

P(θ) = 2−L(θ ) (2.5)

€ 

L(x) = −logPθ (x) − logP(θ) (2.6)

€ 

L(x) = −log[Pθ (x)P(θ)]

= −log[P(xθ)P(θ)]

(2.7)
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On the other hand, the MAP criterion chooses the parameter vector 

€ 

θ  that maximizes the

conditional probability of the model, given the data: 

€ 

P(θ x).  An application of Bayes's

rule yields

Since 

€ 

P(x) is constant with respect to 

€ 

θ , the MAP tactic is to choose 

€ 

θ  that maximizes

From (2.7) and (2.8), we see that the strategy of finding the minimum coding length by

choosing particular model parameters is equivalent to the MAP strategy of maximizing

the conditional probability for the model, given the data: 

€ 

P(θ x).

2.5.2 Prior information and parameter coding

There are two sources of information in the estimation problem.  The first consists of

observed data x, and the second, called prior information, consists of everything else,

based on earlier observations that are no longer available to us or based on known prop-

erties of the data source.  Prior information plays as crucial a role in the MDL criterion as

in MAP estimation.  We first need to know how the data are generated, that is, the prior

information that is used to define an observation data model. Usually this is done by

selecting a parametric class of probability density functions, 

€ 

Pθ (x) , and assigning a

probability to every possible observed data x.  If the observations consist of both an

"input" sequence y and an "output" sequence x, then the appropriate probability density

€ 

P(θ x) =
P(xθ)P(θ)

P(x)

(2.8)

€ 

P(xθ)P(θ) (2.9)
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function is 

€ 

Pθ (x y).  Secondly, the prior information must be taken into account to derive

the ideal coding length functions for model parameters.

Of particular interest is the case where the model parameters are integers. Suppose k

is an integer to be coded and one knows that the number of bits in the binary representa-

tion of the integer equal to n.  Then the coding length for k is simply n.  That is, integer k

has a uniform distribution over a finite range 

€ 

[0,2
n
], i.e.,

€ 

P(k) =1/2
n
.

If one does not know the number of bits in the binary representation of this integer,

we can encode it by a simple but inefficient method which uses a sequence 01 as a

"comma".  This is done by repeating every bit of the binary expansion of k twice and then

ending the description with a sequence 01 so that the decoder knows that the end of the

code has occured.  For example, the number k = 5 (binary 101) would be encoded as

11001101.  This code requires 

€ 

2[logk]+ 2  bits.

A more efficient method for encoding k is through the following recursive proce-

dure: at first, the number 

€ 

(logk) of bits within the binary representation of k is specified,

followed by the actual bits of k.  To specify 

€ 

(logk), that being the length of the binary

representation of k, we use 

€ 

loglogk  bits.  Continuing this recursively, we can encode k in

€ 

logk + loglogk + logloglogk + ... bits, summing until the last positive term.  This sum of

iterated logarithms is sometimes written as 

€ 

log
*
k . The associated probability

€ 

P(k) = 2
− log

*
k
 is known as a universal proper prior for the integers.

For encoding a real-valued vector parameter 

€ 

θ , without prior knowledge, we first

truncate each component of 

€ 

θ,  θ
i
, to an integer number of bits and then encode the inte-

ger as above.  The truncation performed is by writing each component 

€ 

θ
i
 of 

€ 

θ  to preci-
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sion 

€ 

±δ /2 .  This allows for the precision of each component to be adjusted according to

its contribution to the total coding length of the data x.

Distributions of parameters other than uniform may also be considered.  For in-

stance, since asymptotically efficient estimators in general have a near Gaussian distribu-

tion, 

€ 

θ
i
 could be modeled as Gaussian.  Also, we could assume that the observed data

points come in batches of, N points each and we could specify a conditional probability

€ 

P(θ k θ k−1
)  of the parameter vector 

€ 

θ k
 for the kth batch given the previous parameter 

€ 

θ k−1

for the 

€ 

(k −1)th batch in terms of prior knowledge of temporal correlations of the model

parameters.

2.5.3 Data model structure

In many situations, the observed data to be encoded are generated by several underlying

models rather than just a single model.  In the modeling process, the observed data may

not be adequately described even if a complicated single model is used.  Universal mod-

eling of the encoder is needed. In broad terms, the modeling of the observed data in-

volves a determination of local structure within the entire data and its contexts.  Thus we

can regard the model as consisting of two parts: 1) the local structure which specifies the

set of events and their contexts, and 2) the parameters which define the probabilities

assigned to the local events.

The local structure captures the global redundancies while the parameters are tailored

to each individual local structure.  If we can estimate the local structure of the data and

use a shorter model for each subset of the data, then a shorter coding length would be
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obtained even though additional bits are used to describe the local data structures.  Gen-

erically, the process of finding local structures of the data is a segmentation problem for

observed data.  The number of local segments and its boundaries are the integer-valued

structure parameters to be estimated.

The original MDL formulation did not consider this segmentation problem. The

MDL formulation can be extended to the multiple model case by posing a combined

segmentation and estimation problem [57].  Let 

€ 

O
n
,n =1,...,N  be a collection of disjoint

subsets that partition the data.  Let each subset be generated by a parametric model

€ 

Pθ (n )(x x ∈ O
n
) .  If the prior probability distribution of the parameters for 

€ 

O
n
 is 

€ 

P(θ(n)),

then our combined segmentation and estimation problem under MDL is to estimate the

number of subsets N, the points of 

€ 

b
n
, representing boundaries within the subset 

€ 

O
n
, and

N parameter vectors 

€ 

θ(n),n =1,...,N  together with their model order number 

€ 

m
i
 such that

the coding length for x, as expressed below, is minimized.

The last term in the above expression denotes the coding length for the boundary contour

of the ith segment if the data x is in the form of a two-dimensional array.

2.5.4 MDL and Rate-Distortion Theory

As described in previous sections, the minimum description length principle for model

selection proposes that, among a predetermined collection of models, we choose the one

which assigns the shortest description to the data at hand.  In this sense, a “description” is

a lossless representation of the data that also takes into account the cost of describing the

€ 

L(x) = [−logPθ (n )(x x ∈ On )
n=1

N

∑ − logP(θ(n)) + log*mn ]+ log
*
bn

n=1

N

∑
(2.10)
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chosen model itself.  A natural extension of this principle is to consider how the MDL

principle might apply to the case when the requirement for lossless coding is relaxed

(lossy compression).  Some recent work by Kontoyiannis in information theory has

considered the connection between the MDL principle and rate-distortion theory  [21],

which outlines some of the mathematical and conceptual components required to con-

sider this extension.

The use of the MDL principal in the context of lossy compression can be applied to

practical data compression problems such as image and video coding. The work in [22]

presents a method to use the "lossy MDL principle" introduced in order to optimally

estimate the essential design parameters in Vector Quantizer design for image compres-

sion.  This work also provides an interesting approach useful in the theoretical formaliza-

tion of adapting MDL principle to lossy video compression.
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Chapter 3 

Quadtree-MDL Video Codec Design

3.1 Introduction

The challenge of image sequence coding compared to still image coding lies in an appro-

priate processing of motion information, along with associated image segmentation.

High performance can be reached by combining intraframe and interframe coding tech-

niques together.  This is called hybrid coding as described in Sections 2.2 and 2.3.  An

efficient combination consists of coding the prediction error resulting from motion com-

pensation by an intraframe technique.  One important example of such a coding scheme

is that case where a 2-D transform is applied on the temporal prediction error.  It is

referred to as motion compensated hybrid transform coding.  Recent standards are based

on this idea, MPEG, H261 and H.263 [13][14], which perform a 2-D Discrete Cosine

Transform of the prediction error.

A good motion estimation technique and an efficient coding of the motion compen-

sated prediction errors are imperative for high quality video coding.  However, in coding

the final objective of a motion estimation algorithm is unclear.  For instance, a very

precise motion estimation leads on the one hand to a very low prediction error energy but

on the other hand to high overhead motion information.  Conversely, coarse motion
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estimation produces low overhead motion information but a high prediction error energy.

Consequently, the optimal motion estimation algorithm should simultaneously provide an

accurate motion field, while keeping the side motion information low.  It should therefore

aim at jointly minimizing the amount of prediction error and motion information.  It

should be noted that the optimal motion estimation algorithm depends on the subsequent

intraframe coding technique, as well as the type of application (e.g. HDTV, TV, video-

phone, etc) and the target bit-rate.

Finally, the approach applying a transform coding technique to the prediction error

resulting from motion compensation presents two drawbacks.  Natural images exhibit

high correlation.  The energy of such a signal is optimally compacted by the Karhunen

Lòeve Transform (KLT).  In practice the Discrete Cosine Transform (DCT) is preferred,

as in this framework it approximates closely the KLT and has faster implementation.

However, observations show that prediction errors have low correlations [9][11][44].

Therefore, the use of the DCT as an optimal transform is not valid anymore in this con-

text.  More generally, a transform coding technique which aims at de-correlating the data

performs poorly on the motion compensated prediction error.  Furthermore, in case of a

block-based motion estimation technique, block artifacts can be introduced in the predic-

tion error, reducing the efficiency of the intraframe coding technique (e.g. transform

coding) if the latter is applied on the motion compensated prediction error.  In spite of the

last remarks, this type of coding scheme is the most efficient up to now, and therefore the

most widely used in the field of video coding.  In the subsequent sections, this thesis

presents a new video codec structure that addresses these fundamental issues.
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3.2 Video Codec Stucture

Our algorithm can be viewed as an extension of first generation coding standards

[13][14].  It utilizes interframe motion-compensated predictive coding, in a similar

fashion as first generation methods.  The motion of each region is parameterized, coded,

and transmitted along with the region's shape and motion-compensated prediction error.

This concentration on interframe methods is justified by the observation that, for typical

video conferencing sequences, the codec operates in interframe mode almost exclusively.

Therefore, more emphasis is placed on reducing temporal correlation between frames.

An appropriate formulation for the codec is

where 

€ 

˜ I 
t  and 

€ 

˜ I 
t−1 each represent the current and previous reconstructed intensity images,

respectively.  The mapping function 

€ 

fθ (⋅)  transforms 

€ 

˜ I 
t−1 to produce a prediction of the

current image which is parameterized by motion parameters 

€ 

θ .  

€ 

ˆ e 
t  is the quantized

motion-compensated prediction error resulting from the current prediction.  The predic-

tion of the current frame is represented by 

€ 

fθ (
˜ I 
t−1
).  This model corresponds to the

familiar Differential Pulse Code Modulation (DPCM) [36].

A block diagram of the new codec is shown in Figure 3.1 with appropriate variables

indicating the video signals at various locations.  The codec structure reflects the com-

patibility with existing hybrid video coding standards, with the notable exception that a

Discrete Cosine Transform block is not used.

€ 

˜ I 
t
= fθ (

˜ I 
t−1
) + ˆ e 

t (3.1)
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Figure 3.1: Motion-compensated structure used for Quadtree-MDL Codec

A summary of the variables indicated on the block diagram is shown below.

The quantization error 

€ 

q
t  is computed using 

€ 

q
t
= e

t
− ˆ e 

t . The reconstruction error is

given by 

€ 

r
t
= I

t
− ˜ I 

t .  Due to the feedback loop of the DPCM structure, the reconstruction

€ 

I
t  = Current Original Image

€ 

e
t  = Motional Compensated Prediction Error for Current Image = 

€ 

I
t
− fθ (

˜ I 
t−1
)

€ 

ˆ e 
t  = Quantized version of 

€ 

e
t

€ 

fθ (
˜ I 
t−1
) = Motion Compensated Prediction of Current Image

€ 

˜ I 
t  = Reconstructed Image for Current Frame = 

€ 

fθ (
˜ I 
t−1
) + ˆ e 

t

€ 

˜ I 
t−1 = Reconstructed Image for Previous Frame

€ 

θ  = Motion Parameters
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error is equal to the quantization error, accordingly 

€ 

r
t
= q

t .  This relationship holds

provided there is no channel noise.

3.3 Application of the MDL Principle

The suitability of the Minimum Description Length (MDL) principle to motion-based

segmentation and estimation was demonstrated by Zheng and Blostein [57].  In [57]

motion-compensated object/region-based video coding based on the MDL principle was

investigated, using ideal coding gain estimates.   In this thesis, a computationally efficient

codec algorithm is designed which demonstrates the bit-stream performance of a region-

oriented approach utilizing an MDL cost function.

The MDL principle, originally developed by Rissanen [39], minimizes coding cost in

the context of parameter estimation which makes it particularly well-suited for combined

region segmentation, motion estimation, and coding.  A region segmentation procedure

guided by an MDL cost function allows us to inherently consider the optimum trade-off

between motion field information and prediction error.  Thus, the optimization of the cost

function results in a minimization of the required bit-rate for a series of video frames in

terms of prediction error, motion field and region boundaries.

In the estimation problem, we select a parametrically defined statistical model de-

scribed by a probability density function 

€ 

Pθ (x)  for the data x and attempt to estimate the

vector parameter 

€ 

θ = (θ
1
,...,θ

m
)  from observations.  In the equations described in section

3.1.2, the data x represents a 2-D image array, or more specifically the 2-D array of

motion compensated prediction error 

€ 

e
t , described by the probability density function

€ 

Pθ (e
t
) .  The parameters 

€ 

θ = (θ
1
,...,θ

m
)  are motion model parameters, where m is the order
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of the model.  In the design presented in this thesis, the model order m is variable and is

selected during an optimization process described in subsequent sections.  For simplifi-

cation it is sufficient for the time being to consider the model order fixed and the image

€ 

˜ I 
t  consists of a single region encompassing all pixels.  The aim of the MDL principle is

to estimate the parameter vector 

€ 

θ  such that the description length of the frame 

€ 

DL( ˜ I 
t
) is

the shortest among all possible estimates.  The description length of 

€ 

˜ I 
t  is

where 

€ 

DL(e
t
)  is the description length of the MCPE, 

€ 

DL(θ)  is the description length of

the motion parameters, and

€ 

DL(m)  is the description length of the representation of the

integer model order.  In the case where the MCPE is quantized, 

€ 

e
t  is simply replaced by

€ 

ˆ e 
t .

In practice, we segment the image 

€ 

I
t  into many regions that can be as complex as ar-

bitrarily shaped objects to simple fixed block sizes.  In [57] arbitrarily shaped image

segmentations of objects are considered in order to show theoretical gain.  In modern

video coding standards such as H.263, simple fixed blocks are used.  In this thesis, a

trade-off between the two approaches is taken in order to realize significant coding gain,

with a practical encoding algorithm.  In [57], the proposed segmentation algorithm is

decision-directed and is therefore difficult to parallelize.  This work extends the concepts

of [57] by developing a highly parallelizable sub-optimal image segmentation, and we

evaluate the actual bit-stream performance of the codec, as opposed to the theoretical

ideal coding length gain.

We consider N disjoint regions in the frame where b(n) is the boundary of the nth re-

gion. The summation of all N disjoint regions results in the entire image 

€ 

I
t .  That is,

€ 

DL( ˜ I 
t
) = DL(e

t
) + DL(θ) + DL(m) (3.2)
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This leads directly to the separability of the MDL description length function, where the

description length of the entire image 

€ 

˜ I 
t  may be expressed as the summation of the

description lengths of N disjoint regions in a particular segmentation.

Note that a term expressing the description length of the boundary definitions 

€ 

DL(b(n))

has been added.  The objective of the encoding algorithm is to minimize the total de-

scription length within a single region with respect to multiple model orders by using the

MDL criteria to select motion parameters and model order.  Secondly, it is a further

objective to minimize equation (3.4) over all possible image segmentations.  In this

context the description length is considered an estimate of the eventual coding costs of

individual regions, the sum of these costs over all N regions is the coding cost of the

entire frame.  This is particularly well suited in this application due to the final encoding

stage of Figure 3.1 where entropy coding is used to generate bit-stream level codes by

eliminating statistical redundancy.

3.4 Quadtree Optimization

We consider the minimization of the cost function as a discrete-state constrained optimi-

zation problem.  Using this approach, it is possible to hypothesize region partitions and

estimate motion parameters for each disjoint region.  Due to the very large number of

€ 

˜ I 
t = [

n=1

N

∑ f
(θ (n ),b(n ))(

˜ I 
t−1
) + eb(n )

t
]

(3.3)

€ 

DL( ˜ I 
t
) = [

n=1

N

∑ DL(e
b(n )

t
) + DL(θ(n)) + DL(m(n)) + DL(b(n))]

(3.4)
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possible image partitions it is necessary to develop constraints.  Assuming 4-connected

region boundaries, we consider the number of possible connections of pixels, leading to

€ 

2
2N (N−1)  possible states for an NxN image, which is clearly an intractable problem.  First

we can constrain region primitives to be MxM square blocks rather than individual pixels

which reduces the search to 

€ 

2
2
N

M
(
N

M
−1)

 states.

As a practical alternative to [57], this thesis utilizes a multigrid structure to further

reduce the search space.  The region segmentation map is constrained to a quad-tree

structure [42][46][26], an example of which is shown in Figure 3.2.  This greatly reduces

the search space involved for an exhaustive search.  In this simplified case, the number of

states is equal to the number of possible quad-trees which can be found via a recursive

expression 

€ 

S(l) = S(l −1)
4
+1 where 

€ 

S(0) = 0  and 

€ 

l =1,2,...,L  levels.  S represents the

total number of possible states or tree configurations.  An L = 5 level quad-tree (such as

the current implementation) would thus have 

€ 

S = 4.866 ×10
19states.

Figure 3.2: Quadtree Structure
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An efficient quad-tree optimization algorithm has been developed in this thesis that

exploits the separability characteristic of the MDL cost function.  This permits the con-

sideration of each disjoint image segment (defined by the quad-tree) independently to

find the minimum with respect to image segmentation.  The algorithm thus avoids local

minima by first computing coding costs for each quad-tree node and then recursively

merging child nodes into a single parent node.  An optimal solution in terms of image

segmentation is guaranteed by merging all child nodes at the finest grid level guided by

the metric 

€ 

DL(P) ≤ DL(C1) + DL(C2) + DL(C3) + DL(C4)  where 

€ 

DL(P)  and 

€ 

DL(Cn)

are the MDL description lengths for the parent node and child nodes respectively.  This

metric is evaluated for each node of the finest level and then the algorithm progresses to

the next grid level until the top of the tree is reached.  Using this procedure, the number

of cost function evaluations is simply equal to the number of nodes of the full quad-tree

for a fixed number of grid levels L.  The number of nodes residing on each level l of the

quadtree is 

€ 

4
l−1.  The total number of nodes for a full tree is the sum of the number of

nodes residing at each level over all L levels, which is expressed as

This is readily recognized as a finite geometric sum leading to

For a 5-level tree, this yields 341 cost function evaluations.  The complexity of the algo-

rithm is concentrated in C cost function evaluations, each consisting of a motion estima-

€ 

C = 4
l−1

l=1

L

∑ = 40 + 41 + 42 + ...+ 4L−1
(3.5)

€ 

C =
4
L
−1

3

(3.6)
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tion/adaptation stage and the computation of the MDL coding cost for the motion-

compensated prediction error and motion parameters.

3.5  Optimization Algorithm

A fast algorithm has been developed to minimize the MDL cost function.  The optimiza-

tion algorithm consists of two distinct phases: 1) motion estimation and model order

selection, and 2) quadtree merging.  In Phase 1, the coding cost is calculated for each

candidate node of a full quadtree.  The coding cost for each node also requires a motion

estimation/adaptation procedure, where the best motion model order is selected based on

the coding cost.  Differential correction is used in the motion estimation algorithm where

motion parameters propagate up from the finest level (l = L) to the coarsest (l = 1) in

order to initialize the motion estimation algorithm.  At l = L, the finest level, motion

parameters are initialized using block matching, similar to the H.263 video coding stan-

dard.  Motion parameters are computed for all nodes in a fine-to-coarse fashion using

differential correction.  In Phase 2, merge/split decisions are made depending on which

yields the least coding cost.  The merge/split process begins at the next-to-finest grid

level l = L-1 and working up towards the coarsest.  Once the motion parameters and

model orders are selected, this technique guarantees an optimal solution in the image

segmentation, avoiding local minima. An optimal quadtree image segmentation solution

is obtained using only 

€ 

C =
4
L
−1

3
 cost function evaluations within the constraints of the

quadtree.  A diagram describing the flow of the optimization algorithm is shown in Figure

3.3.
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Figure 3.3: Minimization algorithm flowchart.
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Note from Figure 3.3 that the optimization algorithm actually consists of two

phases, 1) the computation of the optimized motion parameters and coding cost for all

nodes in the quadtree, and 2) using the selected motion parameters and model orders for

each node, a recursive split/merge procedure to eliminate segmentation choices that do

not yield the best coding results.  It is important to note that a global optimum is not

found with respect to all possible model orders and image segmentations.  The model

order and parameters are selected for each node independently and prior to the quadtree

merging process.

3.6 Statistical Model of the MCPE

In order to estimate the coding cost of the motion compensated prediction error (MCPE),

a statistical model must be defined for the data.  In section 3.9, the results will show that

a memoryless source model is an accurate representation of the MCPE.  By the very

nature of the prediction process, the MCPE exhibits a characteristic distribution which

allows its modeling as a Laplacian probability density function (PDF).  Hence, an ana-

lytical expression can be derived to estimate the MDL coding cost.  The Laplacian PDF

where σ is the Laplacian standard deviation and x is a realization of the random variable

X, has been shown to closely match the measured PDF of the MCPE [8][31].

Figure 3.4 and Figure 3.5 show the histograms obtained for MCPE results generated

using our Quadtree-MDL codec.  Figure 3.4 shows both the measured PDF for the MCPE

€ 

P(X = x) =
1

2σ
e
−

2 x

σ

(3.7)
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and the theoretical Laplacian PDF based on coding results from frame 730 of the

“Mother-Daughter” standard test sequence.  Similarly, Figure 3.5 shows the same set of

data for frame 40 of the “Miss America” sequence.  By comparing the curves, it is quite

evident that the Laplacian PDF provides a good model of the measured PDF.  Conse-

quently, the Laplacian model is used in the calculation of the MDL coding cost.
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Figure 3.4: Measured and theoretical PDF for MCPE of "Mother-Daughter", frame 730
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3.7 MDL Cost Function

The most challenging aspect of the derivation of the cost function is the component

relating to the estimation of the coding cost of the MCPE, 

€ 

DL(e
b(n )

t
) which corresponds

to the first term in equation (3.2).  Following the procedure of section 2.5,
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Figure 3.5: Measured and theoretical PDF for MCPE of "Miss America", frame 40

In a lossy compression scheme, higher compression is achieved by a coarse quanti-

zation of the MCPE pixel values.  The choice of scalar quantization is greatly influenced

€ 

DL(eb(n )
t
) = −log

2
Pθ (eb(n )

t
) (3.8)
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by the method used for bit-stream encoding.  This work uses a robust procedure for

designing optimum quantizers (in terms of rate-distortion) for variable-length encoding

[55].  To model the MCPE signal, we use a memoryless Laplacian model which is veri-

fied in section 3.9.  Following the procedure outlined by Wood in [55], the optimum

quantizer for the Laplacian model using ideal entropy coding is the uniform quantizer,

and this is used as our choice when selecting quantization parameters.

In the case of our codec, uniform quantization of the Laplacian distribution with a

quantization step size ε is used.  We seek to find the probability of occurance of each of

the quantization levels.  This represents the probability distribution of the quantized

Laplacian PDF, with is used to model the quantized MCPE.  

€ 

e
b(n )

t
(x) represents the

individual pixel values of the MCPE in a particular region, and the quantized Laplacian

distribution is

where uε are the individual values of the quantized MCPE 

€ 

ˆ e 
b(n )

t  and u is the quantization

bin number.  Equation (3.9) assumes a uniform quantizer with a mid-tread design as per

Figure 2.6 with no dead zone. The u=0 case is treated as a separate integration, and after

detailed manipulation we find

€ 

P(uε) =

1

2σ
e
−

2 x

σ dx

uε−
ε

2

uε +
ε

2

∫    if u = 0,±1,±2,...

0                               otherwise

 

 

 
 

 

 
 

 

 

 
 

 

 
 

(3.9)
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We assume that the pixels are modeled as identically distributed independent variables

and hence they are assumed to be uncorrelated.  The joint PDF for the group of pixels

within a particular region Rn is therefore 

€ 

Pθ (eb(n )
t
) = P(uε)

R
n

∏  yielding

The ideal coding length function of the quantized MCPE of each region according to

equation (3.8) is thus

Also,

€ 

P(0) =1−e
−

ε

2σ       u = 0
(3.10)
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P(uε) = sinh
ε

2σ

 
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 
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e
−

2ε u

σ      u > 0
(3.11)

€ 

Pθ (eb(n )
t
) =

1−e
−

ε

2σ

R
n

∏                       u = 0

sinh
ε

2σ

 

  
 

  
e
−

2ε u

σ  
R
n

∏      u > 0

 

 

 
 

 

 
 

 

 

 
 

 

 
 

(3.12)

€ 

DL(eb(n )
t
) =

−log
2

1−e
−

ε

2σ

Rn

∏
 

 
  

 

 
                        u = 0

−log
2

sinh
ε

2σ

 

  
 

  
e
−

2ε u

σ  
Rn

∏
 

 
 
 

 

 
 
      u > 0

 

 

 
 

 

 
 

 

 

 
 

 

 
 

(3.13)

€ 

DL(eb(n )
t
) =

− log
2
1−e

−
ε

2σ
 

 
  

 

 
  

Rn

∑                       u = 0

− log
2
sinh

ε

2σ

 

  
 

  
e
−

2ε u

σ

 

 
 
 

 

 
 
 

Rn

∑      u > 0

 

 

 
 

 

 
 

 

 

 
 

 

 
 

(3.14)



54

Combining into one equation we have,

where we have summations segmented into terms dealing with u=0 and |u|>0 valued

pixels within the nth region in the image Rn.  If the regions are rectangular in shape, as is

the case with our quadtree segmentation, the number of pixels in a region is NxM.  We

can further specify a count for the number of zero valued pixels (after quantization) in the

region as k.  Therefore, there are (NxM – k) non-zero valued pixels.  A further simplifica-

tion then becomes

A statistical model of each motion parameter is also required for estimation of the coding

cost.  The range for each motion model is (-Mj, +Mj) where 2Mj is the span of the jth

motion parameter.  The motion parameters are quantized with a step size of δj for each

parameter which yields 

€ 

2M j

δ j

 levels.  Assuming a uniform distribution for the motion

parameters the coding length becomes

where m is the model order chosen.  The uniform model is essentially worst-case in terms

of coding cost, and a more accurate model may be developed, such as Gaussian that

would reflect the statistical tendency for motion parameters to be small.  However, for
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simplicity, we choose a uniform model for calculating coding cost.  The choice of model

orders can be 0, 2, 4, or 6 parameters and hence 2 bits per region are allocated for DL(m),

which again assumes a uniform probability distribution.  Since the quadtree structure

encoding is a very compact variable length code (1 for merge, 0 for split) its coding

impact is relatively negligible in the context of equation (3.4).

3.8 Motion Estimation

To obtain high compression ratios in the coding of the motion vector fields while keeping

a high prediction quality, an adaptive motion representation is incorporated in the motion

estimation.  A motion model hierarchy is used in a model validation stage consisting of 4

types of models: null (0 parameter), translational (2 parameter), simplified affine (4

parameter), and affine (6 parameter) [9][6].  This model hierarchy is incorporated in the

cost function evaluation and the model leading to the lowest MDL coding cost is se-

lected.  The motion estimation is initialized with block matching at the finest level (level

5) and parameters are propagated in a bottom-up fashion using a median operator.  Levels

1-4 are initialized with the greater of the model orders of the 4 corresponding child nodes.

The 6 parameter model used is referred to as the affine model and can be expressed

as

Where 

€ 

(x,y)
T  are the spatial coordinates.  We can use more meaningful parameters and

rewrite as
€ 

x

y
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 
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(3.18)
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Where sx and sy are the scaling ratios in the x and y directions, θx and θy are the rotation

angles around the x and y axis, and dx and dy are the two components of a translation

vector.  With the affine model rotation, zoom, and nonrigid body motion (such as sheer

motion) can be described.  We can simplify the affine model to 4 parameters, called the

simplified affine model by constraining sx =  sy = s and θx = θy = θ.  The model is then

written as

We can further simplify the model to the translational model which defines motion of an

entity by a translational vector

The translational model assumes that complex motion can be approximated, under certain

conditions, by a sum of infinitesimal translations.  However, this model has some limits

and is not able to cope with complex scenes.

The motion estimation is performed by minimizing the MDL cost function of equa-

tion (3.2) with respect to the motion parameters for a given model order.  The motion

parameters are estimated using the pixels contained within the region boundaries and the

ideal coding length of the region is calculated. Upon inspection of equation (3.16) it is

clear that minimization with respect to motion parameters involves minimization of the
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term 
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u
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∑  which leads to a sum-of-absolute-differences or minimum-absolute-error

criteria.  It is interesting to note that this minimization is equivalent to the familiar maxi-

mum likelihood estimation.   To simplify the calculation, we can consider the estimation

using un-quantized MCPE values rather than the quantized values, which is equivalent in

terms of the minimization process.  Since θ is related only to the image data, we estimate

θ and then calculate the MCPE variance σ
2
 for the region resulting from our motion

parameter estimates.  The variance is then used to calculate the coding cost.

Since the minimum-absolute-error expression is not differentiable, we treat the

problem as a non-linear optimization problem.  The iterative Hooke and Jeeves [15]

algorithm is used for motion estimation in a similar manner as used in generic non-linear

optimization problems.  The Hooke and Jeeves algorithm allows us to directly minimize

the MDL cost function by performing a systematic direct search of the function.  This

method is particularly desirable due to its flexibility and the fact that neither differenti-

able nor continuous functions are required.  This method, known as the pattern search, is

based on a sequence of exploratory and pattern moves, starting at an initial base point.  A

local exploration commences with the evaluation of the cost function at an initial base

point, and two other points removed from it by a predefined step size.  If one of the points

results in a decrease in the cost function, a success is said to result, and the particular

point that produced the success is called a temporary base point.  If neither of the two

points produces a success, the step size for that variable is reduced by half and the explo-

ration is repeated.

The C source code is based on [18] and adapted from the Algol pseudocode found in

[19].  The implementation also includes the improvements suggested in [3] and [50].  The
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Hooke and Jeeves algorithm is supplied with: a) a subroutine that computes the sum-of-

absolute-differences cost for a given set of motion parameters (which depends on the

model order under consideration), b) an initial starting guess (where motion parameters

propagate up from the finest level (l = L) to the coarsest (l = 1)) of the minimum point,

and c) values for the algorithm convergence parameters.  Then the program searches for a

local minimum, beginning from the starting guess, using the direct search algorithm of

Hooke and Jeeves [15].  The algorithm works by taking “steps” from one estimate of a

minimum, to another (hopefully better) estimate.  Taking big steps gets to the minimum

more quickly, at the risk of “stepping right over” an excellent point.  The stepsize is

controlled by a user-supplied parameter called λ.  At each iteration, the stepsize is multi-

plied by λ (0 < λ < 1), so the stepsize is successively reduced.  Larger values of λ give

greater probability of convergence, at a cost of more function evaluations.  Smaller

values of λ reduces the number of evaluations (and the program running time), but in-

creases the risk of non-convergence.  Experiments were conducted with a λ value of 0.3,

which was found to be acceptable by empirical observation. The stepsize is reduced until

it is equal to (or smaller than) η, which was set to 0.001.  So the number of iterations

performed by Hooke-Jeeves is determined by λ and η.

3.9 Motion-compensated prediction

The motion-compensated prediction error (MCPE) is quantized directly and entropy

coded.  Spatial decorrelation techniques such as the DCT are not employed due to the

statistical properties of the MCPE [11][44].  It was shown in [8] that the MCPE cannot be
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modeled by a first-order stationary Markov process.  Since the inter-pixel correlation of

the MCPE is low, the justification for using the DCT is questionable.

Table 3.1 compares typical values of energy and the correlations ρ1 (first order cor-

relation) and ρ2 (second order correlation) of the original images and the motion compen-

sated prediction error images [8].  The measurements were carried out on the video test

sequences “Mobile Calendar”, “Flower Garden”, and “Table Tennis”.

Energy ρ1 ρ2
Mobile Calendar - Original

- MCPE

16201.56

339.85

0.96

-0.11

0.94

-0.12

Table Tennis - Original

- MCPE

15573.33

28.37

0.99

0.18

0.99

-0.02

Flower Garden - Original

- MCPE

36741.32

227.06

0.99

0.34

0.98

-0.03

Table 3.1: Correlation results for  MCPE of various sequences.

It is clear that conventional intraframe coding methods, such as transform tech-

niques, which aim at decorrelating the pixels, perform poorly when applied to the MCPE.

The results also verify that a high order statistical model of the MCPE is not required and

our memoryless source model is sufficient to yield a reasonable approximation of the

coding cost.

3.10 Lossless Bitstream Coding

The coding of quantized MCPE pixels is achieved using adaptive arithmetic coding [54],

initialized using the Laplacian source model mentioned above.  We note that no side

information is required for updating the model.  However, it is necessary to transmit a

small amount of information to signify the motion model order used as well as the seg-

mentation map for the quad-tree which is coded with an efficient variable length code
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represented by a series of bits which indicate termination of a leaf with a “0” and

branching into child nodes by a “1”.  To avoid error propagation, the model is reset

frequently.  The same arithmetic coder, initialized with a uniform model, is used to code

the motion parameters.
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Chapter 4 

Experimental Results

4.1 Introduction

In order to evaluate the performance of the algorithm, a simulation environment was

developed to code and decode standard test sequences in CCIR 601 QCIF 176X144

format.  In order to compare the performance of video coding schemes, the following

comparisons can be made: the reconstructed image quality for a given bit-rate, or con-

versely the bit rate for a given reconstructed image quality.  Ideally, the quality of the

reconstructed sequences should be estimated by subjective quality tests.  However, in

practice, it is evaluated using the peak-signal-to-noise-ratio (PSNR) due to the difficulties

associated with subjective tests.  The PSNR is defined as

where

€ 

x
i
 are the samples of the original signal and
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˜ x 
i
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quality and it is widely used in video coding due to the lack of perceptually reliable visual

quality measures.  Recently, significant advancements have been made in the evaluation

of subjective video quality [53]; however, evaluation tools are not widely available to the

academic community.

Software simulation code was written in ANSI C and carried out on Sun Ultra work-

stations and more recently on an Apple Powerbook G4 personal notebook computer.  The

simulation environment was developed under a Unix based operating system (and Mac

OS X) and compiled using the GNU gcc compiler.

4.2 Software Configuration

A 5-level quad-tree was used with the following block sizes:

• Level 1 – 176X144 (1 block)

• Level 2 – 88X72 (4 blocks)

• Level 3 – 44X36 (16 blocks)

• Level 4 – 22X18 (64 blocks)

• Level 5 – 11X9 (256 blocks)

The quantization step size ε for motion-compensated prediction error coding was selected

at run time based on the desired target bit-rate.  In essence, this is equivalent to fixing the

distortion parameter and optimizing the MDL description length.  This can also be

viewed as a global bit-rate minimization subject to distortion constraints that are fixed by

the quantization step size.  All translational motion parameters were represented to 1/2

pixel resolution and rotational and scaling parameters (4 and 6 order models) are quan-

tized with a step size of 1/16.  The luminance component of the video sequence is coded
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as per the description in Chapter 3, where motion estimation is performed on the previ-

ously reconstructed frame and the current original frame.  The color components were

omitted from the simulation to allow for more flexibility.  This permits a straightforward

process in making system changes with little detriment to the validity of key underlying

principles being tested.  Similarly, the color components are subtracted from any com-

parison simulations used to measure performance against the Quadtree-MDL algorithm.

4.3 Comparison Approach

The result of the optimal Quadtree-MDL algorithm is compared with that of the state-of-

the-art international coding standard ITU-T H.263 [48].  The H.263 codec used for direct

comparison was provided by Telenor Research and the most recent version available was

used for bitstream encoding, which corresponds to Test Model 5 (see Section 2.2.7).  Still

images of the decoded frames of each codec are compared as well as video sequence

movies were compiled to demonstrate the differences in quality versus bit-rate perform-

ance of each codec.

4.4 Simulation Results

4.4.1 “Mother-Daughter” Sequence

The luminance component of the ``Mother-Daughter'' sequence was coded at a frame rate

of 10 frames/sec for a bit-rate of approximately 15 kb/s.  This corresponds to a rate which

is very compatible for two-visual visual communications using ordinary telephone lines,

which is in fact the primary application of the H.263 codec used for comparison.  The
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“Mother-Daughter” sequence consists of 960 frames corresponding to approximately 30

seconds of full motion video.  This sequence was chosen because of its complex motion

and multiple moving objects and serves the basis of a detailed comparison used to evalu-

ate the advantages of the Quadtree-MDL approach.

Figure 4.1a) and b) shows the bit-rate results at 15 kb/s for the “Mother-Daughter”

sequence using Quadtree-MDL and H.263 showing the bit consumption of each frame as

the algorithms progress through the entire sequence.  Figure 4.2 shows the PSNR com-

parison curves for the Quadtree-MDL algorithm versus H.263 for all frames in the se-

quence.  The mean PSNR for the sequence using the Quadtree-MDL algorithm was 36.94

dB versus 33.92 dB for H.263.  This represents an average improvement of 3.02 dB.
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Figure 4.1: Bit-rate results for a) Quadtree-MDL and b) H.263 algorithms.
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Figure 4.2: PSNR comparisons for “Mother-Daughter” using Quadtree-MDL and H.263.

Four separate frames of the “Mother-Daughter” sequence are used for comparison in

order to give a good cross-section of results, as well as a sense for each algorithm’s

strengths and weaknesses.  The decoded images for frame 268 for the Quadtree-MDL and

H.263 algorithms are shown in Figure 4.3.  For frame 268, the decoded result using the

Quadtree-MDL algorithms yields a PSNR of 36.94 dB versus 33.70 dB for H.263.  Frame

268 represents the average performance of Quadtree-MDL.  Note that the PSNR results

correspond to the mean PSNR for the entire sequence of 36.94 dB.
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a) Mother-Daughter, Frame 268

Original Image

b) Mother-Daughter, Frame 268

Decoded Image - Quadtree-MDL

15 kb/s, PSNR = 36.94 dB

c) Mother-Daughter, Frame 268

Decoded Image - H.263

15 kb/s, PSNR = 33.70 dB

Figure 4.3: Original and decoded images for frame 268 of "Mother-Daughter".
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Absolute-error images are shown for each frame in Figure 4.4.  The error images

shown are revealing in that they show the differences in the nature of the distortion

introduced by the Quadtree-MDL and H.263 algorithms.  It is clear that the distortion

related to Quadtree-MDL is concentrated along moving edges in the scene, while H.263

exhibits more evenly distributed distortion throughout the entire image.

a) Mother-Daughter, Frame 268

Error Image - Quadtree-MDL

15 kb/s, PSNR = 36.94 dB

b) Mother-Daughter, Frame 268

Error Image - H.263

15 kb/s, PSNR = 33.70 dB

Figure 4.4: Error Images for decoded frame 268 of "Mother-Daughter".
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In Figure 4.5, Figure 4.6, Figure 4.7, Figure 4.8, Figure 4.9, and Figure 4.10, de-

coded frames from each algorithm are compared in a similar fashion.  The figures corre-

spond to frames 16, 412, and 736 respectively.  Frame 16 represents worst-case results of

the Quadtree-MDL algorithm in the sense that the PSNR is the lowest in the entire se-

quence, at 31.59 dB.  Frame 412 represents the best-case results of the Quadtree-MDL

algorithm where the PSNR is the highest in the sequence, at 47.28 dB.  Finally, frame

736 was chosen because the PSNR of the Quadtree-MDL and H.263 algorithms are

equal, 33.45 dB, and serves as a good comparison point for subjective quality differences.

Table 4.1 shows a summary of the coding results for the selected frames of the “Mother-

Daughter” sequence.

Quadtree-MDL H.263 Condition

Frame 268 36.94 dB 33.70 dB Average

Frame 16 31.59 dB 33.85 dB Worst-case

Frame 412 47.28 dB 33.96 dB Best-case

Frame 736 33.45 dB 33.45 dB Equal

Table 4.1: Coding results of selected frames from "Mother-Daughter" sequence, 15 kb/s.
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a) Mother-Daughter, Frame 16

Original Image

b) Mother-Daughter, Frame 16

Decoded Image - Quadtree-MDL

15 kb/s, PSNR = 31.59 dB

c) Mother-Daughter, Frame 16

Decoded Image - H.263

15 kb/s, PSNR = 33.85 dB

Figure 4.5: Original and decoded images for frame 16 of "Mother-Daughter".
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a) Mother-Daughter, Frame 16

Error Image - Quadtree-MDL

15 kb/s, PSNR = 31.59 dB

b) Mother-Daughter, Frame 16

Error Image - H.263

15 kb/s, PSNR = 33.85 dB

Figure 4.6: Error Images for decoded frame 16 of "Mother-Daughter".
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a) Mother-Daughter, Frame 412

Original Image

b) Mother-Daughter, Frame 412

Decoded Image - Quadtree-MDL

15 kb/s, PSNR = 47.28 dB

c) Mother-Daughter, Frame 412

Decoded Image - H.263

15 kb/s, PSNR = 33.96 dB

Figure 4.7: Original and decoded images for frame 412 of "Mother-Daughter".



72

a) Mother-Daughter, Frame 412

Error Image - Quadtree-MDL

15 kb/s, PSNR = 47.28 dB

b) Mother-Daughter, Frame 412

Error Image - H.263

15 kb/s, PSNR = 33.96 dB

Figure 4.8: Error Images for decoded frame 412 of "Mother-Daughter".
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a) Mother-Daughter, Frame 736

Original Image

b) Mother-Daughter, Frame 736

Decoded Image - Quadtree-MDL

15 kb/s, PSNR = 33.45 dB

c) Mother-Daughter, Frame 736

Decoded Image - H.263

15 kb/s, PSNR = 33.45 dB

Figure 4.9: Original and decoded images for frame 736 of "Mother-Daughter".
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a) Mother-Daughter, Frame 736

Error Image - Quadtree-MDL

15 kb/s, PSNR = 33.45 dB

b) Mother-Daughter, Frame 736

Error Image - H.263

15 kb/s, PSNR = 33.45 dB

Figure 4.10: Error Images for decoded frame 736 of "Mother-Daughter".
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A magnified section of “Mother-Daughter” is shown in Figure 4.11 showing more

clearly the nature of distortion introduced by each algorithm for frame 736.  Note the

“salt and pepper” distortion in Figure 4.11(a) and the sharpness of the remaining regions.

In Figure 4.11(b), the distortion it evenly distributed through the image causing an overall

blurring effect as well as blocking artifacts.

a) Mother-Daughter, Frame 736

ZOOM - Quadtree-MDL

15 kb/s, PSNR = 33.45 dB

b) Mother-Daughter, Frame 736

ZOOM – H.263

15 kb/s, PSNR = 33.45 dB

Figure 4.11: Magnified section of "Mother-Daughter" frame 736

4.4.2 “Suzie” Sequence

The luminance component of the “Suzie” sequence was coded at a frame rate of 10

frames/sec yielding a bit-rate of approximately 10 kb/s. The “Suzie” sequence consists of

150 frames and contains a single moving object with very rapid motion.  Figure 4.12
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shows the PSNR comparison curves for the Quadtree-MDL algorithm versus H.263 for

all frames in the sequence.  The mean PSNR for the sequence using the Quadtree-MDL

algorithm was 34.62 dB versus 32.73 dB for H.263.  This represents an average im-

provement of 1.89 dB.  The decoded images for frame 16 for the Quadtree-MDL and

H.263 algorithms are shown in Figure 4.13.  For frame 16, the decoded result using the

Quadtree-MDL algorithms yields a PSNR of 34.65 dB versus 32.74 dB for H.263.  Frame

16 represents the average performance of Quadtree-MDL. The PSNR results correspond

closely to the mean PSNR for the entire sequence of 34.62 dB. Absolute error images for

the “Suzie” sequence are shown in Figure 4.14.
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Figure 4.12: PSNR comparisons for “Suzie” using Quadtree-MDL and H.263.
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a) Suzie, Frame 16

Original Image

b) Suzie, Frame 16

Decoded Image - Quadtree-MDL

10 kb/s, PSNR = 34.65 dB

c) Suzie, Frame 16

Decoded Image - H.263

10 kb/s, PSNR = 32.74 dB

Figure 4.13: Original and decoded images for frame 16 of "Suzie".
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a) Suzie, Frame 16

Error Image - Quadtree-MDL

10 kb/s, PSNR = 34.65 dB

b) Suzie, Frame 16

Error Image - H.263

10 kb/s, PSNR = 32.74 dB

Figure 4.14: Error Images for decoded frame 16 of "Suzie".

4.4.3 “Miss America” Sequence

The luminance component of the “Miss America” sequence was coded at a frame rate of

10 frames/sec yielding a bit-rate of approximately 7.5 kb/s. The “Miss America” se-

quence consists of 150 frames and contains a single moving object with slow, simple

motion.  Figure 4.15 shows the PSNR comparison curves for the Quadtree-MDL algo-

rithm versus H.263 for all frames in the sequence.  The mean PSNR for the sequence
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using the Quadtree-MDL algorithm was 39.56 dB versus 37.09 dB for H.263, for an

average improvement of 2.47 dB.  The decoded images for frame 43 for the Quadtree-

MDL and H.263 algorithms are shown in Figure 4.16.  For frame 43, the decoded result

using the Quadtree-MDL algorithms yields a PSNR of 39.42 dB versus 37.24 dB for

H.263.  Frame 43 represents the average performance of Quadtree-MDL. The PSNR

results correspond closely to the mean PSNR for the entire sequence of 39.56 dB. Abso-

lute error images for the “Miss America” sequence are shown in Figure 4.17.  Finally, a

typical quadtree segmentation with selected motion model orders is shown in Figure 4.18

20 40 60 80 100 120 140
36

37

38

39

40

41

42

43
Miss America − 7.5 kb/s

Frame Number

P
S

N
R

 (
dB

)

Quadtree−MDL
H.263

Figure 4.15: PSNR comparisons for “Miss America” using Quadtree-MDL and H.263.
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a) Miss America, Frame 43

Original Image

b) Miss America, Frame 43

Decoded Image - Quadtree-MDL

7.5 kb/s, PSNR = 39.42dB

c) Miss America, Frame 43

Decoded Image - H.263

7.5 kb/s, PSNR = 37.24 dB

Figure 4.16: Original and decoded images for frame 43 of "Miss America".
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a) Miss America, Frame 43

Error Image - Quadtree-MDL

7.5 kb/s, PSNR = 39.42 dB

b) Miss America, Frame 43

Error Image – H.263

7.5 kb/s, PSNR = 37.24 dB

Figure 4.17: Error Images for decoded frame 43 of "Miss America".
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Figure 4.18: Typical quadtree decomposition and selected motion model orders for Miss

America, Frame 73

4.5 Cost Function Validation

The accuracy of the MDL cost function plays an important role in ensuring the region

segmentation procedure leads to an optimal solution.  Therefore the result of equation

(3.4) during the encoding process was compared with the actual coding length achieved

using arithmetic coding at the bitstream level.  The theoretical and actual coding lengths

are shown in Figure 4.19 for each frame of the “Miss America” sequence.  The MDL cost

function tracks quite closely to the actual with excellent proportionality.  The mean

coding length for the MDL cost function was 633 bits per frame, while the actual coding
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length had a mean of 613 bits per frame.  The result of the MDL cost function is within

3.3%, on average, of the actual coding length obtained.  Some differences can be ex-

pected due to the approximation of the Laplacian PDF used to model the MCPE as well

as inaccuracies in estimating the variance of each region.
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Figure 4.19: "Miss America" sequence; comparison of MDL cost function estimate

versus actual coding costs from arithmetic coding.
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4.6 Artifacts and Loop Filtering

It can be observed from Figure 4.11 that the nature of the distortion left by the Quadtree-

MDL algorithm is quite different from that of H.263.  Due to the DCT used in the H.263

algorithm, distortion permeates the entire scene and at low bit rates, the blocking artifacts

and “mosquito” effects can be quite prominent [36][43].  The distortion related to Quad-

tree-MDL is primarily concentrated on moving edges resulting in “salt and pepper”

distortion.  The background regions and areas where there is little motion are recon-

structed with excellent quality as compared to the original.  Even when the PSNR is the

same for each algorithm, there are marked differences in the visual appearance of each.

The Quadtree-MDL results in sharper video, yielding more detail while H.263 has a

blurred, blocky look.  However, in some respects, the “salt and pepper” distortion of

Quadtree-MDL can be more noticeable due to the rapid change in pixel value (high

frequency spikes or impulse noise).

It is important to note that it is a relatively simple task to combat the impulse noise

created by the Quadtree-MDL encoding by using the proper filtering technique.  Because

the filtering would be carried out during the encoding process, it becomes part of the

structure of the encoder itself, and is therefore referred to as a loop filter [34][5].  In order

to verify the potential of such a filter, experiments were conducted on the “Mother-

Daughter” sequence.  It was found that a median filter was most effective.  The median

filter is often used to remote “shot” noise, pixel dropouts and other spurious features of

single pixel extent while preserving overall image quality [17][23].  In contrast, low pass

filters would only blur the noise instead of removing it.  Furthermore, a mask can be used

to prevent filtering areas of the image unnecessarily.  By using a mask, image sharpness
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can be maintained for background areas and areas with low motion.  An efficient mask

can be constructed by using a threshold on the MCPE.  This allows us to perform region-

of-interest filtering in areas where the prediction error is large which corresponds well to

areas where impulse noise is likely to occur.  A 3X3 median filter was implemented and

applied to a region-of-interest mask.  The unfiltered image corresponding to frame 736 of

“Mother-Daughter” sequence in shown in Figure 4.20(a).  The region-of-interest mask is

shown in Figure 4.20(b) that corresponds to areas with large prediction error.  The result

of the median filter is shown in Figure 4.20(c).  A PSNR improvement of 0.27 dB was

observed, but it is evident that the improvement in perceptual quality is far greater.  The

“salt and pepper” noise is much less noticeable while the rest of the image retains its

sharpness.
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a) Mother-Daughter, Frame 736

Decoded Image – Quadtree-MDL

15 kb/s, PSNR = 33.45 dB

b) Mother-Daughter, Frame 736

Region-Of-Interest Mask

c) Mother-Daughter, Frame 736

3X3 Median Filtered Image

15 kb/s, PSNR = 33.72 dB

Figure 4.20: Results of median filter on frame 736 of "Mother-Daughter".
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4.7 Conclusions

The potential improvements using the concepts presented in this thesis were demon-

strated by comparing the performance versus the state-of-the-art H.263 encoder.  An

average quality improvement in terms of PSNR of 2-3 dB can be obtained depending on

the scene content.  It was also shown that the image sharpness of the Quadtree-MDL

algorithm is much improved for background and low motion areas.  Impulse noise is

typical with Quadtree-MDL at low bit rates, which can be quite noticeable.  The impulse

noise can be filtered using a median filter resulting in much improved perceptual quality.

It is important to note that the H.263 encoder undergoes constant improvement as the

standardization body engages in a continuous improvement program.  The comparisons

in this thesis are based on the most recent software code available for academic use,

TMN5, whereas the most recent test model is TMN11 [49], and the results obtained from

TMN11 are sure to be significantly improved.  However, it is equally important to note

that H.263 contains a large number of small optimizations based on the experiences of

those participating in the standardization process.  The work presented in this thesis

represents the validation of theoretical concepts as opposed to an attempt to implement a

commercially viable encoder.  Therefore, it can be expected that as the Quadtree-MDL

algorithm matures similar incremental improvements can be achieved.
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Chapter 5 

Summary and Conclusions

This chapter summarizes the material in the previous chapters.  This research proposes a

novel video coding algorithm which can be viewed as an extension of state-of-the-art

video coding standards.  The objective was to design and test a bitstream codec in order

to verify the feasibility of the proposed approach.  Based on extensive simulation, we are

able to draw conclusions as summarized in this chapter.  Also, suggestions for further

research are discussed.

5.1 Summary of Contributions

1. A novel approach is proposed for finding sub-optimal image segmentations

achieving bit-rate minimization applied to efficient coding of digital video se-

quences.  In this work, a computationally efficient codec algorithm has been de-

signed that demonstrates the bit-stream performance of a region-oriented ap-

proach.  The quadtree approach has allowed a global minimum to be achieved

with respect to image segmentation while minimizing the number of cost function

evaluations required.  This results in an improvement over existing video coding
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standards by avoiding overly simplistic region segmentation, while maintaining

practicality.

2. Several possible extensions of first generation video coding standards are pro-

posed such as variable region segmentation, higher order motion models, and bit-

rate minimization.  This leads to improved video quality at low bit rates.  It was

shown that at least a 2-3 dB improvement in PSNR is possible compared to the

H.263 video coding standard under TMN5 [48].  A video codec structure is pre-

sented and justified by theoretical analysis.  A cost function formulation is shown

along with a minimization procedure to achieve bit-rate optimization.

3. A software based video codec was designed to evaluate the performance of the

new codec and serve as a basis for future experimentation.  The performance of

the codec is evaluated against modern videoconferencing standards, namely

H.263.  Tests were performed on three separate video sequences to demonstrate

the performance under varying conditions.  The performance was verified at 15,

10 and 7.5 kb/s which correspond to bit-rates which are in the range required for

videoconferencing using standard telephone lines.  The nature of distortion intro-

duced with each algorithm was evaluated.  An approach to dealing with the dis-

tortion related to Quadtree-MDL was presented and verified, where a median fil-

ter resulted in a 0.27 dB improvement in PSNR with even greater improvement

based on subjective observation.

4. The software implementation used had a computation time of approximately 20

seconds per frame on an Apple Powerbook G4 notebook computer.  Due to the
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separability of  the MDL cost function, the region-oriented video coding approach

taken in this thesis is shown to be highly parallelizable, potentially leading to fast

hardware implementation, such as the approach taken in [51].

5.2 Suggestions for Further Research

Based on the results presented in this thesis, we recommend the following areas for

further research:

1. In this thesis, an independent software codec was developed without regard to bit-

stream compatibility with existing video coding standards.  Further work would

be required in analyzing the bitstream syntax of standards such as H.263 com-

pared to that of Quadtree-MDL to determine if some level of compatibility can be

achieved with the fewest possible changes to existing standards.

2.  A more direct comparison of particular features of the Quadtree-MDL algorithm

with H.263 is needed in order to achieve fair comparisons of individual features

that would lead to a series of practical optimizations.  Furthermore, a current im-

plementation of the latest test model (TMN11) [49] should be used to evaluate the

performance of each algorithm.

3. An analysis should be performed on the computational aspects of the Quadtree-

MDL algorithm with a view towards accelerating the software computation time.

The motion estimation algorithm currently uses a direct search method, which is

effective but too slow for real-time implementation.  A more efficient method
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needs to be found to minimize the mean-absolute-error metric for multiple motion

model orders.

4. Different tree structures require experimentation to implement smaller block sizes

to allow for finer region segmentation.  Deviation from the strict quadtree struc-

ture may be explored in order to more closely match the region segmentation with

actual objects in the scene without a large in increase in the overhead requirement.

5. Motion vector initialization can be improved through temporal linking and deter-

ministic relaxation.

6. Perceptually weighted quantization represents on interesting area of research that

can be used to improve the performance of the Quadtree-MDL algorithm.  Noise

shaping can be used which fits the reconstruction noise specturn to the frequency

characteristics of the human visual system such that larger quantization errors are

permitted without visible distortion [12].

7. The quadtree structure may lend itself to unequal error protection schemes that

could be used to modify the existing work to allow for wireless channel transmis-

sion.  Further investigation is required to evaluate this potential.

8. Hardware implementation methods should be explored, such as those presented in

[51] which outlines the design of processing elements that can be implemented on

an application specific integrated circuit for real-time implementation for applica-

tions such as videophones and wireless terminals.
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9. Extensions of the MDL principle should be examined within the context of video

coding.  One approach is to consider how the MDL principle might apply to the

case when the requirement for lossless coding is relaxed (lossy compression).

Recent work in [21][22] has considered the connection between the MDL princi-

ple and rate-distortion theory, and applications to VQ- based image coding.  Fur-

ther research is required to apply the lossy-MDL principal to moving video se-

quences.
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