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Abstract

As the 900MHz cellular subscriber population continues to grow at a rapid pace, ser-
vice providers have to find new methods of enhancing system capacity and coverage.
This is also true for the operators of the recent 1.9 GHz Personal Communications
Systems (PCS). An antenna array at the base station may be incorporated in future
systems for increasing system capacity. Digital beamforming based on antenna ar-
rays will be one key technique in fulfilling this task. In beamforming, we multiply
a complex-valued weighting vector to the outputs of antenna array and sum these
outputs to generate a signal for each user. As each user will have a unique weight, we
can select the weights to greatly decrease interference from other users, and therefore
increase system capacity.

Using a base station antenna array in cellular code-division multiple-access (CDMA)
communications systems can potentially increase system capacity several-fold. Beam-
forming shows great potential for improving signal-to-interference-noise ratios (SINR)
which in turn increases cell capacity. To perform optimum SINR beamforming, we
need to estimate an array response vector and an interference-noise (IN) covariance
matrix. Currently, estimation of the IN covariance matrix for optimum beamforming
requires great computational cost. As a result, sub-optimum beamforming (maximum
SNR) is used which does not require the IN matrix. However, when the number of
users is not very large and the distribution of users is not uniform, there is a large
gap between maximum SINR and maximum SNR beamforming performance. We
propose a direct signal cancellation method to estimate the interference-noise covari-
ance matrix which increases the SINR and decreases computation compared with
previous work in this area. This new algorithm potentially increases system capacity

and coverage. Since DOA estimation of mobiles is also improved, the method can
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potentially be applied to transmit beamforming in the downlink to further increase
system capacity.

The combined effect of estimate error from finite-sample data, interference and
thermal noise in a generic DS-CDMA cellular system was analytically determined. We
quantify how finite-sample errors in the estimation in both the array response and
MAT covariance matrices affect system SINR. As an application of the above results,
we consider our proposed optimum beamforming algorithm. We show that finite-
sample estimation errors in the array response vector are independent of multi-access
interference errors in this algorithm.

In a cellular CDMA communication system, there are two links in the system: the
uplink and the downlink. The downlink refers to that from the base station to the
mobile. As the capacity is only partially determined by the uplink, we also address
the downlink. One expensive solution to improving downlink capacity is to perform
beamforming at each mobile [75]. Alternatively,in [71, 52, 51], researchers have shown
that capacity can be improved with transmitting antenna array at the base station.
In this thesis we consider a transmitting antenna array at the base station and a single
antenna at the mobile.  In order to perform downlink beamforming, we need to know
the downlink channel vectors for all the users in the same cell. For the uplink, the
base station can estimate the channel vector for the mobile, there is no such inherent
feedback for the downlink. Therefore, the key problem in the downlink is how to
estimate downlink channel vector. We present a novel approach for downlink channel
estimation through the feedforward method. This has not been proposed for CDMA
systems previously. The proposed algorithm estimates downlink channel vectors much
more accurately and reduces the amount of transmission overhead. Therefore, the

overall system capacity may be increased.

i1



Acknowledgements

I would like to thank my supervisor, Dr. Steven D. Blostein, for his excellent guidance,
encouragement and support during my time at Queen’s. His guidance makes me go
beyond what I might have previously considered my limits and finish this thesis in
less than one and half years.

I would like to thank my committee members, Dr. S.G. Akl, Dr. P.J. McLane and
Dr. C.Zarowski for carefully reviewing my thesis and providing useful suggestions.

To all of the friends and colleagues I have had over the past year, thanks for all of
the good times and assistance, both technical and non-technical. Special thanks for
Wan-Yi (Wemby) Shiu for her simulation program and Geoff Colman for his assistance
in language usage.

I would like to thank my parents and other family members for their support and
encouragement throughout my life.

I would like to thank my wife, Lijia, for her patience, understanding and support
through my study here.

This work was supported by the Canadian Institute for Telecommunications Re-

search and the School of Graduate Studies and Research at QQueen’s University.

v



Contents

Abstract i
Acknowledgements v
List of Tables X
List of Figures X
List of Symbols X111
1 Introduction 1
1.1 Motivation . . . . . . . .o Lo 1
1.2 Summary of contributions . . . . . .. ... o000 2
1.3 Thesisoutline . . . . . . . ... 3

2 DS-CDMA system model 4
2.1 Introduction . . . . .. .o 4
2.2 DS-CDMA uplink and downlink data model . . . . .. .. ... ... 7
2.3 Channel model in a cellular system . . . . .. ... ... ... .... 12
2.3.1 Path loss in a cellular system . . . .. ... .. .. ... ... 12

2.3.2 Shadowing effect . . . . .. ..o oo 13

2.3.3  Fast fading in a cellular system . . .. ... ... .. .. ... 15

2.4 Beamforming and antenna arrays . . . . . .. ... ... 20
2.4.1 Multiple antenna array vs a single antenna . . . . . .. .. .. 20

2.4.2  Array response vector . . . .. ... ... 21

2.4.3 Beamforming . . . ... .. oo 25



2.5

SUMIMATY  « + v v v e v e e e e e e e e e e e e 29

3 Using Signal Cancellation for Optimum Beamforming in a Cellular

CDMA System 30
3.1 Introduction . . . . . . ..o 30
3.2 Systemmodel . . . ..o 31
3.3 Signal cancellation algorithm . . . . .. .. .. ... . 0. 32

3.3.1 Codefiltering . . . .. . ... o 32
3.3.2  Signal cancellation . . . .. ... 0000 32
3.4  Finite-sample performance . . . . . .. ... L oo 34
3.5 Computational requirements comparison . . . . .. .. .. ... ... 36
3.6 Numerical and simulation results . . . . . .. .. ... ... 37
3.7 Conclusions . . . . .. . 41

4 The Effect of Antenna Array Beamforming Errors on DS-CDMA

Communication Systems 42
4.1 Introduction . . . . . . . . L 42
4.2 Error analysis formulation . . . . . . ... .. ... ... ... 44
4.3  Analysis of covariance matrix errors . . . . . . ... L. 46

4.3.1 Expected noise plus interference power . . . . . ... ... .. 46
4.3.2  Expected signal power . . . ... ..o 48
4.3.3 Perturbed SINR . . . . . . .. ... 48
4.4 Analysis of combined covariance and array response errors . . . . . . 49
4.4.1 Expected signal power . . . .. ... 000 50
4.4.2 Expected noise plus interference power . . . . . . ... .. .. 51
4.4.3 Perturbed output SINR . . . . .. .. ... ... ... ... 52
4.5 Application to maximum SIN R beamforming . . . . . ... ... .. 53
4.6 Numerical results and simulations . . . . . .. ... .. ... ..... 55
4.7 Conclusion . . . . . . . . L 63

5 A Feedforward Approach to Downlink Beamforming 64
5.1 Introduction . . . . .. . oo 64
5.2 Related research . . . . . . . ... o 65

vi



5.3 Relationship between uplink and downlink channels . . . . . . .. .. 66
5.3.1 Channel subspace invariance between the uplink and downlink 66

5.3.2 Instantaneous relationship between the uplink and downlink

channel gain . . . . ... . oL oL 68

5.4 Downlink beamforming problem formulation . . . . .. ... ... .. 70
5.4.1 FEffect of uncorrelated noise . . . . . ... 72

5.5 A feedforward approach for downlink channel estimation . . . . . .. T4
5.5.1 Using MMSE to estimate the initial channel vector . . . . .. T4
5.5.2  Recursive updating channel vector estimates . . . . . . . . .. 75
5.5.3 Implementation issues in the RLS algorithm . . . . .. .. .. 79
5.5.4 Numerical and simulation results . . . .. ... .. ... ... 82

5.5.4.1  The relative change of the downlink beamforming weights 82
5.5.4.2  Ill-conditioning due to slow change in the weight se-

QUENCE . . . v v v e e e e e e e 87

5.6 A perturbation RLS algorithm (PRLS) . . .. ... ... ... . ... 91

5.6.1 PRLS algorithm . . . . . .. ... ... oL 91

5.6.2 FEffects of the perturbation . . . . . . ... ... ... ... .. 94

5.6.3 SNRloss due to the PRLS algorithm . . . ... .. ... ... 95

5.6.4 Numerical and simulation results . . . .. ... .. ... ... 96

5.6.5 Computation complexity of the PRLS algorithm . . . . . . .. 113

5.7 Application and Comparison . . . . . . . . . ... 115

5.7.1 Application to TDMA and FDMA system . . . .. .. .. .. 115
5.7.2  Comparison of feedforward and feedback downlink channel es-

timation . . . . . . oL Lo 115

5.7.2.1  Uplink comparison . . . . ... ... ... ... ... 115

5.7.2.2  Downlink comparison . . .. ... .. ... ... .. 116

5.8 Conclusion . . . . . .. . 117

Summary and Conclusions 118

6.1 Introduction . . . . .. . .. 118

6.2 Summary of contributions . . . .. ... L oL 118

6.3 Conclusions . . . . .. ... 119

vii



6.4 TFuture directions
Bibliography

Vita

viii



List of Tables

3.1 Computational requirements between the code-filtering method and

the proposed signal cancellation method in terms of flops . . . . . ..

5.1 Computational complexity of the PRLS algorithm . . . . . .. .. ..

5.2 Comparison between Gerlach’s method and proposed method . . . . .

X



List

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

2.10

2.11
2.12

2.13
2.14
2.15
2.16

3.1
3.2

of Figures

Conceptual uplink transmitter model at the mobile . . . . .. .. ..
Conceptual uplink receiver model at the base station . . . .. .. ..
Spreading in the uplink . . . . . . ... ... 0 oo
Despreading at the base station . . . . .. .. ... .. ... ... ..
Autocorrelation function of a PN sequence . . . . . .. .. ... ...
Lognormal distribution with unity variance . . . . . .. .. .. .. ..
Doppler spectrum of a moving mobile . . . . . .. ... ...
A typical fading signal . . . .. ..o oo
An expanded view of the typical fading amplitude: relatively stable

variation over several symbols with a speed of 25km/h . . . . .. ..

An expanded view of the typical fading amplitude: relatively stable

variation over several symbols with a speed of 100km/h . . . . . . ..
Circular antenna array . . . . . . . .. .. ..o

An illustration of a plane wave incident on a uniformly spaced linear

Circular array radiation pattern with DOA0° . . . .. .. ... ...
ULA radiation pattern with DOA 20° . . . . ... ... .. ... ...
ULA radiation pattern with DOA0° . . .. ... ... .. ... ...

Conceptual Signal cancellation algorithm . . . .. ... ... ... ..

DOA of path 1 for 5 antenna elements and 25 mobiles each with 3

multipaths . . . . . ..

oo =1 ot Ot



3.3

4.1
4.2
4.3

4.4

4.5

4.6

5.1
5.2

3.3
5.4

3.5

5.6
5.7

5.8
3.9
5.10

5.11

Output SINR for 5 antenna elements and 25 mobiles each with 3 mul-
tipaths . . . . . e

Output SINR with respect to errors in the M Al matrix . ... ...
Output SINR with respect to errors in the array response vector

Output SINR with respect to errors in the M Al matrix and the array

response vector: array response error —5dB . . ... ... L.

Output SINR with respect to errors in the M Al matrix and the array

response vector: array response error —10dB . . . . ... ...

Output SINR with respect to errors in the M Al matrix and the array

response vector: array response error —15dB . . . . .. ...

Output SINR with respect to errors in the M Al matrix and the array

response vector . . . . .. . e e e e e

The correlation between instantaneous uplink and downlink channel gain 69

Summary of the RLS algorithm for estimating the kth mobile’s down-

link channel vector . . . . . . . .. .o
Third-order fading channel model . . . . . . . .. ... .. ... ...

Relative change of the principal eigenvector for different speed ranges.

The vertical axis plots pyeignei IndB. .00 00000000000

Relative change of the principal eigenvector for different number of

users. The vertical axis plots pyeigne; indB. o 00000000
Using RLS algorithm to estimate the channel vector: stationary case

Using RLS algorithm to estimate the channel vector: the weights re-

placed by a sequence of Gaussian random vectors . . . . ... .. ..
Interaction between the base station and mobiles . . . . . .. .. ..
Interaction between the base station and mobile for PRLS algorithm

Using the PRLS algorithm to estimate the channel vector for 30 users
and the speed range 0 ~50 Km/h . . . .. .. ... ...

Using the PRLS algorithm to estimate DOA for 30 users and the speed
range 0 ~50 Km/h . . .. .. .. o oo o

xi

78
83

89

86
88

89
90
93

98



5.12

5.13

5.14

5.15

5.16

5.17

5.18

5.19

5.20

5.21

5.22

5.23

5.24

5.25

Using the PRLS algorithm to estimate the channel vector for 50 users
and the speed range 0 ~50 Km/h . . . .. .. ... ...
Using the PRLS algorithm to estimate DOA for 50 users and the speed
range 0 ~50 Km/h . . .. .. .. o oo o
Using the PRLS algorithm to estimate the channel vector for 80 users
and the speed range 0 ~50 Km/h . . . .. .. ... ...
Using the PRLS algorithm to estimate DOA for 80 users and the speed
range 0 ~50 Km/h . . .. .. .. o oo o
Using the PRLS algorithm to estimate the channel vector for 50 users
and the speed range 0 ~80 Km/h . . . .. .. ... ... ... ...
Using the PRLS algorithm to DOA for 50 users and the speed range
0~80 Km/h . ...
Using the PRLS algorithm to estimate the channel vector for 80 users
and the speed range 0 ~80 Km/h . . . .. .. ... ... ... ...
Using the PRLS algorithm to estimate the channel vector for 80 users
and the speed range 0 ~80 Km/h . . . .. .. ... ... ... ...
Using the PRLS algorithm to estimate the channel vector for 30 users
and the speed range 0 ~50 Km/h . . . .. .. ... ...
Using the PRLS algorithm to estimate the channel vector for 50 users
and the speed range 0 ~50 Km/h . . . .. .. ... ...
Using the PRLS algorithm to estimate the channel vector for 80 users
and the speed range 0 ~50 Km/h . . . .. .. ... ...
Using the PRLS algorithm to estimate the channel vector for 50 users
and the speed range 0 ~80 Km/h . . . .. .. ... ... ... ...
Using the PRLS algorithm to estimate the channel vector for 80 users
and the speed range 0 ~80 Km/h . . . .. .. ... ... ... ...
Summary of the PRLS algorithm for estimating the kth mobile’s down-

link channel vector . . . . . . . . . . . . .

xii



List of Symbols

E expectation

R interterference plus noise matrix
© angle

rr scalar signal

Fy radiation gain

s desired signal

d space between antennas

A wavelenght of carrier

Kula constant

Keireular constant

~ angle

f frequency

d(f) doppler spectrum

fa doppler frequency

i mean value

7 constant

p(x) probability density

AWGN additive white Gaussian noise
R correlation

ULA uniformly spaced linear array
CDMA code division multiple access
E,/N, signal energy to interference plus noise density ration

u a real variable

x1il



S€Nmatrix

S€Narray
n

K

d

F
T

o

b oo oo

O O °

BPSK
Var

o =

AN

a vector
a vector
a vector
a vector
a vector

sensitivity of signal to noise ratio with respect to covari-
ance error

sensitivity of signal to noise ratio with respect to array
vector error

approximation

small error vector

constant

differential symbol

matrix

transpose of a matrix

Euclidean norm

vector

perturbed vector

Trace of matrix

error matrix

perturbation matrix

interference plus noise covariance matrix
estimated interference plus noise covariance matrix
perturbation variance of weights

perturbation variance of array vector

Kronecker delta

binary phase shift keying

variance

autocorrelation function of interference plus noise
distribution symbol

autocorrelation function of interference plus noise

constant

x1v



H R = g = = =~ = KX <

constant

normalized SINR

normalized SINR

perturbed SINR due to weights error

perturbed SINR due to covariance error and array error
perturbed SINR due to array error

constant

interference plus noise covariance

true interference plus noise covariance

a new PN sequence

consant

consant

autocorrelation function of input signal
autocorrelation function of input signal

post autocorrelation function of despreading signal

maximum likelihood estimated post autocorrelation func-
tion of despreading signal

post autocorrelation function of despreading signal

maximum likelihood estimated post autocorrelation func-
tion of despreading signal

despreading signal
despreading signal
spreading signal
integration
spreading gain
angle of arrival
estimated angle of arrival
Normal distribution
infinite

time limited pulse
chip period

stacked positive and negative sign

XV



c
SINR
SINR,...
SINR, .00
IN

t

X

r

rup(m)

a (Gk,l, wup)
Bupsea(m Ty, wyp)
b (mTy — 73,1)
a

ag(mTy, wyy)
Uy (mTy)

dy,

Ok,

Pseudo noise sequence

Signal to noise plus interference ratio
optimum signal to noise plus interference ratio
optimum signal to noise plus interference ratio
interfence plus noise matrix

time index

uplink baseband received signal

received vector signal

uplink received vector signal from mth mobile at the base

station

uplink array response vector for kth user’ Ith path

uplink channel gain for kth user’ Ith path
symbol for kth user’s Ith path

complex gain

uplink fast fading gain for kth user’s Ith path
shadowing of mth symbol of kth user’s I1th path
distance between kth user and the base station
Direction of arrival for Ith path of kth user
time delay

relative delay of kth user’s 1th path

relative delay between ith user and jth user
relative delay between ith user and kth user
relative delay between ith user and Ith user
relative delay between ith user itself

symbol period

uplink carrier frequency

downlink carrier frequency

path loss index

total number of scatters for kth user’ Ith path
path index

constant gain

complex reflection coefficiency of ith scatter

xXVi



m

Tup,Br 1

T down, k1

Wi,

ag (Gk,l, wdown)
Baown, k1 (M Ty, Waown )
ag (M Ty, Wdown )

O-doum,ﬁkyl

Tmax

a

a

speed of the mobile
speed of the light

angle between the motion direction of the mobile and the
ith local scatter
index of the symbol

variance of the uplink channel gain for lth path of kth
user
downlink received signal of 1th path of kth user

weight vector for 1th path of kth user

downlink array response vector for 1th path of kth user
downlink channel gain of 1th path of kth user
downlink fast fading gain of 1th path of kth user

variance of the downlink channel gain for Ith path of kth
user
maximum delay in the city

array response vector

estimated array response vector

downlink received signal for kth user
weights vector

weights for ith user

weights for ith user

perturbated downlink weights

weights for ith user

weights for ith user

downlink beamforming weights for jth user
downlink beamforming weights for kth user
symbol for a user

downlink symbol for kth user

downlink symbol for Ith user

symbol for jth user

symbol for ith user

downlink beamforming total weights

downlink demodulated symbol for kth user

xXvil



Yk

Yk,p
BER

SNR
SNR;
SNR,,
SNRprrs
SNRprLs

PPRLS

q

T vTT

lae)

N

Pijear
Wideal
Pestimate
Westimate

PSNR
Ny
(s

[

A

g

ymmse

downlink positive constant

downlink output of the correlator of kth user
perturbed downlink output of the correlator of kth user
downlink bit error rate

signal to noise ratio

downlink signal-to-noise ration for kth user
perturbed signal to noise ratio for kth user
signal to noise ratio due to PRLS

simplied signal to noise ratio due to PRLS
relative simplied signal to noise ratio due to PRLS
downlink thermal noise variance

downlink transmitted power

power of the signal

transmitted power for jth user

transmitted power for ith user

transmitted power for Ith user

total number of users

downlink ideal scatter matrix

downlink ideal weights

downlink estimated scatter matrix

downlink estimated weights

downlink signal-to-noise normalization
downlink noise vector for kth user

downlink noise variance constant

downlink ideal scalar channel gain

perturbed downlink ideal scalar channel gain
downlink minimum mean square error
pseudo inverse

white noise vector for kth user

thermal noise vector

index of RLS update

xXViil



e error of RLS

v weighted error

e forgetting factor

MSE normalized mean square error
W weight matrix

F cross vector

M number of antenna

€; complex scalar

€; supposed complex scalar

A matrix A

B matrix B

J matrix J

D matrix D

S inverse of weight matrix

u matrix u

X innovation scalar

¢ initial scalar value for RLS

G matrix G

T matrix T

E square root of the matrix

U product of matrix G and E
Vim s maximum speed of the mobiles
Vinin minimum speed of the mobiles
S scatter matrix

Puweight,i weight relative change

€ belong to

C complex set C

Range Range symbol

X a vector

[ a vector

W null vector

X1X



> = <

o

g

Ow,
owy,

I
Peira

pextra

K
SNR,,,
b

7

for all

null space

definition symbol

null vector

null matrix

total number of symbols for a PRLS period
number of symbols in feeding forward stage
number of symbols in PRLS algorithm
number of symbols in feeding back

number of symbols in calculating the principal eigenvec-
tor
pertubation scale factor

perturbation weight vector

perturbation weight vector

identity matrix

extra power due to perturbation
relative extra power due to perturbation
a complex constant

ideal signal to noise ratio

number of the quantized bits

total number of probing signals

XX



Chapter 1

Introduction

1.1 Motivation

The concept of cellular radio can be traced back to the 1960s[31, 12]. At the very
beginning, there was no frequency reuse. Each frequency was used only once in the ge-
ographical area in the band of 150 or 450 MHz. Later, a paired band of 666 channels in
the 800 MHz band range was introduced [15]. Frequency reuse was introduced to im-
prove spectral efficiency by using small cells in the serving area. Frequency-division
multiple access (FDMA) implements partial frequency reuse to prevent co-channel
interference; time-division multiple access (TDMA) reuses time slots. In order to
meet the needs of an ever-accelerating worldwide demand for mobile and personal
portable communications, the spread spectrum communication technique was intro-
duced to commercial wireless applications. This makes universal frequency reuse
possible. Code-division multiple access (CDMA) was introduced as a strong candi-
date for the current 900 MHz and future 1.9 GHz personal communications systems
(PCS). As CDMA is interference-limited, by suppressing these noise-like interferences,
we may improve the system capacity and the quality of the communication system.
A detailed tutorial of spread spectrum and CDMA may be found in [16, 35, 58, 59].

Beamforming can be used to suppress interference by using an antenna array at the
base station, therefore, increasing the system capacity. Digital beamforming based
on the antenna array will be one key technique in fulfilling this task. In beamforming,

we apply a complex-valued weighting vector to the outputs of the antenna array and



sum the results to generate a signal for each user. As each user has unique weights,
we may select the weights to greatly decrease the interference from other users, and
therefore increase system capacity.

The author feels it is more general to study a generic CDMA system instead of
going to a specific protocol such as 1S-95 [62]. It is desired to use optimum beam-
forming with low computational complexity to maximize the system capacity and
performance. This leads to a novel algorithm for optimum uplink beamforming. In
a real system, there are always estimation errors. Analysis of these errors leads to
some robust algorithms, therefore improving system capacity. This brings up an
original error analysis of those error effects on a DS-CDMA communication system.
As the system capacity is only partially determined by the uplink, we need to deal
with downlink beamforming as well. This results in a novel downlink beamforming

technique in a DS-CDMA communication system.

1.2 Summary of contributions

The following is a brief summary of the contributions made by this thesis. A more

detailed summary may be found at the end of the thesis in Section 6.2.

e An original optimum uplink beamforming algorithm employing signal cancella-
tion , is proposed with an improvement in performance both in output signal-to-

noise-plus-interference ratio (STN R) and direction of arrival (DOA) estimation.

o A theoretical analysis of the signal cancellation method was conducted and

compared with the code-filtering method in [51, 49].

e An original analysis of beamforming errors on a DS-CDMA communication
system was conducted. Several closed-form expressions of these errors’ effects

on the output STN R were obtained.
e The above error analysis was applied to the proposed signal cancellation method.

e A novel downlink channel estimation technique was proposed.



e The recursive least-squares (RLS) algorithm was applied to adaptive updat-
ing of channel estimates. Further, a perturbed recursive least-squares (PRLS)

algorithm was proposed and analyzed.

1.3 Thesis outline

Chapter 2 introduces the basic signal model and channel model that will be used in
the rest of the thesis. A signal cancellation method for optimum uplink beamforming
is developed in Chapter 3. Chapter 4 deals with error analysis of uplink beamforming
and its application. In Chapter 5, we describe a feedforward downlink beamform-
ing technique and its application and analysis. Finally, Chapter 6 summarizes the

contributions and future directions.



Chapter 2

DS-CDMA system model

2.1 Introduction

Code-division multiple access (CDMA) is a strong candidate for future personal com-
munications systems (PCS). There are two types of basic CDMA communication
systems: one is direct sequence code-division multiple access (DS-CDMA), the other
is frequency-hopping code-division multiple access (FH-CDMA). A detailed compari-
son of these two systems may be found in [8]. FH-CDMA is more suitable for military
communications while DS-CDMA is more suitable for commercial communications.
This thesis is devoted to a DS-CDMA communication system.

In a DS-CDMA communication system, there exist two communication links: from
a mobile to a base station (uplink) and from a base station to a mobile (downlink).
The system capacity is defined by both links. Therefore, beamforming should be
implemented in both the uplink and downlink to obtain a balanced capacity. In this
thesis, we consider a transmitting and receiving antenna array at the base station
only. The cost and complexity of implementing an antenna array at the mobile is
much greater over-all than that of implementing only at each base station [75].

As beamforming is only concerned with the baseband modulation and demodula-
tion of signals, we need not consider the coding and decoding process although such

process should boost the system performance as shown in Figure 2.1 and Figure 2.2.

Therefore, we are only concerned about a simple signal model including spread-

ing and despreading instead of a complex model which includes interleaving, coding,
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deinterleaving and decoding.

There are many topologies of antenna arrays available. Without loss in generality,
we consider the two most common topologies in the simulations contained in this
thesis: uniform linear array (ULA) and circular antenna array.

This chapter describes relevant background material for the following chapters in-
cluding: basic spreading and despreading processes and the relevant uplink and down-
link signal models of a DS-CDMA system, the uplink and downlink channel models
and the principle of beamforming using antenna arrays.

A detailed introduction of CDMA may be found in [77, 57]. A comprehensive in-
troduction of the mobile channel model used may be found in [34, 29]. Array signal
processing background may be found in [65, 27, 30, 39, 60, 41]. A tutorial introduction

to beamforming may be found in [74].
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2.2 DS-CDMA uplink and downlink data model

Figure 2.3 shows the spreading process of a generic DS-CDMA communication system.
We are concerned with the output of the spreading process. We may reasonably
assume that the input to the spreading process is a random variable. As we consider
a BPSK signal in this thesis, b(¢), may only take the value of +1 or —1. In Figure
2.3, ¢(t) is a Pseudo-Noise(PN) sequence taking the value of +1 or —1. We address
the definition of the PN sequence later. The PN sequence is unique for each user.
Suppose the symbol period is T and the chip period is T.. After spreading, the output

signal may be written as:
L1
x(t) = S VPb(t)e(t —iT.) (2.1)
=0

where P is the power of the signal and

L
T.

(2.2)

is termed the processing gain. At the receiver, we simply use the same PN sequence
to despread the received signal and integrate over one symbol period T} as shown in

Figure 2.4.
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Figure 2.4: Despreading at the base station



There are certain properties of a PN sequence that we have exploited in the signal
cancellation algorithm proposed in this thesis.  The PN chip sequences are generated
by a PN code generator and the desired random sequence should have the following

properties [25]:
I Probabilities of 70” and 717 are each %

IT Run lengths(of zeros or ones) are as expected in a coin-flipping experiment;

half of all run lengths are unity; one-quarter are of length two; one-eighth

1

5w are of length n for all finite n.

are of length 3; a fraction of

III If the random sequence is shifted by any non-zero number of elements,
the resulting sequence will have an equal number of agreements and dis-

agreements with the original sequence.

The sequences which satisfy the above three properties are termed Pseudo-Noise

sequences. If ¢(t) is a PN sequence, it is zero mean, i.e.,
E{c(t)} =0 (2.3)

Another important property is the cross-correlation between different users’ PN
sequences. Let ¢;(t) and ¢;(t) represent the PN sequences of the user 7 and the user j
respectively. We expect the cross-correlation to be as small as possible, ideally, zero,
le.,

Efci(t)e;(t)} =0 (2.4)

However, due to the difference in time delay of different users’ signals arriving at the

base station,
E{c;(t)e;(t—7)} #0 (2.5)

when 7 is not a multiple of the chip period T.. This accounts for the interferences from
the other users sharing the same frequency band in the uplink because the uplink uses
asynchronous transmission. For the downlink, due to synchronous transmission, the
interferences from other users are zero in the same cell when there is no multipath.

Now we examine the autocorrelation function of a PN sequence. It is easy to show



that [55]

) i=Hifr <
R(7) = (2.6)

0 otherwise

A plot of Eq. (2.6) is in Figure 2.5. From Eq. (2.6), we may conclude that
E{c(t)ei(t=7)} #0  for |7| < T, (2.7)

Non-zero autocorrelation causes self-interference when the multipaths are present and
the relative delays of these multipaths are less than one chip period T.. If the delay is
greater than one chip period, we may treat this as signals originating from a different
user in the same cell. A detailed derivation of the crosscorrelation and autocorrelation

functions of a PN sequence may be found [72, 73].
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Figure 2.5: Autocorrelation function of a PN sequence
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2.3 Channel model in a cellular system

Here we consider a channel model in a cellular communication system. It is differ-
ent from other communication systems such as satellite communication systems, or
military communication systems. In a satellite communication system, our attention
is on the large path loss due to the long distance from the mobile to the satellite.
An additive white Gaussian noise(AWGN) channel may be suited for this case. In a
military communication system, the interference to the desired signal is narrow-band
jamming as well as thermal noise. In a cellular CDMA communication system, due to
universal reuse of frequencies, each user sharing the same frequency band is a source
of interference. Thermal noise is less important here as a cellular CDMA communi-
cation system is basically interference-limited. The path loss is less severe because of
small cell size. However, small cell size also causes interference to nearby base sta-
tions. Cellular systems have been implemented in urban areas with high population
density, where tall buildings and trees attenuate the signals to some extent. As the
mobile moves, the Doppler effect causes signal carrier frequency expansion as will be
described in Section 2.3.3. Also, there are always scatterers around the mobile which
cause severe fast fading. In the following sections, we will examine each of these

effects.

2.3.1 Path loss in a cellular system

The propagation path between a mobile and a base station is complicated by the
antenna height of the base station and mobiles, the carrier frequency used, the terrain,
local scatterers around the mobile, large scatterers such as buildings and mountains.
The path loss is defined as the difference between the effective power transmitted and
average field strength of the received signal. The field strength of the received signal
reflects the magnitude of the signal transmitted at the carrier frequency band. There
is no closed-form expression available for the actual path loss. Some propagation
models have already been developed such as the Egli Model, the Longley-Rice model,
the Okumura method and Hata model in [56]. In this thesis, for simplicity, we assume

a fourth power loss in proportion to the distance between the base station and the

12



mobiles.

2.3.2 Shadowing effect

Often, the long-term average of the signal strength varies slowly as well. This is
caused by large obstacles between the base station and the mobiles such as high
buildings and foliage. This random process is generally assumed to be lognormally
distributed or when all the values associated with this random process are measured
in decibels, it is a normal distribution. Suppose z is lognormally distributed, then its
density function is:

p(z) = e T e 20 (2.8)

0 otherwise

The typical value of variance o* in dB ranges from 4dB to 12dB. A plot of the
distribution function of Eq. (2.8) is in Figure 2.6.

13
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2.3.3 Fast fading in a cellular system

As there are always some scatterers around the mobiles in an urban area, the magni-
tude of the signal received by the mobile or by the base station fluctuates. The phase
of the received signal changes as well. We use the uplink case for example. Suppose
there are a total of Sj; scatterers affecting the [th path of the kth mobile, we may
write the complex gain in the direction of § due to the scatterers and the movement

of the mobile as [64]:
Skt

Oé(t) =K Z Ciejw“P%cos(Qi)t (29)

i=1
where (); is the angle of local scatterer ¢ with respect to the direction of the mobile
velocity vector which is distributed uniformly, C; is the complex reflection coefficient
of the ¢th local scatterer and exhibits a complex Gaussian distribution, ¢ is the speed of
light, K is a constant including the effects of the mobile antenna gain and transmitted
power and fy = wy,* is termed as the maximum Doppler shift. The Doppler effect
may be thought of as the spectrum expansion of the carrier frequency. Ideally, for a
single frequency carrier, after the channel, the carrier spectrum should consist of two
sharp peaks the same as the carrier spectrum before the transmission . Due to the

Doppler effect, its spectrum is expanded to

d(f) = | VUl < (2.10)

0 otherwise

as in Figure 2.7.
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Figure 2.7: Doppler spectrum of a moving mobile

16

50



In Chapter 5, we use Eq. (2.9) to derive the relationship between the uplink and

downlink channel gain. A typical fast fading channel is plotted in Figure 2.8. We see

the channel changes significantly over time. However, as the data rate is high as well,

i.e., 9600bits/sec, the magnitude of the channel gain is relatively stable for several

data symbols as shown in Figures 2.9 and 2.10.

Amplitude of the received signal in dB

10

-10

-15

A typical fading signal received while the mobile is moving

T

T T T T T T

Carrier frequency=1.9GHz Velocity=25km/h

|
0.2 0.4 0.6 0.8 1 1.2
time in second

Figure 2.8: A typical fading signal
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A typical fading signal received while the mobile is moving with the speed of 25km/h
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Figure 2.9: An expanded view of the typical fading amplitude: relatively stable

variation over several symbols with a speed of 25km/h
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A typical fading signal received while the mobile is moving with the speed of 100km/h
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Figure 2.10: An expanded view of the typical fading amplitude: relatively stable

variation over several symbols with a speed of 100km/h
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2.4 Beamforming and antenna arrays

2.4.1 Multiple antenna array vs a single antenna

In this thesis, we consider a transmitter antenna array and a receiver antenna array
at the base station. With careful design, the uplink and downlink may share the
same antenna array because the uplink and downlink use different carrier frequencies,
therefore their wavelengths are different. In the case of one antenna element, there
is only one channel between the base station and the mobile. A multiple-element
antenna may be treated as multiple channels in the same frequency band. From the
mobile to the base station, it is a single point to multi-point communication; from
the base station to the mobile, it is a multi-point to a single point communication as
we use an antenna array at the base station and a single antenna at the mobile. A
multiple access channel may accommodate more users than one antenna element only.
The capacity depends on the relationship of these user signals . When these antenna
elements are close to each other, such as one half-wavelength corresponding to the
carrier frequency for a single ray, the received signals at the different antenna element
may only differ in phase while their magnitudes are nearly the same. This corresponds
to perfect statistical correlation. When the antenna elements are far apart from
one other, for example, more than 10 wavelengths, the correlation between different
antenna elements may be very small [82]. They may be treated as independent
channels and the methods exploiting independent signal paths are termed diversity
techniques. We consider a closely-spaced antenna array in this thesis. For the case
of diversity, the reader may refer to [36, 81, 68, 82, 67]. Due to the local scatterers
around the mobiles, there are always many rays arriving at the antenna array from a
small angle. The effect of scattering causes magnitude differences in different antenna
elements. This cause the difficulty of estimating direction of arrival (DOA) of the
mobile in the case of an urban environment. However, in the case of a suburban area
or a rural area, scattering may be less of a problem and DOA information may be

used in downlink beamforming.
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2.4.2 Array response vector

Without loss in generality, we consider a planar array where the centres of all elements
lie on a single plane. While we use the uplink for illustration purposes, the analysis
also applies to the downlink. As mentioned in Section 2.4.1, we may treat multiple
antennas as multiple channel communications. Fach channel has a complex gain
associated with it. Let a;(wy,, 8;) represent the complex gain from the mobile to the
ith element of the antenna array, where w,, is the uplink carrier frequency and 6; is
the angle of arrival for the incident ray with respect to the horizontal line. Suppose
the array has M elements, we may stack these M complex channel gains to form a

vector a,

ay (wup ) 01)

az (wup ) 02)

a= _ (2.11)

| anr(wup, Oar) |
If the mobile and the base station are far apart compared to the wavelength of the
carrier, we may treat incoming rays as planar waves. Later in the thesis, as we use the
uniform linear array (ULA) and circular array in simulations, we present their array
response vectors here. ULA is a special case of a planar array as the centres of the
ULA elements lie along a straight line. We consider the case of a single ray arriving at
the antenna array. In Figure 2.11, we have a circular array with M antenna elements.
The adjacent elements have one-half wavelength spacing between them. Without loss
in generality, we assume that one of the elements is at angle zero with respect to the

horizontal line. Therefore, the angles at which the elements are located on the circle

are:
2
%:(@'—1)(%) i=12....M (2.12)
It has been shown in [41] that
e ]

j meos(B—>3)

e’ 2sin(w/M)
Acircular = Kcircular . (213)

. meos(B—=yps)
6] 2sin(mw /M)
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where K¢jreular 18 @ constant. For the case of ULA as in Figure 2.12,

Aylg = Kula

where K1, 18 a constant.

1

e T d(M—1) cos b

e’

€

2T”Qd(M—l) cos §

J2EMd

A

22

(M—1)cosd

(2.14)



A Circular Array

Antenna
Incident ray

Antenna Antenna

Angle of arrival

Antenna
Antenna

Antenna

Figure 2.11: Circular antenna array
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A Uniformly Spaced Linear Array
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Figure 2.12: An illustration of a plane wave incident on a uniformly spaced linear
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2.4.3 Beamforming

As multiple antennas provide multiple received signals originating from one source,
we may combine these to increase the signal-to-noise ratio (SNR ). Suppose there
is only one mobile in the cell. At the antenna array, there is thermal noise in each
antenna element. A reasonable assumption is that the thermal noise is modelled as
independent, identically distributed (i.i.d) Gaussian white noise. Let n,(¢) represent

the thermal noise at ith antenna element, we stack n,(?) together,

ni(t)

n = nz:(t) (2.15)

HM(t)

Therefore the received signal may be expressed as
r(t) =s(t)a+n (2.16)

where s(1) is the desired signal from the mobile. We use a complex-valued vector w

to weight the received signal r(?),
wir(t) = s(t)wHa + whn (2.17)

It is well-known that choosing that w = a maximizes the SNR in Eq. (2.17) [41].

Wa may use radiation pattern Fjy to illustrate this idea. Define
Fy = [wH(g)a(0) (2.13)

For each 6, we vary the ¢ from —x to 7 and use Eq. (2.13) to calculate w(y) and
a(f) for a circular array. Typical radiation patterns of a circular array are shown in
Figures 2.13 and 2.14. Often , a ULA is used in a sector with an angle spread of 120°.
Therefore, we change the angle ¢ from —Z to Z. Typical radiation patterns of a ULA
are in Figure 2.15 and Figure 2.16.
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Figure 2.13: Circular array radiation pattern with DOA 50°
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Figure 2.14: Circular array radiation pattern with DOA 0°
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Beam Pattern of a ULA DOA=20
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Figure 2.15: ULA radiation pattern with DOA 20°
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Beam Pattern of a ULA DOA=0
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Figure 2.16: ULA radiation pattern with DOA 0°

28



As shown in Figures 2.13 — 2.16, when ¢ = 6, we obtain maximum Fy. Now
suppose there are N users’ signals arriving at the antenna array. Rather than maxi-
mizing SN R, we may also form nulls to interferences from these other users. When
the number of users, N, exceeds the number of antennas, M., we no longer have
enough degrees of freedom (DOF) to form a null in the direction of all the inter-
ferences. We maximize the signal-to-interference-plus-noise ratio (STNR) to obtain
optimum performance as will be presented in Chapter 3. The data model for the

multi-user case is
N-1
whr(t) = s(t)wHa + > si(tywHa; + win (2.19)
i=1
Assume E{|n|*} = o2, then the optimum weights to maximize the STN R are [41]
W = YR 'a (2.20)

where 7 is a constant which does not affect STNR, and can be omitted. From Eq.

(2.19), it can be shown that the multi-access interference covariance matrix

R — E{|Z__jsi(t)ai+n|2}

N-1
= Y Paal 401 (2.21)

i=1
where P, = E{|s;()|*} and I is the identity matrix. We have assumed that the
noise random variables are mutually uncorrelated. In a DS-CDMA system, since the
number of users far exceeds the number of antennas, we need not only to maximize the
desired signal but also suppress the interference from the other users. Furthermore,
the array response vector may only be estimated from the received data. Since the
channel changes with time, we need to update the weights over time. We develop

these techniques in the following chapters.

2.5 Summary

This chapter presented basic background information relevant to this thesis. DS-
CDMA data models and the uplink and downlink channel models were presented.
Two basic array patterns, the ULA and Circular Array were introduced. The principle

of beamforming antenna arrays was presented.
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Chapter 3

Using Signal Cancellation for Optimum
Beamforming in a Cellular CDMA
System

3.1 Introduction

In Chapter 2, we have shown that maximum signal-to-interference plus noise (STNR)
beamforming is desirable in cellular code-division multiple-access (CDMA) commu-
nications systems employing base station antenna arrays as system capacity may be
increased several-fold [51]. Beamforming shows great potential for improving SINR
which in turn increases cell capacity. To perform optimum SINR beamforming,
we need to estimate an array response vector and an interference-noise (I N) covari-
ance matrix [41]. Currently, estimation of the I N covariance matrix for optimum
beamforming requires great computational cost [51, 49]. As a result, sub-optimum
beamforming (maximum SINR) is used which does not require the I N matrix . How-
ever, when the number of users is not very large and the distribution of users is not
uniform, there is a large gap between maximum SINR and maximum SNR beam-
forming performance. In this chapter, we propose a direct signal cancellation method
to estimate the interference-noise covariance matrix which increases SINR and de-
creases computation compared with [51, 49]. Since DOA estimation of mobiles is also
improved, the method can potentially be applied to transmit beamforming in the

downlink.
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This chapter is organized as follows: Section 3.2 describes our system model and in
Section 3.4, our algorithm is compared with [51, 49] through analysis. A compari-
son of computational requirements between our proposed signal cancellation method
and the code-filtering method [51, 49] is presented in Section 3.5. Numerical and
simulation results are shown in Section 3.6 and the conclusions are made in Section

3.7.

3.2 System model

Here we consider the reverse (mobile to base station) link with Rayleigh amplitude
fading, path loss, shadowing, and perfect power control in a generic cellular CDMA
system. First we consider the single path case. Assuming a narrow band signal model,
at time ¢, the baseband signal received at the M-element antenna array for the ¢th
user is:
N
xi(t) =D it —7ij)bi(t — i)\ Pi(t)a;(t) + n(t) (3.1)
7=1

where N is the total number of in-band mobiles, ¢;(t) is the pseudo noise (PN)
sequence for the jth mobile defined as

o0

C]‘(t) = Z C]‘Jp(t - ZTC) (32)

[=—0

where T. is the chip period and p(t) is the chip pulse assumed to be an arbitrary
time-limited waveform. PN chips are modelled as independent and identically dis-
tributed (i.i.d) random variables taking values +1 with equal probability, b;(¢) is the
information bit sequence of the j* mobile, 7;; is the differential time delay of the
7" mobile relative to that of the i mobile, vector n(#) ~ N(0, *I) represents i.i.d
Gaussian thermal noise, P; is the total power received at the base station of the ;'
mobile, and a;(#) is the array response vector of j'* mobile whose time-varying DOA
is 6,(1). Without loss of generality, for all i=1,2,...... N and j=1,2,...... N, we assume
self-synchronization, i.e. 7,;=0, and the signal b;(t — 7, ;), chips ¢;(f) and noise n(t)
are mutually uncorrelated. Chips from users j and k, ¢;(t) and ¢, (), are assumed
mutually uncorrelated as well as bits b;(t — 7;;) and bg(t — 7, %) for all k=1,2,...... N

and k # j. The array response vector a;(t) is assumed to be unchanged over one
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information bit period T,. The spreading gain L is defined as T;/T.. From [49],

R... (1) = Pa;(t)a;,(1)F + Z P;a;(t) H o (3.3)

J=1,57#1

where x;(1) is given in Eq. (3.1).

3.3 Signal cancellation algorithm

3.3.1 Code-filtering

Using code-filtering [49], the antenna outputs are correlated with PN codes to yield

one sample vector per information bit. At information bit n

\/i\/gbz(n) \/_/ n(t)e;(t)dt
/ VPt = et — igleDa(n)dt (3.4)

Jj= 1]752

The post-correlation autocorrelation matrix can be defined as

1
R...(1) = = E{zi(n)z(n)"} (3.5)
Using the result in [49, 72], we have
N o2
R...(n) = LPa;(n)a;(n)® +¢ S Piaj(n)a;(n)® + 71 (3.6)

=157
where £ is a constant. If the signal is rectangular, £ will be % In reality, the channel
is bandlimited, therefore, the assumption of square transmitted pulse shapes do not
hold. If this bandlimited channel has an ideal low pass filter characteristics, ¢ will be
untty. However, this constant will not change the output SINR.

3.3.2 Signal cancellation

An alternative to code-filtering is now presented. This new algorithm is identical to
the code-filtering algorithm if the covariance matrices R..., R,,, are known perfectly.

However, we will show later that the following algorithm has improved finite-sample
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Figure 3.1: Conceptual Signal cancellation algorithm

performance. That is, when R...,, R, are estimated from received data, the following
algorithm has improved SINR performance as will be shown in Section 3.4. In our
proposed algorithm, the value of ¢ will not affect the estimation of the array response
vector as we use two correlators and their outputs. Whatever the SINR is, the M AT
is the same for the two correlators and the correlator’s outputs will cancel each other
perfectly. We notice that in Eq. (3.6), R..,(n) is independent of the PN codes of
user ¢ as long as PN codes and information bits are random sequences. In addition
to forming z;(n), we propose to also despread the array output with the PN code as

shown in Figure 3.1:

coi(t) = 3 (~1)lesuplt — IT,) (3.7)

[=—0

It is straightforward to show that cc¢;(¢) is a random binary sequence where
E{(—l)l-l_mcj"lcj"m} == 0, ) 7£ m (38)

If we apply Eq. (3.7) to Eq. (3.4) as a matched filter, we notice that after integration
over Tj, the signal term vanishes as long as L is even. In a practical system, it is

easily possible to select I as an even number. We obtain as output

yi(n) = \/% /OTbn(t)cci(t)dt

N 1 T,
+ j:%]:;éi ﬁ/o P]‘b]‘(t — TZ'J)C]‘(t — Ti7j)cci(t)aj(n)dt (39)
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Using an analogous definition to Eq. (3.5), we obtain
N a o’
Ry(n) =& 2, Paj(n)aj(n)” + 71 (3.10)
=T c
which is the interference and noise portion of Eq. (3.6). Alternatively, in [51, 49], the
M AT correlation matrix is estimated as
1
L

R...(n) = v(Res — —R..,) (3.11)

where v depends on the bandwidth of the channel. However, this constant will not
change the output SINR.

In [49], the array response vector is estimated as the generalized eigenvector corre-
sponding to the largest eigenvalue of the Hermitian-definite matrix pencil R.., —cR.,.
In [41], it is shown that the beamformer that will maximize the SINR has the form
w; = 7R 'a;, where we have dropped the time dependence to simplify notation. + is
a constant which will not affect SINR and can be omitted [41]. Using our method,

we calculate the optimum weights as

W, =R, a (3.12)

YYi

while using the method in [51, 49], the weights are given by

W, =R la (3.13)

na; -t

We should point out that only the phases of W; and w; affect the final SINR. For

the case of multipath delay spread, generalization of the above is straightforward.

3.4 Finite-sample performance

First, we show that our new method converges to the optimum solution. Define
SINR,,,... to be the SINR for the true array response vector a; and true interference-

noise covariance matrix Ryy. It can be shown that [41]
SINR;,... = LPalR7}a; (3.14)

To simplity the problem, we assume we have perfect array vector estimates using

both methods. Let SINR; denote the SINR of the proposed method and SINR,
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denote the SINR of the proposed method in [49, 51]. Normalizing SINR ;... [41, 60],
let

. _ SINR;  |w/a]? 1 (3.15)
"= SINR.,. WHRyW; aHR [ 2, '
and H
SINR wita,|? 1
772' — 2 _ |W2 a | (316)

SINR,,... wHRvW;alR[ a;

In [60], it is shown that 7; is Beta-distributed, i.e.,
ni~B(N—M+2,M—1) (3.17)

where N is the number of samples used to estimate covariance matrix and M is the

number of antennas. According to the Beta distribution,

N-—-M+2
E{}} = ———— 3.18
{n:} N1 (3.18)
R (N—-M+2)(N-1) 1
Var(i);) = 5 as N 3.19
ar(i);) (N1 12N 12) =y s N — oo ( )
For optimality, n;, = 1 and as N — oo,
E{|ln;— 1} =1—-E{5} =0 (3.20)

implying that 7; converges in the mean and in probability to the optimum SINR,
which means that the proposed method’s estimate of SINR is consistent. Also

E{ln — 1]} — E{

0 — E{i:}*} = Var(i;) — 0 (3.21)

implying that 7; converges in the mean-square sense to the optimum SINR.

Using results in [41, 60], we now show that E{#;} > E{§;}. Let R....,R,, denote
the maximum likelihood estimates of R.,, and R,,, respectively, where f{yyi s an

estimate of the IN matrix. Using the well-known Matrix Inversion Lemma [66],

X;'VZ' = R_lai

= []?{221 — LPZ'aZ»aZ»H]_laZ»
1 R
1—LPalR;la,

N

= ¢R'a (3.22)

225

7
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where ¢ is a scalar which will not affect the SINR. We therefore define
and so Eq. (3.16)

[wHa,|? 1

- wH 5 Hp-1
W; R[NWZ' a; RINaZ'

7

(3.24)

Letting R..., denote the true value of f{w, we form another random variable ﬁ;

N |V.VZI_IaZ|2 1
P T - H . Hp_1 (325)
w R, w; a; RZZiaZ»
and so the relationship between 7j; and 7, is
i = hi (3.26)

1+ (1 —%,)SINR; 0z

Since algebraically the random variable ﬁ; is identical to 7; [41, 60], they have the

same probability density function. Taking expectations,

. 0; N X
E = E /Z E = E 7 2
) = Bl rsim, ) < PO = Bl (3.27)

The above inequality means that on the average, the output SINR achieved by
Eq. (3.12) is greater than the output SINR achieved by Eq. (3.13), particularly if
SINR,,.. is greater than 1. However, if SINR,,,,., < 1, the difference between the

two methods becomes negligible.

3.5 Computational requirements comparison

In Table 3.1, we compare the computational requirements in terms of the number of
floating point operations (flops) between our proposed signal cancellation algorithm
and the code-filtering algorithm. Both of them apply the recursive least-squares al-
gorithm (RLS) as described in [48]. The overall computational complexity of the
code-filtering algorithm is 24 M? + 16 M plus the power method operations as shown
[48] in Table 3.1. For our proposed signal cancellation algorithm, the overall compu-
tational complexity is 21 M? + 13M plus the power method operations. In the step of

estimating principal eigenvector a;, both algorithms employ the power method which
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Code-filtering Signal Cancellation

Step # Method Method

1. Initialization IM IM

2. Square root updating R, AM? +4M AM? 4+ AM

3. Square root updating R, TM? +7TM Not needed

4. Square root updating R, Not needed 4M?* +4M

5. Estimating principal eigenvector a; O(M?) O(M?)

6. Updating beamforming weights w; Not needed M?

7. Updating beamforming weights w; M? Not needed
Total steps 1-7 O(M?) O(M?)

Table 3.1: Computational requirements between the code-filtering method and the

proposed signal cancellation method in terms of flops

requires O(M?) flops. Therefore, the proposed signal cancellation method requires
the same order of computation as the code-filtering method, O(M?) as shown in Table

3.1.

3.6 Numerical and simulation results

To compare the algorithms described in Section 3.3, we perform a PN chip-level sim-
ulation [10], to determine the correlation matrices. Eq. (3.1) is used to calculate
x;(1), Eq. (3.4) is used to obtain z;(n), and Eq. (3.10) is used to acquire y;(n). With
these data vectors, we can obtain their maximum likelihood finite-sample autocorre-
lation matrix estimates. In our simulation, we assume a 3-sector base station with
a H-element uniform linear array with half wavelength spacing in each sector. The
cell radius is 500m, 1/7, = 9600bps, BPSK modulation is used, and the spreading
gain [=128. There are 25 mobiles randomly distributed in azimuth around the base
station with uniform distribution in [0°,120°], and each mobile has three multipaths.
The first path has SNR 7 dB, the second and third paths are 9.5 dB and 12 dB,
respectively, less than the first path. The delay spread is assumed to be 7 chips over
the three paths. We assume the fading channel is Rayleigh with a path loss exponent

of four, perfect power control, random mobile speeds of less than 60km /hour and
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weight vector updates occur every T} seconds.

As shown in Figure 3.2, we observe DOA tracking of the first path (SNR 7dB)
over 50 information bits, which is a clear improvement over the method in [51, 49].
We employ a 2D-RAKE receiver as in [51, 49], but with maximum-ratio combining to
obtain a diversity gain [80]. In Figure 3.3, we observe the SINR gain of our method
as compared to [51, 49], which shows that we would obtain increased cellular system
capacity. We notice that for the first 10 bits, the performance gap is not clear. This
is as expected because we need at least 2M (in our case, M = 5) samples to get an

accurate estimate of the covariance matrices [60].
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Mean of the estimates with 5 trials, path # 1

DD [ iy
00O
F+200000000b00bHOOOBEOEEDOOYEEEOGOHEEHEEEEOOOY

020 | I T
o [
> '
g5
c L +  True DOA
c 40
o b — - matrix subtraction
=l b O  cancellation method
l,‘
30 : | | | | | | | | | |
0 5 10 15 20 25 30 35 40 45 50
track time index in information bit
Mean Square Error of the estimates with 5 trials, path # 1
6 o e e
5 -
§4k — - matrix subtraction
2 RN —— cancellation method
© , NN
c 3 - N
= / “lT o~ e~ o
(L}J) 2 [ d ) /‘\_ 4 -
=
1 —
0 B e e e M 1 1 —
0 5 10 15 20 25 30 35 40 45 50

track time index in information bit

Figure 3.2: DOA of path 1 for 5 antenna elements and 25 mobiles each with 3
multipaths
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Figure 3.3: Output SINR for 5 antenna elements and 25 mobiles each with 3 multi-
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3.7 Conclusions

In this chapter, we proposed a new algorithm to directly estimate the interference-
noise covariance matrix using PN signal cancellation. We obtained improved DOA
estimation and an average increase of 2.5dB in output SINR compared with [51, 49].

In addition, the computational complexity is less than that of [51, 49].
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Chapter 4

The Effect of Antenna Array
Beamforming Errors on DS-CDMA

Communication Systems

4.1 Introduction

Digital beamforming can potentially increase system capacity several-fold by using an
antenna array at the base station [49]. In optimum beamforming, we maximize the
signal to interference plus noise ratio (SINR) to suppress interference. As discussed in
Chapter 3, we must estimate the covariance matrix of the interference plus noise ma-
trix as well as the array response vector from the sampled data of the array output to
obtain weights which will be used to perform beamforming. There are several sources
of errors in estimating these parameters, such as finite data sample-size, imperfect
array response estimates, coloured noise, etc, which will reduce the performance of
optimum beamforming algorithms.

The effects of random errors on the performance of optimum beamforming have
been studied by several authors [23, 7, 6, 22, 53]. In [7, 6], Gidaram, Cox, Compton
and Nitzberg considered the effect of mismatch which arises when there is imperfect
knowledge of signal direction, such as when there is perturbation in the array response
vector, as caused by random additive errors [6]. In [22], Godara considered random
errors in phase shifters and Nitzberg considered the effect of the quantization of

weights in [53]. In [23], Godara considered random errors in the array response

42



vector and random errors in weights separately.

In [23, 7, 6], Godara, Cox and Compton compared the different effects of random
errors on two different methods to obtain the interference plus noise covariance: one
is calculated on the condition that the desired signal is absent, another is calculated
on the condition that the received signals are composed of the desired signal . the
interference and thermal noise, and they showed that the first method is more robust
to random errors. In a radar system, it may be easy to obtain a signal free received
signal to estimate the interference plus noise covariance. In a cellular DS-CDMA sys-
tem, however, it seems more difficult. In [76], Viberg and Swindlehurst analyzed the
combined effects of finite samples and model errors on array processing performance
on the condition that the number of the users is less than the number of antennas, a

situation which is not suitable for CDMA systems.

However, there has not been an analysis of the effect of covariance matrix error
only and the combined effect of errors in the covariance matrix and array response
vector. In a generic DS-CDMA system, this is required since we must estimate both
the covariance of the interference plus noise matrix as well as the array response
vector from the sampled data of the array output to obtain optimum weights. In
addition, the number of users is much larger than the number of antenna elements
in the DS-CDMA system and the power levels of different users arriving at the base

station are nearly the same because of power control at the mobiles.

In this chapter, the combined effect of estimation errors from finite-sample co-
variance data, interference and thermal noise is analytically determined. Simulation

results show agreement with analytical results.

The organization of the chapter is as follows: Sections 4.2 ~ 4.4 will derive the
formula for the perturbed SINR, Section 4.5 will apply the result to the specific algo-
rithm and simulation and numerical results will be presented in Section 4.6, finally,

we state conclusions.
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4.2 Error analysis formulation

In a CDMA beamforming system, the output SINR of the processor for a desired

user 1s : °
[lwal|”
SINR = ——~— 4.1
where ||.|| is the Euclidean norm and a is the desired user’s array response vector,

and Q represents the cochannel interference plus thermal noise covariance for this

desired user. As discussed in Chapter 2, the weights
w=Q 'a (4.2)
will maximize output SINR, and this maximum SINR is given by [41]:
SINR,,.. = LPafQ'a (4.3)

where P; is the received power of the desired user, and L is the processing gain.
By maximizing the desired user’s SINR through suppressing the interferences from
other users, we can greatly reduce the Bit Error Rate (BER) or, equivalently, we
can reduce the transmitted power of the mobiles, although there is not a simple
relationship between BER and SINR.

First, we consider an ideal array response vector a and we know the estimation
error for Q. Let Q denote the estimated Q matrix. Ideally, in a DS-CDMA system,
Q can be shown to be [49][72]:

N 0.2
Q=¢ Y Pajma )+ T (1)
=1, c

where we have considered N users in the system and user 7 is the desired user, o2

is the thermal noise power and a; is the array response vector for user j, P; is the
received power of user j, I is the identity matrix. We can see that Q is a Hermitian
matrix. If we estimate Q using the maximum likelihood method, for example, at least
we can ensure Q is Hermitian as well. Therefore, the error or perturbation matrix,

¢, in the following equation is a Hermitian matrix, i.e.,

A~

Q=Q+:¢ (4.5)
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e=¢ll (4.6)

We make the following further reasonable assumptions: each element of ¢ has a zero

mean, i.i.d complex Gaussian distribution:

E{c} =0 (4.7)
Efeijei} = 0w’ 6ind (4.8)
E{e2,} =0 fori # j (4.9)

where 6; represents the Kronecker delta function. We note that the error in the

diagonal of ¢ is real-valued, because ¢ is a difference of two Hermitian matrices.

Proposition 1

E{cel} = Mo, 1 (4.10)

Where M is the number of the antenna array elements.

Proof: Let A denote the matrix eeH. The (7,7)th element of A can be obtained

through matrix multiplication
M
A = D e (4.11)
=1
If ¢ # 7, using (4.8) , we know that
A;;=0 (4.12)

otherwise, if 1 = j, then

M
A = D e
=1

M
= Y ciE] (4.13)
=1
Taking the expectation of both sides, we obtain
E{A;;} = Mo,” (4.14)
QED
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4.3 Analysis of covariance matrix errors

4.3.1 Expected noise plus interference power

Using first-order perturbations [69] we obtain

A~

'~ Q- QleQ (1.15)
Let W denote the estimated weight due to the perturbation of covariance matrix Q,
e.g.,

A~

w=Q'a (4.16)

We obtain, using Q = QH, that

wiQw = a(Q'-Q7':Q™)QQ™ - Q7'Q)a
= allQ'a—2a'Q':Q'a+a"Q':Q'cQ'a (4.17)

It is easy to show that
E{aQ'cQ'a} =0 (4.18)

Taking the expectation of both sides and using Eq. (4.18) result in
E{w2Qw} = alQ~'a + E{alQ'cQ'cQ'a} (4.19)
where the right-hand term

E{aQ'cQ':Q 'a} = E{(cQ'a)"Q '(:Q 'a)}

= Tr(E{(Q'a)(cQ'a) Q'})
= Tr(E{(Q'a)(cQ'a)"}Q™")  (1.20)
where Tr(.) denotes trace.
Proposition 2
E{(:Q'a)(:Q'a)" } = 0,?|Q"a||'T (1.21)

where ||.|| is the Fuclidean norm.
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Proof:

We define a vector d as

d = Q'a
= [d17d27"'7dM]T (422)

Let ¢ denote perturbation vector ed, i.e.,
c=ed (4.23)

Using matrix multiplication, we can obtain the ith element of vector ¢ as

M
ci =) eid; (4.24)
=1
Define

F = (ed)(ed)?
= cc (4.25)

Using matrix multiplication, we can show the (4, j)th element of matrix F is
M M *
Fi; = > end (Z €j,mdm)
=1 m=1

M M
= Z Z €i7l€;,mdldjn (4.26)

=1 m=1

Taking the expectation of both sides and using Eq. (4.8), we know that only when

1 = 3, and

[ = m

is E{F,; ;} nonzero, and they can expressed as
M
E{F;;} = > E{eie;}did;
=1

M 2
- St
=1
= P (1.2
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and

E{F;;} =0 :# (4.28)
QED Using the above result, (4.20) can be reduced to
E{a"Q':7'Q'eQ'a} = Tr(s,*|Q'all’Q7")
= 0.”]1Q"al"Tr(Q7") (4.29)
Substituting (4.29) in (4.19) gives

E{wiQw} = a"Q'a +0,%|Q"al["Tr(Q ") (4.30)

4.3.2 Expected signal power

In calculating the numerator of Eq. (4.1) for w replaced by W, i.e., E(||WwHal[?), we

notice that aHQ_la is a real-valued scalar, so we have
[WHal* = [ja"Q "a|l"
= (a7(Q' ~Q7'eQ)a)?
= (afQ7'a)? —2aflQtaalQlcQta 4+ (aMQ'eQta)? (4.31)
Taking the expectation of both sides, we obtain
E{|[w"a} = (aQ 'a)® + E{(alQ'cQ'a)?}
= (a"Q'a)’ +0,7Q"al " Tr(Q "2 Q™)
= (a"Q7'a)’ +0,’(|Q"all" (4.32)

4.3.3 Perturbed SINR

When there is error in estimating Q, but we have a perfect array response vector a,

substituting Eq. (4.32) and Eq. (4.30) into Eq. (4.1), the perturbed output SINR is

(aQ'a)? +5,2|Q 'a]["

SINR = : (4.33)
afQ 'a + 0,”||Q"a|["Tr(Q™")
We can easily show that -
JSINR
4.34
.2 (4.34)

48



which means SINR decreases as the perturbation in Q increases. Also we can show

that
SINR < SINR,,,, = LP,a’Q'a (4.35)

We now consider the special case

Q=KI (4.36)
It can be shown, after some algebra, that

_ 1+ 22
SINR = SINRmM% (4.37)

k20w

From (4.37), as the number of antennas increases, the SINR decreases due to the

estimation error in Q.

4.4 Analysis of combined covariance and array

resporse errors

Next we will consider the combined effect when there are estimation errors in both Q
and the array response vector a. Let & denote the perturbed array response vector,
ie.

Y

a=a+n (4.38)

where we assume that n is a zero mean, complex Gaussian vector, such that

E{n} =0 (4.39)
E{nn;} = o.* (4.40)

so we have
E{ymt} = 0,21 (4.41)

In addition, we suppose the error in a is independent of the error in Q. Usually, the
error in a is not independent of the error in Q because we may use the same sampled

data to estimate Q and a [49]. However, in our proposed algorithm [38], we can prove
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that they are independent. Details are given in Section 4.5. The perturbed weight is
defined as

A~

w=Q'a (4.42)

4.4.1 Expected signal power

First we determine E(||WHa||?) which is the numerator of the perturbed SINR, where

wHa = éHQ_la
= allQ'a-atQ 'cQa (4.43)
Also we have
(wHa)H = aQ~ta — allQ'cQ'a (4.44)
Therefore
||vAvHa||2 = aflQ'aatQ'a—aflQ'cQ'aatlQ'a

—allQ'aalQ'cQ'a+ alQ'cQ'aatlQ':Q'a (4.45)
Using similar reasoning, it is easy to show that
E{aaf} = aatt + 5,1 (4.46)
Taking the the expectation of both sides of (4.45), we obtain
E{[[vHal|’} = a"Q'(aa +0.21)Q 'a
+E{afQ'cQ (aal + 0,2 1)Q 'cQ'a} (4.47)

Splitting the right hand side expectation, we can show that

E{(cQ'a"Q"aa'Q(cQ'a)} = ¢.%|Q'al|'Tr(Q 'aat Q")
= 0.}Q |l (4.48)

and

E{(:Q'a)”Q'Q7'(:Q'a)} = ¢.”||Q'a|"Tr(Q7'Q7") (4.49)
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Finally, we obtain
E{||WHa||2} = (aHQ_la)2 + UazaHQ_lQ_la + awz||Q_1a||4
+0,%0,%||Q "al“Ir(Q'Q)
~ (a"Q'a)" +0,%aMQ'Q " a + 0.2|Q all"
= (@"Q'a)" +0.21Q"al’ + 0., 2IQall" (4.50)

where we have omitted the second-order term.

4.4.2 Expected noise plus interference power

Next we take E(WHQW), the expectation of the denominator of the perturbed SINR.
First of all

WHQW _ éHQ—lQQ—lé
= a’(Q'-Q'QQQ'-Q':Q "a
= a"Q'a-2a"Q':Q'a+a"Q'eQ'eQ'a  (451)
Taking the expectation of both sides, we obtain

E{wHQw} = Tr(E{aa"}Q™")+E{a"(Q'eQ")(Q'=Q")a}
= Tr((aa® + 0,2 1)Q7)

+Tr((aa® + 0, HE{Q'=Q'eQ'}) (4.52)
We note that
Tr(aa’Q™!) = Tr(Q 'aal) = aflQ'a (4.53)
We can show that
Tr(aa"E{Q7':Q7':Q™"}) = 0.%||Q'al*Tr(Q™") (4.54)

Finally, we obtain

E(wTQw} = ¢ Tr(Q7") +a"Q'a+0,”[|Q%a|[*Tr(Q ™)
+0,Tr(E{Q'eQ'Q'=Q™'})
~ a"Q'a+ 0, Tr(Q7Y) +0.%|Q'al*Tr(Q™!)  (4.55)

In the above equation, we have assumed that the second order term is negligible.
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4.4.3 Perturbed output SINR

The perturbed output SINR is found by taking the ratio of Eq. (4.50) and Eq.

(4.55):
(a"Q'a)’ 4 0.%||Q"al]” + 0.”||Q 2|

SINR = (HQ T 0@ ) T ot a0
Again, let us consider the special case, where
Q=KI (4.57)
where K is a constant scalar. We can show that
SINR = SINR,,,, . " 77 * I’%U@;Q (4.58)

M
1+0a2+ﬁ0w

which is a generalization of (4.37). If we assume that o, is zero, then we obtain the
perturbed SINR due to the error in array response vector only

1+ ﬁaaz
2

SINR = SINR,... (4.59)

1+ o0,
We will examine the sensitivity of SINR with respect to covariance error and

array response error. These sensitivities are defined as [32]

9SINR
Senarray — % (4-60)
042
and
5SINR
SeNmatrix = % (4.61)
Ow?
We can show that (omitting the minus sign)
M-1_ 2
M a
SeNarray (T ou2 1 Moy?)? (4.62)
and
M — 1o,?
SeNmatrix ( ) (4.63)

(G0t oy
Recall that o,% and o,% represent the estimation error variance for the array response

and M AI, respectively, K? represents the variance of the actual M AI, and M is the
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number of antennas. As a way of interpreting Eqs. (4.62) and (4.63), in the context
of the signal cancellation algorithm, consider the case where the estimation errors,
.2 and 0,,% are small. Tt is clear that

2 (M —1)

o (4.64)

S€Narray — Oq

while

seNpyatrix — Tw (M — 1) (4.65)

As we increase the number of antennas to increase the STNR, the sensitivity to
array response errors does not change while the sensitivity to M Al matrix estimates

increases proportionally.

4.5 Application to maximum SI/N R beamforming

In Chapter 3.3 we proposed a new algorithm to estimate the M Al directly through
signal cancellation using PN chip properties. We estimate a from post-correlation
z;(n) as the principle eigenvector of the autocorrelation of z;(n) accurately if the pro-
cessing gain is high and we estimate Q directly from y;(n). We have the following

result:

Proposition 3 The error in a is uncorrelated with the error in Q in our proposed
algorithm. Further, if we make the assumption that the sampled data is an i.i.d
Glaussian process, the error in a is independent of the error in Q in our proposed

algorithm.

Proof:
To prove this, we only need to show that the outputs of two correlators are uncorre-

lated. Define vectors

= (iAo
w/
c. = \/_/ \/76 —75)¢(t — 7 )c(t)aj(n)dt

J=1,57#1

t)ee;(t)dt
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and

b, =

Ty
o = 3 g VAR me( - mea(tay i

in terms of the quantities defined in Chapter 3. In DS-CDMA systems, recall that
we have made the following assumptions:

(a) Signal is uncorrelated with thermal noise;

(b) Different users have uncorrelated zero mean random information bits, taking value
+1; and

(c) Noises in different correlators are independent zero-mean Gaussian processes.

Using assumption (a), we obtain

E{azbf} =0
E{b.cl'} =0
E{chZI/{} =0

Using assumption (b), we obtain
E{azc}/{} =0

Using assumption (c¢), we obtain

E{b.bl'} =0
Next we show that
E{CZC}/{ =
Thus,
H Yoo
E{czcy } = E{ Z \/—T_b/o P]‘b]‘(t — TZ'J)C]‘(t — Ti7]‘)ci(t)a]‘(n)dt

=1
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I= ,l;ﬁz
N N T,

- E{ ¥ Z\/_//\/»\/ib —7ii)bi(u —750)
PRy Ry r

wei(t — 7o )a(u — mig)ei(t)eei(u)a; (n)ay(n)Rdtdu}
Using assumption (b), we know that
E{b;(t — 7. ))bi(u—70)} = 6,
So

E{c.cl} = PE{ci(t)eci(t)Ya;(n)a;(n)Rdt

Jj= 1]752\/_/

=0
We have used the property that over one information bit
¢i(t)ee(t) =0

Actually, we have used this PN chip property to cancel the signal in our proposed

algorithm. Finally, we can conclude that

E{yi(n)z;i(n)"} =0

QED

So Eq. (4.56) can be applied to the proposed signal cancellation algorithm of Section
3.3. That is, errors in array response are decoupled from errors in the M Al matrix,
and the previous sensitivity analysis applies. However, in the case of code-filtering, it
is not true that the errors o,% and o,? are independent. In fact, the array response
errors are a function of the M Al matrix errors in the code-filtering algorithm due
to the matrix subtraction. This further limits the performance of the code-filtering
algorithm since as the number of antennas are increased, both senapray and senyagrix

must increase.

4.6 Numerical results and simulations

In our simulations we assume a 3-sector base station with uniform linear array with

half wavelength spacing in each sector. We will consider, 3, 5 and 7 element antenna
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arrays. There are 25 mobiles randomly distributed in azimuth around the base station
with uniform distribution in [—60°,60°]. We suppose that we have perfect power
control and input E,/Ng is 7 dB. The desired signal comes from 30°. Also, the error
in Q is relative to its diagonal elements which are much larger than the off-diagonal
elements. The error in a can be relative to any element of a because they have the
same amplitude for a uniform linear array. For each simulation, 10000 runs were
used. In Figure 4.1, we assume we have the perfect array response vector and we
show the effect of errors in Q. In Figure 4.2, we assume we have perfect Q and show
the effect of errors in the array response vector. In Figures 4.3-4.6, we assume we have
errors both in Q and the array response vector, and we hold the errors in the array
response vector constant. We can see that the simulation results agree closely with
the theoretical results . As expected, the degradation of the output SINR increases
as the number of antennas increases. We notice that for the same error variance in a
and Q, there is more SINR decrease due to errors in Q which are shown in Figure 4.1

and Figure 4.2.
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Figure 4.1: Output SINR with respect to errors in the M Al matrix

57



Total tries= 10000; Eb/NO= 7dB

13 T T \

12| 7 ELEMENTS i

11 i

5 ELEMENTS
OO OO 4

1OEJ,UUL_JLJL_:LJL_1 -.= -
o 9r
KS)
¥ |3 ELEMENTS
Z T T XY VYV
ﬁgEuuuuuuuuu :g.s-e. )
= =S G SN
o =SS

7 R

N
61 .
e—=a  SINR(Simulated)
G—=© Eq.(4.59) (Theorem)

51 v—~v  Optimum SINR Eq.(4.1)

41

3 | | | | | | |

-30 -25 -20 -15 -10 -5 0 5 10

Variance of errors in array response vector (dB)

Figure 4.2: Output SINR with respect to errors in the array response vector

38



Total tries= 10000; Eb/NO= 7dB
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Figure 4.3: Output SINR with respect to errors in the M Al matrix and the array

response vector: array response error —bdB
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Figure 4.4: Output SINR with respect to errors in the M Al matrix and the array

response vector: array response error —10dB
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Total tries= 10000; Eb/NO= 7dB
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Figure 4.5: Output SINR with respect to errors in the M Al matrix and the array

response vector: array response error —15dB
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Figure 4.6: Output SINR with respect to errors in the M Al matrix and the array

response vector
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4.7 Conclusion

In this chapter, we presented the effect of antenna array beamforming errors on DS-
CDMA communication systems. We have considered the situation where the errors
in estimating the array response are independent from the errors in estimating the
MAI. We have shown that the degradation of the output SINR increases as the
number of antennas increases. When the variance of the errors in both the array
response and the MAI matrix are the same, such as —15dB, there is nearly no
degradation in the output SINR due to array errors but there is a 0.5dB SINR
degradation due to M Al matrix errors in the case of a 7-element array. We have
also shown that as we increase the number of antennas to increase the SINR, the
sensitivity to array response error does not change while the sensitivity to M ATl
matrix estimates increases proportionally. This analysis has been applied to the
signal cancellation algorithm presented in Chapter 3, where Monte-Carlo simulation

results and analytical calculation agreed quite closely.
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Chapter 5

A Feedforward Approach to Downlink

Beamforming

5.1 Introduction

In a cellular CDMA communication system, there are two links in the system; the
uplink (mobile-to-base-station) and the downlink(base-station-to-mobile). As the ca-
pacity is only partially determined by the uplink, we also address downlink capacity.
In [71, 52, 51], researchers have shown that the capacity may be improved with a
transmitting antenna array at the base station. In this thesis, we also consider a
transmitting antenna array at the base station. As the mobile should be kept as
small as possible, an antenna array at the mobile may be impractical. One advantage
of an antenna array at the mobile is that the antennas may be implemented in a com-
pact manner. However, the cost and complexity of implementing an antenna array at
the mobile is much greater overall than that of implementing only one array at each
base station [75]. Here we consider a single antenna at the mobile and a single cell.
Generalization to a multi-cell situation is left as future work.

In order to perform downlink beamforming, we need to know the downlink channel
vectors for all the users in the same cell. For the uplink, the base station may esti-
mate the channel vector for the mobiles. However, there is no such inherent feedback
for the downlink. Therefore, the key problem in the downlink is how to estimate the

downlink channel vector.
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This chapter presents downlink beamforming in a cellular CDMA system. The re-
lationship between the uplink and the downlink channel is described in Section 5.3. A
thorough analysis of downlink beamforming and then the criteria for downlink beam-
forming are conducted in Section 5.4. In Section 5.5, we present a new approach
for downlink channel estimation through the feedforward method. A perturbation
RLS algorithm is proposed in Section 5.6. In Section 5.7, we compare our proposed
method with a previous probing and feedback method. The conclusions are presented

in Section 5.8.

5.2 Related research

The uplink beamforming in a CDMA system has been well studied [42, 9, 50, 43,
45,44, 70, 47, 46, 49, 51, 11, 84]. There are some studies for downlink beamforming
for a FDMA or TDMA system [19, 20, 17, 83, 63, 21, 24, 18, 13, 14, 40, 81, 54, 5].
In a TDMA system, the base station can use the estimated uplink channel vector
for downlink beamforming as long as the time difference is small. For a FDMA
system, the base station may use the estimated uplink channel vector for the downlink
beamforming as long as the frequency difference is small. In [21], Raleigh proposes
to use channel subspace invariance to estimate downlink channel spatial covariance
from the uplink channel spatial covariance on the condition that the carrier frequency
difference between the uplink and downlink is small. Channel subspace invariance is
described in Section 5.3.1. This beamforming method degrades with an increase
in frequency difference. In [84], Zetterberg proposes to form a transmitting beam
towards the mobile based on array response and directional information estimated
from the uplink data in a TDMA system. The result in [84] is that capacity is largely
dependent on the spread angle of the locally scattered rays in vicinity of the mobile.
In [19, 20, 17], Gerlach proposes to use probing and feedback to estimate downlink
channel vectors in a TDMA /FDMA system. However, for CDMA systems, to the best
knowledge of the author, there are few results. We may not use the estimated uplink
channel vector information for a CDMA system as we will explain in Sections 5.3 and

5.4.1. Therefore, the key problem in downlink beamforming in a CDMA system is
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to estimate the downlink channel vector of the mobiles and make this information
available to the base station where the downlink weights are formed. The viable
methods seem to involve feedback as in [19, 20, 17]. The feedback idea originates
from [79], where Widrow presents a method of maximizing the delivered power by a
satellite antenna array to a ground station using feedback from the ground station
back to the satellite. Akaiwa proposes a feedback scheme for diversity transmission in
a TDMA system in [1]. The mobile feeds back the information about which antenna
has the strongest signal arriving at the mobile. In [36], Liang proposes to perturb the
transmitter weight vector with orthogonal variations and feedback the perturbation
responses at the mobile to the base station. The base station uses a Kalman filter to

track the variations of the channel vector for an indoor FDD communication system.

5.3 Relationship between uplink and downlink chan-

nels

5.3.1 Channel subspace invariance between the uplink and

downlink

First, we review the channel model for the uplink and then we use reciprocity to
obtain the downlink channel model. Here, for brevity we omit the white noise in
the base station receiver as it does not affect the channel propagation model. For
simplicity, we use complex baseband signals to represent the output signals of the

antenna array due to the kth mobile:

L
rup(m) = ap(Or1,wup) Bup,ka (M Ty, wup ) bp(m Ty — 71 y) (5.1)

=1
where we suppose there are L different paths for the kth mobile and each path has an
associated DOA, 0, a corresponding array response vector ay(fy,wy,), a complex
channel gain By, x1(mTy,w.,) and a relative delay 7. In Eq. (5.1), T} is the symbol
period and bg(mTy — 71,1) is the transmitted symbol sequence of the kth mobile, and
wyp 18 the uplink carrier frequency. There are three factors that affect the channel

gain Bup ki(mTy, wy,): fast fading resulting from the local scatterers surrounding the
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kth mobile, shadowing and path loss. Therefore, we may write By, ki(mTh, wy,) as

6up,k,l(meawup) - (52)

where ay (mTh, w,,) represents the fast fading effect, I'y ;(mT}) represents shadowing,
usually modelled as having a log-normal distribution, and 7 is the order of the path
loss with a typical value of 4. The local scatterers around the kth mobile cause the
fast fading. The motion of the kth mobile causes Doppler shifts. The large buildings
or trees cause shadowing or slow fading. Supposing there are a total of Sy ; scatterers

affecting the [th path of the kth mobile, then we may write [64]

Skt 4
(s 00p) = K 3 Creioerteos@m (53)

=1
where (); is the angle of local scatterer ¢ with respect to the direction of the mobile

velocity vector, (; is the complex reflection coefficient of the ith local scatterer, ¢

2

wp,By, &S the variance of

is the speed of light, and K is a gain constant. Defining o

Bupsa(mTy, wy,), it is easy to show that

S,
Fhl(me)[X’zzii’l |CZ |2
UZpﬂk,l = d}? : (5'4)

From Eq. (5.4), we see that the long term average of the variance is independent
of the carrier frequency w,,. However, for this to be true, the scatterers around the
kth mobile must not change abruptly. For a weak path, we should not expect this
invariance. Using reciprocity, we may write the downlink response due to the l/th

path at the kth mobile as

Tdown k] = W;E;ak(ek,l,wdown)ﬂdown,k,z(me,wdown)bk(me — Thy) (5.5)

where wy,; is the weight we apply to the [th path. We will present the criterion later
in this chapter to describe how to select the wy ;. We use ay (01, Wdown) to represent

the downlink array response vector for the [th path of the kth mobile. Similar to Eq.

(5.2),
ap i (mTy, Waown )y /Lki(mTy)

6down,k,l(meawdown) = (56)

5
dk
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We also see that O'Zpﬁkl is independent of frequency, and if the scatterers around the

kth mobile do not change abruptly in a short time for a strong path, we obtain

2 2
O-downﬁk,l - Uupﬁk,l

Loa(mTy) K24 | O
di

(5.7)

5.3.2 Instantaneous relationship between the uplink and

downlink channel gain

In this section we examine the instantaneous relationship between the uplink channel
vector and the downlink channel vector. Generally, for a CDMA system, for example
[5-95, the uplink and the downlink use different carrier frequencies and the difference
is more than 45MHz. We can show that when the frequency difference is more than
200kHz, the instantaneous correlation between the uplink channel gain and the down-
link channel gain is very small. Assuming that the relative delays between different
mobiles are uniformly distributed over [—7,4s, Timax], by using the model in Section

5.3.1, it is straightforward to show that:

E{ﬂdown,k,l(mea wdown)ﬂup,k,l(mea wup)*} — O-Zp7ﬁk7l5inc(7—max(wup - wdown)) (58)

2

wp.6,, 18 independent of carrier frequency. A typical value for 7,,,, is 10usec,

where o

if |wyp — Waown| is more than 200KHz. From Figure 5.1, we obtain

E{ﬂdown,k,l(mea wdown)ﬂup,k,l(mea wup)*} ~0 (59)

The above expression is in contrast to Eq. (5.7), where the long term average of the

channel gain is the same for the uplink and the downlink.
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The Correlation between Instantaneous Uplink and Downlink Channel Gain
1 T T T T T T T T

0.4 *

correlation

0.2 *

0.4 i i i i i i i i
0 1 2 3 4 5 6 7 8 9

frequency difference 5

Figure 5.1: The correlation between instantaneous uplink and downlink channel gain
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5.4 Downlink beamforming problem formulation

Here we consider downlink beamforming in a cellular CDMA system. The downlink
differs greatly from the uplink in terms of interference, existing information, etc. In
the uplink, the signals arrive at a base station from different mobiles and typically have
different angles of arrival (DOA), thus they experience different channels. As a result
of this fact, the signals from different mobiles have different fading channel gains. For
a desired mobile signal, the interferences will fluctuate in magnitude because of the
different fading channel gains for the interferences. In contrast, in the downlink, the
interferences for a desired mobile go through the same fading channel as the desired
mobile, and therefore, its signal model will change accordingly.

First, we consider the simplest case and omit the interferences from the other
cell base stations. Suppose there are N users in a cell and the base station forms
a different weight vector for each user. The criteria of selecting the weights will be
addressed later in this chapter. Without loss in generality, we consider the kth user
and its corresponding array response vector, a;. For notational simplicity, we drop

the time index ¢ when it’s not required. After de-spreading, the received signal at

kth mobile is

N
J=15#k

where nj, is white noise and is independent of the interferences and the desired sig-
nal. Here, a; includes both the array response vector and the channel gain. For

convenience, we may rewrite Eq. (5.10) as:

T, = WHakbk + nyg (511)
where
N
W= w; (5.12)
7=1

Now we will find a demodulation method to decode by given ri. As we use a BPSK

signal, there are only two choices for estimate be: +1 or -1. If we know the true value

H

of w and by or way, we propose to use an MMSE estimator to decode b;. We choose
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an estimate b, to minimize

s — wiaby|| (5.13)

Expanding Eq. (5.13) we obtain
rell? = (wHay) rebe — wlagriby, + ||whay|? (5.14)

Obviously, ||| and ||wHay||2 do not affect the selection of by. It can be shown that
[61]
bp = CRe{(wHay) ry) (5.15)

minimizes Eq. (5.13), where ( is a positive constant. This is simply a decorrelator

H

if we know wa;. Now we examine the output of this correlator. Letting y; denote

the output, we obtain

Y = (WHaKbk + nk)(WHak)* (516)
The average SN R of the kth mobile is given by

E{]lwHa, '}
E{[[(wHap) .7}
_E{jwHa) 5,17

o2

SNR;

The signal-to-noise ratio (SN R) affects the quality of decoding. We should maintain
the average SN R above a threshold so that the bit error rate (BER) is below some
preset value. Since we can not transmit arbitrary power at the base station, therefore,

we constrain the transmission power according to
||wl||? =P (5.18)

where P is a constant. Rather than maximize the SN R for the kth mobile in isolation,

we need to maximize the SN R jointly for all the users in the same cell. That is, we
Maximize SNRy  for k=1,2,..., N. (5.19)

To simplify Eq. (5.19), we instead propose to maximize the sum of all users’ average

SNR. That is, we maximize

kZ_: E{|lw™a’} (5.20)
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subject to

lw|* =P (5.21)

It can be shown that w is the eigenvector corresponding to the largest eigenvalue of

the matrix E{}"Y ajafl} [41].

5.4.1 Effect of uncorrelated noise

To maximize the SN R of the kth mobile, we need to set our weights to the eigenvector

corresponding to the maximum eigenvalue of the matrix E{Zé\f:l aall}. Here we

define
N
Pijeat = E{D_ azatl} (5.22)
k=1

when the base station knows the exact value of all downlink channel vectors. Let
Wideql denote the eigenvector corresponding to the largest eigenvalue of matrix Pjge,;.

In addition, we define
N
Pestimate = E{Z ékéi_l} (523)
k=1

when the base station may only estimate the value of downlink channel vectors. In
Eq. (5.23), &; denotes the estimated downlink channel vector. Let W simate denote

the eigenvector corresponding to the largest eigenvalue of matrix P.simate. The SNR

of the kth mobile is
E{||w™a,||*}

2

SNR, = (5.24)

o
We normalize the SN R calculated by using weights Wesimate by the SN R calculated
by using weights W;4.4; so we may obtain the relative SN R by using estimated channel
vectors. We define the relative SN R as

E{ | |W5timateak | |2}
E{||WigearHag |2}

(5.25)

PSNR =

To maximize Eq. (5.25), we should choose Wegtimaze as close as possible to Wigeqr. From
Eq. (5.25), we need to know the downlink array response vector for each user in the
cell. In a rural area, there are few scatterers around the mobiles, and we may treat
the downlink array response vector the same as the uplink channel vector. We may

use the algorithm in Chapter 3 to perform downlink beamforming. However, due to
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estimation errors in the uplink, the uplink array response vector is corrupted by noise.

Proposition 1 If the errors are Gaussian white noise, psyr = 1, and so there is no

degradation in the SN R at the mobiles.

Proof:
Assume that

where ny is white noise vector with variance ¢, and is uncorrelated with the a;. We

remark that for each mobile the white noise variance does not have to be the same.

Therefore,
N
Pestimate = E{Z ékéi_l}
k=1
N N
= E{Z akakH} —|— Z 77ka
k=1 k=1

N
= Puea+ >yl (5.27)

k=1

where I is the identity matrix. As long as the second term in Eq. (5.27) is a diagonal
matrix, the principal eigenvector of P s mate and Pigeq; will be the same, so psyr = 1,

1.6, Westimate = Wideq; and there is no degradation in performance in terms of average

SNR.

QED

In an urban area, however, due to the fading and the Doppler effects, the instanta-
neous complex channel gain of the uplink and the downlink are uncorrelated. For a
strong path, we may expect that the scattering environment around the mobile does
not change abruptly in a short time, but for a weak path, this is not true. Forming
a beam by using the estimated uplink channel vector may generate more multi-path
interference instead of making a beneficial contribution to the received signal at the
mobile. In urban areas, therefore, we need to estimate the downlink channel vector

without the help of the uplink channel vector. Furthermore, it has been shown in
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[51] that with perfect downlink channel vectors, we may increase system capacity

several-fold.

5.5 A feedforward approach for downlink channel

estimation

Gerlach has proposed to use probing and feedback to estimate the downlink channel
vectors in the TDMA or FDMA access scheme [19, 20, 17].

In [4, 3, 2], the European CODIT system is proposed and analyzed. Every mobile
transmits data and a control signal to the base station. The control channel is used
to adapt the configuration of the data channel to a service or demand of the radio
network.

Here we suppose that the feedback channel from the mobile to the base station
is available. We propose a feedforward approach to estimate the channel vector at
the mobiles and feed it back to the base station in a CDMA system. Without loss
in generality, suppose we need to estimate the channel vector for the kth mobile.
We notice that in Eq. (5.10), w = Zé\f:l w; is common to all the users in the same
cell. We propose to feedforward this information to all users in the same cell through
the pilot or other dedicated channel to ensure reliable reception. Here, we propose
to use the pilot channel or other dedicated channel to transmit weight information.
We may use any other channel which ensures reliable transmission. This is different
from Gerlach’s methods in [19, 20, 17], where required probing signals must lie in or
near the frequency band of the information signals. In [19, 20, 17], the information
signals may not be transmitted in the probing stage while in our proposed method

simultaneous probing and information transmission is possible.

5.5.1 Using MMSE to estimate the initial channel vector

Currently, we suppose we may obtain a noise-free w at the mobile through the pilot

channel. Further, due to the pilot channel, at the mobile stations, we may estimate

H

the scalar channel gain from the base station, i.e., w™ay, for the kth user which we
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denote by
gk = whay, (5.28)

ay is the channel vector we desire to estimate. We remark that ¢ will be contaminated
by the thermal noise at the mobile. The estimation of g; from the pilot channel will
not be addressed in this thesis. The reader may refer to [4]. For g, and the w, we

propose to use the minimum mean square error criteria to estimate ay, i.e.,

ék = argnanHgk — WHékHz (529)
ag
Define
Ymmse = ||gk - WHékHz (530)
Expanding (5.30),
Ymmse = (gk - WHék)H(gk - WHék)
= lgel* — gt wHar — &ftwgy + a7 ww' 4, (5.31)
Differentiating v,,,mse with respect to a;, we obtain
aymmse A %
oa, —(giw )T + (wwlay) (5.32)
Setting Eq. (5.32) to zero,
wwHa, = wgj, (5.33)

H

We notice that ww™ is a rank-one matrix and therefore the solution of Eq. (5.33) is

not unique. One possible solution is
ap = (WWH)Tng (5.34)

where | denotes the Moore-Penrose pseudo-inverse [66]. We will use this solution

later to obtain an initial estimate of aj.

5.5.2 Recursive updating channel vector estimates

Here we propose to use the recursive least-squares (RLS) algorithm to estimate down-
link channel vectors [26]. Without loss in generality, we estimate the kth mobile’s

channel vector. At time ¢, we have the following equation:
gr(1) = wH()ay, + ny(3) (5.35)
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As before, g5 (i) is the estimated scalar channel gain for the kth mobile at time instant

i. If we obtain L snapshots of the scalar gain g (7), we have:

(1) = wH(D)ay +ni(1) (5.36)
w(2) = wH(2)a, +ni(2) (5.37)
(L) = wi(L)a, 4+ ni(L) (5.38)
Define the error term
e(t) = gi(?) — WH(i)ak (5.39)

Our fading memory cost function is defined as
A i/ 7 .
L) =D o ed)? (5.40)

=1

where « is the forgetting factor and is usually chosen in the range
0<a<l (5.41)

To minimize ﬂ(ﬁ), we express Eq. (5.35) to Eq. (5.40) as the system of equations

W(L)a, = F(L) (5.42)
where the I x M matrix
A i/ 7 .
W(L) =3 o 'w(i)wh(i) (5.43)
=1

where M is the number of transmitting antennas at the base station, and we have

the L x 1 vector
i/ T .
F(L) = 3 o wiilgi(i) (5.44)
=1
We notice that W(ﬁ) may also be written recursively as

L

W(L) = z_j ol w () wi (i) + w(L)wH (L)
= aW(L—1)+w(L)wH(L) (5.45)
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and F(ﬁ) may be written as

N

F(L)=aF(L —1)+w(L)gp(L) (5.46)

Applying the well-known matrix inversion lemma [66] to Eq. (5.45), we obtain a

A

recursive equation for the inverse of the weight matrix W(L):

®
3
@)
|
=
2
S)
<
T
3

WY L) =a "W YL —1) -

Define the terms in Eq. (5.47)

S(L) =W (L) (5.48)
and . .
. “IS(L —1)w(L
u(l) = o7 SUL—w(l) (5.49)
1+ o *wH(L)S(L - 1)w(L)
We obtain the weight inverse update as
S(L)=a"'S(L —1)—a  u(L)wH(L)S(L —1) (5.50)
Similarly we obtain the array response update as
ap(L) = az(L — 1) +u(L)x(L) (5.51)
where the innovation sequence is
X(L) = gi(L) — wH(L — D)ay(L) (5.52)

From Eqgs. (5.49) and (5.52), we may update the channel estimates recursively. To
initialize of the above RLS algorithm, we set a;(0) according to Section 5.5.1. Usually,
we initialize W(0) (and therefore S(0)) by

W(0) =1 (5.53)

where ( is a small positive constant. In Figure 5.2, we summarize the RLS algorithm

to estimate the £th mobile’s channel vector.
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Initialize the RLS algorithm:

set [ = 0;

W(0)=(¢I (S(0)=(¢""I) and

a:(0) = (w(0)wH(0)) Tw(0)gi(0)

For each instant of time, L= 1,2,..., compute

{

—_

. Updating u(L)

AN o 1S(L-1)w(L)
u(l) = 1+a—1wH(L)S(L-1)w(L)

2. Updating X(ﬁ)

X(L) = gk(jf) - WH(ﬁ)ak(ﬁ — 1)

3. Updating a(L)

A A

4. Updating S(L)
S(L)=a'S(L—1)— o tu(L)wH(L)S(L — 1)

Figure 5.2: Summary of the RLS algorithm for estimating the kth mobile’s downlink

channel vector
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5.5.3 Implementation issues in the RLS algorithm

We note that Eq. (5.47) involves finding inverse of matrix W, which requires W to

be full rank. To lessen this requirement, we may express W as
W(L) = GTGH (5.54)
where M x L matrix G is a function of the chosen weights
G = [w(1) w(2)...w(L)] (5.55)

and full rank [ x I matrix T is defined as:

o=t 0
0 o2 ... 0

T = . A (5.56)
i 0 0 ao_

where o > 0. Next, we show the necessary condition of making matrix W full rank.
Proposition 2 The rank of M x L matriz U is equal to the rank of M x M matriz

UUH ¢

) °)

rank(U) = rank(UUH) (5.57)
where U € CMXﬁ, where C denotes complex field.

Proof:
The range space of U is defined as

Range(U) = {Ux, ¥x € CL} (5.58)

Similarly,
Range(UH) = {UHx vx € CM} (5.59)

Range(UR) is a subspace of CE. The null space of U, T(U), is defined as
Y(U) 2 {x € CL such that Ux = 0} (5.60)
Y(U) is a subspace of CL as well. It is well known [66] that
C’ = Range(UM) + T(U) (5.61)
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where the sum refers to direct summation of subspaces. As x € Cﬁ, we obtain
x=UH+w (5.62)
where § € CM and Uw = 0. Therefore, we obtain

Range(U) = {U(UMY+w),¥0 € CY,w € T(U)}
= {UUHY vg e CM}
= Range(UUH) (5.63)

Therefore
rank(U) = rank(UUH) (5.64)

QED

A

Proposition 3 To make W (L) full rank, we must have
rank(G) =M (5.65)

Proof:

Since the dimension of matrix G is M x L where M < [2,

rank(G) < M (5.66)
Therefore, we need only show that

rank(G) < M (5.67)
leads to a contradiction. Now suppose

rank(G) < M (5.68)
As « is a positive constant, the matrix T may be factored as

T = EE (5.69)
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where the matrix E is defined as

. 0]
0 o 0
E—
i 0 0 ozo_
Define matrix U as
U = GE
= | Fw(1) o w(2) o Frw(l)

In the following, we will show that
rank(U) = rank(Q)

First, suppose that
rank(U) < rank(Q)

then there exist a set of complex scalars e; (1 =1,2,. .. ,ﬁ) so that
L .
L—
Z ez wt)=0
=1

(5.70)

(5.71)

(5.72)

(5.73)

(5.74)

where there are exactly rank(U) + 1 nonzero ¢;. Therefore we can find rank(U) + 1

nonzero scalars ¢;, so that
L
> ew(i)=0
=1

where

Therefore
rank(G) < rank(U) + 1 < rank(Q)

(5.75)

(5.76)

(5.77)

Using a similar argument, we can show that rank(U) > rank(G) is impossible. Since

W(L) = GTGH = GE(GE)! = uUH
and we have shown in Proposition 2
rank(UUH) =rank(U) < M
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we may obtain

rank(W) < M (5.80)

This is a contradiction to rank(W) = M. Therefore, we conclude that rank(W) < M
is impossible.
QED

The matrix W(L) is dependent on the channel vector of all the users in the

cell. The fading and mobility of the mobiles affect W(ﬁ) It is desired that if the
transmitted weights change over time, W(ﬁ) should remain full rank. At the same
time, these weights should not change abruptly so that the feedforward update rate

can be minimized.

5.5.4 Numerical and simulation results
5.5.4.1 The relative change of the downlink beamforming weights

Here we observe the behaviour of weight changes through simulation. We assume
there are N users uniformly distributed in azimuth in the cell. A circular antenna
array with M elements is installed at the base station for downlink beamforming. We

use the third-order Butterworth filter fading model [37, 28] shown in Figure 5.3.
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Time-correlated Fading Channel Model

Constant
K: power ratio of the line-of-sight (LOS) and multipath components Los=sgrt (—)
GRV: Gaussian Random V ariable Generator K+l
mean O
— GRV 3rd order Butterworth f 5 C
#1 Filter
1 Complex channel gain
Va= ——
2(K+1)
mean 0 GRV 3rd order Butterworth
#2 Filter
Var=
2(K+1)

Figure 5.3: Third-order fading channel model
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Each user experiences a fading channel which depends on the velocity of the
mobiles. We define a maximum speed v,,,, and a minimum speed v,,;, respectively.
The velocities of the mobiles are assumed uniformly distributed between [v,,in, Vsnas]-
Here we assume that the data rate is 9600bits/sec. For each symbol, we collect all
channel vectors and calculate the principal eigenvector of the scatter matrix § =
SN L agafl. Then we put a time window on these vectors of length L to form a
matrix with dimension M x L and continuously check whether its rank is M (full

rank). In addition, we define the measure of similarity

wy||||w;
Pweight,i = || 1|I_|I|| Z|| (581)
|[witwl|
where [|.|| is the Euclidean norm. We use pyeignt; to measure the relative change

between the weight vector wy and weight vectors w;.

In a simulation run, we fix the number of users (N = 30) and vary the speed ranges:
one is [0, 50]Km/h, the other is [0, 100]K'm/h. We generate the speeds of the
mobiles through a uniform distribution generator. Two hundred independent Monte
Carlo simulations are conducted to calculate pyeigni;. The results are compared in
Figure 5.4. We repeat the above but instead fix the speed range of the mobiles to
[0, 50]K'm/h and vary the number of users in the cell: one is 30 users, the other is 50
users. The results are compared in Figure 5.5. We notice that in Figure 5.4, the abso-
lute value of pyeigne; increases with the speed as the channel vector of a higher speed
mobile changes more quickly; in Figure 5.5, the absolute value of pyeigne,; decreases
with the increased number of the mobiles as the sum of more users’ channel vectors
are less random. The simulations indicate that the matrix W always maintains full
rank and the weights w; change gradually rather than abruptly which is desirable to

reduce downlink transmission bandwidth.
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Relative Change of the Principal Eignevector over Time:200 tries
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Figure 5.4: Relative change of the principal eigenvector for different speed ranges.

The vertical axis plots pyeigne,; in dB.
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x 107 Relative Change of the Principal Eignevector over Time:200 tries
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Figure 5.5: Relative change of the principal eigenvector for different number of users.

The vertical axis plots pyeigne,; in dB.
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5.5.4.2 Ill-conditioning due to slow change in the weight sequence

Now we use the RLS algorithm to estimate channel vectors of the mobiles. First,
we assume that the channel vector of user ¢ remains constant. We use the weights
w; obtained through the simulation in Section 5.5.4.1. The ideal scalar response g;
is obtained through Eq. (5.28) (assuming a perfect pilot channel). We compare the
mean square error (MSE) for different forgetting factors or. The mean square error at

time ¢ is defined in [26] and we normalize it by the norm square of the true channel

vector, i.e.,
[1a; — ai|*
MSE; = (5.82)
[l |2
where |[|.]| is the Euclidean norm, &; is the estimated channel vector of user ¢ and

a; is the corresponding true channel vector. We apply the RLS algorithm and the
results are compared in Figure 5.6 for different forgetting factors. Apparently, there
are large errors in estimating the channel vector. The reason is the slow change of the
weight sequence w; over the time window. This may be demonstrated by the following
simulation. We replace the weight sequence w; by a sequence of complex Gaussian
random vectors with unity variance, and use Eq. (5.28) to obtain the corresponding
ideal scalar response. We then use the RLS algorithm to estimate the channel vector
and calculate the MSE. The results are shown in Figure 5.7.

Now we examine the non-stationary case. The channel vector of user ¢ changes
with the time. Unlike the stationary case, if we use the weights w; obtained in Section
5.5.4.1 to track the the channel vector, the RLS algorithm completely fails to track

the channel vector. The reason is the small change of the weights w;.
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Mean Square Error Comparison for Different Forgetting Factors:200 tries

10" T T T T T T

o—  Forgetting factor=0.1
6—>o  Forgetting factor=0.6
e——=a  Forgetting factor=0.9

Data.rate=9600 bps/sec
Number of users=30

Mean Square Error
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Figure 5.6: Using RLS algorithm to estimate the channel vector: stationary case
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Mean Square Error Comparison for Different Forgetting Factors:200 tries
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Figure 5.7: Using RLS algorithm to estimate the channel vector: the weights replaced

by a sequence of Gaussian random vectors
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Figure 5.8: Interaction between the base station and mobiles




5.6 A perturbation RLS algorithm (PRLS)

5.6.1 PRLS algorithm

Feedforwarding w; at each symbol to the mobiles may cause a large number of extra
transmissions although we may transmit the differences of the weights. In addition,
the feedforward channel should have a higher data rate than normal information
transmission channels to provide the RLS algorithm a weight vector w; at each up-
date. In Section 5.5.4.1, we have shown that the weight sequence w; changes slowly.
In Section 5.5.4.2, we have demonstrated through simulation that a random weight
sequence improves the RLS algorithm performance. It has been shown in [33] that
good parameter identification requires the application of a frequency-rich input. A
random sequence is the ideal candidate for such application. In the following, we
propose a perturbation RLS algorithm (PRLS) to estimate downlink channel vectors.
We divide the downlink transmission time into equal time intervals. Each time inter-
val is equivalent to Fr,., symbols (each lasting T, seconds). The weight vector w;
remains constant during an interval and is updated at the end of each interval. Each

interval is further divided into four consecutive stages as in Figure 5.8:
Stage-I Feedforward a weight vector to all mobiles. This lasts Fy symbols.

Stage-I1 Use the RLS algorithm to estimate channel vectors at mobiles. This
lasts F. symbols.

Stage-III The mobiles feedback the estimated channel vector to the base station.
This lasts F, symbols.

Stage-IV The base station updates the weight vector w;. This lasts F, symbols.

Therefore we obtain

FTotal:Ff—I'Fe—l'Fb—l'Fu (583)

Fy and Fy may be minimized by appropriate quantization and coding. F, is de-
termined by the RLS algorithm and should be minimized. We use simulation to
determine F,. F, depends on the efficiency of the algorithm to calculate the principal

eigenvector of the matrix Y2 | ayall and may be omitted and is not considered here.
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As we fix the weight vector w; during one interval, the full rank condition in Eq.
(5.65) is not valid. Here we propose to perturb the weight w; in the channel estima-
tion stage by a sequence of independent and identically distributed (i.i.d) Gaussian

random vectors as in Figure 5.9. Therefore, the new weight vector is

where ||.|| is the Euclidean norm, w is a real positive scalar and éy, is a unit variance
Gaussian random vector, i.e.,
E{éwby,} =1 (5.85)

where I is the identity matrix. As perturbations in Gaussian random vectors may
be made the same at both the base station and mobiles, we need not transmit these
Gaussian vectors to the mobiles. In addition, the base station knows the weight w;
at the beginning of the perturbation stage, the variance of the perturbation Gaussian
random vectors may be chosen as a scalar multiple of the norm of the weight w;, i.e.,

w||w;||. The scalar channel gain due to the perturbed weights W; is
g = wHa, (5.86)

where a; is the true channel vector. Then we may apply the RLS algorithm to estimate

downlink channel vectors.
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Figure 5.9: Interaction between the base station and mobile for PRLS algorithm
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5.6.2 Effects of the perturbation

Now we examine the average SNR of the kth mobile due to the perturbation. Let
SNR;, denote the average SNR of the kth mobile due to the perturbation. Analo-
gous to Eq. (5.16), the output of the correlator at the perturbation stage is

vrp = (Whags + ny ) (WHay)” (5.87)

where W comes from Eq. (5.84) and we have dropped the time index 7 as the weight

vector w; is constant over one interval. Therefore, similarly to Eq. (5.17), we obtain

E{|[Wwa; |}

2

SNR,, =

g
E{]|(w + w||wl|éw,)"ar][*}

2

g
B{llwac] | + | 1wl [l (6w Pae |}
0—2
_ E{lw Ml + liwl’w? afla ) 59

o2

where we have used Eq. (5.85) to simplify SNRy ,. Compared with Eq. (5.17), we

obtain extra power as we perturb the weight vector w to estimate channel vectors
Pratre = |w|P= B |aHay ]} (5.80)

The relative extra power is defined as

o Peactra
Peotre = B{[[wHay |2}
|w|*=?E{ ||aHay||}

B{|[wHa,| 7] (5.90)

Proposition 4 p..,, has a lower bound of w?.

Proof:

Using the well-known Cauchy — Schwarz inequality, we obtain
[IwHag|* < [Iw] sl (5.91)

94



Therefore
. |lw|[*=*E{||afla;||}
- E{[|w[*||ax]]*}

As we fix the weight vector during updates, ||w||* may be pulled out from the expec-

(5.92)

tation in the denominator, we obtain

w||?@?E{||alla
s s Il B o) o)
[1wl[PE{]|ax|[}
The equality holds if and only if
W = Kay (5.94)

where & is a constant.

QFED

We implement the PRLS algorithm at the cost of extra power consumption. However,
as shown in Section 5.6.4, the perturbation stage is very short (15 ~ 20 symbols for
three antenna elements) because of the fast convergence of the PRLS algorithm. In
addition, we may select a small @, such as 0.1, so that we get improved performance

with trivial extra power consumption.

5.6.3 SNR loss due to the PRLS algorithm

Here we examine the loss in average SN R due to fixing the weight vector during an
interval. We compare with the case of updating the weight w at each symbol. In the
latter case, the average output SN R during one interval according to Eq. (5.17) is

B{|jwita;|’}

SNR,,, = -
YTotal H 112
— ZZ:I ||W’L a2|| (595)

O-QFTotal

In the case of the PRLS algorithm, the average output SN R during one interval
according to Eq. (5.90) is

E{HWHaZHz} —I_ Pextra

SNRprrs = -
ag
Fi+Fetl | H
F wl|%2w? f ata. (12
S Frota ||WHa»||2_|_ Total||W|° Zk:Ff+1 laHa, |
=1 7 Iz

_ (5.96)

O-QFTotal
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As the perturbation increases SNRprys, we may examine the worst case where we

omit the extra power due to the perturbation, therefore

Zizre |[wHall

SNRprrs = py T (5.97)
Define -
SNR — SNR,
PPRLS = | PSLNSR t a (5.98)
op
Therefore we obtain
FTotal H 112 _ FTotal H 112
o IS e - S wa o

F ota
Yitptet |lwHay |2
5.6.4 Numerical and simulation results

Here we conduct simulations to compare the performance of the PRLS algorithm
under different conditions. We track three typical mobiles: the mobile with the
maximum speed, the mobile with the median speed, the mobile with the minimum
speed. We vary the number of the users in the cell and vary the speed ranges of
the mobiles and compare the MSE calculated by Eq. (5.82). In addition, we may
estimate the DOA from the estimated channel vector. The DOA is estimated by

0 = argmin ||a(0) — a(0)]|? (5.100)
[

where ||.|| is the Euclidean norm, 0 is the true DOA and 0 is the estimated DOA.

The mean square error for the DOA estimation is defined as
MSE; = (§ — 0)? (5.101)

The forgetting factor a is 0.6 in the simulation. In Figures 5.10 to 5.19, we show
mean square errors of channel vector estimates in terms of the relative Euclidean
norm defined in Eq. (5.82) and DOA defined in Eq. (5.101). In the case of speed
range 0 ~ 50K m/h, the PRLS algorithm converges very fast, e.g., 15 ~ 20 symbols
for a 3-element array; for the case of speed range 0 ~ 80Km/h, the PRLS algorithm
converges slower, taking about 40 symbols to converge. Also the convergence rate
increases as the number of users increases. At the same symbol index, e.g.. 15, MSFE

is 1072 for 50 users but nearly 1072 for 80 users as shown in Figures 5.12 and 5.14.

96



To get an accurate DOA estimate, the Euclidean norm of channel estimation errors
should be around 1072, The results also show that F, is around 15 ~ 20 or 5M ~ 7M.,
respectively, where M is the number of antennas. Such a small value of F, makes Eq.
(5.90) nearly zero which means that very little extra transmitted power is needed in
implementing the PRLS algorithm. In addition, we calculate the relative SNR change
through Eq. (5.99) and results are compared in Figures 5.20 to 5.24. The results show
that there is only a very small performance penalty by fixing the beamforming weights

over 40 symbols.
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Mean Square Errors of downlink channel vector estimates for 30 users and Speed range 0~50 Km/h
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Figure 5.10: Using the PRLS algorithm to estimate the channel vector for 30 users
and the speed range 0 ~ 50 Km/h
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Mean Square Error of DOA comparison for 30 users and Speed range 0~50 Km/h
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Figure 5.11: Using the PRLS algorithm to estimate DOA for 30 users and the speed
range 0 ~ 50 Km/h
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Mean Square Errors of downlink channel vector estimates for 50 users and Speed range 0~50 Km/h
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Figure 5.12: Using the PRLS algorithm to estimate the channel vector for 50 users
and the speed range 0 ~ 50 Km/h
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Mean Square Error of DOA comparison for 50 users and Speed range 0~50 Km/h
10 T T T T T T T T

&—  Minimum speed
9l , G—>o  Median speed i
o——=8&  Maximum speed

Mean Square Error in degree
(&3]
I

FRERRGaRaSaa
R N E S T EH-R @ a A
0 | | O VIO S S/Hagan

20 25 30 35 40
symbol index

Figure 5.13: Using the PRLS algorithm to estimate DOA for 50 users and the speed
range 0 ~ 50 Km/h
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Mean Square Errors of downlink channel vector estimates for 80 users and Speed range 0~50 Km/h
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Figure 5.14: Using the PRLS algorithm to estimate the channel vector for 80 users
and the speed range 0 ~ 50 Km/h
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Mean Square Error of DOA comparison for 80 users and Speed range 0~50 Km/h
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Figure 5.15: Using the PRLS algorithm to estimate DOA for 80 users and the speed
range 0 ~ 50 Km/h
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Mean Square Errors of downlink channel vector estimates for 50 users and Speed range 0~80 Km/h
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Figure 5.16: Using the PRLS algorithm to estimate the channel vector for 50 users
and the speed range 0 ~ 80 Km/h
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Mean Square Error of DOA comparison for 50 users and Speed range 0~80 Km/h
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Figure 5.17: Using the PRLS algorithm to DOA for 50 users and the speed range
0~ 80 Km/h
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Mean Square Errors of downlink channel vector estimates for 80 users and Speed range 0~80 Km/h
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Figure 5.18: Using the PRLS algorithm to estimate the channel vector for 80 users
and the speed range 0 ~ 80 Km/h
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Mean Square Error of DOA comparison for 80 users and Speed range 0~80 Km/h
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Figure 5.19: Using the PRLS algorithm to estimate the channel vector for 80 users
and the speed range 0 ~ 80 Km/h
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SNR change comparison for 30 users and Speed range 0~50 Km/h
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Figure 5.20: Using the PRLS algorithm to estimate the
and the speed range 0 ~ 50 Km/h
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SNR change comparison for 50 users and Speed range 0~50 Km/h
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Figure 5.21: Using the PRLS algorithm to estimate the channel vector for 50 users
and the speed range 0 ~ 50 Km/h

109



SNR change comparison for 80 users and Speed range 0~50 Km/h
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Figure 5.22: Using the PRLS algorithm to estimate the channel vector for 80 users
and the speed range 0 ~ 50 Km/h
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SNR change comparison for 50 users and Speed range 0~80 Km/h
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Figure 5.23: Using the PRLS algorithm to estimate the channel vector for 50 users
and the speed range 0 ~ 80 Km/h
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SNR change comparison for 80 users and Speed range 0~80 Km/h
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Using the PRLS algorithm to estimate the channel vector for 80 users

and the speed range 0 ~ 80 Km/h
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H Step # ‘ Number of Flops H

1 M
2 2M*+2M
3 M
4 M
3 4M?

Table 5.1: Computational complexity of the PRLS algorithm

5.6.5 Computation complexity of the PRLS algorithm

Here we examine the computation complexity of the PRLS algorithm. The PRLS
algorithm is summarized in Figure 5.25. Table 5.1 gives the number of floating point
operations(flops) for each step of the PRLS algorithm in Figure 5.25. The overall
complexity of the PRLS algorithm is 6 M? + 5M. Compared with the standard RLS
algorithm, the PRLS algorithm requires M more flops in Step 1 in Figure 5.25. The
number of flops is the number of multiplication operation involved. We note that
we make no distinction between real and complex numbers. As in Step 1, 2, 5, the

product of a complex vector and a real scalar o will be require M complex flops.
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Initialize the RLS algorithm:

L= 0;

W(0)=(¢I (S(0)=(¢""I) and

set W(0) = w which is fed forward by the base station;

For each instant of time, [221,2,. .., compute

{

1. Updating the perturbed weight vector w (/)
W(L) = W(0) + =|lwl|éw,

2. Updating u(L)
AN o 1S(L-1)W (L)
u(l) = 1+a—wH(L)S(L-1)W(L)

3. Updating X(ﬁ)

X(L) = gk(jf) - VA"H(ﬁ)ak(ﬁ - 1)

A

4. Updating ax (L)
ap(L) = ay(L — 1)+ u(L)x*(L)

5. Updating S(L)
S(L)=a'S(L—1)— o tu(L)WH(L)S(L — 1)

Figure 5.25: Summary of the PRLS algorithm for estimating the kth mobile’s down-

link channel vector
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5.7 Application and Comparison

5.7.1 Application to TDMA and FDMA system

The proposed method may be applied to TDMA or FDMA communication systems.
We only need a downlink channel to feedforward weight information to the mobiles.
As all mobiles share this downlink channel, the overhead entailed by adding this extra
channel is small. In a FDMA system we do not need the frequency of the feedforward
channel to lie in or near the frequency band of the information signals. This gives
us a flexible choice. In a TDMA system we have flexible choice of the time slot. In
addition, we have to estimate the scalar channel gain of the mobile stations. This
may be done using the known 14 synchronization symbols in each user slot of 162
symbols in an IS-54 system [78]. In FDMA we may use a pilot tone to estimate the

scalar channel gain.

5.7.2 Comparison of feedforward and feedback downlink

channel estimation

Here we compared the downlink channel estimation methods in terms of overhead
entailed by the probe and feedback [19, 20, 17] and the feedforward and feedback
methods presented in this thesis. In the following part of this chapter, we refer to
the probe/feedback method as the feedback method, and the feedforward/ feedback
method as the feedforward method. As both methods use feedback from the mobiles

to the base station, we compare them first.

5.7.2.1 Uplink comparison

In Gerlach’s method [19, 20, 17], the mobile quantizes the channel response of r
probing signals sent from the base station and feeds them back through the uplink
channel. As the channel response of a specific probing signal is a complex number,
we need to quantize each real /imaginary component of the channel response to b bits

of resolvability, therefore the number of bits for transmitting these response vectors
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Gerlach’s Proposed
Method Method

Uplink overhead > 2Mb 2Mb
Downlink overhead | Dedicated Analog Channel 2Mb

Table 5.2: Comparison between Gerlach’s method and proposed method

at each time is 2rb. However, the feedback method requires

r>M (5.102)

to uniquely determine the channel vectors at the M-element base station. In the feed-
forward method, we quantize the estimated channel vector for that user and send it
back through the uplink channel. As the dimension of the channel vector is M, the
number of bits for transmitting the channel vector each time is 2Mb. Obviously, the

feed-forward method saves uplink bandwidth.

5.7.2.2 Downlink comparison

It is not possible to compare these two methods directly because in the feed-forward
method, we need not interrupt the transmission of information signals. However, in
the feedback method, the base station must stop transmitting information signals to
transmit the probing signals because the probing signals lie in or near the frequency
band of the information signals. We therefore examine the overhead due to feed-
forward or probing. In the feedback method, the base station transmits r probing
signals to all users sharing the same channel (frequency or time slot) in the same cell.
In contrast, the feed-forward method quantizes the weights w and then broadcasts
them through the pilot channel since the weights are common to all users in the same
cell site. Analogous to the uplink, we obtain the number of bits for transmitting the

quantized weights at each time is 2Mb. The comparison is shown in Table 5.2.
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5.8 Conclusion

This chapter presented a novel approach for downlink channel estimation in a cel-
lular CDMA system and applied a RLS algorithm to update the channel estimates
continuously. A maximum SNR downlink beamforming scheme was proposed and
analyzed. We discussed implementation issues and the simulation results show the
weights change smoothly at a smooth change in the MAI environment. Further, a
perturbed RLS (PRLS) algorithm was proposed and analyzed and the simulation
results show we can estimate downlink channel vectors very accurately. Finally, we
indicated how our method may be extended to TDMA and FDMA communication

systems.
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Chapter 6

Summary and Conclusions

6.1 Introduction

This thesis began with a brief description of the motivation behind the problems in-
vestigated here. Then the background information for the thesis including DS-CDMA
system data models, fading channel models and array signal processing techniques was
examined in detail. An optimum uplink beamforming algorithm was proposed and
analyzed. Further, an error analysis of uplink optimum beamforming was conducted
and applied to the proposed optimum uplink beamforming algorithm. Finally, a new
technique for downlink beamforming was proposed and analyzed.

This chapter first summarizes the contributions formulated in the thesis. Then
conclusions are made in Section 6.3 from the research results in the thesis. Finally,

Section 6.4 presents several future research directions based on the thesis.

6.2 Summary of contributions

e An original optimum uplink beamforming algorithm employing signal cancella-
tion method, was proposed. It used direct PN sequence signal cancellation to
obtain a signal-free IN covariance matrix. This directly estimated interference-
noise covariance was applied to optimum beamforming. A finite-sample analysis
of the algorithm was conducted and compared with the well known code-filtering

approach [49] [51]. The proposed algorithm showed significant improvement
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both in output SINR and DOA estimation.

e The combined effect of estimation error from finite-sample covariance data, in-
terference and thermal noise was analytically determined. We quantified how
finite-sample errors in the estimation in both the array response and covari-
ance matrices affect system SINR. As an application of the above results, we
have applied this analysis to the optimum beamforming algorithm using signal
cancellation proposed in Chapter 3. We showed that finite-sample estimation
errors in the array response vector are independent of multi-access interference

errors in this algorithm.

o A feedforward approach for downlink beamforming was proposed and analyzed.
This algorithm reduces the amount of transmission overhead since channel esti-
mates are obtained at the same time as data is being transmitted. We applied
the RLS algorithm to estimate downlink channel vectors which are used to form
the downlink beamforming weight vector. A perturbation version of the RLS
algorithm was then proposed and analyzed to track the channel vector in a
non-stationary environment. Finally, the application of feedforward approach
to other multi-access wireless communication systems, TDMA and FDMA, was

briefly discussed.

6.3 Conclusions

We propose a new algorithm to directly estimate the interference-noise covariance
matrix using PN signal cancellation. We obtain improved DOA estimation and an
average increase of 2.5dB in output SINR compared with [51] [49]. In addition, the
computational complexity is less than that of [51] [49].

We presented the effect of antenna array beamforming errors on DS-CDMA com-
munication systems. We have considered the situation where the errors in estimating
the array response are independent from the errors in estimating the M Al. We have
shown that the degradation of the output SINR increases as the number of antennas
increases. When the variance of the errors in both the array response and the M AT

matrix are the same, such as —15dB, there is nearly no degradation in the output
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SITN R due to array errors but there is a 0.5dB STN R degradation due to M Al matrix
errors in the case of a T-element array. We also show that as we increase the number
of antennas to increase the STN R, the sensitivity to array response error does not
change while the sensitivity to M Al matrix estimates increases proportionally. This
analysis has been applied to the signal cancellation algorithm presented in Chapter 3,
where Monte-Carlo simulation results and analytical calculation agreed quite closely.

A new approach for downlink channel estimation in a cellular CDMA system is
proposed and a RLS algorithm was applied to update the channel estimates contin-
uously. The results show the weights change smoothly with a smooth change in the
MAT environment. With the help of weight perturbations, we may estimate downlink

channel vectors much more accurately and use them for downlink beamforming.

6.4 Future directions

In Chapter 4, we have analyzed the effects of array response and covariance errors on
the output SINR. An analysis of error in DOA estimation and its effect on the SINR
of the downlink may be useful in downlink beamforming in a rural enviroment where
the estimated DOA from the uplink data was used for downlink beamforming.

In Chapter 5, we have proposed a feedtfward approach for downlink channel vector
estimation for the case of a single cell case. Generalization to the multi-cell and

multi-path case is a future research topic.
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