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Abstract

The conventional single-antenna receiver suffers in wireless fading channels from limitations

that preclude deployment of envisioned wireless applications. By increasing complexity, im-

provements are possible using multi-branch receivers. In particular, smart antenna arrays em-

ploy maximal-ratio combining (MRC) or statistical beamforming (BF) to exploit diversity and

array gain. However, varying azimuth spread creates unfavorable spatial correlation conditions

that diminish these gains, while BF and MRC complexity remains constant. On the other hand,

adaptive eigen-combining can yield near-optimum performance for more efficient resource us-

age. This motivates our study of maximal-ratio eigen-combining (MREC).

We unravel the relationship between MREC, BF, and MRC performance, and evaluate their

complexity. Outage and average error probability expressions are derived for MREC assuming

perfectly and imperfectly known channel gains. These results are specialized to MRC and BF,

as well as to well-accepted pilot-symbol-based channel estimation techniques. In the process,

new performance analyses are provided.

Numerical results for typical urban scenarios with variable correlation demonstrate MREC’s

advantages. Existing criteria for optimum eigen-mode selection in MREC are reviewed, and a

new adaptation approach that accounts for channel condition, algorithm complexity, resource

availability, and intended performance level, is proposed and evaluated.

These single- and multi-branch receivers are then evaluated on a field-programmable gate

array (FPGA) in terms of symbol-detection performance and resource and power consumption.
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MREC flexibility is shown to yield near-optimum performance for half of the hardware and

power requirements of MRC, or, equivalently, a doubling of the number of users which can be

handled with the same hardware. Smarter antennas, i.e., array receivers aware of the channel-

statistics, resource availability, and required performance, can thus be deployed.

Finally, for code-division multiple access (CDMA) systems, we specify an eigen-combining

approach. A recently-developed signal despreading method, which eliminates the intended sig-

nal, is exploited for interference-plus-noise correlation matrix calculation. After some trans-

formations, combining can once again be relegated to a few eigen-modes, for lower complexity

and improved performance.
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Chapter 1

Introduction

1.1 Motivation

Envisioned applications for current and future mobile and fixed wireless communications sys-

tems [44, 92] will require data rates, area coverage, symbol-detection performance, and user

capacities which surpass the capabilities of conventional, single-input single-output (SISO)

implementations, comprising one transmitting and one receiving antenna. Multi-branch trans-

ceivers exploiting the single-input multiple-output (SIMO) or the multiple-input single-output

(MISO) concepts, also known as smart antennas [79, 80], have been promoted to improve

the performance at no need for expensive new bandwidth [62, 106, 115, 123]. Therefore they

have been specified for implementation in mobile communications systems by the3rd Gener-

ation Partnership Project (3GPP) [3, 4], as well as in Local and Metropolitan Area Networks

by the IEEE 802.11 and IEEE 802.16 standards [73, 79, 80]. More recently, the multiple-

input multiple-output (MIMO) concept has been proposed to enhance the spectral efficiency

[57,73,106,140].

In this thesis, we focus on cost-effective and power-efficient receivers that employ antenna
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array signal combining. Without loss of generality and for greater clarity, the results are de-

scribed in the context of SIMO systems. However, with appropriate additional processing, the

same concepts can be straightforwardly generalized to MIMO receivers.

The SIMO smart-antenna concept has been attracting research interest and has been ex-

tensively developed over the past four decades [23, 33, 35, 36, 42, 43, 61, 62, 79, 80, 83, 87, 99–

101, 107, 134, 147]. SIMO processing can be classified into two conceptually-distinct classes,

each optimizing performance for certain channel conditions, as described next. If there exists

line-of-sight communication between transmitter and receiver, antenna array received signals

tend to be highly correlated. Then, maximum average signal-to-noise ratio (SNR), i.e., sta-

tistical, beamforming (BF) is known to enhance symbol-detection performance, due to array

gain [99] [106, Section 1.2.1], over the SISO system. Conversely, when rich scattering [106]

occurs in the channel, maximal-ratio combining [34] (MRC) can yield significant diversity

gain [106, Sections 1.2.2, 5.3, Table 5.1, p. 101].

Nevertheless, for actual rural, sub/urban, and indoor channels, signals received with an

antenna array are never perfectly correlated (coherent) or decorrelated [130]. (Such a situation

is also characteristic of other multi-branch receivers, e.g., the taps of a CDMA RAKE [104]

[106, Section 5.7].) In this case of medium correlation, BF and MRC performance is worse

than that achievable with a pre-selected number of branches which are coherent or uncorrelated,

respectively [42, 125, 128, 130]. Channel estimation [39, 90] inaccuracy will further degrade

performance [123, Section 9.9].

In actual mobile communications scenarios spatial branch correlation varies, although slow-

ly compared to the channel fading, due to changing azimuth angle spread (AS) [8]. Employing

BF or MRC then maintains high computational requirements, whereas performance varies.

The high complexity of multi-branch transceiver signal processing algorithms has been im-

peding their deployment in actual systems [79, 80] because it translates into high equipment
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cost and power consumption. Smarter processing that adapts to channel statistics is thus ex-

pected to provide manufacturers, operators, and users with high-performing yet cost-effective

and power-efficient base-stations and mobile terminals.

Recently, eigen-combining, also known as eigen-beamforming, was proposed for receiving

antenna arrays as a more versatile approach in which both performance and complexity can

follow the channel statistics [35, 36, 42, 47, 48, 76, 77, 83, 106, 125, 128, 130]. Ideally, eigen-

combining would exploit only those eigen-modes of the channel that yield most of the available

performance gain. Eigen-combining has previously been proposed as an enhancement to BF

for scenarios with non-zero azimuth spread [35, 36, 42, 83], as well as a lower complexity

alternative to MRC for scenarios with non-rich scattering [35, 36, 47, 48, 76, 77]. MISO and

MIMO eigen-mode-based combining has also been analyzed [60, 106, 140, 154] and specified

for implementation by the 3GPP [3].

In this work we focus on receiver-side maximal-ratio eigen-combining (MREC), which

consists of two steps [125,128,130]:

1. The received signal vector is passed through the Karhunen-Loève Transform [59, 68]

(KLT), using a number of eigenvectors of the channel gain vector correlation matrix.

2. The elements of the KLT output signal vector are then linearly combined so as to maxi-

mize the SNR conditioned on the fading [34].

Since the channel statistics can vary as much as three orders of magnitude more slowly than the

fading [130], the computations involved in eigen-decomposition can be distributed over long

intervals, and thus do not represent a significant load, as opposed to the channel-fading-rate and

symbol-rate operations involved in channel estimation and signal combining [1,35,36,130].

Previous studies have not clearly stated the relationships between MREC, BF, and MRC,
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nor have these studies compared their optimum and suboptimum implementations given chan-

nel estimates [35, 36, 42, 47, 48, 76, 77, 83, 125]. Furthermore, eigen-combining performance

evaluations have mainly relied on simulation [35,36,42,47,76,77,83], or analysis for unrealistic

power azimuth spectrum (p.a.s.) models [47,48]. In addition, even when eigen-combining was

proposed for problem-dimension reduction, the channel statistics alone controlled the compu-

tational savings [47, 76, 77]. The tradeoff between eigen-combining complexity and perfor-

mance has not been considered in detail thus far. However, as base-station receiver resources

become scarcer due to high system load, one may be satisfied with eigen-combining perfor-

mance achieved by considering only very few eigen-modes for certain users. On the other

hand, when resources are readily available, one could achieve better performance by exploit-

ing additional eigen-modes. Graceful controlled performance adjustments can then yield more

flexible upper limits on user capacities.

Formulas for BF and MRC performance measures such as average error probability (AEP)

and outage probability (OP) have not been readily available, even for perfectly known chan-

nels (p.k.c.). For instance, [89] considers MRC performance measures for the case of correlated

branches which can have unequal variances, but does not cover the case when some eigenval-

ues of the channel correlation matrix coincide. The recent MRC study from [123] considers

only special correlation cases. The newer results from [48] suffer from similar limitations as

those from [89], although they apply for imperfectly known channels (i.k.c.). Furthermore,

performance measure expressions proposed by other authors specifically for BF are not readily

available.

Comparative assessments by other authors of actual, fixed-point, implementations of MREC,

BF, and MRC, in terms of performance and receiver resource/power consumption averaged

over the channel statistics, are not available. Such evaluations are of utmost importance as they
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can reveal issues which are not addressed by typical theoretical performance analysis. Of spe-

cial importance are implementations which rely on field-programmable gate arrays (FPGAs)

to cope with heavy computational loads [129].

FPGAs have recently moved from the level of simple glue logic for embedded systems into

the realm of intensive signal processing where they are quickly becoming very strong competi-

tors to digital signal processors (DSPs) and application-specific integrated circuits (ASICs).

FPGA producers boast significant on-chip enhancements, e.g., embedded DSP blocks and

memory [15, 149], that can speed-up algorithm execution several-fold over DSPs, through

hardware parallelism [17, 72]. Furthermore, FPGAs reprogrammability and integrated design

flows [11, pp. 55 - 56] can shorten the time-to-market as well as reduce the costs and risk of

new-product development, compared to ASICs, which are fully customized very-large-scale

integration (VLSI) chips [27]. FPGAs are thus very suitable for prototyping newly developed

signal processing algorithms. Numerous examples of such FPGA-based implementations of

advanced communications signal processing algorithms are presented in the current EURASIP

“Journal on Applied Signal Processing” volume, and the upcoming “Special Issue on Field-

Programmable Gate Arrays in Embedded Systems”, of the EURASIP “Journal on Embedded

Systems”, to appear in the4th quarter of2006. Finally, the hardware reconfigurability allowed

by FPGA-based implementations permits optimization of systems already operational, and can

yield longer lifespan for deployed systems in an era of fast-changing standards, markets, and

applications [27].

FPGA chips are designed and fabricated to minimize power consumption whether in stand-

by or operation modes [82]. Nevertheless, power-aware application design can also make a

significant impact because consistently underutilized and underperforming implementations

waste resources and power [31, 121, 135, 150]. For multi-branch communications receivers,

frequently the channel does not offer performance-maximizing conditions for BF or MRC,
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given the complexity of these algorithms, and the resources and power their implementations

consume. Although eigen-combining has been previously proposed for complexity reduction

and performance improvement, there does not seem to be research comparing actual perfor-

mance and resource/power consumption for FPGA-based implementations of BF and MRC,

and adaptive MREC. The actual power consumption and receiver cost savings, or the user

processing capacity increases achievable with MREC, have not been quantified.

Finally, code-division multiple access (CDMA) is commonly exploited in2nd- and3rd-

generation (2G and 3G) wireless cellular communications systems [33, 71, 132, 134] to im-

prove the user capacity [134]. However, CDMA systems are interference-limited and so sig-

nificant performance improvements are possible with smart antenna array receivers employing

optimum combining [100, 101] or statistical beamforming [43], which, however, increase the

complexity. Lower complexity and further improvements have been claimed possible with

eigen-combining [36,42]. Nevertheless, previously proposed algorithms [43,100,101] rely on

the front-end, pre-correlation, received signal, which is generally quantized with low preci-

sion [122]. Furthermore, their performance depends on the actual chip-pulse waveform, and

their convergence may be slow.

1.2 Thesis Overview

Within the following five chapters of this thesis we investigate the single- and multi-branch

receivers introduced above. We summarize our results and indicate possible future work in the

last chapter. The appendix sections provide reference material and further details on certain

issues discussed in the main body of the text, which is organized as follows.

Chapter2 provides the background on SISO communications systems, to demonstrate the

need for performance improvements. It takes us from the transmitted M-ary Phase Shift Keying
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(MPSK) signal model, through the performance-degrading effects of receiver noise, multipath

fading (with a focus the Rayleigh distribution), and channel gain estimation inaccuracy.

Chapter3 introduces the multi-branch receiver signal model, and presents methods em-

ployed thereafter for symbol-detection performance analysis, i.e., to determine formulas for the

average error probability and the outage probability. The traditional signal combining methods,

i.e., BF and MRC, are then described for p.k.c., along with the derivation of their performance

measures. Numerical results indicate that significant performance improvements are possible

due to antenna and diversity gains. Nevertheless, the fading distribution parameters and corre-

lation can change that. MREC is described next and analyzed for p.k.c. The fact that MREC is

a superset of BF and MRC is documented. It is then shown that SIMO performance gains over

SISO can be seriously diminished by channel estimation inaccuracy. For two common channel

estimation techniques, and for optimum and suboptimum eigen-/combining we then find that

BF and MRC are still performance-equivalent to special cases of MREC. These equivalencies

are used to derive performance measures for BF and MRC in fairly general cases, e.g., when

the channel gains have the same distribution type, but have non-zero correlation and non-equal

variances. Finally, the numerical complexity is evaluated for BF, MRC, and MREC.

Chapter4 introduces the more realistic Laplacian power azimuth spectrum (p.a.s.) and the

azimuth angle spread (AS) model for typical mobile wireless channels. BF, MRC, and MREC

performance dependence on azimuth spread is evaluated. The need for adaptive use of MREC

is demonstrated. Existing as well as new criteria for MREC adaptation are then described.

Promising performance improvements and complexity reductions are shown to be possible.

Chapter5 presents our FPGA implementations of the conventional, single-branch, receiver,
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as well as the multi-branch receivers discussed. Comparisons are made between their floating-

point, computer-based, simulations and their fixed-point FPGA realizations. Parallelism-ena-

bling FPGA implementations of BF, MRC, and MREC are evaluated comparatively for perfor-

mance and resource/power consumption.

Finally, Chapter6 discusses multi-branch receiver combining for CDMA systems. The

benefits of a recently-proposed CDMA signal despreading approach which can readily pro-

vide the interference-plus-noise correlation matrix are described from the optimum-combining

perspective. Then, eigen-combining for this multi-user scenario is described.

1.3 Summary of Contributions

This thesis makes the following contributions:

• A unified analysis of diversity combining, statistical beamforming, and eigen-combining

is performed. Maximal-ratio eigen-combining (MREC) is shown to be a superset of sta-

tistical beamforming (BF) and maximal-ratio combining (MRC). AEP and OP formulas

are derived for p.k.c. and i.k.c. Optimum and sub-optimum eigen-/combining are con-

sidered and compared. The resulting expressions are important since they quantify the

performance of statistical beamforming and combining for the more practical cases when

channel gains are correlated and have non-identical variances.

• The numerical complexities of BF, MRC, and MREC are evaluated. The performance

advantages of MREC over BF and MRC are documented for typical actual mobile com-

munications scenarios, based on both analysis and simulations. For small complexity

increases, MREC is shown to greatly outperform BF. MREC is shown to have the poten-

tial to significantly lower complexity and even improve performance compared to MRC

in practical situations where uncertainty in channel state information exists.

8



• FPGA implementations of the conventional single-branch receiver and of the enhanced,

BF, MRC, and MREC, receivers confirm significant performance improvements with

multi-branch receivers, at the price of higher resource requirements including power

consumption. Among the enhanced receivers, MREC is shown to appropriately adapt to

the slow variations in the channel eigen-modes and to yield resource- and power-efficient,

i.e., smarter, antenna array receivers that can attain performance targets.

• A possible eigen-combining implementation for CDMA systems is proposed. A CDMA

signal despreading technique which helps to accurately compute the interference-plus-

noise correlation matrix for any chip-pulse waveform is employed. The proposed eigen-

combining approach promises wider applicability, faster convergence, and controllable

performance–complexity tradeoff.
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Chapter 2

Background on Conventional SISO Systems

2.1 Chapter Overview

In this background chapter we first present the model forM-ary phase-shift keying (MPSK)

transmitted signals and evaluate the symbol-detection performance for additive white Gaussian

noise (AWGN) and nonfading channel. A versatile performance analysis method described by

Simon and Alouini in their seminal book [123] is then used to quantify a very significant po-

tential deterioration due to channel multipath fading. Finally, we study the negative effect of

channel gain estimation inaccuracy on performance. We focus on pilot-symbol-aided modu-

lation (PSAM) at the transmitter and pilot-sample interpolation at the receiver, and evaluate

the system symbol-detection performance as a function of relative pilot-symbol transmitted

power. This background chapter on wireless impairments and their effects on SISO commu-

nications system performance is provided to demonstrate the need for improvements. Such

improvements can be achieved efficiently, as described in subsequent chapters, with adaptive

multi-branch receivers. Antenna arrays can for example combat channel fading, improve chan-

nel estimation accuracy, enhance coverage, and cancel interference. They would also require

lower-cost power amplifiers than single-antenna counterparts for similar coverage [80].

10



2.2 Signal Model

2.2.1 Transmitted Signal

Throughout this work we will considerM-ary phase-shift keying (MPSK) transmitted wave-

forms, unless stated otherwise, whereM is the constellation size. At time intervals of lengthTs

seconds, the MPSK modulator transforms a new group of

k = log2M (2.1)

equiprobable0 and1 information bits into one of theM deterministic, finite-energy, temporal

waveforms described by [115, Eqn. 4.3-11, p. 171]

sm(t) = ℜ
[
p(t)ej 2π(m−1)/M ej 2π fct

]
, m= 1 : M, t ∈ [0,Ts], (2.2)

= p(t)cos

[
2π
M

(m−1)+2π fct

]
(2.3)

= p(t)cos

[
2π
M

(m−1)
]

cos2π fct− p(t)sin

[
2π
M

(m−1)
]

sin2π fct, (2.4)

whereℜ stands for the real part of a complex-valued number,t stands for time,Ts is the trans-

mitted symbol duration,fc is the carrier frequency, andp(t) is the transmitted pulse waveform,

herein assumed to be non-zero only in[0,Ts]. Then, for all possible waveforms, thetransmitted

energy per symbolis [115, Eqn. 4.3-3, p. 170]

Es
4
=

∫ Ts

0
s2
m(t)dt, (2.5)

which is related to the energy in the pulse waveform,

εp
4
=

∫ Ts

0
p2(t)dt, (2.6)

as [115, Eqn. 4.3-12, p. 172]

Es =
1
2

εp. (2.7)
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The transmitted signal can be written as the orthogonal-function expansion [115, Eqns.

(4.3-13 – 16), pp.172-173]

sm(t) = sm,1 · f1(t)+sm,2 · f2(t), (2.8)

where the transmitted signal coordinates, i.e.,sm,1 andsm,2, are given by

sm,1 =
√

εp

2
cos

[
2π
M

(m−1)
]

=
√

Es cos

[
2π
M

(m−1)
]
, (2.9)

sm,2 =
√

εp

2
sin

[
2π
M

(m−1)
]

=
√

Es sin

[
2π
M

(m−1)
]
, (2.10)

and the functions

f1(t)
4
=

√
2
εp

p(t) cos2π fct =
√

1
Es

p(t) cos2π fct (2.11)

f2(t)
4
= −

√
2
εp

p(t) sin2π fct =−
√

1
Es

p(t) sin2π fct (2.12)

are orthonormal [115, Eqn. 4.2-21, p. 161], i.e.,

∫ ∞

−∞
fi(t) f j(t)dt = δi, j , (2.13)

where

δi, j
4
=





1 , for i = j,

0 , for i 6= j.
(2.14)

The electrical signal produced by the modulator, described by (2.2), is sent to a transmitting

antenna [29], which transforms it into an electromagnetic wave.

2.2.2 Received Signal

The transmitted electromagnetic wave propagates over the wireless channel from the transmit-

ting antenna to a receiving antenna. The latter picks up the signal and inputs it to a filter [115, p.

157] which outputs the real-valued random process

r(t) = p(t)a(t) cos

[
2π
M

(m−1)+2π fct +α(t)
]

+z(t) (2.15)
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where the amplitude gaina(t) and the phase shiftα(t) are real-valued channel effects, and

z(t) is the real-valued noise added by the receiver [115, Sect. 4.1.4]. Throughout this work,

a(t) andα(t) are assumed to vary more slowly than the symbol rate,fs
4
= 1/Ts. Further,z(t)

is considered to be a Gaussian distributed process with zero-mean and double-sided power

spectral density (p.s.d.) given by [115, Fig. 4.1-3, p. 158]

Sz( f ) =





N0
2 , for | f ± fc| ≤ B

2

0 , otherwise.
(2.16)

The band-limited random processz(t) is referred to asadditive white Gaussian noise (AWGN),

since, when the bandwidthB is large, temporally-separated samples ofz(t) will be nearly

uncorrelated.

Let us consider a correlation demodulator as described in [115, Sect. 5.1.1, p. 232]. With-

out constraining the generality of the ensuing discussion, the time required by the electromag-

netic wave to propagate from the transmitter to the receiver is disregarded and the correlation

demodulator is assumed to be synchronized perfectly with the received waveform. For nota-

tional simplicity it is assumed that transmission of the symbol starts at time0 (and ends at

time Ts). Nevertheless, since in practice symbols are sent successively from the transmitter,

the discrete-time received signal will be indexed accordingly, when necessary. Then, at the

end of each symbol interval, the components of the received signal along the two orthonormal

functions defined earlier are

r1
4
=

∫ Ts

0
r(t) f1(t)dt =

√
Es a cos

[
2π
M

(m−1)+α
]

+z1, (2.17)

and

r2
4
=

∫ Ts

0
r(t) f2(t)dt =

√
Es a sin

[
2π
M

(m−1)+α
]

+z2, (2.18)

where

zi
4
=

∫ Ts

0
z(t) fi(t)dt, (2.19)
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is zero-mean Gaussian with variance (auto-correlation)σ2
zi

4
= E{z2

i }= N0/2, i = 1,2 [115, Eqn.

5.1.7, p. 235], withE{·} denoting statistical averaging. Since temporally-separated samples

of the noise processz(t) are uncorrelated, andf1(t) and f2(t) defined in (2.11), (2.12) are

orthonormal, (2.19) yields

E{z1 z2}= 0. (2.20)

For a more compact mathematical representation, the equivalent complex-valued received

signal is commonly employed, i.e.,

ỹ
4
= r1 + j r2

=
√

Es a ej[ 2π
M (m−1)+α] +z1 + j z2

=
√

Esej 2π
M (m−1) aejα +z1 + j z2,

=
√

Esbh̃+ ñ, (2.21)

where

b
4
= ej 2π

M (m−1) (2.22)

is the complex notation of the MPSK transmitted symbol,

h̃
4
= aejα (2.23)

is the equivalent complex-valuedchannel gain, and

ñ
4
= z1 + j z2 (2.24)

is the equivalent complex-valued, zero-mean AWGN. From (2.20) it follows that the real and

imaginary parts of the receiver noise are independent, due to their joint Gaussianity. Then

σ2
ñ
4
= E{ññ∗}= E{|ñ|2}= σ2

z1
+σ2

z2
= N0. (2.25)
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2.3 Nonfading Channel with Receiver AWGN

2.3.1 Signal Model

Let us assume for now that in (2.21) the channel gain is fixed ath̃ = 1. The received signal

model is then

ỹ =
√

Esb+ ñ, (2.26)

The probability density function (p.d.f.) of the complex-valued zero-mean AWGNñ is given

by [102, Eqn. 8-62a, p. 199]

p.d.f.(ñ) =
1

π N0
e−|ñ|

2/N0. (2.27)

This distribution is further denoted withNc(0,N0).

2.3.2 Performance

Thesignal-to-noise ratio (SNR) per symbolis then given by

Γ̃ 4
=

Es

N0
, (2.28)

and, since one transmitted symbol corresponds tok = log2M information bits, theSNR per bit

is

γb
4
=

Γ̃
log2M

. (2.29)

The bit error probability for BPSK modulation is [115, Eqn. 5.2-57, p. 268]

Pe = Q
(√

2Γ̃
)

=
1
2

erfc
(√

Γ̃
)

, (2.30)

whereQ(·) is the Gaussian Q-function [123, Eqn. 4.1, p. 70]

Q(x)
4
=

∫ ∞

x

1√
2π

e−y2/2dy, (2.31)
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and erfc is thecomplementary error functiongiven by [115, Eqn. 2.1-95, p. 39]

erfc(x) =
2√
π

∫ ∞

x
e−y2

dy. (2.32)

Furthermore, a symbol error probability expression for MPSK modulation is [46, Eqn. 5,

p. 25.5.2] [123, Eqn. 4.2, p. 71]

Pe =
1
π

∫ M−1
M π

0
exp

{
−Γ̃

gPSK

sin2φ

}
dφ , (2.33)

where

gPSK
4
= sin2 π

M
. (2.34)

That (2.33) reduces for BPSK modulation (i.e.,M = 2) to (2.30) can easily be shown using the

equivalent representations of the Q-function [46, Eqn. 9, p. 25.5.2] [123, Eqn. 8.22, p. 198]

Q(x) =
1
π

∫ π/2

0
exp

{
− x2

2 sin2φ

}
dφ (2.35)

and of the erfc function [46, Eqn. 10, p. 25.5.2]

erfc(x) =
2
π

∫ π/2

0
exp

{
− x2

sin2φ

}
dφ . (2.36)

The performance of a SISO communication system with AWGN is presented for BPSK

modulation in Fig. 2.1. The theoretical bit error probability from (2.30) — equivalent to (2.33)

for M = 2 — and that obtained by simulating4 · 106 noise samples are plotted vs. the SNR

per symbolγb defined in (2.29) on page 15. Fig. 2.2 shows results obtained with (2.33) and by

simulation for QPSK modulation.

2.4 Multipath Fading

2.4.1 Fading Channel Gain Model

In actual wireless communications, an additional, very significant, phenomenon affects the

transmitted signal before it arrives at the receiver: the transmitted electromagnetic waves can
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propagate over numerous different paths, overlapping constructively or destructively at dif-

ferent instances in time and space. This phenomenon is known asmultipath fading[75, 89,

123, 133, 145]. The continuous-time random real-valued processesa(t) andα(t) from (2.15)

and the corresponding discrete-time complex-valued processh̃ from (2.21) denote the effect of

multipath fading on the transmitted signal, assuming frequency-flat fading.

Unless stated otherwise, for the analytical and numerical results presented in this work

we will consider that the channel gain is a complex-valued random variable with Gaussian

distribution, which is approximately the case when the transmitted signal propagates to the

receiver over a large number of paths [75, p. 14]. The complex gains of these paths are assumed

to have phases which are uniformly distributed in[0,2π]. Furthermore, the amplitudes and the

phases are statistically independent. Furthermore, unless specified otherwise, we will assume

that the channel gain is zero-mean, i.e.,

E{h̃}= 0, (2.37)

and denote its variance (autocorrelation) with

σ2
h̃

4
= E{|h̃|2}, (2.38)

so that,̃h∼Nc(0,σ2
h̃
). Then, the p.d.f. of the channel gain is given by [102, Eqn. 8-62a, p. 199]

p(h̃) =
1

π σh̃

e−|h̃|
2/σ2

h̃ . (2.39)

The real and imaginary parts ofh̃ are mutually independent, real-valued random variables

described by [75, pp. 16,17] [102, p. 198]h̃re, h̃im∼N (0,σ2
h̃
/2). The amplitude of the channel

gain, i.e.,|h̃| =
√

h̃2
re + h̃2

im, is a real-valued random variable with Rayleigh distribution [75,

pp. 16,17] [85, p. 100] described by the p.d.f. [75, Eqn. 1.1-12] [85, Eqn. 4.15]

p(|h̃|) = 2|h̃|/σ2
h̃

e−|h̃|
2/σ2

h̃ , (2.40)
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justifying the commonly used title for this type of fading model.

Let us now consider that there is relative motion between the transmitter and the receiver,

with velocity v. Then, due to the phenomenon calledDoppler shift [75, p. 20], the carrier

frequency for the arriving signal will be distributed in the interval[ fc− fD, fc + fD], where fD

is called maximum Doppler rate [75,89,145], and can be computed with

fD = fc
v
c
, (2.41)

wherec≈ 3·108 m/s is the speed of electromagnetic waves in free space.

The maximum Doppler rate is related to the channelcoherence timeTC which is “a sta-

tistical measure of the time duration over which the channel impulse response is essentially

invariant” [116, p. 165]. More exactly, if the coherence time is defined as the “time over

which the time correlation is above 0.5” [116, p. 165], then it can be computed as [116, Eqn.

4.40.b, p. 165]

TC≈ 9

16π f 2
D

≈ 0.179
fD

. (2.42)

A channelcoherence distancecan also be defined as

dC
4
= TC v≈ 0.179λc, (2.43)

whereλc is the carrier-signal wavelength, defined asλc
4
= c/ fc. Channel gains at two time or

space instances separated by more thanTC or dC, respectively, can differ substantially as will

be observed in the example provided shortly.

Jakes’ model [75, Ch. 1] accounts for channel gain temporal correlation with the following

as autocorrelation function (a.c.f.)

R̃h(t1, t2)
4
= E{h̃(t1) h̃∗(t2)}= σ2

h̃
J0(2π fD |t1− t2|), (2.44)

wheret1 andt2 index the discrete time, andJ0(·) is thezero-order Bessel function of the first
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kind [6, §9.1.18, p. 360], given by

J0(x)
4
=

1
π

∫ π

0
cos(x sinθ)dθ . (2.45)

Since the a.c.f. from (2.44) only depends on the time delayτ = t1− t2, and sinceE{h̃(t)}= 0,

∀t, the fading process is wide sense stationary [102, p. 298]. The theoretical a.c.f. for Jakes’

fading model can then be rewritten simpler as

R̃h(τ)
4
= E{h̃(t) h̃∗(t + τ)}= σ2

h̃
J0(2π fD |τ|). (2.46)

The power spectral density(p.s.d.) of the channel gain, i.e., the Fourier transform [19] of

R̃h(τ), is given by [75, Eqn. 1.2-11, p. 21]

S̃h( f )
4
= F{R̃h(τ)}=

σ2
h̃

π fD

[
1−

(
f − fc

fD

)2
]−1/2

. (2.47)

Generating realistic temporally-correlated Rayleigh fading by numerical means is an im-

portant research area and numerous methods have been proposed (see [25, 105, 152, 153] and

references therein). Unless stated otherwise, for numerical results shown in this work we em-

ploy the method described in [152,153].

Let us assume, for example, thatfc = 1.8 GHz andv = 60 km/h. Then the carrier wave-

length isλc ≈ 16.7 cm and, from the above equations, the maximum Doppler shift, coherence

time, and coherence distance arefD = 100Hz, TC ≈ 1.8 ms, anddC ≈ 2.98cm, respectively.

Fig. 2.3 shows the variation of the real and imaginary parts of Rayleigh fading channel gain,

its amplitude and phase, generated as indicated in [152, 153], forσ2
h̃

= 1. The figure depicts

the well-known fact [132, p. 4] that channel gain fades are separated by aboutλc/2.

Let the symbol rate be denoted asfs. It is related to the symbol period asfs = T−1
s . Let us

define thenormalized maximum Doppler rateas

fm
4
=

fD
fs

. (2.48)
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and thenormalized coherence time(measured in symbol periods) as

TC,norm
4
=

TC

Ts
≈ 0.179

fD Ts
= 0.179

fs
fD
≈ 0.179

fm
. (2.49)

If we assume that the symbol period isTs = 10−4 seconds [s], the symbol rate will be

fs = 10,000[sps – symbols per second], so thatfm = 0.01. Then, we can expect that the fading

correlation decreases significantly over inter-symbol spacings larger thanTC,norm, i.e., about18

symbols (TC,norm≈ 0.179/0.01= 17.9). In Fig. 2.4, we plot the theoretical a.c.f. from (2.44),

and the empirical a.c.f. computed using106 samples of the Rayleigh fading process generated

as in [152,153]. We find that

• The empirical a.c.f. approximates closely the theoretical a.c.f.

• The correlation is0.5 at a lag of about24symbols, which is fairly close to the theoretical

value ofTC,norm computed above.

• The a.c.f. looks like a damped oscillation, whose first zero occurs at a lag of about39

symbols. This lag corresponds to a distance of about0.4λc, as also observed in [63, p.

74].

For the same parameters, Fig. 2.5 shows a good match between the theoretical p.s.d. of (2.47)

for Jakes’ fading model [75, Eqn. 1.2-11, p. 21], and the empirical p.s.d. obtained by sim-

ulation from the generated channel gain samples, using Welch’s method [146]. Clearly, the

generated channel gain is a bandlimited process [102, Sect. 11-5] of bandwidthfD, and can

therefore be reconstructed from samples taken at a rate equal or greater than twice its band-

width [102, Theorem, p. 378].

Actual fading can sometimes be described by the Nakagami-mdistribution [123, Eqn. 2.20,

p. 22] of which the Rayleigh distribution is particular case. The Nakagami-m distribution is
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characterized by

p(|h̃|) =
2mm|h̃|2m−1
[
σ2

h̃

]m
G (m)

exp

{
−m|h̃|2

σ2
h̃

}
, (2.50)

wherem is referred to as thefading parameter, ranging from1
2 to ∞, andG (m) is the so-called

Gamma function defined as [115, Eqn. 2.1-111, p. 42]

G (m)
4
=

∫ ∞

0
tm−1e−t dt. (2.51)

It can be shown that for integerm, G (m) = (m−1)!
4
= (m−1) · (m−2) . . .3 ·2 ·1. Notice that

for m= 1, the Nakagami-m distribution reduces to the Rayleigh distribution.

2.4.2 Performance

The symbol-detection performance analysis shown in this section relies on the approach from

[123, Section 8.2.1]. For MPSK modulation, reception performance over a non-fading AWGN

channel is characterized by (2.33). Since a non-fading channel can also be viewed as a fading

channel with fixed unit fading gain, theinstantaneoussymbol error probability for MPSK and

a fading channel with AWGN, i.e., the error probability obtained by averaging over noise,

conditioned on the fading, is simply

Pe(|h̃|) =
1
π

∫ M−1
M π

0
exp

(
−Es

N0
|h̃|2 gPSK

sin2φ

)
dφ , (2.52)

which is therefore affected by channel gain fades which occur as depicted in the middle subplot

in Fig. 2.3. Due to the concavity ofPe-vs.-SNR plots — see Figs. 2.1 and 2.2 — these deep

fades can lead to very significant performance degradation when averaging over the fading, as

shown next.

Formula (2.52) actually describes the error probability for the maximum-likelihood (ML)

estimate of the transmitted MPSK symbol for the signal model in (2.21) from page 14, given
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perfect knowledge of the channel gain. For BPSK this is

b̂ML = sign[ℜ(w̃∗ML ỹ)] , (2.53)

where

w̃ML = h̃. (2.54)

Since knowledge of the channel phase is required, this approach is referred to ascoherent

detection[123, Chapter 3].

For perfect knowledge of the channel gain, the average symbol error probability (AEP) for

the ML detector is determined by averaging the instantaneous error probability given by (2.52)

over the fading distribution, i.e.,

Pe
4
= E{Pe(|h̃|)}=

∫ ∞

0

1
π

∫ M−1
M π

0
exp

(
−Es

N0
|h̃|2 gPSK

sin2φ

)
dφ p.d.f.(|h̃|)d|h̃|. (2.55)

Let us define theinstantaneous SNR per symbol, at the receiver, as [123, p. 18]

γ̃ 4
=

Es

N0
|h̃|2. (2.56)

For Rayleigh fading,̃γ is an exponentially distributed random variable, i.e., [123, Table 2.2, p.

19]

p.d.f.(γ̃) =





1/Γ̃ e−γ̃/Γ̃ , for γ̃ ≥ 0

0 , otherwise,
(2.57)

where

Γ̃ 4
= E{γ̃}=

Es

N0
σ2

h̃
(2.58)

is the average SNR per symbolat the receiver. Another measure commonly used in plotting

numerical results is the receiveraverage SNR per information bit, or simply, theSNR per bit,

defined as [115, Ch. 14] [123, Ch. 9]

γb
4
=

Γ̃
log2M

. (2.59)
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This average receive SNR per information bit will be used in plotting numerical results.

Using (2.56) and (2.57), the AEP expression from (2.55) becomes

Pe = E{Pe(γ̃)} =
∫ ∞

0

1
π

∫ M−1
M π

0
exp

(
−γ̃

gPSK

sin2φ

)
dφ p.d.f.(γ̃)dγ̃

=
1
π

∫ M−1
M π

0

∫ ∞

0
exp

(
−γ̃

gPSK

sin2φ

)
p.d.f.(γ̃)dγ̃ dφ . (2.60)

The moment generating function (m.g.f.) of the instantaneous SNR per bit,γ̃, is defined

as [123, Eqn. 1.2, p. 4]

Mγ̃(s)
4
= E{esγ̃}=

∫ ∞

0
esγ̃ p.d.f.(γ̃)dγ̃, (2.61)

which, for Rayleigh fading, can easily determined to be [123, Table 2.2, p. 19]

Mγ̃(s) =
(

1−sΓ̃
)−1

. (2.62)

Therefore,Pe from (2.60) can be written as

Pe =
1
π

∫ M−1
M π

0
Mγ̃

(
− gPSK

sin2φ

)
dφ =

1
π

∫ M−1
M π

0

(
1+ Γ̃

gPSK

sin2φ

)−1

dφ , (2.63)

which can be easily and accurately implemented numerically for any PSK constellation. The

correspondingclosed-formexpression is [123, Eqn. 5A.15, p.127]

Pe =
M−1

M
·


1−

√
Γ̃ gPSK

1+ Γ̃ gPSK

M
(M−1)π


π

2
+ tan−1




√
Γ̃ gPSK

1+ Γ̃ gPSK
cot

π
M









 ,

which, forM = 2 (gPSK= 1), becomes the AEP expression for ML detection of BPSK symbols

transmitted through Rayleigh fading channel with AWGN [123, Eqn. 8.104, p. 220]

Pe =
1
2


1−

√
Γ̃

Γ̃+1


 . (2.64)

For Nakagami-mfading, the instantaneous SNR per symbolγ̃ 4= Es
N0
|h̃|2 is described by [123,

Table 2.2, p. 19]

p.d.f.(γ̃) =





[
mm γ̃ m−1

]
/
[
Γ̃mG (m)

]
exp

(
−mγ̃/Γ̃

)
, for γ̃ ≥ 0

0 , otherwise,
(2.65)
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whereG (m) was defined in (2.51), on page 26. Then [123, Table 2.2, p. 19]

Mγ̃(s) =

(
1− sΓ̃

m

)−m

, (2.66)

and, following a similar procedure to the one that led to the AEP expression from (2.63) for

Rayleigh fading, the AEP expression for Nakagami-m fading can be determined as

Pe =
1
π

∫ M−1
M π

0

(
1+

Γ̃
m

gPSK

sin2φ

)−m

dφ . (2.67)

Accurate numerical computation of finite-limit integral AEP expressions such as (2.63) and

(2.67) is fairly simple. For MPSK and Nakagami fading the AEP expression from (2.67) can

also be written as an (involved) closed-form, using [123, Eqns. 5A.17-19, pp. 127-128].

Similar results can be obtained for Ricean fading [123, Table 2.2, p. 19].

Let us now quantify the effects of channel fading on symbol-detection performance. Con-

sider the following cases:

• a fading channel with unit variance, i.e.,σ2
h̃

= 1, and

– Nakagami-m distribution with fading parameterm= 1
2; AEP given by (2.67).

– Rayleigh distribution; AEP given by (2.63), which is equivalent to (2.67) form= 1.

– Nakagami-m distribution with fading parameterm= 10; AEP given by (2.67).

• a nonfading AWGN channel (i.e.,̃h = 1); the AEP is given by (2.33).

Figs. 2.6, 2.7, and 2.8 show the average error probabilities for BPSK, QPSK, and 8-PSK, re-

spectively. On the horizontal axis is the average SNR per bitγb from (2.59). Notice from these

figures that, as the fading parameter for the Nakagami-m distribution increases, the perfor-

mance for the fading channel approaches the performance for the nonfading channel. Actually,

by takinglimm→∞ in (2.67) we obtain

lim
m→∞

Pe =
1
π

∫ M−1
M π

0
exp

{
−Γ̃

gPSK

sin2φ

}
dφ , (2.68)
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Figure 2.6. Performance for BPSK signal transmitted over a nonfading channel with receiver

AWGN, as well as over fading Rayleigh and Nakagami-m channels.

which, considering (2.33) on page 16, is the error probability for a nonfading channel with

receiver AWGN, whose SNR per symbol is given byΓ̃, explaining the above observation.

30



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

γ
b
 [dB]

A
E

P

QPSK.

Nakagami−m fading, m = 0.5
Rayleigh fading
Nakagami−m fading, m = 10
nonfading AWGN

Figure 2.7. Performance for QPSK signal transmitted over a nonfading channel with receiver

AWGN, as well as over fading Rayleigh and Nakagami-m channels.
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Figure 2.8. Performance for 8-PSK signal transmitted over a nonfading channel with receiver

AWGN, as well as over fading Rayleigh and Nakagami-m channels.
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2.5 Channel Estimation with PSAM and Interpolation

2.5.1 Pilot-Symbol-Aided Modulation (PSAM)

The ideal coherent receiver discussed above assumed perfectly known channel (p.k.c.), i.e., the

complex-valued channel gaiñh is perfectly known at the receiver. Performance degradation

then occurred due to fading as well as AWGN. As we shall see next, in practice symbol de-

tection performance can deteriorate even further due to the fact that the channel gain is never

perfectly known. Actual (pseudo-)coherent receivers then require channel gain estimation,

which can be done efficiently by employing pilot-symbol-aided modulation [39, 90] (PSAM)

at the transmitter, followed by interpolation [19] at the receiver.

The structure of the transmitted signal is herein assumed as shown in Fig. 2.9. Time depen-

dence is conveniently represented by the index pair(t,ms), where

• t = −T1 : T2 is the slot index witht = 0 corresponding to the slot in which channel

estimation and symbol detection currently takes place, and

• ms = 0 : Ms−1 is the symbol index within the slot of lengthMs; ms = 0 corresponds to

the pilot symbol andms = 1 : Ms−1 corresponds to information symbols.

2.5.2 Interpolation

The channel gain estimate at themsth data symbol position in the slot of symbols to be detected

can then be obtained by interpolation as follows [39,90] [19, Sec. 11.3, pp. 473-478]

g̃(0,ms) = ṽ(ms)H r̃ , (2.69)

whereṽ(ms) is the interpolation filtervector, and̃r is a vector formed withT = T1 + T2 + 1

pilot signal samples, i.e.,T1 “past” samples, the sample from the slot of symbols to be detected,
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These T = T1+T2 + 1 pilot symbols 

are used to estimate the channel gain, 
by interpolation, during this time slot

Ms-1 data 
symbols

Currently received 
signal sample.
Time index: (T2, 1)

Symbol detected for
this time instance. 
Time index: (0,1)

Time flow

Slot = Ms symbols

Pilot symbols 
(known to the receiver)

Time index: (-T1, 0)

Figure 2.9. PSAM signal slot structure, and interpolation procedure description.

andT2 “future” samples, as follows

r̃
4
=

1√
Epbp

[ỹ(−T1,0) ỹ (−T1 +1,0) . . . ỹ(0,0) . . . ỹ(T2−1,0) ỹ(T2,0)]T , (2.70)

whereEp is the pilot symbol waveform energy,bp is the pilot symbol, and

ỹ(t,0) =
√

Ep bp h̃(t,0)+ ñ(t,0) , t =−T1 : T2, (2.71)

are the received signal samples corresponding to transmitted pilot signals. Notice that the

received signal has to be stored forT2 slots ahead of the slot in which estimation and symbol

detection is then executed.

Since the channel gain estimates are obtained from pilot samples of the received signal,h̃

andg̃ are jointly Gaussian [102, Eqn. 8-56, p. 197]. The joint Gaussianity of the channel gain

and its estimate is often assumed in previous work [21,58,113,115].

Interpolation filters can be classified as:

1. data-independent, e.g., the filter with brick-wall-type frequency response, which is op-

timum in the absence of noise [19]; we will refer to this filter, after truncating and ta-

pering its impulse-response with a raised-cosine window [90] [19, Table 11.2, p. 476],
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Table 2.1. Interpolation filters

Interpolation Method Interpolation Vector

SINC [ṽ(ms)]t = sinc
(

ms
Ms
− t

)
cos[πβ ( ms

Ms
−t)]

1−[2β( ms
Ms
−t)]2

MMSE ṽ(ms) = Φ̃ΦΦ
−1

φ̃φφ(ms)

as the SINC filter (because the computation of its coefficients involves the sinc function,

defined below), and the corresponding estimation approach as SINC PSAM.

2. data-dependent, e.g., the Wiener filter, which is minimum mean squared error (MMSE)

optimum in the presence of noise, but requires knowledge of the second-order statistics

of the received signals [39]; this filter is referred to as the MMSE filter, and the corre-

sponding estimation approach as MMSE PSAM.

Table 2.1 specifies the SINC [90, Eqns. 9, 10, p. 639] [19, Table 11.2, p. 476] and MMSE

[39] interpolation filters, where

sinc(x) =
sinπ x

π x
, (2.72)

andβ is therolloff factor [19, p. 478], for which the typical valueβ = 0.2 is chosen for all the

numerical results shown herein. The elements of theT×T matrix

Φ̃ΦΦ 4
= E{r̃ r̃H}, (2.73)

and of theT×1 vector

φ̃φφ(ms)
4
= E{r̃ h̃∗ (0,ms)} (2.74)

are expressed in Table 2.2 for Jakes’ model of temporal correlation [75] described earlier.

Since the channel gain is a process bandlimited tofD (see discussion related to Fig. 2.5

shown on page 25), pilot symbols have to be inserted at time intervals no longer than1
2 fD

[90,
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Table 2.2. Elements of̃ΦΦΦ andφ̃φφ(ms)[
Φ̃ΦΦ

]
t1,t2

σ2
h̃

J0(2π fm |t1− t2|Ms)+ N0
Ep |bp|2 δt1,t2

[
φ̃φφ(ms)

]
t

σ2
h̃

J0(2π fm |t Ms−ms|)

Eqn. 5, p. 638] [39, p. 689], i.e.,

MsTs≤ 1
2 fD

(2.75)

which leads to

Ms≤ 1
2

fs
fD

=
1

2 fm
. (2.76)

Cavers showed in [39, Fig. 3, p. 689] that increasingMs above this limit can lead to significant

performance degradation. In practice, the slot length is chosen by trading-off data through-

put and symbol detection performance, e.g., largerMs improves data throughput due to less

frequent pilot insertion.

2.5.3 The Average SNR per Information Bit

2.5.3.1 The Case of Ideal Receiver

For an ideal receiver, i.e., a receiver with perfectly known channel, in Figs. 2.6, 2.7, and 2.8

we have already plotted the analytical error probability from (2.67) vs. the average SNR per

bit, γb, which is related to the average SNR per symbol,Γ̃, through (2.59), and to the energy

transmitted per symbol,Es, the noise variance,N0, and channel gain variance,σ2
h̃
, as described

by (2.58) and (2.59).

For an ideal receiver, i.e, with p.k.c., simulations that match analytical results can be done

as described next:
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• first, we write the signal model from (2.21) in equivalent form as
√

1
N0

ỹ =
√

Es

N0
σ2

h̃
bh̃norm+ ñnorm

=
√

Γ̃bh̃norm+ ñnorm, (2.77)

whereh̃norm and ñnorm are normalized versions of the channel gain and noise, respec-

tively, i.e.,σ2
h̃norm

= σ2
ñnorm

= 1;

• then, generate a sufficiently large number of transmitted symbols,b, andh̃norm andñnorm

samples;

• afterward, for each value ofγb,

– determine the corresponding̃Γ value using (2.59),

– compute the right-hand side (RHS) of (2.77) for each transmitted symbol and the

corresponding̃hnorm andñnorm samples,

– employ ML symbol detection based onh̃∗norm

√
1

N0
ỹ,

– compare the transmitted symbols with the detected ones and compute the AEP.

2.5.3.2 The Case of PSAM-based Receivers

The situation is slightly more complicated when the channel gain is estimated using PSAM.

Let us denote the ratio between the energy transmitted in the waveform corresponding to a

pilot symbol,Ep, and the energy transmitted in the waveform corresponding to an information-

encoding symbol,Es, with Kp, i.e.,

Kp
4
=

Ep

Es
. (2.78)

Theactual average SNR per received information symbolis

Γ̃ =
Es

N0
σ2

h̃
, (2.79)
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and theactual average SNR per received information bitis

γb,actual=
Γ̃

log2M
. (2.80)

This coincides withγb from (2.59) on page 27, i.e., the average SNR per bit for the ideal

receiver, which does not require transmission of pilot symbols.

However, it is inequitable to compare the performance of an ideal receiver (with p.k.c.) for

a givenγb with a practical PSAM-based receiver for an equal value ofγb,actual, simply because

the latter requires additional energy for the transmission of a pilot symbol devoid of encoded

information. A fair comparison can be done as described next [39, Sect. II.D, p. 687].

For the practical PSAM-based receiver, the total energy transmitted during a slot, i.e., in an

interval of lengthMs Ts, is

Et
4
= Ep +(Ms−1)Es =

[
Kp +(Ms−1)

]
Es, (2.81)

However, information-encoding symbols are only transmitted during the interval of duration

(Ms−1)Ts. Therefore, from the total transmitted energy only

Es,virtual
4
=

Et

Ms−1
=

Kp +(Ms−1)
Ms−1

Es (2.82)

is virtually transmitted per information-encoding symbol. Therefore, for PSAM, the virtual

average SNR per information symbolis

Γ̃virtual
4
=

Es,virtual

N0
σ2

h̃
=

(
1

Ms−1
Kp +1

)
Es

N0
σ2

h̃
=

(
1

Ms−1
Kp +1

)
Γ̃, (2.83)

so that thevirtual average SNR per information bitis

γb,virtual
4
=

Γ̃virtual

log2M
=

(
1

Ms−1
Kp +1

)
Γ̃

log2M

(2.80)
=

(
1

Ms−1
Kp +1

)
γb,actual. (2.84)

Performance comparisons of ideal and PSAM-based practical receivers are equitable when

γb for the former — see (2.59) on page 27 — coincides withγb,virtual for the latter — see (2.84).
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Figure 2.10. Equitable performance comparison between ideal receiver, i.e., with p.k.c., (from

theory — Eqn. (2.63) — and simulations), and PSAM-based receivers (from simulations).

Such a comparison is presented for BPSK modulation,fm = 0.01, Ep = Es, i.e., Kp = 1, in

Fig. 2.10, for the ideal receiver and for the two PSAM-based receivers, where the slot and

interpolator lengths wereMs = 7 andT = 11, respectively, based on the suggestions from [39].

Fig. 2.11 shows an inequitable performance comparison, whereγb for the ideal receiver equals

γb,actual for the non-ideal receivers. Comparing for the PSAM-based receivers the AEP curves

from Figs. 2.10 and 2.11 for a given AEP value, we notice thatγb,virtual/γb,actualis about0.7 dB,

which is consistent with (2.84).
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Figure 2.11. Inequitable performance comparison between ideal receiver, i.e., with p.k.c.,

(from theory — Eqn. (2.63) — and simulations), and PSAM-based receivers (from simula-

tions).
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The equitable performance comparisons presented hereafter follow the procedure:

• first, set the range of interest for the SNR per bit;

• then, for the ideal receiver, each such SNR per bit value corresponds toγb from (2.59),

and analytical and simulation results are obtained as described in Section 2.5.3.1;

• finally, for the PSAM-based receivers, the SNR per bit will stand forγb,virtual from (2.84)

– from above relations, the total energy transmitted per slot can be computed as

Et =
γb,virtual

σ2
h̃
/N0

(Ms−1) log2M. (2.85)

– computeEp andEs from




Et = Ep +(Ms−1)Es

Ep = KpEs,

(2.86)

i.e., from

Es = Et
1

Kp +Ms−1
(2.87)

Ep = Et
Kp

Kp +Ms−1
. (2.88)

– compute the interpolation vectors̃v(ms), ms = 1 : Ms− 1, based on Tables 2.1

and 2.2; note that they can be computeda priori, even for MMSE PSAM if the

channel fading and receiver noise have stationary statistics;

– generate a sufficiently-large number of symbols, and the corresponding channel

gain and noise samples; the following steps are executed on a slot-by-slot basis:

∗ compute the received signal corresponding to transmitted pilot symbols, de-

fined in (2.71), and update the vectorr̃ defined in (2.70); store the received

signal samples corresponding to information-encoding symbols;
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∗ using (2.69), compute the estimated channel gaing̃(0,ms), ms = 1 : Ms−1;

∗ step backT2 slots and retrieve the stored received signal corresponding to trans-

mitted data symbols

ỹ(0,ms) =
√

Es b(0,ms) h̃(0,ms)+ ñ(0,ms) , ms = 1 : Ms−1; (2.89)

∗ detect themsth symbol in the current slot based ong̃∗ (0,ms) ỹ(0,ms);

– compare the detected symbols with the transmitted ones, and compute the AEP.

For notation simplicity onlyγb will appear in subsequent figure abscissas or as parameter

for numerical results. However, it will be understood that for the ideal receiver this label stands

for γb defined in (2.59), whereas for PSAM-based receivers this label stands forγb,virtual defined

in (2.84), so that performance comparisons are equitable.

2.5.4 Performance

Using the AEP expressions from (2.63), page 28, and (2.33), page 16, we showed in Fig. 2.6

on page 30 that the theoretical performance of an ideal coherent receiver for a Rayleigh fad-

ing channel can be much worse than for a non-fading channel. For fading channel and ideal

receiver, the numerical results shown in Fig. 2.10, on page 39, indicate good agreement be-

tween theory and simulation. The AEP plots for PSAM-based receivers shown in Fig. 2.10

indicate that channel estimation inaccuracy can lead to significant further performance deteri-

oration. Due to its optimality, MMSE PSAM ensures better performance than SINC PSAM.

However, unlike SINC interpolation, MMSE interpolation relies on assumptions about the tem-

poral correlation of the channel gain. Furthermore, MMSE PSAM requires knowledge about

the maximum Doppler shift, channel gain, and noise variance, which are rarely available in

practice. SINC PSAM is simple but yields poor performance in low SNR.
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Furthermore, the equitable performance comparisons from Figs. 2.12 and 2.13 indicate

(for BPSK and QPSK, respectively) that symbol detection using channel gain estimates leads

to an irreducible error floor, i.e., the level under which the error rate cannot be decreased by

increasing the SNR per bit. Clearly, symbol detection performance of SISO systems over

fading channels can be very poor in practice.

Figs. 2.14 and 2.15 describe the system performance forKp = 10andKp = 0.1, respectively.

For the PSAM-based receivers, comparing these figures and Fig. 2.10 from page 39 suggests

that there is an optimum value ofKp which maximizes performance. Fig. 2.16 further illustrates

this claim forγb = 10 dB. AEP is minimized forKp equal to about1.5 and2.7 for MMSE and

SINC interpolation, respectively.

2.6 Objectives

Above we found that actual SISO symbol-detection performance/power efficiency may not en-

able the enhancements required in future wireless systems in terms of voice quality, coverage,

data rate, and user capacity. To achieve high symbol-detection performance for reasonable

transmitted power, a SISO system will require powerful channel coding [115, Ch. 8], which

reduces effective data rate. To achieve desired area coverage significant amounts of power will

have to be transmitted, resulting in short battery life and increased interference level.

Important concepts that will enable future communications systems are those of array gain

and diversity gain, obtained, respectively, through statistical beamforming [42, 43, 83, 99] and

diversity combining [34] [75, Ch. 5, 6] [89, Ch. 9, 10] [123, 133]. Therein, a number of sig-

nals carrying the same transmitted information are combined appropriately so that to improve

performance. Beamforming and diversity combining are described subsequently in this work,

along with a newer, more versatile, approach to which we refer as eigen-combining.
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Figure 2.12. Equitable performance comparison for BPSK between ideal receiver, i.e., with

p.k.c., (from theory — Eqn. (2.63) — and simulations), and PSAM-based receivers (from

simulations), for high SNR per bit.
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Figure 2.13. Equitable performance comparison for QPSK between ideal receiver, i.e., with

p.k.c., (from theory — Eqn. (2.63) — and simulations), and PSAM-based receivers (from

simulations), for high SNR per bit.
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Figure 2.14. Equitable performance comparison for BPSK between ideal receiver, i.e., with

p.k.c., (from theory — Eqn. (2.63) — and simulations), and PSAM-based receivers (from

simulations), for largeEp/Es.
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Figure 2.15. Equitable performance comparison for BPSK between ideal receiver, i.e., with

p.k.c., (from theory — Eqn. (2.63) — and simulations), and PSAM-based receivers (from

simulations), for smallEp/Es.
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Figure 2.16. Equitable performance comparison for BPSK between ideal receiver, i.e, with

p.k.c., (from theory — Eqn. (2.63) — and simulations), and PSAM-based receivers (from

simulations), for variableEp/Es.
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Chapter 3

Signal Combining Approaches

3.1 Chapter Overview

In this chapter we analyze conventional multi-branch receiver signal processing methods —

statistically optimum beamforming [43] (BF), and maximal-ratio combining [34] (MRC) — as

well as eigen-combining, which was recently proposed for complexity reduction and perfor-

mance enhancement [1,36,42,48,76,77].

After presenting the signal model and properties of the channel gain correlation matrix

eigen-decomposition, the methods employed herein for symbol-detection performance analysis

are described in Section 3.4. Maximal-ratio eigen-combining (MREC) and its special cases,

BF and MRC, are analyzed for perfectly known channels in Section 3.5.

Channel estimation based on pilot-symbol-aided modulation (PSAM) and interpolation is

presented in Section 3.6. Eigen-/combining approaches for imperfectly known channels are

described in Section 3.7. There we provide a detailed implementation description, as well as a

performance evaluation based on simulation, for optimum and suboptimum eigen-/combining.

Equivalences between MREC and BF and MRC are demonstrated in Section 3.9. Opti-

mum, or exact, eigen-combining is analyzed based on the effective combiner-output SNR in
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Section 3.10. A new, simple, non-closed-form, MREC AEP expression is derived therein —

see (3.151), on page 109. This provides, to the best of our knowledge, a new means to evalu-

ate the performance achievable with BF and MRC for imperfectly known channels which may

have correlated branches with unequal variances. Also for the first time, completely-specified

closed-form exact-MREC (BF, MRC) AEP expressions are provided, even for the case when

some eigenvalues of the channel gain correlation matrix coincide.

Suboptimum, or approximate, MREC (BF, MRC) is analyzed in Section 3.11, using the

symbol-detection test variable. Although much simpler in terms of implementation than the

optimum approach, analysis of approximate MREC proves to be much more complex. A

new, yet involved, closed-form AEP expression for approximate MREC (BF, MRC) is derived

as (3.189), on page 120. Using the performance equivalence between approximate and exact

MRC, which holds for any constellation size for independent and identically distributed (i.i.d.)

branches, simple new performance measure expressions are derived for approximate MRC in

Section 3.11.4.

MREC is found to promise improved performance and reduced complexity vs. BF and

MRC. Subsequent chapters will provide the methodology for achieving these benefits.

3.2 Vector Signal Model

Numerous multi-branch transmission/reception systems and combining approaches have been

described and analyzed in the literature and applied in practice [53, 106, 123, 129]. The dis-

cussion in the present work focuses on receiver-side combining. Furthermore, although the

core of our analysis is applicable more generally, e.g., to RAKE receiver [114] combining, our

numerical examples will deal mostly with spatial combining, for smart antenna arrays [79,80].

Subsequently, we assume thatL transmitted signal replicas (branches) are available at the
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receiver, affected by Rayleigh fading (unless stated otherwise) and additive white Gaussian

noise (AWGN). Let us generalize the scalar signal model from (2.21), on page 14, to the

vectorial case. Then, after demodulation, matched-filtering, and symbol-rate sampling, the

complex-valued received signal vector can be written as

ỹ =
√

Es b h̃+ ñ (3.1)

whereb is the equiprobable MPSK transmitted symbol (the constellation size isM), Es is the

energy transmitted per symbol, whilẽh andñ are the complex-valued, mutually uncorrelated

channel gain and receiver noise vectors, respectively. The vectors from (3.1) are detailed below:

ỹ = [ỹ1 ỹ2 . . . ỹL]T , (3.2)

h̃ = [h̃1 h̃2 . . . h̃L]T , (3.3)

ñ = [ñ1 ñ2 . . . ñL]T . (3.4)

The components of the received signal vector, i.e., the branches, can be written as

ỹi =
√

Es b h̃i + ñi , i = 1 : L
4
= 1, . . . ,L. (3.5)

Throughout this work it is assumed that the channel gain and noise are complex Gaussian

random vectors, as defined in [99, Appendix E, p. 534] [115, pp. 198-199]. In particular, the

noise vector is assumed to be white, zero-mean, complex Gaussian, with varianceN0, i.e.,

ñ∼Nc(0,N0 I). (3.6)

Unless stated otherwise, the channel gain vector is assumed to be zero-mean, complex Gaus-

sian. Then, we can write

h̃∼Nc(0,Rh̃), (3.7)

where

Rh̃
4
= E{h̃ h̃H} (3.8)
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is the channel gain vector correlation (in this case, also covariance) matrix [99, Appendix

E] [115, p. 198]. Note thatRh̃ is Hermitian, i.e., it equals its conjugate transpose [94, Section

9.7, p. 131] [26, Section 2.2, p. 11]

Rh̃ = RH
h̃
. (3.9)

Only for the numerical results shown throughout this work we will further assume a Toeplitz

structure forRh̃, i.e., the elements on each diagonal are equal. Then, the first line ofRh̃

provides the information on all its elements. This situation occurs when the signals are received

with a uniform linear array (ULA), as discussed in Chapter 4.

The elements on the main diagonal of this matrix, i.e.,

(
Rh̃

)
i,i

= E{|h̃i |2} 4= σ2
h̃i
, i = 1 : L, (3.10)

are the autocorrelations (variances) of the individual channel gains. Only for the numerical

results they will all be assumed unitary. Equality of channel gain variances is an assumption

often encountered for antenna arrays [35, Section 4.2.1, p. 49].

3.3 Eigenvalue Decomposition

The channel gain correlation matrix,Rh̃, is positive semidefinite, i.e.,∀x ∈ CL, the Hermitian

form [94, p. 250]Q(x) = xH Rh̃ x is real-valued and non-negative. Therefore,Rh̃ has real-

valued, non-negative eigenvalues [94, Section 9.7.2,§1, p. 133] [26, Section 2.2.1, p. 11],

which we consider ordered as

λ1≥ λ2≥ . . .≥ λL ≥ 0. (3.11)

The set

λ
(
Rh̃

)
= {λ1, λ2, . . . , λL} (3.12)
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is denoted asspectrum[64, Section 7.1, p. 190] ofRh̃. Each eigenvalue corresponds to an

eigenvector. Unique eigenvalues associate with unique orthonormal eigenvectors [103]. The

eigenvectors ofRh̃, denoted asei , i = 1 : L, thus form an orthonormal basis [26, Section 2.2.1]

[103] in CL. An eigenvalue of multiplicityrk is associated with an invariant subspace [26,

Section 2.2.2] of dimensionrk.

The spectral decomposition[94, Section 9.7.4,§1, p. 137] oreigen-decomposition[26,

Section 2.2.1] ofRh̃ is described by

Rh̃ =
L

∑
i=1

λi ei eH
i = ELΛΛΛLEH

L , (3.13)

where

ΛΛΛL
4
=




λ1 0 0 . . . 0

0 λ2 0 . . . 0

...
...

...
. . .

...

0 0 0 . . . λL




(3.14)

is a diagonal matrix, and

EL
4
= [e1 e2 . . . eL] (3.15)

is a unitary matrix, i.e.,EH
L = E−1

L [94, Section 9.15, p. 167], or

EH
L EL = EL EH

L = IL×L, (3.16)

i.e., its rows and columns are orthonormal

eH
i ej = δi, j , (3.17)

whereδi, j is defined in (2.14) at page 12. Direct and iterative eigen-decomposition methods

are surveyed in [26, Chapter 4]. Unless stated otherwise,Rh̃, ΛΛΛL, andEL will hereafter be

considered perfectly known.
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Hereafter, the termdominant eigenvectordenotes the eigenvectore1 corresponding to the

largest (dominant) eigenvalue, i.e.,λ1. The termdominant eigenvectorsrefers to the set of

eigenvectors corresponding to the largest (dominant) eigenvalues.

Thetraceof the channel vector correlation matrix is [64, Section 7.1, p. 190]

tr(Rh̃)
4
=

L

∑
i=1

(
Rh̃

)
i,i

=
L

∑
i=1

σ2
h̃l

= λ1 +λ2 + . . . +λL. (3.18)

which is a measure of the total intended-signal energy received.

The following propositions are given without their simple proofs.

Proposition 1 The elements of̃h are coherent, i.e.,̃h = h1e1 (so thath1
4
= eH

1 h̃), if and only

if λ1 = tr(Rh̃).

For the following see also [47, p. 1985]:

Proposition 2 The elements of̃h are uncorrelated, i.e.,(Rh̃)l1,l2
4
= E{h̃l1 h̃∗l2} = 0, ∀ l1, l2 =

1 : L, l1 6= l2, and with equal variances(Rh̃)l ,l
4
= E{|h̃l |2} = λ , l = 1 : L, if and only if the

eigenvalues ofRh̃ are all equal, i.e.,λl = λ = 1
L tr(Rh̃), l = 1 : L.

For uniform eigenvalue spectrum, it is known that the columns of the unitary matrixEL can

be the vectors of any orthonormal basis inCL. Without loss of generality we will then assume

thatEL = IL.

Throughout this work we will assume that the eigen-decomposition of the channel gain

vector is perfectly known. This agrees with previous claims that it can be updated accurately

using samples of the received signal vector [100, 101], due to its slow variation relative to the

fading [1,36,130].
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3.4 Performance Analysis

Generally, when the signal vector from (3.1) is available, one will try to appropriately combine

its components to optimize a certain criterion. Receiver performance can then be analyzed by

using one of the methods described next to determine the average error probability or outage

probability.

3.4.1 Average Error Probability, Pe

3.4.1.1 Obtaining Simple, Finite-Limit Integral Pe Expression Using the Detection SNR

Given the symbol-detection SNR,γ , the symbol error probability expression for MPSK is [123,

Eqn. 8.22, p. 198]

Pe(γ) =
1
π

∫ M−1
M π

0
exp

(
−γ

gPSK

sin2φ

)
dφ , (3.19)

with gPSK defined in (2.34), on page 16. Similar finite-limit integral expressions in exponential

functions can describe the instantaneous symbol error probability for other modulations, e.g.,

Multiple Amplitude-Shift-Keying (M-ASK) or Multiple Amplitude Modulation (M-AM) [123,

Eqn. 8.3, p. 194; using Eqn. 4.2, p. 71], and QAM [123, Eqn. 8.12, p. 196]. The instantaneous

bit error probability for several modulations can also be similarly described [123, Chapter 8].

Therefore, the principle of the approach described next for MPSK can also be applied to these

other modulations accordingly [123, Chapter 9].

The average (over the fading) error probability — AEP — is, by definition [115, Eqn.

14.3-4, p. 817] [123, Eqn. 8.102, p. 219],

Pe
4
=

∫ ∞

0
Pe(γ) pγ(γ) dγ . (3.20)

SubstitutingPe(γ) from (3.19) in (3.20) yields the AEP expression as

Pe =
1
π

∫ M−1
M π

0

∫ ∞

0
exp

(
−γ

gPSK

sin2φ

)
pγ(γ)dγ dφ . (3.21)
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Since the m.g.f. ofγ is Mγ(s)
4
= E{esγ} [123, Eqn. 2.4, p. 18], the above becomes

Pe =
1
π

∫ M−1
M π

0
Mγ

(
− gPSK

sin2φ

)
dφ . (3.22)

This derivation is actually an abridged version of the one from Section 2.4.2, starting at page 26,

wherein a single-branch receiver has been considered.

For optimum combining methods studied subsequently, we will show that the output SNR

(or symbol-detection SNR, generically denoted in this section withγ) is the sum of a number

(N) of statistically independent individual SNRs (generically denoted withγi), i.e.,

γ =
N

∑
i=1

γi , (3.23)

so that

Mγ(s) =
N

∏
i=1

Mγi(s), (3.24)

which helps recast (3.22) as

Pe =
1
π

∫ M−1
M π

0

N

∏
i=1

Mγi

(
− gPSK

sin2φ

)
dφ . (3.25)

For Rayleigh fading, we will see that the individualγi , i = 1 : N, are exponentially distributed.

Let us denote their respective averages asΓi . Then (3.25) becomes

Pe =
1
π

∫ M−1
M π

0

L

∏
i=1

(
1+Γi

gPSK

sin2φ

)−1

dφ . (3.26)

Similar results are possible for Ricean and Nakagami-m fading [123, Table 9.1, p. 269].

Note however thatγi independence only requires uncorrelated channel gains for Rayleigh and

Ricean fading, but independent channel gains for Nakagami-m fading withm 6= 1.
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3.4.1.2 Obtaining Closed-FormPe Expression from Symbol-Decision Variable Position

in Complex Plane, for BPSK Only

By definition the characteristic function (c.f.) of a random variablex with p.d.f. px(α) is given

by [115, Eqn. 2.1-71, p. 34]

Φx(j ω)
4
= E{ej ω x}=

∫ ∞

−∞
ej ω α px(α) dα , (3.27)

so that [115, Eqn. 2.1-72, p. 34]

px(α) =
1

2π

∫ ∞

−∞
e− j ω α Φx(j ω) dω. (3.28)

Let us define an additional function, i.e., the Laplace transform of the p.d.f.:

Fx(s)
4
= E{e−sx}=

∫ ∞

−∞
e−sα px(α) dα = Mx(−s). (3.29)

We refer to this function as the reversed moment generating function (r.m.g.f.). Its inverse

Laplace transform is

px(α) =
∫ ∞

−∞
esα Fx(s) d s. (3.30)

A common communications system performance analysis procedure [30] [115] [120] [119]

is to assume that a certain symbolb was transmitted, followed by decision on the received

symbol based on a variable generically written herein as

q = ℜ{xH R−1z}, (3.31)

wherex andz areN-dimensional, complex-valued vectors, zero-mean, jointly Gaussian, andR

is a non-singular, HermitianN×N matrix (alsoR−1 is then Hermitian [94, Section 9.7.1,§4.c,

p. 131]).

For BPSK transmitted symbol, the detected symbol is

b̂ = sign(q). (3.32)
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Assuming thatb= 1 is the transmitted symbol, the error probability is given by [115, Appendix

B, Eqn. B-2, p. 943]

Pe = Pr(q < 0|b = 1) =
∫ 0

−∞
p(q) dq. (3.33)

When the c.f. ofq, denoted asΦq(j ω), is available, the p.d.f. ofq required above can

be obtained as in (3.28). Then, (3.33) leads to [115, Appendix B, Eqns. B-3,4, pp. 943-

944] [96, Eqn. 6, p. 2138]

Pe =
∫ 0

−∞
dq

1
2π

∫ ∞

−∞
e−j ω qΦq(j ω)dω =− 1

2π j

∫ ∞+ε

−∞+ε

Φq(j ω)
ω

dω, (3.34)

(ε is described in [115, Appendix B, p. 944]). However, this approach is fairly complicated

and can yield involved, non-closed-form error probability expressions, e.g., [115, Appendix B,

Eqn. B-21, p. 947] [96, Section II.A].

Given the r.m.g.f. ofq — seeFq(s) defined in (3.29) — it is actually simpler to find its

inverse Laplace transform, i.e.,p(q), using (3.30), and then find the average error probability

using (3.33). An approach to computingFq(s) is described next using results from [119, Ch.

3] [120].

The decision variable from (3.31) can be recast as a (real) Hermitian form [94, p. 250]

q =
1
2

(
xH R−1z+zH R−1x

)

=
1
2

[
xH zH]




0 R−1

R−1 0







x

z




= vH Bv, (3.35)

where

v
4
=




x

z


 , (3.36)
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is a2N-dimensional, zero-mean, complex Gaussian vector, with correlation matrix

Rv
4
= E{vvH}=




E{xxH} E{xzH}
E{zxH} E{zzH}


 4

=




Rx Rxz

Rzx Rz


 , and (3.37)

B
4
=

1
2




0 R−1

R−1 0


 , (3.38)

is a2N×2N Hermitian matrix.

Based on the seminal work of Turin [142], ifRv is nonsingular then the r.m.g.f. ofq is

Fq(s) =
1

| I2N +sRv B| =
2N

∏
n=1

1
1+sηn

, (3.39)

whereηn is thenth eigenvalue of the2N×2N matrix

Rv B =
1
2




RxzR−1 Rx R−1

RzR−1 RzxR−1


 . (3.40)

In general, these eigenvalues may need to be computed numerically. Using property [94,§6, p.

50] for the determinant of a partitioned matrix, we can also write

| I2N +sRv B| =
∣∣∣∣IN +

1
2

sRxzR−1
∣∣∣∣

×
∣∣∣∣∣
(

IN +
1
2

sRzxR−1
)
− 1

4
s2RzR−1

(
IN +

1
2

sRxzR−1
)−1

Rx R−1

∣∣∣∣∣
(3.41)

which holds assuming that
∣∣IN + 1

2 sRxzR−1
∣∣ 6= 0. The remaining determinant in (3.41) is

difficult to factor in closed-form unless all the correlation matrices involved in the above ex-

pressions are diagonal. In this special case the above determinant can be rewritten as

| I2N +sRv B| =
N

∏
n=1

{[
1+

1
2

s· (Rxz)n,n(R−1)n,n

] [
1+

1
2

s· (Rzx)n,n(R−1)n,n

]

− 1
4

s2 · (Rz)n,n(R−1)n,n(Rx)n,n(R−1)n,n

}
.
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Then, it can be shown that (3.39) becomes [125]

Fq(s) =
N

∏
n=1

1
[−a2

n (s−sn1) (s−sn2)]
, (3.42)

where

a2
n = − σ2

xnzn
σ2

znxn
−σ2

xn
σ2

zn

4 (σ2
n)2 , (3.43)

sn1,2 = σ2
n




−(

σ2
xnzn

+σ2
znxn

)±
√[

σ2
xnzn

−σ2
znxn

]2 +4σ2
xn

σ2
zn[

σ2
xnzn

σ2
znxn

−σ2
xn

σ2
zn

]


 , (3.44)

with σ2
n
4
= (R)n,n, σ2

xnzn

4
= (Rxz)n,n, σ2

znxn

4
= (Rzx)n,n, σ2

xn

4
= (Rx)n,n, σ2

zn

4
= (Rz)n,n.

Assuming thatσ2
xnzn

= σ2
znxn

, (3.43) and (3.44) become

a2
n =

1−µ2
xnzn

µ2
xnzn

(
σ2

xnzn

)2

4 (σ2
n)2 , (3.45)

sn1 = 2
σ2

n√
σ2

xn
σ2

zn

1
1−µxnzn

= 2
σ2

n

σ2
xnzn

µxnzn

1−µxnzn

> 0, (3.46)

sn2 = −2
σ2

n√
σ2

xn
σ2

zn

1
1+ µxnzn

=−2
σ2

n

σ2
xnzn

µxnzn

1+ µxnzn

< 0, (3.47)

with µxnzn the correlation coefficient ofxn and zn — definition and properties given below.

HavingFq(s), the error probability can be computed as described earlier, on page 58.

For any zero-mean random variablesx andz their correlation coefficient is defined as [112,

Eqn. 2.3, p. 10]

µxz
4
=

σ2
xz√

σ2
x σ2

z

, with |µxz| ∈ [0, 1]. (3.48)

Then [112, Eqn. 2.4, p. 10]:

• µxz = 0 whenx andzare uncorrelated

• |µxz| ∈ (0, 1) whenx andz are partially correlated

• |µxz| = 1 whenx andz are completely correlated, i.e., coherent; then, we actually have

x = α z, whereα is a complex-valued, non-random, constant scalar.
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3.4.2 Outage Probability,Po

The outage probability is a performance measure more suitable than the average error proba-

bility when the fading is slow.Po represents the probability that the instantaneous probability

of error exceeds a given threshold [123, Section 1.1.2, p. 5] [84], i.e.,

Po
4
= Pr(Pe > Pe,th). (3.49)

For γ denoting the symbol-detection instantaneous SNR, if the functionPe(γ) can be inverted

(analytically or numerically) then an equivalent definition of outage probability is

Po
4
= Pr(γ < γth) =

∫ γth

0
pγ(γ) dγ. (3.50)

The alternativePo definition from (3.50) may appear to indicate that the outage rate is only

dependent on the SNR distribution, which is untrue;Po does depend on the modulation as well,

through the threshold SNR,γth.

3.5 Combining Methods for Perfectly Known Channel Gains

3.5.1 Ideal Maximal-Ratio Combining (MRC)

3.5.1.1 Procedure

The linear combination of the received signal vector given by (3.1) with a weight vectorw̃

yields

w̃H ỹ =
√

Es b w̃H h̃+ w̃H ñ. (3.51)

The combiner’s output power averaged over noise is

E{|w̃H ỹ|2} = Es |b|2 |w̃H h̃|2 +E{|w̃H ñ|2}
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= Es |w̃H h̃|2 +N0 w̃Hw̃, (3.52)

so that the combiner’s output SNR is

SNR(w̃)
4
=

Es

N0

|w̃H h̃|2
w̃Hw̃

. (3.53)

This SNR will also be referred to asinstantaneouscombiner SNR to distinguish it from the

averagecombiner SNR which will be defined later when averaging over fading as well.

Let us define the instantaneous SNR of theith branch as

ˇ̃γ i
4
=

Es

N0
|h̃i |2, i = 1 : L. (3.54)

Based on the Schwartz inequality [34, Appendix II] [99, Appendix D] we can write

max
w̃∈CL

SNR(w̃) = SNR(k h̃) =
Es

N0
|h̃|2 =

L

∑
i=1

Es

N0
|h̃i |2. (3.55)

Since the proportionality factork from (3.55) does not affect the SNR, the weight vector

w̃MRC = h̃ (3.56)

yields maximum instantaneous output SNR, given by [34, Eqn. 13] [123, Eqn. 9.1]

ˇ̃γ =
L

∑
i=1

ˇ̃γ i , (3.57)

i.e., the sum of the individual branch SNRs. This justifies the appellativemaximal-ratio com-

bining (MRC) for this approach [34].

Then, recovery of a BPSK transmitted symbol, for instance, is attempted as follows:

b̂MRC = sign
{

ℜ
[
w̃H

MRC ỹ
]}

= sign
{

ℜ
[
h̃H ỹ

]}
(3.58)

= sign
{√

Es b |h̃|2 +ℜ
[
h̃H ñ

]}
. (3.59)

It is straightforward to show that this symbol detector actually yields the maximum likelihood

(ML) symbol estimate, given the received signal model in (3.1), page 51.
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3.5.1.2 Ideal MRC Error Probability Analysis for Uncorrelated Branches, based on

Output SNR

For Rayleigh fadinǧ̃γ i can be shown to be exponentially distributed, i.e., [123, p. 19]

pdf( ˇ̃γ i) =





1/
ˇ̃Γi e−

ˇ̃γ i/
ˇ̃Γi , for ˇ̃γ i ≥ 0,

0 , otherwise,
(3.60)

where

ˇ̃Γi
4
= E{ ˇ̃γ i}=

Es

N0
σ2

h̃i
, (3.61)

and m.g.f. [123, Table 2.2, p. 19]

Mˇ̃γ i
(s) =

1

1−s ˇ̃Γi

. (3.62)

Consider the case of MPSK and uncorrelated branches that can have nonidentical vari-

ances. Sincě̃γ satisfies (3.57) anď̃γ i , i = 1 : L, are independent, the procedure outlined in

Section 3.4.1.1 at page 55 can be applied, and yields the following AEP expression [123, Sec-

tion 9.2.3.2]

Pe =
1
π

∫ M−1
M π

0

L

∏
i=1

(
1+ ˇ̃Γi

gPSK

sin2φ

)−1

dφ . (3.63)

This same approach, along with corresponding m.g.f. formulas from [123, Table 9.1, p.

269], can yield AEP expressions for other modulations as well as for Ricean and Nakagami-

m fading channels [123, Chapter 9]. Note, however, that in order to apply this approach for

Nakagami-m fading independent(i.e., not merely uncorrelated) channel gains are required.

3.5.1.3 Particular Cases and Numerical Results

ForL = 1, (3.63) reduces to (2.63), page 28, derived specifically for the SISO case. On the other

hand, forL (independent and) identically distributed branches, i.e., whenσ2
h̃i

= σ2
h̃
, ∀i = 1 : L,
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Eqn. (3.63) above becomes

Pe =
1
π

∫ M−1
M π

0

(
1+ ˇ̃Γ

gPSK

sin2φ

)−L

dφ , (3.64)

where ˇ̃Γ = Es
N0

σ2
h̃

is the average SNR per symbol for each of the i.i.d. receiver branches. The

average SNR per symbol for each of the i.i.d. receiver branches isγb = ˇ̃Γ/ log2M.

Recall from page 52 that we assume a Toeplitz structure forRh̃. Furthermore, all numerical

results shown hereafter are forσ2
h̃i

= σ2
h̃

= 1, i = ∀1 : L. Equal variance channel gains is a

valid assumption for antenna arrays [35, Section 4.1.2, p. 49], but not for RAKE receivers.

Nonetheless, although we will only show numerical results for equal-variance channel gains,

our analytical results can readily produce results for other situations. Assuming identically

distributed branches withσ2
h̃

= 1, the average SNR per symbol for each of the receiver branches

reduces toEs/N0, further denoted simply asSNR per symbol. Then,γb = Es
N0

1
log2M is further

denoted simply asSNR per bit.

Although the integration from (3.64) can be easily implemented with a desired degree

of accuracy, an involved closed-form equivalent expression can also be derived — see Sec-

tion 3.10.2.1, at page 112, Eqns. (3.155)–(3.157).

For BPSK transmitted signal and MRC ofL = 1 : 5 independent and identically distributed

(i.i.d.) branches Fig. 3.1 displays the AEP, computed using (3.64), vs.Es/N0, i.e., the SNR

per symbol (or per bit because of BPSK modulation). These results show that, theoretically,

communications systems employing ideal diversity combining can provide considerable per-

formance gains over SISO systems. For instance, at a (raw, i.e., uncoded) error probability of

10−2, 5-branch MRC yields about15 dB gain over the single-antenna receiver. Note however

that the diversity gain gradient decreases as the number of branches increases.

At large SNR values, the AEP from (3.63) can be approximated as

Pe,high SNR≈ 1
π

L

∏
i=1

(
ˇ̃Γi gPSK

)−1∫ M−1
M π

0
sin2L φ dφ . (3.65)
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stands for the diversity gain.
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For BPSK, this can be written further as

Pe,BPSK, high SNR≈ (2L)!
22L+1(L!)2

[
Es

N0

]−L L

∏
i=1

[
σ2

h̃i

]−1
. (3.66)

The exponent of the SNR per symbol in AEP expressions is commonly referred to asdiversity

order [106, Section 5.2]. The AEP expression in (3.66) indicates a diversity order equal to the

number of combined branches. Since

10 log10

[
Pe,BPSK, high SNR

]
∝−L

[
Es

N0

]

in dB
, (3.67)

at large SNR values the AEP decreases by a factor of about10L when the SNR increases by

10 dB. This is confirmed in Fig. 3.1, where the horizontal distance between points A and B is

10dB, and the error probability at point A is about10L times larger than at point B.

The expression from (3.63) can be generalized for Nakagami-m fading as [123, Table 9.1,

p. 269]

Pe =
1
π

∫ M−1
M π

0

L

∏
i=1

(
1+

ˇ̃Γi

mi

gPSK

sin2φ

)−mi

dφ , (3.68)

which, for identically distributed branches, becomes

Pe =
1
π

∫ M−1
M π

0

(
1+

ˇ̃Γ
m

gPSK

sin2φ

)−mL

dφ . (3.69)

where ˇ̃Γ is the common average SNR per symbol per branch. Fig. 3.2 describes the perfor-

mance for QPSK transmitted signal and i.i.d. Nakagami-m fading branches withm = 2 and

σ2
h̃

= 1.

Now let us consider the performance of MRC for an increasing numberL of i.i.d. diversity

branches but fixed tr
(
Rh̃

)
, as well as the reception performance for a non-fading AWGN chan-

nel with SNR per symbol equal toEs
N0

tr
(
Rh̃

)
. For QPSK transmitted signal, Fig. 3.3 depicts:

• the AEP from (3.69) for MRC of i.i.d. Nakagami-m fading branches withm= 2, fixed

tr(Rh̃) = 1, andσ2
h̃

= tr(Rh̃)/L, for L = 1 : 5branches, and
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• the AEP from (2.33), page 16, for non-fading AWGN channel with SNR per symbol

equal toEs
N0

tr(Rh̃).

For the results shown in Fig. 3.4 the number of branches in MRC isL = 1,5,9,13,17. Notice

that, for a fixed tr
(
Rh̃

)
, the performance of MRC for an increasing number of i.i.d. fading

branches approaches the performance of a non-fading AWGN channel with SNR per symbol

Es
N0

tr(Rh̃). The explanation follows.

Given tr(Rh̃) and i.i.d. Nakagami-m (and thus also for Rayleigh) fading, mathematical

manipulations of (3.69) yield

lim
L→∞

Pe =
1
π

∫ M−1
M π

0
exp

{
−Es

N0
tr

(
Rh̃

) gPSK

sin2φ

}
dφ , (3.70)

which is independent of the Nakagami distribution parameterm, and, based on (2.33) at page 16,

describes the performance for MPSK transmitted signal and non-fading AWGN channel with

the SNR per symbol given byEs
N0

tr
(
Rh̃

)
. Thus, infinite-order diversity yields a nonfading chan-

nel [106, p. 102]. A similar result was obtained in [49, Eq. 20, p. 1857] using a stochastic

majorization approach.

3.5.2 Ideal Maximum Average SNR Beamforming (BF)

In practice, received signals at different branches can be correlated. Insufficient antenna inter-

element separation or limited scattering [106] in the vicinity of the receiver increases this cor-

relation. RAKE receiver tap signals can also be fairly correlated [104,123]. Branch correlation

degrades MRC performance [34, 123]. When the inter-branch correlation is fairly high, maxi-

mum average SNR beamforming (BF) is usually employed [42,43].
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3.5.2.1 Procedure

As opposed to MRC, in BF the goal is to optimize the average (over fading and noise) SNR,

by appropriate combining of the received signal vectorỹ in (3.1) with a weight vector̃w as in

w̃H ỹ =
√

Es bw̃H h̃+ w̃H ñ. (3.71)

The combiner output power averaged over noise is

E{|w̃H ỹ|2} = Es|b|2 |w̃H h̃|2 +E{|w̃H ñ|2} (3.72)

= Es|b|2 |w̃H h̃|2 +N0 w̃Hw̃, (3.73)

which yields the instantaneous combiner output SNR as

SNR(w̃)
4
=

Es

N0

|w̃H h̃|2
w̃Hw̃

. (3.74)

The combiner output power, averaging over noise and fading, is

E{|w̃H ỹ|2} = Es|b|2E{|w̃H h̃|2}+E{|w̃H ñ|2} (3.75)

= Esw̃HRh̃w̃+N0 w̃Hw̃, (3.76)

which yields the output average SNR as

SNRavg(w̃)
4
=

Es

N0

w̃HRh̃w̃

w̃Hw̃
. (3.77)

The second ratio in (3.77) is a Rayleigh quotient [64,78] whose properties yield

Es

N0
λL ≤ SNRavg(w̃)≤ Es

N0
λ1, (3.78)

where the lower and upper bounds are achieved withw̃ ∝ eL and w̃ ∝ e1, respectively. The

latter choice thus represents maximum average SNR beamforming (BF).

Consider now the impact of branch decorrelation on BF performance, i.e., on

max
w̃∈CL

SNRavg(w̃) = SNRavg(e1) =
Es

N0
λ1. (3.79)
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Using Propositions 1 and 2 from page 54, we deduce that

max
w̃∈CL

SNRavg(w̃) ∈
[

Es

N0

1
L

tr(Rh̃),
Es

N0
tr(Rh̃)

]
, (3.80)

where the lower and upper bounds are achieved for uncorrelated and coherent branches, respec-

tively. If we denote asarray gainthe increase in average SNR over the SISO case [106, p. 91],

since the average SNR for theith branch isˇ̃Γi
4
= Es

N0
σ2

h̃i
, it follows that forL coherent branches,

BF offers the maximum array gain of [88, p. 1283]

GA,max(L) = 10 log10L [dB]. (3.81)

3.5.2.2 BF Error Probability Analysis based on Output SNR

We now investigate the BF performance for MPSK transmitted signal and Rayleigh fading

channel. If we substitutẽw with e1 in the BF instantaneous SNR expression (3.74), and define

the complex-valued random variableh1
4
= eH

1 h̃, which is zero-mean Gaussian, then SNR(e1) is

given by

γ 4
=

Es

N0
|h1|2, (3.82)

which is exponentially distributed [123, Table 2.2, p. 19], with averageΓ̌1
4
= Es

N0
λ1.

Applying the analysis approach described in Section 3.4.1.1 at page 55, the following AEP

expression is obtained for BF [125, p. 17]

Pe =
1
π

∫ M−1
M π

0

(
1+ Γ̌1

gPSK

sin2φ

)−1

dφ =
1
2


1−

√
Γ̌1

Γ̌1 +1


 . (3.83)

To our knowledge, this expression has not been explicitly derived and used in previous re-

search for BF performance evaluation. From (3.79) and (3.80) it follows that BF performance

improves with higher branch correlations; it is best for coherent branches, i.e., when the signal

arrives from a unique direction, and worst for uncorrelated branches, when the signal arrives
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from many distinct directions. MRC is known to perform conversely. Nevertheless, since in

practice the branch correlation varies, as described later in this work, due to variable azimuth

angle spread [8], a more versatile approach, denoted maximal-ratio eigen-combining (MREC),

was introduced and is described further below. MREC relies on the Karhunen-Loève Trans-

form (KLT) [68], which is described next.

3.5.3 The Karhunen-Lòeve Transform (KLT)

Principal components analysis [52], which uses the Karhunen-Loève Transform (KLT) [68],

has established itself in numerous areas [45] as a very effective approach to reduce complexity

and improve performance. If a large number of correlated random variables are collected, post-

KLT analysis is often considerably simpler [9, 50, 55, 91, 125, 128, 130], since the significant

resulting random variables are uncorrelated and usually much fewer. Suitable post-KLT pro-

cessing of the dominant eigen-modes can improve performance, e.g., in multi-branch wireless

receivers [36,47,48,76,77,125].

In the seminal work by Comon and Golub [45], numerical eigen-decomposition methods

are compared in terms of accuracy, convergence speed, and complexity. The adaptive algorithm

described in [45, Section V.G] possesses desirable convergence and tracking capabilities, as

well as low complexity, i.e.,O(LN2), whereN is the number of eigen-modes of interest. Lower

complexity algorithms have been proposed more recently, e.g., the projection approximation

subspace tracking (PAST) [151], with complexityO(LN).

In mobile scenarios correlation matrices vary slowly compared to channel fading [8,36,69,

130]. Hence, their eigen-decompositions would require infrequent updating, whose execution

can thus be distributed over long intervals [1, Section 7.1.1].
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3.5.4 Ideal Maximal-Ratio Eigen-Combining (MREC)

Ideal maximal-ratio eigen-combining (MREC) of orderN, 1≤ N≤ L, consists of two steps:

(Step 1) The L×N, full-column rank, matrixEN
4
= [e1e2 . . . eN] transforms the signal vector

from (3.1) into

y =
√

Esbh+n, (3.84)

where

y
4
= EH

N ỹ, (3.85)

h
4
= EH

N h̃, (3.86)

n
4
= EH

N ñ. (3.87)

(Step 2) The elements of the transformed signal vector are linearly combined so as to maximize

the instantaneous output SNR (i.e., the maximal-ratio criterion [34]) using

wMREC = h. (3.88)

Order-L MREC will be referred to asfull MREC. Then, the following relation holds

h̃ = EL h. (3.89)

The elements of theN-dimensional vectory are denoted aseigenbranches. They represent

the inner products of the received signal vector,ỹ, with eigenvectors corresponding to theN

largest eigenvalues ofRh̃, i.e.,

yi
4
= eH

i ỹ =
√

Es b hi +ni , (3.90)

where

hi
4
= eH

i h̃, (3.91)
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ni
4
= eH

i ñ. (3.92)

The components ofh are further referred to as channeleigengains. They have zero-mean,

variances given by

σ2
hi

4
= E{|hi |2}= eH

i E{h̃ h̃H}ei = eH
i

[
N

∑
l=1

λl el eH
l

]
ei =

N

∑
l=1

λl e
H
i el e

H
l ei = λi , (3.93)

and are mutually uncorrelated, because

E{hi h
∗
j}

4
= eH

i E{h̃ h̃H} ej = eH
i Rh̃ ej = eH

i

(
N

∑
l=1

λl el e
H
l

)
ej

=
N

∑
l=1

λl e
H
i el e

H
l ej = 0, ∀i 6= j. (3.94)

Thus,

Rh
4
= E{hhH}= ΛΛΛN = diag{λi}N

i=1, (3.95)

for any channel gain distribution [77]. Initial assumptions of Rayleigh fading and zero-mean,

complex Gaussian white noise yield

h∼Nc(0,ΛΛΛN), (3.96)

so that the eigengains are independent, and

n∼Nc(0,N0 IN). (3.97)

so that the transformed noise is temporally and spatially white.

The transformation leading to (3.84) is the Karhunen-Loève Transform (KLT) [68,77]. Of

all possible transforms, the KLT is the optimum (in the least-squares sense) decorrelating trans-

form, packing the largest amount of energy from the original,L-dimensional, signal vector,̃y,

into theN-dimensional vectory [68, Section 2.5.7, p. 67], which is desirable for dimension

reduction.
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Hereafter, the long-term channel parametersRh̃, ΛΛΛL, andEL are assumed perfectly known

because, in practice, enough independent channel samples would be available for an accurate

estimation [36]. In this section we also assume that the channel gains are perfectly known.

Then, recovery of a BPSK transmitted symbol, for instance, is attempted with

b̂MREC = sign{ℜ
[
wH

MREC y
]}= sign{ℜ

[
hH y

]} (3.98)

= sign{√Es b |h|2 +ℜ
[
hH n

]}. (3.99)

It is straightforward to show that this symbol detector is actually the maximum likelihood (ML)

symbol estimate for the model in (3.84) of the transformed received signal.

3.5.4.1 Ideal-MREC Error Probability Analysis based on Output SNR

The instantaneous SNR of theith eigenbranch — see (3.90) — is given by

γ̌i
4
=

Es

N0
|hi |2, i = 1 : N, (3.100)

which can be shown to be exponentially distributed, i.e., with p.d.f. [123, p. 19]

pdf(γ̌i) =





1
Γ̌i

e−γ̌i/Γ̌i , for γ̌i ≥ 0,

0 , otherwise,
(3.101)

where

Γ̌i
4
= E{γ̌i}=

Es

N0
σ2

hi
=

Es

N0
λi , (3.102)

and m.g.f. [123, Table 2.2, p. 19]

Mγ̌i(s) =
1

1−sΓ̌i
. (3.103)

As in Section 3.5.1.1, page 61, it can be shown thatwMREC from (3.88) maximizes instan-

taneous output SNR, i.e., [34]

γ̌ =
N

∑
i=1

γ̌i , (3.104)
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justifying the title of “maximal-ratio eigen-combining” [125,127–130].

Since the eigengains are uncorrelated (this holds regardless of the fading distribution),

and sinceγ̌ satisfies (3.104), the procedure for finding the AEP which was outlined in Sec-

tion 3.4.1.1, at page 55, can be applied to yield a nonclosed-form, yet simple, finite-limit, AEP

expression for MPSK, Rayleigh fading, and ideal MREC as

Pe =
1
π

∫ M−1
M π

0

N

∏
i=1

(
1+ Γ̌i

gPSK

sin2φ

)−1

dφ . (3.105)

For L = 1 the SIMO system reduces to a SISO system, and then the MREC AEP expres-

sion (3.105) reduces to the SISO AEP expression, i.e., (3.64), on page 64, written forL = 1, and

also (2.63), on page 28. Furthermore, BF and order-1 MREC coincide, as can be deduced from

their definitions. Then the ideal-MREC AEP expression (3.105), written forN = 1, reduces to

the ideal-BF AEP expression (3.83), at page 72, as expected.

Let us consider a SISO system with unit-variance channel gain. Let us also consider a

3-branch MREC-based receiver for two cases:

• fully correlated (coherent) channel gains, i.e., the first row and the spectrum ofRh̃ are

given, respectively, by[1 1 1] (this implies that all channel gains have unit variance)

andλ (Rh̃) = {3, 0, 0};

• correlated gains, with first row and spectrum ofRh̃ given, respectively, by[1. 0.87 0.62]

(this implies that all channel gains have unit variance; recall from page 52 that we assume

a Toeplitz structure forRh̃) andλ (Rh̃) = {2.5884, 0.3732, 0.0384}.

For QPSK and ideal combining the performance for these cases is depicted in Fig. 3.5 vs. the

SNR per bit, which was defined on page 64.

Note from Fig. 3.5 that, for coherent branches, MREC of any order yields the same perfor-

mance as BF (i.e., order-1 MREC), since potential diversity gain is unavailable. Note also that,
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ing (3.105), for a SISO system with unit-variance channel gain, as well as a 3-branch

MREC-based SIMO system, for coherent branches, i.e.,λ (Rh̃) = {3, 0, 0}, and for correlated
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compared to the SISO case, BF withL branches provides maximum possible array gain [88, p.

1283] of

GA,max
4
= 10log10L, (3.106)

for coherent branches, which is about4.8 dB for L = 3, at the price of higher receiver complex-

ity. Further, SISO and BF plots are essentially parallel, and the slope reflects a unitary diversity

order. As a rule-of-thumb for coherent channel gains, BF performance can readily be deduced

by shifting the SISO AEP plot to the left by10log10L dB.

Fig. 3.5 indicates that, when switching to the case of correlated channel gains described

above, BF performance remains largely unaffected. As the correlation decreases further, SISO

and BF AEP plots will remain parallel, but channel gain non-coherence will lead to lower array

gain,Ga < GA,max, and BF performance will approaches SISO performance.

On the other hand, Fig. 3.5 indicates that for the case of correlated branches described

above, MREC with more thanN = 2 eigenbranches can yield much lower AEP than SISO or

BF, due to diversity gain, which yields a steeper slope for the AEP-vs.-SNR plots. Note that

order-2 and full MREC yield diversity orders close to2 and3, respectively, i.e., as much as

MRC would yield withL = 2, 3 uncorrelated branches.

For the same case of correlated channel gains, Fig. 3.6 displays for QPSK, the error rates

obtained by simulation, and from analysis — see (3.105) — for the SIS/MO systems. These

results indicate close agreement between simulation and analysis.

3.5.4.2 Ideal MRC and Full MREC are Performance-Equivalent

Fig. 3.6 also indicates that the performance of MRC, evaluated by simulation, coincides with

that of full MREC, evaluated by simulation and by using (3.105), page 77. Recall that this

is the case of correlated channel gains. The equivalence of ideal MRC and full MREC was

actually demonstrated in [50] based on the equality of the corresponding symbol-detection
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Figure 3.6. Symbol detection performance, for QPSK transmitted symbols, from simulation

and (3.105), for SISO and ideal MREC, BF, MRC withL = 3 correlated branches, withRh̃

spectrum given byλ (Rh̃) = {2.5884, 0.3732, 0.0384}.
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SNRs. Hence, (3.105), on page 77, withN = L, is also an AEP expression for MPSK, Rayleigh

fading, and ideal MRC, even when the branches are correlated or unbalanced, i.e., they have

distinct variances. On the other hand, the claim made in [55] that a similar performance-

equivalence holds for selection combining was disproved (also for equal gain combining) in

[91].

Note further that for low SNR in this scenario withL = 3 branches with significant corre-

lation, MRC-like performance is possible with order-2 MREC. In the remainder of this work

we will evaluate MREC, as superset of MRC and BF, for lower-complexity adaptive receivers

in space- and/or frequency-selective channels.

3.5.4.3 Ideal MRC Performs Best/Worst for Uncorrelated/Coherent Channel Gains

In Section 3.5.2.2 at page 72 it was indicated that ideal BF performs best for coherent channel

gains, and worst for uncorrelated channel gains. The reverse can be proved for ideal MRC by

using (3.105) on page 77, withN = L.

3.6 Vector-Channel Estimation using Pilot-Symbol-Aided

Modulation (PSAM) and Interpolation

Channel knowledge is imperfect in practice. A simple approach, based on PSAM and inter-

polation, was described for SISO systems in Section 2.5 on page 33. The SINC PSAM (data-

independent, simple, suboptimum, with poor performance at low SNR) and MMSE PSAM

(data-dependent, complex, optimum) estimation methods described in Section 2.5 are now

generalized for vector channel, and will be employed later for numerical evaluations.

81



Table 3.1. Interpolation filters for eigenbranch estimation

Interpolation Method Interpolation Vector

SINC [vi (ms)]t = sinc(ms
Ms
− t)

cos[πβ ( ms
Ms
−t)]

1−[2β( ms
Ms
−t)]2

= [v(ms)]t

MMSE vi (ms) = ΦΦΦi
−1φφφ i(ms)

3.6.1 SINC and MMSE PSAM for MREC

Since theN eigenbranches are independent, their eigengains can be estimated separately. This

can significantly reduce complexity for MREC compared to MRC. Drawing on the derivations

from Section 2.5, at positionms = 1 :Ms in the currently detected slot of symbols, the estimator

of the ith eigenbranch is

gi (0,ms) = vi
H(ms) r i , (3.107)

wherevi(ms) is the interpolation filter, and

r i
4
=

1√
Epbp

[yi (−T1,0) yi (−T1 +1,0) . . . yi (0,0) . . .yi (T2−1,0) yi (T2,0)]T , (3.108)

with

yi (t,0) =
√

Ep bp hi (t,0)+ni (t,0) , t =−T1 : T2, (3.109)

Table 3.1 provides the interpolation vectors for SINC and MMSE PSAM. The elements of the

T×T matrixΦΦΦi
4
= E{r i rH

i }, and of theT×1 vectorφφφ i(ms)
4
= E{r i h∗i (0,ms)} are expressed

for Jakes’ model of temporal correlation [75] in Table 3.2. Table 3.3 expresses correlations

required later in analytical and numerical developments.
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Table 3.2. Elements ofΦΦΦi andφφφ i(ms), for eigenbranch estimation;t1, t2, t =−T1 : T2

[ΦΦΦi ]t1+T1+1,t2+T1+1 λi J0(2π fm | t1− t2|Ms)+ N0
Ep |bp|2 δt1,t2

[φφφ i(ms)]t+T1+1 λi J0(2π fm | t Ms−ms|)

Table 3.3. Correlations for eigenbranch estimation

gi (0,ms) = vi
H(ms) r i , ∀vi SINC PSAM MMSE PSAM

σ2
hi gi

(ms) φφφ i
H(ms)vi(ms) φφφH

i (ms)v(ms) φφφH
i (ms)ΦΦΦi

−1φφφ i(ms)

σ2
gi
(ms) vi

H(ms)ΦΦΦi vi(ms) v(ms)H ΦΦΦi v(ms) φφφH
i (ms)ΦΦΦi

−1φφφ i(ms)

3.6.2 SINC and MMSE PSAM for MRC

For MMSE PSAM when the branches are uncorrelated, and for SINC PSAM regardless of the

branch correlation, we can estimate each of theL channel gains separately, as

g̃i (0,ms) = ṽH
i (ms) r̃ i , (3.110)

whereṽi(ms) is the interpolation filter, described in Table 3.4, and

r̃ i
4
=

1√
Epbp

[ỹi (−T1,0) ỹi (−T1 +1,0) . . . ỹi (0,0) . . . ỹi (T2−1,0) ỹi (T2,0)]T , (3.111)

with

ỹi (t,0) =
√

Ep bp h̃i (t,0)+ ñi (t,0) , t =−T1 : T2. (3.112)

The elements of theT×T matrixΦ̃ΦΦi
4
= E{r̃ i r̃H

i } and of theT×1 vector

φ̃φφ i(ms)
4
= E{r̃ i h̃∗i (0,ms)} are expressed for Jakes’ model of temporal correlation [75] in Table

3.5. Table 3.6 expresses the correlations which will be later required in analytical and numerical

developments.

For the more general situation in which the channel gains may be correlated, MMSE esti-

mation is done as follows [28]: given

g̃(0,ms) = G̃H ỹp, (3.113)
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Table 3.4. Interpolation filters for branch estimation

Interpolation Method Interpolation Vector

SINC [ṽi (ms)]t = sinc(ms
Ms
− t)

cos[πβ ( ms
Ms
−t)]

1−[2β( ms
Ms
−t)]2

= [ṽ(ms)]t

MMSE (uncorrelated branches) ṽi (ms) = Φ̃ΦΦ
−1
i φ̃φφ i(ms)

Table 3.5. Elements of̃ΦΦΦi andφ̃φφ i(ms), for branch estimation;t1, t2, t =−T1 : T2[
Φ̃ΦΦi

]
t1+T1+1,t2+T1+1

σ2
h̃i

J0(2π fm | t1− t2|Ms)+ N0
Ep |bp|2 δt1,t2

[
φ̃φφ i(ms)

]
t+T1+1

σ2
h̃i

J0(2π fm | tMs−ms|)

Table 3.6. Correlations for branch estimation

g̃i (0,ms) = ṽH
i (ms) r̃ i , ∀ṽi SINC PSAM MMSE PSAM

σ2
h̃i g̃i

(ms) φ̃φφ
H
i (ms) ṽi(ms) φ̃φφ

H
i (ms) ṽ(ms) φ̃φφ

H
i (ms)Φ̃ΦΦ

−1
i φ̃φφ i(ms)

σ2
g̃i
(ms) ṽH

i (ms)Φ̃ΦΦi ṽi(ms) ṽ(ms)H Φ̃ΦΦi ṽ(ms) φ̃φφ
H
i (ms)Φ̃ΦΦ

−1
i φ̃φφ i(ms)

where

ỹp
4
=

[
ỹT(−T1,0) ỹT(−T1 +1,0) · · · ỹT(T2−1,0) ỹT(T2,0)

]T
, (3.114)

is anLT-dimensional column vector formed with theL-dimensional pilot samples, find

arg min
G̃∈CL×L

E

{∥∥∥h̃(0,ms)− g̃(0,ms)
∥∥∥

2
}

. (3.115)

The solution is the well-known Wiener filter, described by [28]

G̃opt(ms) = R−1
ỹp

Rỹp h̃(ms), (3.116)

where

Rỹp

4
= E

{
ỹp ỹH

p

}
= Ep |bp|2

[
Q⊗Rh̃

]
+N0 ILT , is LT×LT, (3.117)

[Q]t1+T1+1,t2+T1+1 = J0(2π fm | t1− t2|Ms) ; t1, t2 =−T1 : T2, is T×T, (3.118)
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Rỹp h̃(ms)
4
= E

{
ỹp h̃H(0,ms)

}
=

√
Epbp

[
q(ms)⊗Rh̃

]
, is LT×L, (3.119)

[q(ms)]t+T1+1 = J0(2π fm | tMs−ms|) ; t =−T1 : T2, is T×1, (3.120)

and the symbol⊗ stands for the Kronecker product [94, pp. 3, 19]. The above expressions were

obtained using the fact that temporal and spatial correlations are separable [101, Appendix A.2,

pp. 158 – 159] for our channel model, i.e.,∀t1, t2 =−T1 : T2, i, j = 1 : L,

E{h̃i(t1) h̃∗j (t2)}= E{h̃i(t1) h̃∗i (t2)}E{h̃i(t1) h̃∗j (t1)}= J0(2π fm | t1− t2|Ms) (Rh̃)i j . (3.121)

To conclude this section, note that the channel vectors before and after the KLT, and their

respective SINC or MMSE estimators are jointly Gaussian [21,58,95,113,115].

3.7 Combining Methods for Imperfectly Known Channel

3.7.1 Optimum Eigen-/Combining — Exact MREC, MRC, BF

For zero-mean, jointly-Gaussianh andg, which is a common assumption also found in [21,

58, 95, 113, 115] since the estimates are obtained from pilot samples, we have that, giveng,

h ∼Nc(m,Re), where [81, Appendix 15B, p. 562]

m
4
= E{h|g}= E{hgH} [

E{ggH}]−1
g, (3.122)

Re
4
= E{(h−m)(h−m)H |g}= Rh−E{hgH} [

E{ggH}]−1
E{ghH}. (3.123)

Then, we can write the eigengain vector, in terms of its estimate, as

h = m+e, with e∼Nc(0,Re) . (3.124)

It can readily be shown thatm and e are uncorrelated. Substituting (3.124) in the original

received signal vector model from (3.84), on page 74, we obtain

y =
√

Esbm+ννν ∼Nc(
√

Esbm,Rννν), (3.125)
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where, to facilitate subsequent analysis, the channel estimation error effects have been com-

pounded with the receiver noise into the new noise vector

ννν 4
=
√

Esbe+n (3.126)

whose correlation matrix is given by

Rννν
4
= E{ννν νννH}= EsRe+N0 IN, (3.127)

for MPSK transmitted symbols.

Maximum-likelihood detection of the transmitted symbolb for the signal model in (3.125)

employs the (N-dimensional) eigen-combiner

w = R−1
ννν m. (3.128)

The corresponding symbol decision variable is

mH R−1
ννν y =

√
EsbmH R−1

ννν m+mH R−1
ννν ννν , (3.129)

with mH R−1
ννν m real-valued and positive. Then, the actual symbol detection SNR is

γ = EsmH R−1
ννν m, (3.130)

i.e., maximum. We will therefore refer to this approach asexact MREC, to distinguish it

from another, suboptimum (approximate MREC), approach described later. For exact MREC,

symbol detection performance analysis is possible based onγ, using results from [123, Chapter

8] and the procedure from Section 3.4.1.1, page 55, as shown later in Section 3.10.1, page 107.

The independence property of the eigenbranches is not involved in the above presentation

of exact MREC. Therefore, exactly the same technique could be applied for the branches, even

when they are correlated, to yield what we refer to herein asexact MRC, simply by replacing

the notation related to eigen-combining with the corresponding one for combining, i.e.,g, h,
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m, e, ννν , Re, y, Rννν , w, andγ are replaced with̃g, h̃, m̃, ẽ, ỹ, ν̃νν , Rẽ, Rν̃νν , w̃, andγ̃, respectively.

Exact MRC is described in detail in Appendix B, Section A, on page 209.

Note that the exact-MRC problem isL-dimensional, while the exact-MREC problem is

N-dimensional, whereN can take any integer value from1 to L. Exact MRC was studied for

MPSK and i.i.d. branches in [113] using the symbol-detection-SNR-based procedure described

in Section 3.4.1.1, on page 55, and for correlated branches in [119, 120] using the symbol-

decision-variable-based procedure described in Section 3.4.1.2, on page 57.

The definitions of BF and order-1 MREC indicate that they coincide for p.k.c. We fur-

ther defineexact BF to stand fororder-1 exact MREC. Thus, performance measures derived

subsequently for order-N exact MREC also describe exact BF, after making the substitution

N = 1.

Let us now continue with the study of exact MREC. The inherent independence of the

eigenbranches causes the elements ofg to be independent, and the correlation matrices in (3.122)

– (3.127) to be diagonal. Letmi be theith element of the vectorm and let(Rννν)i,i be theith

diagonal element ofRννν . Based on (3.122), (3.123), and (3.93) from page 75, we obtain

mi =
σ2

hi gi

σ2
gi

gi , (3.131)

(Rννν)i,i = Es

(
λi−

|σ2
hi gi
|2

σ2
gi

)
+N0, (3.132)

where

σ2
gi

4
= E{|gi |2}, (3.133)

σ2
hi gi

4
= E{hi g

∗
i }. (3.134)

Note that in practice the cross-correlation can be complex-valued, “due to the frequency offset
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and residual complex interference in the received signal used for channel estimation” [95, Sec-

tion III.B, p. 3164]. We neglect such impairments throughout this work, and assume real-

valued and positive the above cross-correlation from (3.134), as done elsewhere [115, Ap-

pendix C] [30, p. 34]. Tables 3.3, 3.2, and 3.1, on page 83, express (3.133) and (3.134) for

SINC and MMSE PSAM. For these casesσ2
hi gi

> 0 [96, Section III.B, p. 2138].

The exact-MREC output SNR given by (3.130) can then be written as

γ = Es

N

∑
i=1

|mi |2
(Rννν)i,i

=
N

∑
i=1

γi , (3.135)

whereγi represents the SNR on theith eigenbranch conditioned ongi and is given by

γi
4
= Es

|mi |2
(Rννν)i,i

=
Es
N0

λi |µi |2
Es
N0

λi (1−|µi |2)+1
· |gi |2

σ2
gi

. (3.136)

with µi being the correlation coefficient ofhi andgi , defined as in (3.48), on page 60. Again,

(3.135) indicates that the combiner in (3.128) yields maximum output SNR, motivating the

term “exact MREC” for this approach, by analogy with maximal-ratio combining [34].

Since for Rayleigh fadinggi is Gaussian, the conditioned SNRγi from (3.136) is exponen-

tially distributed, with average

Γi
4
= E{γi}=

Es
N0

λi |µi |2
Es
N0

λi (1−|µi |2)+1
≥ 0. (3.137)

Note that for perfectly known channel (p.k.c.),µi = 1, ∀i = 1 : L, and the above becomes

Γ̌i
4
= E{γi}=

Es

N0
λi , (3.138)

first defined in (3.102) on page 76. Thus, for imperfectly known channel (i.k.c.)

Γi =
Γ̌i |µi |2

Γ̌i (1−|µi |2)+1
≥ 0. (3.139)

From (3.128), (3.131), and (3.132), the individual weights for exact MREC are

[wN]i =
1

Es
N0

λi (1−|µi |2)+1

σ2
hi gi

σ2
gi

gi , i = 1 : N. (3.140)
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Unless specified otherwise, the notationγb is used hereafter (e.g., on the horizontal axis) on

figures showing numerical results derived from simulations or analysis to indicates the average

SNR per bit per branch, which, for ideal receivers stands for the actual average SNR per bit

per branch, whereas for PSAM-based receivers it stands for the virtual average SNR per bit per

branch, to make their comparisons equitable, as described in Section 2.5.3.2, on page 37.

Figs. 3.7 and 3.8 depict the MREC and MRC performance obtained by simulation for ideal

combining, as well as for exact combining with SINC and MMSE PSAM, respectively. The

channel gains are correlated, with the first row ofRh̃ given by [1.0000 0.8739 0.6268]

(this implies that all channel gains have unit variance; recall from page 52 that we assume a

Toeplitz structure forRh̃), so that the spectrum ofRh̃ is λ (Rh̃) = {2.5884, 0.3732, 0.0384}.
Note the large performance gap between exact eigen-/combining for SINC PSAM and ideal

eigen-/combining. An improvement is possible with MMSE PSAM.

These figures confirm a previous statement — see Section 3.5.4.2 at page 79 — that ideal

MRC and ideal full MREC yield identical performance. Furthermore, Figs. 3.7 and 3.8 indi-

cate that exact MRC and exact full MREC yield the same performance, for both SINC and

MMSE PSAM, suggesting that they are performance-equivalent as well. This equivalence is

demonstrated later, in Section 3.9.3.3 at page 106.

Finally, these figures demonstrate also for exact eigen-combining that full-MREC perfor-

mance (i.e., the optimum, MRC, performance) can be attained with low-order MREC, although

increasing MREC order is required for higher SNR.

For the same correlation scenario, the exact-MREC performance curves plotted again, for

SINC and MMSE PSAM, in Fig. 3.9 show significantly poorer performance with SINC PSAM

vs. MMSE PSAM. For example, MMSE interpolation outperforms SINC interpolation by

about1.9, 2, and2.1 dB, for order-1 MREC, order-2 MREC, and full MREC, respectively.

Loss due to inaccurate channel knowledge compounds with more combined terms. Recall,
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Figure 3.7. AEP vs. SNR per bit, obtained for BPSK by simulation, for exact MREC, BF, and

MRC with SINC PSAM (Ms= 7, T = 11), and for ideal MREC, BF, and MRC;L = 3 correlated

branches are employed, withRh̃ spectrum given byλ (Rh̃) = {2.5884, 0.3732, 0.0384}.
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Figure 3.8. AEP vs. SNR per bit, obtained for BPSK by simulation, for exact MREC, BF, and

MRC with MMSE PSAM (Ms = 7, T = 11), and for ideal MREC, BF, and MRC;L = 3 corre-

lated branches are employed, withRh̃ spectrum given byλ (Rh̃) = {2.5884, 0.3732, 0.0384}.
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Figure 3.9. AEP vs. SNR per bit, obtained for BPSK by simulation, for exact MREC, BF,

MRC, with SINC and MMSE PSAM (Ms = 7, T = 11); L = 3 correlated branches, withRh̃

spectrum given byλ (Rh̃) = {2.5884, 0.3732, 0.0384}.
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however, that SINC PSAM is much simpler than MMSE PSAM, and it does not rely on statis-

tical channel knowledge.

3.7.2 Suboptimum Eigen-/Combining — Approximate MREC, MRC, BF

3.7.2.1 Suboptimum Combining Given Channel Gain Estimates — Approximate MRC

Given the signal model in (3.1) at page 51, when individual channel gains are estimated, the

usual symbol detection method proposed and analyzed in the research literature [115, Ap-

pendixes B, C] [30, 48, 58] [123, Section 9.9] [20–22, 120] employs the linear combination

between the estimate of the channel gain vector

g̃
4
= [g̃1 g̃2 · · · g̃N]T, (3.141)

and the received signal vector, i.e.,

g̃H ỹ. (3.142)

Note that the receiver uses the channel gain estimates as if they coincide with the actual gains,

which renders this approach suboptimum in general [120, Section III]. Therefore, we refer to

it asapproximate MRC[127,128,130].

3.7.2.2 Suboptimum Eigen-combining Given Eigengain Estimates: Approximate MREC

We denote asapproximate MRECthe combining approach in which theN-dimensional trans-

formed signal vector from (3.84) at page 74 is simply linearly combined with the vector com-

prising the eigenbranch estimates, i.e.,

g
4
= [g1 g2 · · · gN]T . (3.143)

Note that, besidesgi , which is a weight for approximate MREC, the weights for exact
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MREC, given in (3.140) on page 88, require an additional factor which is a function of channel

fading and noise statistics.

Approximate MREC [47, 48, 77, 125, 127, 128] uses for symbol detection the test statistic

gH y, whereg is given by (3.143). Statistical independence of the eigenbranches allows for

a straightforward analysis of approximate MREC [125] based on the approach in [30, 120].

Given eigengain estimates, approximate MREC is suboptimum [120], with an involved AEP

expression [125, Eqns. 35, 37], unhelpful for adaptation to varying channel conditions. More-

over, approximate-MREC performance may actually degrade as the number of eigenbranches

increases [47,48,77,125,127].

We defineapproximate BFto be order-1 approximate MREC. Thus, performance measures

shown or derived subsequently for order-N approximate MREC also describe approximate-BF

performance, after making the substitutionN = 1.

Figs. 3.10 and 3.11 depict the MREC and MRC performance obtained by simulations

for ideal combining, as well as for approximate eigen-/combining with SINC and MMSE

PSAM, respectively. The channel gains are correlated, with[1.0000 0.8739 0.6268] as

the first row ofRh̃ (which implies that all channel gains have unit variance), so thatλ (Rh̃) =

{2.5884, 0.3732, 0.0384}. Note again that ideal MRC and ideal full MREC yield the same

performance. Furthermore, approximate MRC and approximate full MREC yield the same

performance for both SINC and MMSE PSAM, suggesting that they are equivalent as well.

This equivalence is demonstrated later, in Section 3.9.3.1, on page 105, for SINC PSAM, and

in Section 3.9.3.2, on page 105, for MMSE PSAM.

For the same correlation scenario, the approximate-MREC performance curves plotted

again, for SINC and MMSE PSAM, in Fig. 3.12 show significantly poorer performance with

SINC PSAM vs. MMSE PSAM. For example, MMSE interpolation outperforms SINC inter-

polation by about1.9, 2, and2.1 dB for order-1 MREC (i.e., BF), order-2 MREC, and full
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Figure 3.10. AEP vs. SNR per bit, obtained for BPSK by simulation, for approximate

MREC, BF, and MRC with SINC PSAM (Ms = 7, T = 11), and for ideal MREC, BF,

and MRC;L = 3 correlated branches are employed, withRh̃ spectrum given byλ (Rh̃) =

{2.5884, 0.3732, 0.0384}.

95



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
10

−4

10
−3

10
−2

10
−1

10
0

γ
b
 [dB]

A
E

P

BPSK; L = 3; λ(R
h
) = [2.5884     0.37322    0.038403]; f

m
 = 0.01; MMSE: M

s
 = 7, T = 11.

approx MREC, N = 1 (BF)
approx MREC, N = 2
approx MREC, N = L = 3
approx MRC
ideal MREC, N = 1 (BF)
ideal MREC, N = 2
ideal MREC, N = L = 3
ideal MRC

Figure 3.11. AEP vs. SNR per bit, obtained for BPSK by simulation, for approximate

MREC, BF, and MRC with MMSE PSAM (Ms = 7, T = 11), and for ideal MREC, BF,

and MRC;L = 3 correlated branches are employed, withRh̃ spectrum given byλ (Rh̃) =

{2.5884, 0.3732, 0.0384}.
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MREC (i.e., MRC), respectively. Loss due to inaccurate channel knowledge compounds with

more combined terms. Recall, however, that SINC PSAM is much simpler than MMSE PSAM,

and it does not rely on statistical channel knowledge.

3.7.3 Exact vs. Approximate MREC, for SINC and MMSE PSAM

For the same scenario with correlated branches as above, Figs. 3.13 and 3.14 depict the MREC,

BF, and MRC performance for exact and approximate combining for SINC and MMSE PSAM,

respectively.

Notice first that approximate and exact BF perform identically, which is expected, because

the factor which multiplies the approximate-BF weightg1 — see (3.143), on page 93 — to

yield the exact-BF weight — see (3.140), on page 88 — is real-valued and positive, for both

SINC and MMSE interpolation.

Fig. 3.13, which shows results for SINC PSAM, indicates that for approximate eigen-

combining the performance can degrade with increasing order. For example, at low SNR,

order-2 approximate MREC can outperform full MREC by about0.5 dB. Larger SNR reverses

the relative performance.

The same figure also shows that order-2 exact MREC only very slightly outperforms order-

2 approximate MREC at low SNR. However, they perform nearly identically for larger SNR

values. On the other hand, at low SNR, order-3 (full) exact MREC outperforms full approx-

imate MREC by about0.6 dB. Nevertheless, as SNR increases, the performance gap reduces

and then disappears. For MMSE PSAM, Fig. 3.14 shows no noticeable performance advan-

tage with exact vs. approximate combining. These results suggest that the performances of

approximate and exact combining can be fairly similar.

Finally, Figs. 3.13 and 3.14 both indicate that exact-MREC performance does not degrade

with higher order, unlike that of approximate MREC.
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Figure 3.12. AEP vs. SNR per bit, obtained for BPSK by simulation, for approximate MREC,

BF, MRC with SINC and MMSE PSAM (Ms = 7, T = 11); L = 3 correlated branches, withRh̃

spectrum given byλ (Rh̃) = {2.5884, 0.3732, 0.0384}.
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Figure 3.13. AEP vs. SNR per bit, obtained for BPSK by simulation, for exact and approximate

MREC, BF, and MRC with SINC PSAM (Ms = 7, T = 11); L = 3 correlated branches are

employed, withRh̃ spectrum given byλ (Rh̃) = {2.5884, 0.3732, 0.0384}.
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Figure 3.14. AEP vs. SNR per bit, obtained for BPSK by simulation, for exact and approximate

MREC, BF, and MRC with MMSE PSAM (Ms = 7, T = 11); L = 3 correlated branches are

employed, withRh̃ spectrum given byλ (Rh̃) = {2.5884, 0.3732, 0.0384}.
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3.8 Performance Analysis of MRC for Estimated Branches

3.8.1 Analysis of Approximate MRC

3.8.1.1 Previous Results

Traditionally, approximate-MRC analyses for BPSK modulation and i.i.d. Gaussian branches

relied on the characteristic function (c.f.) of the test statisticℜ{g̃H ỹ} [30] [115, Appendix C].

Attempts [136, 137] to employ the combiner-output-SNR p.d.f. derived in [58, Eqn. 46] were

recently disproved [21,22,37,95,96]. Very recently, correct analysis was found possible using

the so-called “effective” combiner-output SNR [95, Section IV.A] [96, Section IV.B].

For BPSK modulation and i.i.d. branches, the straightforward derivation from [30] relies

on Turin’s seminal work [142] on the c.f. of a Hermitian quadratic form in complex Gaussian

vectors [142, Eqns. 4], and yields a simple closed-form AEP expression [30, Eqn. 59].

In other classical work specifically targeting i.i.d. Rayleigh fading [115, Appendix C], in-

volved derivations yielded a closed-form AEP expression for BPSK [115, Appendix C, Eqn.

C-18]. The equivalence between [115, Appendix C, Eqn. C-18] and [30, Eqn. 59] can be

proven using [123, Appendix 5A, Eqns. 5A.4]. These expressions generalize to i.k.c. the AEP

expression for ideal MRC given by [115, Eqn. 14.4-15].

A finite-limit integral AEP expression [20, Eqn. 19], found by reinterpreting results from

[115, Appendix B] [123, Appendix 9A], is claimed to be applicable to BPSK modulation even

for non-i.i.d. fading. However, the assumption in [20, Eqn. 2], on the relation between a

channel gain and its estimate, can restrict the applicability of these results to the i.i.d. case.

The approach in [30] was rediscovered and applied for non-i.i.d. branches in [120], al-

though explicit AEP expressions were not actually provided. We describe this approach in

Section 3.8.1.2, on page 103.
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To the best of our knowledge, the most general (i.e., applicable even for correlated and non-

identically distributed branches) closed-form AEP expression for approximate MRC for BPSK

modulation is [125, Eqn. 37], which we obtained based on eigen-combining, as shown later

in Section 3.11.1, starting on page 118. Nevertheless, computer implementation of [125, Eqn.

37] is fairly involved. A similar KLT-based analysis appears in [48], but the case of eigenvalues

of Rh̃ with supra-unitary multiplicity was not considered.

Few results have been published for other PSK constellations for approximate MRC of

i.i.d. branches, and they are complicated — see, for instance, the very involved non-closed-

form AEP expression [115, Appendix C, Eqn. C-16]. This motivates the much simpler alter-

native presented in Section 3.11.4, starting on page 125.

For MPSK constellations and non-i.i.d. Ricean fading, [96] computes an upper bound

(which becomes tighter for largerM) on the average symbol and bit error probability of ap-

proximate MRC [96, Eqn. 3, p. 2138]. Assuming Gray mapping [115, p. 170], the procedure

actually yields the exact bit error probability, for BPSK and QPSK. However, since no actual

closed-form expression was obtained using this approach for correlated branches in [96], in-

volved numerical evaluation is then required. On the other hand, for Rician i.i.d. branches, [96,

Eqn. 3] can be evaluated using the simple finite-limit integral [96, Eqn. 16].

The recent work in [38] targeting independent Ricean fading and allowing for channel gains

with different means but the same variance, can yield closed-form bit error probability expres-

sions for BPSK, QPSK, and M-QAM, for PSAM-based channel estimation, by exploiting the

Gray bit mapping and basic bit error probability results from [115, Appendix B].

Deriving the AEP for approximate MRC as described in [136] [137, Eqns. 3, 8], by in-

tegrating over the combiner-output-SNR p.d.f. tediously expressed by Gans in [58, Eqn. 46],

was recently disproved [21, 22, 37, 95, 96]. In fact, such an approach yields a loose error-

probability lower bound [21,22,37,95,96]. AEP expressions obtained as in [136,137] can thus
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seriously underestimate the effect of i.k.c. on diversity systems and even produce misleading

performance results [95,96].

In [22], a correct analysis of approximate MRC for BPSK and i.i.d. Rayleigh fading branches,

hinging on the convenient channel gain model originally proposed as [58, Eqn. 16], produced

a simple, finite-limit, AEP formula [22, Eqn. 23], which is equivalent to the classical, closed-

form, result [30, Eqn. 59].

3.8.1.2 Straightforward Approximate-MRC Analysis for BPSK and Non-I.I.D. Branches

The following analysis approach is based on the original work for i.i.d. complex Gaussian

branches from [30] and its extension to non-i.i.d. branches from [120]. Since, for BPSK, the

received symbol is decided upon as

b̂ = sign{ℜ
[
g̃H ỹ

]}, (3.144)

the AEP can be obtained by following the procedure outlined in Section 3.4.1.2, on page 57,

after replacingx, R, andz with g̃, IL, andỹ, respectively.

Computing the r.m.g.f. defined in (3.29), on page 57, and expressed in (3.39), on page 59,

for the decision variablẽq = ℜ
[
g̃H ỹ

]
requires knowledge ofRg̃

4
= E{g̃g̃H}, Rg̃ỹ

4
= E{g̃ỹH},

Rỹ g̃
4
= E{ỹ g̃H} = RH

g̃ỹ, andRỹ
4
= E{ỹ ỹH} — see (3.40), on page 59. (For SINC and MMSE

PSAM, these matrices are expressed in closed-form in Appendix B, Sections B.1.1 and B.1.2,

respectively.) These correlation matrices are non-diagonal for correlated branches, which pre-

vents us from expressing in closed-form the poles of the r.m.g.f. ofq̃ — see (3.39), on page 59

— and, thus, for the AEP for approximate MRC. Then, numerical computation of the eigen-

values of the (non-block-diagonal)2L×2L-matrix




Rg̃ỹ Rg̃

Rỹ Rỹ g̃


 is required.
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3.8.2 Analysis of Exact MRC

Exact MRC, defined in Section 3.7.1, on page 86, and described in detail in Appendix A,

uses the combiner̃w = R−1
ν̃νν m̃ — with m̃ andRν̃νν expressed in Appendix B, Section B.2, for

SINC and MMSE PSAM — for the received signal vector from (3.1), on page 51, to yield the

instantaneous output SNR

γ̃ = Esm̃H R−1
ν̃νν m̃. (3.145)

The straightforward SNR-based analysis approach outlined in Section 3.4.1.1, on page 55,

cannot directly be applied for correlated branches, sinceγ̃ from (3.145) is not written as a sum

of independent SNRs, as required — see (3.23) at page 56. Nevertheless, since the detection

variable for exact MRC can be written asw̃H ỹ = m̃HR−1
ν̃νν ỹ, the BPSK case can be tackled with

the method described in Section 3.4.1.2, on page 57, after replacingx, R, andz with m̃, Rν̃νν ,

andỹ, respectively. The matrices required then to compute the AEP were determined as shown

in Appendix B, Section B.2, for both SINC and MMSE PSAM.

3.9 Equivalences between MREC, MRC, BF

3.9.1 Full MREC and MRC Coincide for I.I.D. Branches

Proposition 2 at page 54 indicates that for i.i.d. branches we haveRh̃ = λ IL. Then, the eigen-

vectors which make upEL can be any set of vectors which form an orthonormal basis in

CL [26]. SelectingEL = IL leaves the KLT (forN = L) with no impact, and so branches and

eigenbranches coincide. Therefore, full MREC and MRC coincide for p.k.c. or i.k.c., optimum

or suboptimum combining.
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3.9.2 Exact and Approximate BF are Performance-Equivalent

By definition, BF and order-1 MREC coincide for p.k.c., as well as for i.k.c. when either exact

or approximate combining is employed. Thus, performance measures derived subsequently for

order-N MREC also describe BF, after making the substitutionN = 1.

Furthermore, if the cross-correlation between the dominant eigengain and its estimate is

assumed real-valued and positive [30, p. 34] [115, p. 954] (true for SINC and MMSE PSAM),

then the factor which multipliesg1 in expression (3.140), on page 88, of the weight for exact

BF can be disregarded. Thus, exact and approximate BF perform identically for MPSK, which

was already noticed, for BPSK, based on simulation results, in Section 3.7.3 — see Fig. 3.13,

on page 99, and Fig. 3.14, on page 100.

3.9.3 MRC and Order-L (Full) MREC are Performance-Equivalent

Recall from Section 3.5.4.2, page 79, that for perfectly known channel gains and eigen-gains,

(ideal) MRC and full MREC are performance equivalent [9, 50]. In this section we prove that

full MREC and MRC are equivalent for both optimum and approximate combining when the

gains and eigengains are estimated employing the same method, either SINC or MMSE PSAM.

3.9.3.1 Approximate Eigen-/Combining for SINC PSAM

Using (3.110) from page 83, we can show that, for SINC PSAM, the channel gain vector

estimator̃g can be written as

g̃ = Ỹ ṽ, (3.146)

where(Ỹ)i,t+T1+1
4
= 1√

Ep bp
ỹi(t,0), i = 1 : L, t = −T1 : T2. After the KLT with N = L the

eigengain estimatorg can be rewritten based on (3.107) from page 82 as

g = Yv, (3.147)
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where (Y)i,t+T1+1
4
= 1√

Ep bp
yi(t,0), i = 1 : L, t = −T1 : T2. For SINC interpolatioñv = v.

Further, sincey = EH
L ỹ, it can be shown thatY = EH

L Ỹ. Thus,

g = EH
L g̃, (3.148)

so that

gH y = g̃H EL EH
L ỹ = g̃H ỹ, (3.149)

proving that full approximate MREC and approximate MRC are equivalent in terms of symbol

detection performance.

3.9.3.2 Approximate Eigen-/Combining for MMSE PSAM

The received signal vector with pilot samplesỹp from (3.114), on page 84, can be written as

ỹp = Eyp, whereE
4
= diag{EL , . . . , EL} is anLT × LT block-diagonal, unitary matrix, and

yp is the analog, written for theL eigenbranches, of̃yp. If we defineRyp

4
= E

{
ypyH

p

}
, and

Ryph
4
= E

{
yphH

}
, thenRỹp

= ERyp EH , andRỹp h̃ = ERyph EH
L , and from (3.113) and (3.116)

we determined that̃g = EL GH
optyp = EL g, whereGopt

4
= R−1

yp
Ryph. Thus, the symbol decision

variables for approximate MRC and full approximate MREC are equal also for MMSE PSAM.

3.9.3.3 Exact Eigen-/Combining for SINC and MMSE PSAM

Exact MRC implementation is described in Appendix B, Section B.2, on page 213, and exact

MREC implementation is described in Section 3.7.1, on page 85. Using the relationship be-

tween the eigengains (forN = L) and gains, i.e.,h = EH
L h̃, and the relationship between their

estimates obtained above, i.e.,g= EH
L g̃, we found thatRννν = EH

L Rν̃νν EL, andm = EH
L m̃, which

yield the relationship between the eigen-combiner for exact full MREC and the combiner for

exact MRC asw = EH
L w̃. Then, the corresponding conditioned SNRs, i.e.,γ from (3.130),
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page 86, and̃γ from (3.145), page 104, are equal, proving the equivalence between exact full

MREC and MRC in terms of symbol detection performance.

3.9.4 Exact and Approximate MRC are Performance-Equivalent

for I.I.D. Branches

When the branches are i.i.d., full MREC coincides with MRC. Furthermore, the factors which

multiply gi in the expression for exact MREC (also for exact MRC in this case) weights

from (3.140), on page 88, are equal. Assuming that they are real-valued and positive as

well [30, p. 34] [115, p. 954] (true for SINC and MMSE PSAM), these factors then do

not impact exact MRC (full MREC) detection performance, rendering it identical to that of

approximate MRC (full MREC). Fig. 3.15 confirms these deductions based on simulations for

a scenario with QPSK modulation,L = 1 : 3 i.i.d. branches with unit-variance channel gains,

and SINC PSAM channel estimation.

3.10 Performance Analysis of Optimum Eigen-/Combining

3.10.1 Simple, Non-Closed-Form, AEP Expression for Exact MREC

In Section 3.7.1, the signal model developed for exact eigen-combining in (3.125), on page 85,

conveniently compounds the channel estimation errors with the receiver noise, to permit an

analysis based on the actual symbol detection SNR from (3.130), page 86. Thus, the error

probability given the channel eigengain estimates can be computed as [123, Eqn. 8.22, p. 196]

Pe(γ) =
1
π

∫ M−1
M π

0
exp

{
−γ

gPSK

sin2φ

}
dφ , (3.150)

where the actual output symbol detection SNR is given by the sum of the individual SNRs, i.e.,

γ = ∑N
i=1γi — see (3.135), on page 88.
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Figure 3.15. AEP vs. SNR per bit, obtained by simulation, for QPSK, approximate and exact

MRC of L = 1 : 3 i.i.d. branches, with SINC PSAM channel estimation.
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For exact MREC, the independence of individual SNR termsγi , i = 1 :N, defined in (3.136),

on page 88, along with the above SNR additivity property, allows for a simple, conditioned-

SNR-based AEP analysis, along the same lines as in Section 3.4.1.1, page 55. For MPSK

transmitted signals and order-N exact MREC, the AEP is then

Pe,N =
1
π

∫ M−1
M π

0

N

∏
i=1

(
1+Γi

gPSK

sin2φ

)−1

dφ , (3.151)

which depends on modulation constellation size, MREC orderN, antenna correlation, esti-

mation method and parameters. Note that, sinceΓi , defined in (3.137), on page 88, is positive

∀i = 1 :N, the performance of exact MREC cannot degrade with higher order. Although (3.151)

requires numerical integration, it can be computed easily on a computer. Similar results are

possible for other modulations as well as for Rician fading — see Section 3.4.1.1, on page 55.

Consider again the case ofL = 3, when the channel gains are correlated, with the first

row of Rh̃ given by [1.0000 0.8739 0.6268] (this implies that all channel gains have unit

variance; recall from page 52 that we assume a Toeplitz structure forRh̃), so thatλ (Rh̃) =

{2.5884, 0.3732, 0.0384}. Figs. 3.16 and 3.17 describe, for BPSK, the performance of exact

BF, MREC, and MRC, for SINC and MMSE PSAM, respectively, as evaluated with (3.151)

and by simulation. These figures indicate the following:

• There is a good agreement between analysis and simulation results.

• MRC and full MREC perform identically.

• MREC performance does not degrade with higher order.

• Full-MREC (i.e., MRC, optimum) performance can be obtained with MREC of lower

order for certain SNR ranges. For example, full-MREC performance can be obtained

with order-2 MREC for γb < 8 dB for SINC PSAM, and forγb < 5 dB for MMSE

PSAM.
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Figure 3.16. AEP vs. SNR per bit, obtained by simulation and from analysis, for BPSK trans-

mitted symbols, for exact BF, MREC, and MRC, with SINC PSAM;L = 3 correlated branches

are employed, withRh̃ spectrum given byλ (Rh̃) = {2.5884, 0.3732, 0.0384}.
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Figure 3.17. AEP vs. SNR per bit, obtained by simulation and from analysis, for BPSK

transmitted symbols, for exact BF, MREC, and MRC, with MMSE PSAM;L = 3 correlated

branches are employed, withRh̃ spectrum given byλ (Rh̃) = {2.5884, 0.3732, 0.0384}.
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3.10.2 Closed-Form AEP Expressions for Exact MREC

Let {Ξ1 , Ξ2 , . . . , ΞNd} denote the distinct values in the set{Γ1 gPSK, Γ2 gPSK, . . . , ΓN gPSK}
— which enter the finite-limit integral AEP expression for exact MREC from (3.151), on

page 109 — and letrk denote the algebraic multiplicity ofΞk, k = 1 : Nd, with ∑Nd
k=1 rk = N.

Then, the r.m.g.f. — defined in (3.29), on page 57 — of exact MREC output SNRγ —

see (3.130), on page 86 — is

Fγ(s) =
Nd

∏
k=1

[
1

1+sΞk

]rk

. (3.152)

We separately consider each case of interest below. The AEP and outage probability (OP)

expressions derived next for the case when all eigenvalues ofRh̃ coincide form the building

blocks for the subsequently discussed cases.

3.10.2.1 The Case when All Eigenvalues are Equal

Recall from Section 3.9.1, page 104, that when all eigenvalues ofRh̃ are equal the eigen-

branches coincide with the branches. In this case,Nd = 1, r1 = N, andΞk = Ξ1
4
= Ξ 4

= ΓgPSK,

so that (3.152) reduces to

Fγ(s) =
1

(1+sΞ)N , (3.153)

and the finite-limit integral exact-MREC AEP expression from (3.151) becomes

Pe,N =
1
π

∫ M−1
M π

0

(
1+Ξ

1

sin2φ

)−N

dφ , (3.154)

or, in closed-form [123, Appendix 5A, Eqns. 5A.17–19, pp. 127, 128],

Pe,N =
M−1

M
− 1

π

√
Ξ

Ξ+1

{(π
2

+ tan−1α
)N−1

∑
n=0

(
2n
n

)
1

[4 (Ξ+1)]n

+sin
(
tan−1α

)N−1

∑
n=1

n

∑
i=1

Ti,n

(Ξ+1)n

[
cos

(
tan−1α

)]2(n−i)+1

}
(3.155)
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where

α 4
=

√
Ξ

Ξ+1

(
tan

π
M

)−1
, (3.156)

Ti,n
4
=

(2n
n

)
(2(n−i)

n−i

)
4i [2(n− i)+1]

. (3.157)

For BPSK this yields [115, Eqn. 14.4-15, p. 825] [123, Appendix 5A, Eqn. 5A.4b]

Pe,N =
[

1
2

(1−ξ )
]N N−1

∑
n=0

(
N−1+n

n

)[
1
2

(1+ξ )
]n

, (3.158)

where

ξ 4
=

√
Ξ

Ξ+1
=

√
ΓgPSK

ΓgPSK+1
= µ

√
Γ̌gPSK

Γ̌gPSK+1
= µ ξ̌ , (3.159)

with µ being the correlation coefficient between the actual (eigen)gain and its estimate,

ξ̌ 4
=

√
Γ̌gPSK

Γ̌gPSK+1
, (3.160)

andΓ̌ is the (eigen)branch average SNR for p.k.c., defined in (3.138), on page 88. Using [123,

Appendix 5A, Eqns. 5A.4], (3.158) can be shown to be equivalent to

Pe,N =
1
2

[
1−ξ

N−1

∑
n=0

(
2n
n

)(
1−ξ 2

4

)n
]

. (3.161)

The p.d.f. ofγ defined in (3.130), on page 86, can now be derived from (3.153), using (3.30)

from page 57, as [115, Eqns. 14.4-12, 13, p. 825]

pγ(γ) =
γN−1e−γ/Ξ

(N−1)! ΞN . (3.162)

Substituting this into the outage probability definition from (3.50), on page 61, yields

Po = G
(

N,
γth

Ξ

)
, (3.163)

where

G (n,x)
4
=

1
(n−1)!

∫ x

0
e−t tn−1 dt (3.164)

is theincomplete gamma function[6, Eqn. 6.5.1, p. 260].
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3.10.2.2 The Case when Some Eigenvalues are Equal

For multi-branch receivers, some eigenvalues ofRh̃ can become (nearly) equal [128, Fig. 1]

[130, Fig. 1]. Therefore, a separate analysis of this most general case is worthwhile.

Using the partial fraction expansion procedure described in [65,§2.102, pp. 56–57], we

can write (3.152) as

Fγ(s) =
1
A

Nd

∑
k=1

rk

∑
l=1

ck, l
1(

s+ 1
Ξk

)l , (3.165)

whereA
4
= ∏Nd

k=1Ξrk
k , and the factorck, l is given by

ck, l
4
=

A
(rk− l)!

{
D(rk−l)

s

[
Fγ(s) ·

(
s+

1
Ξk

)rk
]}∣∣∣∣

s=− 1
Ξk

,

with D(n)
s [G(s)]

4
= dn[G(s)]

dsn , i.e., thenth derivative ofG(s).

Based on [18],ck, l can be expressed in the closed-form

ck, l = (−1)rk−l ·∑
Ω

Nd

∏
j=1
j 6=k

d j ·
(

1
Ξ j
− 1

Ξk

)−(r j+i j )

, k = 1 : Nd, l = 1 : rk, (3.166)

whereΩ stands for the set of integers satisfying0≤ i1, . . . , ik−1, ik+1, . . . , iNd ≤ rk− l andi1 +

. . .+ ik−1 + ik+1 + . . .+ iNd = rk− l , andd j =
(r j−1+i j

i j

)
.

Note that the individual terms of the sum in (3.165) can be recast as the ratio from (3.153).

Therefore, we can use results from Section 3.10.2.1 to write the exact-MREC AEP expression

for this most general case in the following canonical form

Pe =
1
A

Nd

∑
k=1

rk

∑
l=1

ck, l ·Ξl
k · Il (Ξk), (3.167)

where

Il (Ξk)
4
=

1
π

∫ M−1
M π

0

[
sin2φ

sin2φ +Ξk

]l

dφ (3.168)
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actually coincides withPe,l given by (3.154), and thus is described in closed-form by (3.155) –

(3.161), by replacingN, Ξ, ξ , Γ, µ , andξ̌ with l , Ξk, ξk, Γk, µk, andξ̌k, respectively.

Note that, unlike the non-closed-form exact-MREC AEP expression from (3.151), page 109,

the equivalent closed-form AEP expression from (3.167) is very difficult to implement and

evaluate on a computer, because the factorsck, l defined in (3.166) depend on the relative mag-

nitudes of the eigenvalues ofRh̃.

The p.d.f. ofγ can now be obtained as the inverse Laplace transform of (3.165), i.e.,

pγ(γ) =
1
A

Nd

∑
k=1

rk

∑
l=1

ck, l · γ l−1e−γ/Ξk

(l −1)!
, (3.169)

using the building blocks provided by (3.153) and (3.162). Substituting this into the outage

probability definition from (3.50), on page 61, yields the following general canonical form for

the outage probability of exact MREC

Po =
1
A

Nd

∑
k=1

rk

∑
l=1

ck, l ·Ξl
k ·G

(
l ,

γth

Ξk

)
, (3.170)

whereG (·, ·) was defined in (3.164), on page 113.

3.10.2.3 The Case when All Eigenvalues are Distinct

In this caseNd = N andrk = 1, ∀k = 1 : N, so that (3.165) and (3.166) yield

Fγ(s) =
N

∑
k=1

Rk
1

1+sΞk
, (3.171)

where

Rk =
N

∏
j 6=k

Ξk

Ξk−Ξ j
. (3.172)

Then, from (3.171), using (3.153) and (3.158) forN = 1, we obtain

Pe =
1
2

N

∑
k=1

Rk · (1−ξk) , (3.173)
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which, for p.k.c., uncorrelated branches, and BPSK, reduces to the MRC AEP-formula [115,

Eqn. 14.5-28, p. 845].

In this case, the p.d.f. ofγ , given in (3.169), becomes [89, Eqn. (10-60), p. 308]

pγ(γ) =
N

∑
k=1

Rk
1

Ξk
e−γ/Ξk, (3.174)

which, for p.k.c., reduces to [115, Eqn. 14.5-26, p. 847]. Then, the OP is given by

Po =
N

∑
k=1

Rk

(
1−e−γth/Ξk

)
. (3.175)

3.10.3 Exact-MREC Analysis Results Specialized to Exact BF and MRC

For N = 1, exact MREC reduces to exact BF, for which (3.151), on page 109, is then a non-

closed-form, but finite-limit integral, average error probability expression. This can be recast in

closed-form as described in Section 3.10.2.1 at page 112. Thus, the exact-BF AEP for MPSK

and arbitrarily correlated Rayleigh fading is given by the following expressions:

Pe =
1
π

∫ M−1
M π

0

(
1+Γ1

gPSK

sin2φ

)−1

dφ =
1
2

(
1−

√
Γ1gPSK

Γ1gPSK+1

)
. (3.176)

Due to the equivalence demonstrated in Section 3.9.3.3, page 106, between full MREC and

MRC, it follows that (3.151), page 109, withN = L, also describes exact-MRC performance,

for non-i.i.d. branches. The equivalent closed-form average error probability expressions de-

rived above for exact MREC also hold for exact MRC, after theN = L substitution.

Similarly, we can obtain exact-BF and exact-MRC OP expressions from the ones derived

above for exact MREC. We have thus unified the treatment of exact MREC, BF, and MRC,

for which we obtained new, simple non-closed-form as well as more involved closed-form

performance-measure expressions that cover most cases of interest in terms of channel estima-

tion procedure, and relative channel gain eigenvalue magnitudes. They are useful in optimum

eigen-/combining performance evaluation given statistical information about the noise and fad-

ing, as well as for MREC adaptation, as shown later.
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3.10.4 Exact-MREC Analysis Results Specialized to Ideal MREC, BF,

and MRC

3.10.4.1 Exact-MREC Analysis Results Specialized to Ideal MREC

Perfectly known eigengains implies thatµi = 1, ∀ i = 1 : L. Then the average effective eigen-

branch SNRΓi defined for i.k.c. in (3.137), on page 88, reduces to the average actual eigen-

branch SNRΓ̌i defined for p.k.c. in (3.138), on page 88, and the nonclosed-form AEP expres-

sion for exact MREC from (3.151), on page 109, reduces to the expression for ideal MREC,

already determined in (3.105), on page 77. Thus, the closed-form AEP expressions derived in

Section 3.10.2, starting at page 112, for optimum MREC for i.k.c. yield corresponding closed-

form AEP expressions for ideal MREC by simply replacingΓi with Γ̌i . Similarly, we can obtain

ideal-MRC OP expressions from the ones derived above for exact MREC. We thus unified the

treatment of optimum eigen-combining for i.k.c. and p.k.c.

3.10.4.2 Exact-MREC Analysis Results Specialized to Ideal BF and MRC

By definition, BF is order-1 MREC. Therefore, the AEP and OP expressions derived above for

exact order-N MREC characterize, by substitutingN = 1 and by replacingΓi with Γ̌i , ideal BF.

Since full MREC and MRC are equivalent for p.k.c. [50], the AEP and OP expressions

derived above for exact order-N MREC reduce, by substitutingN = L and by replacingΓi

with Γ̌i , to the AEP and OP expressions for ideal MRC. Evidently, for p.k.c. and uncorrelated

branches, Eqn. (3.151), on page 109, reduces to the MRC AEP expression already derived

in (3.63), on page 63.
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3.11 Performance Analysis of Suboptimum Eigen-/Combining

3.11.1 Performance Analysis of Approximate MREC

Approximate MREC was described in Section 3.7.2.2, on page 93. Approximate-MREC error

probability analysis for BPSK relies on the approach described in Section 3.4.1.2, on page 57,

by replacingx, z, andR with g, y, andIN, respectively. Recall thatg, defined in (3.143), on

page 93, is the estimate of theN-dimensional eigengain vector from (3.86), on page 74, andy

is the transformed signal vector defined in (3.84), on page 74. The symbol-detection variable

for approximate MREC isq = gH y, whose r.m.g.f. can be written based on (3.42) – (3.47), as

Fq(s) =
N

∏
k=1

1[−a2
k(s−sk,1)(s+sk,2)

] (3.177)

where

a2
k =

Es

(
σ2

gk hk

)2

4Γk
=

1
4

N0σ2
gk

[
1+(1−µ2

k ) Γ̌k
]
> 0, (3.178)

with Γk given by (3.137), on page 88, the relation betweenΓk andΓ̌k described by (3.139), on

page 88, and

sk,1 =
2√

Esσ2
gk hk

· ξk

1−ξk
=

2ξ̌k√
Esσ2

hk
σ2

gk

· 1

1−µk ξ̌k

> 0, (3.179)

sk,2 =
2√

Esσ2
gk hk

· ξk

1+ξk
=

2ξ̌k√
Esσ2

hk
σ2

gk

· 1

1+ µk ξ̌k

> 0, (3.180)

with ξ̌k given by (3.160), on page 113, (for BPSK,gPSK = 1), and the relation betweenξk and

ξ̌k given by (3.159), on page 113.

Again, we consider separately three particular situations.
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3.11.1.1 The Case when Some Eigenvalues are Equal

Assuming that some of the eigen-branches may have identical parameters, the r.m.g.f. ofq

becomes

Fq(s) =
Nd

∏
k=1

1[−a2
k(s−sk,1)(s+sk,2)

]rk
, (3.181)

which we conveniently rewrite as

Fq(s) =
1
B

2Nd

∏
p=1

1
(s+σp)ρp

, (3.182)

where

B
4
=

Nd

∏
k=1

(−a2
k)

rk, (3.183)

σp
4
=





−sp,1 , ρp = rp, for p = 1 : Nd,

sp−Nd,2 , ρp = rp−Nd, for p = Nd +1 : 2Nd.
(3.184)

As in Section 3.10.2.2, we obtain, based on [65,§2.102, pp. 56–57], the following partial

fraction expansion:

Fq(s) =
1
B

2Nd

∑
p=1

ρp

∑
l=1

cp,l
1

(s+σp)
l , (3.185)

with

cp,l
4
=

B
(ρp− l)!

{
D

(ρp−l)
s

[
Fq(s) · (s+σp)

ρp
]}∣∣∣∣

s=−σp

,

= (−1)ρp−l ·∑
Ψ

2Nd

∏
j=1
j 6=p

δ j · 1
(
σ j −σp

)(ρ j+i j )
, (3.186)

whereΨ stands for the set of integers satisfying0≤ i1, . . . , ip−1, ip+1, . . . , i2Nd ≤ ρp− l and

i1 + . . .+ ip−1 + ip+1 + . . .+ i2Nd = ρp− l , andδ j =
(ρ j−1+i j

i j

)
.

The p.d.f. ofq, obtained as the inverse Laplace transform ofFq(s) from (3.185), is

pq(q) =
1
B

Nd

∑
k=1

rk

∑
l=1

[
− ck,l

(l −1)!
ql−1esk,1qu(−q)+

ck+Nd,l

(l −1)!
ql−1e−sk,2qu(q)

]
, (3.187)
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whereu(q) is the unit-step function, i.e.,u(q) = 0 for q < 0, andu(q) = 1 for q≥ 0. Since

Pe =
∫ 0
−∞ pq(q)dq, only the first term from the abovepq(q) expression affects thePe, which

then becomes

Pe =
1
B

Nd

∑
k=1

rk

∑
l=1

ck,l ·
[
− 1

sk,1

]l

=
1
B

Nd

∑
k=1

rk

∑
l=1

ck,l ·
[
−
√

Esσ2
gk hk

2
· 1−ξk

ξk

]l

(3.188)

=
1
B

Nd

∑
k=1

rk

∑
l=1

ck,l ·

−

√
Esσ2

hk
σ2

gk

ξ̌k

· 1−µk ξ̌k

2




l

. (3.189)

This novel formula is applicable for arbitrary channel gain correlations.

Consider againL = 3, with correlated channel gains, and the first row ofRh̃ given by

[1.0000 0.8739 0.6268] (this implies that all channel gains have unit variance; recall from

page 52 that we assume a Toeplitz structure forRh̃) so thatλ (Rh̃) = {2.5884, 0.3732, 0.0384}.
For this case, Figs. 3.18 and 3.19 describe the performance of approximate BF, MREC, and

MRC for SINC and MMSE PSAM, respectively, as evaluated from (3.189) and by simulation.

These figures indicate a good agreement between analysis and simulation results. They validate

our statement that approximate MRC and approximate full MREC coincide in terms of perfor-

mance — see Sections 3.9.3.1 and 3.9.3.2. Furthermore, Fig. 3.18 confirms that approximate-

MREC performance can degrade with increasing order: in this example, order-2 MREC outper-

forms full MREC (and thus approximate MRC), forγb < 8 dB. Actually, for this SNR range,

Fig. 3.13, on page 99, shows that order-2 approximate MREC has near-optimum performance,

i.e., the performance of exact full MREC (and thus exact MRC).

As inter-branch correlation changes — slowly, relative to fading, in typical scenarios [8,

130] — eigenvalues ofRh̃ can become nearly equal [128, Fig. 1] [130, Fig. 1]. This changes

the multiplicities within the spectrum ofRh̃, i.e., rk from (3.181). Then, the factorscp,l , p =

1 : Nd, need to be accordingly re-computed, with the cumbersome expression from (3.186).
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BPSK; L = 3; λ(R
h
) = [2.5884     0.37322    0.038403];Approx; f

m
 = 0.01, SINC: M

s
 = 7; T = 11.

simulation: MREC, N = 1 (BF)
analysis: MREC, N = 1 (BF)
simulation: MREC, N = 2
analysis: MREC, N = 2
simulation: full MREC, N = L = 3
analysis: full MREC, N = L = 3
simulation: MRC

Figure 3.18. AEP vs. SNR per bit, obtained analytically, from (3.189), and by simula-

tion, for BPSK transmitted symbols, for approximate BF, MREC, and MRC, with SINC

PSAM; L = 3 correlated branches are employed, withRh̃ spectrum given byλ (Rh̃) =

{2.5884, 0.3732, 0.0384}.
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simulation: MREC, N = 2
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analysis: full MREC, N = L = 3
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Figure 3.19. AEP vs. SNR per bit, obtained analytically, from (3.189), and by simula-

tion, for BPSK transmitted symbols, for approximate BF, MREC, and MRC, with MMSE

PSAM; L = 3 correlated branches are employed, withRh̃ spectrum given byλ (Rh̃) =

{2.5884, 0.3732, 0.0384}.
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3.11.1.2 The Case when All Eigenvalues are Equal

Proposition 2, on page 54, states that equal eigenvalues implies i.i.d. branches. That is, eigen-

branches coincide with branches. In this case we can drop the indexk becausek = Nd = 1

(r1 = N). Manipulating (3.188) and (3.189) using a version of (3.186) specialized to this case,

we obtain

Pe =
[

1
2

(1−ξ )
]N N−1

∑
n=0

(
N−1+n

n

)[
1
2

(1+ξ )
]n

=
[

1
2

(
1−µ ξ̌

)]N N−1

∑
n=0

(
N−1+n

n

)[
1
2

(
1+ µ ξ̌

)]n

. (3.190)

This can be shown to coincide with [30, Eqn. 59, p. 39]. Using [123, Appendix 5A, Eqns.

5A.4], (3.190) can be shown to be equivalent to [115, Appendix C, Eqn. C-18]. For p.k.c. gains

we haveµ = 1 and (3.190) reduces to the well-known result [115, Eqn. (14.4-15)].

3.11.1.3 The Case when All Eigenvalues are Distinct

In this caseNd = N, andrk = 1, ∀k = 1 : N, so that (3.188), (3.189) and (3.186) yield

Pe =
1
2

N

∑
k=1

Sk · (1−ξk) =
1
2

N

∑
k=1

Sk ·
(

1−µk ξ̌k

)
, (3.191)

where

Sk =
N

∏
j=1
j 6=k

1[
−a2

j (sk,1−sj,1)(sk,1 +sj,2)
] . (3.192)

Note that, forN = L, this result generalizes previous results from [89, p. 308] which were

obtained specifically for p.k.c. and MRC of correlated gains whose correlation matrix has only

distinct eigenvalues.

Eqn. (3.191) is similar to [48, Eqn. 16, p. 421] which was derived specifically for MREC

with unequal eigen-gain variances (eigenvalues), and ML estimation. Obviously, such ex-

pression fails to produce useful results when some eigenvalues can become nearly-equal —

see [125, Fig. 2] — making our AEP expression (3.189) strictly necessary.
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3.11.2 Approximate-MREC Analysis Results Specialized to Approximate

BF and MRC

For N = 1, approximate MREC reduces to approximate BF, by definition. Then, a new ap-

proximate-BF AEP expression is (3.190) forN = 1. That coincides with the exact-BF AEP

expression (3.176), on page 116. This confirms the equivalence between exact and approximate

BF, stated in Section 3.9.2 at page 105.

For SINC and MMSE PSAM, we proved in Sections 3.9.3.1 and 3.9.3.2, respectively, that

full approximate MREC and approximate MRC are performance-equivalent. Therefore, the

above approximate-MREC analysis results, forN = L, apply to approximate MRC. To the best

of our knowledge, Eqn. (3.188), on page 120, which we first derived in [125], is the most

encompassing AEP expression available for BPSK and approximate MRC of branches with

arbitrarily correlated Rayleigh fading channel gains.

Although in closed-form, the AEP expression from (3.188) has a tedious computer imple-

mentation, as opposed to the exact-MREC AEP expression we derived in (3.151), on page 109.

3.11.3 Approximate-MREC Analysis Results Specialized to Ideal MREC,

BF, and MRC

The approximate-MREC AEP expressions derived in Section 3.11.1, starting on page 118,

can be specialized to produce corresponding AEP expressions for ideal MREC, BF and MRC,

by simply substitutingµi = 1, andN = 1 or N = L, accordingly. The results coincide with

expressions derived earlier in this work specifically for those special cases.
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3.11.4 Novel Performance Measures for Approximate MRC

of I.I.D. Branches

As stated in Section 3.9.1, page 104, the KLT has no effect on i.i.d. branches. Gains and eigen-

gains, branches and eigenbranches, combining and eigen-combining then coincide. Further-

more, the factors which multiplỹgi , to produce the exact-MRC weights from (3.140), page 88,

are equal∀i = 1 : L. Since this common factor is real-valued and positive as well, exact MRC

reduces to approximate MRC, whoseith weight is simply given bỹgi — see (3.141), page 93.

Therefore, exact-MRC analysis results (i.e., AEP and OP expressions) obtained earlier for

MPSK and i.i.d. channel gains also characterize approximate MRC performance.

For MPSK transmitted signal and exact MRC, the symbol error probability conditioned on

the channel gain estimates can be written as (3.150)

Pe(γ) =
1
π

∫ M−1
M π

0
exp

{
−γ

gPSK

sin2φ

}
dφ , (3.193)

whereγ = ∑L
i=1γi , and the conditioned SNR for theith branch,γi , is given by (3.136), on

page 88. For i.i.d. branches the above applies for approximate MRC, and can be used to derive

average error probability or outage probability expressions as described next.

3.11.4.1 Approximate-MRC AEP For MPSK, I.I.D. Branches

The simple m.g.f.-based procedure described in Section 3.4.1.1, page 55, can now be employed

as in Section 3.10.1, page 107, to produce the following simple, finite-limit integral, AEP

expression for MPSK and exact MRC of i.i.d. branches

Pe =
1
π

∫ M−1
M π

0

(
1+Γ

gPSK

sin2φ

)−L

dφ , (3.194)

whereΓ 4
= Γ1 = Γ2 = . . . = ΓL > 0, andΓi is the average effective SNR per branch, defined

in (3.137), page 88. Since the branches are i.i.d., the above applies to approximate MRC as
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well. To the best of our knowledge, (3.194) is the simplest expression available for this case.

Note now that, unlike for correlated channel gains, the performance of MRC with (estimated)

i.i.d. channel gains, cannot degrade by increasing the number of branches, becauseΓ > 0.

Using [123, Appendix 5A, Eqn. 5A.4b] forM = 2, Eqn. (3.194) can be shown to reduce to

previous results for BPSK and approximate MRC of i.i.d. Rayleigh fading branches [30, Eqn.

59] [115, Appendix C, Eqn. C-18] [21, Eqn. 23]. However, it is not known whether the analysis

methods in [21,30,125] can be generalized for MPSK.

For MPSK modulation, the new approximate-MRC AEP expression (3.194) is much sim-

pler than the incomplete, non-closed-form, alternative [115, Appendix C, Eqn. C-16]. A

closed-form equivalent of (3.194) can be obtained as described for exact combining in Sec-

tion 3.10.2.1, page 112, by replacingN with L in Eqns. (3.154) – (3.157). For BPSK, this

reduces to (3.158), or equivalently, to (3.161), and also to the expression obtained specifically

for this case using approximate eigen-combining analysis, in (3.190), on page 123. Now note

the coincidence between (3.158), on page 113, and (3.190), on page 123, which are, respec-

tively, the exact- and approximate-MRC AEP expressions we derived for i.i.d. branches. This

confirms our earlier statement that exact and approximate MRC coincide for i.i.d. branches.

Figs. 3.20 and 3.21 display the average symbol error probability for MPSK withM =

2,4,8,16,64,256, approximate/exact MRC ofL = 5 i.i.d. branches, for SINC and MMSE

PSAM, respectively. Using the approximate relationship [115, Eqn. 5.2-62, p. 271] [123, Eqn.

8.7, p. 195] between the bit and symbol error probabilities, which is valid for Gray mapping at

large symbol SNR, along with (3.194), we plot the average bit error probability for MPSK and

approximate MRC of i.i.d. branches in Figs. 3.22 and 3.23.

For Rayleigh fading and p.k.c. it can be shown that BPSK and QPSK yield the same bit

error probability [115, p. 832]. Figs. 3.22 and 3.23 indicate that bit error performance for

BPSK and QPSK remains similar even for estimated channel gains estimation. Nevertheless,
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Figure 3.20. Average symbol error probability vs. SNR per bit, for approximate and exact

MRC of L = 5 i.i.d. branches and SINC PSAM.

smaller constellations will yield lower error floors.

3.11.4.2 Approximate-MRC Outage Probability Expression For MPSK, I.I.D. Branches

Since approximate MRC coincides with exact MRC for i.i.d. branches, we can use the p.d.f. of

the actual symbol detection SNR̃γ given by (3.162) on page 113, to derive its outage probabil-

ity, as given by (3.163), on page 113. To the best of our knowledge, this result is much simpler

and more accurate than previous results, e.g., the infinite-limit integral expression [95, Eqn.
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Figure 3.21. Average symbol error probability vs. SNR per bit, for approximate and exact

MRC of L = 5 i.i.d. branches and MMSE PSAM.
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Figure 3.22. Average bit error probability vs. SNR per bit, for approximate and exact MRC of

L = 5 i.i.d. branches and SINC PSAM.
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Figure 3.23. Average bit error probability vs. SNR per bit, for approximate and exact MRC of

L = 5 i.i.d. branches and MMSE PSAM.
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20], which is only an upper bound on the outage probability.

3.11.4.3 Comparison with Previous Work

We noticed intriguing similarities and differences between our exact-MRC-based analysis of

approximate MRC — described above — and previous results from [21] [95].

First, at the end of their approximate-MRC analysis for BPSK, the authors of [21] defined

the “effective SNR due to Gaussian errors” in [21, Eqn. 22], which then enters a closed-form

AEP expression [21, Eqn. 23]. We found that their “effective” SNR coincides with ourΓ,

defined in (3.137), which enters our simple, finite-limit integral, AEP expression from (3.194),

written for BPSK. Therefore, [21, Eqn. 23] is equivalent to our (3.190), and [30, Eqn. 59] [115,

Appendix C, Eqn. C-18].

Furthermore, a cumbersome relation between the channel gain and its estimate [21, Eqn.

8] — originally proposed in [58, Eqn. 16] — is actually equivalent to (3.124), on page 85.

However, [21] did not focus on the “effective” SNR conditioned on the channel gain estimates,

which we defined in (3.130), on page 86, and then used to obtain (3.194). Our approach

presented above is simpler and works for any MPSK constellation because the channel gain

estimation error — contained in vectore from (3.124), page 85 — is considered as noise in our

working signal model (3.125), page 85, unlike in [21].

In [95, Section IV.A], an approximate-MRC analysis approach for i.i.d. branches and MPSK

is presented. Relying on [58, Eqn. 16], this approach compounds the channel estimation errors

with the receiver noise and employs the “effective” SNR conditioned on the channel gain es-

timates for performance analysis based on the m.g.f. of this SNR. Nevertheless, only an upper

bound on the average symbol error probability is provided for MPSK, although exact bit error

probability expressions are also claimed possible, for BPSK and QPSK (with Gray mapping).

Note that results from [95] can be employed to extend our error and outage probability analysis
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Table 3.7. Numerical complexity (no. of complex multiplications/additions) forL branches

Combining method Interpolation method MRC order-N MREC

approximate SINC L(T +1) N(L+T +1)

MMSE L(LT +1) N(L+T +1)

exact SINC L(L+T +1) N(L+T +2)

MMSE L(LT +L+1) N(L+T +2)

for Ricean channel fading.

3.12 BF, MREC, and MRC — a Complexity Comparison

The numerical complexities of MRC and order-N MREC, in terms of the number of complex

multiplications/additions required per symbol for KLT, interpolation, and combining, were

determined as shown in Table 3.7. As SINC interpolation is data-independent, while MMSE

interpolation as well as channel gain correlation matrix eigen-decomposition depend only on

channel statistics, which change much more slowly than the fading, their computations are not

included [1,8,130].

The complexity expressions from Table 3.7 were evaluated forL = 5 andT = 11, and the

results are plotted in Fig. 3.24, allowing for the following complexity comparison of MREC,

MRC, and BF, for SINC/MMSE interpolation and approximate/exact combining:

i) MREC complexity is not higher with MMSE interpolation than with SINC interpolation,

since the eigengains can be estimated independently, as shown in (3.107), on page 82. On

the other hand, MRC complexity increases several-fold for MMSE interpolation com-

pared to SINC interpolation, because correlated branches are estimated independently

for SINC PSAM, as shown in (3.110), on page 83, but concurrently for MMSE PSAM,
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as shown in (3.113), on page 83.

ii) For the same reason as above, MREC complexity is not significantly larger with ex-

act combining compared to approximate combining. For MRC, the relative increase in

complexity for exact vs. approximate combining is larger when SINC interpolation is

employed.

iii) MREC complexity increases linearly with order, so that BF is the least complex.

iv) for MMSE PSAM, MRC is several times more complex than full MREC — due to the

way estimation takes place — although they are equivalent in performance. For SINC

PSAM and exact combining, MRC and full MREC have similar complexity, while for

approximate combining, MRC can be less complex than high-order MREC.
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additions) required per symbol for MRC, MREC, and BF, forL = 5, T = 11.
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Chapter 4

MREC Performance–Complexity Tradeoff for

Realistic Scenarios

4.1 Chapter Overview

In the previous chapter we provided symbol-detection performance comparisons between BF,

MRC, and MREC for artificially selected sets of inter-branch correlations. Furthermore, the

complexity comparison was limited since it did not relate to the channel conditions or perfor-

mance. In this chapter we make comparisons that are more representative of what happens

in actual practice. Using computer evaluations, we compare the performance and complex-

ity of these combiners for typical scenarios, for Laplacian power azimuth spectrum (p.a.s.)

with slowly varying log-normal distributed azimuth angle spread (AS). MREC performance–

complexity tradeoffs are found to provide high performance for significant computational sav-

ings. The next chapter will take our comparison to the more practical level of fixed-point

implementation.

135



4.2 Azimuth Angle Spread Model

4.2.1 Laplacian Power Azimuth Spectrum and Azimuth Angle Spread

In wireless communications, wave scattering [60,75,89,106,116,140] induces azimuthal angle

dispersion or spread, which has been thoroughly characterized in recognition of its important

effect on performance [2,8,53,56,98,106,108,109,131,145].

The channel’s spatial selectivity, i.e., the antenna decorrelation [101, 117, 118], is affected

by the power azimuth spectrum (p.a.s.), which can be defined as [8,108,109]

P(θ) =
∫

E

{
∑
p
|αp|2δ (θ −θp,τ− τp)

}
dτ, (4.1)

where the summation terms correspond to the multiple arriving signal paths, withαp, θp, andτp

being the complex-valued gain, angle of arrival (AoA), and time delay, respectively, for thepth

arriving path. The averaging is over the path gains, andδ (·) represents the Dirac delta function.

The angles are measured with respect to antenna broadside, i.e., the line perpendicular to the

line that connects the antenna elements, for a uniform linear array (ULA).

Let us consider a truncated Laplacian p.a.s., which is described by [118]

P(θ) =





1

1−exp
{
− π

σ/
√

2

} · 1
2·σ/

√
2
·exp

{
− |θ−θc|

σ/
√

2

}
, for θ ∈ [θc−π,θc +π]

0 , otherwise,

(4.2)

whereθc is the average AoA, whileσ approximates the p.a.s. root second central moment

[108], and is hereafter referred to asazimuth spread(AS) [8, 118]. The Laplacian p.a.s. ac-

curately models actual radio channel measurements for rural, sub/urban, and indoor scenar-

ios [2,8,108,109,131].

Mathematical operations similar to those shown in [117, Appendix] [118], lead to the fol-

lowing expressions for the real and imaginary parts of the(m,n)th element ofRh̃ for a ULA:

ℜ{(Rh̃)m,n} = J0(zm,n)+2
∞

∑
k=1

J2k(zm,n) · cos(2kθc)

1+
[
2kσ/

√
2
]2 (4.3)
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ℑ{(Rh̃)m,n} =
1+exp

{
− π

σ/
√

2

}

1−exp
{
− π

σ/
√

2

} ·2
∞

∑
k=0

J2k+1(zm,n) · sin[(2k+1)θc]

1+
[
(2k+1)σ/

√
2
]2 , (4.4)

whereJi(z) is theith-order Bessel function of the first kind [6,§9.1.21, p. 360], given by

Ji(x)
4
=

1
π

∫ π

0
cos(x sinθ − i θ)dθ , (4.5)

zm,n
4
= π (m− n) d

λc/2, d is the distance between adjacent sensors in the array, andλc is the

wavelength of the carrier signal; we will refer todn
4
= d

λc/2 as normalized inter-element distance.

Unless specified otherwise, numerical results shown in this work assumedn = 1 andθc = 0; the

latter yields real-valued inter-element correlation. Note that the above correlation expressions,

used for numerical results shown hereafter, yield unitary autocorrelations for the channel gains

as well as a Toeplitz structure forRh̃ for a ULA.

For numerical results shown hereafter the channel gain vector samples were generated as

in [106, Section 3.6], assuming separable temporal and spatial correlations [101, Section 2.2.2,

and Appendix A] [106, Section 3.6]. First, spatially independent and temporally correlated

Gaussian samples are produced using the procedure from [153], as described in Section 2.4.1,

page 16. The output vector is then left-multiplied by the square root of the correlation matrix

computed with (4.3) and (4.4), yielding the intended spatial and temporal statistics.

4.2.2 Azimuth Spread Effect on Antenna Correlation

Note that antenna correlation is a function of the p.a.s. type [117, 118], AS, normalized inter-

element distancedn = d
λc/2, and average AoAθc. The AS depends on the environment as well

as antenna array location and height [8,108,109,131], and varies more slowly than the channel

gains [8].

Consider a ULA withL = 5 elements and normalized inter-element distancedn = 1, i.e.,

the physical distance equals half the carrier wavelength. Then, forθc = 0◦, Fig. 4.1 shows the
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Figure 4.1. Correlation between adjacent ULA elements and the eigenvalues of theRh̃, for

dn = 1, θc = 0◦, and Laplacian power azimuth spectrum.

correlation,ρ , between any two adjacent antennas, computed with (4.3), and the eigenvalues,

λi , i = 1 : L, of the channel gain correlation matrix,Rh̃. On the horizontal axis we represented

AS.

Notice the AS impact on antenna correlation and thus on relative eigenvalue magnitudes.

For small AS, the received signals are highly correlated, and the received intended-signal en-

ergy, proportional to tr(Rh̃), is concentrated along the first few eigen-directions. Then, the
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channel is said to be spatially non-selective [101, Section 2.2.2, p. 37], and the available di-

versity gain is small [77]. When AS increases, antenna correlation decreases, and the energy

is distributed more uniformly along all eigen-directions. Then, the channel becomes spatially

more selective and higher diversity gain becomes available.

Let us now complete the discussion on the effects of the channel scattering and antenna

geometry on inter-element correlation. Fig. 4.2 shows faster correlation decrease with increas-

ing inter-element distance, for larger AS. For a compact antenna array withdn = 1, AS< 20◦

produces inter-element correlation greater than0.5, which is significantly high, i.e., it leads to

severe diversity gain reductions [63,123]. For AS< 10◦, correlation remains high even for nor-

malized distances as large asdn = 3. Fig. 4.3 indicates that the correlation coefficient tends to

increase with increasing mean-AoA. This was also observed for uniform p.a.s. in [101, Section

2.2.2] [117] and for Gaussian and Laplacian p.a.s. in [139].

4.2.3 Azimuth Spread Model for Typical Urban Scenario

It was found by measurement that the AS depends on the environment, antenna array location

and height, and is time-varying [8, 53, 56, 98, 108, 109, 131, 145]. Measurements for typical

suburban and urban scenarios [8] have shown that the base-station AS — measured in degrees

— can be well modeled as a random variable with log-normal distribution, i.e.,

AS = 10ε x+µ ; x∼N (0,1). (4.6)

This model was also proposed by the 3rd Generation Partnership Project (3GPP) [2] for channel

simulation purposes.

In this work we will present numerical results for the typical urban (TU) scenario measured

in [8] and described in Table 4.1, for whichε = 0.47, and µ = 0.74. Then, the AS takes

predominantly small-to-moderate values, e.g., Pr(1◦ < AS< 20◦)≈ 0.8 [2,8,106,108].
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Table 4.1. Typical urban (TU) scenario: Aarhus, Denmark [8]

buildings height/distribution 4−6 floors/uniform density

street layout irregular

line of sight not present

mobile station – base station distance0.2 to 1.1 km

antenna location/height above rooftop level/32m-high
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Table 4.2. Mobile, channel, and receiver (channel estimation) parameters

Parameter Value

Mobile Mobile speed v = 16.67m/s= 60km/h

BPSK transmitted symbol rate fs = 10ksps

Carrier frequency fc = 1.8 GHz

Pilot symbol period [39, Sect. III.C] Ms = 39

Channel Maximum Doppler frequency fD = 100Hz

Normalized maximum Doppler frequency fm = fD/ fs = 0.01

Channel coherence time [116, Eqn. 4.40.b]Tc≈ 1.8 ms

Channel coherence distance dc = vTc≈ 30mm

Receiver Interpolator size [39, Sect. III.D] T = 11

Mobile station displacement causes AS variations [8, 98, 109]. For TU scenarios, the ex-

pression for the spatial correlation of the AS was empirically determined as [8]

ρAS(d) = e−d/dAS, (4.7)

whered is the distance traveled by the mobile station, anddAS is the ASdecorrelation distance,

i.e., the distance over which the AS correlation decreases by a factor of two. ComparingdAS,

measured in [8] for the TU scenario atdAS = 50m, with the fading coherence distancedc,

computed for the typical system parameter values from Table 4.2 atdc≈ 0.03m, we conclude

that the AS variation is much slower (by 3 orders of magnitude) than the fading. The parameter

values from Table 4.2 have been employed for the numerical results shown throughout this

chapter.
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4.3 BF, MRC, and MREC Performance and

Complexity Comparison for Non-Random AS

Let us consider a SIMO communication system for which the transmitter, channel, antenna,

and receiver parameters take the values set above. Hereafter, for plotting numerical results we

employ the actual average SNR per symbol, defined in (2.79), on page 37. Since unit variance

channel gains are assumed, this SNR will actually stand forEs/N0.

Then, the top subplot in Fig. 4.4 shows again the correlation of channel gains at adjacent

antenna elements, and the eigenvalues ofRh̃, vs. the AS. The middle subplot shows the average

error probability (AEP) for exact MREC, computed using (3.151), on page 109, for BPSK,

Es/N0 = 5 dB, and MMSE PSAM. The lines indicating the worst and the best performance

correspond to BF and MRC, respectively.

As also noticed in previous work [36,42,47,77], BF performance degrades with increasing

AS, because it relies on branch coherence, as opposed to available diversity gain. On the other

hand, MRC employed at very low AS performs similarly to BF, for about16 times higher

complexity, as Table 3.7, on page 132, indicates.

For larger AS, Fig. 4.4 shows that MREC of order-2 or more, which exploits available di-

versity gain, can greatly outperform BF. Actually, for small-to-moderate AS, e.g.,1◦ < AS <

20◦, low-order MREC can perform as well as the much more complex MRC (performance-

equivalent to full MREC). For example, Fig. 4.4, along with Table 3.7 and Fig. 3.24 from Sec-

tion 3.12, on page 132, indicate that MRC-like performance can instead be attained with MREC

of appropriately-selected order, for the important complexity savings shown in Table 4.3.

Recall from Section 4.2.3, on page 139, that the AS takes predominantly small-to-moderate

values, e.g., Pr(1◦ < AS< 20◦)≈ 0.8 [8,108], for the TU scenario under consideration. Then,

Fig. 4.4 and Table 4.3 suggests that MREC with adaptive order selection can yield significant
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Table 4.3. Computational savings available with exact MREC vs. exact MRC.

Azimuth spread rangeMREC order Savings

AS∈ [0◦, 6◦) N = 2 88%

AS∈ [6◦, 12◦) N = 3 82%

AS∈ [12◦, 18◦) N = 4 76%

AS > 18◦ N = L = 5 70%

performance gains and complexity savings over BF and MRC, respectively.

4.4 Order Selection for MREC

4.4.1 Previous Criteria

Drawing on previous results on reduced-dimension eigen-combining [76,77], a possible crite-

rion for MREC adaptation is

min
N=1:L

E
{

Es · ‖ΠΠΠL−N h̃‖2 +‖ΠΠΠN ñ‖2
}

, (4.8)

where‖·‖ stands for Euclidian norm,ΠΠΠN
4
= EN EH

N is the orthogonal projection on the subspace

spanned by the columns ofEN, andΠΠΠL−N
4
= IL−ΠΠΠN. This criterion is equivalent to

min
N=1:L

[
Es ·

L

∑
i=N+1

λi +N0 ·N
]

(4.9)

and is better known as thebias–variance tradeoffcriterion [77] (BVTC) because (4.9) bal-

ances the loss incurred by removing the weakest(L−N) intended-signal contributions (the

first term) against the residual-noise contribution (the second term). Although applicable for

both approximate-MREC [77] and exact-MREC, the BVTC does not account for the actual

combining approach, Doppler rate, channel estimation method and its parameters (Ms, T).
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Furthermore, the BVTC requires knowledge of the smallest eigenvalues, which might not be

estimated accurately.

To ensure that the selected order depends on the estimation method and its parameters,

Dietrichet al. [47] applied the following MMSE criterion (MMSEC)

min
N=1:L

E
{
‖h̃−EN g‖2

}
(4.10)

for approximate-MREC order selection. However, the MMSEC does not necessarily minimize

the AEP for maximum-likelihood eigengain estimation [47, Section VI] or for SINC PSAM

[127, Fig. 4]. Furthermore, the MMSEC cannot reduce the problem dimension for MMSE

PSAM, regardless of antenna correlation, symbol SNR, or fading rate [127, Section V].

A common, important, BVTC and MMSEC drawback is disregard of the ensuing MREC

complexity and symbol-detection performance. These criteria can thus 1) waste processing

resources on inaccurately estimating insignificant eigengains and on high-dimensional com-

bining, or 2) ignore eigen-directions with needed performance-enhancing potential.

4.4.2 Proposed Performance–Complexity Tradeoff Criterion (PCTC)

For Rayleigh fading and MPSK, the exact-MREC AEP given by (3.151), on page 109, is a

non-increasing function of the MREC order,N. Further, sincesin2φ ≤ 1, Eqn. (3.151) implies

Pe,N ≤ Pe,N−1

1+ΓN ·sin2 π
M

, (4.11)

i.e., order-N MREC will guarantee an AEP decrease by the factor
[
1+ΓN ·sin2 π

M

]
over order-

(N−1) MREC. This decrease is larger for smaller signal constellation sizes as well as for

largerΓN. However, this improvement may not be worth the extra computational complexity

of estimating the additional eigengain. Therefore, we propose the following performance–

complexity tradeoff criterion (PCTC): use theNth eigenbranch only if it guarantees

Pe,N ≤ υ ·Pe,N−1, (4.12)
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whereυ ∈ (0,1) is a design parameter chosen based on eigengain estimation complexity and

receiver processing load. Asufficientcondition for (4.12) to hold is that

ΓN ≥ Γc
4
=

(
υ−1−1

)

sin2 π
M

, (4.13)

where Γc is the cutoff average effective SNR. (The derivation of thenecessarycondition

for (4.12) is not tractable). The PCTC selects as MREC order the largest value ofN for

which (4.13) holds. (Note that, unlike the BVTC-based approach, the PCTC may not require

knowledge of weak eigenvalues, whose estimates may be inaccurate.) When the channel con-

ditions are so poor thatΓ2 6≥ Γc, the receiver will deploy BF. Otherwise, higher-order MREC

is selected. For very good channel conditions, the MREC orderN output by our criterion may

approach or equalL. The above PCTC needs to be supplemented with a condition for switch-

ing from order-N MREC to MRC only if MREC complexity can become higher than MRC

complexity, which is not the case for numerical results shown next.

In Fig. 4.4, on page 144, the lower subplot shows the MREC order selected with the PCTC

for υ = 0.95, and with the BVTC. The corresponding AEP values for adapted MREC appear in

the middle subplot. For this choice ofυ , the proposed PCTC can outperform the BVTC, at the

price of higher complexity. The situation may reverse when complexity is more important, i.e.,

for smallerυ imposed in the PCTC. The effectiveness of the PCTC-based MREC is evident at

AS = 10◦, where MREC yields almost the same (lowest) AEP for3≤N≤ L = 5, butN = 3 is

selected, to minimize complexity. The BVTC selectsN = 2, even though the performance may

be unacceptable and sufficient processing resources may still be available. The SNR thresholds

for a PCTC-based MREC receiver can be adapted to the base station load, so that they increase

before the signal processing resources are exhausted, thus yielding higher user capacity and

graceful performance degradation.
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4.5 BF, MRC, and MREC Performance and

Complexity Comparison for Random AS

For the same settings as selected earlier in this chapter, and the TU scenario described in

Table 4.1, on page 140, we generated10,000independent log-normal AS samples using (4.6),

on page 139. The AS average and standard deviation were9.76◦ and 13.43◦, respectively.

The correlation matrixRh̃ and its eigenvalues were computed at every AS sample, and the

exact-MREC AEP was computed using (3.151), on page 109, for MMSE PSAM.

Then, Fig. 4.5 shows results after averaging over the AS samples. The upper subplot

indicates that PCTC-based MREC can significantly outperform BF, e.g., by almost5 dB at

AEP= 10−2, and more than7 dB at AEP≈ 10−3. The AEP plots for MREC of orderN = 3,4

are not shown because they almost overlap the full-MREC AEP plot. Note that higher MREC

order is selected with both BVTC and PCTC for increasing SNR.

Fig. 4.5, along with Table 3.7, on page 132, indicate that, for symbol-SNR in the range

[0 dB,10 dB], PCTC-based adaptive exact MREC achieves optimum performance (i.e., the

exact-MRC performance) for about80%−90%lower complexity than that of exact MRC.

Finally, Fig. 4.6 displays, in the top subplot, the AS for the considered TU scenario com-

puted using (4.6) and (4.7). The mobile station travels a125m distance in7.5s and transmits

75,000symbols. To emulate actual updating,Rh̃ and its eigenstructure are recalculated once

everydAS/20= 2.5 m (or 1500symbols). Over this distance there is small AS variation. For

the results shown in this chapter the slot length was selected asMs = 39, which, for fm = 0.01,

satisfies the condition from (2.76), on page 36. Referring back to Fig. 2.4 and our comments on

page 23, we learn that channel gain samples separated by39 symbols are nearly uncorrelated.

Therefore, within the frame of1500symbols there is a sufficient number of uncorrelated pilot

samples to allow for accurate eigen-structure estimation, e.g., as in [100,101].
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Bottom: average MREC order selected with discussed criteria. These results are averages over

10,000 independent samples of log-normal AS for the TU scenario under consideration.
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Fig. 4.6 shows in the middle subplot the BF, MRC, and adaptive MREC AEPs evaluated

using (3.151), on page 109, after each eigenstructure update. The bottom subplot shows the

MREC orders selected adaptively with the applicable criteria described in Section 4.4. Note

that adaptive, PCTC-based, MREC can lead to significant performance gain and complexity

reduction over BF and MRC, respectively.

Numerical results we present in [127], as well as later in Section 5.2.4, on page 179, indicate

that our PCTC from (4.13) is effective also for approximate-MREC adaptation. This is some-

what expected, since the performance gap between exact and approximate eigen-combining

can be fairly narrow — see our comments on Figs. 3.13 and 3.14 in Section 3.7.3.
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Chapter 5

FPGA-based Communications Receivers

5.0.1 Chapter Overview

In the previous chapters we have shown that enhanced, multi-branch, receivers can signifi-

cantly outperform the conventional, single-branch, receiver. However, the performance gains

obtainable with multi-branch receivers employing maximum average SNR beamforming (BF)

or maximal-ratio combining (MRC) vary with the channel gain correlations, although com-

putational complexity remains constant. Our preceding analysis and simulations suggest that

the complexity of maximal-ratio eigen-combining (MREC) can be effectively adjusted to these

variations, while achieving required performance.

Based on our work from [129], in this chapter we first overview the advantages of field-

program-mable gate arrays (FPGAs) over other processing devices, and describe an Alterar

FPGA-based design environment. Then, we present our FPGA-based implementations of con-

ventional and enhanced (BF, MRC, MREC) receiver algorithms. These designs are compared

in terms of error rate performance as well as chip resource usage and power consumption.

We will show that FPGA-based eigenmode-monitoring receivers can adapt to channel statis-

tics variations, for high-performing, efficient, inexpensive, smart antenna array embedded sys-

tems.
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5.1 Field-Programmable Gate Arrays (FPGAs)

5.1.1 FPGA vs. DSP and ASIC

Traditionally, SISO digital communications transceivers have been implemented on digital sig-

nal processors (DSPs) and application-specific integrated circuits (ASICs). Currently, wireless

communications systems are fast evolving towards highly complex, multi-branch transceivers

which will yield much higher data rates. These transceivers’ requirements for speed and flexi-

bility can surpass the capabilities of DSPs and ASICs.

Unlike general-purpose microprocessors employed in computers [86, Chapter 2], DSPs [86,

Chapter 3] comprise specialized hardware multiply-accumulate block(s), as well as memory

and bus structure that allow for efficient and frequent data access [13]. Customization of these

on-chip DSP resources is generally not possible.

Although DSPs can offer high computation precision and wide dynamic range through

floating-point number representation, data-buses are usually very wide relative to the actual

requirements. In practice, optimum representation-wordlength requirements vary [70], and are

usually much smaller than those offered by current DSPs. Furthermore, the fixed number of

available multiply-accumulate blocks can seriously limit the speed of DSP-based implementa-

tions of multi-branch communications algorithms, which are commonly highly parallelizable.

Finally, embedded memory can speed up processing but consumes power. Since for DSPs

the amount of on-chip storage space is fixed at fabrication, processing may be slowed due to

frequent external-memory access, or power may be consumed by unused on-chip memory [13].

On the other hand, ASICs yield fast and power-efficient implementations for a given task

because 1) parallelizable operations can be implemented for simultaneous execution on functio-

nally-parallel hardware blocks, and 2) the internal structure is designed to exactly suit require-

ments. In [111] the authors present the ASIC implementation of a4× 4 MIMO orthogonal
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frequency division multiplexing (OFDM) wireless local area network (WLAN) transceiver rel-

evant to the IEEE 802.11n standard, achieving data rates of192Mbps in a20-MHz channel,

i.e., 9.6bits/s/Hz spectral efficiency. This MIMO implementation was found to require6.5

times larger chip area over the SISO implementation. In [54], the ASIC implementation of an

OFDM smart antenna receiver is proved to compare favorably with its DSP counterpart.

However, implemented ASIC designs are inflexible [54] because they are hardwired for

specific tasks. More importantly, ASIC design and production are time-consuming and ex-

tremely expensive for chips not produced in very large numbers, due to very high non-recurring

engineering cost.

Field-programmable gate arrays (FPGAs) can offer ASIC-like speed (through hardware

parallelism) and DSP-like flexibility (through reprogrammability), as well as simple, model-

based, design flows [11, pp. 55 - 56] [17]. FPGAs can thus outpace DSPs (e.g., by an order

of magnitude in [72]), through parallel hardware execution, at a small fraction of the ASIC

design and implementation effort and cost. Therefore, FPGAs are drawing ever increasing in-

terest from designers of future-generation mobile and fixed wireless communications systems.

A flurry of reports on FPGA-based prototyping of enhanced communications transceivers

(MIMO, OFDM, ST coding, multiplexing, multi-user detection — MUD, WCDMA, etc.) and

of MIMO channel-measurement test-beds have appeared recently — see, for instance, the cur-

rent EURASIP “Journal on Applied Signal Processing” volume, and the upcoming “Special

Issue on Field-Programmable Gate Arrays in Embedded Systems”, of the “EURASIP Journal

on Embedded Systems”, to appear in the4th quarter of2006.

Unlike DSPs or ASICs, FPGA fabric can be reconfigured because its internal structure is

only partially fixed at fabrication, leaving to the application designer the wiring for the in-

tended task. FPGA designs can thus benefit from data-matching bus widths, optimum on-chip
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storage space and multiply-accumulate resources that can support extensive functional paral-

lelism [13]. Furthermore, FPGA reconfigurability and design flow simplicity [11, pp. 55 -

56] can significantly shorten design and production, and thus time-to-market. FPGAs tend to

be slower and to consume more power than ASICs [54]. Nevertheless, FPGA reconfigura-

bility can eliminate the risks of faulty design or fabrication risks. Furthermore, FPGA-based

implementations improve platform adaptability and thus longevity. In an era of fast-changing

wireless communications standards, applications, and markets, FPGAs can facilitate design

upgrades even for systems already in operation.

FPGAs are especially well-suited for embedded communications systems (e.g., cellular

system base station line cards, or mobile stations) because, beside a reconfigurable area of

logical elements (LEs), they can also incorporate large amounts of memory, high-speed DSP

blocks, clock-management circuitry, high-speed input/output (I/O), as well as support for ex-

ternal memory, high-speed networking, and communications bus standards [15]. For a small

share of the resources, soft processors (i.e., processors downloaded into the FPGA fabric) can

be included within the FPGA fabric as well [97].

Furthermore, once an FPGA design has been thoroughly tested it can be migrated into

equivalent structured-ASIC, e.g., the Alterar HardCopyTM devices [10], which can yield

higher speed for more than50% in power consumption reduction and up to90% in cost re-

duction, compared to FPGA counterparts [10, 41]. Note further that the powerful Quartus II

package is the only software tool required throughout the Alterar FPGA-based design and

migration to structured-ASIC.

As already mentioned, FPGA on-chip feature richness, as well as their reprogrammabil-

ity and simple design flow (which allows for rapid design-improving iterations) have already

established these devices as prime candidates for expeditious prototyping of advanced com-

munications signal processing algorithms. Their combination with DSPs and ASICs can also
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be advantageous. For example, in [67] FPGAs and DSPs implement the receiver in a Bell

Labs Layered Space-Time (BLAST) MIMO architecture for the Universal Mobile Telecom-

munications System (UMTS). Implemented in FPGAs were processing-intensive tasks, such

as channel estimation, finger assignment, and RAKE receiver, whereas DSPs were employed

for MIMO decoding. A DSP/FPGA architecture was also demonstrated in [66] for rapid proto-

typing of wideband code-division multiple access (WCDMA) downlink. Therein, FPGAs im-

plement the high-rate front-end. Channel estimation is shown to consume more than one fourth

of the FPGA resources. DSPs handle symbol-level processing, control operations, matrix in-

versions, and matrix-vector multiplications. Note that in [66] DSP-based channel estimation

proved too slow. A ten-fold speed-up from the FPGA led to adequate channel tracking.

Time-critical, highly-parallelizable applications which can benefit from FPGA implemen-

tations have recently been identified also in other areas such as image processing [72], speech

processing [144], and even in bio-informatics [97,143].

5.1.2 FPGA Power Usage Considerations

Competitive line-powered embedded systems demand low-cost power supplies and cooling

devices [121, 135]. Devices operating at high temperatures can become unreliable. Finally,

designs for portable products aim for the longest possible battery life, emphasizing power-

efficiency importance in embedded systems.

Although power-efficiency has continuously improved through FPGA evolution, these de-

vices are still important power consumers [82]. Consistently underutilized designs can only

exacerbate this situation [31,121,135,150].

Static, dynamic, and interface (I/O) power losses occur in FPGAs [31, 110, 121, 135, 150].

Hereafter we will neglect interface (I/O) power losses since they are relatively small [110].

Static (stand-by) power is consumed by the chip when no input signals are exercised [121].
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This loss occurs due to transistor leakage, which is frequency-independent, but highly depen-

dent on junction temperature and transistor size. Static power has been increasing (exponen-

tially, at processes below0.25 µm [135]) with each finer semiconductor technology to become

the dominant loss component in current chips. This is a concern for designers of portable

embedded systems which spend long intervals in stand-by mode [121].

Dynamic power, consumed in normal operation through charging and discharging of the

internal capacitive loads, is proportional to gate output load, square of the supply voltage, clock

frequency, and gate switching activity [31, 121, 135, 150]. Although the supply voltage has

decreased significantly in newer process technologies, high operating frequencies can still yield

significant dynamic power losses [121]. A tight power budget may thus limit clock speed [121].

FPGA chips are judiciously fabricated to minimize power losses [31,121,124,135]. Nonethe-

less, effective use of dedicated on-chip resources (e.g., DSP blocks, memory) increases speed,

and can reduce power consumption by up to45% [82]. Power-aware compilation, synthe-

sis, and fitting are also recommended to further reduce losses [82]. Intellectual Property (IP)

modules, which are generally parameterizable and optimized in terms of resource and power

consumption, are available from FPGA vendors and third-parties, for a wide range of applica-

tions: filtering, image encoding/decoding, modulation, encryption, error-correction, etc. [13].

Application design can also enhance power-efficiency. For example, dynamic power usage

can be reduced by turning off unnecessary chip sections using gated clocks [31, 51, 121, 124].

Since the clock signal network can account for up to40% of the dynamic power consump-

tion [51], due to fast switching and long paths [82], clock gating as close as possible to the

clock source can yield significant savings. Nevertheless, clock-gating can introduce or in-

crease clock-skew [32], which complicates clock-tree design [24]. Therefore, manual gating

needs to be done very carefully — see [14] for Alterar-recommended clock-gating procedures.

Research on clock-gating automation shows promising results [24,32].
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Apart from the obvious option of selecting the smallest FPGA which would fit the intended

design, static power consumption can also be reduced by adaptively redistributing temporally-

unused on-chip resources for other tasks, which would otherwise use other FPGAs, as shown

later in this chapter, in Sections 5.2.3 and 5.2.4.

5.1.3 FPGA-based Development System Description

The analysis in this chapter is based on the system shown in Fig. 5.1, which was provided

by CMC Microsystems (www.cmc.ca). The Alterar DSP Development Kit StratixTM Profes-

sional Edition [16], which comprises the StratixTM EP1S80 DSP development board, is built

around the StratixTM EP1S80B956C6 FPGA chip [15], and comes with the DSP Builder inter-

face [12] to the Quartus II design flow [14].

Quartus II provides a comprehensive design, synthesis, and analysis environment for system-

on-a-programmable-chip (SOPC) applications. DSP Builder helps create the hardware repre-

sentation of the required digital signal processing functions using the MATLABr and Simulinkr

user-friendly algorithm-development environments, for shorter design and implementation cy-

cles. MATLABr functions and native Simulinkr blocks can be combined with Alterar DSP

Builder library blocks (see Fig. 5.1), to create FPGA designs simulable under Simulinkr. For

automated design flow, the “Signal Compiler” block, which is at the core of DSP Builder, can

generate hardware description language (HDL) code as well as scripts for Quartus II-based

synthesis and fitting from within Simulinkr. Furthermore, the DSP Builder “Hardware-in-the-

loop” (HIL) block enables chip programming and hardware–software co-simulation.

For the designs described further below, we relied on Quartus II reports on resource usage,

e.g., the number of logic elements (LEs), chip pins, and dedicated DSP blocks. Static and dy-

namic power losses were estimated using the Quartus II PowerPlay Analyzer (dynamic power

was estimated for default toggle rates of12.5%).
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Figure 5.1. FPGA development system hardware and software.
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5.2 FPGA-based Receiver Implementations

Enhanced, i.e., multi-branch, receivers employing maximum average SNR beamforming (BF)

or maximal-ratio combining (MRC) can generate antenna and diversity gain, respectively,

which vary with the channel gain correlations. Such algorithms can however require much

larger computational volumes than the conventional, single-branch, receiver [129]. This trans-

lates into high on-chip resource requirements and thus power consumption, which also remain

constant although receiver performance changes with varying channel statistics [129]. Our pre-

ceding analysis and simulations suggest that the complexity of maximal-ratio eigen-combining

(MREC) can be effectively adjusted to these variations, while achieving required performance.

In the following, we describe conventional and enhanced (BF, MRC, MREC) receiver algo-

rithm implementations. The designs are compared in terms of average error rate performance

for BPSK transmission, as well as chip-resource usage and power consumption. We will show

that FPGA-based eigenmode-monitoring receivers can adapt to channel statistics variations,

for high-performing, inexpensive, smart antenna array embedded systems.

For the system shown in Fig. 5.1 we focus on FPGA-based receiver algorithm implemen-

tation, assuming availability of digitized received signals. The transmitted signal and chan-

nel/receiver impairments, i.e., noise and temporally- and spatially-correlated fading, are gener-

ated in MATLABr and Simulinkr. Various receiver algorithms were simulated as well as run

from the FPGA through DSP Builder HIL. Computer simulations and the corresponding hard-

ware/software HIL co-simulations were found to perform identically. Note that computations

done in MATLABr or with native Simulinkr blocks are very precise, due to floating-point

number representation. On the other hand, DSP Builder relies on fixed-point representation,

which can limit the dynamic range and can introduce quantization noise [70].

For the numerical results shown hereafter a Rayleigh fading channel is assumed that fol-

lows the well-established Jakes’ model [75] for temporal correlation — see Section 2.4.1, on
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page 16. The Doppler spread isfD = 100 Hz, and the transmission rate isfs = 10 kbps, so

that the normalized Doppler spread isfm = 0.01 Hz. PSAM with slot lengthMs = 7 (1 pilot

symbol followed by 6 information-encoding symbols) is combined with SINC interpolation

overT = 11 slots (T1 = T2 = 5), for channel estimation. The SINC interpolation coefficients

are computed as shown in Table 3.4, on page 84. The ULA withdn = 1 is assumed to provide

the received signals for the enhanced receivers.

5.2.1 Conventional, Single-Branch, vs.

Enhanced, Multi-Branch, MRC Receivers

In this section, a conventional single-branch receiver and an enhanced MRC receiver withL = 2

i.i.d. branches are considered. For BPSK, p.k.c., as well as i.k.c. for SINC PSAM, the AEP

is evaluated employing the simple, finite-limit integral, approximate-MRC AEP expression

from (3.194), on page 125. Then, for i.k.c., FPGA-based designs were simulated as well

as hardware–software co-simulated. For the latter, the receiver design is compiled and then

downloaded into the FPGA chip. Afterwards, received signals emulated using MATLABr are

processed online by the programmed FPGA. The channel gain estimation root mean square

error (RMSE) is determined from theory [127], simulations, and HIL implementations.

In terms of the representation precision within the FPGA, for the computer-simulated re-

ceived signal,̃y, two cases are evaluated in this section: 1) 8 bits for the integer part and 8 bits

for the fractional part — this case is denoted further with 8.8; 2) the 4.4 case. Note that for

signed representation the left-most bit indicates the sign of the number:0 indicates a positive,

1 indicates a negative.

BPSK modulation is done in the simulated transmitter so thatb in the signal models is

+1 when a0 information bit is transmitted, and−1 when a1 bit is transmitted. Thus, in the

receiver the detected bit is simply the sign bit of the test variable.
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For a conventional, single-branch receiver, with received signalỹ1 and channel gain esti-

mateg̃1, the detected symbol is the sign bit of

ℜ(g̃∗1 ỹ1). (5.1)

For dual-branch approximate MRC — see Section 3.7.2.1, on page 93 — the detected symbol

is the sign bit of

ℜ(g̃H ỹ) = ℜ(g̃∗1 ỹ1)+ℜ(g̃∗2 ỹ2). (5.2)

The Simulinkr/DSP Builder design which implements

ℜ(g̃∗1 ỹ1) = ℜ(g̃1)ℜ(ỹ1)+ℑ(g̃1)ℑ(ỹ1) (5.3)

for the 8.8 case is reproduced in the upper part of Fig. 5.2, along with the “SINC Interpolator”

block which outputsℜ(g̃1). The lower part of the figure details our “SINC Interpolator” design,

for detected symbol positionm = 1. (Symbols appear without the tilde due to Simulinkr

editing limitations).

The “Shift Taps” DSP Builder blocks shown at the top of the figure delay the received

signal by(T1 + 1) Ms = 42 samples, aligning it with the corresponding channel estimate.

The “Multiply Add” block then computesℜ(g̃∗1 ỹ1). A similar design was implemented for the

second branch of the MRC receiver.

Since the DSP Builder blocks “Sum of Products” in the “SINC Interpolator” design require

integer input and coefficients, binary shifting of the received signal and interpolator coefficients

is required. The “SINC Interpolator” “Shift Taps” block outputsℜ(r̃1) for the vector with

pilot samples̃r1 from (3.111), on page 83. The “Parallel Adder/Subtractor” outputsℜ(g̃1),

computed as in (3.110), on page 83. The latter is then used for combining, as shown in the

upper part of the figure.

Channel estimation can thus be very demanding resource-wise, especially for multi-branch

receivers. Based on (2.76), on page 36, channel fading withfm = 0.01allows for slot length as
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Figure 5.2. Simulinkr model detail with DSP Builder blocks implementing channel gain esti-

mation (through SINC interpolation) for MRC.
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large asMs≤ 50. However, this would mean that the “Sum of Product” and “Parallel Adder”

blocks of the “SINC Interpolator” design would have to be repeated 49 times, thus consuming a

large amount of FPGA resources. To reduce complexity, we traded off throughput by selecting

Ms = 7 for all designs presented hereafter.

The RMSE subplot in Fig. 5.3 indicates that for 4.4 and 8.8 fixed-point initial representation

of the received signal in FPGA, channel estimation accuracy does not visibly degrade compared

to floating-point (computer) computation. Nevertheless, the lower subplots show that fixed-

point computation with fixed-point narrow word (i.e., poor precision, narrow dynamic range)

can significantly degrade performance, an effect which cumulates with more branches.

Fig. 5.3 also indicates that the performance degradation (i.e., about3.4 dB) which occurs

for a conventional receiver due to i.k.c. can be successfully compensated for with an FPGA-

based dual-branch MRC, due to its diversity gain. Confidence intervals for all these results are

very tight, since10,000slots, i.e.,60,000data symbols, were detected.

For designs discussed hereafter we settled for the 8.8 representation case, since it was

found to offer a fair compromise between representation accuracy/dynamic range (i.e., receiver

performance) and FPGA resource utilization. Furthermore, DSP Builder was instructed to

allocate hardwired DSP circuitry embedded into the reconfigurable FPGA fabric, which yields

more efficient chip utilization [15,54].

Quartus II reports on FPGA resource (i.e., LEs, chip pins, and DSP blocks) usage, maxi-

mum allowable clock frequency, and dynamic power usage, as shown in Table 5.1. The esti-

mated static power loss is1.395W. Note that, for the performance advantage shown in Fig. 5.3

over the conventional receiver, denoted herein as MRC,L = 1, dual-branch MRC nearly dou-

bles resource requirements and dynamic power loss. Since the MRC performance gradient

diminishes with increasing number of branches [123], implementation/operational costs can

be minimized either with tightly-matched chips or through clock gating of excess resources.
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Table 5.1. Resource usage for 8.8 implementation of MRC, BF, and adaptive MREC

Method LEs Pins DSP Clock Dynamic

[out of 79,040] [692] [176] Frequency [MHz] Power [mW]

MRC 13,227 43 16 41.06 69.35

L = 1 16.73% 6.21% 9.09%

MRC 26,478 83 32 38.56 119.67

L = 2 33.49% 11.99% 18.18%

MRC 39,731 123 48 38.35 169.78

L = 3 50.27% 17.77% 27.27%

MRC 55,983 167 64 36.74 221.62

L = 4 70.83% 24.13% 36.36%

BF 13,457 259 48 40.57 74.95

L = 4 17.02% 37.43% 27.27%

BVTC MREC 13,458 262 48 41.15 74.95

L = 4, N = 1 17.02% 37.86% 27.27%

BVTC MREC 26,940 358 96 39.73 130.89

L = 4, N = 2 34.08% 51.73% 54.54%

BVTC MREC 40,423 454 144 39.09 186.64

L = 4, N = 3 51.14% 65.60% 81.81%

BVTC MREC 55,847 550 176 38.82 244.64

L = 4, N = 4 70.66% 79.48% 100%

EVTC MREC 13,561 424 48 41.09 75.67

L = 4, N = 1 17.16% 61.27% 27.27%

EVTC MREC 27,372 524 96 39.14 132.95

L = 4, N = 2 34.63% 75.72% 54.54%

EVTC MREC 40,983 624 144 35.43 189.23

L = 4, N = 3 51.85% 90.17% 81.81%

166



In the above MRC receiver design, channel gains on different branches were considered

statistically independent, for simplicity. As already mentioned, this is rarely the case in prac-

tice [8]. Although scattering is richer around the mobile than around the base station, mobile

antenna array size limitations can still lead to large inter-branch correlation, i.e., scarce diver-

sity gain availability. Then, adaptive MREC [127, 130] may provide more suitable tradeoffs

between performance and resource/power utilization, as shown next.

5.2.2 Enhanced, MREC, Receiver Design:

the Case of a Single User Processed per FPGA Chip

5.2.2.1 Adaptive BVTC-based MREC implementation

We extended the previously-discussed FPGA-based MRC receiver design to support L = 4

branches, and also designed the stand-alone BF receiver as well as the MREC receiver adapted

using the bias-variance tradeoff criterion (BVTC) described in Section 4.4.1, on page 145.

Implementation details for a BVTC MREC receiver are provided in Fig. 5.4. See Table 5.1 for

the resource and power usage report.

Note that the stand-alone BF implementation takes about as many resources as order-1

MREC takes in the BVTC MREC implementation since these two designs are almost identi-

cal. Furthermore, MRC can in principle be obtained from a MREC design by bypassing the

KLT. Thus, an MREC design can readily be reconfigured (even during operation, on-the-fly)

to implement BF or MRC instead.

For a more relevant resource/power usage and performance evaluation, we consider the

azimuth spread (AS) model and the typical urban scenario (from the base-station perspective)

discussed in Section 4.2, on page 136, and apply the conventional and enhanced receiver com-

bining algorithms (after estimating channel gains and eigengains as in Section 3.6, page 81)
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to detect the transmitted symbols. Using MATLABr scripts and functions as well as native

Simulinkr blocks, the actual log-normal distributed and temporally correlated AS sequence is

simulated for realistic Laplacian power azimuth spectrum (p.a.s.) and then employed to com-

pute the spatial correlation matrix and its eigen-decomposition — see Fig 5.4. The computed

correlation matrixRh̃ inputs a customized Simulinkr “Multipath Rayleigh Fading Channel”

block, to simulateL = 4 correlated branches.

In an actual embedded receiver, the channel correlation matrix and its eigenvalue decom-

position could be updated by a processor. For instance, Alterar claims that their Nios IIr soft

processor consumes only about5% of a large FPGA. Furthermore, third-party floating-point

libraries for this processor can yield the dynamic range and numerical precision required for ac-

curate eigen-decomposition. Recently, FPGA implementations of eigenvalue decompositions

have also been described [40] and even made available as IP cores [7].

5.2.2.2 Performance Comparison of Conventional and Enhanced Receivers

We selected a correlation update period (frame duration) of0.14s, which corresponds to a

distance of roughly2.3m traveled by the mobile. As discussed in Section 4.5, page 148, the AS

remains relatively constant over this interval [8], allowing for sufficient time and uncorrelated

samples for eigenstructure updating.

The top subplot in Fig. 5.5 depicts an AS sequence generated using the model described

in Section 4.2.3, page 139. The predominantly small-to-moderate AS values indicate that we

should often expect significant spatial correlation, i.e., small available diversity gain. Perfor-

mance enhancement can then arise from BF array gain. Occasionally however, the AS can also

become fairly large (see also the top-right subplot in Fig. 5.8, on page 177, for AS produced in

an independent trial), but then the available diversity gain cannot benefit BF performance. On

the other hand, significant diversity gain may be available too infrequently to justify permanent
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enhanced receivers (BF, MRC, and BVTC MREC).

use of an MRC receiver. As we shall see, an FPGA-based MREC receiver can provide, for a

channel with slowly-varying statistics, flexibility that yields affordable performance.

For an FPGA-based BVTC adaptive MREC receiver the unnecessary eigenbranch process-

ing modules (e.p.m.) can be virtually turned off using the clock gating technique discussed in

Section 5.1.2, page 156, to reduce dynamic power loss, while necessary eigenbranches can be

implemented to run in parallel, for high speed. Exempting weak eigenbranches can also bene-

fit performance (for approximate MREC and SINC PSAM — see Section 3.7.3, on page 97).
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Further, as mentioned earlier, a MREC implementation can easily be reduced to stand-alone

BF or MRC implementations, if required, either at system setup or during operation.

Unfortunately, clock gating is unavailable through DSP Builder, although possible from

Quartus II. Therefore, clock gating was only emulated in DSP Builder, for the BVTC MREC

implementation depicted in Fig. 5.4. First, non-adaptive MREC designs withN = 1 : 4 eigen-

branches were compiled to determine their resource usage (shown in Table 5.1, page 166).

Then, after each eigenstructure update during the BVTC MREC simulation, we stored the

MREC order output by the BVTC, and disconnected unused e.p.m. from the active structure.

Finally, average resource usage was computed.

The middle subplot in Fig. 5.5 displays the MREC order selected adaptively using the

BVTC. The lower subplot presents the AEP averaged over the AS trial for the conventional

and enhanced receivers. Notice that, forL = 4, MRC and BVTC adaptive MREC slightly

outperform BF, and greatly outperform the single-branch receiver.

5.2.2.3 Resource Requirements and Power Consumption Comparison of

Conventional and Enhanced Receivers

For the same typical urban scenario and system parameters, Fig. 5.6 shows resource usage, in

percentage points of the total available on the Alterar chip, and dynamic power consumption,

all averaged over 8 AS trials, for the conventional receiver, and the enhanced ones, i.e., BF,

MRC, and BVTC MREC, forL = 4 branches. In each trial, the AS samples have correlation

given by (4.7), on page 142, and the AS sequences are independent between trials.

Fig. 5.6 (upper-left subplot) indicates that BF occupies an equal share of FPGA program-

mable fabric (i.e., logical elements — LEs) as the conventional receiver, since eigen-decom-

position does not take place on the FPGA for our designs. For soft-processor-based eigen-

decomposition, BF (and MREC) would require as many chip pins as MRC (withL = 4), as
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8 trials with mutually independent azimuth spread sequences.
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shown in the upper-right subplot of Fig. 5.6.

Due to the required KLT, BF occupies3 times more DSP blocks than the conventional

receiver, yet since these on-chip resources are power-efficient, BF does not consume much

more power — see the bottom-right subplot in Fig. 5.6. On the other hand, resource and power

usage for MRC scale almost linearly with the number of branches.

BVTC adaptive MREC appears to provide more judicious resource usage. In average, it

takes about60%more LEs than BF, and about2.6 times fewer than MRC, and the same number

of chip pins (for eigen-decomposition executed on-chip). Due to the KLT, more DSP blocks

are needed than in stand-alone BF or MRC. BVTC MREC consumes about40%more dynamic

power than BF, but less than half as much as MRC.

5.2.2.4 Further Results and Discussion

Fig. 5.7 shows performance and total (dynamic + static) power used by a cellular operator’s

large network of base stations similar to the one described in [135], averaging again over the

8 independent AS trials mentioned above. The single-branch receiver consumes least yet per-

forms poorly. For performance similar to BF and BVTC MREC, MRC (withL = 4) doubles

dynamic power loss. BF and BVTC MREC appear to provide a better tradeoff. Recall however

that a compact ULA withdn = 1 is considered. For larger inter-element distances (feasible at

base stations), MREC with more than one eigenbranch can significantly outperform BF.

Note that the branch correlation can become large even at the mobile stations, due to limited

antenna spacing and AS [2]. Then, an FPGA-based BVTC MREC receiver employing clock

gating will achieve near-optimum performance, and longer battery life than with MRC.

From the base station perspective, Fig. 5.5 (middle subplot) indicates that, frequently, only

one or two, out of the four implemented, eigenbranches are actually employed for BVTC

MREC for that particular AS sequence, due to its small-to-moderate values. Similar results

173



MRC, 1 BF BVTC MREC MRC, 4
0

0.05

0.1

A
E

P

ULA: L = 4, d
n
 = 1; E

s
/N

0
 = 5 dB; f

m
 = 0.01; SINC PSAM: M

s
 = 7; T =11.

MRC, 1 BF BVTC MREC MRC, 4

800

820

840

860

880

900

920

T
ot

al
 P

ow
er

 C
on

su
m

pt
io

n 
[k

W
]

Static power loss = 781.2 kW.

Figure 5.7. AEP and total (static + dynamic) power consumption for BF, BVTC MREC, and

MRC, averaged over 8 independent azimuth spread trials.

174



were obtained in other trials for independent AS sequences. Then, large amounts of FPGA

resources go unused, saving dynamic power if clock gating is used, but still consuming signif-

icant amounts of static power, as indicated in Fig. 5.7.

Hence, adaptively allocating on-chip resources to process signals from several active users

may significantly increase base-station user processing capacity, or, equivalently, reduce the

required number of FPGA chips per base station, lowering both hardware cost and static power

losses. As shown earlier BVTC is appropriate for saving dynamic power (through clock gating)

when the FPGA resources are allocated to a single user. Since BVTC output only depends on

the statistics of channel and noise experienced by each of the users, and not resource availability

or ensuing MREC complexity, BVTC is not suitable when the same FPGA needs to be shared

between users. Possible paths towards such multi-user implementations are described next.

5.2.3 Enhanced, MREC Receiver Design:

Simple Procedure for Processing Multiple Users per FPGA Chip

Assume that signals received (independently, without interference) withL antennas fromNu

mobile stations need to be processed at a base station with onlyNe ¿ NuL available e.p.m.

Then, a control algorithm determines the dominantNe eigenmodes among all transmitting

mobiles, and allocates available resources accordingly. For instance, if a receiving antenna

array system withL = 4 elements has onlyNe = 3 available e.p.m. whileNu = 2, the available

resources are allocated as follows: if the 3 largest eigenvalues (out ofNuL = 8) are such that

two correspond to User 1, and one to User 2, then two e.p.m. are allocated to process the

received signal vector from User 1, and the other available e.p.m. is allocated to User 2. This

approach to selecting eigenbranches for MREC is hereafter denoted as theeigenvalue-based

tradeoff criterion(EVTC), and MREC adapted based on EVTC is referred to as EVTC MREC.
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EVTC-based adaptive MREC can provide more consistent use of the FPGA chip, com-

pared to BVTC MREC. We propose to efficiently exploit a total of 3 eigenbranch processing

modules, which fit into our FPGA, to process concurrently the signals received with L = 4

branches from two mobiles (without interference). Rather than permanently allotting chip pro-

cessing resources to a certain user (which may or may not need to use them, depending on

channel conditions), herein we will adaptively deploy these resources to simultaneously detect

the symbols transmitted from two mobiles.

Resource usage information for EVTC MREC whenN = 1 : 3 eigenbranches are selected

can be found in Table 5.1, on page 166. Note that the BVTC and EVTC MREC implemen-

tations differ significantly only in the required number of chip pins. The larger number of

pins required for EVTC MREC (to input the received signals from two mobiles, and — in our

implementation — the eigenvectors) limits to 3 the possible number of implemented eigen-

branches. LargerNe leads to unsuccessful compilation. Mutually independent AS sequences

for the signals arriving at the base station from the two mobile stations were simulated, as

shown in the top subplots of Fig. 5.8. The MREC orders selected with the EVTC for each of

the users are shown in the middle subplots. The lower subplots indicate that EVTC MREC can

perform remarkably close to the enhanced receivers discussed previously.

The upper-left subplot in Fig. 5.9 indicates that our FPGA would not fit concurrent four-

branch MRC implementations for the two users. On the other hand, the successfully-compiled

two-user EVTC MREC implementation withNe = 3 requires about half of the dynamic power

consumed by MRC, for similar performance. Furthermore, since EVTC MREC allows for

effective concurrent processing of two users on a single FPGA, it yields a two-fold reduction

in static power consumption or a doubling of the base station user processing capacity. Thus,

both implementation and operational costs can be drastically reduced with EVTC MREC.

Ideally, an FPGA-based embedded receiver would comprise 1) several FPGAs programmed
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conventional and enhanced receivers (approximate eigen-/combining); for EVTC MREC, the

two users continuously share the FPGA chip.
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tion for the conventional and enhanced receivers (approximate eigen-/combining); for EVTC
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for KLT, channel estimation, signal combining, and symbol detection, and 2) a device (DSP,

FPGA, soft-processor) monitoring each user’s channel conditions (i.e., eigenmodes) to adap-

tively allocate the minimum resource share that offers the required performance. At the begin-

ning of each frame, the monitoring device browses a user hierarchy and the information about

their channel conditions, and allocates the FPGA resources accordingly. Several users whose

respective received signals are highly correlated can share the e.p.m. on a single FPGA. If the

AS for one of these users later widens significantly (yielding more available diversity gain),

a larger share of the FPGA resources can be allocated accordingly, if better performance is

required. This yields an efficient, performance- and power-aware, antenna array receiver. Such

implementations could use MREC adaptation based on the performance–complexity tradeoff

criterion (PCTC) — see Section 4.4.2, on page 146 — as described next.

5.2.4 PCTC-based MREC receiver designs

5.2.4.1 PCTC-based MREC Receiver Designs for Continuously-Active Users

We assume again thatNe = 3 e.p.m. are available on a base-station FPGA chip, to process the

signals received with a ULA withL = 4 from Nu = 2 users.

Let us suppose that each active user is allotted one e.p.m. by default. The PCTC perfor-

mance improvement thresholds from (4.12), page 146, were selected asυ1 = 0.8 andυ2 = 0.7.

Based on (4.13), on page 147, these yield the corresponding cutoff average effective SNRs as

Γc,User 1≈−6 dB andΓc,User 2≈−3.7 dB. Then, at the beginning of each frame, the remaining

e.p.m. is allocated as indicated in Table 5.2. Thus, User 1 has higher priority than User 2 in

adding an e.p.m., and a lower cutoff SNR as well. Note that when applied for approximate-

MREC adaptation, the PCTC requires very careful selection of its cutoff SNR, since an extra

e.p.m may actually degrade performance, though not significantly — see discussion on page 97.

For the same scenario as for the results shown in Fig. 5.8 on page 177, but different AS trials

179



Table 5.2. Resource allocation procedure for PCTC MREC.

if Γ2,User 1≥ Γc,User 1

then allocate available e.p.m. to User 1

else ifΓ2,User 2≥ Γc,User 2

then allocate available e.p.m. to User 2

otherwise leave e.p.m. unallocated, to save dynamic power.

for the two users, Fig. 5.10 shows in the top subplot the AS sequences. The middle subplot

shows the orders selected with the PCTC-based procedure indicated in Table 5.2. The bottom

subplots show the average (over the AS trial, and thus also over the fading) AEP performance

for approximate eigen-/combining. A detail with the AS sequences and the corresponding

MREC orders selected for each user appears in Fig. 5.11. When the AS for both users was small

enough, the extra e.p.m. is not allocated, which can yield power savings in implementations

which also employ clock gating. On the other hand, User 2 is allocated 2 e.p.m. only when the

diversity gain is not available for User 1.

Higher priority for User 1 was effective: it yields BER1 = 0.0534vs. BER2 = 0.0623—

see the bottom subplots in Fig. 5.8 — even thoughE{AS1} ≈ 3.9◦ < E{AS2} ≈ 10◦. PCTC

MREC yields the same performance for User 1 as BVTC MREC. For User 2, BVTC MREC

outperforms PCTC MREC, due to wide AS and resource restrictioning in PCTC MREC.

These observations are supported by the resource-usage results from Fig. 5.12. For User 2,

the BVTC selects higher MREC order than PCTC, and thus BVTC MREC requires more re-

sources compared to PCTC MREC. For User 1, BVTC and PCTC have about the same resource

requirements (pins excepted). Finally, PCTC MREC halves the dynamic and static power con-

sumption as well, compared to MRC.
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Figure 5.10. Azimuth spread, PCTC MREC order, and corresponding AEP performance for

the conventional and enhanced receivers (approximate eigen-/combining); for PCTC MREC,

the two users continuously share the FPGA chip.
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Figure 5.12. Resource usage (in percentage of total available), and dynamic power consump-

tion, for the conventional and enhanced receivers (approximate eigen-/combining); for PCTC

MREC, the two users continuously share the FPGA chip.
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5.2.4.2 PCTC-based MREC Receiver Designs for Intermittently-Active Users

For the same settings as above but different AS sequences, shown in Fig. 5.13 (top subplot),

consider User 1 transmitting continuously (such as a voice user), while User 2 is only active

in the interval[3.5 s,10.5 s] (such as a data user). Note that User 2 could have transmission

durations as short as a frame. We employ the PCTC discussed in Section 4.4.2, page 146, to

distribute FPGA resources between users using the procedure from Table 5.2, on page 180.

If only User 1 is actively transmitting, we setυ1 = 0.95, i.e.,Γc,User 1= −12.8 dB, which

means that the control algorithm will readily allocate new resources. When User 2 becomes

active as well, we setυ2 = 0.7, i.e.,Γc,User 2=−3.7 dB, andυ1 = 0.8, i.e.,Γc,User 1=−6 dB.

The selected MREC orders are displayed in Fig. 5.13 (middle subplot). A detail of the AS

sequences and the PCTC orders is shown in Fig. 5.14. The average AEP is shown in Fig. 5.13

(bottom subplot) for this implementation of PCTC MREC, as well as for the conventional

receiver and other enhanced receivers presented earlier. Note that, althoughE{AS1} ≈ 4.9◦ <

E{AS2} ≈ 14.3◦, the average (over the AS trial) AEP performance is slightly better for User 1

than for User 2, i.e., BER1 = 0.0637and BER2 = 0.0702.

Figs. 5.13 and 5.15 indicate that, for User 1, BVTC MREC outperforms, and requires fewer

resources, than PCTC MREC, which is due to the fact that for approximate eigen-combining,

using more eigenbranches in low AS can actually yield poorer performance. Thus, a more con-

servative (i.e., lower)υ value would be advisable for User 1 when User 2 was not transmitting.

Fig. 5.15 also shows a much lower resource requirement for PCTC MREC for User 2

compared to User 1, which is expected since User 2 is active only half of the time.

In conclusion, although FPGA-based implementations of BF and MRC antenna array re-

ceivers outperform the single-branch receiver, the performance gain may not always justify the
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Figure 5.15. Resource usage (in percentage of total available), and dynamic power consump-

tion for the conventional and enhanced receivers (approximate eigen-/combining); for PCTC

MREC, the two users intermittently share the FPGA chip. User 2 enters the system at time

3.5 s, and exits at10.5 s.
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additional implementation and operational costs. Adaptive algorithms which track the slowly-

varying dominant channel eigenmodes can yield smarter, performance- and power-aware, an-

tenna arrays. A two-fold user-processing capacity increase, or power consumption decrease, is

possible, for a typical urban scenario. FPGAs can thus yield very efficient implementations of

adaptive receivers which are based on parallelizable algorithms, for 3G systems.
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Chapter 6

Eigen-/Combining for CDMA Systems

6.1 Chapter Overview

In this chapter we first introduce the code-division multiple access [140, 155] (CDMA) con-

cept and its application to multi-branch receivers. We then present the CDMA transmitted

signal model and despreading techniques for the received signal. A practical implementation

method for optimum combining is subsequently proposed and demonstrated. Finally, opti-

mum eigen-combining — which takes advantage of fading gain correlation to reduce problem

dimensionality — is described, along with its implementation.

6.2 Multi-Branch CDMA Receiver Background

CDMA uses codes to distinguish among transmitters within the same frequency band in or-

der to increase user capacity [140, 155]. This multiple access technique is employed in2nd

generation (2G) and3rd generation (3G) wireless communications systems [33,71,132,134].

The RAKE receiver [63, Chapter 13] [114] is readily applicable in CDMA systems sub-

jected to frequency selectivity [100]. Such a multi-branch receiver has been proposed for
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CDMA systems to yield a form of frequency diversity gain. Nevertheless, recent compre-

hensive measurement results described in [104] for macrocellular, microcellular, and indoor

wideband channels indicate that RAKE temporal taps can be highly correlated, thus drastically

limiting the potential diversity gain.

Over the past decade a significant effort has also been devoted to the evaluation of antenna-

array-based CDMA systems employing statistical beamforming or diversity combining or both

[33, Chapter 3] [35,36] [42,43,83] [100,101] [134, Chapter 3]. When the processing gain (PG)

is large and when the power control is accurate, CDMA interference can be approximated as

spatially white [101]. However, in 3G systems the processing gain is variable and can be low,

which yields non-white interference. Then, maximum average (over fading) signal-to-noise

ratio (SNR) beamforming has been shown to be outperformed by maximum average signal-

to-interference-plus-noise (SINR) beamforming [43]. The maximal-ratio combining (MRC)

CDMA antenna array receiver, which disregards the interference, is suboptimum as well [101].

On the other hand, optimum combining [123, Chapter 10] [148] limits the degrading effect of

interference-plus-noise and enhances the intended signal (to the extent allowed by the number

of receiver branches).

Naguib [100, 101] proposed a practical approach to optimum combining for CDMA sys-

tems with base-station antenna array [101, Section 3.2.2], and studied the effect of temporal and

spatial fading correlation caused, respectively, by user motion and azimuth spread (for uniform

power azimuth spectrum) [101, Chapter 4]. The interference-cancelation properties of antenna

array combining were shown to significantly improve the symbol-detection performance and

user capacity [101, Chapter 6] over the single-antenna receiver. On the other hand, in [141]

imposed power control accuracy restrictions for CDMA have been alleviated using directional

instead of omnidirectional antennas. Lower sensitivity to imperfect power control in CDMA

with base station antenna arrays is also demonstrated in [138], using a smart-antenna test-bed.
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Note, however, that besides the channel gain vector for the intended user, which is the

weight vector for MRC, optimum combining [123, Chapter 10] [148] also requires the inverse

of the interference-plus-noise correlation matrix [123, Section 10.1.1, p. 439]. This matrix

was computed in [100, 101] using the front-end (spread) received signal, which is generally

represented with low numerical precision [74,122]. Furthermore, the approach from [100,101]

depends on the chip-pulse waveform actually employed. Finally, estimation of channel gain

vector for the intended user and the corresponding inverse interference-plus-noise correlation

matrix can be computationally expensive in actual practice, when the channel gains are varying,

e.g., on the order of the square of the number of branches [101, Tables 4.3, 4.4].

In [43], maximum average SINR beamforming has been suboptimally implemented for the

CDMA uplink, by direct recursive updating of the combiner, for a computational load linear

in the number of antenna elements. The algorithm greatly outperforms the single-antenna re-

ceiver, and the antenna array receiver which assumes white interference. Nevertheless, this

approach was also designed for a specific, idealized, chip-pulse waveform, and has poor con-

vergence properties.

RAKE processing has already been integrated with optimum (average and instantaneous

— relative to the fading) array signal processing [43, 101], in order to take advantage of fre-

quency diversity gain as well as space diversity gain and array gain. Nevertheless, the signals

received at RAKE taps and antenna elements can be highly correlated [2,42,43,101,104,123].

Furthermore, normalized correlation values around+0.5 between delay spread and azimuth

spread have been measured [8, Table IV] (this correlation value was also proposed by the

3GPP for channel simulations [2]), which indicates that space and frequency diversity gains

are significantly correlated as well [8]. Thus, multi-branch CDMA signal processing algo-

rithms could benefit by adapting their complexity to actual channel statistics, through eigen-

combining [35,36,42,83].
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6.3 CDMA Transmitted Signal Model

Consider a generic asynchronous CDMA cellular system, with a base station antenna array

receiving signals fromNu mobiles from the same cell. Suppose that the baseband signal trans-

mitted by the intended mobile is

s(t) = b(t)c(t), (6.1)

whereb(t) = ∑+∞
−∞ b(k) ·Π(t − kTs) is the information-encoding signal, withb(k) i.i.d. equi-

probable BPSK symbols (±1), modulating the rectangular symbol-pulse waveformΠ(t) of

durationTs [19, Section 2.5.1, p. 21]. (BPSK symbols are, for example, transmitted in the

uplink of the UMTS Frequency Division Duplex (FDD) [5]. Nevertheless, the following re-

sults are readily extendable to MPSK constellations.) Further,c(t) = ∑+∞
−∞ c(n) · p(t−nTc) is

a user-specific spreading signal made of i.i.d. equiprobable BPSK chips,c(n), modulating the

chip-pulse waveform,p(t), of durationTc.

The processing (or spreading) gain of the system is defined as PG
∆= Ts/Tc, and represents

the factor by which the bandwidth of the information-bearing signalb(t) is enlarged, or spread,

using the chip signal,c(t). It also represents the factor by which the intended signal is boosted

relative to the interferers by despreading, at the receiver. The energy transmitted per symbol,

Es, and the energy transmitted per chip,Ec, are related throughEs = PG·Ec.

We make the common “narrowband system” assumption [100] [106, p. 35] that the signal

propagation time between antennas is equivalent to a phase shift. This holds approximately

when the carrier frequency is much larger than the bandwidth of the transmitted signal,s(t).
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6.4 CDMA Received-Signal Despreading Methods

Despreading the received CDMA signal to the original, i.e., data, bandwidth has traditionally

been done using the code-filtering approach [100, 101] described below. More recently, a de-

spreading method useful in the computation of the interference-plus-noise correlation matrix,

and entitled signal-cancelation despreading, was proposed in [93], and is described further

below.

6.4.1 Code-Filtering Despreading

After the receiver filter matched to the transmitted chip-pulse waveform, and synchronized on

the intended transmitter, the signal vector sampled at thel th chip, l = 1 : PG, within a symbol

b, can be written as

ỹ(l) =
√

Ec bh̃ c(l)+ ũ(l), (6.2)

whereh̃ is theL-dimensional Rayleigh fading channel gain vector corresponding to the in-

tended user, assumed to remain constant over several symbols [100] [101, Section 3.2.2].

Above,ũ(l) is the interference-plus-noise signal vector, given by

ũ(l) =
Nu

∑
m=1

√
Ec bmh̃m cm(l)+ ñ(l), (6.3)

wherebm, h̃m, andcm(l) represent the transmitted symbol, channel gain vector, and chip se-

quence, respectively, for themth interfering mobile, and̃n(l) is the receiver noise vector, which

is assumed to be zero-mean, complex Gaussian, temporally and spatially white. The channel

gains, transmitted symbols and chips are assumed mutually uncorrelated between different

mobiles.

Hereafter, the term “short-term averaging” will stand for temporal averaging over the longest

period wherein the channel gains can be assumed constant. In terms of ensemble averaging,
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we assume that this operation is equivalent to averaging over the noise, chips, and symbols.

“Long-term averaging” will stand for averaging over the longest period in which the channel

fading statistics remain constant. In terms of ensemble averaging, we assume that this opera-

tion is equivalent to averaging over noise, chips, symbols, and the channel fading gains.

For the traditionalcode-filteringdespreading approach [100, 101],ỹ(l) given by (6.2) is

correlated with the intended mobile’s spreading sequence, as follows

ỹ =
PG

∑
l=1

c(l) ỹ(l) =
√

Ecbh̃
PG

∑
l=1

c(l)2
︸︷︷︸

=1

+
PG

∑
l=1

c(l) ũ(l)

= PG
√

Ecbh̃+ ũcf =
√

PG
√

Esbh̃+ ũcf, (6.4)

where the interference-plus-noise term is

ũcf
4
=

PG

∑
l=1

c(l) ũ(l). (6.5)

Note that the correlation matrix of this vector depends on the chip-pulse waveform actually

used [93,100,101].

6.4.2 Signal-Cancelation Despreading

Despreading the received signal for the intended user using the chip sequence obtained from

the original one as follows [93, Eqn. 7]

d(l) = (−1)l−1c(l), l = 1 : PG, (6.6)

yields the despread signal

z̃ =
PG

∑
l=1

d(l) ỹ(l)

=
√

Ec b h̃
PG

∑
l=1

(−1)l−1c(l)2

︸ ︷︷ ︸
=0, for even PG

+
PG

∑
l=1

d(l) ũ(l). (6.7)
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Note the null contribution of the intended signal toz̃, justifying the title ofsignal-cancelation

despreading for this method [93].

Interestingly, it can readily be shown that the statistics of the signal-cancelation despread-

ing outputz̃ from (6.7) coincide with those of the code-filtering interference-plus-noise,ũcf

from (6.5), i.e.,E{ũcf ũcf}= Rz̃ [93]. Then, (6.4) yields

Rỹ = PG·Es ·E{h̃ h̃H}+Rz̃, (6.8)

where averaging is over the noise, chips, symbols, and, can be over the channel gains as well.

6.5 Optimum Eigen-/Combining

6.5.1 Optimum Beamforming

For the code-filtering signal model from (6.4), the maximum average SINR beamformer [43,

Section III.A] is the vector̃w ∈ CL which maximizes

SINR(w̃)
4
=

PG·Es · w̃HRh̃w̃

w̃HE{ũcf ũcf}w̃
, (6.9)

i.e.,

arg max
w̃∈CL

w̃HRh̃w̃

w̃HRz̃w̃
, or

w̃H
(
Rỹ−Rz̃

)
w̃

w̃HRz̃w̃
, or

w̃HRỹw̃

w̃HRz̃w̃
. (6.10)

Since the interference-plus-noise correlation matrixRz̃ is a positive definite matrix, there

exists a positive definite matrixR1/2
z̃ such thatRz̃ = R1/2

z̃ R1/2
z̃ , which is called the square-root

decomposition ofRz̃ [94, ¶9.12.3(2), p. 155] [64,¶. 11.2-4, p. 395] [101]. The optimum

beamformer from (6.10) is then given by

w̃BF = R−1/2
z̃ d

(
R−1/2

z̃ (Rỹ−Rz̃)R
−1/2
z̃

)
= R−1/2

z̃ d
(

R−1/2
z̃ RỹR−1/2

z̃

)
, (6.11)

whered(·) represents the dominant eigenvector of the enclosed matrix.
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For spatially-white interference this reduces tod
(
Rỹ

)
, which actually coincides withd

(
Rh̃

)

— see Section 3.5.2.1, on page 71, where maximum average SNR beamforming is discussed.

For nonfading channel,d
(
Rh̃

)
∝ h̃, and maximum SNR beamforming actually reduces to

maximal-ratio combining (MRC) — see Section 3.5.1.1, on page 61.

In order to solve the above problem in practice,R−1/2
z̃ can be updated directly from sam-

ples of z̃ using the square-root updating algorithm described in [100, Table 1, p. 1517], with

complexity orderO(L2). The required dominant eigenvector can be computed using thePower

Method [64] [101, Section 4.1.1], of complexity orderO(L2). A direct, but approximate, re-

cursion for the optimum beamformer [43, Eqn. 28, p. 812] reduces complexity toO(L). Since

the execution of these matrix and vector operations can be distributed over a long period (i.e.,

the period in which the channel statistics remain relatively constant), they do not represent a

considerable computational burden [1,35,36].

6.5.2 Optimum Combining

For the despread signal model from (6.4), maximizing the SINR defined as in (6.9), now with-

out averaging over the fading, yields the optimum combiner

w̃ = [E{ũcf ũcf}]−1 h̃ = [E{z̃z̃}]−1 h̃, (6.12)

and then the BPSK symbol can be detected asb̂ = sign{ℜ
[
w̃H ỹ

]}.
Recursive estimation of the short-termR−1

z̃ from samples of̃z can use the approach de-

scribed in [100, 101], i.e., updateR−1/2
z̃ and then computeR−1

z̃ = R−1/2
z̃ R−1/2

z̃ . On the other

hand, exploiting the short-term version of (6.8) yieldsh̃ h̃H ∝ Rỹ−Rz̃. Hence,h̃, required

for (6.12), is the dominant eigenvector ofd
(
Rỹ−Rz̃

)
, which is computable using thePower

Method [64] [101, Section 4.1.1], of complexity orderO(L2).
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Fig. 6.1 describes CDMA optimum combining, which requires channel-rate and symbol-

rate operations involvingL-dimensional vectors andL×L matrices. Hence, the data rate and

the numberL of receiver branches are limited by the complexity involved by the computation

of the combiner from (6.12). Described further below is an eigen-combining approach that can

reduce the channel-rate and symbol-rate processing volume and can improve performance [36].

Note that the proposed combining method makes no direct use of the spread (pre-correlation)

received signal vector. This is important since its numerical representation precision is usually

very limited [74,122]. Further benefits of signal-cancelation despreading are described next.

6.5.3 Numerical Results for Nonfading Scenario

As in [126], a simplified scenario with zero azimuth spread is considered, i.e., with fully cor-

related channel gain vector components (which differ only by a deterministic phase, related to

the corresponding AoA) for each user [99]. The terms “combining” and “beamforming” are

then interchangeable. Assuming no temporal fading as well, the required correlation matrices

were computed using their theoretical expressions given by [126, Eqns. 3 – 7]

Rỹ = PGEsh̃ h̃H+ ξ
Nu

∑
m=1

Esh̃mh̃H
m +ζ N0 I , (6.13)

Rz̃ = ξ
Nu

∑
m=1

Esh̃mh̃H
m +ζ N0 I , (6.14)

whereξ andζ depend on the chip-pulse waveform. Note thatRz̃ coincides with theRỹ compo-

nent corresponding to the interference-plus-noise, regardless of the chip-pulse waveform. On

the other hand, the required dominant eigenvectors were estimated using the Power Method.

For the numerical results presented next we also assume rectangular chip-pulse waveform

andPG= 128. The intended signal arrives with power0dB from AoA 0◦ (i.e., antenna broad-

side), while interfering signals arrive from up to8 users, with power10dB from AoAs±5◦,

±15◦,±25◦,±35◦.
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Fig. 6.2 shows poor performance for the beamforming (combining) approach proposed by

Naguib in [100,101] — which computes the optimum beamformer (combiner) using the spread

signal and the code-filtering output — compared to theoretical maximum SINR beamforming,

and even the suboptimum maximum-SNR beamforming (which assumes white interference).

The degradation is due to the fact that Naguib’s approach [100,101] assumes an idealized band-

limited chip-pulse waveform, and is suboptimum otherwise. Our method using the signal-

cancelation and code-filtering despread signals yields SINR very close to that of theoretical

maximum SINR beamforming, because it is independent of the chip-pulse waveform.

Fig. 6.3 shows that the beamforming approach proposed by Choiet al. in [43], which also

uses the spread signal and the code-filtering output, yields much slower convergence to the

optimum beamformer than our approach. Furthermore, the number of PM iterations required

for convergence in Choi’s method increases significantly when strong interferers are added to

the system, while for our approach this number remains almost constant. The improvement

is due to the fact that our proposal computes the dominant eigenvector for a near-unitary-rank

matrix, while Choi’s method [43] employs a higher-rank matrix with more interferers.

These results indicate that, even when the degrading effect of poor quantization precision

for the front-end, i.e., spread, signal is not included, the proposed signal-cancelation-based

approaches are more accurate and faster-converging than previous proposals [43,101].

6.5.4 Optimum Eigen-Combining

The long-termR−1/2
z̃ can also be updated recursively by applying the square-root updating

algorithm from [100, 101]. Then, the interference-plus-noise component of the code-filtering

signal described by (6.4) can be whitened in long-term as follows

ỹw
4
= R−1/2

z̃ ỹ =
√

PG·√Es b R−1/2
z̃ h̃+R−1/2

z̃ ũcf

=
√

PG·√Es b h̃w + ũw, (6.15)
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whereh̃w
4
= R−1/2

z̃ h̃, and ũw
4
= R−1/2

z̃ ũcf has long-term-uncorrelated, unit-variance compo-

nents, so that

Rỹw

4
= E{ỹw ỹH

w}= R−1/2
z̃ RỹR−1/2

z̃ = PG·Es ·Rh̃w
+ IL. (6.16)

Employing the same matrixR−1/2
z̃ as above to multiply the signal-cancelation outputz̃

from (6.7) yields

z̃w
4
= R−1/2

z̃ z̃, (6.17)

with long-term-uncorrelated, unit-variance components.

The KLT of the signal from (6.15), using theN dominant eigenvectors from the eigen-

decompositionRh̃w
= EL ΛΛΛL EH

L , produces

yw,N
4
= EH

N ỹw =
√

PG
√

Es b hw,N +uw,N, (6.18)

wherehw,N
4
= EH

N h̃w anduw,N
4
= EH

N ũw. Define further

zw,N
4
= EH

N z̃w. (6.19)

Since the correlation matrices ofũcf andz̃ coincide, so do those ofuw,N andzw,N.

The above procedure can be streamlined as follows. Using temporally-uncorrelated sam-

ples ofỹ andz̃, the long-termRỹ andR−1/2
z̃ can be updated. Then, the eigen-decomposition of

Rỹw
= R−1/2

z̃ RỹR−1/2
z̃ providesEN, which is then used at each symbol, for dimension reduc-

tion, as follows:

yw,N
4
= EH

N R−1/2
z̃ ỹ, (6.20)

zw,N
4
= EH

N R−1/2
z̃ z̃. (6.21)

The (short-term) optimum combiner for the signal vector described by (6.18) or (6.20) is

wN =
[
E{zw,N zH

w,N}
]−1

hw,N, (6.22)
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and the detected BPSK symbol isb̂N = sign{ℜ
[
wH

N yw,N
]}.

In practice, the inverse short-term correlation matrix from (6.22) can be estimated from

samples ofzw,N given by (6.21), using the square-root updating algorithm from [100, Table 1,

p. 1517]. On the other hand, exploiting (6.20) for short-term averaging yields

Ryw,N = PG·Es ·hw,N hH
w,N +Rzw,N . (6.23)

Hence, theN-dimensional vectorhw,N required for combining isd
(
Ryw,N −Rzw,N

)
.

A diagram of the described eigen-combining method for a CDMA system is presented in

Fig. 6.4. Note that most channel-rate and symbol-rate processing now involvesN×N matri-

ces andN-dimensional vectors. Only the KLT from (6.20) and (6.21) requires symbol-rate

multiplication of a long-termN×L matrix with anL-dimensional vector. Since the long-term

correlation matrices are changing very slowly compared to the short-term ones, and since in

practice it is expected thatN¿ L [35,36], eigen-combining is expected to significantly reduce

complexity over combining. Furthermore, eigen-combining without the weak eigen-modes

can lead to significant performance improvements for CDMA [35, 36]. The eigen-combining

approach described above also avoids direct use of the spread signal vector, thus promising

improved performance, independently of the chip-pulse-waveform independence, as well as

faster convergence.
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Chapter 7

Summary, Conclusions, and Future Work

Below, we provide an account of the results of this work and then outline a few envisioned

further research directions.

7.1 Summary and Conclusions

Chapter 2 provides the background information on the conventional SISO wireless communi-

cations system, wherein receiver noise, channel fading, and estimation inaccuracy can yield

very poor performance.

The first part of Chapter 3 shows that SIMO systems employing statistical beamforming

(BF) and maximal-ratio combining (MRC) can significantly improve symbol-detection perfor-

mance, due to array and diversity gains. Chapter 3 introduces the concept of maximal-ratio

eigen-combining (MREC). The derivation of symbol-detection performance measures is de-

scribed for MREC with perfectly known channels. Since MREC is a superset of BF and MRC,

MREC performance measures apply to BF and MRC, as special cases. Optimum and subop-

timum approaches are described for the case of imperfectly known channels. A finite-limit-

integral — i.e., non-closed-form — yet easily computable and analytically more convenient,

average error probability (AEP) expression is derived for optimum (exact) MREC, while a
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more involved closed-form AEP expression is derived for suboptimum (approximate) MREC.

These expressions are proven applicable for BF and MRC as special cases, and they serve to

evaluate the relative performance of these receivers. Finally, a numerical complexity compari-

son of exact and approximate BF, MRC, and MREC is provided.

In Chapter 4, a realistic spatial channel correlation model is described, relying on the Lapla-

cian power azimuth spectrum with random, log-normally-distributed azimuth angle spread, for

typical urban scenarios. The adaptation of MREC to actual channel statistics, performance

requirements, and complexity load is investigated. Smarter antenna arrays employing MREC

promise performance enhancements and complexity reductions over BF and MRC for typical

cellular scenarios with varying azimuth angle spreads. Gains of almost5 dB at AEP= 10−2,

and more than7 dB at AEP= 10−3 are found possible with MREC over BF with a uni-

form linear array with5 elements, and half-wavelength inter-element distance. Furthermore,

for symbol-SNR in the[0 dB,10 dB] range, the proposed performance-complexity-tradeoff-

criterion-based adaptive exact MREC achieves optimum performance (i.e., the exact-MRC

performance) with about80%−90%lower complexity than that of exact MRC.

Chapter 5 describes actual fixed-point implementations of SISO and SIMO (BF, MRC, and

MREC) baseband receivers on a field-programmable gate array (FPGA). These devices have

been chosen due to their great potential for hardware parallelism, which perfectly suits the

requirements of current- and future-generation communications signal processing. Their re-

programmability represents a significant advantage for fast prototyping of new algorithms, as

well as for keeping up with standard, application, and market changes, even after system de-

ployment. FPGA-based implementations of smarter, MREC-based, antenna arrays are found to

achieve near-optimum performance while doubling user processing capacity, or, equivalently,

halving resource and power consumption requirements, compared to MRC.
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In Chapter 6 beamforming, combining, and eigen-combining are considered for code-

division multiple access (CDMA) systems. We describe the traditional code-filtering signal de-

spreading approach as well as a newer approach referred to as signal-cancelation despreading.

The latter is found instrumental in computing accurately the interference-plus-noise correlation

matrix for any chip-pulse waveform. We propose the joint exploitation of these despreading

methods for optimum combining at CDMA antenna arrays, and demonstrate beamforming per-

formance improvements. In order to further improve performance and reduce complexity, an

approach to optimum eigen-combining for smarter CDMA antenna arrays is described.

7.2 Related Future Research Directions

Although extensive comparisons of BF, MRC, and MREC in terms of symbol-detection per-

formance, algorithm complexity, as well as resource and power consumption for realistic sce-

narios — based on analysis, simulations, and actual fixed-point implementations — have been

provided in this thesis, investigation of eigen-combining for a wider range of channel models

at the base station and the mobile station, for fixed and mobile wireless communications is

needed. Furthermore, fixed-point implementation which incorporates the eigen-decomposition

required for eigen-combining is necessary for more definitive conclusions on real-world appli-

cability.

The application of eigen-combining for CDMA systems is also of interest, as its applica-

tion across antennas and RAKE taps, employing the signal-cancelation despreading technique,

promises to yield truly cost-efficient multi-branch receivers achieving near-optimum perfor-

mance.

Eigen-combining for MIMO systems is of great interest. Work is required on the adap-

tive joint receiver-transmitter selection of the most appropriate eigen-combining orders which
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would provide the intended performance for the lowest cost in terms of transceiver resource

and power consumption, while simultaneously adapting the modulation to the channel condi-

tion and user requirements.
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Appendix A

Implementation of Exact MRC

Assuming that̃h andg̃ are zero-mean, jointly-Gaussian, the channel gain vectorh̃ conditioned

on its estimatẽg is Gaussian with mean and correlation given by [81, Appendix 15B, p. 562]

m̃
4
= E{h̃|g̃}= E{h̃ g̃H} [

E{g̃g̃H}]−1
g̃, (A.1)

Rẽ
4
= E{(h̃− m̃)(h̃− m̃)H |g̃}= Rh̃−E{h̃ g̃H} [

E{g̃g̃H}]−1
E{g̃h̃H}. (A.2)

We can then write the channel gain vector, conditioned on its estimate, as

h̃ = m̃+ ẽ, with ẽ∼Nc(0,Rẽ) , (A.3)

so that the received signal vector from (3.1), on page 51, can be rewritten as

ỹ =
√

Esbm̃+ ν̃νν ∼Nc(
√

Esbm̃,Rν̃νν), (A.4)

where

ν̃νν 4
=
√

Esbẽ+ ñ, (A.5)

and

Rν̃νν
4
= E{ν̃νν ν̃ννH}= Es|b|2Rẽ+N0 IL. (A.6)
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The signal model in (A.4) conveniently compounds receiver noise and channel estimation

error into the vector̃ννν . The corresponding optimum combiner is

w̃ = R−1
ν̃νν m̃, (A.7)

which yields maximum SNR, given by

γ̃ = Esm̃H R−1
ν̃νν m̃. (A.8)
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Appendix B

Correlation Matrices Required for MRC

In this appendix we provide expressions for correlation matrices required in the implementation

and performance analysis of approximate and exact MRC — see Section 3.8.1, on page 101,

Section 3.8.2, on page 104, and Appendix A.

B.1 Correlations Required for Approximate MRC

The test-variable-based performance analysis method described in Section 3.4.1.2, on page 57,

requires for approximate MRC the matrices expressed below for SINC and MMSE PSAM.

B.1.1 The Case of SINC PSAM Channel Estimation

Based on details from Section 3.6.2, on page 83, for SINC PSAM, the following hold:

• (
Rg̃(ms)

)
i, j

4
= E{g̃i(0,ms) g̃∗j (0,ms)}= ṽ(ms)T

{(
Rh̃

)
i, j

Q+ N0
Ep |bp|2 IT

}
ṽ(ms), with the

real-valued SINC interpolation vector̃v(ms) given in Table 3.4, on page 84, and the

T×T real-valued matrixQ defined in (3.118), on page 84.

• (
Rg̃ỹ(ms)

)
i, j

4
= E{g̃i(0,ms) ỹ∗j (0,ms)}=

√
Esb∗ · (Rh̃

)
i, j

ṽ(ms)T q(ms),
(
Rỹ g̃(ms)

)
i, j

4
= E{ỹi(0,ms) g̃∗j (0,ms)}=

√
Esb· (Rh̃

)
i, j

ṽ(ms)T q(ms),
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with the T-dimensional, real-valued vectorq(ms) defined in (3.120) at page 85. Thus,

Rg̃ỹ(ms)
4
= E{g̃(0,ms) ỹH(0,ms)}=

√
Esb∗Rh̃ ṽ(ms)T q(ms),

Rỹ g̃(ms)
4
= E{ỹ(0,ms) g̃H(0,ms)}=

√
EsbRh̃ ṽ(ms)T q(ms).

• (
Rỹ

)
i, j

4
= E{ỹi ỹ∗j} = Es|b|2

(
Rh̃

)
i, j

+ N0, i.e., Rỹ = Es|b|2Rh̃ + N0, which, evidently,

does not depend on estimation.

B.1.2 The Case of MMSE PSAM Channel Estimation

MMSE PSAM branch estimation is described in Section 3.6.2, on page 83. Using (3.116)–

(3.120) from page 84, we get the channel gain vector estimate asg̃(0,ms) = G̃H
opt(ms) ỹp =

RH
ỹp h̃

(ms)R−1
ỹp

ỹp, which requires the following correlation matrices:

• Rỹp
andRỹp h̃(ms), expressed in (3.117) and (3.119), respectively, at page 85.

• RH
ỹp h̃

(ms) =
√

Epb∗p
[
qT(ms)⊗Rh̃

]
, obtained from (3.119) using a Kronecker product

property [94, Section 2.4,§10.a, p. 19].

MMSE-PSAM-based approximate-MRC analysis requires the following correlation matrices:

• Rg̃(ms)
4
= E{g̃(0,ms) g̃H(0,ms)}= RH

ỹp h̃
(ms)R−1

ỹp
Rỹp h̃(ms).

• Rg̃ỹ(ms)
4
= E{g̃(0,ms) ỹH(0,ms)}=

√
Esb∗Rg̃h̃(ms) =

√
Esb∗ G̃H

opt(ms)Rỹp h̃(ms) =

=
√

Esb∗RH
ỹp h̃

(ms)R−1
ỹp

Rỹp h̃(ms) =
√

Esb∗Rg̃(ms).

• it follows that for MMSE PSAMRg̃(ms) = Rg̃h̃(ms), which is a well-known property of

MMSE estimates, also known as the orthogonality principle [81, p. 386] [102, p. 177].
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B.2 Correlations Required for Exact MRC

As shown in Appendix A, implementation of exact MRC requires the calculation of the opti-

mum combiner given bỹw(0,ms) = R−1
ν̃νν (ms)m̃(0,ms). From (A.1), we have

m̃(0,ms) = Rh̃ g̃(ms)R−1
g̃ (ms) g̃(0,ms), (B.1)

and from (A.2) and (A.6) we have

Rν̃νν(ms) = Es|b|2
[
Rh̃−Rh̃ g̃(ms)R−1

g̃ (ms)Rg̃h̃(ms)
]
+N0 IL. (B.2)

The test-variable-based performance analysis method described in Section 3.4.1.2, starting

on page 57, requires for exact MRC the matricesRm̃(ms), Rm̃ ỹ(ms), Rỹ m̃(ms), which can be

expressed as follows:

• Rm̃(ms) = Rh̃ g̃(ms)R−1
g̃ (ms)Rg̃h̃(ms)

• Rm̃ ỹ(ms) = Rh̃ g̃(ms)R−1
g̃ (ms)Rg̃ỹ(ms)

• Rỹ m̃(ms) = RH
m̃ ỹ(ms) = Rỹ g̃(ms)R−1

g̃ (ms)Rg̃h̃(ms).

For SINC PSAM,Rg̃(ms) andRg̃ỹ(ms) have been expressed in Section B.1.1. Then, the

remaining correlations needed in (B.1) and (B.2) are given byRh̃ g̃(ms) = Rg̃ỹ(ms)/(
√

Esb)

andRg̃h̃(ms) = RH
h̃ g̃

(ms).

For MMSE PSAM we have from Section B.1.2 thatRg̃(ms) = Rg̃h̃(ms) = Rh̃ g̃(ms), which

reduces (B.1) tõm(0,ms) = g̃(0,ms), and (B.2) toRν̃νν(ms) = Es|b|2
[
Rh̃−Rg̃(ms)

]
+ N0 IL,

with Rg̃(ms) expressed in Section B.1.2. Furthermore,Rm̃(ms)= Rg̃(ms), Rm̃ ỹ(ms)= Rg̃ỹ(ms),

andRỹ m̃(ms) = RH
m̃ ỹ(ms) = Rỹ g̃(ms), with Rg̃ỹ(ms) also expressed in Section B.1.2.
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