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AbstractA novel application of a noniterative spherical subspace method to a beamformingnetwork in a CDMA cellular communication system is introduced. This algorithmreduces the computational expense as compared to both batch and iterative weight-vector-update methods based on batch processing pre- and post-correlation covariancematrices.A constraint for applying the spherical subspace methods as a Noniterative Rank-1 Signal Subspace eigenstructure Update (NR1SSU) algorithm for tracking the arrayresponse of a desired mobile's transmitting signals received at the base station in aCDMA communication system has also been analytically derived. It has also beenshown analytically that such an algorithm can be applied to a CDMA beamformingnetworks with both zero time delay spread (at fading or frequency non-selective)and non-zero time delay spread (frequency selective) fading propagation models.To evaluate the NR1SSU algorithm, a generic CDMA system model has beenused. In addition, di�erent receiver structures are examined including beamform-ing, beamsteered-RAKE and diversity combining in both frequency-non-selective andfrequency-selective fading channels. In particular, a PN chip-level IS-95 CDMA refer-ence model [8] has also been used to evaluate the noniterative subspace beamformingalgorithm via simulations in a at fading channel.Simulation results show that the NR1SSU algorithm accurately tracks the ar-ray response vector as long as the processing power gain is larger than the totalinterference-plus-noise power of the despread signal.
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Chapter 1IntroductionThe information era has introduced the urgent need for a communication systemwhich can provide exible and high quality service in the form of a personal commu-nication system capable of carrying voice, data and video signals. In recent years, thegrowth of mobile phone subscribers has demonstrated the potential market demandfor the future. However, due to limited spectrum availability for cellular communica-tions, technology improvements and breakthroughs are the keys to provide the futurecapacity which can handle the potentially signi�cant number of simultaneous userswithin a cell. There are a number of proposals for increasing cell capacity, such asreducing the cell size (pico or micro cells), reducing the frequency reuse factor to 4instead of 7, using time division multiple access (TDMA) instead of the analog ad-vanced mobile phone service (AMPS), using code division multiple access (CDMA)technology to simultaneously share the available radio spectrum with other users,using diversity combiners, using antenna array beamformers, and so on. Physicalcommunication channels pose fundamental limitations on the radio link for mobilecommunications due to fading, shadowing, the near-far e�ect, and other factors.In order to cope with the ever-increasing number of subscribers per cell and �nitefrequency spectrum resources, the application of Direct Sequence Multiple Access(DSMA)/Code Division Multiple Access (CDMA) into a cellular system has attractedmany researchers, especially throughout North America. DS/CDMA e�ciently usesthe available spectrum by allowing multiple subscribers to simultaneously access the1



network. Since the frequency spectral band that is available for the wireless cellularcommunication systems is limited, using a code division multiple access (CDMA)system can e�ciently utilize the available bandwidth.This thesis has investigated a numerically stable and e�cient digital signal pro-cessing solution using a digital beamforming technique in a CDMA cellular communi-cations system for the reverse link. The goal is to increase the cell capacity and reducethe number of base station required by exploiting both space and time diversity atthe receiver.1.1 MotivationWith current technology, it is now possible to economically implement very sophisti-cated and computationally intensive digital signal processing algorithms for practicalcellular communications operations. In addition, comprehensive investigations havebeen conducted on the integration of a \smart" antenna array into the base sta-tion for optimal directional receiving and transmitting in order to further increasecell capacity. These \smart" array signal processing techniques extract informationfrom the output of the antenna array and track the energy sources as they move inspace. To further increase cell capacity, it has been demonstrated that adaptive orself-adjusted antenna array beamformers hold great potential for improving SINR andhence achieving higher cell capacities [25] [27] [26] [9] [39]. In addition, a modi�edcode �ltering algorithm which increases the processing gain has been introduced forapplication in the North American standard IS-95 CDMA system [9].With computationally e�cient and noniterative eigendecomposition subspace meth-ods [6] [46] and a CDMA system which extracts the desired signal power from thenoise-like interfering signals, we are motivated to investigate the novel application ofa noniterative subspace eigendecomposition method to a CDMA system.2



1.2 Summary of ContributionsThe goal of this research is to reduce the amount of computation required and increasestability in order to realize a future real time CDMA cellular system which suppressesinterference signals by using digital adaptive beamforming at the base-station antennaarray. Only the uplink, i.e. reverse link, of a cellular CDMA system is consideredsince it presents the most di�cult challenge in a CDMA cellular system due to itsasynchronous access, near/far e�ect and the limited power that can be generated bya mobile.In summary, the contributions of this thesis are as follows:� A noniterative subspace spherical tracking algorithm to the base-station an-tenna array of a CDMA cellular communications system was applied in orderto reduce computation and enable real-time operation. In particular, a nar-rowband IS-95 and a generic CDMA system model were used to evaluate theperformance of such algorithm.� The application constraints of using a subspace tracking method under a zerotime delay spread (at fading) and non-zero time delay spread (frequency se-lective) fading propagation models were derived.� The array response estimate NR1SSU tracking was evaluated (through the DOArepresentation for easy visualization) for the weight vectors updating at the rateof one IS-95 frame with the rank-one update of the FWFPC vectors in an IS-95CDMA system and at the rate of one information bit with the rank-one updateof the PN chip post-correlation vectors in a generic CDMA system.� The performance of using a beamforming only receiver to a beamsteered-RAKEreceiver structure under a frequency selective fading propagation model wascompared.� The performance of using a beamforming receiver to a diversity combiner undera at fading propagation model was compared.3



� Implementing a beamformer at each diversity branch to further increase thesignal-to-interference-plus-noise ratio was proposed.1.3 Thesis OrganizationThis chapter introduces the motivation behind this thesis and summarizes the overallcontributions made. Chapter 2 reviews the fundamentals for array signal processingtechniques and, in particular, digital beamforming techniques. Chapter 3 reviews thebackground of cellular communication systems and the current application of CDMAtechnology to cellular communications using beamformers and beamsteered-RAKEreceiver structures. Chapter 4 introduces the novel application of a noniterativesubspace tracking method with analytical derivations of the constraints involved withapplying such a subspace method in a CDMA communication system. Chapter 5presents simulation results for the application of a NR1SSU algorithm under both IS-95 and a generic CDMA system with either at fading or frequency selective fadingpropagation models. Chapter 6 concludes this thesis and presents future directionsfor research.
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Chapter 2Antenna Arrays and DigitalBeamforming2.1 IntroductionThis chapter reviews and explores conventional antenna array processing conceptsand delay-and-sum adaptive beamforming techniques. Section 2.2 introduces antennaarray processing concepts, and the spatial �ltering capability of an antenna array ispresented in Section 2.3. Di�erent performance criteria for estimating statisticallyoptimum beamforming weight vectors are reviewed in Section 2.4. It is interestingthat all of the criteria considered here converge toward the same steady-state Wienersolution, within a constant scalar factor. Finally, conventional adaptive beamformingalgorithms are reviewed in Section 2.5.2.2 Antenna ArraysSensor arrays have been in use for several decades in many practical signal processingapplications such as radar, sonar, communications, imaging, geophysical exploration,astrophysical exploration, biomedical, etc. Antenna arrays o�er two basic improve-ments over the signal processing capabilities of a single antenna. First, an arraypermits some bearing-resolving capability whereas a single sensor cannot. Second, it5
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Figure 2.1: A beamformer which combines antenna outputs after a delay and scaleweighting has been applied.increases the signal-to-interference-noise ratio (SINR) when the weighting of delaysat the antenna array match the actual delays of the desired signal as received at eachantenna element. This results in coherent combining of the components of the desiredsignal. Antenna arrays used in conjunction with appropriate array signal processingtechniques o�er the possibility of overcoming the sensitivity and beamwidth limita-tions of a single antenna as well as allowing modi�cation of the array beam shape.This can enhance the reception or transmission of a desired signal by suppressinginterfering signals or spatial �ltering.In recent years, adaptive signal processing at the antenna array in cellular com-munication systems for optimal directional transmission and reception in order toimprove SINR has attracted much research interest [20] [27] [26] [24] [33]. Figure 2.1shows a general complex-weighted M-element antenna array which produces a singleoutput [23] [17],y(t) = wyx(t) = MXm=1w�mxm(t) = MXm=1 rmxm(t� �̂m) (2.1)where y(t) is the weighted antenna array complex-valued scalar output at time t, w =[w1; w2; :::; wM]T is the M� 1 complex weight vector, x(t) = [x1(t); x2; (t); :::; xM(t)]Tis the M� 1 antenna array received signal output vector at time t, rm is the ampli-tude weighting of the complex weight applied to the mth antenna element output, and�̂m is the corresponding time delay. The amplitude weighting vector [r1; r2; :::; rM]T6



is sometimes called the array's shading or taper [23]. Array signal processing algo-rithms which focus on the array's signal-capturing abilities in a particular directionare termed beamforming. Therefore, Figure 2.1 also represents a beamformer.2.2.1 Antenna Array Signal ModelIn order to introduce a signal model, a simple scenario is considered where only aRF signal of an ith mobile, si(t), is transmitting and impinging the antenna arrayas narrowband plane-waves1. The superposition principle of plane-waves traveling inspace can then be applied to this plane-waves model for receiving multiple signals.A signal is considered to be narrowband when the band of frequencies occupied bythe received signals is small relative to the carrier frequency fc [29]. The narrowbandassumption can also be applied to wideband signals, as in the case of CDMA, providedthat the propagation time across the array is small compared to the inverse bandwidthof the signal and that the frequency response of each antenna element is approximatelyat over the signal bandwidth [24].From the above assumptions and the fact that the output of a bandpass system is abandpass signal [29], the signal vector received at the antenna array of the transmittedsignal si(t) can be expressed asr(t) = si(t) � h(� ; t) + n(t)= Re24 JiXk=1 %i;k(t)e�j!c�ikai;k(�)ui(t� �ik)ej!ct35+ n(t)= Re24 JiXk=1 %i;k(t)e�j!c�ikai;k(t)ui(t� �ik)ej!ct35+ n(t) (2.2)where [29] h(� ; t) = JiXk=1 %k(t)e�j!c�ik�[t� �ik] (2.3)1Since an electromagnetic wave propagates spherically in space, the plane-wave assumption isvalid for the far-�eld signal. However, for a near-�eld signal, a spherical wave impinges on theantenna array. The plane-wave assumption can be relaxed at the expense of complicating the arrayresponse model, in which for near-�eld signals and a 2-D array, the azimuth and range of the signalhave to be considered. 7



is the time-variant channel impulse response with the total number of the resolvablemultipaths, Ji, received from the ith transmitted mobile (Ji = 1 represents a atfading channel and Ji > 1 represents a frequency-selective fading channel) [29] [43],%i;k(t) is the time-varying channel amplitude gain of the ith mobile's kth multipath,�ik is the channel time delay of the kth multipath of the ith transmitting mobile,si(t) = Re[ui(t)ej!ct] is the transmitted RF signal with carrier frequency !c, ui(t)is the transmitted baseband signal of the ith transmitting mobile, n(t) 2 N (0; �2I)is the noise vector received at the antenna array, �[t] is the impulse function, andai;k(�) = ai;k(t) is the array response vector corresponding to the ith mobile's kthreceived multipath (which will be de�ned in Section 2.2.2). Details of the multipathpropagation channel modeling will be reviewed in Chapter 3.2.2.2 Array Response VectorAn array response vector [23] [24] of a signal impinging on an array at broadsidetime-varying direction-of-arrival (DOA), �(t) = �, and having a carrier frequency!c = 2�fc can be expressed asa(t) = a(�) = [G1(!c; �;
1)e�j!c�1(�;
2); :::; GM(!c; �;
M)e�j!c�M(�;
M)]T (2.4)where � denotes the set of variables that the array response vector depends on (theset of variables of � are the angle of DOA �, the carrier frequency !c, each antennaelement's mutual coupling resistance 
m, time t, and etc.), Gm(!c; �;
m) is the mthantenna's amplitude response, and �m(�;
m) = �m is the mth element's time delayresponse [17] [37]. Note that the angle � are measured with respect to the normal ofan antenna array which is called the broadside DOA.In order to present the DOA tracking results in Chapter 5, the beamformingsimulation results of the array response vectors presented in Chapter 5 had beenparameterized to the direction of arrival, �. Parameterization was done based on theassumption that the antenna array was ideally calibrated, in which the amplituderesponse Gm(!c; �;
m) is calibrated to unity with respect to the carrier frequency8



!c, the mutual coupling e�ect 
m, and the direction of arrival �. In addition, it isassumed that the time delay between antenna elements is linear with respect to themutual coupling e�ect. Therefore, the array response vector can be written in termsof the time delay as a(�; !c) = [e�j!c�1; e�j!c�2; :::; e�j!c�M]T (2.5)where �m simply represents the time delays. Note that, the principal eigenvectorsdecomposed from the eigendecomposition method of the autocorrelation matrix of areceived signal vector with signal power higher than that of the interference-plus-noiseis an accurate array response vector estimate which does not required an antenna arrayto be calibrated. The principal eigenvectors of such decomposition are an accuratearray response vector estimate of Equation (2.4) [17]. The evaluation of the appliedalgorithm in terms of the DOA estimated is for easier visual presentation only.The estimated time-varying DOA, �̂, of an uniformly calibrated circular array(UCA) in Chapter 5 are parameterized based on Equation 2.6 referring to Figure 2.2�m = Rc cos��2 � �̂ �  m�= 1c d2 sin �M sin �̂ + 2�(m� 1)M ! (2.6)where R is the radius of the UCA, d is the equal antenna spacing between adjacentantenna elements, c is speed of light, M is the total number of antenna elements ofthe UCA,  m = 2�(m � 1)=M for m = 1; 2; :::;M is the angle of the mth antennaelement with respect to the center of the UCA measured counterclockwise from thex-axis, and �̂ is the estimated DOA which measured from the normal of the x-axis asshown in Figure 2.2.The estimated time-varying DOA, �̂, of an uniformly calibrated linear array (ULA)are parameterized base on the equation below with graphical presentation shown inFigure 2.3 �m = (m� 1)dc sin �̂ (2.7)9
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where dc sin �̂ is the time delay between equi-spaced adjacent antenna elements, c isthe speed of light, d is the equi-spaced inter-element distance, and �̂ is the broadsideDOA to be estimated.2.2.3 Spatial ResolutionThe spatial passband and stopband of an antenna array can be a�ected by the choiceof array geometry, spatial aperture, and antenna weights. The angular resolution ofan antenna array can be used to evaluate its ability to accurately attenuate powersfrom directions other than the desired direction. High angular resolution improvesthe maximum output signal-to-interference-plus-noise ratio (SINR) when the angularseparation between the desired and undesired signals is small. The reciprocal of the 3dB beamwidth/spatial passband of the main lobe (the principal lobe) of the antennaarray's beam pattern is the array's angular resolution. In other words, the narrowerthe main lobe, the better the spatial �ltering capability of the antenna array. Notethat the main lobe of an array's directivity pattern is called a beam. A directivitypattern is also called the beam pattern [23].2.3 Antenna Array Spatial Filtering CapabilityAntenna arrays equipped with appropriate weightings can be utilized to obtain somedegree of spatial �ltering or directional sensitivity over incoming signals. The di-rectional/beam pattern [23] [42] of a weighted antenna array, which represents therelative sensitivity of a response to signals coming from DOA � and having an arrayresponse vector of a(�), can be de�ned asA(�) = wya(�) = MXm=1w�me�j!c�m = MXm=1 rme�j!c(�m��̂m) (2.8)where wm = rmej!c�̂m is the complex weight with shading rm and a time delay of �̂mthat is applied to the mth antenna element's output as shown in Figure 2.1, �m is thetime delay of a plane-wave impinging on the array measure from the array reference11



point, and M is the number of antenna array elements. Equation (2.8) can be easilyunderstood as stacking the M phase-shifted and amplitude-weighted received signalsto create nulls or peaks.Using the directional pattern de�ned in equation (2.8), the normalized directionalpattern or normalized gain G(�) [23] [42] of an M-element array can be expressed asG(�) = 10 log10 ( jA(�)j2(PMm=1 rm)2) (2.9)since A(�) maximized when �m = �̂m.Using the normalized directional pattern, we can now explore the e�ects on thebeam pattern (spatial �ltering capability) caused by di�erent choices for the antennaarray spatial aperture d, array geometry (UCA or ULA and/or the number of antennaelements used), and weighting vectors w = [w1; w2; :::; wM]T. The antennas consid-ered here are omnidirectional and the array response time delays �m of an UCA andULA follows Equations (2.6) and (2.7), respectively, for presentation purposes. Thenormalized directional pattern, showing the relative sensitivity of the spatial arrayresponse to incoming DOAs �, are evaluated over a range of �180� � � � 180� whichincludes plane-waves impinging on the array from every angle.2.3.1 E�ect of antenna time-delay weightFirst, we consider the beam pattern with rm = 1 for m = 1; 2; :::;M, that is, noshading is applied. The directivity pattern can then be written asA(�) = MXm=1 e�j!c(�m��̂m) (2.10)Equation (2.10) suggests that the maximum spatial response to a particular DOA, �0,occurs when �̂m = �m. This in turn produces the ability to steer beams. ReferencingEquation (2.6), to steer a beam of UCA to the DOA �0, �̂m is set to�̂m = dc2 sin(�=M) sin �0 + 2�(m� 1)M ! (2.11)12



referring to Equation (2.6) and the phasor of equation (2.10) becomes!c(�m � �̂m)= !c2��c d2 sin (�=M)  sin � + 2�(m� 1)M !� sin �0 + 2�(m� 1)M !! (2.12)and similarly, by referencing Equation (2.7, a ULA can steer the beam to DOA �0,with the phasor of equation (2.10) becoming!c(�m � �̂m) = !c(m� 1)(� � �̂) = (m� 1)2��c d(sin � � sin �0)Figure 2.4 and 2.5 show the beam steering ability of a UCA and a ULA, respectively,when the steering angle �0 equals 20�; 50�; 100�;�50�. Note that the beam of a UCAretains the same 3 dB beamwidth while it is steering; however, the beamwidth of aULA gradually increases as the beam steers away from broadside. It can be reasonedthat the directivity gain pattern of a ULA, in response to a DOA, �, with the timedelays �̂m being designed to steer at �0, can be written asA(�) = MXm=1 e�j!c(�m��̂m) = MXm=1 e�j(m�1)(���̂)= sin M(���̂)2sin (���̂)2 = sin M�d�c (sin � � sin �0)sin �d�c (sin � � sin �0) (2.13)by using the equality PM�1m=0 am = (1 � aM)=(1 � a). From equation (2.13), we seethat the normalized beam pattern value depends on the di�erence between the sinesof the angles (a change of sign will occur when the DOAs are o�-broadside) ratherthan on the di�erence between the angles themselves (when �0 is close to broadside,sin �0 � �0). Therefore, the array pattern plots have di�erent shapes depending onthe value of the steered angle �0 [17]. Thus, a ULA beam pattern has a larger mainbeamlobe asymmetry for a larger o�-broadside steering angle �0.Note that lobes which have a gain level much below that of the mainlobe are calledsidelobes and lobes which have the same gain level as the mainlobe are called gratinglobes. Grating lobes are usually undesirable and are also classi�ed as interferometere�ects [23]. 13
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Figure 2.4: A 5-element UCA beam steering at di�erent DOAs with d = 0:5�.
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Figure 2.5: A 5-element ULA beam steering at di�erent DOAs with d = 0:5�14



Therefore, antenna arrays equipped only with phase shifting (time delays) at eacharray element output provide a steering ability of their spatial �lter beam patterns.In order to observe the e�ect of employing time delays in isolation, the antennaelement spacing was kept constant at one-half the carrier wavelength and the totalnumber of antenna elements used was �ve in Figures 2.4 and 2.5, the mainlobe steeredcorresponginly to the steered angle �0 as �0 varies.2.3.2 E�ect of number of antenna elementsThe e�ect on the beam pattern of using di�erent numbers of antenna elements isnow considered. Again, the antenna spacing d is kept constant at one-half the carrierwavelength, the steering angle is kept at zero broadside or DOA �0 = 0, and shadingis not considered (i.e. rm = 1 for all m). Performing a similar comparison between aone-dimensional linear array and a 2-dimensional circular array, Figures 2.6 and 2.7show the beam patterns for 3, 4, 5, and 10-element UCAs and ULAs respectively.It is clear that increasing the number of antenna elements improves the resolutionwhich in turn improves the spatial �ltering performance. In Figure 2.7(c), the 3 dBbeamwidth of a 5-element ULA is about 20� compared to the 10� 3 dB beamwidth ofthe 10-element ULA in Figure 2.7(d).In addition, using di�erent array geometries, such as a one-dimensional ULA,produces di�erent beam patterns and beamwidths than, for example, a 2-dimensionalplanar UCA. The 3 dB beamwidth of a 5-element ULA as shown in Figure 2.7(c) isabout 20� while the 3dB beamwidth of a 5-element UCA is about 50� degrees asshown in Figure 2.6(c).2.3.3 E�ect of shadingWe now consider the e�ect of adding shading to the beam pattern. The shading orwindowing of the amplitudes at the antenna outputs permits trading o� the mainlobebeamwidth against sidelobe levels [14]. As shown in Figures 2.8 and 2.9, 10-pointBlackman and Hamming windows are used to demonstrate how shading can shape15
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Figure 2.6: UCA 3, 4, 5, and 10 antenna elements with equi-spaced antenna elementsof one-half carrier wavelength a) 3-element b) 4-element c) 5-element d) 10-element
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Figure 2.7: ULA 3, 4, 5, and 10 antenna elements with equi-spaced antenna elementsof one-half carrier wavelength a) 3-element b) 4-element c) 5-element d) 10-element16
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Figure 2.8: Using shading weights to shape the beampattern of a UCA
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Figure 2.9: Using shading weights to shape the beampattern of a ULA17



the beampattern. When comparing Figure 2.9(b) to 2.7(d), Blackman windowingattenuated the sidelobe levels by as much as 50 dB from the original sidelobe levels.However, the 3 dB beamwidth in Figure 2.9(b) is now about 22� wider than thatof the original 3 dB beamwidth of about 10� in Figure 2.7(d). Again, the othervariable quantities have been constant one-half carrier wavelength equi-spaced 10-element ULA and UCA, and array steering at �0 = 0.Thus, without physically changing the directivity of an antenna or the number ofantenna elements, the array can steer or shape the array beam pattern by incorpo-rating time delays and shading at the outputs of an antenna array.2.3.4 E�ect of antenna element spacingFinally, the e�ect of array spatial aperture, that is, the separation between elementsis considered. Figures 2.10 and 2.11 show the e�ects of varying the spatial apertureof a 5-element ULA and UCA, respectively, while keeping the array shading at rm =1 for m = 1; 2; :::;M, and steering at �0 = 0. Note that the absolute separationbetween antenna elements is not important; rather, its size as measured in carrierwavelengths [23]. These plots show that as the spatial aperture increases, the mainlobe beam gets narrower. However, this trades-o� with the grating lobes becomingmore signi�cant. These e�ects will lead to a degradation of the weighted output SINRsince interfering signals will be passed through the grating lobes with a high spatialgain. To avoid grating lobe or interferometer e�ects for omnidirectional antennas, amaximum element spacing of �c=2 is usually used and such an array is called a \�lledarray". Filled arrays, however, need a larger number of antenna elements to obtainresolution than is available with a wider spatial aperture. Also, the antenna spacingshould not be less than �c=4, which is considered to be ine�cient since there is verylittle di�erence in the directional pattern as compared to that of a single elementantenna [23].When element spacing is allowed to be larger than one-half wavelength, nonuni-formly spaced array elements can be employed to disrupt the periodic beam pattern18
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Figure 2.10: A 5-element ULA: a) spatial aperture d is 0.3 carrier wavelength �c, b)d is 0.5 �c, c) d is 0.75 �c, d) d is �c
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Figure 2.11: A 5-element UCA: a) spatial aperture d is 0.3 carrier wavelength �c, b)d is 0.5 �c, c) d is 0.75 �c, d) d is �c 19



structure. The wider the antenna element spacing, the less correlation between thereceived signals at adjacent antenna elements. In this case, the plane wave assump-tion will no longer hold. Large antenna element spacing will produce space diversitywhere each element's received signals are mutually uncorrelated or with a very lowcorrelation of less than 0.5 [33]. Instead of using omnidirectional antennas, direc-tional antennas (as used in sectorization) can also improve SINR preformance sincegrating nulls can be eliminated. However, in a cellular communication systems theincreased number of hand-o�s required between sectors could reduce overall systemperformance.In practice, the correlation of signals received at adjacent antennas is related tothe antenna element spacing and the angle spread of the received signal [21] [22] [33].In order for the plane-wave assumption to hold, an uniform antenna element spacingof one-half the wavelength or less is generally maintained to obtain high correlation(at least 0.8) between the signals sampled at each element. As with the narrowbandassumption made previously, the plane-wave signal assumption will still hold providedthat the propagation time across the array is much less than the inverse of the channelbandwidth. Therefore, throughout this thesis for beamforming environment, it isassumed that the channel produces Ji multipath of the ith transmitting mobile thatimpinging on the array , where each corresponding information-bearing plane-wavehas a di�erent channel gain %i;k(t) and phase shift �ik for di�erent DOA �k within theangle spread for each kth multipath.2.3.5 Summary of e�ects of antenna array variablesIn summary, the antenna array spatial �ltering resolution increases as the numberof antenna elements increases. As antenna element spacing (the spatial aperture)increases, resolution will also increase, but this trade-o�s with the presence of gratinglobes. Shading can suppress the spatial gain of sidelobes while trading o� resolution.The resolution of a ULA decreases as it steers o�-broadside, while a UCA appearsto have the same resolution as it steers around its full angular range. Also, di�erent20



types of array geometries, such as ULA and UCA, provide di�erent resolutions andbeam patterns.2.4 Statistically Adaptive Optimum Beamform-ing Weight VectorsDepending on how the beamforming weights are chosen, beamformers can be clas-si�ed either as data independent or statistically optimum. The weights in a dataindependent beamformer do not depend on the received array data and are chosento present a speci�ed response for all signal and interference scenarios. In practice,propagating waves are perturbed by the propagation medium or the receive mecha-nism. In this case, the plane-wave assumption may no longer hold and weight vectorsthat assumed plane-wave time delays between adjacent elements will not combine thewaves of the desired signal coherently.Matching of a randomly perturbed signal with arbitrary characteristics can berealized only in a statistical sense by using a matrix weighting of input data whichadapts to the received signal's characteristics [23]. This is called statistically optimumbeamforming. In this case, the weight vectors are chosen based on the statistics of thereceived data. The weights are selected to optimize the beamformer response so thatthe array output contains minimal contributions due to noise and signals arrivingfrom directions other than the desired signal direction [42].Any performance degradation resulting from a deviation of the actual operatingconditions from the assumed ideal conditions is minimized by the use of complemen-tary methods that introduce constraints. Due to our interest in applying array signalprocessing techniques in cellular CDMA communications where mobiles can be lo-cated anywhere in the cell, statistically optimum beamformers provide the ability toadapt to the statistics of di�erent subscribers.The performance criteria described are applicable to continuous-time as well asdiscrete-time beamforming. We assume that each antenna has the necessary receiver21



electronics and an analog-to-digital converter for performing digital beamforming.The steady-state statistically optimum beamforming weight vectors discussed in thissection are based on di�erent criteria and assume knowledge of the asymptotic second-order statistics of the received array data. It is important to determine the steady-state performance limits for di�erent types of optimum weight measures since suchlimits provide an indication of how well the selected design will perform.There are di�erent criteria for determining statistically-optimumbeamformerweights,several of which are reviewed in this section. The criteria measured presented hereinclude minimummean square error (MMSE), maximization of signal-to-interference-plus-noise ratio (SINR), maximum likelihood (ML), and linearly constrained mini-mum variance (LCMV).In deriving the following optimum weights, it is convenient to represent the signalenvelopes as well as the adaptive weights in their complex envelope form [23]. In anysystem only real signals actually appear, and the relationship between the real andcorresponding complex signal is de�ned asactual signal = Ref complex signal envelope ej!ctgTherefore, equation (2.2) can rewritten asr(t) = Re hx(t)ej!cti (2.14)where x(t) is the complex envelope of the received signal r(t). The output of theweighted antenna array then follows asy(t) = Re �w(t)yx(t)ej!ct� (2.15)where w(t)yx(t) is the complex envelope representation of y(t).Throughout this thesis, the signal envelopes and the weights are all representedby the complex envelope of the actual signal.2.4.1 Minimum mean square error (MMSE)If su�cient knowledge of the desired signal is available, a reference signal yd can thenbe generated. These reference signals are used to determine the optimal weight vector22



wMSE = [w1; w2; :::; wM]T by minimizing the mean square error (MMSE) of the M-element antenna array [44]. Figure 2.12 shows a block diagram of an adaptive systemusing reference signals. Mathematically, the MMSE criteria can be expressed asminw Efjyd � yj2g =minw Ef"2g (2.16)where y = wyx = PMm=1w�mxm is the weighted array output, and x = [x1; x2; :::; xM]Tis the signal received at the antenna array. The minimum of equation (2.16) canbe found by di�erentiation with respect to w and then setting the result equal tozero. The Hessian matrix Ef"2g is r2Ef"2g = Efxxyg = Rxx which is greaterthan zero since Rxx is a positive-de�nite matrix. A matrix Rxx is positive-de�niteif xyRxxx > 0 for all nonzero x vectors. There exists a computationally stablefactorization Rxx = LDLy for a symmetric matrix Rxx = Efxxyg where L is thelower triangular matrix and D = diag(d1; d2; :::; dM) is a diagonal matrix [13]. Theadditive white Gaussian noise (AWGN) received vector n(t) � (0; �2nI) where �2n isthe nonzero noise power implies that D > 0 always; therefore, Rxx is positive-de�nite.Consider the gradient vector of Ef"2g with respect to wrEfy2d +wyxxyw � 2wyxydg = 2Rxxw � 2rxd = 0 (2.17)where Rxx = Efxxyg is the autocorrelation matrix and rxd = Efxydg is the cross-correlation matrix. Thus, the optimal MMSE weight solution iswMSE = R�1xx rxd (2:18)
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and is called the Wiener solution.The advantage of using a reference signal is that the desired signal bearing can beunknown. The disadvantage of using this method is generating an accurate referencesignal based on limited knowledge at the receiver.2.4.2 Maximization of signal-to-interference-plus-noise ra-tio (SINR)The weighted array output of a beamformer can be expressed asy = wy(s+ i+ n) = ys + yIN (2.19)where s = �sus(t)a(t) is assumed to be the signal vector, �s is the signal amplitude,us(t) the binary baseband signal information, a(t) represents the array response vectorof the signal arriving from DOA �0, ys = wys is the desired signal array responseweighted output, yIN = wy(i+ n) is the interference-plus-noise total array responseweighted output, s is the M � 1 desired signal array response vector, i is the M � 1total interference signal power array response vector, and n is the M� 1 noise arrayresponse vector. Consequently, the weighted array signal output power isEfjysj2g = wyEfssygw = wyRssw (2.20)where Rss is the autocorrelation matrix of the signal vector s and the weighted arrayinterference-plus-noise output power isEfjyINj2g = wyEfji+ nj2gw = wyRINw (2.21)RIN is the autocorrelation matrix of n+ i. Therefore, the weighted output SINR canthen be expressed as SINR = wyRsswwyRINw (2:22)Since RIN is an N-by-N symmetric positive-de�nite matrix, there exists a uniquesymmetric positive-de�nite matrix X = R1=2IN such that RIN = Ry=2IN R1=2IN = XyX =24



X2 [13]. By substituting z = RIN1=2w, equation (2.22) can be rewritten asSINR = zyR�y=2IN RssR�1=2IN zzyz (2:23)Equation (2.23) may be recognized as a standard quadratic form and is bounded bythe minimumand maximumof the eigenvalues of the symmetricmatrixR�y=2IN RssR�1=2IN .Let � be the eigenvalues of Y = R�y=2IN RssR�1=2IN and v be the corresponding eigen-vectors. It then follows that in order to maximize the SINR, we need to solve thegeneralized eigenproblem R�y=2IN RssR�1=2IN v = �v (2:24)The eigenvector corresponding to the maximum eigenvalue �max of equation (2.24)is then the optimal weight vector wSINR according to the maximization of SINRcriterion. R�y=2IN RssR�1=2IN = Y implies thatRssR�1=2IN = Ry=2IN Y (2.25)Since both R�1=2IN and Rss are symmetric square matricesR�1=2IN Rss = Ry=2IN Y (2.26)which gives R�1IN Rss = R�y=2IN RssR�1=2IN = Y (2.27)Therefore it is more convenient to �nd the optimal SINR weight vector by solvingthe generalized eigenproblem ofR�1INRsswSINR = �maxwSINR (2.28)Let SINR be the SINR value that satis�es equation (2.22). This gives the followingequality Rssw = (SINR)RINw (2.29)25



At the optimum SINR (denoted by SINRopt), we haveRsswSINR = SINRoptRINwSINR= wySINRRsswSINRwySINRRINwSINRRINwSINR (2.30)Since sywSINR is a complex scalar, it then follows thats = �sus(t)a(t) = wySINRswySINRRINwSINRRINwSINR (2.31)The ratio �wySINRs� =��sus(t)wySINRRINwSINR� is also a complex scalar value andcan be denoted by a complex scalar B. ThuswSINR = 1BR�1INa(t) (2.32)which again is a Wiener solution multiplied by a scalar. Again, Equation (2.32)performs �rst prewhitening and then matching with the signal.The advantage of using maximal SINR weight adaptation to the received arraydata is that these weights give the true maximization of SINR. The disadvantage ofusing this performance measure is having to solve a generalized eigenproblem. Theconvergence time for determining the eigenvectors depends on the eigenvalue spread.The smaller the eigenvalue spread, the slower the convergence of the adaptive weightvector [23]. Determining the optimal weight vector for maximum SINR requires goodestimates of the second-order statistics such as the desired signal autocorrelationmatrix, Rss, and the autocorrelation interference-plus-noise matrix RIN.2.4.3 Maximum likelihood (ML)If we assume that the interference-plus-noise components are multivariate Gaussian,the likelihood function of the input signal vector can be written asL[x] = Psfxjsg (2.33)= 1(2�)M=2jRINj1=2 expf�12 (x� s)yR�1IN (x� s)g (2.34)26



Assume the signal vector s = �sus(t)a(t) where �s is the signal amplitude, us(t) isthe transmitted binary baseband signal information, a(t) is the signal array responsevector corresponding to the desired signal's DOA �. It follows that the log likelihoodis ln[L[x]] = �12(x� �sus(t)a(t))yR�1IN (x� �sus(t)a(t)) (2.35)which gives the likelihood equation as@@�sus(t) lnL[x] = �a(t)yR�1INx+ �sus(t)a(t)yR�1INa(t) (2.36)Setting the likelihood equation to zero gives the maximum likelihood estimates of�̂sûs(t) �̂sûs(t) = a(t)yR�1INa(t)yR�1INa(t)x = wyMLx (2.37)since a(t)yR�1INa(t) is a scalar. The maximum likelihood weight vector is obtained aswML = 1a(t)yR�1INa(t)R�1INa(t) (2.38)Maximum likelihood is well-suited in situations when the desired signal's waveformis completely unknown. Then, the desired signal may be regarded as a time functionwhich is to be estimated [23]. However, the constraint of a multivariate Gaussianinterference-plus-noise distribution restricts the application of the ML criterion.2.4.4 Linearly constrained minimum variance (LCMV)LCMV requires knowledge or prior estimation of the desired signal array response vec-tor a(t) = [ej!c�1; e!cj�2; :::; e!cj�M]T with DOA � and temporal frequency !c. LCMVconstrains the response of the beamformer so that signals from the direction of interestare passed through the array with a speci�ed gain and phase [11]. The LCMV weightsare chosen to minimize the expected value of the output power/variance subject tothe response constraints. That isminw fwyRxxwg subject to Cyw = g� (2:39)27



where w is the M � 1 array weighting vector to be determined, Rxx = Efxxyg isthe M�M autocorrelation matrix of the antenna array output, C is a M�K matrixhaving K linearly independent constraint equations, and p is the K � 1 constraintresponse vector.The constraints have an e�ect of preserving the desired signal while minimizingcontributions to the array output due to interfering signals and noise arriving fromdirections other than the direction of interest. Let F (w) = wyRxxw be the costfunction and G(w) = Cyw � p� be the constraint function. By using a K � 1Lagrange multiplier vector b, the following is obtainedH(w) = 12F (w) + bG(w) = 12wyRxxw + by(Cyw � g�) (2.40)F(w) has its minimum or maximum value at a point w subject to the constraintG(w) = Cyw � p� = 0; i.e. when H(w) = 0. Therefore, to �nd the minimum pointof equation (2.40) we di�erentiate it with respect to w and set it equal to zero. ForH(w) = 0, it follows that wopt = �R�1xxCb (2.41)where the M � 1 Lagrange multiplier b still needs to be determined. Substitutingwopt back into the constraint equation yieldsCywopt = Cy[�R�1xxCb] = p� (2.42)and the Lagrange multiplier vector is found to beb = �[CyR�1xxC]�1p� (2.43)where the existence of [CyR�1xxC]�1 follows from the facts that Rxx is positive-de�niteand C is full-rank. Therefore, the LCMV estimate of the weight vector iswopt = R�1xxC[CyR�1xxC]�1p� (2.44)As a special case in constraining only one desired signal array response gain, aLCMV problem [42] can be expressed asminw wyRxxw subject to Cyw = a(t)yw = p� (2.45)28



where g is a complex scalar which constrains the output response to a(t). Using aLagrange multiplier, the LCMV weight estimate of equation (2.45) is thenwopt = R�1xxa(t)[a(t)yR�1xxa(t)]�1p� (2.46)For the case of only one constraint vector, a(t)yR�1xxa(t) is a complex scalar, andwe can write wopt = g�a(t)yR�1xxa(t)R�1xxa(t) (2.47)since p is a scalar. If p = 1, equation (2.45) is termed a minimum variance distor-tionless response (MVDR) beamformer. By substituting Rxx = RIN + �2a(t)a(t)yand applying Matrix Inversion Lemma [17], it can be shown that equation (2.47) isequivalent to the maximum SINR solution ( details are derived in section 2.4.5).The advantage of using a LCMV criteria is its general constraint approach thatpermits extensive control over the adapted response of the beamformer. This tech-nique is exible and does not require knowledge of the desired signal autocorrelationmatrix Rss, the interference-plus-noise autocorrelation matrix RIN, or any referencesignal yd. However the disadvantage of using a LCMV is the computation complexityof the constraint weight vector.The constraint matrix allows the beamformer to be designed to attain a cer-tain level of beamforming performance. There are several di�erent constraint matrixdesigns for the LCMV performance measure such as point constraints, eigenvectorconstraints, etc. [42]2.4.4.1 Point constraintsPoint constraints �x the beamformer response at points of spatial direction and tem-poral frequency [42]. Here, we present an example of using point constraint for LCMVcriteria.Considering constraining the array response corresponding to three DOAs �0, �1and �2, in which we would like to have distortionless processing of incoming signals29



from DOA �0 and �1 while nulling DOA �2. The LCMV estimate of the optimalweight vector involves solving equation (2.48) and the LCMV optimal weight is as inequation (2.46).minw wyRxxw subject to Cyw = 2666664 a(�0; !c)ya(�1; !c)ya(�2; !c)y 3777775w = 2666664 p�0p�10 3777775 = py(2.48)Each linear constraint uses one degree of freedom for minimizing power; therefore,if there are K linear constraints, only M�K degrees of freedom are available for mini-mizing the variance. For an M-element antenna array, if K = M linear constraints areused, there are no degrees of freedom left for power minimization and the statisticalbeamformer becomes a data-independent beamformer.2.4.4.2 Eigenvector constraintsEigenvector constraints are typically used to control beamformer response over regionsof directions and/or frequencies [16] [42]. The eigenvector constraints for the LCMVproblem can be formulated asminw wyRxxw subject to Vyw = ��1K Uyrd (2.49)where the singular value decomposition of a rank KM�K matrixA can be expressedas A = V�Uy. V and U are the left and right singular matrix of A, respectively, and� is the K � K diagonal matrix containing the K largest singular values of A. Thevector rd = [wya(�1; !c);wya(�2; !c); :::;wya(�K; !c)]T is the weighted array responsevector constraint vector. The MxK matrix A = [a(�1; !c);a2(�2; !c); :::;a(�K; !c)]Trepresents the K array response vector constraints where am(�m; !c) is the arrayresponse of the mth DOA �m array response constraint.This is called an eigenvector constraint approach since the column vectors of Vcorrespond to the eigenvectors of the full rank matrix AAy. Note that when it is anarrowband signal arrived at an antenna array, AAy equals the spatial autocorrela-tion matrix Rxx = AAy of K signals with unity power impinging on the array.30



Criteria MMSE SINR ML LCMV (one constraint)wopt R�1xx rxd 1BR�1INa(t) 1D�1R�1INa(t) 1D�1R�1INa(�; !c)Table 2.1: Summary of the statistically optimum weight vector estimates2.4.5 Summary { Unifying optimum weight solutionWe apply the Matrix Inversion Lemma [17] to the narrowband data covariance matrixRxx = RIN + �2sa(t)a(t)y where RIN is the interference-plus-noise matrix and �2s isthe total received signal power [23]. It then follows thatR�1xx = R�1IN � �2sR�1INa(t)a(t)yR�1IN1 + �2sa(t)yR�1INa(t)= 11 + �2sa(t)yR�1INa(t)R�1IN = 1DR�1IN (2.50)where 1 + �2sa(t)yR�1INa(t) is a complex scalar and can be represented by D.It is a remarkable fact that all the di�erent performance measure criteria consid-ered here converge to the same steady-state Wiener solution within a constant scalefactor as shown in Table 2.1. This introduces a more general concept of a uni�edapproach to adaptive beamformingwopt = &R�1xx rxd = HR�1INa(t) = IR�1xxa(t) (2.51)where & is a scalar, I is a scalar, H is also a scalar, R�1xx is the inverse of the dataarray autocorrelation matrix, and R�1IN is the inverse of the interference-plus-noiseautocorrelation matrix. All of these optimum weight vector matrix �lter operatorsembody the principle of �rst prewhitening the spatial correlation matrix and thenspatially matching the signals received at each antenna to obtain an undistortedrepresentation of the desired signal. 31



2.5 Adaptive Algorithm for BeamformingSection 2.4 showed that statistically optimum weight vectors for adaptive beamform-ing can be calculated by the Wiener solution; however, the knowledge of the asymp-totic second-order statistics of the signal and the interference-plus-noise was assumedto be available. These statistics are usually not known, but with the assumptionof ergodicity where the time average equals the ensemble average, the second-orderstatistics can be estimated from available data. For time-varying signal environments,such as wireless cellular communications systems, statistics change with time as thetarget mobile and interferers move around the cell. For the time-varying signal prop-agation environment, a recursive update of the weight vector is needed to track amoving mobile so that the spatial �ltering beam will adaptively steer to the targetmobile's time-varying DOA, thus resulting in optimal transmission/reception of thedesired signal. To solve the problem of time-varying statistics, weight vectors are typ-ically determined by adaptive algorithms which adapt to the changing environments.Figure 2.13 shows a generic adaptive antenna array system consisting of an M-element antenna array with a real-time adaptive array signal processor containingan update control algorithm. Using data samples collected from the antenna array,the signal processor automatically proceeds to adjust the weight vector towards op-timization of the selected criteria. These antenna systems are sometimes referred toas \smart" antenna arrays.Steady-state and transient-state are the two classi�cations of the requirement ofan adaptive antenna array. These two classi�cations depend on whether the arrayweights have reached their steady-state values in a stationary environment or are beingadjusted in response to a change in the signal environment. In order to determinean algorithm for adapting the weight vector to the time-varying environment at eachsample, the least mean square (LMS) and the recursive least squares (RLS) adaptiveupdating algorithm can be used. The LMS algorithm converges to the steady-stateWiener solution much more slowly than does RLS [23] [42]. The computation forthe RLS update algorithm, however, requires a computation of order O(M2) while32
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Figure 2.13: Functional diagram of a M-element adaptive arraythe LMS update algorithm only requires a computation of order O(M). The LMSiterative algorithm is presented �rst, followed by the RLS algorithm.2.5.1 Least mean square (LMS) adaptive algorithmThe LMS algorithm linearly minimizes the mean-square error while also incorporatingnew observations and iteratively solving the minimization problem [17] [23] [44].LMS changes the weight vector along the direction of the estimated gradient basedon the steepest descent method. The steepest descent algorithm converges mostrapidly in the direction of the negative gradient [13]. By the quadratic characteristicsof a mean square error function Ef"(k)2g that has only one minimum, the steepestdescent is guaranteed to converge.At adaptation index k, given a mean-square-error (MSE) function Ef"(k)2g =Efjyd(k) �w(k)yx(k)gj2g, the LMS algorithm updates the weight vector accordingto w(k + 1) = w(k) + �r̂w(k)Ef"(k)2g (2.52)where � is the scalar constant which controls the rate of convergence and stability33



(� < 0 is required for the weight update to converge), w(k + 1) is the weight vectorafter adaptation, w(k) is the weight vector before adaptation, and r̂w(k)Ef"(k)2g isthe estimated gradient vector of Ef"(k)2g.The gradient estimate is found by di�erentiating Ef"(k)2g with respect to theweight vector w(k) which givesr̂w(k)Ef"(k)2g = 2"(k)r["(k)] = �2[yd(k)�w(k)yx(k)]x(k) (2.53)The gradient estimation in equation (2.53) is unbiased since it equals the true valueof the gradient of the expected value of the mean-square-error (MSE).Thus, equation (2.52) becomesw(k + 1) = w(k)� 2�[yd(k)�w(k)yx(k)]x(k) (2.54)2.5.1.1 Convergence of the LMS update algorithmBy taking the expected value of equation (2.54), it follows thatEfw(k + 1)g = [I+ 2�Rxx]Efw(k)g � 2�rxd (2:55)where Rxx = Efx(k)x(k)yg is the autocorrelation matrix, and rxd = Efyd(k)x(k)gis the cross-correlation matrix of x(k) and yd(k).By setting the initial weight vector to w(0), equation (2.54) can be rewritten asEfw(k + 1)g = [I+ 2�Rxx]k+1w(0) � 2� kXi=0[I+ 2�Rxx]irxd (2.56)Since Rxx = Efxxyg is a symmetric matrix, the eigendecomposition of Rxx alwaysexists and the diagonal eigenvalue matrix D is real-valued and positive-de�nite [13].Rxx = QyDQ (2.57)where Q is the orthonormal eigenvector matrix of Rxx. It then follows thatEfw(k + 1)g = [I+ 2�QyDQ]k+1w(0)� 2� kXi=0[I+ 2�QyDQ]irxd (2.58)= Qy[I+ 2�D]k+1Qw(0) � 2�Qy kXi=0[I+ 2�D]iQrxd (2.59)34



If the diagonal matrix I+2�D has a magnitude less then unity, as the current iterationk increases limk!1[I+ 2�D]k+1 ! 0 (2.60)and limk!1 kXi=0[I+ 2�D]i = �[2�D]�1 (2.61)using the equality PN�1i=0 ai = [1� aN]=[1� a].Thus, in the limit as the iterations increaselimk!1Efw(k + 1)g = QyD�1Qrxd = R�1xx rxd (2.62)which implies that the weight vector converges to the Wiener solution provided thatsu�cient iterations have been performed.The requirement on the diagonal matrix that jI+2�Dj < 1 sets the bound of theconstraint parameter � of the LMS update algorithm in order for it converge to theoptimum Weiner solution.Since Rxx is positive-de�nite, the eigenvalues of D are all positive, and the boundon � is given by the largest eigenvalue �max of D wherej1 + 2��maxj < 1 (2.63)or �1�max < � < 0 (2.64)Alternatively, in terms of the total power of vector x,�max � tracefRxxg (2.65)where tracefRxxg = Efx2ig is the total input power.Therefore, a condition for satisfactory Wiener solution convergence of the meanof the LMS weight vector is �1PMi=1Efx2ig < � < 0 (2.66)35



where M is the number of antenna elements in the array.LMS is a simple adaptive algorithm whose convergence characteristics depend onthe shape of the error surface and therefore the eigenstructure of Rxx. Its conver-gence can be slow if the eigenvalues are widely spread. When the covariance matrixeigenvalues di�er by orders of magnitude, the algorithm convergence time can be ex-ceedingly long, and in any case is highly data dependent [23]. Therefore, in practice,depending on the eigenvalue spread, the LMS algorithm may not have su�cient iter-ation time for the weight vector to converge to the statistically optimum solution andadaptation to the time-varying environment will not be able to be performed in realtime. LMS weights/�lter coe�cients do not converge to a stable set of values evenwhen the observations are stationary since the �lter coe�cients depend on new ob-servations and are continually updated via the estimate of the gradient. In addition,employing the LMS algorithm assumes that enough knowledge of the desired signalis known so to generate reference signal sequences. Acquiring this knowledge couldbe expensive for wireless communications systems.2.5.2 Recursive least squares (RLS) adaptive algorithmIn contrast to the LMS algorithm, a RLS adaptive algorithm approximates the Wienersolution directly without imposing the additional burden of approximating an opti-mization procedure such as gradient estimation [42]. This more direct approach re-sults in �lters with better convergence properties than the LMS but at the expense ofcomputational complexity. Recalling that the statistically optimum Wiener solutionis w = R�1xx rxd (2.67)There are two commonly used methods of estimating the covariance matrix Rxx inequation (2.67). The �rst method time averages the outer product of the receivedoutput vector over S frames. The next optimal weight vector is predicted based on thecurrent received data. Therefore, regardless of which method is chosen to estimate36



the covariance matrix, the estimate at index k must only depend on the observationsobtained before that time. At adaptation time index k, the covariance matrix can beestimated from the last S frames of time asR̂xx(k) = 1S k�1Xi=k�S x(i)x(i)y (2.68)Note that S � M is required to obtain an invertible covariance matrix from thismoving average [17].The second method uses an exponentially-weighted estimate whereR̂xx(k) = k�1Xi=0 �k�ix(i)x(i)y (2.69)This can be rewritten in a simple rank-one update recursive formR̂xx(k) = �R̂xx(k � 1) + x(k � 1)x(k � 1)y (2.70)Similar to the moving average estimate, an invertible estimate occurs when k � M.Because of this recursive form, application of the Matrix Inversion Lemma [17] permitsthe inverse of R̂xx to be expressed asR̂�1xx (k) = 1� 24R̂�1xx (k � 1)� R̂�1xx (k � 1)x(k � 1)x(k � 1)yR̂�1xx (k � 1)�+ x(k � 1)yR̂�1xx (k � 1)x(k � 1) 35= 1� �R̂�1xx (k � 1)� g(k)x(k � 1)yR̂�1xx (k � 1)� (2.71)where g(k) = R̂�1xx (k � 1)x(k � 1)�+ x(k � 1)yR̂�1xx (k � 1)x(k � 1) (2.72)Similarly, the second-order statistics vector rxd in equation (2.67) can be estimatedby r̂xd(k) = �r̂xd(k � 1) + yd(k)x(k � 1) (2.73)Therefore, at time index k, the prediction of the weight vector at time k + 1 canbe written in a recursive form asw(k + 1) = R̂�1xx (k)r̂xd(k) (2.74)37



Substituting the exponentially weighted estimate from equations (2.71) and (2.73)into equation (2.74), we havew(k + 1) = R̂�1xx (k)r̂xd(k)= 1� �R̂�1xx (k � 1) � g(k)x(k � 1)yR̂�1xx (k � 1)� [�r̂xd(k � 1) + yd(k)x(k � 1)]= R̂�1xx (k � 1)r̂xd(k � 1)� g(k)(R̂�1xx (k � 1)r̂xd(k � 1))yx(k � 1)1�yd(k)R̂�1xx (k � 1)x(k � 1)� 1�yd(k)g(k)x(k � 1)yR̂�1xx (k � 1)x(k � 1)= w(k)� g(k)w(k)yx(k � 1) + yd(k)g(k)+ 1�yd(k)g(k)x(k � 1)yR�1xx (k � 1)x(k � 1)� 1�yd(k)g(k)x(k � 1)yR̂�1xx (k � 1)x(k � 1)= w(k) + g(k)[yd(k)�w(k)yx(k � 1)] (2.75)Therefore, RLS directly updates the weight vector estimate where the weight vectorfor each adaptation time index isw(k + 1) = w(k) + g(k)[yd(k)�w(k)yx(k � 1)] (2.76)where g(k) = [R̂�1xxx(k� 1)]=[�+x(k� 1)yR�1xxx(k� 1)], and � is the parameter thatcontrols the e�ective amount of data used in the averaging and hence the degree towhich the algorithm can track variations in signal characteristics.As long as 0 < � < 1, the RLS weight update algorithm always converges. Theinitial covariance matrices Rxx and rxd in equations (2.70) and (2.73), respectively,are initialized to a constant a times the identity matrix (aI). An estimate of thesignal power �2 is usually used for this constant. The initial weight vector w(0) inequation (2.76) is set to zero.Typically, the RLS algorithm requires about 2M adaptation steps to convergewhich is much faster than the LMS algorithm. However, this is at the price of in-creased computational complexity. In addition, the di�erence equation in equation(2.71) for updating the inverse of the covariance matrix is sensitive to numericalroundo�. This numerical computational issue can be approached using so-called38



square-root algorithms that update the matrix square root of the covariance matrix[17].2.6 SummaryThis chapter has reviewed the fundamental concepts of antenna arrays and digitalbeamforming. In particular, we have explored several di�erent parameter estimationmethods for generating statistically optimum beamforming weight vectors. Adaptivealgorithms for beamforming were also discussed.
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Chapter 3CDMA Cellular Communication Systems3.1 IntroductionThis chapter reviews Direct Sequence/Code Division Multiple Access (DS/CDMA)signal applications in cellular communication systems and the current state-of-the-artin the application of array signal processing to base station antenna arrays. Section3.2 reviews the spread spectrum signals and their application to CDMA for digitalcommmunications systems. A signal multipath fading model is described in Section3.3. The second-generation IS-95 CDMA cellular standard is outlined in Section 3.5.In Section 3.6, current state-of-the-art array signal processing techniques using basestation antenna arrays and 2D RAKE receivers are reviewed.3.2 Spread Spectrum SignalsIn spread spectrum, a previously modulated signal is modulated a second time toa much greater bandwidth of Wss by using a pseudo random noise (PN) sequence.Figure 3.1 illustrates the basic elements of a spread spectrum digital communicationssystem [29]. As shown, the information signal sequence has bandwidth B and thespread signal has bandwidth Wss. The ratio Be = Wss=B is called the bandwidthexpansion factor or processing gain, and is designed to be much greater than unity,that is, Wss � B. 40
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Wss and the interfering signals then appear as noise. The performance of spreadspectrum signalling is limited by the interference power after despreading.3.2.1 Bit-energy-to-total-noise ratio of a spread spectrummodulated signalTo illustrate the concept of ideal despreading of signals at the receiver, consider adesired signal of power S Watts (W) at bit rate 1=B with the total received additivechannel interference power of J Watts with bandwidth Wss Hz after despreading.Assume that the channel also introduces additive gaussian white noise (AGWN) witha one-sided power spectral density (PSD) of N0 W/Hz. Therefore, the bit-energy-to-total noise ratio [15] is thenEbNtotal = S=B(N0Wss)=Wss + J=Wss = S=BN0 + J=Wss (3.1)When the interference signal power is much higher than the thermal noise (AWGN)power (i.e. J=Wss � N0), then eqn.(3.1) can be approximated asEbNtotal � S=BJ=Wss = SJ WssB (3.2)whereWss=B is the processing gain, and J=S is the interference-to-signal ratio (ISR).Since the ultimate probability of error depends on Eb=Ntotal, the bit-energy-to-total-noise ratio of a spectrum receiver can be improved by maximizing the processing gainand minimizing the ISR.Due to spread spectrum's wideband pseudo-random PN sequence spreading anddespreading e�ect on interference power, employing this type of modulation has thefollowing advantages: (1) suppressing interference from self-interference due to multi-path propagation or jamming interferers or interference from other users in a channel,(2) hiding a signal in the presence of background noise by transmitting it at a lowpower, and (3) securing privacy in a digital communications system.Spread spectrum in conjunction with phase shift keying (PSK) or frequency shiftkeying (FSK) modulation are the two most popular types of spread spectrum modu-lation techniques used in digital communications systems. In PSK spread spectrum,42



the phase of the PSK signal is shifted pseudo-randomly according to the PN sequencepattern, and the resulting modulated signal is also called a direct sequence (DS) ora pseudo-noise (PN) spread spectrum signal. When the available channel bandwidthis subdivided into a large number of contiguous frequency slots, the transmitting fre-quency of an M-ary FSK is speci�ed pseudo-randomly according to the PN sequencepattern. This is called frequency-hopped (FH) spread spectrum.PSK spread spectrum is applied when phase coherence between the transmittedand the received signal can be maintained over a time interval that is relativelylong as compared to the reciprocal of the transmitted signal bandwidth. FH spreadspectrum signalling is appropriate to use in applications where phase coherence cannotbe maintained due to extremely rapid time-varying e�ects in the communications link.3.2.2 Code division multiple access (CDMA)In digital cellular communication systems, the available frequency bands are lim-ited and expensive. In order to cope with the ever-increasing number of subscribersand limited frequency bands, applying of DSMA/CDMA to increase capacity in fu-ture commercial digital cellular personal communication services (PCS) has attractedmuch investigation. In addition to DS spread spectrum's features, CDMA providessuperior e�cient usage of the available frequency band by assigning each user a speci-�ed PN sequence which allows multiple users to simultaneously transmit on the samechannel. In a CDMA communications network, each user has a transmitter and cor-responding receiver intended for modulating and demodulating respectively with theassigned PN sequence.Mathematically, the assigned PN sequence ci(t) for the ith mobile of a CDMAnetwork can be expressed asci(t) = 1Xn=�1 ci;np(t� nTc) (3.3)where ci;n 2 f1;�1g is the assigned binary PN code sequence for the ith mobile, andp(t) is pulse modulation with pulse rate 1=Tc = Wss.43
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= Ai(t)ci(t)bi(t) cos(!ct)= 1Xn=�1Ai(t)ci;nbi;np(t� nTc) cos(!ct) (3.6)where Ai(t) is the ith mobile's transmitted signal amplitude, and Ref�g denotes thereal part of f�g.Assume that there are Nmobiles transmitting signals to the base-station, includingthe desired mobile. Also assume for now that the channel does not introduce multi-path, so each transmitted signal is received with only one path and a time-varyingcomplex channel gain %k(t)e�j!c�k(t). At the ith correlator of a CDMA network, aftersynchronization with the ith mobile, the complex envelope of the received signal canbe expressed asxi(t) = NXk=1 %k(t)e�j!c�i;k(t)Ai(t)ci(t� �i;k(t))bi(t� �i;k(t)) + n(t) (3.7)where %k(t) is the channel attenuation factor, �k = !c�k is the channel phase shift,�i;k(t) = �k(t)� �i(t) is the time delay of the kth mobile relative to the ith mobile andj�i;k(t)j 2 (0; Tc] with �i;i = 0 if self-synchronization is assumed, Tc is the chip rateof the PN sequence, n(t) 2 N (0; �2n) is the zero-mean additive white gaussian noise(AWGN) due to thermal noise.Therefore, after ideal despreading with the designated ith mobile's PN sequence,the despread received signal [27] [47] becomeszi(n) = 1pTb Z (n+1)TbnTb xi(t)ci(t)dt= 1pTb Z (n+1)TbnTb NXk=1 %k(t)e�j!c�i;k(t)Ak(t)ck(t� �i;k)bk(t� �i;k)ci(t)dt+ 1pTb Z (n+1)TbnTb n(t)ci(t)dt= qTb%i(t)Aibi(t) + 1pTb Z (n+1)TbnTb n(t)ci(t)dt+ 1pTb Z (n+1)TbnTb NXk=1;k 6=i %k(t)e�j!c�i;k(t)Ak(t)ck(t� �i;k)bk(t� �i;k)ci(t)dt(3.8)45



In equation (3.8), it is shown that the second and third terms are spread by a band-width Wss = 1=Tc, while the desired despread signal bandwidth has been reducedback to its original bandwidth of 1=Tb.3.3 Multipath Fading Channel ModelsUnlike wired channels whose parameters are stationary and predictable, wireless chan-nels place fundamental limitations on the performance of a mobile communicationssystem due to the dynamic time-varying nature of the transmission path and the rel-ative speed between the transmitter and the receiver. In order to predict the averagereceived signal strength for a given distance between transmitter and receiver and toestimate the radio coverage in a particular channel, sophisticated radio channel mod-elling and statistical analysis tools are required to characterize channels for practicalradio receiver design in di�erent communications systems [15] [22] [29].The physical mechanisms of electromagnetic wave propagation in space are di-verse, and are dominated by reection, scattering, and di�raction. These propaga-tion e�ects cause a transmitted signal s(t) to arrive at the receiver over several pathswith di�erent channel gains %lej!c�l and within a time spread Tm. The time spreadparameter characterizes the time-dispersive nature of the multipath fading channel.To construct a model for the multipath fading environment of a CDMA cellularcommunication system [29], consider only one sequence of the bandpass DS-BPSKdescribed in Figure 3.2 as transmitted by the ith mobile with a signal of the formsi(t) = RefAi(t)ci(t)bi(t)ej!ctg= Ai(t)ci(t)bi(t) cos(!ct)= Refu(t)ej!ctg (3.9)where ci(t) represents the direct sequence PN chips, bi(t) is the binary information bit,Ai(t) is the transmitted signal amplitude, and u(t) = Ai(t)ci(t)bi(t) is the basebandinformation signal that is transmitted with a carrier frequency of !c = 2�fc.46



Assuming that the multipath channel introduces J distinct components whicharrive at the receiver, each path l experiences a channel attenuation factor of %i;l(t)and a channel propagation delay of �i;l(t). Therefore, the received bandpass signalresulting from the ith mobile's transmitted signal sequence si(t) can be expressed asri(t) = Re( JXl=1 %i;l(t)e�j!c�il(t)u(t� �il(t))ej!ct) (3.10)The equivalent complex envelope/baseband received signal is thenxi(t) = JXl=1 %i;l(t)e�j!c�il(t)u(t� �il(t)) (3.11)It follows that the channel impulse response can be represented byh(�il; t) = JXl=1 %i;l(t)e�j!c�il(t)�(t� �il(t)) (3.12)It requires requires large dynamic changes in the medium to cause signi�cantchanges in the channel attenuation %i;l(t) of the received signal [29]. Conversely, thechannel phase shift of the lth path �il = !c�il(t) can change dramatically even for arelatively minor change in the propagation delay �il(t). In fact, since �il(t) changes atdi�erent rates and in an unpredictable manner, therefore, the channel phase shift canbe modeled as a random process. For a large number of multipaths J, the CentralLimit Theorem can be applied, where the channel impulse response h(�il; t) can bemodeled as a complex-valued Gaussian random variable [28] [29].When the impulse response h(�il; t) is modeled as a zero-mean complex-valuedGaussian process, the channel is called a Rayleigh-fading channel since the amplitudeof the impulse response jh(�il; t)j at any time instant t is Rayleigh-distributed. Urbancellular mobile communication channels, where no direct line of sight (LOS) betweenthe transmitter and receiver exists, can be modeled by a Rayleigh-fading channelwhere the channel phase shift is uniformly distributed over [0; 2�).A channel has Rician fading when the impulse response is modeled as a non-zerocomplex-valued Gaussian random variable. A satellite communication channel canbe modeled as a Rician fading channel where a LOS exists between the transmitter47



and receiver. The channel phase shift is no longer uniformly distributed over 2�, butis localized to a certain phase corresponding to the LOS direction. Rayleigh-fadingchannels model the most severe fading environment and appear to be a realisticcellular communication system multipath signal model [29] [43].There are two types of channel distortions to the channel impulse response: fre-quency selectivity and fading [29]. Frequency selectivity distortion depends on themultipath delay spread Tm or, equivalently, depends on the coherence bandwidth Bmof the channel relative to the transmitted signal bandwidth Wss. Fading channel dis-tortion depends on the time variations of the channel that are characterized by thecoherence time TD or, equivalently, by the Doppler spread BD.The frequency selectivity of a channel can be a�ected by scattering and reectingin the environment. First, we discuss the frequency selectivity nature of a channel,as parameterized by the delay spread and coherence bandwidth. The delay spread ofa transmitted signal propagating through a multipath channel can be determined bythe autocorrelation function of the channel impulse response �(�1; �2;�t) based on awide-sense-stationary (WSS) assumption [29].�(�1; �2;�t) = Efh(�1; t)h(�2; t+�t)�g= �(�1;�t)�(�1 � �2) (3.13)When �t is zero, the autocorrelation function �(� ; 0) is simply the average poweroutput of the channel impulse response at time delay � . �(�1; 0) is also called thechannel multipath intensity pro�le (MIP) or the delay power pro�le (DPP). Therange of � over which the DPP is essentially nonzero is called the multipath spreador delay spread of the channel as denoted by Tm. The DPP power output value is at� = 0 when the �rst multipath signal is received, so the power amplitude decreasesas � increases. Therefore, the longer the path propagates through space, the more itspower dissipates to the environment before reception. An urban environment typicallyprovides di�erential path time delays ranging from less than 1�s up to 10� 20�s [30][32].Taking the Fourier transform of the DPP, the space-frequency autocorrelation48



Frequency-nonselective channel Frequency-selective channelsymbol period T � delay spread Tm symbol period T � delay spread TmSignal BW Wss � Coherence BW Bm Signal BW Wss � Coherence BW BmTable 3.1: Criteria for frequency-nonselective and frequency-selective channelfunction can be expressed as�(f ; 0) = Z 1�1 �(� ; 0)e�j!c�d� (3.14)which gives a measure of the channel's coherence bandwidth Bm � 1=Tm. The co-herence bandwidth denotes the frequency range over which the correlation is close tounity. In other words, two sinusoids with a frequency separation greater than Bm willbe a�ected di�erently by the channel.A channel is called frequency-nonselective or at fading when Bm � Wss, that is,when the coherence bandwidth Bm is large in comparison to the bandwidth of thetransmitted signalWss [29]. On the other hand, a channel is called frequency-selectivewhen Bm � Wss, that is, when the coherence bandwidth Bm is small in comparisonto Wss.In fact, in a frequency-nonselective channel where Wss � Bm, the received signalcan be modelled as simply the transmitted signal multiplied by a complex-valuedGaussian random process of the channel impulse response [29]h(0; t) = %(t)ej!c� (3.15)which means that the signals in a at fading channel experience the same fad-ing/channel gain. In this case, the multipath components are not resolvable becauseWssTm � 1. Therefore, 1=Wss represents the time resolution, i.e., the minimum timedelay between received paths that is required at the receiver before the paths can bedistinguished.When the channel is frequency-selective, i.e. whenWss � Bm, there typically existat least J = Wss=Bm = TmWss resolvable paths [29]. Two multipaths are said to be49



Fast fading channel Slow fading channelHigh Doppler spread Low Doppler spreadCoherence time TD < Symbol period T Coherence time TD > Symbol period TTable 3.2: Criteria for fast fading and slow fading channelresolvable when they fade independently, with each kth multipath of the ith mobileexperiencing di�erent channel gain of %ik(t)e�j!c�ik . Therefore, the use of widebandsignals, such as CDMA, may be viewed as another method for obtaining frequencydiversity of order J [29]. The optimum receiver for processing the frequency-selectivewideband signal is called a RAKE correlator or a RAKE matched �lter [29].Second, the time-variation of the channel due to Doppler e�ects can be charac-terized by the Doppler spread and coherence time. The time-varying nature of thechannel can be caused either by the relative motion between the mobile and basestation, or by the movement of objects in the channel. The Doppler spread BDand coherence time TD are parameters which describe the time-varying nature of thechannel in a small-scale region. For a mobile communications channel, the maximumDoppler spread in Hz is calculated as [22]BD = vfcc (3.16)where v is the mobile velocity assuming the base station is stationary, c is the speedof light for electromagnetic waves traveling in space, and fc is the carrier frequencyof the signal. The coherence time can be approximated as [29]TD � 1BD (3.17)The Doppler spread is a measure of the spectral broadening caused by the changeof the mobile radio channel and is de�ned as the range of frequencies over which thereceived Doppler spectrum is essentially non-zero. Table 3.2 summarizes the criteriafor fast and slow fading channels. If the baseband signal bandwidth Wss is muchgreater than BD, then the Doppler spread e�ects are negligible at the receiver [32].50



3.4 Linear Diversity CombiningAs discussed, wireless propagation introduces amplitude uctuations and phase shiftsto transmitted signals such as short-term Rayleigh fading which may introduce asevere performance degradation. A most common and widely used receiver structureto combat the short-term fading e�ect is to employ a diversity combining technique.The diversity operations presume the availability of M distinguishable indepen-dently faded signal-transmission channels, referred to as diversity branches. In par-ticular, for a space diversity receiver topology, these M diversity branches are widelyspaced antennas where independent faded signals are received at each antenna ele-ment. In this thesis, the space diversity receiver topology is considered only for lineardiversity combining. Note that diversity combining teahniques assume that long-termfading a�ects all diversity branches identically. Thus, diversity combining techniquescompensate only for short-term fading e�ects [1] [35].A general linear combining technique of M diversity branches involves combiningeach branch with a weight, wk(t), in order to improve reception SINR gain.y(t) = k=MXk=1 wk(t)�xk(t) (3.18)where wk(t) is the kth branch's weight, (�)� represents the conjugate of (�), M isthe number of diversity branch available, and the kth received baseband signal isrepresented as xik(t) = %i;k(t)e�j!c�ikAi(t)ui(t) + iik(t) + nik(t)= Hik(t)Ai(t)ui(t) + nk(t)= gk(t)ui(t) + nk(t) (3.19)where ui(t) is the baseband transmitted binary information signal equivalent at alldiversity branches, Ai(t) is the transmitted signal power of the ith mobile which issame at all diversity branches,Hik(t) is the kth diversity branch impluse response thatcomposed of a channel gain %i;k(t) and a channel phase shift !c�ik, nik(t) is the kth51



branch Additive Gaussian white noise of the ith mobile and nk(t) is the interference-plus-noise signal. Thus, the linearly diversity combined signal-to-interference-plus-noise ratio can be expressed asSINR = jPk=Mk=1 wk(t)�gk(t)j2jPk=Mk=1 wk(t)�nk(t)j2 (3.20)The well-known and widely used linear diversity combining techniques are se-lection combining (SC), maximal-ratio combining (MRC), and equal-gain combining(EGC), which are reviewed briey.3.4.1 Selection CombiningIn a selection combining, the receiver swiches to the highest signal-to-interference-plus-noise signal branch received from these M diversity branches at any instant oftime. That is wk = 8><>: 1 for k = j0 for k 6= j (3.21)in Equation (3.18) with xk(t) > xj(t) for all j = 1; 2; :::;M and k 6= j.The concept of selection combining is that when there is at least one diversitybranch receiving relatively high SINR, then the selection combiner could maintaina higher quality of reception as compared to a single antenna reception topology.The advantage of a selection combiner is the high probability of not having everydiversity branch signal experiencing a deep fade of the transmitted signals. Thedisadvantage of using selection combining is that the receiver system is dependent onthe propagation channels; if the channels are all experiencing deep fades, there willno longer be adequate SINR.3.4.2 Maximal-ratio CombiningIn a maximal-ratio combining (MRC) receiver, weights are determined at each diver-sity branch so to maximize the signal-to-interference-plus-noise power. In this thesis,52



CDMA binary information baseband signal ui(t) is spread by its PN code and orthogo-nal Walsh functions are considered where the interferer signals are assumed mutuallyuncorrelated. Therefore, the interference-plus-noise components nk(t) are uncorre-lated and the requirements for employing a MRC are acheived [1]. The maximal-ratiodiversity combining can be acheived when each kth branch weight in Equation (3.18)is proportional to the root mean square of the desired signal power at the kth branchand inversely proportional to the mean square noise in that branch. Mathematically,wk(t) = gk(t)�Efjnk(t)j2g for all k = 1; 2; :::;M (3.22)where gk(t)� is the conjugate of gk(t) which phase aligns every branch and allowscoherent addition of the signals from each branch, Ef(�)g represents the expectationoperation. The maximal-ratio combined signal SINR can be shown to beSINR = k=MXk=1 SINRk (3.23)where SINRk = Efjgk(t)j2gEfjnk(t)j2g is the signal-to-interference-plus-noise ratio of the kthbranch signal received.The advantage of using maximal ratio combining is that it provides the maximumSINR gain compared to using other classical types of combining. The disadvantage ofMRC is the intensive signal processing required to estimate the channel parametersincluding gain, phase shift as well as the averaged interference-plus-noise power. Notethat MRC is similar to optimal SINR beamforming.3.4.3 Equal-gain CombiningEqual-gain combining (EGC) sets all branch weights amplitudes to unity and sets theweight phase opposite to that of the signal in the respective branches [35]. That issetting w(t) = [ej�1(t); ej�2(t); � � � ; ej�M(t)]T (3.24)in Equation (3.18). EGC is simply a phase-locked addition of all branches thatincoherently summing the noise and coherently summing the signals. The advantage53



of using the EGC is its simplicity and is statistically e�ective in achieving diversityresults. However, when there are relatively deep faded signal branches that are beingcombined, the resultant equal-gain combined signal will reduce the overall signal-to-interference-plus-noise ratio. Therefore, the assumption of equal noise levels in allbranches is crucial to proper operation of this EGC [35].3.5 The IS-95 reverse linkThe second-generation IS-95 CDMA common air interface standard proposed byQualcomm was formally adopted as the North American digital cellular standardIS-95 on July 16, 1993. Preliminary �eld trials of IS-95 have demonstrated that aCDMA cellular system can increase capacity by 10 to 20 times over that of an analogcellular system under realistic channel conditions [30].The rest of this thesis investigates array signal processing applications to an an-tenna array at the base station of a CDMA cellular system. This can further improvethe received SINR at the base station which will in turn increase the cell capacity.Only the reverse link (mobile-to-base-station) of the IS-95 standard is reviewed here.It is assumed that only the base station is equipped with an antenna array but notthe handset due to cost and power consumption limitations.3.5.1 The reverse link/uplink channel waveformThe IS-95 uplink employs PN spread spectrummodulation using a length 215�1 shortcode sequence of chip rate 1:2288Mcps. The standard 215 � 1 short code states areaugmented with the 0 state to obtain a sequence of length 32768. Note that the shortcode used here is the same as the short code used for the forward (base-to-mobile)link where the base station distinguishes di�erent mobiles by the use of a very long(242 � 1) PN sequence with each user having a di�erent time o�set and code word.Therefore, each user has his/her own unique long code PN sequence.The information bits are transmitted at 9:6kbps and are segmented into 50 frames54



of 192 bits each, corresponding to 20ms in time. Each frame is then convolutionallyencoded using a rate 1=3 code (three encoded binary symbols per information bit)of constraint length 9 giving an encoded bit rate of 28:8kbps. The convolutionally-encoded information is then grouped in sets of six symbols to form code words. Thesecode words are used to select between 64 di�erent orthogonal Walsh function chipsequences of chip rate 307:2kcps for transmission via 64-ary orthogonal modulation.The Walsh chips are then direct-sequence spread with the mobile's long code sequenceat 1:2288Mcps. The data stream is then split into in-phase and quadrature phasestreams where each is further modulated with the short codes at chip rate 1:2288Mcpsand then modulated with a carrier frequency at 1:9GHz. It can be noted that thespreading gain provided by the IS-95 uplink is only 1228800=307200 = 4. The rest ofthe performance gain can be attributed to coding.To maximize system capacity, the reverse link imposes power control where thehandset transmission powers are adjusted so that the received signal-to-noise ratiosEb=N0 at the base station are equal for every handset. Power control combats theperformance impairment known as the near-far problem when interfering mobiles nearthe base station create more interference for more distant mobiles.3.5.1.1 Base-station receiverFor uplink reception, the base station uses dual antenna diversity in each 120o sector toprovide path diversity. Path diversity of independently faded paths can be arti�ciallyobtained by widely separating the antennas for each sector. Path diversity can alsobe used on individual antenna elements in frequency selective mobile channels inwhich more than one signal path will be received as reviewed in the previous section.Multipaths arriving at the antenna array with more than one chip delay Tc will fadeindependently because PN sequences have nearly zero correlation for time o�setsgreater than one chip. The RAKE receiver for combining the orthogonal signals iscalled a non-coherent RAKE [29].For a given desired ith mobile, a corresponding ith non-coherent RAKE receiver55



with correlators Jc is used to despread Jc paths. Then, a front-end scanner continu-ously monitor all six antenna outputs for multipath signals and chooses the J < Jcstrongest multipaths for RAKE combining, based on received signal power.3.6 State-of-the-Art Array Signal Processing ap-plications to CDMA Cellular CommunicationSystemsAs reviewed here and in the previous chapter, adaptive antenna array beamformingin cellular CDMA communication systems holds great potential for improving signal-to-interference-noise ratios and thereby achieving higher cell capacity. An adaptivebeamforming network spatially �lters the in-band interfering mobiles by adaptivelyupdating the weight vector of each beamformer so as to steer the main beam lobe tothe direction-of-arrival (DOA) of the desired mobile. Traditional eigen-based beam-forming techniques require iterative and computationally-expensive batch processing[23] [24] [25]. The goal of this research is to achieve higher capacity and coveragein future multimedia cellular CDMA systems by using an adaptive antenna arraybeamforming network at the base station. Motivated by adaptive beamforming tech-niques, we review here related state-of-the-art adaptive beamforming techniques forbase-station antenna arrays.Naguib and Paulraj [24] [25] showed that updating beamforming weights for eachmobile in a multi-beamforming network can be expensive depending on how theestimates are being calculated. From Chapter 2, the signal-to-interference-noise ratio(SINR) optimum beamforming weight wopti;l for the ith mobile and lth path requires:(i) the array response, ai;l 2 CM�1, and(ii) the inverse of the batch processing interference-noise covariance matrix, R�1IN;i;l 2CM�M, i.e., wopti;l = �R�1IN;i;lai;l (3.25)56



where ai;l = [a1; ::::; aM]T 2 CMx1 is the ith mobile's lth multipath unit channel arrayresponse vector,M is the number of antenna elements, � is a scalar, and C is the com-plex domain. The estimation of (i) & (ii) requires the formation of a pre-correlationautocovariance matrix Rxx as well as the ith mobile's lth multipath post-correlationautocovariance matrix Rzzi;l [24] [25].The adaptive beamforming method proposed in [24][25][27] for a CDMA envi-ronment is computationally very expensive, since there are 1228800 (PN chips persecond) pre-correlation vectors x(t) per user per second and 307200 (Walsh chips persecond) post-correlation vectors zi(n) per user per second in IS-95. As shown in [25]and [24], Naguib and Paulraj had formulated the pre-correlation matrix asRxx = Efxxyg = Pi;lai;layi;l +RINi;l (3.26)where L is the spread spectrum processing gain, Pi;l is the total receiving power ofthe ith mobile's lth path, and RIN is the interference-plus-noise correlation matrix.They also formulated the post-correlation matrix is asRzzi;l = LPi;lai;layi;l +RINi;l = (L� 1)ai;layi;l +Rxx (3.27)These pre-correlation and post-correlation matrices giveRzzi;l �Rxx = (L� 1)ai;layi;l (3.28)and the estimate of the interference-plus-noise correlation matrix R̂INi;l asR̂INi;l = LL � 1(Rxx � 1LRzzi;l) (3.29)From equation (3.30), it then follows thatRzzi;lai;l �Rxxai;l = (L� 1)ai;l (3.30)Therefore, the channel array response vector can be estimated by solving for theprincipal eigenvector corresponding to the maximum eigenvalue �max of the matrixpencil of Rzzi;lai;l � �Rxxai;l. A matrix pencil represents the set of all matrices of57



the form A � �B where A and B are two M �M matrices with � 2 C [13]. Theeigenvalues of the pencil elements of the set �(A;B) are de�ned by�(A;B) = f� 2 C : det(A � �B) = 0g (3.31)That is, if � 2 �(A;B) andAv = �Bv where v 6= 0 (3.32)then v is referred to as an eigenvector of A��B. Solving for the principal eigenvectorof equation (3.32) is equivalent to solving a generalized eigenvalue problem ofRzzi;lai;l = �Rxxai;l (3.33)To avoid accumulation of numerical errors generated from recursive updating of theestimated covariance matrices by eqn.(2.69), the square matrix of Rxx is used. Thesquare root R1=2xx of a positive de�nite matrix Rxx always exists [13]. Rxx is de�nedas positive de�nite matrix due to white additive Gaussian noise.�R�1=2xx Rzzi;lR�y=2xx ��R1=2xx ai;l� = � �R1=2xx ai;l� (3.34)Therefore the channel array response vector can be estimated from Equation (3.34)as âi;l = R�1=2xx ei;l (3.35)The iterative power method is used to calculate the principal eigenvector ei;l corre-sponding to the largest eigenvalue of R��=2xx Rzzi;lR1=2xx .One drawback of an iterative eigen-decomposition method, such as the powermethod, is that its computational complexity may be unbounded, depending on theeigenvalue spread.3.6.1 2D-RAKE Receiver for Frequency-selective fadingFor the CDMA IS-95 standard, a one-chip path di�erential delay corresponds to adi�erential path distance of 250 meters. Therefore, signals arriving at the base-station58
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Figure 3.3: 2D-RAKE receiverwith a di�erential delay of more than one chip will very likely be coming from di�erentdirections [30]. This e�ect is especially pronounced in heavily built-up urban areas.Therefore, angle-of-arrival diversity techniques can also be used for the optimal RAKEreceiver in an IS-95 system.Khalaj, Paulraj and Kailath introduce the concept of a 2D RAKE receiver toconstruct a space-time receiver [20]. The 2D RAKE can exploit the temporal andspatial structure of the individual paths arriving at the receiver by �rst beamformingeach of the J paths from the M-element array, then delaying each by the estimatedchannel delay, and �nally coherently combining the J paths in order to further improvethe SINR. Figure 3.3 shows a 2D-RAKE receiver structure where spatial �ltering isperformed for each path before combining [20].3.7 SummaryThis chapter has reviewed CDMA direct sequence modulation techniques and con-cepts, and has also examined a general Rayleigh multipath environment for a cellularsystem. Current state-of-the-art array signal processing techniques for digital beam-forming with base station antenna arrays were also outlined. These computationally-expensive methods motivate a new approach toward a computationally e�cient and59



statistically stable noniterative beamforming algorithms.
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Chapter 4Noniterative Rank-1 Signal SubspaceUpdate AlgorithmIn this chapter, we describe a Noniterative Rank-1 Signal Subspace eigenstructureUpdate (NR1SSU) algorithm and apply it to a beamforming network in a CDMAcellular communication system. The application of NR1SSU is motivated by theintensive computation required in array signal processing. In addition, using an iter-ative eigendecomposition method could lead to unbounded computational complexitywhen the largest eigenvalues di�er by an arbitrarily small amount [23]. Section 4.1states the existing limitations on digital beamforming algorithms which inspired therecent work by Naguib and Paulraj [25] [27] [26] [24]. The concept of noniterative, nu-merically stabilized, and e�cient subspace tracking is reviewed in Section 4.2. Section4.3 derives and develops the mathematical model of the received signal vector at thebase station. The noniterative subspace tracking is then incorporated into a genericCDMA system as well as the IS-95 CDMA system. In addition, an eigenbased inversecovariance matrix is computed to achieve maximum signal-to-interference-plus-noiseratio (SINR). Section 4.6 presents the NR1SSU computation complexity per weightvector update. 61



4.1 Motivation of using NR1SSUIn practice, the performance of an adaptive array critically depends on the conver-gence rate that can be achieved. As reviewed in Chapter 2, the iterative power methodand the LMS algorithm may result in slow adaptive weight vector convergence to theoptimumWiener solution depending on the eigenvalue spread of the estimated corre-lation matrix used [23]. One way to circumvent the convergence rate dependence oneigenvalue distribution is to employ a direct method of adaptive weight computation,based on the sample covariance matrix of the signal environment. One example isthe RLS algorithm discussed in Chapter 2. The RLS algorithm directly estimates thesecond-order statistics for the optimum Wiener solution when a reference signal isprovided. The RLS algorithm computation is independent of the eigenvalue spread,and often converges much faster than the power method or the LMS algorithm. How-ever, the RLS algorithm is computationally expensive and the di�erence equations forupdating the inverse covariance matrix in equation (2.71) are numerically unstable[17].From Chapter 2, the adaptive Wiener solution to the optimum beamformer re-quires knowledge of the desired signal array response vector. In [25] [24] [26], asreviewed in Chapter 2, the weight vector update method proposed by Naguib andPauraj shows that the desired signal channel array response vector can be estimatedby the principal eigenvector of R�1=2xx Rzzi;l (R1=2xx )y, i.e.,�R�1=2xx Rzzi;l(R�1=2xx )y��R1=2xx ai;l� = � �R1=2xx ai;l� (4.1)Naguib and Paulraj employ the iterative power method to solve this generalizedeigenvalue problem which possesses unbounded complexity and slow convergence.Although [25] uses a recursive direct inversion method to estimate the optimal weightvector for beamforming, it is again eigenvalue-spread dependent.This eigenvalue convergence problem motivates us to investigate a noniterativesubspace decomposition method [6] for data-adaptive optimal beamforming for base-station antenna arrays in a CDMA cellular communication system. The NR1SSU62



algorithm e�ciently computes rank-one updates of the eigenstructure of matricesand is numerically stable [5] [6], as discussed in the next section. This novel appli-cation of subspace decomposition forms the core of this thesis investigation. Section4.3 presents our formulation of the noniterative subspace update algorithm and itsapplication to a generic CDMA system as described in Chapter 2 and to the IS- 95cellular communication system.4.1.1 Rank-one update for time-varying statisticsIn a mobile communication channel, mobile user signal statistics are time-varying,depending on the motion of the user as well as the changing environment. The time-varying covariance matrix can be estimated by an exponentially-weighted rank-onecovariance matrix which adapts to time-varying statistics [5] [6] [34]. The memoryfactor, �, of an exponentially-weighted rank-one covariance matrix deemphasizes olddata while updating the covariance matrix by adding the outer product of the newreceived array vector. The covariance matrix of the received array signal can be esti-mated by exponentially weighting the rank-one update covariance matrix as reviewedin Chapter 2, equation (2.70). The recursive exponentially weighted covariance esti-mate R̂xx(k) at time index k can be expressed asR̂xx(k) = Efx(k)x(k)yg = (1 � �) kXn=1�k�nx(k)x(k)y= �R̂xx(k � 1) + (1� �)x(k)x(k)y (4.2)where the memory factor 0 < � < 1, x(k) is the kth snapshot of array output data,and the recursion is initialized at time zero with R̂xx(0) = 0. Note that the larger thememory factor, the less deemphasis of old data, while the smaller the memory factor,the greater the deemphasis on old data. This memory factor controls the amountof data used in the averaging process and hence the degree to which the covarianceestimate can adapt to the time variations in the signal. In extreme case of � = 0,the covariance estimate totally ignores the old data. However, this will cause rapidlyvarying estimates of the covariance matrix because of the lack of averaging of the63



stochastic process. When the memory factor equals unity, there is no adaptation tonew data of the time-varying covariance matrix estimate. This again fails to estimatethe covariance matrix. Therefore, the appropriate memory factor must be chosen toproperly trade-o� between stability and adaptation speed.The matrix in Equation (4.2) can also be estimated through a rank-one eigenstruc-ture update that recursively uses the previous known or estimated eigendecomposi-tion of the covariance matrix, R̂xx(k � 1) = Qk�1Dk�1Qyk�1 to estimate the currenteigendecomposition R̂xx(k) = QkDkQyk .Mathematically, a rank-one eigenstructure update of equation (4.2) can be ex-pressed as R̂xx(k) = �Qk�1Dk�1Qyk�1 + (1� �)x(k)x(k)y (4.3)where Dk�1 = diag(d1; d2; � � � ; dM) 2 RM�M is the real-valued diagonal eigenvaluematrix. Note that the eigenvalues of a covariance matrix represent the power of the re-ceived signal vector which is always positive semi-de�nite, andQk�1 = [u1;u2; � � � ;uM] 2CM�M consists of the corresponding orthonormal eigenvectors um 2 CM�1 for m =1; 2; :::;M.4.2 Noniterative spherical subspace rank-one eigen-structure updateA noniterative subspace rank-one eigenstructure update can be applied to a time-varying additive-noise signal model of an M-element antenna array received signaloutput [6] [5] x(t) = s(t) + n(t) (4:4)where the M � 1 signal vector s(t) may be composed into a sum of r independentsignal vectors s(t) = rXi=1 si(t) (4.5)64



The correlation matrix Rss(t) = Efs(t)s(t)yg is of rank r and positive semi-de�niterank(Rss(t)) � r < M (4.6)and the M � 1 noise vector n(t) is assumed to be white or has been prewhitened sothat the noise variance matrix isRnn(t) = �2n(t)I (4.7)where the noise power �2n(t) may be time-varying. In other words, the noise vectorn(t) is assumed to be uncorrelated with the signal vector s(t) such thatEfs(t)n(t)yg = 0 (4.8)The correlation matrix of x(t) can then be decomposed asRxx(t) = Efx(t)x(t)yg = Efs(t)s(t)yg+Efn(t)n(t)yg= Rss(t) +Rnn(t) (4.9)Assuming that the time-varying stochastic process x(t) is ergodic for 1=(1 � �)time steps, complex-valued, and zero-mean, the covariance matrix of x(t) can thenbe estimated recursively by the rank-one eigenstructure update as stated in equation(4.3). Therefore, at the discrete update time index k, equation (4.9) can be expressedas R̂xx(k) = �Qk�1Dk�1Qyk�1 + (1� �)x(k)x(k)y (4.10)where Qk�1 = [u1;u2; :::;uM] are the eigenvectors corresponding to the eigenvaluesDk�1 = diag(d1; d2; :::; dM) 2 RM�M. Note that for a signal subspace of r independentsignal vectors, the eigenvalues are indexed in the order d1 � d2 � ::: � dr � dr+1 �dr+2 � ::: � dM where the largest r eigenvalues correspond to the r independentsignals powers and the smallest M � r eigenvalues correpond to the noise power ofn(t). Speci�cally, dr+1 � dr+2::: � dM � �2n is the noise power.65



By substituting the complex vector g = q(1 � �)Qyk�1x(k) or equivalently x(k) =Qk�1g=q(1 � �), equation (4.10) becomesR̂xx(k) = Qk�1(�Dk�1 + ggy)Qyk�1 (4.11)Using the diagonal unitary transformationG = diag  g1jg1j ; g2jg2j ; � � � ; gnjgnj! (4.12)the complex-valuedmatrix (�Dk�1+ggy) can be transformed into a real valued matrix[6] [34]. That is, by substituting the real-valued vector [1; 2; :::; M]T =  = Gyg,equation (4.11) can be written asR̂xx(k) = Qk�1G(�Dk�1 + T)GyQyk�1= Qk(�Dk�1 + T)Qyk= QkDkQyk (4.13)where Dk�1 = GyDk�1G since R̂xx(k) is symmetric and positive semi-de�nite.Equation (4.13) shows that the updated eigenvalue matrixDk = diag( ~d1; ~d2; :::; ~dM)at time index k is obtained by a rank-one modi�cation of the eigenvalue matrixDk�1 = diag(d1; d2; :::; dM) at time k � 1.In fact, there are three properties [2] [3] that will help reduce computation inmodi�ying the eigenstructure using a rank-one modi�cation of an eigenvalue matrixwith Dk = �Dk�1 + jj2(=jj)(T=jj) = �Dk�1 + ��T where f = =jj with jf j = 1and � = jj2:i) When fi = 0 for some i 2 f1; 2; :::;Mg, the corresponding ith eigenvalue andeigenvector remain unchanged since �Dkei = (�Dk�1 + �T)ei = �Dk�1ei + ffi =�Dk�1ei where ei is the ith column of M�M identity matrix, IM.ii) When jfij = 1 for some i, i.e. fj = 0 for j 6= i because jf j = 1 and Dk�1is semi-de�nite, the eigenvalues become � ~di = �di + � and � ~dj = �dj with all thecorresponding j eigenvectors remain unchanged for j 6= i.66



iii) When eigenvalues in Dk�1 have multiplicity (M� r) � 2, the vector f can bereected/rotated to give M�r�1 zero components and hence by property i) M�r�1eigenvalues and eigenvectors remain unchanged.The signal model in equation (4.13) represents a multiplicity of M� r equal noisepower spherical subspace eigenvalues, and by property iii) the vector  can be ro-tated/reected to form an vector � = HT with r + 1 non-zero components andM� r � 1 zero components. The vector  can then be grouped into two subspaces = 264 (s)(n) 375 (4.14)where the r � 1 vector (s) corresponds to the signal subspace of r independentreceived-signals and the vector (M � r) � 1, (n), corresponds to the white noisesubspace.A noise subspace block Householder transformation H(n)M�r can be applied to re-ect/rotate the multiple M� r dimensional noise subspace components into a singlecomponent [13] [5] which can be de�ned asH(n)M�r = IM�r � 2v(n)(v(n))T(v(n))Tv(n) (4.15)where v(n) = (n) + sign((n)1 ) k (n) k e1 (4.16)where e1 is the �rst column vector of an (M� r)� (M� r) identity matrix IM�r, (n)1is the �rst component of (n), and v(n) 2 R(M�r)�1. The Householder transformationis stable and by using the signum function sign(�) large errors are avoided in thefactor 2=(vTv) when (n) is close to a multiple of e1 [13]. Note that the Householdertransformation does not change the span of these subspaces and that the Householdertransformation is computationally e�cient and numerically stable [6] [13] [5].A Householder transformationH = 264 Ir 00 H(n)M�r 375 (4.17)67



deates an M�M eigenproblem into an (r+1)� (r+1) eigenproblem, where H(n)M�rde�ned in Equation (4.15).As to further reduce computation, when the signal subspace can be approximatedby a multiplicity of r eigenvalues, an M�M eigenproblem can be deated into a 2�2noniterative closed-form eigenproblem [6]. This 2�2 closed-form eigendecompositionis obtained by averaging the eigenvalues of the signal subspace and applying the signalsubspace block Householder transformation to the r components of (s) [6] [18].After taking at least M snapshots at the antenna array output, the sphericalsubspaces of the signal eigenvalues and noise eigenvalues contained in diagonal matrixDk�1 of the r signal subspace eigenvalues are replaced by d(s) = (d1+ d2+ � � �+ dr)=rand the M� r noise subspace eigenvalues are replaced by d(n) = (dr+1 + dr+2 + � � �+dM)=(M� r) where the rank of the signal subspace has to be less than the totalnumber of antenna elements. The deation operation can be expressed as�Dk�1 = 2666666664 d1 0 0 00 d2 0 00 0 � � � 00 0 0 dM 3777777775 � � 264 d(s)Ir 00 d(n)IM�r 375 (4.18)It has been shown that sphericalizing a signal subspace can enhance the robustness ofsignal subspace eigenvector estimation especially at low SNR [6] [31]. When the signalpower is close to the noise power, the signal array response vector can be lost in thenoise subspace. By averaging the signal subspace eigenvalues, the \averaged" signaldimensions will be tracked as long as the signal subspace has higher eigenvalues/powerthan the noise subspace. This is the case since eigenvectors with closely spacedeigenvalues are more sensitive to perturbations than eigenvectors with well-separatedeigenvalues.In a manner analogous to the noise subspace, the signal subspace block House-holder matrix is de�ned as [6]H(s)r = Ir � 2v(s)(v(s))T(v(s))Tv(s) (4.19)68



where Ir is a r � r identity matrix, v(s) 2 Rr�1, andv(s) = (s) + sign((s)r ) k (s) k er (4.20)that er is the rth column vector of a r�r identity matrix and (s)r is the rth componentof (s)r .Equations (4.19) and (4.15) can then be combined to form a block Householdertransformation H = 264 H(s)r 00 H(n)M�r 375 (4.21)that deates the M � M eigenproblem of equation (4.13) to a 2 � 2 closed-formeigenproblem. In fact, H serves to concentrate all the power in the vector  into twoscalar components representing spherical signal and noise subspaces, respectively.By substituting the block Householder deation matrix into the rank-one eigen-value matrix update [6],� = HT = H= [0; � � � ; 0; �r; �r+1; 0; � � � ; 0]T= [0; � � � ; 0; k (s) k; k (n) k; 0; � � � ; 0]T (4.22)where k (s) k= (Prj=1 2j ) 12 = �r and k (n) k= (Pnj=(r+1) 2j ) 12 = �r+1. The real-valuedrank-one update eigenvalue matrix of equation (4.13) becomes�Dk�1 + T= �264 d(s)Ir 00 d(s)IM�r 375+ (1� �)T= 264 H(s)r 00 H(n)M�r 3750B@� 264 d(s)Ir 00 d(n)IM�r 375+ ��T1CA264 H(s)r 00 H(n)M�r 375T= H2666666664 �d(s)Ir�1 0 0 00 �d(s) + �2r �r�r+1 00 �r+1�r �d(n) + �2r+1 00 0 0 �d(n)IM�r�1 3777777775HT69



= H2666666664 �d(s)Ir�1 0 00 Q2264 �1 00 �2 375QT2 00 0 �d(n)IM�r�1 3777777775HT= H2666664 Ir�1 0 00 Q2 00 0 IM�r�1 37777752666666664 �d(s)Ir�1 0 0 00 �1 0 00 0 �2 00 0 0 �d(n)IM�r�1 37777777752666664 Ir�1 0 00 Q2 00 0 IM�r�1 3777775THT (4.23)The whole problem is now deated to a 2x2 eigenproblem�D(2)k�1 + �(2)(�(2))T = 264 �d(s) + �2r �r�r+1�r+1�r �d(n) + �2r+1 375 = Q2 264 �1 00 �2 375QT2 (4.24)where �(2) = [�r�r+1]T, D(2)k�1 = 264 d(s) 00 d(n) 375 (4.25)the 2 � 2 eigenvectors matrix Q2 = [q1q2] and the correponding two eigenvalues, �1and �2, can be solved for in closed-form.The eigenvalues can be determined through the determinant of equation (4.24)������� �d(s) + �2r � �i �r�r+1�r+1�r �d(n) + �2r+1 � �i ������� = 0 (4.26)which involves solving the characteristic equation for i = 1; 2�2i � ��(d(s) + d(n)) + �2r + �2r+1��i + �2d(s)d(n) + �(d(s)�2r+1 + d(n)�2r) = 0 (4.27)Consequently, for i = 1; 2, the eigenvalues can be found in closed-form by�i = �b�pb2 � 4ac2a (4.28)70



where a = 1, b = �(d(s)+ d(n))+ �2r + �2r+1, and c = �2d(s)d(n)+�(d(s)�2r+1+ d(n)�2r+1).The eigendecomposition of the 2� 2 matrix in equation (4.24) can be representedas ��D(2)k�1 + �(2)(�(2))T�qi = 264 �d(s) + �2r �r�r+1�r+1�r �d(n) + �2r+1 375qi = �iqi (4.29)for i = 1; 2. Equivalently,��D(2)k�1 � �iI2 + �(2)(�(2))T�qi = � ~Di + �(2)(�(2))T� = 0 (4.30)where ~Di = �D(2)k�1 � �iI2.Theorem 5 in [3] states that for an invertible matrix A 2 RM�M, u 2 RM�1, andan arbitrary scalar � 6= 0, given any vector b 2 RM�1 the following two equations areequivalent �A + �uuT�q = b (4.31)and q = A�1b � �A�1u (4.32)where � is arbitrary scalar.Therefore, setting A = ~Di, � = 1, u = �(2), b = 0, and q = qi, the orthonormaleigenvectors of equation (4.24) can be determined in closed-form for i = 1; 2 asqi = � ~D�1i �(2)j ~D�1i �(2)j = � (�Dk�1 � �iI2)�1 �j (�Dk�1 � �iI2)�1 �j= 0B@� 264 d(s) 00 d(n) 375� �iI21CA�1 264 k (s) kk (n) k 375��������0B@� 264 d(s) 00 d(n) 375� �iI21CA�1 264 k (s) kk (n) k 375�������� (4.33)The updated eigenvector matrix estimate Q̂k will then beQ̂k = [Q(s)k�1G(s)H(s);Q(n)k�1G(n)H(n)]2666664 Ir�1 0 00 Q2 00 0 IM�r�1 3777775 (4.34)71



Note that because of the Householder transformation matrix property of rank-onemodi�cation of an identitymatrix, the signal subspace Householder post-multiplicationQ(s)k�1G(s)H(s) = Q(s)k�1G(s) � 2(v(s))Tv(s) �Q(s)k�1G(s)v(s)� (v(s))T (4.35)requires only 8Mr + 2r + 1 real-real multiplications (ops), where Q(s)k�1 is an M� rcomplex matrix, G(s) is the unitary transformation complex-valued diagonal matrixof r� r, and v(s) is the real-valued r� 1 vector. Note that a "op" represents a real-real multiplications throughtout this thesis. Arithmetic additions or subtractions arenot included in the computation.The noise subspace Householder post-multiplication is given byQ(n)k�1G(n)H(n) = Q(n)k�1G(n) � 2(v(n))Tv(n) �Q(n)k�1G(n)v(n)� (v(n))T (4.36)with Q(n)k�1 a M � (M � r) complex-valued matrix, G(n) an unitary transformation(M � r) � (M � r) complex-valued diagonal matrix, v(n) a (M � r) � 1 real-valuedvector, and H(n) a real-valued (M � r) � (M � r) matrix. This update requires8M(M� r) + 2(M� r) + 1 ops.Multiplying a complex valued M�M matrix A asA2666664 Ir�1 0 00 Q2 00 0 IM�r�1 3777775 (4.37)requires 4M ops. Therefore, the total number of ops required to update the eigen-vectors matrix, Q̂k, is 8M2 + 18M+ 2. Consequently, noniterative subspace trackingrequires a computation of O(M2).To maintain subspace sphericity and avoid eigenvalue iteration, the signal andnoise eigenvalues must be re-averaged before the next noniterative update can beaccomplished. For �1 > �2, the next spherical eigenvalue subspace matrix Dk isobtained by re-averaging the spherical signal subspace eigenvalued(s) = �1 + (r � 1)d(s)r (4.38)72



and the spherical noise subspace eigenvalued(n) = �2 + (M� r � 1)d(n)M� r (4.39)If re-averaging the eigenvalue subspace matrix is not performed before the next re-cursion, the rank-one eigenstructure update process reverts to an iterative one. Thisnoniterative subspace update [6] has an ability to switch between noniterative sub-space and iterative eigenstructure updates. This ability may allow for practical com-promises in implementation if eigenvalues need to be calculated.To further reduce computation, the smaller subspace may only be tracked [6], andthe larger subspace is not computed. For a signal subspace of rank r, the computationreduces to O(Mr).Noniterative tracking is generally much faster than iterative tracking and calcu-lates the eigendecomposition of the covariance matrix without dependence on eigen-value spread. The noniterative eigenvalue information is tracked only in an averagesense and is a stable process because of the well-seperated signal and noise subspaces.4.3 Application of Noniterative subspace track-ing to the CDMA System ModelWe now apply the computationally e�cient and numerically stable subspace trackingmethod discussed in Section 4.2 to adaptive array response estimation in a CDMAsystem [36].First, a generic CDMA system model is considered to develop the conditionsrequired for application of the subspace tracking method. Through the modellingand analysis in Section 4.4 which is veri�ed later by computer simulations in Chapter5, we demonstrate that the signal subspace eigenvector corresponding to the largesteigenvalue of the post-correlation autocorrelation matrix is an accurate estimate ofthe desired mobile's array response vector as long as the \code �ltering" processinggain is high enough to separate the signal and noise subspace.73



The NR1SSU algorithm and its application to IS-95 are described in Section 4.5where a detailed computational analysis is provided. This NR1SSU algorithm hasalso been tested on a PN chip-level IS-95 CDMA simulator [8] and the simulationresults are presented in Chapter 5.4.4 DS-BPSK CDMA system modelFirst we consider a direct sequence binary phase-shift-keying (DS-BPSK) CDMAsystemmodel for cellular commmunications applications in which each user is assigneda distinct pseudo-noise (PN) code that modulates a binary phase shift keying (BPSK)modulated signal. A block diagram of this DS-BPSK is shown in Figure 3.2 of Chapter3. Two system environments that perturb the transmitted signals before receptionat the base-station antenna arrays will be considered. Section 4.4.1 presents theapplication of a NR1SSU to a at slow fading propagation model that has a smallmultipath time delay spread where e�ectively only one path is received at the antennaarray of each mobile's transmitted signal. The application is then generalized to afrequency selective slow fading propagation model in section 4.4.2, in which there aremultiple echos of a transmitted signal received at the base-station antenna array. Eachreplica is attenuated with a di�erent channel gain and phase shift since these replicasof the transmitted signal experience di�erent propagation paths before reaching thebase-station.4.4.1 Case of zero multipath time delay spread propagationmodelWe consider a transmitted signal that propagates in a wireless communication channelwith zero multipath time delay spread where only one path of a transmitted signalis received. This propagation channel is classi�ed as a frequency-nonselective or atfading channel as discussed in Chapter 3.Similar to the DS-BPSK signal model of equation (3.7) in Chapter 3, the baseband74



signal vector xi(t) received at the M- element antenna array of the ith branch of aDS-BPSK CDMA network isxi(t) = [xi;1(t); xi;2(t); :::; xi;M(t)]T= NXj=1 %j(t)ej!c�i;jAj(t)cj(t� �i;j)bj(t� �i;j)aj(t) + n(t)= NXj=1qPj(t)cj(t� �i;j)bj(t� �i;j)aj(t) + n(t) (4.40)where N is the total number of in-band mobiles, cj(t��i;j) 2 f1;�1g represents the PNchips of the jth mobile with a chip period of Tc = 1=Wss, Wss is the spread spectrumbandwidth, bj(t� �i;j) 2 f1;�1g is the jth mobile's information bit sequence with in-formation period Tb = 1=B, B is the information bit bandwidth, j�i;j j 2 U(0; Tc) is theuniformly distributed di�erential time delay of the jth mobile relative to the ith mo-bile, column vector n(t) = [n1(t); ::::; nM(t)]T � N (0; �2nI) represents independent andidentically distributed Gaussian thermal noise, M is the number of antenna elementsin the base station array or sector, Pj(t) = %2jAj(t)2 is the total power received at thebase station from the jth mobile's DOA, aj(t) = [a1(�j(t)); ::::; aM(�j(t))]T 2 CM�1 isthe time-varying array response of the jth mobile, �j(t) is the time-varying DOA ofthe jth mobile, and [�]T denotes transpose of [�].Without loss of generality, for all i = 1; 2; ::::;N and j = 1; 2; ::::;N, we assumeperfect self-synchronization to the ith desired mobile at each ith branch of the network,i.e., �i;i = 0, and the signal bj(t � �i;j), chip cj(t � �i;j) and noise n(t) are mutuallyuncorrelated. The array response vectors aj(t) are assumed to be unchanged over oneinformation bit period Tb.Under the above assumptions and the derivations in Appendix A, the pre-correlationvector xi(t) of eqn.(4.40) is zero-mean and the pre-correlation covariance matrix isRxxi(t) = Efxi(t)xi(t)yg = Pi(t)ai(t) � ai(t)y + NXj=1;j 6=iPj(t)aj(t) � aj(t)y + �2nI= Pi(t)ai(t) � ai(t)y +RINi(t) (4.41)where RINi(t) denotes the interference-plus-noise covariance matrix, I is the M�M75



identity matrix, (�)y denotes transpose conjugate. At information bit n, the ith mo-bile's PN post-correlation vector, zi(n) of xi(t) over time interval Tb iszi(n) = qTb%i(t)Ai(t)bi(n)ai(n) + 1pTb Z (n+1)TbnTb n(t)ci(t)dt+ NXj=1;j 6=i 1pTb Z (n+1)TbnTb %j(t)ej!c�i;jAj(t)bj(t� �i;j)cj(t� �i;j)ci(t)aj(n)dt= qTb%i(t)Ai(t)bi(n)ai(n) + 1pTb Z (n+1)TbnTb n(t)ci(t)dt+ NXj=1;j 6=i 1pTb Z (n+1)TbnTb %j(t)ej!c�i;jAj(t)bj(t� �i;j)cj(t� �i;j)ci(t)aj(n)dt= qTb%i(t)Ai(t)bi(n)ai(n) +MAI + 1pTb Z (n+1)TbnTb n(t)ci(t)dt (4.42)where MAI stands for multiple-access interference from other users.The ith mobile's post-correlation autocovariance matrix can be de�ned asRzzi(n) � Efzi(n) � zi(n)yg 1Tc (4.43)where L = Tb=Tc is the \code �ltering" processing gain. Using results in [41] [19],1TbE "Z Tb0 ci(� )cj(� � �i;j)d�#2 = 2Tb [T 2b3L � T 2b12L2 ] ' 2Tb3L (4.44)After integration, eqn.(4.43) becomes, (see Appendix A)Rzzi(n) = LPi(n)ai(n) � ai(n)y + 23 NXj=1;j 6=iPj(n)aj(n) � aj(n)y + �2nTc I= LPi(n)ai(n) � ai(n)y + 23 0@ NXj=1;j 6=iPj(n)aj(n) � aj(n)y + �2nI1A� 2�2n3 I+ �2nTc I= LPi(n)ai(n) � ai(n)y + 23RINi(n) + �3� 2Tc3Tc ��2nI (4.45)where Pj(n) = %j(t)2Aj(t)2 is the total received power of the jth mobile.If L is large enough, such thatPEV�LPi(n)ai(n) � ai(n)y� � PEV0@23 NXj=1;j 6=iPj(n)ai(n) � ai(n)y1A (4.46)76



where PEV(�) represents the principal eigenvalue of matrix (�). We can considereqn.(4.45) as a signal-plus-noise spherical subspace problem, withRzzi(n) = LPi(n)ai(n) � ai(n)y + 23 NXj=1;j 6=iPj(n)ai(n) � ai(n)y + �2nTc I= Rssi(n) + R̂nn(n)= �s(n)âi(n) � âi(n)y + MXm=2 �m(n)um(n) � um(n)y (4.47)where �s(n) is the ith mobile's estimated channel attenuated despread signal ampli-tude, âi(n) is the estimated array response vector of the desired ith mobile at time n,�m are the eigenvalues of Rzzi(n) and um(n) are the corresponding eigenvectors form = 1; 2; :::;M and s = 1 is the signal subspace. In eqn.(4.47), the signal covariancematrix is of rank one withRssi(n) = LPi(n)ai(n) � ai(n)y = �s(n)âi(n) � âi(n)y (4.48)and the multiple access interference-noise covariance matrix isR̂nni(n) = 23 NXj=1;j 6=iPj(n)aj(n) � aj(n)y + �2nTc I (4.49)which is now approximately a spherical noise covariance matrix R̂nni(n) for largeprocessing gain L.Therefore subspace tracking can be employed successfully in a CDMA systemwhen equation (4.46) is satis�ed. That is the principal eigenvector âi(n) correspond-ing to the largest eigenvalue of Rzzi(n) is an accurate signal subspace array responsevector estimate when eqn.(4.46) holds. Simulations results presented in Chapter 5verify this noniterative subspace tracking application.From equation (4.47), the signal-to-interference-plus-noise ratio of the weightedpost-correlation vector wi(n)yzi(n) isSINRi = wi(n)y �LPi(n)ai(n) � ai(n)y�wi(n)wi(n)y �23PNj=1;j 6=i Pj(n)ai(n) � ai(n)y + �2nTc I�wi(n)= wi(n)y �Pi(n)ai(n) � ai(n)y=B�wi(n)wi(n)y � 23Wss PNj=1;j 6=i Pj(n)ai(n) � ai(n)y + �2nI�wi(n)77



= wi(n)yRssi(n)wi(n)wi(n)yR̂nni(n)wi(n) (4.50)4.4.2 Case of non-zero multipath time delay spread propa-gation modelWhen the channel produces multiple replicas of a transmitted signal, each with dif-ferent channel gain, the propagation channel model is classi�ed as frequency-selectivewith non-zero multipath time delay spread. Frequency-selective fading channel oc-curs when the system signalling bandwidth Wss is greater than the channel coherencebandwidth, i.e. Wss > Bm as discussed in Chapter 3. The frequency-selective fadingpropagation channel considered here assumed all multipaths received are resolvable[40] [29] with time resolution Tc = 1=Wss. Therefore, the number of resolvable pathsunder this frequency-selective fading propagation model is WssTm � Wss=Bm [29].The received baseband pre-correlation signal of the ith mobile's lth path in a fre-quency selective propagation model having N transmitting in-band mobiles can beexpressed asxi;l(t) = NXj=1 JjXk=1 %j;k(t)ej!c�il;jkAj;k(t)cj;k(t� �il;jk)bj;k(t� �il;jk)aj;k(t) + n(t)= %i;l(t)Ai;l(t)ci;l(t)bi;l(t)ai;l(t) + n(t)+ JiXk=1;k 6=l %j;k(t)ej!c�il;jkAj;k(t)cj;k(t� �il;jk)bj;k(t� �il;jk)aj;k(t)+ NXj=1;j 6=i JjXk=1 %j;k(t)ej!c�il;jkAj;k(t)cj;k(t� �il;jk)bj;k(t� �il;jk)aj;k(t)(4.51)for j = 1; 2; :::;N and k = 1; 2; :::; Jj where Jj is the total number of resolvable mul-tipaths of the jth mobile received at the base station, �il;jk is the di�erential timedelay of the jth mobile's kth multipath relative to the ith mobile's lth path with self-synchronization �il;il = 0, %j;k(t) is the channel attenuation factor of the jth mobile'skth path, !c�il;jk is the channel phase shift of the jth mobile's kth multipath, cj;k(t) isthe jth mobile's kth multipath's PN sequence of period Tc second, bj;k(t) is the jth mo-bile's kth multipath's information bit of duration Tb, n(t) = [n1(t); n2(t); :::; nM(t)]T �78



N (0; �2nI) is the independent identically distributed Gaussian thermal noise, andaj;k(t) = [a1(t); a2(t); :::; aM(t)]T is the time-varying array response vector which maybe more appropriately called the time-varying channel vector.Again without loss of generality, for all i = 1; 2; ::::;N, j = 1; 2; ::::;N, multipathk = 1; 2; :::; Jj from the jth mobile, and multipath index p = 1; 2; :::; Jj from the jthmobile, the signal information bit bj;k(t � �il;jk(t)), chip cj;k(t � �il;jk(t)) and noisevector n(t) are mutually uncorrelated. For mobile m not equal mobile j, i.e. m 6= j,information bits bj;k(t � �il;jk(t)) and bm;p(t � �il;mp(t)) are assumed uncorrelated aswell as cj;k(t��il;jk(t)) and cm;p(t��il;mp(t)) for allm = 1; 2; ::::;N. The array responsevectors aj;k(t) are assumed to be unchanged over one information bit period Tb.At information bit n, the post-correlation signal is thenzi;l(n) = Z (n+1)TbnTb %i;l(t)Ai;l(t)ci;l(t)bi;l(t)ai;l(t)ci;l(t)dt+ Z (n+1)TbnTb n(t)ci;l(t)dt+ Z (n+1)TbnTb JiXk=1;k 6=l %j;k(t)ej!c�il;jkAj;k(t)cj;k(t� �il;jk)bj;k(t� �il;jk)aj;k(t)ci;j(t)dt+ Z (n+1)TbnTb NXj=1;j 6=i JjXk=1 %j;k(t)ej!c�il;jkAj;k(t)cj;k(t� �il;jk)bj;k(t� �il;jk)aj;k(t)ci;j(t)dt= qTb%i;l(t)Ai;l(t)bi;l(t)ai;l(t) + SI +MAI + Z (n+1)TbnTb n(t)ci;l(t)dt (4.52)where the SI term represents self-interference of the ith mobile's l path and theMAIterm represents multiple access interference from other users.Referring to the detailed derivation in Appendix B, the pre-correlation covariancematrix with Jj resolvable multipaths for the jth mobile can be generalized from (4.41)to Rxxi;l(t) = NXj=1 JjXk=1Pj;k(t)aj;k(t) � ai;k(t)y + �2nI= Pi;l(n)ai;l(n) � ai;l(n)y +RINi;l(n) (4.53)where Pj;k(n) = %j;k(t)2Aj;k(t)2 is the total received power of the jth mobile's kth pathand assumed to be unchanged over an information bit period Tb, i.e. slow fading.79



And the post-correlation covariance matrix is generalized from (4.45) toRzzi;l(n) = LPi;l(n)ai;l(n) � ai;l(n)y + 23 JiXk=1;k 6=lPi;k(n)ai;k(n) � ai;k(n)y+23 NXj=1;j 6=i JjXk=1Pj;k(n)aj;k(n) � aj;k(n)y + �2nTc I (4.54)where the power of the time-delayed multipath signal is determined by the delaypower pro�le of the channel.Again, if L is large enough thatPEV�LPi;l(n)ai;l(n) � ai;l(n)y� � PEV0@23 JiXk=1;k 6=lPi;k(n)ai;k(n) � ai;k(n)y+23 NXj=1;j 6=i JjXk=1Pj;k(n)aj;k(n) � aj;k(n)y1A(4.55)then eqn.(4.54) can again be considered as a signal plus noise subspace problem andthe noniterative spherical subspace tracking can be applied to estimate the arrayresponse vector for the post-correlation covariance matrixRzzi;l(n) = Rssi;l(n) + R̂nni;l(n)= LPi;l(n)ai;l(n) � ai;l(n)y + 23RINi;l(n) + �3 � 2Tc3Tc ��2nI= �i;l(n)âi;l(n) � âi;l(n)y + MXm=2 �m(n)um(n) � um(n)y (4.56)where the rank of Rssi(n) is one and the eigenvector âi;l(n) corresponding to thelargest eigenvalue of Rzzi(n) in eqn.(4.56) is again an accurate array response estimateof one of the resolvable multipath DOA's of the ith mobile as long as L is large enoughsuch that eqn.(4.55) holds.The weighted signal-to-interference-plus-noise ratio for non-zero time spread mul-tipath case is thenSINRi;l = wi;l(n) �LPi;l(n)ai;l(n) � ai;l(n)y�wi;l(n)wi;l(n)yR̂nni;l (n)wi;l(n)= wi;l(n)yRssi;l(n)wi;l(n)wi;l(n)yR̂nni;l(n)wi;l(n) (4.57)80



where R̂nni;l(n) = 23 JiXk=1;k 6=lPi;k(n)ai;k(n) � ai;k(n)y+23 NXj=1;j 6=i JjXk=1Pj;k(n)aj;k(n) � aj;k(n)y + �2nTc I (4.58)Experiments conducted in metropolitan Ottawa [45] have shown that the �rstthree multipaths received of a transmitted signal capture at least 80% of the delaypower pro�le. Also, experimentsmeasured in metropolitan Toronto [4] show that witha power control scheme at a bandwidth of 1.25 MHz, a three-arm (arti�cial multipath)RAKE receiver performs at most 1.8 dB worse than an all-path RAKE receiver.Therefore, in the case of either using a 2D-RAKE receiver or a diversity RAKEreceiver, a 3-arm RAKE receiver will be assumed to su�ciently combat multipathfading. In addition, these delay spread measurement experiments provide us withimportant information of the application of noniterative subspace tracking. That is,it gives an approximate upper bound of the number of multipaths that increase eitherthe self multipath interference or the multiple access interference.4.4.3 Interference-plus-noise matrix inverse estimationFrom eqns.(4.41) and (4.45) or eqns.(4.53) and (4.56), RINi(n)�1 or RINi;l(n)�1 canbe estimated from their respective pre- and post-correlation matrices for both zeroand non-zero multipath time spreads:R̂�1INi(n) = " 3L3L � 2  Rxxi(n)� Rzzi(n)L !+ � 3� 2Tc3Tb � 2Tc��2nI#�1 (4.59)which is computationally very expensive. The matrix subtraction in eqn.(4.59) alsoposes numerical problems. From eqns.(4.47) and (4.56), we propose an alternativemethod to estimate the inverse of RINi(n) byR̂�1INi(n) = MXm=1 um(n) � um(n)y32(��m(n)� (3�2Tc)�2n3Tc ) (4.60)where ��1 = 0 and ��m = �m for m = 2; 3; :::;M. This eliminates the batch processingand dramatically reduces the adaptive beamforming weight computation. However,81



accurate eigenvalues estimates will be needed since a small error in �m will generate alarge error in R̂�1INi(n). There is a trade-o� between computation e�ciency and opti-mum SINR spatial �ltering for the beamforming adaptation algorithm. We may evenchoose wi(k) = ai(k), since in practice, the number of samples are limited, and the in-verse of the interference-noise covariance matrix cannot accurately be estimated. Weinstead propose to update the weight vector with an optimum SNR criterion insteadof an optimum SINR criterion (a suboptimal solution for the weighting vector).4.5 DS-QPSK CDMA system modelRecall from Chapter 3 that IS-95 CDMA system is a North American second genera-tion CDMA cellular communications standard. IS-95 uses direct-sequence quadraturephase shift keying (DS-QPSK) where the uplink mobile transmitted signal modulationis summarized in the block diagram as shown in Figure 4.1.The DS-QPSK received signal for the ith mobile demodulator at the antenna arrayis expressed in ri(t) = xIi (t) cos(!ct) + xQi (t) sin(!ct) (4.61)where xIi (t) is the in-phase received baseband signal and xQi (t) is the quadrature-phase received baseband signal. A base-station receiver structure for the ith mobileis presented in the block diagram in Figure 4.2.The digital beamformed received-signals of the in-phase yIi (n) and quadrature-phase yQi (n) can be expressed, respectively, asyIi (n) = wIi (n)yzIi (n) (4.62)and yQi (n) = wQi (n)yzQi (n) (4.63)where wIi (n) = [wI1i (n); wI2i (n); :::; wIMi (n)]T is the in-phase weight vector, wQi (n) =[wQ1i (n); wQ2i (n); :::; wQMi (n)]T is the quadrature-phase weight vector, zIi (n) is the in-phase and zQi (n) is the quadrature-phase discrete post-correlation signal after short82
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expressed asxQi (t)= [xQ1i (t); xQ2i (t); :::; xQMi (t)]T= NXj=1 %j(t)ej!c�i;jAj(t)cQj (t� �i;j)bj(t� Tc=2 � �i;j)aj(t) + nQ(t)= NXj=1qPj(t)dQSj (t� Tc=2� �i;j)dLj (t� Tc=2 � �i;j)bj(t� Tc=2� �i;j)aj(t)+nQ(t)= NXj=1qPj(t)cQj (t� �i;j)bj(t� Tc=2� �i;j)aj(t) + nQ(t) (4.65)which again is the same as the DS-BPSK in equation (4.40) and the in-phase re-ceived signal of equation (4.64) but with a quadrature phase shifted Walsh functioninformation sequence bj(t � Tc=2 � �i;j) and the PN sequence cQj (t � Tc=2 � �i;j) ofthe jth mobile's quadrature-phase short code dQSj (t� Tc=2 � �i;j) and the long codedLj (t�Tc=2� �i;j) PN sequences product, and nQ(t) is the quadrature-phase receivedsignal additive white Guassian noise array response vector.Therefore the in-phase zIi (t) and quadrature-phase zQi (t) post-correlation vectorcan be expressed by equation (4.42) with the PN sequence ci(t) and the AWGN n(t)modi�ed as follows. For the in-phase post-correlation vector, the PN sequence isreplaced by ci(t) = cIi (t) = dISj (t� �i;j)dLj (t� �i;j) (4.66)and the AWGN is now the in-phase partn(t) = nI(t) (4.67)For the quadrature-phase post-correlation vector, the PN sequence is replaced byci(t) = cQi (t� Tc=2) = dQSj (t� Tc=2 � �i;j)dLj (t� Tc=2 � �i;j) (4.68)and the AWGN is now the quadrature-phase partn(t) = nQ(t) (4.69)85



As presented above, the IS-95 in-phase and quadrature-phase DS-QPSK can beconsidered with the DS-BPSK on each in-phase and quadrature-phase demodulatedsignal as shown in section 4.3. Most importantly the NR1SSU algorithm can be ap-plied to each of the in-phase and quadrature-phase channels independently to achievemore reliable estimation under either a zero or non-zero multipath time delay spreadpropagation models.4.5.1 NR1SSU for IS-95We remark that the conventional IS-95 CDMA system only gives a PN chip spreadinggain of L =4 [30], which is insu�cient for equations (4.46) and (4.55) to be satis�ed.However, this problem may be overcome by feeding back the Walsh function corre-lation vector vi(r) [9] [7]. As shown in Figure 4.3, regenerating the Walsh functionsfrom the recovered information bits and then correlating with the PN chip post-correlated vector will yield a total code-�ltering gain of 192.75 instead of 4. In [9] [7]it is shown that with an estimation delay of one frame (20 ms) the feedback Walshfunction covariance matrix Rvvi will increase the spatial processing gain L to nearly200. Indeed, [9] [7] shows that1T 2c Rvvi(k) = (14N2wN2F + 14NwNF )Pi(k)ai(k) � ai(k)y+13NwNF NXj=1;j 6=iPj(k)aj(k) � aj(k)y + 12TcNwNF�2nI (4.70)and L � (14N2wN2F + 14NwNF )=(13NwNF ) = 34(NwNF +1) = 192:75, in which Nw = 4 isthe number of PN chips in one Walsh chip, NF = 64 is number of Walsh chips in oneWalsh function [9] [7]. The NR1SSU algorithm that uses the feedback Walsh functionpost-correlation (FWFPC) vector is summarized in the block diagram Figure 1.Instead of employing batch covariance matrix processing [25], we employed a rank-one eigendecomposition model as described in Section 4.2 which adaptively updatesthe time-varying data covariance matrix [6] [25] that allows for modelling of themotion of mobiles. By using the FWFPC vector as the FWFPC covariance matrix86



estimate update, the FWFPC covariance matrix can be estimated by the recursiveexponentially weighted covariance matrix asRvvi(k) = �vRvvi(k� 1) + (1� �v)vi(r) � vi(r)y= �vQ̂(k� 1)D̂(k� 1)Q̂(k� 1)T + (1� �v)Q̂(k� 1)g � gyQ̂(k� 1)T= Q̂(k� 1)GHHy(�vD̂(k� 1) + f � fy)H(HyGyQ̂(k� 1)T)= Q̂(k� 1)GH2666666664 �vd(s)Ip�1 0 00 Q(2) 264 �s 00 �n 375Q(2)y 00 0 �vd(n)IM�p�1 3777777775HyGyQ̂(k� 1)Twhere Q(2) = [q1; q2] is the 2x2 eigenvector matrix and 0 � �v � 1 is a memoryfactor used to deemphasize old data, g = Q̂(k � 1)Tvi(r), f = Gyg, H is the blockHouseholder transformation matrix which deates the MxM eigen-problem into anoniterative 2x2 quadratic eigenproblem as well as stablizes the subspace tracking[6], and G = diag( g1jg1j ; g2jg2j ; � � � ; gMjgMj) is the unitary transformation matrix.The application of the NR1SSU algorithm to the IS-95 CDMA system is sum-marized in Tables 1 and 2 and the block diagram representation is shown in Figure1. In Table 1, only the initialization phase at update time k = 0 needs covariancematrix batch processing to generate the eigenstructure. From time k = 1 onwards, nobatch processing covariance matrix calculation is necessary. The NR1SSU algorithmis presented in Table 2.Note that in step 11, we may further reduce computation by updating only one ofthe noise eigenvectors [3] [6] , however simulation results show that this would leadto an inaccurate array response estimate due to the fact that the noise subspace isnot perfectly spherical. 87
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For the ith mobile of the CDMA network� Initialization phase f1st frame of a new callg,1 k  0 fweight update indexg2 [w1i (k);w2i (k); :::;wpi (k)] all ones3 Rvvi(0) 04 for r = 1 to r = 96 fWalsh function index of 1 frameg5 do �v  r�1r6 Rvvi(r) �vRvvi(r� 1) + (1� �v)vi(r)vi(r)y7 [D̂vi(k); Q̂vi(k)] ITER-EIGEN(Rvvi(r))8 [D̂vi(k); Q̂vi(k)] ORDER(D̂vi(k); Q̂vi(k))9 w1i (k) âi;1(k)� Tracking phase ffor the rest of the callg10 d(s)  d111 d(n) d2+d3+���+dMM�112 D̂vi(k) 264 d(s) 00 d(n)IM�1 37513 while call 6= end14 do if ((r modulus (96�(update rate)))= 0)15 then k k + 116 [D̂vi(k); Q̂vi(k)] NR1SSU(D̂vi(k); Q̂vi(k);vi(r); �v)17 w1i (k) âi;1(k) Principal EigenvectorTable 1: The tracking algorithm for the weight vector update for the ith mobile89



NR1SSU(D̂(k-1), Q̂(k-1), y, �)1 g q(1� �)Q̂(k� 1)yy2 G diag( g1jg1j ; g2jg2j ; � � � ; gMjgMj)3 264 f (s)f (n) 375 = f  Gyg4 H HOUSEHOLDER-DEFLAT(f (s); f (n)) [6]5 b �(d(s) + d(n)) + ���f (s)���2 + ���f (n)���26 c �2d(s)d(n) + �(d(s) ���f (n)���2 + d(n) ���f (s)���2)7-8 �1  12(b +pb2 � 4c); �2  12(b�pb2 � 4c)9-10 qj  0B@�264 d(s) 00 d(n) 375��jI1CA�1264 ���f (s)������f (n)��� 375�������0B@�264 d(s) 00 d(n) 375��jI1CA�1264 ���f (s)������f (n)��� 375������� ; j = 1; 211 [Q̂(s)(k); Q̂(n)(k)] [Q̂(s)(k� 1)G(s)H(s); Q̂(n)(k� 1)G(n)H(n)]264 [q1 q2] 00 0 IM�2 37512 d(s)new  �113 d(n)new  �2+(M�2)�d(n)M�114 D̂(k) 264 d(s)new 00 d(n)newIM�1 37515 return D̂(k), Q̂(k)
Table 2: The NR1SSU procedure90



4.6 Computational complexity of the NR1SSUalgorithmReferring to Table 2, the computation complexity in ops of the NR1SSU algorithmis shown in Table 3. Flops per weight updateStep # in Table 2 # of ops1-10 4M2 + 14M + 4011 8M2 + 18M + 212-14 2Table 3: Total computation complexity of NR1SSUwhere M is the number of antenna elements used and one op represents a real-realmultiplication as described earlier in Section 4.2.In comparison, the Power method requires 4M2+8M ops per iteration [25] whichdepends on the convergence factor j�2j=j�1j, where �1 is the largest eigenvalue and�2 is the second largest eigenvalue of the matrix under considerations. When thecovergence factor j�2j=j�1j is close to unity, the convergence rate of resolving the trueeigenvalues are very slow. The eigendecomposition may not convergence at all whenj�2j=j�1j equals unity. Instead of depending on the eigenvalue spread, the NR1SSUupdates the eigenvalues and the eigenvectors directly which takes a constant numberof multiplications for each weight vector update.4.7 SummaryIn this chapter, a novel application of a subspace method to a generic CDMA anda IS-95 CDMA system has been proposed. In the IS-95 system, the in-phase andquadrature-phase signals can be used as two sources of independent data for channelarray response vector estimation. 91



Table 3 shows that a total of 12M2+32M+44 multiplications is required to performa NR1SSU algorithm weight vector update (NR1SSU array response estimate) foreither a generic CDMA system or IS-95 CDMA system. This direct eigenstructurerank-one update allows for real-time weight vector updates provided that the digitalsignal processor and the real-time signal processing cycle allows an additional 12M2+32M + 44 ops between weight vector updates.Note also that the weight vector update rate can be adjusted to reect di�erentwireless communication environments. In the case of fast fading wireless communica-tion links where transmitting signals fade rapidly and signi�cantly due to surroundingscatter, reectors, and moving objects or mobiles, the weight vector should be updatedas frequently as possible. In the case of slow fading wireless communication links, theweight vector can be updated less frequently. In the IS-95 CDMA system that usesFWFPC vector to obtain su�cient processing gain as discussed in this chapter, theweight vector update rate is restricted to one weight update per frame. In a genericCDMA system that uses the PN post-correlation vector as discussed in this chapter,the weight vector can be adjusted to be updated as often as once per informationbit provided that the processing gain constraint is satis�ed and the real-time signalprocessing cycle and the DSP processor allow for the required computations.In summary, NR1SSU allows real-time operations that e�ciently and recursivelycompute the eigen-decomposition of either the post-correlation matrix or the feedbackWalsh function post-correlation covariance matrix which accurately estimates thetime-varying array response vector from the principal eigenvector.In the next chapter, simulation results are presented for tracking performanceveri�cation.
92



Chapter 5Performance of the NR1SSU Algorithmin CDMA5.1 IntroductionIn this chapter, the application of a noniterative subspace eigenstructure array signalprocessing technique to track the array response vector of a desired mobile for increas-ing the signal-to-interference-noise ratio (SINR) in a CDMA communication systemis veri�ed via simulations. Two systems, the North American CDMA standard IS-95and a generic CDMA system, are used to evaluate the NR1SSU algorithm for trackingthe array response vector. Two propagation models, a at fading propagation modeland a frequency-selective propagation model, are considered during the evaluation ofthe NR1SSU tracking application.Increasing the received SINR essentially results in an increase in cell capacity.Therefore, in this thesis, only the SINR values are used for performance evaluation. Tofurther increase the SINR to aid in combating short term fading e�ects, the NR1SSUalgorithm is also evaluated with a beam-steered RAKE [20] receiver structure.If the received electromagnetic waves impinging on each element of the antennaarray are uncorrelated and/or if the inter-element spacing between antennas are largeenough, the received signals at each antenna elements are no longer correlated andthe combining of these uncorrelated signals is catagorized as diversity combining.93



Diversity combining that compensates for the channel gain and phase shift for eachreceived path at each antenna element is called maximal-ratio-combining (see section3.4.2) [15].Due to the fact that urban wireless communication environments are harsh, it ispossible that the received signals at each antenna element are uncorrelated even withonly a small spacing between antennas [33]. In order to strive for a robust evalua-tion of beamforming strategies to increase cell capacity, this thesis also compares aspatially correlated beamforming receiver to an antenna diversity receiver structure.This evaluation is made by comparing a beamformer that receives spatially-correlatedsignals at a set of closely spaced antenna array elements with a diversity combinerthat receives spatially uncorrelated signals at widely spaced base-station antenna el-ements.The simulation results, presented in Sections 5.2 and 5.3, demonstrate the per-formance of the NR1SSU tracking algorithm for CDMA systems as well as verifythe analytical constraints (equations (4.46) and (4.55)) derived in Chapter 4. A atfading propagation model is used in Sections 5.2 and 5.3 except Section 5.3.3, whichuses a frequency-selective fading propagation model to compare a spatial beamformerwith a beamsteered-RAKE receiver.In the case of spatially-correlated signals received for the closely-spaced antennaarray, the NR1SSU estimated array response vector is parameterized in terms of thedirection-of-arrival (DOA) for presentation purposes. This transformation from arrayresponse vector to DOA assumes that the antenna array has been calibrated. Thisallows for easier visual interpretation of the tracking of mobiles. The parameteriza-tion is achieved by averaging over the relative phase shift between adjacent antennaelements of an estimated array response vector. For an antenna array receiver withcorrelated signals, it is assumed that the received signal at each antenna element ex-periences the same channel gain and phase shift. For an antenna array receiver withuncorrelated signals, it is assumed that the received signals at each antenna elementexperience independent channel gains and phase shifts.94



5.2 NR1SSU Application to a IS-95 CDMA Sys-temIn this section, a PN chip-level IS-95 CDMA uplink simulator [9] is used for evaluatingthe NR1SSU beamforming algorithm under a at fading propagation model. This PNchip-level CDMA uplink simulator considers amplitude Rayleigh fading, propagationloss, shadowing, and power control (both perfect and imperfect) in a three-sectorlinear base-station antenna array receiver structure. In this IS-95 simulator [8], thereceived signals are assumed spatially-correlated due to the close spacing of the an-tenna elements. The at fading and slow fading propagation model considered in thischip-level IS-95 system has zero-delay-spread [8]. Only the reverse link is considered;that is, the mobile to base station link.5.2.1 Monte-Carlo array response tracking simulation re-sultsFirst, the robustness of the NR1SSU array response vector for tracking a movingmobile is evaluated through 50 Monte-Carlo trials with 10 and 3 in-band movingmobiles, respectively. It is assumed that synchronization with the target mobile'spseudo-random noise (PN) long and short code sequences is achieved.Figures 5.1 and 5.2 show, in terms of the mean and root mean square error (RMSE)of the tracked DOA estimates, the NR1SSU array response tracking performance thatuses, respectively, the ith target mobile's covariance matrixRvvi of the feedbackWalshfunction post-correlation (FWFPC) vector v [9] , and the covariance matrix Rzzi ofthe short/long code post-correlation vector z. This Monte-Carlo simulation in Figures5.1 and 5.2 was evaluated over a duration of 200 IS-95 frames with NR1SSU trackingof a target moving mobile with 9 in-band interferers. Note that the weight vector isupdated with the NR1SSU array response vector estimate only once per IS-95 frame.In this simulation, Rayleigh amplitude fading, fourth-order path loss propagation,and 8dB shadowing e�ect with perfect power control were utilized.95
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Figure 5.1: Monte-Carlo evaluation of a NR1SSU tracked moving mobile using thefeedback Walsh function post-correlation (FWFPC) covariance matrix with perfectpower control received at SNR = 7dB, 3-element 3-sector linear array having 9 movinginterferers updated once per frame with 50 trials
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Figure 5.3: Monte-Carlo evaluation of a NR1SSU tracked moving mobile using thefeedback Walsh function post-correlation (FWFPC) covariance matrix with perfectpower control received at SNR = 7dB, 3-element 3-sector linear array having 2 fastermoving interferers updated once per frame with 50 trials
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Figure 5.4: Monte-Carlo evaluation of a NR1SSU tracked moving mobile using theshort and long PN code post-correlation covariance matrix with perfect power con-trol received at SNR = 7dB, 3-element 3-sector linear array having 2 faster movinginterferers updated once per frame with the 50 trials of Figure 5.3
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Under the same run with 9 interferers, Figure 5.1 shows that the NR1SSU tracksthe direction of arrival accurately within 0.25 degrees when using the FWFPC co-variance matrix, while in comparison the NR1SSU tracks poorly when using the PNchip post-correlation matrix as shown in Figure 5.2. The reason for this is that theIS-95 system has a PN code spreading gain of 4 whereas the FWFPC vector increasesthe code-�ltering processing gain to 192.75 by incurring an estimation delay of oneframe (0.02 seconds) [9]. That is, Figures 5.1 and 5.2 exemplify the constraint ofEquation (4.46) for a zero multipath time delay spread propagation model in that ahigher processing gain results in better NR1SSU algorithm estimation.The PN code post-correlation covariance matrix Rzz is in fact the Walsh functioncovariance matrix of a IS-95 system where the Walsh functions of the reverse link carryinformation in the form of othogonal functions. In fact, the higher the processing gain,the lower the despread interfererence power in comparison to the despread desiredmobile signal since the spreading factor, L, determines how wide the interferencepower is spread over the frequency spectrum. Hence, the higher the processing gain,the more the despread interfering signals act as noise over the PN chip frequency band;however, it is a less e�cient communications system in terms of the actual informationtransfer rate. CDMA is an interference-limited communication technique where eachuser transmits at the same carrier frequency with signal power superimposed at thereceiver. Therefore, the higher the number of interferers, the higher the total noise-like power levels that are being added.Figures 5.3 and 5.4 show the performance of NR1SSU tracking a faster movingmobile with two-inband interferers. These simulations used the FWFPC and the PNpost-correlation vectors, respectively, over 500 frames for the channel array responsevector estimation with weight updates once per frame. Using the FWFPC matrixRvvi, NR1SSU tracks to within a root mean square error of 3 degrees. In comparison,by using the PN post-correlation covariance matrix RzzI , NR1SSU tracks to within aroot mean square error of 6.5 degrees. That is, when the approximations in Equation(4.46) are well-satis�ed, NR1SSU will track accurately.100



Figures 5.2 and 5.4 demonstrate the degradation in DOA estimation when con-straint equation (4.46) is not satis�ed. As shown, spike errors in DOA occur. Theestimation errors in Figure 5.3 depict a situation where there is a deep fade over aperiod of time during which equation (4.46) fails to hold. This problem is magni�edwhen the mobile is moving faster and covariance estimates are far from their asymp-totic values. For example, in Figure 5.3 the mobile is moving at least 10 times fasterthan the mobile in Figure 5.1 resulting in larger errors.For the IS-95 CDMA system, the direct calculation of the eigendecompositionusing the noniterative subspace method will track the array response vector of adesired mobile accurately when the post-correlation vector being used has a highprocessing gain. This latter situation arises when applying the NR1SSU trackingalgorithm using FWFPC as described earlier for the IS-95 system.5.2.2 Perfect power control vs. imperfect power controlIt is highly likely that signals received asynchronously at the base-station will deviateslightly from the desired power control level. Therefore, it is important to evaluate theNR1SSU algorithm with imperfect power control of the received signals at the base-station. Note that for the non-zero delay spread propagation model, the multipathecho signals receivedmay result in a larger deviation from the desired power controlledsignal. Therefore, comparison between systems that perform perfect and imperfectpower control will demonstrate the robustness of the applied NR1SSU array responsetracking algorithm in harsh propagation environments.Figure 5.5 shows a trackedmobile with 39 in-band interferers with imperfect powercontrol [7] and Figure 5.6 shows another tracked mobile in a similar situation as thatof Figure 5.5. Figures 5.7 and 5.8 show two trackedmobiles with 39 in-band interferersunder perfect power control.By comparing Figures 5.5 and 5.6 (imperfect power control) to Figures 5.7 and5.8 (perfect power control), it can be seen that the imperfect power control NR1SSUestimation error is only slightly larger than in the case of perfect power control.101
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Figure 5.5: A tracked mobile's NR1SSU DOA estimates and root mean square er-ror (RMSE) using the FWFPC covariance matrix with imperfect power control, 3-element, 3-sector linear array having 39 moving interferers
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Figure 5.6: Another tracked mobile's NR1SSU DOA estimates and RMSE using theFWFPC covariance matrix with imperfect power control, 3-element, 3-sector lineararray having the 39 moving interferers of Figure 5.5
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Therefore, the NR1SSU tracking algorithm is able to accurately track a receivedsignal under imperfect power control response. In fact, although the received signalpower deviates from the desired power controlled level, the desired signal can stillbe tracked as long as the despread desired signal power is higher than the totalinterference-plus-noise power. Indeed, the condition for using the NR1SSU trackingalgorithm can be empirically relaxed toPEV�LPiai(n) � ai(n)y� > PEV0@23 NXj=1;j 6=iPj(t)ai(n) � ai(n)y1A (5.1)5.2.3 Di�erent number of array antenna elements vs. per-formanceAs discussed in Chapter 2, the greater the number of antenna elements used, thenarrower the beamwidth of the spatial �lter and the higher the SINR will be afterbeamforming; the SINR will be increased provided that the beamformer is directedto the desired mobile. Thus, the cell capacity can be increased by using a highernumber of antenna elements. Therefore, it is valuable to consider the impact ofincreasing the number of antenna elements used with the NR1SSU algorithm for aCDMA communication system. Figures 5.9, 5.10, and 5.11 show a trackedmobile with9 interferers using, respectively, a 4-element, 6-element, and 8-element base-stationantenna linear array reception topology. These simulation results demonstrate thatusing a larger number of antenna elements improves the root mean square error onaverage over time. Therefore, it follows that using a base-station linear array topologywith a higher number of antenna elements will provide extra beamforming gain.
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Figure 5.7: A trackedmobile's NR1SSU DOA estimates and RMSE using the FWFPCcovariance matrix with perfect power control, 3-element, 3-sector linear array having39 moving interferers
105



True DOA

IN_P    

QUAD    

0 20 40 60 80 100 120 140 160 180 200
7

8

9

10

11

12

Weight update index k in frame

M
ea

n 
in

 d
eg

re
e

Mean DOA est. of a mobile using Rvv of 3 elements linear array with 39 interferers

IN_P
QUAD

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

Weight update index k in frame

R
M

S
E

 in
 d

eg
re

e

RMSE DOA est. of a mobile using Rvv of 3 elements linear array with 39 interferers

Figure 5.8: Another tracked mobile's NR1SSU DOA estimates and RMSE using theFWFPC covariance matrix with perfect power control, 3-element, 3-sector linear arrayhaving the 39 moving interferers of Figure 5.7
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Figure 5.9: A trackedmobile's NR1SSU DOA estimates and RMSE using the FWFPCcovariance matrix with perfect power control, 4-element, 3-sector linear array having9 moving interferers
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Figure 5.10: A tracked mobile's NR1SSU DOA estimates and RMSE using theFWFPC covariance matrix with perfect power control, 6-element, 3-sector linear ar-ray having 9 moving interferers
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Figure 5.11: A tracked mobile's NR1SSU DOA estimates and RMSE using theFWFPC covariance matrix with perfect power control, 8-element, 3-sector linear ar-ray having 9 moving interferers
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5.3 NR1SSU application to a generic CDMA sys-temIn this section, a generic CDMA system is used to evaluate the NR1SSU algorithmunder zero and non-zero time delay spread propagation models. These propagationmodels assumed short-term Rayleigh fading. Note that Rayleigh fading represents aworst case of multipath fading [29]. The following simulations were performed witha PN code �ltering processing gain of 128. All of the NR1SSU array response vectorestimates were obtained from the PN code �ltering post-correlation covariance matrixof Equations (4.47) and (4.56) representing the zero-delay spread and non-zero delayspread propagation models respectively which presented in Chapter 4.In the following subsections, a spatially-correlated receiver antenna linear arraytopology was used for beamforming with the signals received at each antenna elementassumed to experience the same channel gain and phase shift. For diversity combin-ing, spatially-uncorrelated receiver antenna array topology was used with the signalsreceived at each widely-spaced antenna element assumed to experience independentchannel gains and phase shifts.5.3.1 Beamformer with optimum SINR versus optimum SNRThe performance of beamforming to a desired mobile's is compared for the casesof optimum SINR and optimum SNR beamforming criteria. The rationale for SNRbeamforming is a reduction in computation. This section assumes a at fading prop-agation model and spatially correlated signals reception at the base station antennaarray, in which only one strong Rayleigh faded signal path is received at the antennaarray from each transmitting in-band mobile. This is based on the assumption thatmobile transmissions are power controlled to compensate for long-term channel uc-tuations due to shadowing and propagation loss. Therefore, the simulations assumethat all the mobiles' signals received at the base-station are independently short-termRayleigh faded with a signal-to-noise power ratio that is power controlled to 7dB.110



In the case of the optimum SINR beamforming, the adaptive weights are given bythe Weiner solution w(t) = R�1xx rxd = �R�1INa(t) = IR�1xxa(t) (5.2)as reviewed in Chapter 2 (see Equation (2.51) and Table 2.1), where � and I arescalars, rxd is the cross-correlation matrix of the pre-correlation vector and the desiredsignal vector, Rxx is the pre-correlation covariance matrix, RIN is the interference-plus-noise covariance matrix, and a(t) is the array response vector corresponding tothe narrowband frequency !c.Based on the general assumption that the desired signal is uncorrelated with theinterference and noise, the optimum SINR beamformer gives the desired mobile'sbeamformed SINR value asSINR = w(t)yEfs(t)s(t)ygw(t)w(t)yEf(i(t) + n(t))(i(t) + n(t))ygw(t)y= a(t)yR�yxx Efs(t)s(t)ygR�1xx a(�(t)a(t)yR�yxx Ef(i(t) + n(t))(i(t) + n(t))ygR�1xx a(t) (5.3)which is independent of any scalar � or I, where s(t) is the M � 1 desired signalvector, i(t) is the M � 1 total interference signal vector, n(t) is the M � 1 thermalnoise vector, and M is the number of the antenna elements.The adpative weight vectors for an optimal maximumSNR beamformer presentedas star-dotted lines that used in Figure 5.12 and 5.13 followw(t) = a(t) (5.4)where a(t) is the time-varying perfect array response vector. This SNR beamformergives the desired mobile's beamformed SINR value asSINR = a(t)yEfs(t)s(t)yga(t)a(t)yEf(i(t) + n(t))(i(t) + n(t))yga(t) (5.5)First, Figure 5.12 demonstrates the fact that when there is only one antennaelement at the base station, the beamformed SINR is the same no matter which111



beamforming criterion is used. The reason being that the weights are now scalars andare cancelled out from the numerator and the denominator in Equations (5.3) and(5.5) for both optimum SINR and SNR beamforming. Thus, the SINR for spatial�ltering with one antenna element reception depends only on the received signal'sSINR where SINR = Efs(t)s(t)ygEf(i(t) + n(t))(i(t) + n(t))yg (5.6)Note that to explore the time diversity using taps, a one antenna element receptioncan increase the SINR.Therefore, in a single antenna reception topology, the desired mobile's SINR onlydepends on the radio of the received faded desired signal power to the total receivedinterference-plus-noise power, as shown in Figures 5.12 and 5.13 with 9 and 24 inter-ferers, respectively.Antenna diversity with selection combining is the extension of single antennareception where each base-station antenna is located far enough apart to obtain in-dependently faded signals. The performance of a diversity combiner in a at fadingpropagation model will be evaluated in Section 5.3.4.With SINR beamforming weights for the linear array of each 120 degree sector,and 9 and 24 interferers, respectively, in Figures 5.12 and 5.13, the beamformed SINRfor the 9 interferers case shows a larger performance gap between the maximumSINRand maximum SNR criteria. Note that the dot-dashed line represents beamformedSINR with adpative weight vector update that follows w(t) = R̂�1xxa(t) (the SINRbeamforming criterion) and the star-dotted line represents beamformed SINR withadpative weight vector update that follows w(t) = a(t) (the SNR beamforming crite-rion), where a(t) is the perfect (actual) array response vector of the desired mobile andR̂�1xx is the inverse of the received PN chip pre-correlation vector covariance matrixestimate using recursive exponentially weighted covariance estimate.The performance trade o� of not estimating the inverse of the covariance matrix,eitherR�1xx or R�1IN , for reducing computations is shown in Figures 5.12 and 5.13. Spa-tially nulling interferers clearly depends on the distribution of the interfering mobiles.112
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Figure 5.12: SINR vs SNR optimum (using perfect array response vector) vs NR1SSUwith 10 mobiles in total
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Figure 5.13: SINR vs SNR optimum (using perfect array response vector) vs NR1SSUwith 25 mobiles in total
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In cases where the interferers' e�ective DOA is close to that of the desired mobile,the spatial �lter will not be able to discriminate the interferers from the desired mo-bile. In such a case, the received interferers and the desired mobile will experiencesimilar spatial �ltering; however, the desired signal will still be distinguishable fromthe interferers due to the assigned PN code by the virtue of a CDMA system.In practice, the base-station antenna array beamforming algorithm is limited bythe digital signal processor (DSP) available and the beamforming system's rate of ad-pative weight vector update, where a trade-o� between sophisticated signal processingalgorithms and the DSP chip's available MIPS (million instruction per second) mustbe available to accomplish such signal processing algorithm. Figures 5.12 and 5.13show that the beamformed power gain of using SNR beamforming with 24 interferershas almost half of the beamformed gain of using 9 interferers. Therefore, as the num-ber of in-band mobiles increases to a certain level where the despread-beamformedinterference signals can be modelled as white noise, then using SNR beamformingweights may be worth the relatively small performance penalty.5.3.2 NR1SSU compared to true array response vectorFigures 5.12 and 5.13 also show that the beamforming weights using the NR1SSUarray response estimates have negligible power loss compared to the beamformingweights obtained using the perfect array response vector. In Figures 5.12 and 5.13,the circle-dotted line represents the optimum SNR weight using w = â(t), where â(t)is the adaptive array response vector estimate using the NR1SSU algorithm. Thestar-dotted line represents the beamformed SINR using the SNR beamforming criteriawith the perfect array response as the adaptive beamforming weights, w = a(t).This clearly demonstrates that the NR1SSU array response estimate is an accurateestimate of the true array response vector, and results in negligible SINR loss.115
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Figure 5.14: Exploiting delay spread with NR1SSU �rst multipath array responsevector estimate in cellular channel, 10 mobiles in total
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Figure 5.15: Exploiting delay spread with NR1SSU second multipath array responsevector estimate in cellular channel, 10 mobiles in total
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Figure 5.16: Exploiting delay spread with NR1SSU third multipath array responsevector estimate in cellular channel, 10 mobiles in total
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Figure 5.17: Exploiting delay spread with NR1SSU �rst multipath array responsevector estimate in cellular channel, 25 mobiles in total
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Figure 5.18: Exploiting delay spread with NR1SSU second multipath array responsevector estimate in cellular channel, 25 mobiles in total
120



NR1SSU  
True DOA

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

time index (information bit)

M
ea

n 
in

 d
eg

re
e 

(9
−e

le
)

Mean of the estimates: path # 3 (24 interferers)

NR1SSU

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

time index (information bit)

R
M

S
E

 in
 d

eg
re

e

Root Mean Square Error of the estimates

Figure 5.19: Exploiting delay spread with NR1SSU third multipath array responsevector estimate in cellular channel, 25 mobiles in total
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5.3.3 SNR vs. 2D-RAKE receiverIn this section, we assume a non-zero time delay spread propagation model in whichthere are three e�ective multipaths. Note that this is a valid assumption since thedelay power pro�le (DPP) drops dramatically over consecutive path arrivals (�eldmeasurements show that multipaths arriving later than the third received path car-ries negligible power at a channel bandwidth of 1.25Mcps [45] [4]). Therefore, athree-arm RAKE receiver is su�cient to capture about 90% of the total power of atransmitted signal [45]. The power of each multipath is assumed to follow the delaypower pro�le (DPP) of the �rst dominant received path which is assumed to be inde-pendently Rayleigh faded on a 7dB signal-to-noise ratio (SNR). The second receivedpath assumes independent Rayleigh faded on a SNR of -2.5dB, and the third pathis independently Rayleigh faded on a -5dB SNR path [45] [29]. It is assumed thatpower control has been applied to compensate for the long-term channel uctuationsdue to propagation path loss and shadowing. Simulations were performed with both10 and 25 in-band transmitting mobiles, where the number of signals received at thebase-station at any time instant were 30 and 75 independently Rayleigh faded pathsfrom 10 and 25 transmitting mobiles, respectively.Figures 5.14-5.16 and 5.17-5.19 show tracking of the three dominant paths in a 9and a 24 interferer environment, respectively. For the second strongest path shownin Figures 5.15 and 5.18, the received array response vector tracked fairly well in the9-interferer environment, but not in the 24-interferer environment. This is due to thefact that the despread interference power plus thermal noise for 24 interferers hashigher power level than or equals to the desired despread signal and Equation (4.55)no longer holds. Similarly, based on a -5 dB Rayleigh faded third path for both 9 and24 interferers (respectively, Figures 5.16 and 5.19), the 9 interferers NR1SSU trackspoorly while the 24 interferers fails to track the very low power third path.Figures 5.20 and 5.21 show the 3-arm beamsteered RAKE base-station receiverperformance for the desired mobile as a function of the number of base-station an-tenna elements used. Again, the dotted line represents optimum SNR beamforming122
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Figure 5.20: Exploiting delay spread with true array response and NR1SSU arrayresponse estimate in cellular channel, 10 mobiles in total with beamforming weightas true array response vector
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Figure 5.21: Exploiting delay spread with true array response and NR1SSU arrayresponse estimate in cellular channel, 25 mobiles in total with beamforming weightas true array response vector
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using the NR1SSU tracked array response vector estimate, while the dashed line rep-resents the optimum SNR beamforming using the perfect array response vector forthe beamforming weights.The plus-dotted and plus-dashed lines respectively represent the optimum SNRbeamformed signal based on the �rst received path only with the NR1SSU estimateand the perfect array response vector as the beamforming weights. As shown inFigure 5.20 and 5.21, there is less than 1 dB loss incurred by using the NR1SSUarray response vector estimate beamformed signal over the perfect array responsevector beamformed signal for both 9 and 24 inteferers, respectively.Note that in this generic CDMA systemwith a non-zero time delay spread frequency-selective model, no Walsh function decision feedback is being used and the NR1SSUestimate does not incur a one frame time delay. The beamforming weight vector isbeing updated at a rate of every information bit in all the simulation results shownin Section 5.3.The crossed-dotted line represents a 3-arm selection diversity combining NR1SSUarray response estimate beamsteered-RAKE receiver which selects the highest beam-formed signal power path out of the three beamformed time-delay receivedmultipaths.The crossed-dashed line represent a 3-arm selection diversity combining perfect arrayresponse beamsteered-RAKE receiver which selects the highest beamformed signalpower path out of the three beamformed time-delay received multipaths.The circle-dotted line represents a 3-arm maximal ratio combining NR1SSU arrayresponse estimate beamsteered-RAKE receiver then maximally combines the threetime delay NR1SSU beamformed multipath signals by weighting each arm with it'smultipath perfect channel parameters (channel gain and phase shift parameters). Thecircle-dashed line represents a 3-arm maximal ratio combining perfect array responsebeamsteered-RAKE receiver. Each multipath's channel gain and phase shift at everydiscretized instant of time is assume known for the maximal ratio combining (MRC)operation.Overall, Figures 5.20 and 5.21 show the e�ect of exploiting the time delay spread125



multipaths received at the base-station. A performance increase of about 2dB gainfor selection combing RAKE and about 3dB for maximal-ratio combining RAKEis observed in both the 9 and 24 moving interferer scenarios. As shown, NR1SSUtracking is possible in the time delay spread environment.5.3.4 Diversity combiningIn the diversity combining receiver, it is assumed for each antenna element that thepropagation model corresponds to a at fading channel with zero time delay spread.The antenna array elements are assumed to be widely spaced so that independentlyfaded signals are received at each antenna element. With this widely spaced antennatopology, the received signals at each antenna element are uncorrelated and act asarti�cial multipath to combat the uctuating e�ects of fading.Figures 5.22 and 5.23 show the simulation results for using maximal ratio diversitycombining and selection diversity combining on the uncorrelated signals received ateach antenna/channel for 49 and 24 interferers, respectively. For the simulated max-imal ratio diversity combining, it has been assumed that the channel parameters areperfectly estimated, which corresponds to the upper bound of a linear diversity com-biner [35]. In comparison, the ideal maximal ratio combiner provides about 2 to 3 dBSINR gain over the selection combiner. The above simulations assumed that powercontrol compensates for the long-term fading e�ect. That is, each received signalis assumed to experience independent short-term Rayleigh fading on a 7dB averagetransmitted signal power. In other words, the received signal power at each antennaelement is assumed to be independently Rayleigh faded on a 7dB signal power forthese diversity combining simulations.5.3.5 Beamforming against Diversity combiningIn order to compare the performance of an antenna linear array topology with per-fectly correlated fading against an uncorrelated fading signals received at each antennaarray element, a beamformer and a diversity combiner were compared with respect to126
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Figure 5.22: Diversity combining of a CDMA system with a single path propagationchannel and 50 mobiles
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Figure 5.23: Diversity combining of a CDMA system with a single path propagationchannel with 25 mobiles
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their combined signal-to-interference-plus-noise ratio (SINR) under a at slow fadingpropagation model. In Figures 5.24 and 5.25, the dashed line represents antenna arraywith closely-spaced elements with an optimum SINR beamformer which described inSection 5.3.1. The crossed-dotted line and circle-dotted line represent the selectiondiversity combined and the maximal ratio combined signals' SINR performances re-spectively using a widely-spaced antenna array. Figures 5.24 and 5.25 shows similarSINR performance at di�erent interference levels of using both a spatial beamformerand a temporal diversity combiner.5.4 SummaryThis chapter has demonstrated through simulation results that the noniterative rank-one signal subspace eigenstructure update (NR1SSU) algorithm can be applied totrack the array response vector of a desired signal using the post-correlation matrix.The simulation results also demonstrated that there is a negligible power loss whenusing the NR1SSU estimated array response vector as compared to the perfect arrayresponse vector for optimal SNR beamforming. The desired signal-to-interference-plus-noise performance gap between the optimum SNR and optimum SINR beam-forming receivers is signi�cant when the number of interferers is small. For channelswith time delay spread, the beamsteered-RAKE receiver structure clearly improvedthe desired signal-to-interference-plus-noise ratio with about 1 to 2dB gain for selec-tion combining and with about 2 to 3dB gain for maximal ratio combining. Also,spatial beamsteering (i.e. beamforming) was observed to have similar performance todiversity combining under a at fading channel model.In summary, NR1SSU algorithm for array response vector estimate can be appliedto both zero delay spread at fading and non-zero delay spread frequency selectivefading propagation models. 131



Chapter 6Conclusions6.1 Thesis ConclusionsIn conclusion, the noniterative signal subspace eigenstructure update (NR1SSU) al-gorithm can be applied to track an array response vector accurately with negligibleperformance loss as compared to the true array response vector in an optimum SNRbeamformer. It has been shown that NR1SSU is a promising technique which maybe used to track a desired mobile's array response vectors in both a generic CDMAsystem as well as a IS-95 CDMA system, as long as Walsh function feedback is usedto provide a su�ciently large spatial processing gain L such that Equations (4.46) and(4.55) hold. With the proposed NR1SSU algorithm, the computationally expensiveformation of a batch covariance matrix is required only at initialization, which occursinfrequently. In addition, NR1SSU su�ciently computes the weight vector updateand is noniterative, thereby being highly applicable to real-time operations even fora large number of antenna elements. The performance gap between optimum SNRand optimum SINR beamformer is signi�cant for the case of few interferers. A beam-steered Rake combiner improves beamforming at the receiver for the realistic delayspreads encountered in cellular channels.The beamforming receiver has roughly equal performance to a diversity combinerfor the same number of antennas over a at fading channel. Therefore, enhancing adiversity system with a beamforming antenna array on each diversity branch should132



provide a large potential gain on the desired signal. When a closely-spaced base-station antenna array receiver experiences a deep fade path from the desired mobile,the beamformer may not increase the relative desired despread signal power as muchas an arti�cial diversity receiver would. This is because a diversity combiner exploitsthe independent fading channels that introduce a higher probability of having a betterreception channel whereas a beamsteered-RAKE receiver exploits only the time delaymultipath signals which depends on the delay power pro�le of the channel.6.2 Summary of the Thesis ContributionsIn summary, this thesis has made the following contributions:� A noniterative subspace eigenstructure update algorithm was implemented ina novel application to track the array response vector of the desired signal in aCDMA system.� The analytical conditions for applying a noniterative subspace method to aCDMA communication system were derived.� The precise computational requirements of the NR1SSU algorithm (in ops)per optimum SNR beamforming weight vector update was evaluated.� The performance of NR1SSU in both IS-95 and generic CDMA systems for thereverse link at the rate of one frame per weight vector update were evaluated.� The di�erences between diversity combining and beamforming base-station re-ceivers under a at fading channel at the rate of one information bit per weightvector update were evaluated.� The performance of a beamsteered-RAKE receiver which increases the desiredreceived SINR gain by exploiting the time delay multipath under a frequency-selective fading channel at the rate of one information bit per weight vectorupdate was evaluated. 133



6.3 Future workDespite encouraging results, further improvements may be realized through estimat-ing the interference-plus-noise covariance matrix for optimum SINR beamforming.The investigations described in this thesis could be extended to determine cell capac-ity.Future investigations could be performed on a higher chip rate bandwidth CDMAsystem which would provide a higher processing gain and possible multimedia wirelesscommunication such as high data rate video transmissions. Higher information bittransmission rates will have an advantage in a harsh propagation environment withsmall coherence time where the fading e�ect over an information bit is relatively at,however, with relatively higher powers of consecutive multipaths and a proportionallylarger number of non-negligible resolvable multipaths arriving [45], [29]. Relativelyhigher time delay multipaths implies that the Rake receiver will have a better advan-tage to combat the e�ects of fading which in turn should increase the SINR.In addition, speed estimation or speed classi�cations of mobiles can serve to iden-tify how frequent the weight vectors should be updated in order to reect the correctslow or fast fading environment.
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Appendix AZero time delay spread propagationmodel autocovariance matrix derivationsA.1 Pre-correlation and Post-correlation vectorsThe baseband signal vector received at the base station antenna array is [29] [19] [27][24] xi(t) = NXj=1 %j(t)e�j!c�i;jAj(t)cj(t� �i;j)bj(t� �i;j)aj(t) + n(t)= NXj=1qPj(t)cj(t� �i;j)bj(t� �i;j)aj(t) + n(t) (A.1)where N is the total number of mobiles in the current cell, cj(t � �i;j) 2 f1;�1g ofperiod Tc is the pseudo noise (PN) code at time t for the jth mobile with a time delayof �i;j 2 (�Tc; Tc) relative to the ith mobile's time delay, bj(t � �i;j) 2 f1;�1g of Tbperiod is the information bit of the jth mobile, n(t) 2 N (0; �2I) is the noise vectorat time t, aj(t) is the channel array response of the jth mobile received at time t,and qPj(t) = %j(t)e�j!c�i;jAj(t) is the jth mobile's received energy with channel gain%j(t), channel phase shift !c�i;j, and transmitted amplitude Aj(t).Without loss of generality, it is assumed that for all i = 1; 2; :::;N and j =1; 2; :::; N , synchronization with the ith mobile is possible, i.e. �i;i = 0. Also, theinformation bits bi(t � �i;j) are assumed to be mutually uncorrelated with the noise135



and the PN chip ci(t� �i;j are assumed to be mutually uncorrelated with the noise,for all i = 1; 2; :::;N and j = 1; 2; :::;N.The PN code �ltering post-correlation vector at discrete time n with a (1=Tb)sampling rate is thenzi(n) = 1pTb Z (n+1)TbnTb xi(t)ci(t)dt= 1pTb Z (n+1)TbnTb qPi(t)bi(t)ci(t)ci(t)ai(t)dt+ 1pTb NXj=1;j 6=i Z (n+1)TbnTb qPj(t)bj(t� �i;j)cj(t� �i;j)ci(t)aj(t)dt+ 1pTb Z (n+1)TbnTb ci(t)n(t)dt (A.2)The power Pj(t) and the array response vector aj(t) are assumed approximatelydo not change appreciably over the time period Tb (i.e. slow fading channel) forj = 1; 2; :::;N. Then, the PN code despread vector becomeszi(n) = qTbqPi(n)bi(n)ai(n)+ 1pTb NXj=1;j 6=iqPj(n)aj(n) Z (n+1)TbnTb bj(t� �i;j)cj(t� �i;j)ci(t)dt+ 1pTb Z (n+1)TbnTb ci(t)n(t)dt (A.3)A.1.1 The PN code pre-correlation matrix of the receivedstochastic signal vectorThe mean of the pre-correlation signal isEfxi(t)g = 0 (A.4)since the Pseudo-noise has an expected value of zero, Efcj(t)g = 0, and the thermalnoise also has an expected value of zero, Efn(t)g = 0.The autocovariance of the pre-correlation signal vector is thenRxxi(t1; t2) = Efxi(t1)xi(t2)yg 136



= NXj=1 NXk=1qPj(t1)Pk(t2)Efcj(t1 � �i;j)ck(t2 � �i;k)gEfbj(t1 � �i;j)bk(t2 � �i;k)gaj(t1)ak(t2)y +Efn(t1)n(t2)ygDue to the fact that cj(t� �j) = 0 for j�jj > Tc, therefore, the expected value ofcj(t) and ci(t) is zero for i 6= j and i; j = 1; 2; :::;N. In addition, bj(t � �j) = 0 forj�jj > Tc and the expected value of bj(t) and bi(t) is zero for i 6= j and i; j = 1; 2; :::;N.This gives [29] [41] (also refer to Appendix C)Efcj(t1 � �i;j)cj(t2 � �i;j)g = ��t1 � t2Tc � (A.5)Efbj(t1 � �i;j)bj(t2 � �i;j)g = ��t1 � t2Tb � (A.6)where it has been de�ned that��t1 � t2Tb � = 8><>: 1� jt1�t2jTb for jt1 � t2j < Tb0 elsewhereand ��t1 � t2Tx � = 8><>: 1� jt1�t2jTc for jt1 � t2j < Tc0 elsewhereThe pre-correlation covariance matrix becomesRxxi(t1; t2)= NXj=1qPj(t1)Pj(t2)Efcj(t1 � �i;j)cj(t2 � �i;j)gEfbj(t1 � �i;j)bj(t2 � �i;j)gaj(t1)aj(t2)y +Efn(t1)n(t2)yg= NXj=1qPj(t1)Pj(t2)��t1 � t2Tc ���t1 � t2Tb �aj(t1)aj(t2)y + �(t1 � t2)�2I (A.7)Therefore, the variance of the pre-correlation covariance matrix is thenRxxi(0) = Efxi(t)xi(t)yg = Rxxi(t; t)= NXj=1Pj(t)aj(t)aj(t)y + �2I (A.8)137



A.1.2 The PN code post-correlation covariance matrix ofthe received stochastic signal vectorThe mean of the despread signal vector in Equation (A.3) isEfzi(n)g = 0 (A.9)and the autocovariance matrix of the despread random signal vector is de�ned asRzzi(n1; n2) = 1TcEfzi(n1)zi(n2)yg= TbTcqPi(n1)Pi(n2)Efbi(n1)bi(n2)gai(n1)ai(n2)y+ NXj=1;j 6=i NXk=1;k 6=i qPj(n1)Pk(n2)TcTb wi(n1)yaj(n1)ak(n2)ywi(n2) Z (n+1)TbnTb Z (n+1)TbnTbEfcj(t1 � �i;j)ck(t2 � �i;k)gEfci(t1)ci(t2)gEfbj(t� �i;j)bk(t� �i;k)gdt1dt2+ 1TcTb Z (n+1)TbnTb Z (n+1)TbnTb Efn(t1)n(t2)ygEfci(t1)ci(t2)gdt1dt2 (A.10)From Equations (A.5) and (A.6), the PN code post-correlation covariance matrixof the despread signal becomesRzzi(n1; n2)= TbTcqPi(n1)Pi(n2)ai(n1)ai(n2)y��n1 � n2Tb �+ NXj=1;j 6=iqPj(n1)Pj(n2)aj(n1)aj(n2)y( 1TbTc ) Z (n+1)TbnTb Z (n+1)TbnTb��t1 � t2Tc �2��t1 � t2Tb � dt1dt2+ �2TbTc Z (n+1)TbnTb Z (n+1)TbnTb �(t1 � t2)��t1 � t2Tc � Idt1dt2 (A.11)Let � = t1 � t2 and � = t1 + t2, and by using the Jacobian transformation, theabove equation becomes �����d(t1; t2)d(�; �) ����� = 12The �rst integral in eqn.(A.11) can then be simpli�ed toInt1 = 1Tb Z (n+1)TbnTb Z (n+1)TbnTb ��t1 � t2Tc �2��t1 � t2Tb �dt1dt2138



= 1Tb Z Tb�Tb Z 2nTb+2Tb��2nTb+� � �Tc!2� �Tb! (12)d�d�= 1Tb Z Tb�Tb� �Tc!2� �Tb! (Tb � �)d�= 1Tb Z Tc�Tc  1 � j�jTc !2  1� j�jTb! (Tb � �)d� forj�j < Tcandj�j < Tb= 1Tb 0@Z 0�Tc  1 � ��Tc !2  1� ��Tb ! (Tb � �)d� + Z Tc0  1 � �Tc!2  1 � �Tb! (Tb � �)d�1A= 1Tb Z Tc0  1 � �Tc!2  1 � �Tb! (Tb + � + Tb � �)d�= 2 Z Tc0  1� �Tc!2  1� �Tb! d�Tb � Tc implies that (Tc=Tb)2 � 0. Therefore, Int1 becomesInt1 = 2 Z Tc0 (1� �Tb + �2T 2c � �3T 2c Tb � 2�Tc + 2�2TcTb )d�= 2 "� � �22Tb + �33T 2c � �44T 2c Tb � �2Tc + 2�33TcTb#Tc0= 2(Tc � T 2c2Tb + Tc3 � T 2c4Tb � Tc + 2T 2c3Tb ) � 2Tc3 (A.12)Now we consider the integral of the third term in Equation (A.11). Again, bysubstituting � = t1 � t2 and � = t1 + t2, we haveInt2 = 1Tb Z (n+1)TbnTb Z (n+1)TbnTb �(t1 � t2)��t1 � t2Tc � dt1dt2= 1Tb Z Tb�Tb �(�)� �Tc! (Tb � �)d�= Z Tc�Tc �(�)� �Tc! d�= 1 (A.13)Combining Equations (A.12) and (A.13), the autocovariance of the post-correlationin Equation (A.11) becomes,Rzzi(n1; n2) = TbTcqPi(n1)Pi(n2)ai(n1)ai(n2)y��n1 � n2Tb �+23 NXj=1;j 6=iqPj(n1)Pj(n2)aj(n1)aj(n2)y139



+�2Tc I (A.14)Therefore, the variance of the post-correlation covariance matrix, Rzzi(0), isRzzi(0) = Efzi(n)zi(n)yg = Rzzi(n; n)= TbTcPi(n)ai(n)ai(n)y + 23 NXj=1;j 6=iPj(n)aj(n)aj(n)y+ 1Tc�2I (A.15)A.2 The SINR of the weighted post-correlationvectorFrom Equation (A.15), the weighted post-correlation vector's signal-to-interference-noise ratio (SINR) for the ith mobile branch isSINRposti = TbPi(n)Tc wi(n)yai(n)ai(n)ywi(n)PNj=1;j 6=i 23Pj(n)wi(n)yaj(n)aj(n)ywi(n) + 1Tc�2wi(n)ywi(n)= Pi(n)jjwi(n)yai(n)jj2=BPNj=1;j 6=i 23WssPj(n)jjwi(n)yaj(n)jj2 + �2jjwi(n)jj2 (A.16)where B = 1=Tb is the information bit bandwidth and Wss is the PN chip bandwidth.
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Appendix BNon-zero time delay spreadautocovariance derivationsB.1 Pre-correlation and Post-correlation vectorsFor the non-zero time delay spread propagation model, the general form of the ltharm of the RAKE received baseband signal vector at time t can be generalized to [25]xi;l(t) = NXj=1 KjXp=1qPj;p(t)cj(t� pTc � �il;jp)bj(t� pTc � �il;jp)aj;p(t) + n(t)= NXj=1 KjXp=1qPj;p(t)cj;p(t� �il;jp)bj(t� pTc � �il;jp)aj;p(t) + n(t)= qPi;l(t)ci;l(t)bi(t� lTc)ai;l(t)+ KiXp=1;p6=lqPi;p(t)ci;p(t� �il;ip)bi(t� pTc � �il;ip)ai;p(t)+ NXj=1;j 6=i KjXp=1qPj;p(t)cj;p(t� �il;jp)bj(t� pTc � �il;jp)aj;p(t) + n(t) (B.1)where 8j, Kj is the number of resolvable multipaths arriving at the base stationantenna array from the jth mobile, N is the total number of mobiles in the cell,cj;p(t � �il;jp) = cj(t � pTc � �il;jp) 2 f1;�1g are the jth mobile's pth path Pseudo-Noise (PN) code square pulses of period Tc at time t, �il;jp 2 [�Tc; Tc] is the relativetime delay of the jth mobile's pth path to the ith mobile's lth path, bj(t�pTc��il;jp) 2f1;�1g is the jth mobile's pth multipath information bit square pulse of period Tb,141



n(t) 2 N (0; �2I) is the noise vector received at time t, and aj;p(t) is the jth mobile'spth path channel array response vector.The baseband post-correlation signal vector sampled at discrete time 1=Tb syn-chronized to the ith mobile's lth multipath, i.e. �il;il = 0, is thenzi;l(n) = 1pTb Z (n+1)TbnTb xi;l(t)ci;l(t)dt= 1pTb Z (n+1)TbnTb qPi;l(t)bi(t� lTc)ci;l(t)ci;l(t)ai;l(t)dt+ 1pTb KiXp=1;p6=l Z (n+1)TbnTb qPi;p(t)bi(t� pTc � �il;ip)ci;p(t� �il;ip)ci;l(t)ai;p(t)dt+ 1pTb NXj=1;j 6=i KjXp=1 Z (n+1)TbnTb qPj;p(t)bj(t� pTc � �il;jp)cj;p(t� �il;jp)ci;l(t)aj;p(t)dt+ 1pTb Z (n+1)TbnTb ci;l(t)n(t)dt (B.2)Assume that the power Pj;p(t) and the channel array response vector aj;p(t) do notchange appreciably over period Tb, 8j; p (i.e. slow fading channel). Then the post-correlation signal vector for a non-zero time delay spread multipath model becomeszi;l(n) = qTbqPi;l(n)bi(n� lTc)ai;l(n)+ 1pTb KiXp=1;p6=lqPi;p(n)ai;p(n) Z (n+1)TbnTb bi(t� pTc � �il;ip)ci;p(t� �il;ip)ci;l(t)dt+ 1pTb NXj=1;j 6=i KjXp=1qPj;p(n)aj;p(n) Z (n+1)TbnTb bj(t� pTc � �il;jp)cj;p(t� �il;jp)ci;l(t)dt+ 1pTb Z (n+1)TbnTb ci;l(t)n(t)dt (B.3)B.1.1 The PN code pre-correlation covariance matrixThe expected value of the baseband pre-correlation vector signal isEfxi;l(t)g = 0 (B.4)since the expected value of the PN chip sequence is zero, Efcj;p(t� �il;jp)g = 0, andthe expected value of the noise vector is also zero, Efn(t)g = 0.142



Therefore, the autocovariance matrix of the baseband pre-correlation signal vectoris Rxxi;l(t1; t2) = Efxi;l(t1)xi;l(t2)yg= qPi;l(t1)Pi;l(t2)Efci;l(t1)ci;l(t2)gEfbi(t1 � lTc)bi(t2 � lTc)gai;l(t1)ai;l(t2)y+ KiXq=1;q 6=lEfci;l(t1)ci;q(t2 � �il;iq)gEfbi(t1 � lTc)bi(t2 � qTc � �il;iq)gqPi;l(t1)Pi;q(t2)ai;l(t1)ai;q(t2)y+ KiXp=1;p6=lEfci;p(t1 � �il;ip)ci;l(t2)gEfbi(t1 � pTc � �il;ip)bi(t2 � lTc)gqPi;p(t1)Pi;l(t2)ai;p(t1)ai;l(t2)y+ KiXp=1;p6=l KiXq=1;q 6=lEfci;p(t1 � �il;ip)ci;q(t2 � �il;iq)gEfbi(t1 � pTc � �il;ip)bi(t2 � qTc � �il;iq)gqPi;p(t1)Pi;q(t2)ai;p(t1)ai;q(t2)y+ NXj=1;j 6=i KjXp=1 KjXq=1Efcj;p(t1 � �il;jp)cj;q(t2 � �il;jq)gEfbj(t1 � pTc � �il;jp)bj(t2 � qTc � �il;jq)gqPj;p(t1)Pj;q(t2)aj;p(t1)aj;q(t2)y+Efn(t1)n(t2)yg (B.5)due to the fact that the expected value of the di�erent pseudo random noise (PN)cj;p(t); cj;q(t) 2 f1;�1g [29], [41] isEfcj;p(t1)cj;q(t2)g = �(t1 � t2)= 8><>:�� t1�t2Tc � for p = q0 for p 6= qand referring also to Appendix C. Note that for the multipath case, the informationbit sequence may have a non-zero expected value due to the fact that Tb > Tc where8i; l; j; p; qEfbj(t1 � pTc � �il;jp)bj(t2 � qTc � �il;iq)g =� t1 � t2 � (p � q)Tc � (�il;jp � �il;iq)Tb !(B.6)Therefore, Equation (B.5) becomesRxxi;l(t1; t2) = qPi;l(t1)Pi;l(t2)��t1 � t2Tc ���t1 � t2Tb �ai;l(t1)ai;l(t2)y143



+ KiXp=1;p6=l��t1 � t2Tc ���t1 � t2Tb �qPi;p(t1)Pi;p(t2)ai;p(t1)ai;p(t2)y+ NXj=1;j 6=i KjXp=1��t1 � t2Tc ���t1 � t2Tb �qPj;p(t1)Pj;p(t2)aj;p(t1)aj;p(t2)y+�(t1 � t2)�2IThus the variance of the stochastic pre-correlation signal vector is thenEfxi;l(t)xi;l(t)yg = Rxxi;l(t; t) = Rxxi;l(0)= Pi;l(t)ai;l(t)ai;l(t)y+ KiXp=1;p6=lPi;p(t)ai;p(t)ai;p(t)y + NXj=1;j 6=i KjXp=1Pj;p(t)aj;p(t)aj;p(t)y + �2I= NXj=1 KjXp=1Pj;p(t)aj;p(t)aj;p(t)y + �2I (B.7)By comparing Equations (B.7) to (A.8), it indicates that a multipath environmentcreates additional interfering and self interfering signals relative to the desired ithmobile's lth multipath signal.B.1.2 The PN code post-correlation covariance matrixThe mean of the post-correlation stochastic signal vector of Equation (B.3) isEfzi;l(n)g = 0 (B.8)since for binary signalling the expected value of the binary information bit sequenceis zero, Efbj(t � pTc)g = 08j; p, and the expected value of the noise vector is alsozero, Efn(t)g = 0.De�ning the autocovariance of the PN post-correlation covariance matrix asRzzi;l (n1; n2) = 1TcEfzi;l(n1)zi;l(n2)yg= TbTcqPi;l(n1)Pi;l(n2)Efbi(n1 � lTc)bi(n2 � lTc)gai;l(n1)ai;l(n2)y+ 1Tc KiXq=1;q 6=lqPi;l(n1)Pi;q(n2)ai;l(n1)ai;q(n2)y144



Z (n+1)TbnTb Efbi(t1 � lTc)bi(t2 � qTc � �il;iq)gEfci;q(t2 � �i;l;iq)ci;l(t1)gdt2+ 1Tc KiXp=1;p6=lqPi;p(n1)Pi;l(n2)ai;p(n1)ai;l(n2)yZ (n+1)TbnTb Efbi(t1 � pTc � �il;ip)bi(t2 � lTc)gEfci;p(t2 � �il;ip)ci;l(t1)gdt1+ 1TcTb KiXp=1;p6=l KiXq=1;q 6=lqPi;p(n1)Pi;q(n2)ai;p(n1)ai;q(n2)yZ (n+1)TbnTb Z (n+1)TbnTb Efbi(t1 � pTc � �il;ip)bi(t2 � qTc � �il;iq)gEfci;p(t1 � �il;ip)ci;q(t2 � �il;iq)gEfci;l(t1)ci;l(t2)gdt1dt2+ 1TcTb NXj=1;j 6=i KjXp=1 KjXq=1qPj;p(n1)Pj;q(n2)aj;p(n1)aj;q(n2)yZ (n+1)TbnTb Z (n+1)TbnTb Efbj(t1 � pTc � �il;jp)bj(t2 � qTc � �il;jq)gEfci;l(t1)ci;l(t2)gEfcj;p(t1 � �il;jp)cj;q(t2 � �il;jq)gdt1dt2+ 1TcTb Z (n+1)TbnTb Z (n+1)TbnTb Efci;l(t1)ci;l(t2)gEfn(t1)n(t2)gdt1dt2 (B.9)Similarly, using Equation (B.6) then givesRzzi;l (n1; n2)= TbTc��n1 � n2Tb �qPi;l(n1)Pi;l(n2)ai;l(n1)ai;l(n2)y+ 1Tc KiXp=1;p6=lqPi;p(n1)Pi;p(n2)ai;p(n1)ai;p(n2)yZ (n+1)TbnTb Z (n+1)TbnTb ��t1 � t2Tb ���t1 � t2Tc ���t1 � t2Tc � dt1dt2+ 1TcTb NXj=1;j 6=i KjXp=1qPj;p(n1)Pj;p(n2)ai;p(n1)ai;p(n2)yZ (n+1)TbnTb Z (n+1)TbnTb ��t1 � t2Tb ���t1 � t2Tc ���t1 � t2Tc � dt1dt2+ 1TcTb Z (n+1)TbnTb Z (n+1)TbnTb ��t1 � t2Tc ��2�(t1 � t2)Idt1dt2 (B.10)Using Equation (A.12) of Appendix A, the PN code post-correlation covariancematrix becomes Rzzi;l (n1; n2) 145



= TbTc��n1 � n2Tb �qPi;l(n1)Pi;l(n2)ai;l(n1)ai;l(n2)y+23 KiXp=1;p6=lqPi;p(n1)Pi;p(n2)ai;p(n1)ai;p(n2)y+23 NXj=1;j 6=i KjXp=1qPj;p(n1)Pj;p(n2)ai;p(n1)ai;p(n2)y+ 1Tc�2�(t1 � t2)I (B.11)Therefore, the variance of the PN code post-correlation matrix isRzzi;l(0) = Rzzi;l (n; n)= TbTcPi;l(n)ai;l(n)ai;l(n)y + 23 KiXp=1;p6=lPi;p(n)ai;p(n)ai;p(n)y+23 NXj=1;j 6=i KjXp=1Pj;p(n)ai;p(n)ai;p(n)y + 1Tc�2I (B.12)B.2 The weighted post-correlation signal SINRFrom the variance of the PN code post-correlation matrix, the ith mobile's lth branchweighted post-correlation signal SINR isSINRposti;l= Pi;l(n)wi;l(n)yai;l(n)ai;l(n)ywi;l(n)=BMAI + �2jjwi;l(n)jj2 (B.13)where the self-interference (SI) and the multiple access interference (MAI) representsthe self-interference and the interference from other mobiles, respectively.SI = 23Wss KiXp=1;p6=lPi;p(n)jjwi;l(n)yai;p(n)jj2 (B.14)and MAI = 23Wss NXj=1;j 6=i KjXp=1Pj;p(n)jjwi;l(n)yai;p(n)jj2 (B.15)where B = 1=Tb is the information bit bandwidth, Wss = 1=Tc is the PN chip channelbandwidth, and jj(�)jj2 is the magnitude squared of (�).146



Appendix CFirst and second order statistics for abinary square pulse stochastic processC.1 Autocovariance of pulseThis appendix references [29] and [12].A CDMA chip pulse train with period Tc of the ith mobile can be expressed asci(t) = 1Xn=�1 ci;np(t� nTc) (C.1)where ci;n 2 f1;�1g8n andp(t) = 8><>: 1; for 0 < t < Tc0; otherwise (C.2)And a CDMA information bit square pulse with period Tb of the ith mobile can beexpressed as bi(t) = 1Xn=�1 bi;nu(t� nTb) (C.3)where bi;n 2 f1;�1g8n andu(t) = 8><>: 1; for 0 < t < Tb0; otherwise (C.4)147



Generally, we can express Equations (C.1) and (C.3) assi(t) = 1Xn=�1 si;npT(t� nT ) (C.5)where s(nT ) is of value 1 or -1 for all n andpT(t) = 8><>: 1; for 0 < t < T0; otherwise (C.6)We have Esfsi;nsi;mg = 8><>: 1; for n = m0; for n 6= m (C.7)or equivalently Esfsi;nsi;mg = �(n�m) (C.8)where Esf�g denotes the expectation of the binary random variable si;n 2 f1;�1g.Consider the expected value of si(t)Efsi(t)g = Efsi;npT(t� nT )g = Esfsi;ngpT(t� nT ) = 0 (C.9)and the autocorrelation of si(t)Rssi(t1; t2) = Efsi(t1)si(t2)g= 1Xn=�1 1Xm=�1Esfsi;nsi;mgpT(t1 � nT )pT(t2 �mT )= 1Xn=�1 1Xm=�1 �(n�m)pT(t1 � nT )pT(t2 �mT )= 1Xn=�1 pT(t1 � nT )pT(t2 � nT ) (C.10)Equation (C.10) shows that si(t) is not a wide sense stationary process; however,it is a cyclostationary process because the �rst and second order statistics of si(t)satisfy the following relationsEfsi(t+ T )g = Efsi(t)g148



and Rssi(t1 + T; t2 + T ) = Rssi(t1; t2)In practice, the observer of the process si(t) may have no knowledge whatsoever ofthe time reference for the sampling instants [10] [12]. Therefore, the cyclostationaryprocess can be modi�ed to obtain a wide sense stationary process by allowing a ran-dom time delay ' (phase randomization), where ' is a uniformly distributed randomvariable over 0 � t < T independent of si;n, i.e. with a probability distribution off'(t) = 8><>: 1T ; for 0 � t < T0; elsewhere (C.11)Thus, the sampling instants are changed to t = nT � '. So we now havesi(t) = 1Xn=�1 si;npT(t� nT � ')The mean of si(t) is nowEfsi(t)g = 1Xn=�1Esfsi;ngE'fpT(t� nT � ')g= 1Xn=�1Esfsi;ng Z T0 pT(t� nT � ')( 1T )d'= 0 (C.12)where E'f�g denotes the expectation of the uniformly distributed random variable '.The autocorrelation of si(t) with t1 = t and t2 = t+ � isRssi(t1; t2) = Efsi(t1)si(t2)g = Rssi(t; t+ � )= 1Xn=�1 1Xm=�1E'fEsfsi;nsi;mj' = 'ggE'fpT(t2 �mT � ')g= 1Xn=�1 1Xm=�1 Z T0 �(n�m)( 1T )d' Z T0 pT(t1 � nT � ')pT(t2 �mT � ')( 1T )d'= 1Xn=�1 Z T0 pT(t� nT � ')pT(t+ � � nT � ')( 1T )d'= 1Xn=�1 Z t�nTt�(n+1)T pT(')pT(� + ')( 1T )d'= ( 1T ) Z 1�1 pT(')pT(� + ')d'= ( 1T )pT(� ) � pT(�� ) (C.13)149



which is now a wide-sense-stationary (WSS) process representation.Therefore, with pT(t) being a square pulse, Equation (C.13) equalsRssi(t1; t2) = Rsisi(� ) = Rssi(t1 � t2)= 8><>: 1� jt1�t2jT ; for jt1 � t2j � T0; elsewhere (C.14)by de�ning ��t1 � t2T � = 8><>: 1� jt1�t2jT ; for jt1 � t2j � T0; elsewhere (C.15)Equation (C.14) can be represented asRssi(t1; t2) = ��t1 � t2T � (C.16)C.2 Mean and autocorrelation of the PN chipand the information bit sequencesEquations (C.14) and (C.16) imply that the expected value and the autocovarianceof the chips are, respectively Efci(t)g = 0and Efci(t1)ci(t2)g = Rcci(t1 � t2) = 8><>: 1� jt1�t2jTc ; for jt1 � t2j � Tc0; elsewhere= ��t1 � t2Tc � (C.17)Similarly, the expected value and the autocovariance of the information bits arerespectively Efbi(t)g = 0150



and Efbi(t1)bi(t2)g = Rbbi(t1 � t2) = 8><>: 1 � jt1�t2 jTb ; for jt1 � t2j � Tb0; elsewhere= ��t1 � t2Tb � (C.18)
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