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AbstractAmong multi-access communications techniques, CDMA (Code Division Multiple Ac-cess) is interference-limited. Conventional single-user receivers su�er from the near-far problem in CDMA cellular communications systems. One method to suppressmulti-access interference is digital beamforming by using base-station antenna ar-rays. However, using beamforming alone cannot solve the near-far problem. Verd�udemonstrates that multi-user signal detection can be used to eliminate multi-accessinterference by utilizing all active users' spreading codes at the base-station. Thisthesis addresses the incorporation of array signal processing with multi-user signaldetection in the CDMA terminal to base-station uplink. In particular, this thesisproposes a method - jointly estimating the unknown channel array response vectorsand detecting the bits from all users.We �rst consider synchronous single-path Rayleigh fading channels. We developa spatial-temporal decorrelator receiver employing the maximum likelihood criterionbased on a novel discrete-time systemmodel and analyze the decorrelator's asymptotice�ciency. It is shown that the spatial-temporal decorrelator is near-far resistant andthat using a base-station antenna array signi�cantly increases asymptotic e�ciencyfor either the spatial-temporal decorrelator or the conventional single-user detector.We formulate the expectation-maximization (EM) and the space alternating general-ized expectation-maximization (SAGE) algorithms based on the discrete-time modeland obtain two receiver structures for joint channel array response vector estimationand bit sequence detection. The receiver's convergence rate is analyzed. We have ob-served that using base-station antenna array accelerates the SAGE-based receiver'sii



convergence and improves channel estimation performance. The BER performanceof the SAGE-based receiver is shown to be near-far resistant.A synchronous equivalent discrete-time system model is formulated for asyn-chronous multipath channels. Based on this model, we exploit multipath diversityby incorporating maximal-ratio combiner into the spatial-temporal decorrelator. Itis shown that unlike antenna arrays, using multipath diversity combining does notimprove detector's asymptotic e�ciency. We exploit the SAGE algorithm to decouplethe multi-user signals for bit sequence detection and again decouple the multipathsignals to estimate the channel array response vector for each path of each user forgiven time delays. Timing error e�ects on the SAGE-based receiver are studied bysimulation. Multipath diversity combining is shown to be e�ective in improving thereceiver's bit error rate (BER) performance.Finally, we extend the techniques developed for single-rate systems to multi-ratesystems with base-station antenna arrays over asynchronous multipath fading chan-nels. An iterative multi-user receiver for dual-rate systems is derived. It is shownthat unlike the conventional single-user receiver, the proposed receiver's BER relativeperformances for high-rate and low-rate users are similar. We observed that the BERof high-rate users converges to the derived lower bound as a function of the numberof iterations faster than that of low-rate users.
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viii



List of Figures1.1 Conventional Single-user Detector : : : : : : : : : : : : : : : : : : : : 31.2 Multi-user Signal Detector : : : : : : : : : : : : : : : : : : : : : : : : 32.1 Multipath Propagation Channel Environment : : : : : : : : : : : : : 132.2 Total Fading Signal : : : : : : : : : : : : : : : : : : : : : : : : : : : : 162.3 Multipath Vector Channel Model : : : : : : : : : : : : : : : : : : : : 182.4 Information Symbol Spreading Process : : : : : : : : : : : : : : : : : 242.5 Chip Waveform Used in this Thesis for Single-Rate Systems : : : : : 242.6 The Received Signal for a Two-User Two-Path System : : : : : : : : 243.1 Spatial-Temporal Decorrelator Structure for Synchronous Single-pathChannels : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 323.2 Uniform Linear Array : : : : : : : : : : : : : : : : : : : : : : : : : : : 353.3 Asymptotic E�ciencies for Single Antenna and a Three-Element An-tenna Array : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 363.4 EM-Based Spatial-Temporal Receiver Structure at Each Iteration Cycle 413.5 SAGE-Based Spatial-Temporal Receiver Structure at Each IterationCycle : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 453.6 Convergence Rate Upper Bounds on the Proposed Receivers De�nedas 1=� : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 493.7 Bit Error Rate of the Proposed Receivers for Single Antenna and aThree-Element Antenna Array : : : : : : : : : : : : : : : : : : : : : : 55ix



3.8 Mean Squared Error of Channel Estimates of the Proposed Receiversfor Single Antenna and a Three-Element Antenna Array : : : : : : : 563.9 Bit Error Rate of the Proposed Receivers for a Two-Element AntennaArray in Near-Far Environment : : : : : : : : : : : : : : : : : : : : : 573.10 Mean Squared Error of Channel Estimates of the Proposed Receiversfor a Two-Element Antenna Array in Near-Far Environment : : : : : 583.11 Convergence of SAGE-Based Receiver for a Three-Element AntennaArray : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 593.12 Convergence of EM-Based Receiver for a Three-Element Antenna Array 593.13 Convergence of SAGE-Based Receiver for a Two-Element Antenna Ar-ray in Near-Far Environment : : : : : : : : : : : : : : : : : : : : : : : 603.14 Convergence of EM-Based Receiver for a Two-Element Antenna Arrayin Near-Far Environment : : : : : : : : : : : : : : : : : : : : : : : : : 604.1 Spatial-Temporal Decorrelating Detector for Known Channel Parameters 704.2 Asymptotic E�ciency for a Single Antenna System : : : : : : : : : : 724.3 Asymptotic E�ciency for Single Dominant-Path Channels : : : : : : 724.4 The Received Signal Decoupling Process : : : : : : : : : : : : : : : : 764.5 SAGE-Based Receiver Structure for Each User at Each Iteration Cycle 784.6 BER of the Proposed Receiver : : : : : : : : : : : : : : : : : : : : : : 824.7 Mean Squared Error of Channel Estimates of the SAGE-based Receiver 824.8 Near-Far Resistance of the Proposed Receiver : : : : : : : : : : : : : 834.9 Mean Squared Error of Channel Estimates of the SAGE-based Receiverin Near-far Environment : : : : : : : : : : : : : : : : : : : : : : : : : 844.10 BER Convergence of the Proposed Receiver : : : : : : : : : : : : : : 854.11 BER Convergence of the Proposed Receiver in Near-Far Environment 854.12 Timing Error E�ect on BER Performance for the SAGE-Based Receiver 864.13 Timing Error E�ect on BER Performance for the SAGE-Based Re-ceiver in Near-Far Environment : : : : : : : : : : : : : : : : : : : : : 86x



5.1 Chip Waveforms for High Rate Users and Low Rate Users : : : : : : 925.2 Received bits for a dual rate system : : : : : : : : : : : : : : : : : : : 945.3 Simpli�ed Bit Detection at Each Iteration : : : : : : : : : : : : : : : 1025.4 Bit Error Rate (BER) of the Desired High Rate User : : : : : : : : : 1055.5 Bit Error Rate (BER) of the Desired Low Rate User : : : : : : : : : 1055.6 BER Convergence of the Desired High Rate User : : : : : : : : : : : 1065.7 BER Convergence of the Desired Low Rate User : : : : : : : : : : : : 1065.8 BER Performance of the Desired High Rate User in Near-Far Environ-ment : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1075.9 BER Convergence of the Desired High Rate User in Near-Far Environ-ment : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1085.10 BER Performance of the Desired Users as a Function of IncreasingNumbers of High Rate Users in the System : : : : : : : : : : : : : : : 1095.11 BER Convergence of the Desired High Rate User as a Function ofIncreasing Numbers of High Rate Users in the System : : : : : : : : : 1105.12 BER Convergence of the Desired Low Rate User as a Function of In-creasing Numbers of High Rate Users in the System : : : : : : : : : : 111

xi



List of Important Symbols�k complex channel attenuation for user k�k;p complex channel attenuation for user k through pth pathk signal to noise ratio (SNR) for user k�ck asymptotic e�ciency of conventional detector for user k�dk asymptotic e�ciency of spatial-temporal decorrelator for user k�kj temporal correlation between user k and user j�2 variance of additive white Gaussian noise�k direction of arrival (DOA) of user k�k;p direction of arrival (DOA) of user k through pth path�k relative time delay of user k�k;p relative time delay of user k through pth patha(�) array response vector with DOA �bk(i) ith bit of kth userb(i) ith bit vectorbwk (i) ith sliding window bit vector of kth userbw(i) ith sliding window bit vectorck(t) spreading waveform of kth userckl lth chip of kth userck spreading code vector of kth userCk temporal channel matrix of user k for synchronous single-path channelsCk;p temporal channel matrix of user k through pth pathxii



fk channel array response vector of kth userfmk mth component in fkfk;p channel array response vector of kth user through pth pathfmk;p mth component in fk;pfkj spatial correlation between user k and user jFk;p spatial channel matrix of user k through pth pathhk total impulse response vector of kth user for synchronous single-path channelH spatial-temporal channel matrix for synchronous single-path channelsH spatial-temporal channel matrix for asynchronous multipath channelsHk spatial-temporal channel matrix of kth userHk;p spatial-temporal channel matrix of kth user through pth pathi bit indexk user indexK number of users in the systeml chip indexL processing gainm antenna array element indexM number of antenna elementsn(:) additive white Gaussian noise vectorN number of bits in each blockp propagation path indexP number of propagation pathsp(t) spreading chip pulseR spatial-temporal cross-correlation matrix for synchronous single-path channelsRkj kjth component in RR spatial-temporal cross-correlation matrix for asynchronous multipath channelsRkj kjth sub-matrix in R, denoting cross-correlation between users k and jxiii



Chapter 1Introduction1.1 MotivationWireless communication systems, which provide an e�cient high-quality informationexchange between two portable terminals, have great potential for further develop-ment in the near future. Cordless and cellular telephony, mobile computing, andsatellite communications are facing rapid market demand. With the popularity ofwireless communication services, the number of users has been growing dramaticallyfor the past few years. This increase results in a big challenge for wireless technology,i.e., expanding the system capacity for wireless services with the available spectrum.The cellular concept was conceived to increase the radio channel e�ciency bydividing the large service area into several smaller cells and using a subset of the totalavailable radio channels in each cell. Therefore, the radio channels could be reusedin di�erent cells which were separated su�ciently to avoid co-channel interference.Hence, system capacity is increased by the spatial characteristics of the channel [27].Cellular systems exploit hando� techniques to enable a mobile leaving a cell to switchto a new channel available in the next cell automatically. Normally, one base-stationis assigned in each cell to serve several mobile users.For multiple access communication systems, sharing a common channel spectrumcan be achieved by frequency division multiple access (FDMA), time division mul-tiple access (TDMA), code division multiple access (CDMA) or their combinations.1



While FDMA and TDMA are based on dividing the available frequency spectrumand the transmission time to maintain multiple users, respectively, CDMA systemspermit multiple users to transmit in the same frequency band simultaneously by us-ing di�erent spreading codes [70] [100]. Comparative studies show that CDMA canachieve greater system capacity than FDMA and TDMA [21] [39]. Unlike FDMAand TDMA capacities which are primarily bandwidth limited, CDMA capacity isinterference limited. Any reduction in interference converts directly into an increasein system capacity. Therefore, multiple access interference (MAI) suppression tech-niques for CDMA systems have attracted a substantial amount of attention in thepast years.1.1.1 Spatial Signal ProcessingA promising approach to suppress MAI is the use of antenna arrays at base-stations[1] [40] [85] [104] [105]. Since base-station antenna arrays capture more signal energyfrom mobile users and provide spatial diversity for base-station receivers, optimumcombining and beamforming technology can be used with a base-station antenna arrayto increase system capacity for wireless communication systems. Using antenna ar-rays also permits a less stringent form of power control while maintaining acceptablebit error rate (BER) performance. Performance improvements for CDMA systemswith base-station antenna arrays have been studied in [12], [57] and [59]. Combinedbeamformer-RAKE conventional single-user receivers have been proposed for multi-path channels in [35], [41] and [58]. A comprehensive review of antenna array signalprocessing for wireless communications can be found in [66] and [88].1.1.2 Multi-user Signal DetectionBecause of the relative time delays among the active mobile users for CDMA up-link channels (mobile to base-station), we cannot guarantee orthogonality betweenthe spreading codes. Therefore, CDMA systems su�er from co-channel interferencewhich results in the near-far problem [43]. The near-far e�ect arises because received2



powers from users near the base-station receiver are higher than those from users faraway and some users' signals experience deep fading. However, the near-far problem isnot inherent to CDMA systems, but due to the conventional single-user receiver whichmodels the interference from other users as noise (see Figure 1.1). The interference---- -- Decision Rule(User 1)Decision Rule(User K) Detection Result(User 1)Detection Result(User K)DespreadingMatched Filter(User 1)DespreadingMatched Filter(User K)ReceivedSignal ... ... ...Figure 1.1: Conventional Single-user Detectormodelling loses useful information from interfering users. By jointly detecting all theusers' signals, optimum multi-user signal detection for CDMA systems can be madenear-far resistant and can achieve signi�cant performance improvement over that ofconventional single-user detection [95]. Multi-user signal detection is illustrated inFigure 1.2. Because of the computational complexity of optimum multi-user detec----- -- Detection Result(User 1)Detection Result(User K)DespreadingMatched Filter(User 1)DespreadingMatched Filter(User K)ReceivedSignal ... JointDetectionAlgorithm ...Figure 1.2: Multi-user Signal Detectortion, several suboptimum multi-user signal detectors have been proposed for additivewhite Gaussian noise (AWGN) channels, including decorrelating detectors [31] [43]3



[107], linear minimum mean-squared error (MMSE) detectors [46] [107], multi-stagedetectors [91] [92], decision feedback detectors [9] [10], adaptive multi-user detectors[4] [26] [48] [71] and blind multi-user detectors [24] [102].The major advantage of multi-user signal detection is its near-far resistance, i.e.,the detector's performance is not sensitive to the unequal received signal power fromdi�erent mobile users. This makes the receiver avoid the sophisticated precise powercontrol currently used in the second generation PCS standard IS-95 [70]. The bene�tobtained from multi-user signal detection is three-fold. Firstly, eliminating precisepower control directly increases channel spectrum e�ciency. Secondly, since no precisepower control algorithms are needed, complexity is considerably reduced at the mobiletransmitters. This translates into a reduction of mobile power consumption. Finally,even for equal received power from all active mobiles, multi-user signal detectorsachieve better bit error rate (BER) performance than the conventional single-userdetector, and hence provide greater system capacity.Matched �ltering (MF) methods are proposed to suppress MAI for CDMA systemsin [110], which provide a compromise between the noise-whitening MF [52] and linearMMSE detector [46]. A successive interference cancellation approach is analyzed in[98] and [64], and compared with multi-stage detector [91]. As a parallel interfer-ence canceller, multi-stage detector outperforms the successive interference cancellerfor AWGN channels. However, successive interference cancellation can achieve bet-ter performance than multi-stage detection for fading channels [65]. Array signalprocessing concepts [29] can be adapted for multi-user signal detection in single an-tenna CDMA systems for known channels which are oversampled [76], and providean extension of the linear MMSE detector in [46].In [114], [115] and [93], multi-user signal detection is extended to fading channels.The problems of integrating antenna array processing and multi-user signal detectionare proposed for known channels in [49] for AWGN channels and in [30] for Rayleighfading channels. In [37], adaptive antenna array processing and interference cancel-lation approaches using the least mean squared (LMS) algorithm are analyzed and4



the convergence is found to require several hundred training bits. Decorrelating de-tectors combined with antenna array diversity combining are studied for multipathfading channels in [113], but channel estimation has not been addressed. Overviewsof multi-user signal detection can be found in [11], [56] and [97].1.1.3 Channel EstimationIn order to detect information symbols reliably, we have to estimate channel pa-rameters and antenna array response vectors. Parameter estimators are proposedfor AWGN CDMA channels in [94] and [55]. In [36], a channel parameter estima-tion method is proposed for antenna array CDMA systems, which is not near-farresistant. Joint parameter estimation and multiuser signal detection approaches arestudied for single-antenna CDMA systems in [33], [81] and [108]. In [2], [83] and [89]subspace-based channel parameter estimators are proposed for multi-user CDMAsystems. Comparative studies for blind channel estimation schemes are provided formultipath CDMA channels in [51]. Recently proposed channel estimation techniquesfor TDMA systems can be found in [61], [86] and [90]. Most of these estimationmethods involve signi�cant matrix computation. Therefore, computationally e�cientestimation methods are needed for practical applications.It is well-known that the expectation-maximization (EM) algorithm provides ane�cient numerical solution to the maximum likelihood estimation problem [8]. Ap-plications of the EM algorithm to CDMA systems have been proposed for signaldetection [60] and channel estimation [15] [16]. The space-alternating generalizedexpectation-maximization (SAGE) algorithm has been developed to accelerate theconvergence of the EM algorithm [19]. Applications of the SAGE algorithm in multi-user AWGN CDMA channels can be found in [60] for known channels, in [7] forchannel parameter estimation and in [78] for joint parameter estimation and signaldetection based on the discrete wavelet transform for a single antenna system.In addition to su�ering from the near-far problem, the conventional single-user5



receiver also exhibits a nonzero bit error rate (BER) oor even if the backgroundnoise level goes to zero. This e�ect is caused by the contributions from the interferingusers at the output of the matched �lters (see Figure 1.1). The nonzero BER oormakes it di�cult to achieve a low BER required by the multi-rate systems using theconventional single-user receiver without an excessive reduction of system capacity[12] [45]. Therefore, it is important to investigate advanced techniques to eliminatethe nonzero BER oor and overcome the near-far problem.Performance gains provided by multi-user signal detection are achieved at theexpense of computational complexity. Therefore, investigation into computationallye�cient multi-user signal detection approaches is an important issue. Iterative signaldetection and channel estimation approaches have been proposed for fading channelsin [16] and [7]. Multi-stage detectors are used to detect information symbols andthe maximum-likelihood (ML) channel estimation is implemented by applying theEM-type algorithms in these receivers. However, the multi-stage detector does notguarantee convergence of the receiver to a �xed point and often exhibits slower conver-gence and oscillatory behaviour [60]. Since the EM-type algorithms have guaranteedconvergence, we propose to investigate joint signal detection and channel estimationreceivers integrating spatial signal processing with multi-user signal detection by ap-plying the EM-type algorithms to antenna array CDMA systems. We call the combi-nation of spatial signal processing and multi-user signal detection as spatial-temporalsignal processing.1.2 Summary of ContributionsThis thesis investigates the problem of incorporating array signal processing withmulti-user detection. We develop spatial-temporal decorrelating receivers for CDMAsystems by incorporating base-station antenna arrays and channel estimation tech-niques using advanced signal processing algorithms. The new receivers are near-farresistant and also outperform the conventional single-user receiver in terms of bit6



error rate (BER). Better BER performance can potentially increase system capacity.The primary contributions are summarized as follows:� A spatial-temporal decorrelator receiver is derived based on a discrete-time sys-tem model for synchronous single-path channels. This decorrelator completelyeliminates the multi-access interference (MAI) at the cost of increased back-ground noise.� Asymptotic e�ciencies of the spatial-temporal decorrelator and the conven-tional single-user detector are derived and compared. Numerical results showthat the spatial-temporal decorrelator is near-far resistant and that using abase-station antenna array improves the asymptotic e�ciency for either thespatial-temporal decorrelator or the conventional single-user detector.� Two iterative spatial-temporal decorrelating receivers for joint channel esti-mation and bit sequence detection are derived by applying the expectation-maximization (EM) and the space alternating generalized expectation-maximization(SAGE) algorithms to the synchronous discrete-time systemmodel, respectively.� Convergence for the two iterative receivers is analyzed. The SAGE-based re-ceiver is found to converge faster than the EM-based receiver. We have alsofound that using a base-station antenna array can accelerate convergence of theSAGE-based receiver.� The bit error rate (BER) of the spatial-temporal decorrelator is derived forknown channels. This BER provides a benchmark for the iterative spatial-temporal decorrelating receivers which jointly estimate the channel array re-sponse vector and detect the information bit sequence.� A Cram�er-Rao Lower Bound (CRLB) for the channel estimates is derived toassess the performance of the new iterative receivers for synchronous singledominant-path systems. 7



� A synchronous equivalent discrete-time system model is formulated for asyn-chronous multipath CDMA systems with base-station antenna arrays.� A spatial-temporal decorrelator is obtained for asynchronous multipath fadingchannels by extending the results for the case of synchronous single-path chan-nels. A maximal-ratio combiner (MRC) is incorporated in the new decorrelatorto exploit multipath diversity.� The asymptotic e�ciency of the RAKE receiver in multipath fading channelsis analyzed. Numerical results show that unlike base-station antenna array,using multipth diversity combining does not improve asymptotic e�ciency formulti-user CDMA systems.� By applying the SAGE algorithm, an iterative receiver is derived for joint chan-nel array response vector estimation and bit sequence detection for asynchronousmultipath fading channels. To estimate the channel array response vector foreach path of each user, we decouple the multipath received signals for each userafter decoupling the multi-access signals.� A BER lower bound is derived for the spatial-temporal decorrelator for asyn-chronous multipath CDMA systems with base-station antenna arrays by assum-ing that the channels for all active users are known and the bit sequences forall the interferers are known.� A discrete-time model is formulated for multi-rate systems with base-stationantenna arrays for asynchronous multipath uplink fading channels.� An iterative multi-user receiver is derived for multi-rate systems by extendingthe results obtained for single-rate systems.� It is observed that multipath diversity can be used to suppress multipath inter-ference for CDMA systems and no multipath interference decorrelator is needed.8



1.3 Thesis OverviewThis thesis investigates the problem of joint channel estimation and signal detec-tion for multi-user CDMA communication systems with base-station antenna arrays.We use the maximum-likelihood (ML) criterion to solve this problem. Since thecomputational complexity of direct likelihood maximization is prohibitive, we ap-ply expectation-maximization (EM)-type algorithms to obtain suboptimum solutions.The advantage of the EM-type solutions is that we decompose the K-user coupledoptimization problem to K single-user optimization problems. Therefore, using multi-user signal decoupling reduces the computational complexity of direct likelihood max-imization while maintaining the improved performance.Chapter 2 introduces the system model and formulates the problem mathemati-cally. We discuss the characteristics of the wireless fading channel and incorporatethe array response vector into the channel models. The transmitted CDMA signalsare analyzed in Section 2.3.1. We obtain the received signals for both synchronoussingle-path channels and asynchronous multipath channels. The problem of jointchannel estimation and signal detection is formulated in Section 2.4.In Chapter 3, we investigate the integration of array signal processing with multi-user signal detection for synchronous single-path channels. A discrete-time model isdeveloped. Based on this model, we derive a spatial-temporal decorrelator for knownchannels and analyze the decorrelator's asymptotic e�ciency. Numerical results showthat the spatial-temporal decorrelator is near-far resistant. We apply the EM andSAGE algorithms to the discrete-time model and obtain two iterative receivers. Con-vergence of the iterative receivers are studied. The SAGE-based receiver convergesfaster than the EM-based receiver and using base-station antenna array acceleratesthe SAGE-based receiver's convergence. Analytical BER and Cram�er-Rao LowerBound (CRLB) for the estimated channel are derived to assess the simulation resultsfor the new receivers. Both iterative receivers signi�cantly outperform the conven-tional single-user receiver. However, the EM-based receiver is not near-far resistant.The SAGE-based receiver has near-far behavior.9



We formulate a synchronous equivalent discrete-time system model for asyn-chronous multipath systems in Chapter 4. Similar to the case of synchronous single-path channels, we derive a spatial-temporal decorrelator for asynchronous multipathchannels for given channels. An iterative receiver structure is obtained by applyingthe SAGE algorithm for joint channel array response vector estimation and bit se-quence detection assuming that the time delays are known at the receiver. We derivea BER lower bound for this receiver. We also study the timing error e�ects on theSAGE-based receiver by simulations.Chapter 5 extends the results obtained in Chapter 4 for the case of single-ratesystems to multi-rate systems. We �rst formulate a discrete-time system model fordual rate systems with base-station antenna arrays and asynchronous multipath fad-ing channels. We then apply the SAGE algorithm to the dual-rate system modeland use the technique developed in Chapter 4 to obtain an iterative receiver for jointchannel array response vector estimation and signal detection. The receiver's BERperformance is veri�ed using simulations. We observe that using simpli�ed bit detec-tion algorithm without a multipath decorrelator achieves comparable performance tothe detector having a multipath decorrelator for both high-rate and low-rate users.Finally, Chapter 6 summarizes the conclusions obtained in this thesis and providespossible research areas which could need to be further investigated.
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Chapter 2System Model and Problem Formulation2.1 IntroductionThe goal of this thesis is to investigate potential performance improvement for direct-sequence (DS) CDMA communications using advanced signal processing techniques.To this end, we consider the reverse link (mobile to base-station, also called theuplink) of DS-CDMA systems.This chapter provides the systemmodels which we use to derive receiver structuresdeveloped in the following chapters. We �rst analyze physical mobile channels andformulate statistical channel models. We then introduce the array response vector forbase-station antenna array. The received signal models are developed based on thetransmitted signals and propagation channel model. Two received signal models areformulated: a synchronous single-path model and an asynchronous multi-path model.Finally, we formulate the problem to be solved in this thesis.2.2 Wireless Channel ModelUnderstanding the physical radio propagation channel is crucial to the development ofappropriate system models for the applications of spatial-temporal signal processingto wireless communications. A transmitted signal usually arrives at a receiver through11



multiple propagation paths with di�erent time delays and di�erent directions of ar-rival (DOAs). The multipaths are caused by reection, refraction, di�raction andscattering of the propagating wave due to natural terrain, man-made constructionsand possible moving objects in the environment. In this section, we will describe gen-eral wireless propagation channel characteristics and provide the statistical channelmodels used in this thesis. The antenna array response vector is also introduced forCDMA systems with base-station antenna arrays.2.2.1 Path Loss and ShadowingPath loss arises from the e�ect of ground reection and di�raction of the propagationwave, as well as absorption by water and foliage. Mean propagation loss is range-dependent and changes very slowly. The path loss is de�ned as the ratio of the receivedand transmitted powers. In cellular environments, the path loss can be approximatedas [27] � = PrPt = gtgr(hthrd2 )2 (2:1)where Pt and Pr are the transmitted and received powers, respectively, gt and gr arethe power gains of the transmit and receive antennas, respectively, d is the distancebetween the transmit and receive antennas, and ht and hr are the heights of thetransmit and receive antennas, respectively. The e�ective path loss follows an inversefourth power law. In practical environments, this path-loss exponent varies between2 and 5.Shadowing is also known as long-term fading or slow fading. It is caused by theshadowing e�ect of the obstructions in the environment such as buildings and naturalfeatures. The envelope of a slow fading signal is determined by the local (sliding-window) mean of the fast fading signal. Experimental studies show that the localmean received power is log-normally distributed and can be modelled asS = 10�=10 (2:2)where � is a Gaussian random variable with distribution which we denote by N(�; �2s),12
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Dominant Reflector 2Figure 2.1: Multipath Propagation Channel Environmentwhere � is the local area mean and the standard deviation �s varies between 4-12 dBdepending on the degree of shadowing.2.2.2 Fast FadingFast fading results from local scatters in the vicinity of the mobile. Figure 2.1 illus-trates an example of reection and scattering in the physical propagation environ-ment. Multipath propagation not only causes signal envelope uctuation, but alsoresults in signal spreading in time. From Figure 2.1, it can be observed that the direc-tion of arrival (DOA) of the transmitted signal to the base-station antenna array maybe from an angular region for each specular propagation path. This e�ect is calledangle spread. In addition, the motion of mobile unit introduces spread in frequency,which is known as Doppler spread.Due to local scatterers, large buildings and natural structures, the radio propa-gation channel consists of several distinct dominant paths, each of which is a super-position of many component waves. We now proceed with a statistical model for asingle dominant path channel. Let the transmitted signal bex(t) = s(t)ej2�fct (2:3)13



where s(t) is the baseband signal and fc is the carrier frequency. If the environ-ment consists of a large number of local scatters, the received noiseless signal can beexpressed by Xn Rn(t)s(t� tn)ej2�fc(t�tn) (2:4)where Rn is the attenuation factor for the signal received from the nth scatteringcomponent and tn is the corresponding time delay. For simplicity, the received signalis modelled as a series of narrow pulses. Doppler spread occurs when the mobile unitis moving with velocity v. The Doppler frequency spread is given by [84]fD;n = v cos �n=�cwhere �n is the direction of the nth wave with respect to the velocity vector v and�c is the wavelength of the arriving plane wave. The received low-pass equivalentnoiseless signal is therefore given byr(t) =Xn Rns(t� tn)e�j2�[(fc+fD;n)tn�fD;nt] (2:5)We assume that the signal is narrowband with respect to the channel of a singlespecular path, i.e., its inverse bandwidth 1/B (pulse-width) is much greater than thetime delay spread which is the di�erence between the maximum and the minimumtime delays due to local scattering. Thus, we obtains(t� tn) � s(t� � ) (2:6)where � 2 [minn tn;maxn tn]. Denoting the phase associated with the nth path�n(t) = 2�[(fc + fD;n)tn � fD;nt] (2:7)we obtain the received low-pass noiseless signal asr(t) = s(t� � )Xn Rne�j�n(t) (2:8)Letting �(t) = PnRne�j�n(t), the channel impulse response is expressed concisely as�(t)�(t� � ) (2:9)14



where �(:) is the Dirac delta function.Fast fading is primarily the result of time variations of the phases in (2.7). Sincefc + fD;n(t) is very large, a small change in time delay tn may result in a largechange in �n(t). Thus, the received signal components may add constructively ordestructively. When the number of scatterers in the channel is large, the channelimpulse response, PnRne�j�n(t), has a complex Gaussian distribution and the phases�n(t) are uniformly distributed in the interval [0, 2�).In the absence of a line-of-sight (LOS) component, the envelope of the channelimpulse response is Rayleigh distributed with probability density functionp(r) = 8><>: r�2 exp(� r22�2 ); r � 00; r < 0 (2:10)where �2 is the variance of both real and imaginary parts of the complex fadingattenuation. In simulations in the following chapters, we generate fading attenuationsas follows: �rst generating complex channel attenuation with variance 1 for both realand imaginary parts, then scaling the attenuation by 1=p2 for single-path channelsand 1=p2=P for multipath channels, where P is the number of paths. This maintainsa unit average power level for channel attenuation.If there exists a LOS component, the channel has nonzero mean and the complexenvelope has a Rician distribution with pdfp(r) = 8><>: r�2 exp(� r2+a22�2 )I0( ar�2 ); r � 00; r < 0 (2:11)where a � 0 is the peak amplitude of the LOS received signal and I0(:) is the modi�edzeroth-order Bessel function.When there exist P dominant specular paths, the fast fading is modelled asPXp=1�p(t)�p(t� �p) (2:12)We have discussed path loss, shadowing and fast fading for wireless channel envi-ronment, a combined channel characteristic is sketched in Figure 2.2 for a single15
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Figure 2.2: Total Fading Signaldominant path [109]. For multiple dominant (or multipath) channels, the channelimpulse response can be written asPXp=1q�pSp�p(t)�p(t� �p) (2:13)2.2.3 Array Response VectorWe have obtained the wireless channel model for a single antenna. In this section, wewill develop expressions for the antenna array response and proceed with a channelmodel incorporating array response vectors. From Figure 2.1, it is observed that thetransmitted signal arrives at the base-station antenna array through several specularpaths with di�erent DOAs and di�erent time delays. Processing a signal arrivingfrom a single antenna cannot distinguish the di�erent DOAs. Therefore, it is neces-sary to use multiple antennas to identify DOAs and further suppress multiple accessinterference. Previous antenna array response vector modelling can be found in [14]and [57].As we mentioned in Section 2.2.2, the transmitted wave arrives at the base-station16



antenna array from a dominant direction with some angle spread. The problem of theangle spread for antenna array CDMA systems is studied in [6]. In this thesis, we makethe simplifying assumptions that the angle spread of each specular path is negligibleand that the received signals are narrowband with respect to the array aperture so thatthe signal envelope does not change signi�cantly during the propagation time throughthe antenna array. We assume that the mobile and the base-station antenna array arein the same plane and the mobile is in the far-�eld of the antenna array so that thepropagating wave impinges on the antenna array as a plane rather than a sphericalwave. We also assume that the antenna elements in the array are identical. In thiscase, the array response vector is parameterized by the angular carrier frequency !cand the relative time delays across the antenna array for a given array geometry.Taking the �rst antenna element as the reference point, we denote � am to be thepropagation delay between the reference point and the mth element for a wavefrontimpinging from the direction �. The array response vector for an M-element antennaarray is then given by a(�) = 2666666664 1e�j!c�a2 (�)...e�j!c�aM (�) 3777777775 (2:14)At this point, we have introduced all the channel parameters. The vector channelimpulse response is expressed asg(t) = PXp=1q�pSp�p(t)a(�p)�p(t� �p) (2:15)where the direction of arrival (DOA), �p for p = 1; � � � ; P , of each path is determinedby the physical location of the dominant reectors and relative time delay �p is dueto the large distance separation between these reectors.In this thesis, we only consider fast fading and assume that q�pSp is normalized tounity. The receiver algorithms derived in the following chapters are directly applicableto the channels including path loss and shadowing. It is also straightforward to extendthe simulations in this thesis to include path loss and shadowing, as done in [12].17
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modulator combined with a long code of period 242� 1 has been adopted to suppressmultiple access interference in second generation systems IS95. To overcome the near-far problem, precise power control is required to guarantee that the received signalpowers from di�erent mobile users are equal [70]. If no power control is used, the con-ventional single-user CDMA receiver is subject to the near-far problem [43]. Powercontrol algorithms may cause additional overhead and increase transmitter/receivercomplexity. More importantly, using power control cannot eliminate the bit errorrate (BER) oor and the BER performance still su�ers from the near-far problem.The objective of this thesis is to investigate near-far resistant receiver structuresusing spatial-temporal signal processing techniques. It is not necessary to use precisepower control to make the received powers be equal. In Multi-rate systems, precisepower control is di�cult. To this end, we consider a generic CDMA system to studythe fundamental performance improvement achieved by the new receivers obtainedin later chapters. Before transmission, the information symbols for each user arespread over a wider bandwidth using a spreading code which is also used to distin-guish di�erent users. We use short spreading codes to derive new receiver structures.However, it will be veri�ed in the following chapters that the new receivers are alsoapplicable to long codes which are currently utilized in IS95. A typical spreadingprocess is illustrated in Figure 2.4. The transmitted signal waveform is determinedby the spreading code and the signal bandwidth is spread.For a system with K active users, the transmitted signal from the kth user is givenby sk(t) = Ak NXi=1 bk(i)ck(t� iTb) (2:17)where Ak is the amplitude of the kth user, bk(i) 2 f+1;�1g (BPSK) is the ith trans-mitted bit of the kth user with equal probability and ck(t) represents the spreadingwaveform of the kth user, which is given byck(t) = L�1Xl=0 cklp(t� lTc) (2:18)where ckl 2 f+1;�1g (l = 1 � � �L� 1) is the spreading code, p(t) is the chip pulse, Tc19



is the chip interval, Tb is the bit interval and processing gain is de�ned asL = Tb=Tc (2:19)In this thesis, we assume that p(t) is rectangular. Extension of the results obtained toother chip waveforms is straightforward. We assume that the information bits fromK users are independent, the spreading code sequences for K users are independentand the spreading waveform has normalized energy, i.e.,Z Tb0 jck(t)j2 = 1 (2:20)Under the normalized constraint, the chip waveform used in this thesis is illustratedin Figure 2.5.2.3.2 Received Signal for Synchronous Single-Path ChannelThe transmitted signal passes through the propagation channel and arrives at a base-station antenna array with M elements. For single-path synchronous channels, theimpulse response vector of the channel from the kth transmitter to antenna arrayoutput is simpli�ed as gk(t) = �k(t)a(�k(t))�(t) (2:21)where �k(t) and a(�k(t)) are the fading attenuation corresponding to user k's channeland the M-dimensional array response vector with direction-of-arrival (DOA) �k(t)from the kth user, respectively. The channel fading attenuations for K users areassumed to be mutually independent and also independent of information bit symbols.The received composite signal at the base-station antenna array from K users isthen given by x(t) = KXk=1 xk(t) = KXk=1 sk(t) � gk(t) + n(t) (2:22)where n(t) is the additive white Gaussian noise vector with zero mean and covariancematrix �2IM , where IM is an M �M identity matrix. We assume that �k(t) and20



�k(t) remain unchanged over an N-bit duration. Therefore, we suppress the time-dependence from these quantities and denote them as �k and �k, respectively. Thensk(t) � gk(t) = Ak�ka(�k) NXi=1 bk(i)ck(t� iTb) (2:23)We denote the channel array response vector for user k asfk = Ak�ka(�k) (2:24)where themth component of fk is fmk = Ak�kam(�k) and am(�k) is themth componentof array response vector a(�k). The received signal at the mth array element (form = 1; � � � ;M) is given byxm(t) = KXk=1 NXi=1 fmk bk(i)ck(t� iTb) + nm(t) (2:25)where nm(t) is AWGN at the mth array element. The received signal vector at thebase-station antenna array can be written asx(t) = KXk=1 NXi=1 fkbk(i)ck(t� iTb) + n(t) (2:26)2.3.3 Received Signal for Asynchronous Multipath ChannelFor asynchronous multipath channels, the impulse response of the channel from trans-mitter to antenna array output for the kth user is given bygk(t) = PkXp=1�k;p(t)a(�k;p(t))�(t� �k;p) (2:27)where a(�k;p(t)) is the M-dimensional array response vector with direction-of-arrival(DOA) �k;p(t) for the pth path of the kth user, �k;p(t) and �k;p represents channelattenuation and relative time delay for the kth user through the pth propagationpath, respectively. Pk is the total number of the propagation paths for user k.We assume �k;p 2 [0; Tb) for k 2 f1; � � � ;Kg and p 2 f1; � � � ; Pkg, and �k;p < �k;q forp < q. The channel fading attenuations �k;p(t) for k 2 f1; � � � ;Kg and p 2 f1; � � � ; Pkgare assumed to be mutually independent and also independent of information bitsymbols. 21



Thus, we obtain the received composite signal at the base-station antenna arrayfrom K users x(t) = KXk=1 NXi=1 xk(t) = KXk=1 NXi=1 sk(t) � gk(t) + n(t) (2:28)where the additive white Gaussian noise vector n(t) is the same as that for thesynchronous single-path case. Similar to Section 2.3.2, we also assume that �k;p(t)and �k;p(t) remain unchanged over the N-bit duration and denote these quantities as�k;p and �k;p respectively. From (2.17),sk(t) � gk(t) = Ak NXi=1 PkXp=1�k;pa(�k;p)ck(t� iTb � �k;p)bk(i) (2:29)We denote the channel array response vector through the pth path for the kthuser as fk;p = Ak�k;pa(�k;p) (2:30)where the mth component of fk;p is fmk;p = Ak�k;pam(�k;p) and am(�k;p) is the mthcomponent of array response vector a(�k;p). Then, the received signal at the mtharray element (for m = 1; � � � ;M) from the kth user is expressed asxmk (t) = KXk=1 NXi=1 PkXp=1 fmk;pck(t� iTb � �k;p)bk(i) + nm(t) (2:31)where nm(t) is AWGN at the mth array element. Similar to the synchronous case,the received signal vector is given byx(t) = KXk=1 NXi=1 PkXp=1 fk;pck(t� iTb � �k;p)bk(i) + n(t) (2:32)Multipath fading causes inter-symbol interference (ISI) and multi-access interfer-ence (MAI) arises due to the asynchronous channel. Figure 2.6 shows the examplefor a two-user system, where each user's signal propagates through two paths.2.4 Problem FormulationThe objectives of this thesis are to detect information bit sequences and estimatechannel array response vectors for all the users jointly and investigate performanceimprovement using advanced signal processing techniques.22



Denote the bit vector, for i = 1; � � � ; N ,b(i) = � b1(i) � � � bK(i) �T (2:33)Then, the unknown parameters are bit vectors b(i) for i = 1; � � � ; N and channelarray response vectors fk;p for k = 1; � � � ;K and p = 1; � � � ; Pk. We solve this problemby maximizing the likelihood function of the received signal conditioned on theseunknown parameters[b̂(i); f̂k;p] = maxb(i);fk[
(x(t)jb(i); fk;p; i = 1; � � � ; N; k = 1; � � � ;K; p = 1; � � � ; Pk)] (2:34)where 
(x(t)jb(i); fk;p; i = 1; � � � ; N; k = 1; � � � ;K; p = 1; � � � ; Pk) is the likelihoodfunction of the received signal x(t) conditioned on the unknown parameters b(i) fori = 1; � � � ; N and fk;p for k = 1; � � � ;K and p = 1; � � � ; Pk.The di�culty of this problem is that since the unknown parameters for di�erentusers are coupled together, the computational complexity of the exhaustive searchof the optimum solution in (2.34) is prohibitive. This motivates us to investigatecomputationally e�cient algorithms and corresponding performance measures. Wewill address these issues in the following chapters.
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Chapter 3Spatial-Temporal Decorrelating Receiverfor Synchronous Single-Path Channels3.1 IntroductionThe maximum-likelihood (ML) criterion is a well-principled approach to obtain prac-tical estimators. However, computing the ML estimator may be di�cult, or evenmakethe problem be intractable, when the unknown parameters from di�erent sources arecombined together in the observation data such as in the case of the received com-posite signal in multi-user communication systems. A numerical solution is neededin this case. Newton-Raphson and scoring methods have been used to iterativelycompute an ML estimate. However, these two approaches su�er from convergenceproblems [34]. A third iterative method, the expectation-maximization (EM) algo-rithm, provides guaranteed convergence to a local maximum under mild conditions[8] [23].Feder and Weinstein apply the expectation-maximization (EM) algorithm to pa-rameter estimation of superimposed signals [17]. Bit sequence detection with jointrandom parameter estimation using the EM algorithm is studied for single-user sys-tems in [20]. Recently, applications of the EM algorithm to CDMA systems havebeen proposed for signal detection [60], channel estimation [16] [15] and joint channelestimation and signal detection [101]. The space-alternating generalized EM (SAGE)25



algorithm can achieve better performance than the standard EM algorithm [19]. Ap-plications of the SAGE algorithm in multi-user CDMA channels can be found in [7][60] [78]. An iterative ML signal detector is proposed for known channels in [60] usingthe SAGE algorithm. Application of the SAGE algorithm for channel parameter es-timation can be found in [7]. In [78], joint parameter estimation and signal detectionis developed using the SAGE algorithm based on the discrete wavelet transform fora single antenna system.In this chapter, we investigate the integration of spatial signal processing withmulti-user signal detection for the synchronous CDMA systems with non-orthogonalspreading codes over a single dominant-path Rayleigh fading channel. The motivationto focus on synchronous systems is as follows: a K-user asynchronous system can bemodelled as a synchronous system withK�N users, where N is the number of bits ineach transmitted block [43]. Most importantly, the synchronous problem formulationsimpli�es the derivation and analysis of the new algorithm and the results obtainedcan be generalized to the case of higher complexity asynchronous multipath systems[11].We �rst formulate a spatial-temporal decorrelator which we show to be near-far resistant. Then, we derive two new receivers for jointly estimating channel arrayresponse vectors and detecting information symbol sequences by applying the EM andSAGE algorithms, respectively. The analytical bit error probability and Cram�er-RaoLower Bound (CRLB) for the estimated channel are derived to measure performanceof the new receivers.This chapter is organized as follows. The discrete-time system model is developedin Section 3.2. In Section 3.3, we derive a spatial-temporal decorrelator using themaximum likelihood criteria and analyze its asymptotic e�ciency. EM-based andSAGE-based spatial-temporal decorrelating receivers are obtained in Section 3.4 andSection 4.5, respectively. The receivers' performances are analyzed in Section 3.6.Section 3.7 presents simulation results. 26



3.2 Discrete-Time FormulationWe rewrite the received signal at the mth array element (for m = 1; � � � ;M) from(2.25) xm(t) = KXk=1 fmk bk(i)ck(t� iTb) + nm(t) (3:1)The received signal at each element �rst passes through a �lter matched to the chipwaveform p(t) given in (2.18), and is then sampled at the chip rate. The receiveddiscrete-time signal at the ith bit interval from the mth element can be obtained forsample g 2 f0; 1; � � � ; L� 1g asxm(i; g) = Z (g+1)Tct=gTc xm(t)p�(t)dt (3:2)for the chip waveform p(t). Finally, the gth sample of the ith bit for the mth antennaelement is obtained in terms of the sampled chips ckg by substituting (3.1) into (3.2)yielding xm(i; g) = KXk=1 fmk ckgbk(i)=L+ nm(i; g) (3:3)where fmk , the mth component of the channel array response vector, is de�ned in(2.24) and where nm(i; g) = Z (g+1)Tct=gTc nm(t)p�(t)dt (3:4)is Gaussian distributed with zero mean and variance �2=L. We denote the code vectorfor the kth user as ck = 1L � ck0 ck1 � � � ck(L�1) �T (3:5)The matched �lter output at the mth element for m 2 f1; � � � ;Mg can be written invector form as xm(i) = KXk=1 fmk bk(i)ck + nm(i) (3:6)where nm(i) = [nm(i; 0) nm(i; 1) � � � nm(i; L� 1)]T .We de�ne the total impulse response vector for user k, including fading channel,array response vector and spreading code vector de�ned above ashmk (i) = fmk ck (3:7)27



Equation (3.6) can be written in terms of (3.7) asxm(i) = KXk=1hmk bk(i) + nm(i) (3:8)Denote x(i) = [(x1(i))T � � � (xM(i))T ]T (3:9)hk = [(h1k)T � � � (hMk )T ]T (3:10)and n(i) = [(n1(i))T � � � (nM (i))T ]TThe received discrete-time signal from antenna array is given byx(i) = KXk=1 xk(i) = KXk=1hkbk(i) + n(i) (3:11)where xk(i) is the received signal from the kth user and n(i) is AWGN vector withzero vector mean and covariance matrix �2L IML, where IML is an ML �ML identitymatrix.Vector hk contains the spatial and temporal channel characteristics of our system.The spatial-temporal channel vector hk can also be decomposed ashk = 2666666664 ck 0 � � � 00 ck . . . 0... . . . . . . ...0 0 � � � ck 37777777752666666664 f1kf2k...fMk 3777777775 = Ckfk (3:12)where Ck is an ML � M spreading code sequence matrix of the kth user, and 0represents an L-dimensional zero column-vector.Denoting H = [h1 � � � hK] (3:13)and b(i) = [b1(i) � � � bK(i)]T (3:14)the received composite signal is given byx(i) = Hb(i) + n(i) (3:15)28



A necessary condition that K users are identi�able is that H is of full column rank,which requires ML > K (3:16)3.3 Spatial-Temporal DecorrelatorIn this section, we derive a spatial-temporal decorrelator based on the discrete-timesystemmodel using the maximum-likelihood criteria for known channel array responsevectors, i.e., H is known at the receiver. Then we investigate the near-far resistanceof the new detector and compare the near-far resistance with that of the conventionalsingle-user detector.3.3.1 Detector for Known ChannelThe log-likelihood of the received signal x(i) conditioned on the bit vector b(i)is givenby (for the sake of simplicity, we omit the time index i in this section)
(b) = � 1�2=L(x�Hb)H(x�Hb) (3:17)where the superscript H denotes conjugate transpose. The unknown parameters arethe information bit vector b.If H is available, i.e., the channel and array response vectors are known, the bitvector decision variable b̂d can be obtained by maximizing the above log-likelihoodfunction b̂d = arg maxb 
(b) (3:18)Taking the derivative of log-likelihood function (3.17) with respect to the bit vectorb, we obtain @
(b)@b = 1�2=L (HHHb� 2HHx) (3:19)Since the bit vector is discrete-valued, this is not a standard maximum-likelihood(ML) estimation problem. The approximate ML solution for the bit vector b can be29



found by equating (3.19) to zero. For BPSK modulation, we haveb̂ = signf[HHH]�1HHxg (3:20)where signfag = 8><>: 1; if a � 0�1; if a < 0We de�ne the spatial-temporal cross-correlation matrix asR � HHH (3:21)From (3.12) and (3.13), the kjth component of matrix R is given byRkj = hHk hj = fHk CHk CjfjUsing the de�nition of Ck, we obtainCHk Cj = cHk cjIMThus, Rkj is given by Rkj = cHk cjfHk fj (3:22)De�ne the spatial correlation between user k and user j asfkj = fHk fj (3:23)and the temporal correlation between user k and user j as�kj = cHk cj 8><>: � 1=L; if k 6= j= 1=L; if k = j (3:24)The spatial-temporal correlation matrix can be written asR = 2666666664 f11�11 f12�12 � � � f1K�1Kf21�21 f22�22 � � � f2K�2K... . . . . . . ...fK1�K1 fK2�K2 � � � fKK�KK 3777777775 (3:25)30



If the spreading codes are orthogonal, the cross-correlation between two di�er-ent codes is zero for a synchronous system, i.e., �ij = cHi cj = 0 (for i 6= j) fora synchronous system. In this case, R is diagonal and no multi-access interferenceexists. However, if the system is asynchronous, we cannot guarantee this zero cross-correlation. If the spreading codes are not orthogonal, even for synchronous systems,the cross-correlation between two di�erent spreading codes will be nonzero. In thischapter, we analyze a synchronous system with non-orthogonal spreading codes.We may interpret (3.20) as a maximumSNR beamformer computational structureusing steering vector HH followed by a decorrelator [HHH]�1. Using (3.20), (3.21),the detected bit vector can be written in the formb̂ = signfR�1zg = signfR�1FHyg (3:26)where z = HHx = 2666666664 fH1 0T � � � 0T0T fH2 . . . 0T... . . . . . . ...0T 0T � � � fHK 37777777752666666664 y1y2...yK 3777777775 = FHy (3:27)and the kth components in vector y represents the despreading output for user k andis given by yk = CHk x (3:28)This detector structure is a conventional single-user detector with a maximum SNRbeamformer followed by a decorrelator, see Figure 3.1. Matrix R includes both thetemporal cross-correlation due to the non-orthogonal spreading codes and the in-stantaneous spatial correlation because of the spatial distribution of the active usersin the system. This structure di�ers from that of [49] since the matched-�lter (de-spreader) occurs prior to beamforming. For unknown channels, in order to computethe beamforming weight vector for each user, we have to estimate the correspond-ing channel array response vector. For CDMA systems, it is necessary to despreadthe received signal before estimating the related channel parameters. Therefore, the31
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where ek(�) is the kth user's e�ective energy required to achieve the same error prob-ability in the absence of interferers, wk is the received energy for user k, Pk(�) rep-resents bit-error-rate (BER) of the kth user when the variance of the backgroundthermal noise modelled by AWGN is �2 andQ(x) = Z 1x exp(�y2=2)p2� dyis the error function.Because the asymptotic e�ciency of the temporal decorrelator in a single-pathRayleigh fading channel is the same as that of an additive white Gaussian channel[114], we only consider the AWGN channel here. In this case,fk = 2666664 f1k...fMk 3777775 = Akak(�k)The kth user error probability for the spatial-temporal decorrelator can be ob-tained as P dk = Q0B@ 1�pLq(R�1)kk1CA (3:31)where (R�1)kk represents the kth diagonal element of matrix R�1 [107]. Similar to thecase of single antenna systems [42], the asymptotic e�ciency of the spatial-temporaldecorrelator for the kth user is given by�dk = max28<:0; 1qRkk(R�1)kk9=; = 1Rkk(R�1)kk (3:32)The kth user's bit error probability for the conventional single-user detector (c.f.(3.26)) is given byP ck = p[zk > 0jbk = �1] = 21�K Xbi2f+1;�1gQ0@Rkk �Pi6=kRikbi�pLpRkk 1A (3:33)where the second equation is due to the usual assumption of equally probable trans-mitted information symbols. When the background noise variance �2 tends to zero,33



(3.33) is dominated by the event corresponding to bi = �1, i 6= k, i. e.,21�K Xbi2f+1;�1gQ0@Rkk �Pi6=k jRikj�pLpRkk 1A (3:34)Thus, the kth user's asymptotic e�ciency of the conventional single-user detector, �ck,can be obtained by substituting (3.34) into (3.33) and (3.30)�ck = max2(0; pRkk �Pi6=k jRikj=pRkkpRkk ) = max2(0; 1�Xi6=k jRikjRkk ) (3:35)The kth user's near-far resistance is de�ned as its worst case asymptotic e�ciencyover all possible energies of the interferers and given by [43]��k = infwi�0;i6=k �k (3:36)If ��k is nonzero, the performance level of the corresponding detector is guaranteed nomatter how powerful the multi-access interference. The detector with nonzero ��k issaid to be near-far resistant.Example: To numerically compare the asymptotic e�ciency for the spatial-temporaldecorrelator and the conventional single-user detector, we consider a four-user sys-tem based on a set of spreading codes from Gold sequences of length seven. Thecorresponding cross-correlation matrix of the spreading codes is given by [9]Rc = 17 2666666664 7 �1 3 3�1 7 �1 33 �1 7 �13 3 �1 7 3777777775We assume a uniform linear array (ULA) with half-wavelength spacing at the base-station, see Figure 3.2. The kth user antenna array response with the �rst elementas the reference point is given bya(�k) = [1 e�j2�d sin �k=� � � � e�j2(M�1)�d sin �k=�]T (3:37)where d = �=2 in our case and � is the propagation wavelength. For this antennaarray, Rik is given by Rik = 8><>: �ikAiAkaHi ak; if i 6= kMA2k=L; if i = k (3:38)34
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θFigure 3.2: Uniform Linear ArrayTo evaluate the e�ect of the base-station antenna array on detector performance, weconsider two cases: a single antenna and a three-element antenna array. The direction-of-arrivals (DOAs) for four active users are [25�; 5�;�15�;�35�] with respect to thearray boresight. We refer the �rst user as the desired user and de�ne the power ratioas A2k=A21, for k = 2; � � � ;K. In this example, we assume that all interferers have equaltransmitted power.Figure 3.3 compares the asymptotic e�ciencies for the spatial-temporal decorre-lator and the conventional single-user detector with and without an antenna array.Conventional single-user detector with antenna arrays can be generalized from Figure1.1 by incorporating a beamformer into detector structure between the despreadingmatched �lter and the decision rule for each user. Note that the asymptotic e�cien-cies of the spatial-temporal decorrelator for both single-antenna and antenna-arraycases are constant. This means that performance of the spatial-temporal decorrela-tor is independent of the received energies from interferers provided that the arrayresponse vectors of the active users are perfectly known or estimated at the receiver.Therefore, the spatial-temporal decorrelator is near-far resistant. Also note that theasymptotic e�ciencies for both conventional single-user detectors tend to zero as theinterferers become stronger. Note that the conventional single-user detector is not35
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The above analysis is based on the assumption that matrix R is available, imply-ing that the channel array response vectors, fk (for k = 1; � � � ;K), are known at thereceiver. This is not the case in a practical application. We now investigate the prob-lem of joint channel estimation and signal detection. In the following two sections, weaddress the key implementation issues of the proposed spatial-temporal decorrelator.From here on, we refer to the joint parameter estimation and spatial-temporal signaldecorrelation as the spatial-temporal decorrelating receiver.3.4 EM-Based Decorrelating ReceiverIn this section, we �rst briey introduce the expectation-maximization (EM) algo-rithm, then apply the EM algorithm to derive an iterative receiver structure. Theavailable observed data at the receiver is a data vector set fx(i); 1; � � � ; Ng.3.4.1 EM algorithmThe EM algorithm is an iterative method to solve the maximum-likelihood (ML)estimation problem given the observed data when direct maximization of likelihoodis not practical [8]. The EM algorithm is based on the notion of two data sets, theincomplete data r and the complete data x. Incomplete data r (usually the observeddata) is available at the receiver, while the unavailable complete data forms a many-to-one mapping x! r. The EM algorithm includes a two-step iteration consisting ofthe E-step (expectation step) and the M-step (maximization step). In the E-step, theconditional expectation of complete data x is computed given incomplete observeddata r and the current estimate of parameters �̂j at jth iteration:U(�j�̂j) = E[log f(xj�)jr; �̂j] (3:39)In the M-step, the likelihood function is maximized to obtain the parameter estimateat the next iteration �̂j+1 = arg max� U(�j�̂j) (3:40)37



Each iteration of the EM algorithm increases the likelihood function U(�j�̂j) until apoint of maximum is reached. However, there is no guarantee that the convergencewill be to a global maximum. For likelihood functions with multiple maxima, the EMalgorithm may converge to a local maximumwhich depends on the initial estimate �̂0.Using multiple starting points, the EM algorithm could achieve better performanceat the expense of increased complexity. A more detained presentation of the EMalgorithm can be found in [54].3.4.2 Iterative Parallel ReceiverWe �rst rewrite equation (3.11) for times i = 1; � � � ; N asx(i) = KXk=1 xk(i) = KXk=1hkbk(i) + n(i) (3:41)and choose the complete data set as in [17]xC(i) = � xT1 (i) xT2 (i) � � � xTK(i) �T (3:42)where superscript c denotes complete data and xk(i) (for k = 1; � � � ;K) representsthe received signal from the kth user and is given byxk(i) = hkbk(i) + nk(i) (3:43)where nk(i) is the decoupled background noise vector for user k with zero mean andcovariance matrix �2LK IML. Discarding the terms which are independent of the bitvector b(i) and using the notation in (3.13) for matrix H, the log-likelihood functionof the complete data can be expressed in simpli�ed notation as
(xCjb(i);H) = � 1�2=KL NXi=1 KXk=1(xk � hkbk(i))H(xk � hkbk(i)) (3:44)From (3.44), it is clear that the coupled K-user optimization problem in (3.41) hasbeen transformed to K parallel single-user optimization problems.The expectation step (E-step) of the EM algorithm is to compute the condi-tional expectation of the log-likelihood in (3.44) conditioned on hk and bk(i) (for38



k = 1; � � � ;K and i = 1; � � � ; N) given the maximum-likelihood estimates from theprevious iteration stage. For our decoupled problem, the E-step obtains the condi-tional expectation of the complete data set which is calculated using standard prop-erties of conditional multivariate Gaussian distributions [17] [68] (for k = 1; � � � ;Kand i = 1; � � � ; N)x̂j+1k (i) = E[xk(i)jx(i); ĥjk; b̂jk(i)] = ĥjkb̂jk(i) + 1K (x(i)� KXk=1 ĥjkb̂jk(i)) (3:45)where the superscript j denotes the jth iteration.The maximization step (M-step) of the algorithm is to obtain maximum likelihoodestimates of hk (for k = 1; � � � ;K)and bk(i) (for k = 1; � � � ;K and i = 1; � � � ; N) for thenext iteration by maximizing (3.44) given the conditional expectation of the completedata[ĥj+1k ; b̂j+1k (i)] = arg maxhk;bk(i)f� NXi=1(x̂j+1k (i)� hkbk(i))H(x̂j+1k (i)� hkbk(i))g (3:46)Given the bit sequence detection results at the jth iteration, b̂jk(i) for k = 1; � � � ;Kand i = 1; � � � ; N , ĥj+1k for k = 1; � � � ;K can be obtained by equating the derivativeof (3.46) with respect to hk to zero yieldingĥj+1k = 1N NXi=1 x̂j+1k (i)b̂jk(i)Then, for a given channel array response vector estimate at the (j+1)st iteration, ĥj+1kfor k = 1; � � � ;K, we obtain the bit sequences at the (j+1)st iteration, for k = 1; � � � ;Kand i = 1; � � � ; N as b̂j+1k (i) = (ĥj+1k )Hx̂j+1k (i)Rewriting (3.45) asx̂j+1k (i) = K � 1K ĥjkb̂jk(i) + 1K 0@x(i)� KXk1=1;k1 6=k ĥjk1 b̂jk1(i)1A (3:47)the EM-Based decorrelating receiver to jointly estimate channel array response vectorsand detect information symbols is summarized as follows:E-step: compute the conditional expectation of interference39



plus noise, for k = 1; � � � ;K and i = 1; � � � ; Nûj+1k (i) = x(i)� KXk1=1;k1 6=k ĥjk1 b̂jk1(i) (3:48)M-step: obtain the decoupled ML estimates, for k = 1; � � � ;Kand i = 1; � � � ; Nĥj+1k = 1N NXi=1(K � 1K ĥjk b̂jk(i) + 1K ûj+1k (i))b̂jk(i) (3:49)b̂j+1k (i) = signf(ĥj+1k )H(K � 1K ĥj+1k b̂jk(i) + 1K ûj+1k (i))g (3:50)The above signal detection/estimation approach is actually K parallel conven-tional single-user detectors at each iteration, as shown in Figure 3.4. The remark-able advantage of the EM-based spatial-temporal decorrelating receiver is that theK-dimensional optimization problem is decoupled to K parallel single dimensionaloptimization problems, and hence, reduces computational complexity.This section derives an iterative parallel multi-user receiver structure based onthe EM algorithm. Because the desired parameters are channel attenuations and bitsequences for each user, we decompose the received signal (observed data) into itssignal components from all active users and choose the decomposed signals to formthe complete data set. After decomposition, the channel estimation and bit detectionproblems have been transformed those of single-user receivers. The advantage of thischoice is that it is easy to derive joint channel estimation and bit detection algorithmsfor each user.There exists a tradeo� between the choice of the complete data set and the compu-tational complexity. Di�erent choices of the complete data set will result in di�erentreceiver structures. An alternate choice of complete data set for multi-user signaldetection can be found in [60] for known channels. In [60], the interference users'sbits are treated as missing data for each desired user. The missing data and receivedincomplete data form the complete data set. At the E-step, the conditional expecta-tion of the complete data is computed using the a priori distribution of the missingdata. This choice results in improved convergence and increased complexity in termsof the number of users. 40
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point of the EM algorithm tends to zero monotonically [22] with large step sizesand greater likelihood increases in the early iterations [18] [22], minimizing the in-formation of the complete-data set could achieve improved performance for the EMalgorithm. However, since the EM algorithm employs the simultaneous updates, aless informative complete-data can result in an intractable problem formulation [8][18]. To overcome this problem, the SAGE algorithm maximizes a small group of theunknown parameters sequentially by choosing a small hidden-data, or complete-dataset. Convergence of the SAGE algorithm has been established in [19].The �rst step of the SAGE algorithm is to choose an index set. For a problem ofK unknown parameter sets, a set S is de�ned to be an index set if it is nonempty, isa subset of the set f1; � � � ;Kg and has no repeated entries [19]. Based on the indexset S, identifying an admissible hidden-data space xS which must be a complete-dataset in the sense of the standard EM algorithm in [8].The SAGE algorithm iterates the following steps:Starting with an initial parameter vector estimate at iteration j = 0.1. Choose a new index set S = Sj , a subset of the parameters, which de�nes anadmissible hidden-data space xSj2. Compute the following conditional expectation of xSj given observed data xand the previous estimate of parameter vector �̂j
(�Sj j�̂j) = E[lnf(xSj j�̂ �Sj)jx; �̂j] (3:51)3. Obtain the next estimate by maximizing over the chosen subset while keepingthe other parameters �xed �̂j+1Sj = arg max�Sj 
(�Sj+1 j�̂j)�̂j+1�Sj = �̂j�Sj (3:52)where the index set �Sj is the complement of Sj4. Increment j and go to step 1. 42



3.5.2 Iterative Sequential ReceiverFor the CDMA systemmodel considered, we would like to estimate each user's channelparameter and detect the information symbol individually. In step 1, we choose userindex k as the index set. Thus, the admissible hidden-data space for index k fork = 1; � � � ;K and i = 1; � � � ; N is given by (c.f. 3.11)xSk (i) � N (hkbk(i); �2L IML) (3:53)where superscript S represents the hidden-data space and N denotes the multivariateGaussian distribution.The log-likelihood function after removing the terms independent of hk and bk(i)is straightforwardly computed as
(xSk (1); � � � ;xSk (N)) = � 1�2=L NXi=1(xSk (i)� hkbk(i))H(xSk (i)� hkbk(i)) (3:54)Given the estimation results at the jth iteration, the conditional expectation of xSk (i)(for k = 1; � � � ;K and i = 1; � � � ; N) in Step 2 is given byx̂Sj+1k (i) = ĥjk b̂jk(i) + (x(i)� KXi=1 ĥji b̂ji (i)) = x(i)� KXk1=1;k1 6=k ĥjk1 b̂jk1(i) (3:55)where Pk1 6=k ĥjk1 b̂jk1(i) is the sum of the received signals from all interfering users.Substituting (3.55) into equation (3.54), we obtain the conditional expectation of thelog-likelihood function of xSk (i). The maximization results at Step 3 are obtained as[ĥj+1k ; b̂j+1k (i)] = arg maxhk ;bk(i)f� NXi=1(x̂Sj+1k (i)� hkbk(i))H(x̂Sj+1k (i)� hkbk(i))g (3:56)Equation (3.56) is similar to (3.46) except that the complete data estimate x̂j+1k (i)is replaced by the hidden-data space estimate x̂Sj+1k (i) for k = 1; � � � ;K and i =1; � � � ; N .Thus, SAGE-based receiver for joint channel array response vector estimation andinformation symbol detection is obtained asfor j = 1; 2; : : : 43



k = (j modulo K)E-step: compute the conditional expectation of hidden-datafor i = 1; � � � ; Nx̂Sj+1k (i) = x(i)� KXi=1;6=k ĥji b̂ji (i) (3:57)M-step: obtain the maximum-likelihood estimates ĥk and b̂k(i)for i = 1; � � � ; Nĥj+1k = 1N NXi=1 x̂Sj+1k (i)b̂jk(i) (3:58)b̂j+1k (i) = signf(ĥj+1k )Hx̂Sj+1k (i)g (3:59)for all k1 2 f1; � � � ; k � 1; k + 1; � � � ;Kgĥj+1k1 = ĥjk1b̂j+1k1 (i) = b̂jk1(i)The above steps can be interpreted as follows: substituting (3.57) into (3.59), weobtain b̂j+1k (i) = signf((ĥj+1k )H x̂k(i)� KXk1=1;k1 6=k f̂ j+1kk1 �kk1 b̂jk1(i))g (3:60)where f̂ j+1kk1 = (f̂ j+1k )H f̂ jk1 is the estimated instantaneous spatial correlation de�ned in(3.23) at the (j+1)st iteration and �kk1 is the cross-correlation de�ned in equation(3.24). Equation (3.60) implies that the information symbol detection at each iter-ation involves explicit interference cancellation given the current channel estimationand the previous bit detection results. Therefore, the SAGE-based receiver has asequential interference cancellation structure. We de�ne the required K updatingsteps for all K active users as one iteration cycle of the SAGE-based receiver. Thereceiver structure for a single iteration cycle for a K-user system is illustrated in Fig-ure 4.5. We observe that the optimization results from the previous users are used toestimate channel array response vectors and detect bit sequences for the latter ones.Therefore, in contrast to the parallel structure of the EM-based receiver in Figure 3.4,44
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the SAGE-based spatial-temporal decorrelating receiver has a sequential structure ateach iteration cycle.When there is only one active user in the system, the EM-based receiver andthe SAGE-based receiver are identical, and both receivers reduce to the joint fadingchannel estimator and signal detector for a single-user system as proposed in [20]. Itcan be observed from (3.48) and (3.49) that interference cancellation capability of theEM-based receiver reduces as the number of the active users becomes large. Whenthe number of the active users in the system gets large so that K�1K � 1 and 1K � 0,the EM-based receiver reduces to the conventional single-user receiver. However, thisis not true for the SAGE-based receiver. As the number of active users in the systemincreases, possible degradation of the SAGE-based receiver would be caused by lessaccurate channel array response vector estimates and BER performance degradationfrom interfering users. Therefore, the SAGE-based receiver would be expected tohave superior BER and channel estimates, in addition to the observed improvedconvergence over that of the EM-based receiver.REMARK 1: The algorithms derived in Sections 3.4 and 4.5 are applicable tolong code receivers as well as short code receivers. Because the multi-user signalshave been decoupled before bit detection, we do not need to compute the inversion ofthe spreading code cross-correlation matrix, R�1. However, all users' spreading codesmust be known at the base-station receiver.REMARK 2: It is straightforward to extend the results in Sections 3.4 and 4.5for BPSK modulation to other modulation schemes by modifying (3.50) and (3.59)for the EM and SAGE algorithms, respectively.3.6 Receiver PerformanceIn this section, we assess the performance of the proposed spatial-temporal decorre-lating receiver. Since we propose to iteratively estimate the channel array responsevectors and detect the transmitted information symbols, we analyze the convergence46



of the receivers and determine the bit-error rate (BER) for symbol detection and theCramer-Rao lower bound (CRLB) for channel estimation. Finally. we calculate thecomputational complexity of the iterative spatial-temporal decorrelating receivers.3.6.1 ConvergenceFrom (3.17), it can be easily veri�ed that the log-likelihood function is continuous anddi�erentiable with respect to the unknown parameters. Since the likelihood functionincreases monotonically with each iteration [8], it is bounded above and the proposedreceivers converge to �xed stationary points or local/global maxima depending on theinitial guess of the unknown parameters [106].For a given maximum-likelihood estimate �̂, the convergence parameter is de�nedas � = minj�1:j2Z �̂j+1 � �̂�̂j � �̂ (3:61)where �̂j and �̂j+1 are the estimates at the jth and (j+1)st iterations, respectively.From (3.61), the smaller the convergence parameter, the faster the algorithm con-verges. The convergence rate is therefore proportional to 1=�. Since � is the smallestone among the convergence parameters for all iteration steps, 1=� reects the bestiteration step in which the most signi�cant convergence occurs. In the simulationresults provided in Section 3.7, 1=� is corresponding to the largest convergence step(c. f. Figures 3.11, 3.12, 3.13 and 3.14).The convergence parameter of the EM-type algorithms can be shown to be boundedbelow by the largest eigenvalue of the matrix [8] [23][I� Fx(FxC )�1]where FxC and Fx are Fisher information matrices of the complete data and observeddata, respectively. Here, we would like to investigate the e�ect of using an antennaarray on receiver convergence. For simplicity and without loss of generality, we assumethat the channel array response vectors are given.47



Given the log-likelihood function 
(�) of the observed signal with respect to theunknown parameter vector �, the corresponding Fisher information matrix is de�nedas [34] I� = �E[@2
(�)@�2 ] (3:62)The Fisher information matrix of the incomplete data (observed data) is obtained bytaking the derivative of (3.17) with respect to b,Fx = 4L�2R (3:63)Taking the derivatives of (3.44) and (3.54) with respect to bk, respectively, we canobtain the required Fisher information matrix of the complete data used in the EM-based receiver as FxCk = 4KL�2 RC (3:64)and the Fisher information matrix of the hidden-data space used in the SAGE-basedreceiver as FxSk = 4L�2Rkk (3:65)where Rkk is the kth diagonal component of R and RC = diagfRkkg. The convergenceparameters for the EM-based and SAGE-based receiver are obtained as�EM = maxeigenvaluefIK � 1KR�1kkRg (3:66)and �SAGE = maxeigenvaluefIK �R�1kkRg (3:67)From the de�nition of R, it can be veri�ed that �EM and �SAGE are the functionsof the spatial correlation which is a function of the users' positions as well as thecross-correlation between the users' spreading codes.Example: We again consider a system with a uniform linear array at the base-station over an AWGN channel. The inter-element spacing of antenna array is half-wavelength and the DOAs of the active users are uniformly distributed in [�60�; 60�].The Gold sequences of length 31 from [52] are assigned to mobile users. All active48
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iterative receivers.3.6.2 Bit Error Rate (BER)Similar to the case of decorrelating detector for single-antenna single-path systems[42] [107], the proposed spatial-temporal decorrelator with known channels completelyeliminates multi-access interference at the expense of increase of background noise.Therefore, we will focus on computing the average SNR for the desired user. Then,the analytical BER of the spatial-temporal decorrelator directly follows the standardBER expression for corresponding single-user detector.From (3.29), it is observed that the bit decision vector is an unbiased estimatorcontaining a zero-mean noise vector w whose covariance matrix is �2L R�1. Withoutloss of generality, we assume that the �rst user is the desired user. The (1, 1) entryof R�1 is given by [R�1]11 = 1jRj ����������� R22 � � � R2K... . . . ...RK2 � � � RKK �����������Denoting �ij = AiAjaHi aj�ij (3:68)the ijth entry of R is given by Rij = ��i�j�ij (3:69)Since R and its submatrix (without the �rst row and the �rst column) are Hermitiansymmetric, it can be easily shown that����������� R22 � � � R2K... . . . ...RK2 � � � RKK ����������� = j�2j2 � � � j�Kj2 ����������� �22 � � � �2K... . . . ...�K2 � � � �KK �����������and jRj = j�1j2 � � � j�Kj2 ����������� �11 � � � �1K... . . . ...�K1 � � � �KK �����������50



where j�kj2 = ��k�k. We denoted1 = ����������� �11 � � � �1K... . . . ...�K1 � � � �KK �����������and d2 = ����������� �22 � � � �2K... . . . ...�K2 � � � �KK �����������Then [R�1]11 is obtained as [R�1]11 = d2d1j�1j2 (3:70)The received SNR 1 for the desired user assuming a �xed fading attenuation �1is 1 = d1Ld2�2 j�1j2. Thus, the average SNR is given by�1 = d1Ld2�2E[j�1j2] (3:71)where E[:] represents expectation. Finally, the bit error probability for the �rst useris obtained as [69] P1 = 12  1�s �11 + �1! (3:72)3.6.3 Cram�er-Rao Lower Bound (CRLB)To measure channel array response vector estimation performance, we derive theCram�er-Rao lower bound. We collect the unknown parameters into the column vectora = � aT1 � � � aTK �T (3:73)where ak = �ka(�k) is the channel array response vector for the kth user.For an M-element antenna array, we de�ne the M �M matrix for the ith bit ofthe kth user, k = 1; � � � ;K, asBk(i) = diag[bk(i); � � � ; bk(i)]51



The CRLB matrix for parameter vector a is given byCRLB(a) = 1L [ NXi=1G(i)]�1 (3:74)whereG(i) = 2666666664 1�11IM p12�12B12(i) � � � p1K�1KB1K(i)p12�12B12(i) 2�22IM . . . ...... . . . . . . ...p1K�1KB1K(i) � � � � � � K�KKIM 3777777775 (3:75)for i = 1; � � � ; N , j = 1; � � � ; NBkj(i) = BHk (i)Bj(i) = 8><>: IM ; if bk(i) = bj(i)�IM ; if bk(i) = �bj(i)and k = A2k=�2 is the signal-to-noise ratio (SNR) corresponding to the kth user and�ij is the spreading code cross-correlation de�ned in (3.24). For a detailed derivationof the CRLB, see Appendix A.Clearly, the Fisher information matrix, PNi=1G(i), is a function of SNR at theith bit and the cross-correlation between the spreading codes. The channel arrayresponse estimates satisfyE[(â� a)(â� a)H ] � CRLB(a) (3:76)3.6.4 Computational ComplexityThe additional computational complexity induced by the EM-based and SAGE-basedreceivers at each iteration over the conventional single-user receiver is caused by multi-user signal decoupling. After decoupling, the complexity for the channel estimationand bit sequence detection is comparable to that for the conventional single-userreceiver. Since using digital signal processors (DSPs) makes it possible to completea multiplication within the time equivalent to perform an addition, we calculatethe computational burden for both multiplication and addition. We consider thecomplexity for each user at each iteration cycle.52



Decoupling Channel Estimation Bit DetectionMultiplications EM ML(K-1) MLN 2MLSAGE ML(K-1) MLN MLAdditions EM (ML-1)(K-1) MLN(N-1) 2(ML-1)SAGE (ML-1)(K-1) ML(N-1) ML-1Table 3.1: Computational Complexity for the EM-Based and SAGE-Based ReceiversWe �rst consider the computational complexity of the EM-based receiver. From(3.48), to obtain the conditional expectation of interference plus noise for each bitof each user requires ML(K � 1) multiplications and (ML � 1)(K � 1) additions.From (3.49) and (3.50), it needs MLN multiplications and MLN(N � 1) additionsto estimate channel array response vector for each user and 2ML multiplications and2(ML � 1) additions to detect each bit for each user.For the SAGE-based receiver, from (3.57), computing the conditional expectationof hidden data corresponding to each user at each bit interval requires ML(K � 1)multiplications and (ML�1)(K�1) additions. And from (3.58) and (3.59), it requiresMLN multiplications and ML(N�1) additions to obtain the channel array responsevector estimate for each user and ML multiplications and (ML � 1) additions todetect each bit for each user.The computational complexity comparison is summarized in Table 3.1. We ob-serve that the computational complexity of both iterative receivers increases linearlywith the number of users in the systems. The channel estimation of the EM-basedreceiver needs more additions than that of the SAGE-based receiver. The EM-basedreceiver requires twice computational complexity than the SAGE-based receiver forbit detection. 53



3.7 Simulation ResultsIn this section, we present performance results for the proposed receivers. A ran-domly generated Gold sequence of length 31 is assigned to each user in our CDMAsystem [69]. In [16], it is shown that a bit block length larger than 20 is required toachieve desired BER performance for Gauss-Seidel iterative receiver. Therefore, inthe simulations, we choose to transmit a 100-bit information sequence from each userand assume the channels remain unchanged during the data-block transmission. Thebit sequences are randomly generated for each user with di�erent seeds. We insertone training bit in the �rst bit position in each sequence. The DOAs are uniformlydistributed in [�60�; 60�]. The initial guesses of the channel and array response vec-tors are obtained using the training bits. More training bits can result in betterinitial channel estimates. However, this will reduce information transmission e�-ciency. Then using (3.27), we obtain the initial detected information bit vectors. Thesimulation results are computed from 10,000-200,000 trials, depending on the signal-to-noise ratio, so that the BER is calculated to within �5% with a 95% con�dencefor BER to 10�4. [12].Because of the computational complexity, we simulate only up to �ve users inthe system to demonstrate the multi-access interference suppression capability forproposed receivers. A �ve-user system is not realistic for practical applications. Topredict system capacity, large numbers of users should be simulated. However, systemcapacity estimation via exhausive simulation is computationally prohibitive. A pos-sible approach for capacity prediction is to analyze the residual interference statisticsafter the �nal iteration step.Although the results are obtained by simulating small number of users, it is ex-pected that with a large number of users a similar performance improvement wouldalso hold for the SAGE-based receiver, as has been explained in Section 3.5.2.A. Performance ComparisonThis example is used to compare performance of the proposed receivers. There are �ve54
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3.14, we observe that iteration two achieves very little performance gain in low powerratio region. This may be explained as follows: with the starting points, the likeli-hood function slope from iteration two to iteration three is much steeper than thatfrom iteration one to iteration two. These results are consistent with the analyticalprediction developed in Section 3.5. Overall, the SAGE-based receiver has more mul-tiple access interference suppression capability than the EM-based receiver for CDMAsystems.Although Gold codes are used to simulate the proposed receivers, similar resultsare also obtained using randomly generated PN (pseudo-noise) chip squences forproposed spatial-temporal decorrelating receivers. Both the EM-based and SAGE-based receivers show good convergence to �xed points even with random assignedinitial guesses and outperform conventional receiver. Similar result is also found in[16] for channel estimation using the EM algorithm.REMARK 3: Because the receivers converge very quickly in the low SNR region:for a required BER, three iterations can achieve acceptable performance.3.8 ConclusionsWe have derived a spatial-temporal decorrelator based on a new discrete-time sig-nal model as well as employing the maximum likelihood criteria for the CDMA up-link with a base-station antenna array with Rayleigh fading. The spatial-temporaldecorrelator is near-far resistant. Numerical results show that the incorporation ofthe base-station antenna array results in signi�cant performance improvement. Tworeceiver structures are obtained by applying the EM and SAGE algorithms to imple-ment the spatial-temporal decorrelating receiver iteratively. Since the EM-based andSAGE-based receivers have explicit interference cancellation capability, we also callthe new receivers as the EM-based and SAGE-based interference cancelling receivers,respectively. It is shown that while the base-station antenna arrays can accelerate61



the convergence rate of the SAGE-based receiver, arrays have little e�ect on the EM-based receiver's convergence. The bit error probability and CRLB are derived for theproposed receiver. Simulation results show that both the EM-based and SAGE-baseddecorrelating receivers can achieve signi�cant performance gain over the conventionalsingle-user receiver. Out of the two receiver structures obtained, the SAGE-basedreceiver outperforms the EM-based receiver while having similar computational com-plexity and converges to the BER performance of the spatial-temporal decorrelatingreceiver with known channels. The channel estimates of the SAGE-based receiver arecloser to the CRLB than those of the EM-based receiver. The simulated BER resultsfor the spatial-temporal decorrelating receiver agree closely with analytical results.
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Chapter 4Spatial-Temporal Decorrelating Receiverfor Asynchronous Multipath FadingChannels4.1 IntroductionIn CDMA systems, the time delay di�erence of di�erent multipath channels for eachuser is normally signi�cantly larger than a spreading chip interval, and the wider thebandwidth of the spread signal, the more resolvable the individual path componentsare in time. Therefore, we can use this natural time diversity to combine the di�erentmultipath components so as to reduce the received signal strength uctuation due tofading attenuations [84].Since the results in the last chapter have demonstrated that the SAGE-basedreceiver outperforms the EM-based receiver, we only consider the SAGE algorithmin this chapter. We extend the spatial-temporal decorrelating receiver obtained inChapter 3 in several ways. First, we incorporate a maximal-ratio combiner into thereceiver structure. Utilization of the RAKE structure in multipath channels canimprove the receiver performance [32] [58]. Second, in addition to multi-user signaldecomposition, refer to Section 3.5.2, we estimate the channel array response vectorsby decoupling the multipath signals. Thus, we introduce a double decoupling for63



multi-user multipath channel estimation. Finally, we derive a BER lower bound forasynchronous multipath CDMA systems with base-station antenna arrays.In this chapter, we �rst develop a synchronous equivalent discrete-time model inSection 4.2 and then formulate a spatial-temporal decorrelator for known channelparameters in Section 4.3. In Section 4.4, we apply the SAGE algorithm to thesynchronous equivalent discrete-time system model and obtain an iterative receiverstructure for joint channel array response vector estimation and information symboldetection for known time delays. A bit-error-rate (BER) lower bound is derived formaximal-ratio diversity combining in Section 4.5. Simulation results are provided inSection 4.6.4.2 Synchronous Equivalent Discrete-TimeModel4.2.1 Discrete-Time FormulationThe synchronous equivalent discrete-timemodel is proposed for single-antenna single-path additive white Gaussian noise (AWGN) channels in [44]. Here we extend thesynchronous equivalent model to multipath multi-antenna fading channels. Since wehave assumed time delays �k;p 2 [0; Tb) for k 2 f1; � � � ;Kg and p 2 f1; � � � ; Pkg inSection 2.3.3, one complete bit of each transmission falls in a time interval of length2Tb, as shown in Figure 2.6. Therefore, we choose 2Tb to be the observation intervalto collect samples for each bit. To express the chip-waveform matched �lter outputin a compact form, we denote �k;p = (uk;p + vk;p)Tc (4:1)where uk;p 2 f0; � � � ; L � 1g is an integer and vk;p 2 [0; 1) for k 2 f1; � � � ;Kg andp 2 f1; � � � ; Pkg. Let us denote a 2L-dimensional column spreading code vector byappending L zeros ck = 1L [ck0 ck1 � � � ck(L�1) 0 � � � 0]T (4:2)64



From Figure 2.6, we observe that three consecutive bits contribute to each observationinterval. The received signal at each antenna element �rst passes through a �ltermatched to the chip waveform, and is then sampled at the chip rate. The receiveddiscrete-time signal at the ith observation interval from the mth element can beobtained as xm(i; g) = Z (g+1)Tct=gTc xm(t)p�(t)dt (4:3)Using the notation in [44], the 2L sample vector for the ith observation interval fromthe mth element can be written asxm(i) = KXk=1 PkXp=1[h�1;mk;p bk(i� 1) + h0;mk;p bk(i) + h1;mk;p bk(i+ 1)] + nm(i) (4:4)where h�1;mk;p = fmk;p[(1� vk;p)TL�uk;pL ck + vk;pTL�uk;p�1L ck] = fmk;pc�1k;p (4:5)h0;mk;p = fmk;p[(1� vk;p)Tuk;pR ck + vk;pTuk;p+1R ck] = fmk;pc0k;p (4:6)h1;mk;p = fmk;p[(1� vk;p)TL+uk;pR ck + vk;pTL+uk;p+1R ck] = fmk;pc1k;p (4:7)and TL and TR are the acyclic left shift operator and right shift operator, respectively.For example, T3Lck = 1L � ck3 ck4 � � � ck(L�1) 0 � � � 0 �Tand T3Rck = 1L � 0 0 0 ck0 ck1 � � � ck(L�1) 0 � � � 0 �TDenoting x(i) = � (x1(i))T � � � (xM(i))T �T (4:8)h�1k;p = � (h�1;1k;p )T � � � (h�1;Mk;p )T �Th0k;p = � (h0;1k;p)T � � � (h0;Mk;p )T �Th1k;p = � (h1;1k;p)T � � � (h1;Mk;p )T �Tand n(i) = � (n1(i))T � � � (nM(i))T �T65



The received discrete-time signal from the antenna array can now be expressed asx(i) = KXk=1 PkXp=1Hk;pbwk (i) + n(i) (4:9)where Hk;p = � h�1k;p ... h0k;p ... h1k;p � (4:10)bwk (i) = � bk(i� 1) bk(i) bk(i+ 1) �Tand n(i) is an AWGN vector with zero-mean and covariance matrix �2L I2ML, whereI2ML is a 2ML�2ML identity matrix. The superscript w in bwk (i) denotes a three-bitsliding window for each desired bit located in the center of the small window. Withoutloss of generality, we assume that the number of the propagation channels for eachuser is the same, i.e., Pk = P for k = 1; � � � ;K. Actually, for the case of unequal Pk's,we can let P = maxfP1; � � � ; PKg and append P �Pk zeros for k = 1; � � � ;K. LettingHk = PXp=1Hk;p (4:11)the 2ML received signal vector at the ith observation interval is given byx(i) = KXk=1Hkbwk (i) + n(i) (4:12)De�ne a 2ML � 3K matrix H = � H1 ... � � � ... HK � (4:13)and a 3K dimensional column vectorbw(i) = � bw1 (i)T � � � bwK(i)T �T (4:14)the synchronous equivalent discrete-time model is given byx(i) = Hbw(i) + n(i) (4:15)66



4.2.2 Spatial-Temporal Channel MatrixIn (4.11), matrix Hk incorporates both spatial and temporal channel characteristicsof our system. Denote, for k 2 f1; � � � ;Kg, p 2 f1; � � � ; Pg and n 2 f�1; 0; 1g,hnk;p = 2666664 f1k;pcnk;p...fMk;pcnk;p 3777775 = 2666664 cnk;p � � � 0... . . . ...0 � � � cnk;p 37777752666664 f1k;p...fMk;p 3777775 = Cnk;pfk;p (4:16)From (4.10), we obtainHk;p = [C�1k;p ... C0k;p ... C1k;p]2666664 fk;p 0 00 fk;p 00 0 fk;p 3777775 = Ck;pFk;p (4:17)The spatial-temporal channel matrix for the kth user is then given by (c.f. (4.11))Hk = PXp=1Ck;pFk;p (4:18)where the 3M � 3 matrix Fk;p represents the spatial channel characteristic due toantenna array and multipath fading attenuation and 2ML�3M matrixCk;p representsthe temporal channel characteristic, including spreading code and relative time delays,corresponding to the pth path for the kth user.A necessary condition that K users are identi�able is that H be of full columnrank. Based on the discrete-time system model developed in this section, a necessarycondition is 2ML > 3K (4:19)4.3 Signal Detection for Known ChannelsIn this section, we derive a spatial-temporal decorrelator based on the synchronousequivalent discrete-time system model using the maximum-likelihood criterion forknown channels. For the sake of notational simplicity, we omit the time index i inthis section. 67



4.3.1 Spatial-Temporal DecorrelatorFor a known spatial-temporal channel matrix H, the log-likelihood of the receivedsignal x conditioned on the bit vector b is given by
(b) = � 1�2=L (x�Hbw)H(x�Hbw) (4:20)where the superscript H denotes conjugate transpose, b = [b1 � � � bK]T . Vector bcan be obtained from bw.The bit vector decision variable b̂ can be obtained by maximizing the above log-likelihood function b̂wd = arg maxb 
(b) (4:21)Taking the derivative of log-likelihood function (4.20) with respect to the slidingwindow bit vector bw de�ned in (4.14) and equating the result to zero, we obtainb̂w = signf[HHH]�1HHxg (4:22)where signfag = 1 if a � 0 or -1 if a < 0.We de�ne the spatial-temporal cross-correlation matrix asR = HHH = [H1 � � � HK ]H[H1 � � � HK] (4:23)The detector in (4.22) is a spatial-temporal decorrelating detector. The (k; j)th sub-matrix in R, Rkj is given byRkj = HHk Hj = PXp=1FHk;pCHk;p PXq=1Cj;qFj;qUsing de�nition in (4.16) and (4.17), we obtainCHk;pCj;q = 2666664 c�1Hk;p c�1j;q IM c0Hk;pc�1j;q IM 0c�1Hk;p c0j;qIM c0Hk;pc0j;qIM c1Hk;pc0j;qIM0 c0Hk;pc1j;qIM c1Hk;pc1j;qIM 3777775 (4:24)De�ne the spatial correlation coe�cientfkj;pq = fHk;pfj;q (4:25)68



and the temporal correlation coe�cient�m;nkj;pq = cmHk;p cnj;q (4:26)where m 2 f�1; 0; 1g and n 2 f�1; 0; 1g. From (4.5), (4.6) and (4.7), we obtain��1;1kj;pq = 0and �m;nkj;pq = �n;mkj;pqWe de�ne the spatial-temporal correlation coe�cient as�m;nkj = PXp=1 PXq=1 fkj;pq�m;nkj;pq (4:27)where P is the number of propagation paths. Using (4.17), Rkj is obtained asRkj = 2666664 ��1;�1kj �0;�1kj 0�0;�1kj �0;0kj �0;1kj0 �0;1kj �1;1kj 3777775 (4:28)To derive the detector structure, we write the spatial-temporal channel matrixHkfor k = 1; � � � ;K as Hk = PXp=1Ck;pAk;p�k;p (4:29)where Ak;p = Ak 2666664 a(�k;p) 0 00 a(�k;p) 00 0 a(�k;p) 3777775Thus, we obtain z = HHx = 2666664 PPp=1 ��1;pAH1;pCH1;px...PPp=1 ��K;pAHK;pCHK;px 3777775 (4:30)The detector structure is illustrated in Figure 4.1. After sampling the chip-waveformmatched �lter output, the received signal is �rst synchronized and despread. The de-spread outputs for all K users are then beamformed by maximum-SNR beamforming.69
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4.3.2 Asymptotic E�ciencyThe asymptotic e�ciency of the spatial-temporal decorrelator for the kth user isobtained by a similar method as in Chapter 3:�dk = max28<:0; 1qR(k�1)3+2(R�1)(k�1)3+29=; = 1R(k�1)3+2(R�1)(k�1)3+2 (4:32)where R(k�1)3+2 is the (k � 1)3 + 2-th component of matrix R and (R�1)(k�1)3+2 isthe (k�1)3+2-th component of matrix R inverse. From (4.26) and (4.27), R(k�1)3+2is given by R(k�1)3+2 = �0;0kkThe kth user's asymptotic e�ciency of the conventional single-user detector is givenby �ck = max28<:0; 1 � KXi=1;i6=k jR(i�1)3+2;(k�1)3+2jR(k�1)3+2 9=; (4:33)where R(i�1)3+2;(k�1)3+2 is given byR(i�1)3+2;(k�1)3+2 = �0;0ikFigure 4.2 and Figure 4.3 illustrate two numerical examples for the asymptotic ef-�ciency. In these examples, we consider a �ve-user system and the Gold sequences oflength 31 from [52] are assigned to �ve users. We assume a uniform linear array withhalf-wavelength spacing at the base-station and the DOAs for �ve users are uniformlydistributed in [�60�; 60�] with respect to the array boresight. The relative time de-lays are assumed to be uniformly distributed in [0, Tb). The results are averaged over2,000 trials for randomly generated Rayleigh fading attenuations, DOAs and timedelays. Figure 4.2 shows the results for a single antenna system. The asymptotic e�-ciencies of the spatial-temporal decorrelator and the conventional single-user detectorare plotted for single dominant path channels and three-path channels. We observethat although multipath diversity slightly improves the asymptotic e�ciency of thespatial-temporal decorrelator, the asymptotic e�ciency of the conventional single-user detector becomes worse for the multipath systems. This is because multipath71
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induces more interference with respect to the desired user for a system with threeor more users. The asymptotic e�ciencies of the spatial-temporal decorrelator andthe conventional single-user detector are provided in Figure 4.3 for single dominantpath channels. The results in this example show that using a base-station antennaarray improves the asymptotic e�ciencies for both the spatial-temporal decorrela-tor and the conventional single-user detector. From these numerical results, we �ndthat multipath diversity has little inuence on asymptotic e�ciency and the base-station antenna array can be used to improve this performance. Also observed is thatsimilar to the synchronous single-path case, the asymptotic e�ciency of the spatial-temporal detector is invariant to the received signal energies from the interferingusers, and therefore, the spatial-temporal decorrelator is near-far resistant. However,performance of the conventional single-user detector degrades when the interferencebecomes stronger. As long as the cross-correlations between the spreading codesover relative time delays are nonzero, i.e., R(i�1)3+2;(k�1)3+2 is nonzero for i 6= k, theasymptotic e�ciency of the conventional single-user detector will tend to zero withan increase of the interfering users' energies.4.4 Joint Signal Detection and Channel Estima-tionThe results in Section 4.3 are based on the assumption that the relative time delays,�k;p, and channel array response vectors, fk;p (for k = 1; � � � ;K and p = 1; � � � ; P ),are known at the receiver. However, in practical applications, we have to estimatethese channel parameters. In this section, we investigate the problem of joint signaldetection and channel array response vector estimation assuming that we know thetime delays at the receiver. We apply the space alternating generalized expectation-maximization (SAGE) algorithm [19] to derive a sequential receiver structure whichjointly estimates the channel array response vectors and detects the information sym-bol sequences for all active users in the system.73



We assume that the relative time delays for all the users are known at the re-ceiver. The timing error e�ects on multi-user signal detection are analyzed in [3] [5][63] [111] and it is found that the timing error is much more serious to multi-usersignal detector's BER performance than any other channel parameter error. We willstudy the time error e�ects on the iterative receiver developed in this section usingsimulations.4.4.1 SAGE-Based ReceiverThe available observed incomplete data is a data vector set fx(i); i = 1; � � � ; Ng,where N is the number of bits at each block. Similar to the approach in Chapter3, we choose user index k as the index set to detect the information bit sequences,thus the admissible hidden-data space, complete data, for index k and i = 1; � � � ; Nis given by xSk (i) = Hkbwk (i) + n(t) = PXp=1Hk;pbwk + n(t) (4:34)where Hk;p = Ck;pFk;p. Given the spatial channel estimation results at the jth itera-tion, F̂ jk;p, for k = 1; � � � ;K and p = 1; � � � ; P , and symbol detection results, b̂wjk , at thejth iteration, the conditional expectation of xSk (i), for k = 1; � � � ;K and i = 1; � � � ; N ,is obtained as x̂Sk (i) = x(i)� KXk1=1;k1 6=k PXp=1 Ĥjk1;pb̂wjk1 (i) (4:35)where we have denoted Ĥjk;p = Ck;pF̂ jk;p for k = 1; � � � ;K and p = 1; � � � ; P . Thus,the log-likelihood function of x̂Sk (i), for k = 1; � � � ;K, after discarding the termsindependent of Fk;p and bwk (i), for k = 1; � � � ;K and p = 1; � � � ; P , is given by
(x̂Sk (1); � � � ; x̂Sjk (N)) = � 1�2=L NXi=10@x̂Sjk (i)� PXp=1Hk;pbwk (i)1AH 0@x̂Sjk (i)� PXp=1Hk;pbwk (i)1A(4:36)The maximization results at the next iteration are given by[F̂ j+1k ; b̂wj+1k ] = arg maxHk ;bwk (i)
(x̂Sjk (1); � � � ; x̂Sjk (N))74



Equating the derivative of (4.36) with respect to bmk (i) to zero, for i = 1; � � � ; N , andusing the channel parameter estimation results, the symbol sequence detection resultsare given by b̂wj+1k = sign[(R̂j+1kk )�1Ĥj+1Hk x̂Sjk (i)]where R̂j+1kk = Ĥj+1Hk Ĥj+1kand Ĥj+1k = PXp=1Ck;pF̂ j+1k;pTo obtain the estimation results of Fk;p, for k = 1; � � � ;K and p = 1; � � � ; P , we furtherdecouple the complete data xSk (i) by choosing path index p as the index subset, thecorresponding admissible hidden-data set for user index k and path index p is givenby xSk;p(i) = Hk;pbwk + n(t) (4:37)where i = 1; � � � ; N . The conditional expectation of xSk;p(i), for k = 1; � � � ;K, p =1; � � � ; P and i = 1; � � � ; N , is obtained asx̂Sk;p(i) = x̂Sk (i)� PXp1=1;p1 6=p Ĥk;p1bwk = x(i)� PXp1=1;p1 6=p Ĥk;p1bwk � KXk1=1;k1 6=k PXp=1 Ĥjk1;pb̂wjk1 (i)(4:38)The log-likelihood function of x̂Sk;p(i), for k = 1; � � � ;K and p = 1; � � � ; P , is obtainedas 
(x̂Sk;p(1); � � � ; x̂Sjk;p(N)) = � 1�2=L NXi=1(x̂Sjk;p(i)�Hk;pbwk (i))H(x̂Sjk;p(i)�Hk;pbwk (i))(4:39)By maximizing the likelihood, we obtain the estimate of the spatial-temporal channelmatrix, Ĥk;p, for k = 1; � � � ;K and p = 1; � � � ; P , (see Appendix B for a detailedderivation) Ĥk;p = [ NXi=1 x̂Sjk;p(i)b̂wjHk (i)][ NXi=1 b̂wjk (i)b̂wjHk (i)]�1 (4:40)Since Ĥk;p = Ck;pFk;p with known Ck;p, we will use a least squares (LS) criterion[34] to obtain the unknown matrix Fk;p. The LS estimate can be found by minimizing75



-- ----- .................................................... ........................................................................................................Decoupling Multipath DecouplingMultipath DecouplingMulti-user ... ......x x xxxx(i) (i) (i)(i)(i)(i)x (i)S1SK 1,11,PK,1K,PSSSSUser 1User KEq.(4.35) Eq.(4.38)Eq.(4.38)Figure 4.4: The Received Signal Decoupling Processthe following squared errorJ(�) = (Ĥk;p � Ck;pFk;p)H(Ĥk;p � Ck;pFk;p) (4:41)Equation (4.39) can be further written asJ(�) = ĤHk;pĤk;p � 2ĤHk;pCk;pFk;p + FHk;pCHk;pCk;pFk;pTaking the derivative of J(�) with respect to Fk;p, we have@J(�)@Fk;p = �2CHk;pĤk;p + 2CHk;pCk;pFk;pFrom (4.16) and (4.17), if the time delays are non-zero, the columns of Ck;p are linearlyindependent, then Ck;p is full rank and the spatial channel matrix is obtained as aleast squares solution for a given Ck;p, for k = 1; � � � ;K and p = 1; � � � ; P ,F̂k;p = (CHk;pCk;p)�1CHk;pĤk;p (4:42)The key in this receiver algorithm is to decouple the received signal, as illustratedin Figure 4.4. The �rst step is used to obtain the multi-user signals. The multipathsignals for each user are further decoupled at the second step. The �nal decoupledsignals are used to estimate the channel array response vector for each path of eachuser by maximum likelihood criteria. The estimates of the channel array responsevectors are then used to detect the information sequence for each user.76



The SAGE-based receiver for joint channel estimation and symbol detection issummarized as follows:for j = 1; 2; � � �k = (j modulo K)E-step: compute the conditional expectation of the hidden-datafor i = 1; � � � ; Nx̂Sjk (i) = x(i)� KXk1=1;k1 6=k PXp=1Ck1;pF̂ jk1;pb̂wjk1 (i) (4:43)for p = 1; � � � ; Px̂Sjk;p(i) = x̂Sjk (i)� PXp1=1;p1 6=pCk;p1F̂ jk;p1bwk (4:44)M-step: obtain the maximum-likelihood estimates f̂k forp = 1; � � � ; P and b̂k(i) for i = 1; � � � ; NF̂k;p = (CHk;pCk;p)�1CHk;p[ NXi=1 x̂Sjk;p(i)b̂wHk (i)][ NXi=1 b̂wjk (i)b̂wjHk (i)]�1 (4:45)b̂wj+1k = sign[(R̂j+1kk )�1Ĥj+1Hk x̂Sjk (i)] (4:46)F̂ j+1k0;p = F̂ jk0;p; k0 6= kb̂wj+1k0 (i) = b̂wjk0 (i); k0 6= kThe basic receiver structure is the same as Figure 3.5 for the case of synchronoussystems. For each decoupled user, the structure for each iteration is shown in Figure4.5.Since the SAGE algorithm guarantees that the likelihood function increases mono-tonically with each iteration, the proposed iterative spatial-temporal decorrelatingreceiver converges to a �xed stationary point or local/global maxima depending onthe initial guess of the unknown parameters. In Chapter 3, we have shown that us-ing a base-station antenna array accelerates receiver's BER convergence to that ofperfectly known channel parameters. 77



MAI

Subtraction

(4.43)

Multipath signal
  subtraction

(4.44)Path 1

Multipath signal
   subtraction
Path P  (4.44)

Channel
estimation

Channel
estimation

Path 1

  Path P

(4.45)

(4.45)

Despreader

C

Despreader

C

Beamformer

Beamformer

f

f

RAKE

(MRC)

b

k,1

k,1

k,1

k,1

k

H
H

H H

..
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is still of the order M2.4.5 BER Lower BoundIn this section, we derive a lower bound of the bit-error-rate (BER) for the proposediterative multi-user receiver for asynchronous multipath case assuming that the multi-user interference has been completely eliminated. The derivation of the analyticalBER in this chapter is more di�cult to obtain than the synchronous single-path caseconsidered in Chapter 3. In the following, we assume that the channel array responsevector for each user is known as well as the bit sequences of all interfering users.Therefore, the BER expression derived in this section provides an upper bound onthe performance of a system with imperfect interference cancellation.From (4.43) and (4.46), we obtain the decision variable for the kth userŷj+1k = (R̂j+1kk )�1Ĥj+1Hk [x(i)� KXk1=1;k1 6=k Ĥjk1 b̂wjk1 (i)] (4:47)From (4.47), it is observed that the multi-access interference is subtracted explicitlyat each iteration. To obtain a BER lower bound for the kth user, we assume thatthe interference has been completely eliminated at the �nal iteration in the receiveralgorithm and the multipath channel array response vectors of user k are perfectlyknown at the receiver. Thus, the decision variable of the kth user is given byyk = R�1kkHHk [Hkbwk (i) + n(i)] = bwk +wk(i) (4:48)where w(i) is a zero mean AWGN vector with covariance matrix �2L R�1kk . To computethe BER of the desired bit bk(i) which is the second component in vector bwk (i) =[bk(i� 1) bk(i) bk(i+ 1)], we �rst derive the corresponding average SNR�k = 1�2L E[(R�1kk )2] (4:49)where (R�1kk )2 is the second diagonal component of matrixR�1kk and E[�] represents theexpectation over the Rayleigh-distributed channel attenuations. Since �0;0kk;pq � 1=L,79



and ��1;0kk;pq and �1;1kk;pq are much smaller than �0;0kk;pq, we make the following approxima-tion to (4.28) Rkk � 2666664 ��1;�1kk 0 00 �0;0kk 00 0 �1;1kk 3777775 (4:50)In Section 4.6, it is shown by simulation that the approximation (4.50) is a reasonablygood one. (R�1kk )2 is then obtained as(R�1kk )2 = 1PPp=1PPq=1 ��k;p�k;qa(�k;p)a(�k;q)�0;0kk;pqSince we have assumed that the channel attenuations are mutually independent, wehave E[(R�1kk )2] = 1MA2kPPp=1 E[�2k;p]�0;0kk;ppwhere �2k;p = ��k;p�k;p. Because �0;0kk;pp, for p = 1; � � � ; P , are statistically identical, theaverage SNR for user k is obtained as�k = MLA2k�0;0kk;11�2 PXp=1E[�2k;p] (4:51)Assuming that E[�2k;p] are identical for all P paths of user k , the BER lower boundfor the kth user can be obtained [69](p. 781)Pk = [(1� �)=2]P P�1Xp=0 0B@ P � 1 + pp 1CA [(1 + �)=2]p (4:52)where � = s �c(1 + �c)and �c = MLA2k�0;0kk;11�2 E[�2k;p]4.6 SimulationsIn this section, we present performance results for the proposed receivers. Goldsequences of length 31 from [52] are assigned to mobile users. In the simulations,80



we transmit a 100-bit information sequence, i.e., a hundred-bit block, from each userand assume that the channel attenuations and DOAs remain unchanged during thedata-block transmission. We insert one training bit in the �rst bit position in eachsequence to obtain the initial channel array response vector estimates. A uniformlinear array with half-wavelength spacing is used at the base-station and the DOAsare assumed to be uniformly distributed in [�60�; 60�]. The time delay of the �rstpath for each active user is uniformly distributed in (0, Tb=2) and the time delayof the second path for each user is uniformly distributed in (Tb=2; Tb). Multipathchannels are assumed to be Rayleigh distributed with same covariance for all paths.The channel array response vectors are assumed to be known for the spatial-temporaldecorrelating receiver and the conventional single-user receiver. In all the simulations,we consider a CDMA system with base-station antenna arrays.Figure 4.6 compares the BER performance among the proposed SAGE-based re-ceiver (with unknown channel array response vectors), the spatial-temporal decorre-lating receiver and the conventional single-user receiver. A three-element antennaarray is used at the base-station. All users have equal transmitted power. It isobserved that using RAKE combining, a two-path system can achieve signi�cantBER performance gain over a single path system. Although the BER performanceof the conventional single-user receiver for two-path channels outperforms that forsingle path channels, both show a BER oor which is caused by multi-access interfer-ence. The SAGE-based receiver for joint channel array response vector estimation andbit sequence detection achieves much better BER performance over the conventionalsingle-user receiver and converges to the spatial-temporal decorrelating receiver. FromFigure 4.6, we observe that the simulated BER performance of the spatial-temporaldecorrelating receiver for multi-user systems is close to the BER lower bound. Figure4.7 illustrates the corresponding channel estimates for the same system settings.The CRLB is taken from the previous chapter and provides a loose lower bound. Thechannel estimation performance for two-path systems is better than that for singlepath systems at 5 dB, 10 dB and 15 dB SNR points and slightly worse at SNR = 2081
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Tc=d denotes the maximum timing error deviation. We use four and �ve iterations toobtain the results in Figures 4.12 and 4.13, respectively. Figure 4.12 shows the timingerror e�ect on a system where all users have equal transmitted power. We observethat the BER performance degradation in low SNR regions due to timing errors isnot signi�cant. However, in near-far environments, BER performance becomes worsedue to timing errors when the transmitted powers of the interferers get very large, asshown in Figure 4.13. Therefore, accurate time delay estimation methods are neededto make the SAGE-based receiver maintain near-far resistance. In [15], the rootmean squared error (RMSE) of timing estimates is reported to be less than 0:01Tcusing the EM algorithm for CDMA systems without a base-station antenna array.Incorporating time delay estimation into the receiver developed in Section 4.4 is asubject of future work which is discussed in Chapter 6.4.7 ConclusionsIn this chapter, we developed a synchronous equivalent discrete-time system modelfor asynchronous multipath CDMA systems with base-station antenna arrays. Thespatial and temporal channel matrices are identi�ed. Based on this model, we incor-porated a maximal-ratio multipath combiner into the spatial-temporal decorrelatorfor known channels. Asymptotic e�ciency is analyzed and the numerical results showthat unlike base-station antenna arrays, multipath diversity does not improve a de-tector's asymptotic e�ciency. The SAGE algorithm is applied to the synchronousequivalent model to derive an iterative receiver for joint channel array response vec-tor estimation and bit sequence detection assuming that the relative time delays areknown perfectly. A BER lower bound is derived to measure the receiver's perfor-mance. Simulation results show that the SAGE-based receiver is near-far resistant,its BER performance converges to the spatial-temporal decorrelating receiver (whenall channel parameters are known) and the simulated BER is close to the derived lowerbound. The mean squared error of the channel estimates used by the SAGE-based87



receiver is close to the CRLB. Timing error e�ects on the SAGE-based receiver arestudied by simulation. It is observed that the BER performance degradation due totiming error is not signi�cant in the low SNR region when the transmitted powers forall users are equivalent. However, the near-far resistance of the SAGE-based receiverdoes su�er from timing errors.
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Chapter 5Iterative Multi-User Receiver forMulti-Rate Systems5.1 IntroductionFuture wireless communications systems aim at o�ering multi-rate transmission ser-vices such as voice, data and video. The proposed next generation CDMA standard,CDMA2000, will support the combination of voice and packet data transmission[87]. To provide integrated multi-rate communications, several multi-ratemulti-accessstrategies have been studied [25] [50] [72]1. Multi-code access2. Fixed chip rate, variable processing gain3. Fixed processing gain, variable chip rateThe multi-code access method multiplexes the high-rate user's transmitted bitsequences onto multiple low rate spreading codes. As a result, the bits from a highrate user are transmitted in parallel at the same rate as that of the low rate users.In the multi-code access strategy, all users have the same processing gain and eachhigh-rate user can virtually be viewed as r low-rate users, where r is the ratio betweentransmission rates for high rate users and low rate users.89



In �xed chip-rate, variable processing-gain access systems, all users have the samechip rate. Thus, the processing gain for higher-rate users is smaller than that forthe lower-rate users. In contrast, in �xed processing gain, variable chip rate accesssystems, the processing gain for all users is constant and the chip rate for high rateusers is higher than that for low rate users.In [50], it is shown that multi-access strategy 2 can achieve better bit detectionperformance in terms of asymptotic e�ciencyfor high-rate users for realistic spreadingcode cross-correlation values than strategy 1 using m-sequences and equi-correlatedPN codes. Performance for low-rate users is comparable in these two multi-accesssystems. For access strategy 3, the receiver has to be synchronized to di�erent ratesand the system needs additional frequency planning due to the unequal bandwidthspreading of di�erent rate users. It has been shown that access strategy 2 is moree�cient than access method 3 [73]. Therefore, we will only consider access method 2- �xed chip rate, variable processing gain.Multi-user signal detection approaches for multi-rate systems have been proposedin [50] [72] [73] [74] for synchronous AWGN channels. A multi-user multi-rate decor-relator is proposed in [75] for asynchronous AWGN channels with known parametersand single antenna case. In this chapter, we investigate joint bit sequence detectionand channel array response vector estimation for dual rate systems with base-stationantenna arrays over asynchronous multipath fading channels. We extend multi-userdecoupling techniques developed in the previous chapters to multi-rate systems.We �rst formulate a synchronous-equivalent discrete-time model for dual rateasynchronous systems in Section 5.2 based on the technique in the previous chapter.A joint bit sequence detection and channel estimation receiver is derived in Section 5.3by applying the SAGE algorithm to the synchronous equivalent discrete-time systemmodel. Simulation results are provided in Section 5.4.90



5.2 Discrete-Time Dual-Rate System Formulation5.2.1 Received Dual Rate SignalWe consider a dual-rate transmission system with an M-element base-station antennaarray over asynchronous multipath fading channels. The K users are grouped intoKh high rate users and Kl low rate users, where K = Kh +Kl. We assume that thechip rates are the same for the two groups of users, i.e., both groups of users havethe same chip duration Tc. From here on, the subscripts h and l denote parametersfor high rate and low rate users, respectively.From (2.17), an Nh-bit transmitted signal from the kh-th high rate user is givenby skh(t) = Akh NhXih=1 bkh(ih)ckh(t� ihTh) (5:1)where Akh is the amplitude of the kh-th high rate user, bkh(ih) 2 f�1; 1g is the ih-thtransmitted bit of the kh-th user with equal probability and ckh(t) has normalizedenergy R Th0 jckh(t)j2dt = 1, and represents the spreading waveform of the kh-th highrate user, which is given byckh(t) = Lh�1Xlh=0 ckhlhph(t� lhTc) (5:2)where ckhlh 2 f+1;�1g (lh = 0 � � � Lh � 1) is the spreading code corresponding to thekh-th high rate user, Th is the high rate user's bit interval and the processing gain Lhof the high rate users is Lh = Th=TcSimilarly, the transmitted signal from the kl-th low rate user is expressed asskl(t) = Akl NlXil=1 bkl(il)ckl(t� ilTl) (5:3)where Akl, bkl(il) 2 f�1; 1g and ckl(t) are the kl-th low rate user's transmitted ampli-tude, the il-th transmitted bit with equal probability and the corresponding spreadingwaveform with normalized energy, respectively. ckl(t) is given byckl(t) = Ll�1Xll=0 cklllpl(t� llTc) (5:4)91
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and xl(t) is the received signal from Kl low rate usersxl(t) = KlXkl=1xkl(t) = KlXkl=1 NlXil=1 PXp=1 fkl;pckl(t� ilTl � �kl ;p)bkl(il) (5:8)where �kh;p is the time delay of the kh-th high rate user through the pth propagationpath, fkh;p is the corresponding channel array response vector with channel fadingattenuation �kh ;p and direction-of-arrival (DOA) �kh;pfkh;p = Akh�kh ;pa(�kh;p) (5:9)�kl;p and fkl;p are the counterparts for the low rate users and fkl;p is given byfkl;p = Akl�kl ;pa(�kl;p) (5:10)n(t) is the complex additive white Gaussian noise vector with zero mean and covari-ance matrix �2IM , where IM is an M �M identity matrix.5.2.2 Synchronous-Equivalent Discrete-Time FormulationIn this section, we extend the results in Section 4.2 for single-rate systems to dual-rate systems and formulate a synchronous-equivalent discrete-time system model fordual-rate multipath CDMA systems. For simplicity and without loss of generality,we assume �kh;p; �kl ;p 2 [0; Th) for kh 2 f1; � � � ;Khg and kl 2 f1; � � � ;Klg and p 2f1; � � � ; Pg. Figure 5.2 illustrates an example of asynchronous received bits for a dualrate system with rate-ratio 4. In this case, one complete bit of each transmission fallsin a time interval of length Th+Tl for low rate users. Therefore, we can choose Th+Tlto be the observation interval to collect samples of each bit for low rate users. In thisobservation interval, we obtain samples of r complete bits for high rate users. Wesample the received signal at the chip rate after a �lter matched to the chip waveformof the low rate users, pl(t). Then, for m = 1; � � � ;M and i = 1; � � � ; N , we obtain thesample at the gth chip intervalxm(i; g) = Z (g+1)Tct=gTc xm(t)p�l (t)dt (5:11)93
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c1kl;p = (1� vkl;p)TLl+ukl;pR ckl + vkl;pTLl+ukl ;p+1R ckl (5:18)where TL and TR are the acyclic left shift operator and right shift operator, respec-tively de�ned in Section 4.2.1. Then, we obtain the following matrix for low rateusers for n 2 f�1; 0; 1g Cnkl;p = 2666664 cnkl;p � � � 0... . . . ...0 � � � cnkl;p 3777775| {z }M�columns (5:19)Similar to the case of single rate systems, the MLd � 3M temporal channel matrixfor low rate users for kl = 1; � � � ;Kl and p = 1; � � � ; P can be expressed asCkl;p = [C�1kl;p ... C0kl;p ... C1kl;p] (5:20)The corresponding 3M � 3 spatial matrices for low rate users are given byFkl;p = 2666664 fkl;p 0 00 fkl ;p 00 0 fkl;p 3777775 (5:21)The spatial temporal channel matrix for low rate users, for kl = 1; � � � ;Kl and p =1; � � � ; P , is then given by Hkl;p = Ckl;pFkl;p (5:22)Denoting the sliding window bit vectors for the il-th bit of the kl-th low rate user asbwkl(il) = [bkl(il � 1) bkl(il) bkl(il + 1)]T (5:23)the received discrete-time signal vector (MLd-dimensional) at the il-th bit intervalfrom the low rate users is given byxl(il) = KlXkl=1Hklbwkl(il) (5:24)where Hkl = PXp=1Hkl;p (5:25)95



From Figure 5.2, it is observed that r consecutive bits (bkh(ih); bkh(ih+1); � � � ; bkh(ih+r � 1)) completely lie in the observation interval Th + Tl, and bits bkh(ih � 1) andbkh(ih + r) lie partially in this interval and interfere with the r desired bits. Ourgoal is to detect bkh(ih), bkh(ih + 1); � � � ; bkh(ih + r � 1) in the il-th observation in-terval. Referring to (4.12), the sampled data during the observation interval fromthe mth antenna element can be expressed as an Ld-dimensional column vector forkh = 1; � � � ;Kh, and m = 1; � � � ;Mxmkh(il) = PXp=1fh�1;mkh ;p bkh(ih�1)+h0;mkh;pbkh(ih)+� � �+hr�1;mkh;p bkh(ih+r�1)+hr;mkh ;pbkh(ih+r)g(5:26)where h�1;mkh;p = fmkh;pc�1kh;ph0;mkh;p = fmkh;pc0kh;phr1;mkh;p = fmkh;pcr1kh;p; for r1 = 1; � � � ; rand the temporal spreading vectors for high-rate users are given byc�1kh;p = (1� vkh;p)TLh�ukh;pL ckh + vkh ;pTLh�ukh ;p�1L ckh (5:27)c0kh;p = (1 � vkh;p)Tukh;pR ckh + vkh ;pTukh;p+1R ckh (5:28)for r1 = 1; � � � ; rcr1kh;p = (1 � vkh;p)Tr1Lh+ukh;pR ckh + vkh ;pTr1Lh+ukh;p+1R ckh (5:29)We express the temporal spreading vectors of the high-rate users in matrix form forn 2 f�1; 0; 1; � � � ; rg Cnkh;p = 2666664 cnkh;p � � � 0... . . . ...0 � � � cnkh;p 3777775| {z }M�columns (5:30)Following the same procedure as in Section 4.2.2, the MLd � (r + 2)M temporalchannel matrix of high-rate users is written asCkh;p = � C�1kh;p ... C0kh;p ... � � � ... Crkh;p � (5:31)96



and the corresponding (r + 2)M � (r + 2) spatial matrix for high-rate users is givenby Fkh;p = 2666664 fkh;p � � � 0... . . . ...0 � � � fkh;p 3777775| {z }(r+2)�columns (5:32)Thus, the spatial temporal channel matrix corresponding to the high-rate users, forkh = 1; � � � ;Kh and p = 1; � � � ; P , is written asHkh;p = Ckh;pFkh;p (5:33)Denoting the r + 2 dimensional sliding window bit vectors for the high-rate usersduring the il-th observation intervalbwkh(il) = [bkh(ih � 1) bkh(ih) � � � bkh(ih + r)]Tthe received discrete-time signal vector at the il-th observation interval from thehigh-rate users is given by xh(il) = KhXkh=1Hkhbwkh(il) (5:34)where Hkh = PXp=1Hkh;p (5:35)The composite discrete-time signal vector from both high-rate and low-rate usersat the il-th observation interval is expressed asx(il) = xl + xh + n(il) = KhXkh=1Hkhbwkh(il) + KlXkl=1Hklbwkl(il) + n(il) (5:36)where n(il) is the AWGN after sampling with zero mean and covariance �2Ld IMLd.5.3 Iterative Dual-Rate ReceiverIn this section, we derive an iterative receiver structure for the dual rate systems. Weassume that the relative time delays are known at the receiver. Applying the SAGE97



algorithm to our synchronous equivalent discrete-timemodel, we obtain joint channelarray response vector estimation and bit sequence detection for both high-rate andlow-rate users.5.3.1 Receiver DerivationWe �rst decouple the received signal using the technique developed in Section 4.4.We choose user index as the index set for multi-user signal decoupling. For high-rateuser kh, for kh = 1; � � � ;Kh, the hidden-data is given byxSkh(il) = Hkhbwkh(il) + n(il) = PXp=1Hkh;pbwkh + n(il) (5:37)The hidden-data corresponding to the low-rate users is, for kl = 1; � � � ;Kl,xSkl(il) = Hklbwkl(il) + n(il) = PXp=1Hkl;pbwkl + n(il) (5:38)Given the spatial matrix estimates and bit detection results at the jth iteration for allthe users except for the kh-th high rate user, the conditional expectation of xSkh(il),for kh = 1; � � � ;Kh and il = 1; � � � ; Nl, is obtained asx̂Skh(il) = x(il) � KhXk1=1;k1 6=kh PXp=1 Ĥjk1;pb̂wjk1 (il)� KlXkl=1 PXp=1 Ĥjkl;pb̂wjkl (il) (5:39)Similarly, the conditional expectation of xSkl(il), for kl = 1; � � � ;Kl and il = 1; � � � ; Nl,is given byx̂Skl(il) = x(il)� KlXk1=1;k1 6=kl PXp=1 Ĥjk1;pb̂wjk1 (il)� KhXkh=1 PXp=1 Ĥjkh ;pb̂wjkh (il) (5:40)where Ĥjkh;p = Ckh;pF̂ jkh;p and Ĥjkl;p = Ckl;pF̂ jkl;p for kh = 1; � � � ;Kh, kl = 1; � � � ;Kl andp = 1; � � � ; P .Using the approach in Section 4.4, we further decouple the multipath signals forhigh-rate and low-rate users, respectively, for kh = 1; � � � ;Kh, kl = 1; � � � ;Kl andil = 1; � � � ; Nl, xSkh;p(il) = Hkh;pbwkh + n(il) (5:41)98



xSkl;p(il) = Hkl;pbwkl + n(il) (5:42)The conditional expectations of xSkh;p(il) and xSkl;p(il), for kh = 1; � � � ;Kh, kl =1; � � � ;Kl, p = 1; � � � ; P and il = 1; � � � ; Nl, are given byx̂Skh;p(il) = x̂Skh(il)� PXp1=1;p1 6=p Ĥkh;p1bwkhand x̂Skl;p(il) = x̂Skl(il)� PXp1=1;p1 6=p Ĥkl;p1bwklThe maximum-likelihood channel array response vector estimates and detected bitsequences are obtained by the same procedure as in Section 4.4.The SAGE-based iterative channel array response vector estimation and bit se-quence detection is summarized as follows:for j = 1; 2 � � �k = (j modulo K)E-step: compute the conditional expectation of hidden-dataif k is corresponding to high rate user khfor il = 1; � � � ; Nlx̂S(j+1)kh (il) = x(il)� KhXk1=1;k1 6=kh PXp=1Ck1;pF̂ jk1;pb̂wjk1 (il)� KlXkl=1 PXp=1 Ĥjkl ;pb̂wjkl (il) (5:43)for p = 1; � � � ; Px̂Sjkh;p(il) = x̂S(j+1)kh (il)� PXp1=1;p1 6=pCkh;p1F̂ jkh;p1bwjkh (il) (5:44)if k is corresponding to low rate user klfor il = 1; � � � ; Nlx̂S(j+1)kl (il) = x(il)� KlXk1=1;k1 6=kl PXp=1Ck1;pF̂ jk1;pb̂wjk1 (il)� KhXkh=1 PXp=1 Ĥjkh;pb̂wjkh (il) (5:45)99



for p = 1; � � � ; Px̂Sjkl;p(il) = x̂S(j+1)kl (il)� PXp1=1;p1 6=pCkl;p1F̂ jkl;p1bwjkl (il) (5:46)M-step: compute the channel array response vector estimatesfor the high-rate user, compute f̂kh ;pfor p = 1; � � � ; PF̂kh;p = (CHkh;pCkh;p)�1CHkh;p NlXi=1l x̂Sjkh;p(il)b̂wjHkl (il)][ NlXi=1l b̂wjkh (il)b̂wjHkh (il)]�1 (5:47)for low rate user, compute f̂kl;pfor p = 1; � � � ; PF̂kl;p = (CHkl;pCkl;p)�1CHkl;p NlXi=1l x̂Sjkl;p(il)b̂wjHkl (il)][ NlXi=1l b̂wjkl (il)b̂wjHkl (il)]�1 (5:48)detect the bit,for the high-rate user, obtain b̂kh(il),kh = 1; � � � ;Kh and il = 1; � � � ; Nlb̂wj+1kh (il) = sign[(R̂j+1khkh)�1Ĥj+1Hkh x̂Sjkh(il)] (5:49)for the low-rate user, obtain b̂kl(il),b̂wj+1kl (il) = sign[(R̂j+1klkl)�1Ĥj+1Hkl x̂Sjkl (il)] (5:50)F̂ j+1k0;p = F̂ jk0;p; k0 6= k 2 f1; � � � ;Kh; 1; � � � ;Klgb̂wj+1k0 (il)) = b̂wjk0 (il); k0 6= k 2 f1; � � � ;Kh; 1; � � � ;KlgThe convergence of the SAGE-based iterative receiver has been studied in Chapter3 and veri�ed by simulation in Chapter 4.100



5.3.2 Simpli�ed Bit Detection for Wideband CDMA Sys-temsThe information bit detector in (5.49) has multipath interference decorrelation via(R̂j+1khkh)�1 which requires (r + 2) � (r + 2) matrix inversion. When the rate-ratior is large, the O(r3) computational complexity of the matrix inverse will be veryhigh. Since the di�erences between the relative time delays for di�erent paths arelarger than the chip interval for high processing gain (i.e. wideband) CDMA systems,the despreading process can resolve the received signals from di�erent paths for eachuser. Although the decorrelation via (R̂j+1khkh)�1 is eliminated, the despread signalsfrom di�erent paths are still combined to suppress multipath interference and takeadvantage of time diversity. Therefore, it is expected that a simpli�ed bit detectorwithout a multipath decorrelator would su�er from very little performance degra-dation in wideband CDMA, since the multipath delay spread is larger than a chipinterval.The algorithm in Section 5.3.1 is modi�ed as follows: the high-rate user signaldetector in (5.49) is replaced byb̂wj+1kh (il) = sign[Ĥj+1Hkh x̂Sjkh(il)] (5:51)For the case of the low-rate user signal detector in (5.50), a 3 � 3 matrix inversioncan be avoided by replacing (5.50) byb̂wj+1kl (il) = sign[Ĥj+1Hkl x̂Sjkl (il)] (5:52)The simpli�ed bit detection algorithm can be interpreted as follows: the spatial-temporal channel matrix in (5.34) corresponding to the high-rate user for kh =1; � � � ;Kh becomes Hkh = PXp=1Ckh;pAkh;p�kh ;p (5:53)101



where Akh ;p = 2666664 a(�kh;p) � � � 0... . . . ...0 � � � a(�kh;p) 3777775| {z }(r+2)�columnwhich is similar to that of single-rate systems. The spatial-temporal channel matrixcorresponding to the low-rate user for kl = 1; � � � ;Kl becomesHkl = PXp=1Ckl;pAkl;p�kl;p (5:54)where Akl;p = 2666664 a(�kl;p) 0 00 a(�kl;p) ...0 0 a(�kl;p) 3777775Thus, high-rate and low-rate users have the identical bit detector structure in eachiteration illustrated in Figure 5.3.-- -- -- -Max SNRMax SNR MaximalRatioCombinerSignal DecisionVariableDecoupled DespreaderDespreader BeamformerBeamformer#1#P #P#1... ...Figure 5.3: Simpli�ed Bit Detection at Each Iteration5.3.3 Performance AnalysisThis section derives a BER lower bound for the SAGE-based receiver in dual-ratesystems to assess the simulation results provided in the next section. Similar tothe case for the single-rate systems, we again assume that we have cancelled allthe multiple access interference in the hidden-data set at the �nal iteration cycle.102



We assume that the spatial-temporal channel matrix for the desired user is knownperfectly.From (5.49) and (5.50) and straightforward application of the technique developedin Section 4.5, we obtain the BER lower bound for high-rate and low-rate users, forq 2 fh; lg, Pkq = [(1� �q)=2]P P�1Xp=0 0B@ P � 1 + pp 1CA [(1 + �q)=2]p (5:55)where �q = s �q(1 + �q)and �q = MLqA2kq�0;0kqkq ;11�2 E[�2kq ;p]where �0;0kqkq ;11 = jc0kq;1j2and c0kq ;1 is given in (5.17) and (5.28) for low-rate and high-rate users, respectively.The average SNR for user kq is denoted by �q, Lq is the processing gain correspondingto q 2 fh; lg for high-rate and low-rate users, respectively,M and P are the numbersof antenna elements and propagation paths, respectively.5.4 Simulation ResultsWe consider a dual-rate system with rate-ratio r = 4. Gold sequences of length 31from [52] are assigned to high-rate users. For low-rate users, we obtain length-124spreading sequences by repeating each length-31 Gold sequence four times:ckl0; � � � ; ckl30; ckl0; � � � ; ckl30; ckl0; � � � ; ckl30; ckl0; � � � ; ckl30The length-31 Gold sequences for high-rate users and low-rate users are di�erent toavoid the possible confusion at the base-station receiver. In the simulations, we trans-mit a 100-bit information sequence from each high-rate user and a 25-bit information103



sequence for each low-rate user in the same time interval. We assume that the chan-nel attenuations and DOAs remain unchanged during the data-block transmission.One training bit in the �rst bit position in each sequence is inserted to obtain theinitial channel array response vector estimates for either high-rate or low-rate users.A uniform linear array with half-wavelength spacing is used at the base-station andthe DOAs are assumed to be uniformly distributed in [�60�; 60�]. The time delayof the �rst path for each active user is uniformly distributed in (0, Th=2) and thetime delay of the second path for each user is uniformly distributed in (Th=2; Th).Multipath channels are assumed to be Rayleigh-distributed with identical covariancefor all paths. We consider CDMA systems with two-element base-station antennaarrays and two propagation paths for all of the following simulations.In the �rst example, we consider a system with two high-rate users and twolow-rate users. Four iterations are used to obtain the results. Figures 5.4 and 5.5show the bit-error-rate (BER) performance of the SAGE-based iterative receiver forhigh-rate and low-rate users, respectively. It is observed that using the simpli�edbit sequence detection in Section 5.3.2 can achieve comparable performance to thedetector having a multipath decorrelator for both high-rate and low-rate users. Thisis consistent with our claim in Section 5.3.2. Note that the BER performance of thesimpli�ed bit sequence detection is slightly better than that of the detector having amultipath decorrelator in some SNR regions. This can be explained as follows: similarto the multi-access interference decorrelator, the multipath decorrelator increases thevariance of the background thermal noise, therefore makes its BER performance worseat some SNR points. Since the multipath signals for each user have been identi�edusing despreading, the multipath decorrelator is not necessary. BER performancefor high-rate and low-rate users is close to their lower bounds and two lower boundsare equivalent. The BER convergence to the iterative receiver for the high-rate andlow-rate users is illustrated in Figures 5.6 and 5.7, respectively. We observe that theBER of the high-rate user converges faster than that of the low-rate user. This meansthat the BER of the low-rate users is much more sensitive to multi-access interference104
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Figure 5.8: BER Performance of the Desired High Rate User in Near-Far Environmentthan that of the high-rate users in dual-rate systems. The results are consistent withthe �ndings in [12] that use a conventional single-user receiver with power control.The second example is used to investigate BER performance of the iterative re-ceiver in near-far environments. There exist three high-rate users and two low-rateusers in the system. The SNR of the desired high-rate user is 10 dB. All other usershave the same transmitted power and the power ratio changes from -20 dB to 20dB. From Figure 5.8, we observe that the BER of the desired high rate user doesnot change with an increase of power of the interfering users. Therefore, the SAGE-based iterative receiver has near-far resistant behavior. Figure 5.9 shows the BERconvergence for high-rate users. We see that the iterative receiver achieves near-farresistant BER performance at the expense of more iterations when the interferersbecome stronger.In the �nal example, we consider a system with �xed two low-rate users andincrease the number of the high-rate users. The SNRs for all users are the same107



−20 −15 −10 −5 0 5 10 15 20
10

−3

10
−2

10
−1

10
0

Receiver Performance in Near−Far Environment: BER Convergence

Power Ratio (dB) (All Interfers have Equal Transmitted Powers)

B
it 

E
rr

or
 R

at
e 

of
 th

e 
D

es
ire

d 
H

ig
h 

R
at

e 
U

se
r iteration 1

iteration 2

iteration 3

iteration 4

iteration 5

Three High Rate Users, Two Low Rate Users

Asynchronous System, Rayleigh Fading Channel

Two Antennas, Two Propogation Paths

SNR of the Desired High Rate User: 10 dB

Figure 5.9: BER Convergence of the Desired High Rate User in Near-Far Environment
108



1 2 3 4 5
10

−3

10
−2

10
−1

10
0

Receiver Performance: Bit Error Rate

Number of High Rate Users in the System

B
it 

E
rr

or
 R

at
e 

of
 th

e 
D

es
ire

d 
U

se
rs

+  Initial Results (high rate users)
x  Initial Results (low rate users)

*  SAGE−Based Receiver (high rate users)

o  SAGE−Based Receiver (low rate users)

BER Lower Bound

Asynchronous System, Rayleigh Fading Channel

Two Antennas, Two Propogation Paths

SNR of the desired high rate user: 10 dB

All Users Have Equal Transmitted Powers

Two Low Rate Users

Figure 5.10: BER Performance of the Desired Users as a Function of IncreasingNumbers of High Rate Users in the Systemand set to be 10 dB. Figure 5.10 compares the BER performance of the high-rateand low-rate users. We observe that the BER performances are comparable and theperformance for the high-rate users are slightly better than that of the low-rate userswhen the number of high-rate users gets large. BER convergences for high-rate andlow-rate users are illustrated in Figures 5.11 and 5.12, respectively. Again, the BERof high-rate users converges faster than that of low-rate users.5.5 ConclusionsWe have extended the results in Chapter 4 for single-rate systems to dual rate sys-tems in this chapter. We �rst developed a synchronous equivalent discrete-time sys-tem model for dual rate systems with base-station antenna arrays over asynchronousmultipath fading channels. We applied the SAGE algorithm to this dual rate system109



1 2 3 4 5
10

−3

10
−2

10
−1

Receiver Performance: BER Convergence

Number of the High Rate Users in the System

B
it 

E
rr

or
 R

at
e 

of
 th

e 
D

es
ire

d 
H

ig
h 

R
at

e 
U

se
r

iteration 1

iteration 2

iteration 3

iteration 4

Asynchronous System, Rayleigh Fading Channel

Two Antennas, Two Propogation Paths

SNR of the Desired High Rate User: 10 dB

All Users Have Equal Transmitted Powers

Two Low Rate Users

Figure 5.11: BER Convergence of the Desired High Rate User as a Function of In-creasing Numbers of High Rate Users in the System
110



1 2 3 4 5
10

−3

10
−2

10
−1

Receiver Performance: BER Convergence

Number of the High Rate Users in the System

B
it 

E
rr

or
 R

at
e 

of
 th

e 
D

es
ire

d 
Lo

w
 R

at
e 

U
se

r

iteration 1

iteration 2

iteration 3

iteration 4

Asynchronous System, Rayleigh Fading Channel

Two Antennas, Two Propogation Paths

SNR of the Desired High Rate User: 10 dB

All Users Have Equal Transmitted Powers

Two Low Rate UsersFigure 5.12: BER Convergence of the Desired Low Rate User as a Function of In-creasing Numbers of High Rate Users in the System
111



model and obtained an iterative multi-user receiver for joint channel array responsevector estimation and bit sequence detection with known relative time delays forall users. Simulation results show that the BER performance of the SAGE-basediterative receiver is near-far resistant. The BERs for high-rate users and low-rateusers are equivalent and the BER of the high-rate user converges faster than that ofthe low-rate user. It is shown that using simpli�ed bit detection algorithm achievescomparable BER performance to the detector having a multipath decorrelator forwideband CDMA systems. We observe that the BER performance degradation isvery small for either high-rate users or low-rate users when the number of the high-rate users in the system gets large.
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Chapter 6Conclusions and Future WorkThis chapter summarizes the major contributions in this thesis and presents possiblefuture directions which could be extensions of the research work in this thesis.6.1 Thesis SummaryThis thesis has investigated spatial-temporal signal processing required for implement-ing channel estimation combined with multi-user signal detection. We considered theCDMA uplink with base-station antenna arrays for fading channels. The objectives ofthis work were to develop channel estimation and bit sequence detection algorithmsfor near-far resistant receivers. The computational complexity of the new receiveralgorithms are shown to be linear in the number of users.We �rst developed a spatial-temporal decorrelator for a synchronous single dominant-path channel and analyzed the decorrelator's asymptotic e�ciency in Chapter 3. Wefound in Section 3.3 that the spatial-temporal decorrelator is near-far resistant andthat using a base-station antenna array can signi�cantly increase the asymptotic ef-�ciency for either the spatial-temporal decorrelator or the conventional single-userdetector. To jointly estimate channel array response vectors and detect informationbit sequences for all active users, we applied the expectation-maximization (EM) andthe space alternating generalized expectation-maximization (SAGE) algorithms toCDMA systems and obtained two iterative receiver structures in Sections 3.4 and113



3.5, respectively. It has been demonstrated in Section 3.6.1 that the SAGE-basedreceiver converges faster than the EM-based receiver. We also found that using abase-station antenna array accelerates the receiver's convergence. It is shown thatusing base-station antenna arrays can improve channel array response vector esti-mates of the SAGE-based receiver and therefore improve the receiver's bit error rate(BER) performance. We observed that the BER performance of the SAGE-basedreceiver is near-far resistant and close to the simulated and analytical results for thecase of known channels.To extend the results obtained for synchronous systems to the case of asynchronousmultipath systems, we formulate a synchronous equivalent discrete-time systemmodelin Section 4.2. Based on this model, we derived a spatial-temporal decorrelator forasynchronous multipath channels by incorporating a maximal ratio combiner in Sec-tion 4.3. It is shown that this decorrelator is near-far resistant. We found thatunlike base-station antenna arrays, multipath diversity does not improve asymptotice�ciency for either the spatial-temporal decorrelator or the conventional single-userdetector. For given relative time delays, in Section 4.4, we applied the SAGE algo-rithm to obtain an iterative receiver structure for jointly estimating channel arrayresponse vectors and detecting bit sequences for all active users. We introduced dou-ble decoupling the multipath received signals to estimate the channel array responsevector for each path of each user. It is shown that the SAGE-based receiver for multi-path channels is also near-far resistant and the BER performance of the SAGE-basedreceiver is close to that for known channels. The approximation for analytical BERlower bound derived in Section 4.5 is found to be reasonable. Simulation results showthat timing error e�ect is not signi�cant for the case of equal transmitted powers andin lower SNR regions. However, the near-far resistance of the SAGE-based receiverdegrades due to timing errors.In Section 5.2, we formulated a discrete-time model for dual-rate systems with�xed chip rate and variable processing gain. We obtained an iterative multi-userreceiver for joint channel array response vector estimation and bit sequence detection114



for dual-rate systems with base-station antenna arrays and asynchronous multipathfading channels by using the techniques developed for the case of single-rate systemsin Section 5.3. It is veri�ed that multipath diversity combining is an e�cient methodto combat multipath interference and improve receiver's BER performance for CDMAsystems. We found that using the SAGE-based receiver, the BER performance forboth high rate users and low rate users are equivalent and close to the analyticalBER lower bound. We have observed that using simpli�ed bit detection algorithmderived in Section 5.3.2 can achieve comparable performance to the detector havinga multipath decorrelator for wideband CDMA systems. It is shown that the BERperformance of the SAGE-based receiver is near-far resistant and less sensitive toan increase of the number of the inteferers in the system at the expense of moreiterations.6.2 Future DirectionsAlthough this thesis has investigated the problem of joint channel array responsevector estimation and bit sequence detection by incorporating array signal processingwith multi-user signal detection, there are several issues that remain to be explored.In this section, we discuss several important areas which require further study.6.2.1 System Capacity EstimationDue to the computational complexity of simultaneously estimating channel array re-sponse vectors and detecting bits for all users, this thesis veri�ed the performance ofproposed receivers by simulating a small number of users using bit error rate (BER).It is expected that the improved BER performance can potentially increase systemcapacity. However, direct system capacity estimation is more e�ective and straight-forward to evaluate the proposed receivers for cellular communications. One possiblemethod to estimate system capacity using proposed receivers is to �nd the resid-ual interference after the �nal-stage iteration. By analyzing the residual interference115



statistics, we could evaluate system capacity improvement using current methods suchas that in [57].6.2.2 Time Delay EstimationIn this thesis, we have assumed that the relative time delays for all the users are knownat the base-station receiver. However, in practical applications, we have to estimatethese parameters. Previous study showed that the BER performance of multi-userreceivers degrades signi�cantly due to time delay estimation errors for single-antennasingle-path systems [3] [5] [63] [111]. In [5], an improved minimum-mean-squared-error (IMMSE) multi-user receiver is proposed taking into account the timing errors.However, numerical results show that the IMMSE receiver performs worse than theMMSE receiver in terms of bit error rate for small timing errors and still su�ersfrom timing errors. Therefore, higher precise approaches to time delay estimation arerequired to achieve acceptable performance when the time delays are not available.Time delay estimation for multi-user CDMA systems using subspace-based tech-niques have been proposed in [2] and [83]. In [47], it is observed that using a base-station antenna array can increase dimension of the noise subspace in [2] and henceincrease the number of users in the system whose parameters can be correctly esti-mated. The application of the EM algorithm to time delay estimation is �rst reportedin [17] for superimposed signals. In [15], joint time delay and channel attenuationestimation methods are proposed for multipath CDMA systems using the EM al-gorithm and the alternating projection algorithm developed in [112]. Time delayestimation, however, is computationally very complex. It is necessary to investigatee�cient estimation schemes for multi-user systems. In [79], polynomial rooting is usedto reduce computational complexity of time delay estimation for signal-user CDMAsystems. Since our discrete-time model for asynchronous systems is formulated with-out assumption of priori knowledge of time delays for all the active users, it may bepossible to incorporate time delay estimation into the receiver algorithms for bothsingle-rate and multi-rate systems. 116



6.2.3 Multi-User Receiver in Multi-Cell SystemsSince it is di�cult for a base-station to know all the spreading codes used in othercells, multi-user receivers only eliminate the multi-access interference (MAI) from thesame cell. Interference from other cells is normally weaker than the MAI from thesame cell and is a fraction f of the latter. The bound of capacity increase using multi-user detection is (1+f)=f [11]. For f = 0:55, this factor is 2.8 [99]. It is expected thatusing a base-station antenna array could achieve higher capacity [11]. Therefore, itcould be bene�cial to investigate performance improvement by incorporating antennaarray processing with multi-user signal detection for multi-cell systems.6.2.4 Multi-user Receiver for DownlinkMuch work on multi-user signal detection has been focused on the CDMA uplink(mobile to base-station). Improving downlink (base-station to mobile) capacity isalso important. A joint transmitter-receiver structure is proposed based on the min-imum mean squared error (MMSE) criterion for uplink multipath channel withoutbase-station antenna array in [28]. However, channel parameter estimation is notaddressed.For antenna array CDMA systems, transmit beamforming can be used to improvesystem performance for the downlink [21]. The di�culty for CDMA transmit beam-forming is that the channel characteristics for uplink and downlink are di�erent infrequency division duplex systems since the estimated channel for uplink cannot bedirectly used to downlink. However, the directions of arrival (DOAs) for two linksremain nearly the same if the channel changes slowly. Therefore, a possible transmitbeamformer weight can be obtained from the estimated DOAs. Although we did notaddress the problem of DOA estimation in this thesis, it is straightforward to obtainDOAs from the estimated channel array response vectors for all active users. Thus,joint channel estimation and downlink multi-user detection by incorporating transmitbeamforming could be a possible research direction.117



Appendix ADerivation of the Cram�er-Rao LowerBound (CRLB)This appendix derives the Cram�er-Rao Lower Bound (CRLB) for the channel arrayresponse vector estimates. Assumming that we have a block of received signal samplesover N information symbols fx(i); 1 � i � Ng and the channel and array responsevectors remain unchanged during the block transmission, then the likelihood functionof the data samples is given by
(x(i)ji = 1; � � � ; N) = 1�MLN(�2=L)MLN exp(� 1�2=L NXi=1[x(i)�Hb(i)]H[x(i)�Hb(i)])(A:1)The unknown deterministic parameters are background noise covariance �2, the realpart and imaginary part of channel and array response vectors for K users. Denotinga = �a + j�a, where �a and �a are the real and imagenary parts of a, respectively, theunknown deterministic parameters background noise covariance �2, �a and �a. Theparameter vector is de�ned as � = � �2 �aT �aT �T (A:2)Discarding the terms independent of the unknown parameter vecter �, the log-likelihood function is given byln
 = �MLN ln�2 � L�2 NXi=1[x(i)�Hb(i)]H[x(i)�Hb(i)]) (A:3)118



Now, we compute the derivative of the above log-likelihood function with respect toparamater vector �. The derivative with respect �2 is given by@ ln
@�2 = �MLN�2 + L�4 NXi=1 nH(i)n(i) (A:4)The derivative of ln
 with respect to �a can be obtained by@ ln
@�a = [@ ln
@�a1 � � � @ ln
@�aK ]T (A:5)and (for k = 1; � � � ;K) @ ln
@�ak = [@ ln
@�a11 � � � @ ln
@�aMK ]T (A:6)where (for k = 1; � � � ;K and m = 1; � � � ;M)@ ln
@�amk = 2L�2 NXi=1Re[b(i)H @HH@�amk n(i)] = 2L�2 NXi=1Re[b�k(i)@hHk@�amk n(i)] (A:7)where Re(x) is the real part of x. Recall hk = Ckfk and fk = Akak, then@hHk@�amk = � 0TL � � � AkcTk � � � 0TL � (A:8)where 0L is an L-dimentional zero vector.Denoting the ML�M channel derivative matrix as (for k = 1; � � � ;K)Dk = 2666666664 Akck 0L � � � 0L0L Akck . . . 0L... . . . . . . ...0L � � � 0 Akck 3777777775 (A:9)(A.6) can be obtained as @ ln
@�ak = 2L�2 NXi=1Re[BHk (i)DHk n(i)] (A:10)Using the following compact notationD = � D1 � � � DK � (A:11)and B(i) = diag[B1(i); � � � ; BK(i)] (A:12)119



the derivative of log-likelihood function with respect to �a is given by@ ln
@�a = 2L�2 NXi=1Re[BH(i)DHn(i)] (A:13)Similarly, the derivative of log-likelihood function with respect to the imaginary partof a, �a, is given by @ ln
@�a = 2L�2 NXi=1 Im[BH(i)DHn(i)] (A:14)where Im(x) represents the imaginary part of x.The Fisher information matrix is given by [34]I(�) = E[(@ ln
@� )(@ ln
@� )T ] (A:15)First, we can obtain the following result [82]I(�2) = E[j@ ln
@�2 j2] = MLN�4 (A:16)and @ ln
@�2 is uncorrelated with other two derivative vectors.Using following relations [82]Re(x)Re(yT ) = 12 [Re(xyT +Re(xyH] (A:17)Im(x)Im(yT) = �12 [Re(xyT �Re(xyH] (A:18)Re(x)Im(yT) = 12[Im(xyT � Im(xyH] (A:19)and E[n(i)nT (j)] = 0; i = 1; � � � ; N and j = 1; � � � ; N (A:20)E[n(i)nH(j)] = �(i� j)�2L IM ; i = 1; � � � ; N and j = 1; � � � ; N (A:21)where IM is an M �M indentity matrix, we obtainI(�a) = E[(@ ln
@�a )(@ ln
@�a )T ] = 2L�2 NXi=1Re[BH(i)DHDB(i)] (A:22)I(�a�a) = E[(@ ln
@�a )(@ ln
@�a )T ] = �2L�2 NXi=1 Im[BH(i)DHDB(i)] (A:23)120



Denoting signal-to-noise ratio (SNR) k = A2k=�2 (for k = 1; � � � ;K), we can obtainG(i) = BH(i)DHDB(i)= 2666666664 1�11IM p12�12B12(i) � � � p1K�1KB1K(i)p12�12B12(i) 2�22IM . . . ...... . . . . . . ...p1K�1KB1K(i) � � � � � � K�KKIM 3777777775where Bkj(i) = BHk (i)Bj(i) (for i = 1; � � � ; N and j = 1; � � � ; N). Since G is real, wehave I(�a) = I(�a) = 2L�2 NXi=1G(i) (A:24)and I(�a�a) = 0 (A:25)Thus, the Fisher information matrix is given byI(�) = 2666664 I(�2) 0TMK 0TMK0MK I(�a) 00MK 0 I(�a) 3777775 (A:26)Using inverse of a partitioned matrix, we can obtain the Cramer-Rao lower bound(CRLB) matrix for channel and array response vectorsCRLB(a) = I(�a)�1 + I(�a)�1 (A:27)
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Appendix BDerivation of Ĥk;pIn this Appendix, we derive the estimate of Hk;p, Ĥk;p, in (4.38). Rewrite the log-likelihood function (4.37)
 = � 1�2=L NXi=1(x̂Sjk;p(i)�Hk;pbwk (i))H(x̂Sjk;p(i)�Hk;pbwk (i)) (B:1)Discarding the terms which are independent of Hk;p, the likelihood function can bewritten as 
 = 1�2=L NXi=1[bwTk (i)HHk;pHk;pbwk (i)� 2x̂SjHk;p (i)Hk;pbwk (i)] (B:2)We denote Hk;p = 2666664 Hk;p[1; 1] Hk;p[1; 2] Hk;p[1; 3]... ... ...Hk;p[2ML; 1] Hk;p[2ML; 2] Hk;p[2ML; 3] 3777775 (B:3)where Hk;p[m;n], for m = 1; � � � ; 2ML and n = 1; 2; 3, is the (m,n)th component ofthe matrix Hk;p, x̂Sjk;p(i) = � x̂Sjk;p(i)[1] � � � x̂Sjk;p(i)[2ML] �T (B:4)For notational consistency, we also denotebwk (i) = (bwk (i)[1] bwk (i)[2] bwk (i)[3])122



Thus, the likelihood function can be expressed as
 = 1�2=LPNi=1 bwk (i)[1] (bwk (i)[1]P2MLm=1 H�k;p[m; 1]Hk;p[m; 1]+bwk (i)[2]P2MLm=1 H�k;p[m; 2]Hk;p[m; 1]+bwk (i)[3]P2MLm=1 H�k;p[m; 3]Hk;p[m; 1])+bwk (i)[2] (bwk (i)[1]P2MLm=1 H�k;p[m; 1]Hk;p[m; 2]+bwk (i)[2]P2MLm=1 H�k;p[m; 2]Hk;p[m; 2]+bwk (i)[3]P2MLm=1 H�k;p[m; 3]Hk;p[m; 2])+bwk (i)[3] (bwk (i)[1]P2MLm=1 H�k;p[m; 1]Hk;p[m; 3]+bwk (i)[2]P2MLm=1 H�k;p[m; 2]Hk;p[m; 3]+bwk (i)[3]P2MLm=1 H�k;p[m; 3]Hk;p[m; 3])�2 (bwk (i)[1]P2MLm=1(x̂Sjk;p(i)[m])�Hk;p[m; 1]+bwk (i)[2]P2MLm=1(x̂Sjk;p(i)[m])�Hk;p[m; 2]+bwk (i)[3]P2MLm=1(x̂Sjk;p(i)[m])�Hk;p[m; 3])
(B:5)

where H�k;p[m;n] is the complex conjugate of Hk;p[m;n] for m = 1; � � � ; 2ML andn = 1; 2; 3. To obtain the ML estimate for Hk;p, we take the derivative of (B.5) withrespect to Hk;p. The derivative is given in a matrix form@
@Hk;p = 2666664 @
@Hk;p[1;1] @
@Hk;p[1;2] @
@Hk;p[1;3]... ... ...@
@Hk;p[2ML;1] @
@Hk;p[2ML;2] @
@Hk;p[2ML;3] 3777775 (B:6)For m = 1; � � � ; 2ML, we obtain@
@Hk;p[m;1] = 2�2=LPNi=1 bwk (i)[1]bwk (i)[1]H�k;p[m; 1] + bwk (i)[1]bwk (i)[2]H�k;p[m; 2]+bwk (i)[1]bwk (i)[3]H�k;p[m; 3]� bwk (i)[1]x̂Sjk;p(i)[m])�= 2�2=LPNi=1 H�k;p[m]bwk (i)bwk (i)[1]� (x̂Sjk;p(i)[m])�bwk (i)[1] (B:7)where H�k;p[m] = (H�k;p[m; 1] H�k;p[m; 2] H�k;p[m; 3]) is a 3-dimensional row vector form = 1; � � � ; 2ML. Similarly, we have@
@Hk;p[m; 2] = 2�2=L NXi=1H�k;p[m]bwk (i)bwk (i)[2]� (x̂Sjk;p(i)[m])�bwk (i)[2] (B:8)123



and @
@Hk;p[m; 3] = 2�2=L NXi=1H�k;p[m]bwk (i)bwk (i)[3]� (x̂Sjk;p(i)[m])�bwk (i)[3] (B:9)Therefore, the derivative matrix is obtained as@
@Hk;p = 2�2=LPNi=12666664 H�k;p[1]bwk (i)bwk (i)[1] H�k;p[1]bwk (i)bwk (i)[2] H�k;p[1]bwk (i)bwk (i)[3]... ... ...H�k;p[2ML]bwk (i)bwk (i)[1] H�k;p[2ML]bwk (i)bwk (i)[2] H�k;p[2ML]bwk (i)bwk (i)[3] 3777775�2666664 (x̂Sjk;p(i)[1])�bwk (i)[1] (x̂Sjk;p(i)[1])�bwk (i)[2] (x̂Sjk;p(i)[1])�bwk (i)[3]... ... ...(x̂Sjk;p(i)[2ML])�bwk (i)[1] (x̂Sjk;p(i)[2ML])�bwk (i)[2] (x̂Sjk;p(i)[2ML])�bwk (i)[3] 3777775(B:10)Eqn. (B.10) can be expressed in a compact form as@
@Hk;p = 2�2=L NXi=1H�k;pbwk (i)bwTk (i)� (x̂Sjk;p(i))�bwTk (i) (B:11)Equating (B.11) to zero, and noting that bwk (i) is a real-valued vector, we obtainĤk;p = [ NXi=1 x̂Sjk;p(i)bwTk (i)][ NXi=1bwk (i)bwTk (i)]�1 (B:12)
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