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Abstract

Among multi-access communications techniques, CDMA (Code Division Multiple Ac-
cess) is interference-limited. Conventional single-user receivers suffer from the near-
far problem in CDMA cellular communications systems. One method to suppress
multi-access interference is digital beamforming by using base-station antenna ar-
rays. However, using beamforming alone cannot solve the near-far problem. Verdu
demonstrates that multi-user signal detection can be used to eliminate multi-access
interference by utilizing all active users’ spreading codes at the base-station. This
thesis addresses the incorporation of array signal processing with multi-user signal
detection in the CDMA terminal to base-station uplink. In particular, this thesis
proposes a method - jointly estimating the unknown channel array response vectors

and detecting the bits from all users.

We first consider synchronous single-path Rayleigh fading channels. We develop
a spatial-temporal decorrelator receiver employing the maximum likelihood criterion
based on a novel discrete-time system model and analyze the decorrelator’s asymptotic
efficiency. It is shown that the spatial-temporal decorrelator is near-far resistant and
that using a base-station antenna array significantly increases asymptotic efficiency
for either the spatial-temporal decorrelator or the conventional single-user detector.
We formulate the expectation-maximization (EM) and the space alternating general-
ized expectation-maximization (SAGE) algorithms based on the discrete-time model
and obtain two receiver structures for joint channel array response vector estimation
and bit sequence detection. The receiver’s convergence rate is analyzed. We have ob-

served that using base-station antenna array accelerates the SAGE-based receiver’s
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convergence and improves channel estimation performance. The BER performance
of the SAGE-based receiver is shown to be near-far resistant.

A synchronous equivalent discrete-time system model is formulated for asyn-
chronous multipath channels. Based on this model, we exploit multipath diversity
by incorporating maximal-ratio combiner into the spatial-temporal decorrelator. It
is shown that unlike antenna arrays, using multipath diversity combining does not
improve detector’s asymptotic efficiency. We exploit the SAGE algorithm to decouple
the multi-user signals for bit sequence detection and again decouple the multipath
signals to estimate the channel array response vector for each path of each user for
given time delays. Timing error effects on the SAGE-based receiver are studied by
simulation. Multipath diversity combining is shown to be effective in improving the
receiver’s bit error rate (BER) performance.

Finally, we extend the techniques developed for single-rate systems to multi-rate
systems with base-station antenna arrays over asynchronous multipath fading chan-
nels. An iterative multi-user receiver for dual-rate systems is derived. It is shown
that unlike the conventional single-user receiver, the proposed receiver’s BER relative
performances for high-rate and low-rate users are similar. We observed that the BER
of high-rate users converges to the derived lower bound as a function of the number

of iterations faster than that of low-rate users.
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Chapter 1

Introduction

1.1 Motivation

Wireless communication systems, which provide an efficient high-quality information
exchange between two portable terminals, have great potential for further develop-
ment in the near future. Cordless and cellular telephony, mobile computing, and
satellite communications are facing rapid market demand. With the popularity of
wireless communication services, the number of users has been growing dramatically
for the past few years. This increase results in a big challenge for wireless technology,
i.e., expanding the system capacity for wireless services with the available spectrum.

The cellular concept was conceived to increase the radio channel efficiency by
dividing the large service area into several smaller cells and using a subset of the total
available radio channels in each cell. Therefore, the radio channels could be reused
in different cells which were separated sufficiently to avoid co-channel interference.
Hence, system capacity is increased by the spatial characteristics of the channel [27].
Cellular systems exploit handoff techniques to enable a mobile leaving a cell to switch
to a new channel available in the next cell automatically. Normally, one base-station
is assigned in each cell to serve several mobile users.

For multiple access communication systems, sharing a common channel spectrum
can be achieved by frequency division multiple access (FDMA), time division mul-

tiple access (TDMA), code division multiple access (CDMA) or their combinations.
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While FDMA and TDMA are based on dividing the available frequency spectrum
and the transmission time to maintain multiple users, respectively, CDMA systems
permit multiple users to transmit in the same frequency band simultaneously by us-
ing different spreading codes [70] [100]. Comparative studies show that CDMA can
achieve greater system capacity than FDMA and TDMA [21] [39]. Unlike FDMA
and TDMA capacities which are primarily bandwidth limited, CDMA capacity is
interference limited. Any reduction in interference converts directly into an increase
in system capacity. Therefore, multiple access interference (MAI) suppression tech-
niques for CDMA systems have attracted a substantial amount of attention in the

past years.

1.1.1 Spatial Signal Processing

A promising approach to suppress MAI is the use of antenna arrays at base-stations
[1] [40] [85] [104] [105]. Since base-station antenna arrays capture more signal energy
from mobile users and provide spatial diversity for base-station receivers, optimum
combining and beamforming technology can be used with a base-station antenna array
to increase system capacity for wireless communication systems. Using antenna ar-
rays also permits a less stringent form of power control while maintaining acceptable
bit error rate (BER) performance. Performance improvements for CDMA systems
with base-station antenna arrays have been studied in [12], [57] and [59]. Combined
beamformer-RAKE conventional single-user receivers have been proposed for multi-
path channels in [35], [41] and [58]. A comprehensive review of antenna array signal

processing for wireless communications can be found in [66] and [88].

1.1.2 Multi-user Signal Detection

Because of the relative time delays among the active mobile users for CDMA up-
link channels (mobile to base-station), we cannot guarantee orthogonality between
the spreading codes. Therefore, CDMA systems suffer from co-channel interference

which results in the near-far problem [43]. The near-far effect arises because received



powers from users near the base-station receiver are higher than those from users far

away and some users’ signals experience deep fading. However, the near-tfar problem is

not inherent to CDMA systems, but due to the conventional single-user receiver which

models the interference from other users as noise (see Figure 1.1). The interference
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Figure 1.1: Conventional Single-user Detector

modelling loses useful information from interfering users. By jointly detecting all the

users’ signals, optimum multi-user signal detection for CDMA systems can be made

near-far resistant and can achieve significant performance improvement over that of

conventional single-user detection [95]. Multi-user signal detection is illustrated in

Figure 1.2. Because of the computational complexity of optimum multi-user detec-
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Figure 1.2: Multi-user Signal Detector

tion, several suboptimum multi-user signal detectors have been proposed for additive

white Gaussian noise (AWGN) channels, including decorrelating detectors [31] [43]
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[107], linear minimum mean-squared error (MMSE) detectors [46] [107], multi-stage
detectors [91] [92], decision feedback detectors [9] [10], adaptive multi-user detectors
[4] [26] [48] [71] and blind multi-user detectors [24] [102].

The major advantage of multi-user signal detection is its near-far resistance, i.e.,
the detector’s performance is not sensitive to the unequal received signal power from
different mobile users. This makes the receiver avoid the sophisticated precise power
control currently used in the second generation PCS standard 1S-95 [70]. The benefit
obtained from multi-user signal detection is three-fold. Firstly, eliminating precise
power control directly increases channel spectrum efficiency. Secondly, since no precise
power control algorithms are needed, complexity is considerably reduced at the mobile
transmitters. This translates into a reduction of mobile power consumption. Finally,
even for equal received power from all active mobiles, multi-user signal detectors
achieve better bit error rate (BER) performance than the conventional single-user

detector, and hence provide greater system capacity.

Matched filtering (MF) methods are proposed to suppress MAI for CDMA systems
in [110], which provide a compromise between the noise-whitening MF [52] and linear
MMSE detector [46]. A successive interference cancellation approach is analyzed in
[98] and [64], and compared with multi-stage detector [91]. As a parallel interfer-
ence canceller, multi-stage detector outperforms the successive interference canceller
for AWGN channels. However, successive interference cancellation can achieve bet-
ter performance than multi-stage detection for fading channels [65]. Array signal
processing concepts [29] can be adapted for multi-user signal detection in single an-
tenna CDMA systems for known channels which are oversampled [76], and provide

an extension of the linear MMSE detector in [46].

In [114], [115] and [93], multi-user signal detection is extended to fading channels.
The problems of integrating antenna array processing and multi-user signal detection
are proposed for known channels in [49] for AWGN channels and in [30] for Rayleigh
fading channels. In [37], adaptive antenna array processing and interference cancel-

lation approaches using the least mean squared (LMS) algorithm are analyzed and
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the convergence is found to require several hundred training bits. Decorrelating de-
tectors combined with antenna array diversity combining are studied for multipath
fading channels in [113], but channel estimation has not been addressed. Overviews

of multi-user signal detection can be found in [11], [56] and [97].

1.1.3 Channel Estimation

In order to detect information symbols reliably, we have to estimate channel pa-
rameters and antenna array response vectors. Parameter estimators are proposed
for AWGN CDMA channels in [94] and [55]. In [36], a channel parameter estima-
tion method is proposed for antenna array CDMA systems, which is not near-far
resistant. Joint parameter estimation and multiuser signal detection approaches are
studied for single-antenna CDMA systems in [33], [81] and [108]. In [2], [83] and [89]
subspace-based channel parameter estimators are proposed for multi-user CDMA
systems. Comparative studies for blind channel estimation schemes are provided for
multipath CDMA channels in [51]. Recently proposed channel estimation techniques
for TDMA systems can be found in [61], [86] and [90]. Most of these estimation
methods involve significant matrix computation. Therefore, computationally efficient
estimation methods are needed for practical applications.

It is well-known that the expectation-maximization (EM) algorithm provides an
efficient numerical solution to the maximum likelihood estimation problem [8]. Ap-
plications of the EM algorithm to CDMA systems have been proposed for signal
detection [60] and channel estimation [15] [16]. The space-alternating generalized
expectation-maximization (SAGE) algorithm has been developed to accelerate the
convergence of the EM algorithm [19]. Applications of the SAGE algorithm in multi-
user AWGN CDMA channels can be found in [60] for known channels, in [7] for
channel parameter estimation and in [78] for joint parameter estimation and signal

detection based on the discrete wavelet transform for a single antenna system.

In addition to suffering from the near-far problem, the conventional single-user



receiver also exhibits a nonzero bit error rate (BER) floor even if the background
noise level goes to zero. This effect is caused by the contributions from the interfering
users at the output of the matched filters (see Figure 1.1). The nonzero BER floor
makes it difficult to achieve a low BER required by the multi-rate systems using the
conventional single-user receiver without an excessive reduction of system capacity
[12] [45]. Therefore, it is important to investigate advanced techniques to eliminate

the nonzero BER floor and overcome the near-far problem.

Performance gains provided by multi-user signal detection are achieved at the
expense of computational complexity. Therefore, investigation into computationally
efficient multi-user signal detection approaches is an important issue. Iterative signal
detection and channel estimation approaches have been proposed for fading channels
in [16] and [7]. Multi-stage detectors are used to detect information symbols and
the maximum-likelihood (ML) channel estimation is implemented by applying the
EM-type algorithms in these receivers. However, the multi-stage detector does not
guarantee convergence of the receiver to a fixed point and often exhibits slower conver-
gence and oscillatory behaviour [60]. Since the EM-type algorithms have guaranteed
convergence, we propose to investigate joint signal detection and channel estimation
receivers integrating spatial signal processing with multi-user signal detection by ap-
plying the EM-type algorithms to antenna array CDMA systems. We call the combi-
nation of spatial signal processing and multi-user signal detection as spatial-temporal

signal processing.

1.2 Summary of Contributions

This thesis investigates the problem of incorporating array signal processing with
multi-user detection. We develop spatial-temporal decorrelating receivers for CDMA
systems by incorporating base-station antenna arrays and channel estimation tech-
niques using advanced signal processing algorithms. The new receivers are near-far

resistant and also outperform the conventional single-user receiver in terms of bit



error rate (BER). Better BER performance can potentially increase system capacity.

The primary contributions are summarized as follows:

e A spatial-temporal decorrelator receiver is derived based on a discrete-time sys-
tem model for synchronous single-path channels. This decorrelator completely
eliminates the multi-access interference (MAI) at the cost of increased back-

ground noise.

o Asymptotic efficiencies of the spatial-temporal decorrelator and the conven-
tional single-user detector are derived and compared. Numerical results show
that the spatial-temporal decorrelator is near-far resistant and that using a
base-station antenna array improves the asymptotic efficiency for either the

spatial-temporal decorrelator or the conventional single-user detector.

o Two iterative spatial-temporal decorrelating receivers for joint channel esti-
mation and bit sequence detection are derived by applying the expectation-
maximization (EM) and the space alternating generalized expectation-maximization

(SAGE) algorithms to the synchronous discrete-time system model, respectively.

e Convergence for the two iterative receivers is analyzed. The SAGE-based re-
ceiver is found to converge faster than the EM-based receiver. We have also

found that using a base-station antenna array can accelerate convergence of the

SAGE-based receiver.

e The bit error rate (BER) of the spatial-temporal decorrelator is derived for
known channels. This BER provides a benchmark for the iterative spatial-
temporal decorrelating receivers which jointly estimate the channel array re-

sponse vector and detect the information bit sequence.

e A Cramér-Rao Lower Bound (CRLB) for the channel estimates is derived to
assess the performance of the new iterative receivers for synchronous single

dominant-path systems.



A synchronous equivalent discrete-time system model is formulated for asyn-

chronous multipath CDMA systems with base-station antenna arrays.

A spatial-temporal decorrelator is obtained for asynchronous multipath fading
channels by extending the results for the case of synchronous single-path chan-
nels. A maximal-ratio combiner (MRC) is incorporated in the new decorrelator

to exploit multipath diversity.

The asymptotic efficiency of the RAKE receiver in multipath fading channels
is analyzed. Numerical results show that unlike base-station antenna array,
using multipth diversity combining does not improve asymptotic efficiency for

multi-user CDMA systems.

By applying the SAGE algorithm, an iterative receiver is derived for joint chan-
nel array response vector estimation and bit sequence detection for asynchronous
multipath fading channels. To estimate the channel array response vector for
each path of each user, we decouple the multipath received signals for each user

after decoupling the multi-access signals.

A BER lower bound is derived for the spatial-temporal decorrelator for asyn-
chronous multipath CDMA systems with base-station antenna arrays by assum-
ing that the channels for all active users are known and the bit sequences for

all the interferers are known.

A discrete-time model is formulated for multi-rate systems with base-station

antenna arrays for asynchronous multipath uplink fading channels.

An iterative multi-user receiver is derived for multi-rate systems by extending

the results obtained for single-rate systems.

It is observed that multipath diversity can be used to suppress multipath inter-

ference for CDMA systems and no multipath interference decorrelator is needed.



1.3 Thesis Overview

This thesis investigates the problem of joint channel estimation and signal detec-
tion for multi-user CDMA communication systems with base-station antenna arrays.
We use the maximum-likelihood (ML) criterion to solve this problem. Since the
computational complexity of direct likelihood maximization is prohibitive, we ap-
ply expectation-maximization (EM)-type algorithms to obtain suboptimum solutions.
The advantage of the EM-type solutions is that we decompose the K-user coupled
optimization problem to K single-user optimization problems. Therefore, using multi-
user signal decoupling reduces the computational complexity of direct likelihood max-
imization while maintaining the improved performance.

Chapter 2 introduces the system model and formulates the problem mathemati-
cally. We discuss the characteristics of the wireless fading channel and incorporate
the array response vector into the channel models. The transmitted CDMA signals
are analyzed in Section 2.3.1. We obtain the received signals for both synchronous
single-path channels and asynchronous multipath channels. The problem of joint
channel estimation and signal detection is formulated in Section 2.4.

In Chapter 3, we investigate the integration of array signal processing with multi-
user signal detection for synchronous single-path channels. A discrete-time model is
developed. Based on this model, we derive a spatial-temporal decorrelator for known
channels and analyze the decorrelator’s asymptotic efficiency. Numerical results show
that the spatial-temporal decorrelator is near-far resistant. We apply the EM and
SAGE algorithms to the discrete-time model and obtain two iterative receivers. Con-
vergence of the iterative receivers are studied. The SAGE-based receiver converges
faster than the EM-based receiver and using base-station antenna array accelerates
the SAGE-based receiver’s convergence. Analytical BER and Cramér-Rao Lower
Bound (CRLB) for the estimated channel are derived to assess the simulation results
for the new receivers. Both iterative receivers significantly outperform the conven-

tional single-user receiver. However, the EM-based receiver is not near-far resistant.

The SAGE-based receiver has near-far behavior.



We formulate a synchronous equivalent discrete-time system model for asyn-
chronous multipath systems in Chapter 4. Similar to the case of synchronous single-
path channels, we derive a spatial-temporal decorrelator for asynchronous multipath
channels for given channels. An iterative receiver structure is obtained by applying
the SAGE algorithm for joint channel array response vector estimation and bit se-
quence detection assuming that the time delays are known at the receiver. We derive
a BER lower bound for this receiver. We also study the timing error effects on the
SAGE-based receiver by simulations.

Chapter 5 extends the results obtained in Chapter 4 for the case of single-rate
systems to multi-rate systems. We first formulate a discrete-time system model for
dual rate systems with base-station antenna arrays and asynchronous multipath fad-
ing channels. We then apply the SAGE algorithm to the dual-rate system model
and use the technique developed in Chapter 4 to obtain an iterative receiver for joint
channel array response vector estimation and signal detection. The receiver’s BER
performance is verified using simulations. We observe that using simplified bit detec-
tion algorithm without a multipath decorrelator achieves comparable performance to
the detector having a multipath decorrelator for both high-rate and low-rate users.

Finally, Chapter 6 summarizes the conclusions obtained in this thesis and provides

possible research areas which could need to be further investigated.
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Chapter 2

System Model and Problem Formulation

2.1 Introduction

The goal of this thesis is to investigate potential performance improvement for direct-
sequence (DS) CDMA communications using advanced signal processing techniques.
To this end, we consider the reverse link (mobile to base-station, also called the

uplink) of DS-CDMA systems.

This chapter provides the system models which we use to derive receiver structures
developed in the following chapters. We first analyze physical mobile channels and
formulate statistical channel models. We then introduce the array response vector for
base-station antenna array. The received signal models are developed based on the
transmitted signals and propagation channel model. Two received signal models are
formulated: a synchronous single-path model and an asynchronous multi-path model.

Finally, we formulate the problem to be solved in this thesis.

2.2 Wireless Channel Model

Understanding the physical radio propagation channel is crucial to the development of
appropriate system models for the applications of spatial-temporal signal processing

to wireless communications. A transmitted signal usually arrives at a receiver through

11



multiple propagation paths with different time delays and different directions of ar-
rival (DOAs). The multipaths are caused by reflection, refraction, diffraction and
scattering of the propagating wave due to natural terrain, man-made constructions
and possible moving objects in the environment. In this section, we will describe gen-
eral wireless propagation channel characteristics and provide the statistical channel
models used in this thesis. The antenna array response vector is also introduced for

CDMA systems with base-station antenna arrays.

2.2.1 Path Loss and Shadowing

Path loss arises from the effect of ground reflection and diffraction of the propagation
wave, as well as absorption by water and foliage. Mean propagation loss is range-
dependent and changes very slowly. The path loss is defined as the ratio of the received
and transmitted powers. In cellular environments, the path loss can be approximated

as [27]
PT ht hr

n=p = gtgr(?)z (2.1)

where P, and P, are the transmitted and received powers, respectively, ¢; and ¢, are
the power gains of the transmit and receive antennas, respectively, d is the distance
between the transmit and receive antennas, and h; and h, are the heights of the
transmit and receive antennas, respectively. The effective path loss follows an inverse
fourth power law. In practical environments, this path-loss exponent varies between
2 and 5.

Shadowing is also known as long-term fading or slow fading. It is caused by the
shadowing effect of the obstructions in the environment such as buildings and natural
features. The envelope of a slow fading signal is determined by the local (sliding-
window) mean of the fast fading signal. Experimental studies show that the local

mean received power is log-normally distributed and can be modelled as
S = 10%/1° (2.2)

where ¢ is a Gaussian random variable with distribution which we denote by N(v, o2),

12
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Figure 2.1: Multipath Propagation Channel Environment

where v is the local area mean and the standard deviation o, varies between 4-12 dB

depending on the degree of shadowing.

2.2.2 Fast Fading

Fast fading results from local scatters in the vicinity of the mobile. Figure 2.1 illus-
trates an example of reflection and scattering in the physical propagation environ-
ment. Multipath propagation not only causes signal envelope fluctuation, but also
results in signal spreading in time. From Figure 2.1, it can be observed that the direc-
tion of arrival (DOA) of the transmitted signal to the base-station antenna array may
be from an angular region for each specular propagation path. This effect is called
angle spread. In addition, the motion of mobile unit introduces spread in frequency,
which is known as Doppler spread.

Due to local scatterers, large buildings and natural structures, the radio propa-
gation channel consists of several distinct dominant paths, each of which is a super-
position of many component waves. We now proceed with a statistical model for a

single dominant path channel. Let the transmitted signal be

x(t) = S(t)ej%fct (2.3)

13



where s(t) is the baseband signal and f. is the carrier frequency. If the environ-
ment consists of a large number of local scatters, the received noiseless signal can be

expressed by
ST R (1)s(t — t,) el et (2.4)

where R, is the attenuation factor for the signal received from the nth scattering
component and ¢, is the corresponding time delay. For simplicity, the received signal
is modelled as a series of narrow pulses. Doppler spread occurs when the mobile unit

is moving with velocity v. The Doppler frequency spread is given by [84]

fon=vcos,/A.

where 8, is the direction of the nth wave with respect to the velocity vector v and
Ae 18 the wavelength of the arriving plane wave. The received low-pass equivalent

noiseless signal is therefore given by
r(t) — Z Rns(t _ tn)e—j2r[(fc+fp,n)tn—fp,nt] (2'5)

We assume that the signal is narrowband with respect to the channel of a single
specular path, i.e., its inverse bandwidth 1/B (pulse-width) is much greater than the
time delay spread which is the difference between the maximum and the minimum

time delays due to local scattering. Thus, we obtain
s(t—t,) = s(t—71) (2.6)
where T € [min, ¢,,, max, t,]. Denoting the phase associated with the nth path
Gul(t) = 27[(fe + fD0)tn — fDnt] (2.7)
we obtain the received low-pass noiseless signal as
r(t)=s(t—7)>_ R,e=i¢n() (2.8)
Letting a(t) = 3, R,e ™% the channel impulse response is expressed concisely as
a(t)o(t — 1) (2.9)
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where 6(.) is the Dirac delta function.

Fast fading is primarily the result of time variations of the phases in (2.7). Since
fe + foa(t) is very large, a small change in time delay ¢, may result in a large
change in ¢,(t). Thus, the received signal components may add constructively or
destructively. When the number of scatterers in the channel is large, the channel
impulse response, 32, R,e~/**( has a complex Gaussian distribution and the phases
én(t) are uniformly distributed in the interval [0, 27 ).

In the absence of a line-of-sight (LOS) component, the envelope of the channel
impulse response is Rayleigh distributed with probability density function

(2.10)

2 is the variance of both real and imaginary parts of the complex fading

where o
attenuation. In simulations in the following chapters, we generate fading attenuations
as follows: first generating complex channel attenuation with variance 1 for both real
and imaginary parts, then scaling the attenuation by 1/v/2 for single-path channels
and 1/v/2/ P for multipath channels, where P is the number of paths. This maintains
a unit average power level for channel attenuation.

If there exists a LOS component, the channel has nonzero mean and the complex

envelope has a Rician distribution with pdf

L exp(— ) o(2), >0

0, r <0

p(r) = (2.11)
where a > 0 is the peak amplitude of the LOS received signal and I(.) is the modified
zeroth-order Bessel function.
When there exist P dominant specular paths, the fast fading is modelled as
P
> ap(t)é,(t — 1) (2.12)
p=1
We have discussed path loss, shadowing and fast fading for wireless channel envi-

ronment, a combined channel characteristic is sketched in Figure 2.2 for a single
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Figure 2.2: Total Fading Signal

dominant path [109]. For multiple dominant (or multipath) channels, the channel

impulse response can be written as

Z_: \ fipSpcrp()0p(t — ) (2.13)

2.2.3 Array Response Vector

We have obtained the wireless channel model for a single antenna. In this section, we
will develop expressions for the antenna array response and proceed with a channel
model incorporating array response vectors. From Figure 2.1, it is observed that the
transmitted signal arrives at the base-station antenna array through several specular
paths with different DOAs and different time delays. Processing a signal arriving
from a single antenna cannot distinguish the different DOAs. Therefore, it is neces-
sary to use multiple antennas to identify DOAs and further suppress multiple access
interference. Previous antenna array response vector modelling can be found in [14]
and [57].

As we mentioned in Section 2.2.2, the transmitted wave arrives at the base-station
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antenna array from a dominant direction with some angle spread. The problem of the
angle spread for antenna array CDMA systems is studied in [6]. In this thesis, we make
the simplifying assumptions that the angle spread of each specular path is negligible
and that the received signals are narrowband with respect to the array aperture so that
the signal envelope does not change significantly during the propagation time through
the antenna array. We assume that the mobile and the base-station antenna array are
in the same plane and the mobile is in the far-field of the antenna array so that the
propagating wave impinges on the antenna array as a plane rather than a spherical
wave. We also assume that the antenna elements in the array are identical. In this
case, the array response vector is parameterized by the angular carrier frequency w,
and the relative time delays across the antenna array for a given array geometry.
Taking the first antenna element as the reference point, we denote 77 to be the
propagation delay between the reference point and the mth element for a wavefront
impinging from the direction §. The array response vector for an M-element antenna

array is then given by
1

= iwers(0)

a(f) = . (2.14)

e—jww’&(@)

At this point, we have introduced all the channel parameters. The vector channel

impulse response is expressed as

g(t) = Z_:l \/ fpSparp(t)a(l,)é,(t —7p) (2.15)

where the direction of arrival (DOA), 8, for p =1,---, P, of each path is determined
by the physical location of the dominant reflectors and relative time delay 7, is due
to the large distance separation between these reflectors.

In this thesis, we only consider fast fading and assume that \//E is normalized to
unity. The receiver algorithms derived in the following chapters are directly applicable
to the channels including path loss and shadowing. It is also straightforward to extend

the simulations in this thesis to include path loss and shadowing, as done in [12].
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Figure 2.3: Multipath Vector Channel Model

Therefore, the channel impulse response vector used in this thesis is given by
P
g(l) = pz_:l ap(t)a(l,)o,(t — 7p) (2.16)
Figure 2.3 illustrates the multipath vector channel model given by (2.16). Since the
time delay difference between two paths is normally larger than one chip interval in
CDMA systems with high chip rates, the resolvable multipath provides a means for

diversity combining. Thus, a RAKE receiver structure [69] can be used to improve

receiver performance.

2.3 Signal Model

In this section, we first analyze the spread spectrum signals found in DS-CDMA
systems and then introduce the received continuous signal models which are used to

derive receiver structures in the following chapters.

2.3.1 Spread Spectrum Signal

CDMA systems are interference-limited and suffer from the so-called near-far prob-
lem. As described in Chapter 1, the near-far effect arises due to unequal received
powers from mobile users.. In commercial DS-CDMA systems, channel coding is

used to improve communication system performance. An M-ary orthogonal Walsh
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modulator combined with a long code of period 2*2 — 1 has been adopted to suppress
multiple access interference in second generation systems [5S95. To overcome the near-
far problem, precise power control is required to guarantee that the received signal
powers from different mobile users are equal [70]. If no power control is used, the con-
ventional single-user CDMA receiver is subject to the near-far problem [43]. Power
control algorithms may cause additional overhead and increase transmitter/receiver
complexity. More importantly, using power control cannot eliminate the bit error
rate (BER) floor and the BER performance still suffers from the near-far problem.

The objective of this thesis is to investigate near-far resistant receiver structures
using spatial-temporal signal processing techniques. It is not necessary to use precise
power control to make the received powers be equal. In Multi-rate systems, precise
power control is difficult. To this end, we consider a generic CDMA system to study
the fundamental performance improvement achieved by the new receivers obtained
in later chapters. Before transmission, the information symbols for each user are
spread over a wider bandwidth using a spreading code which is also used to distin-
guish different users. We use short spreading codes to derive new receiver structures.
However, it will be verified in the following chapters that the new receivers are also
applicable to long codes which are currently utilized in 1595. A typical spreading
process is illustrated in Figure 2.4. The transmitted signal waveform is determined
by the spreading code and the signal bandwidth is spread.

For a system with K active users, the transmitted signal from the kth user is given

by
N

Sk(t) = Ak Z bk(l)ck(t — ZTb) (217)

=1
where Ay, is the amplitude of the kth user, bi(¢) € {41, —1} (BPSK) is the ith trans-
mitted bit of the kth user with equal probability and ¢;(t) represents the spreading

waveform of the kth user, which is given by

Ck(t) = Z_:l Cklp(t — ZTC) (218)

(=0

where ¢y € {+1,—1} (I=1--- L —1) is the spreading code, p(t) is the chip pulse, T.
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is the chip interval, T} is the bit interval and processing gain is defined as
L="T,/T. (2.19)

In this thesis, we assume that p(t) is rectangular. Extension of the results obtained to
other chip waveforms is straightforward. We assume that the information bits from
K users are independent, the spreading code sequences for K users are independent

and the spreading waveform has normalized energy, i.e.,

[t =1 (2.20)

Under the normalized constraint, the chip waveform used in this thesis is illustrated

in Figure 2.5.

2.3.2 Received Signal for Synchronous Single-Path Channel

The transmitted signal passes through the propagation channel and arrives at a base-
station antenna array with M elements. For single-path synchronous channels, the
impulse response vector of the channel from the kth transmitter to antenna array

output is simplified as
gr(t) = ax(t)a(0x(1))o(t) (2.21)

where a(t) and a(fx (1)) are the fading attenuation corresponding to user &’s channel
and the M-dimensional array response vector with direction-of-arrival (DOA) 04()
from the kth user, respectively. The channel fading attenuations for K users are
assumed to be mutually independent and also independent of information bit symbols.

The received composite signal at the base-station antenna array from K users is

then given by
K

K

x(t) = > xp(t) =D si(t) * gu(t) + n(t) (2.22)
k=1 k=1

where n(?) is the additive white Gaussian noise vector with zero mean and covariance

matrix o?Iy;, where Ip; is an M x M identity matrix. We assume that ay(¢) and
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f1(t) remain unchanged over an N-bit duration. Therefore, we suppress the time-
dependence from these quantities and denote them as «j, and 8y, respectively. Then

Sk(t) * gk( ) AkOéka (gk Z bk Ck t — ZTb) (223)

=1

We denote the channel array response vector for user k as

where the mth component of fi is " = Apaga™(0y) and @™ () is the mth component
of array response vector a(f;). The received signal at the mth array element (for
m=1,---, M) is given by
N

Z ka bk Ck t — ZTb) +n ( ) (225)

k=11=1
where n(t) is AWGN at the mth array element. The received signal vector at the
base-station antenna array can be written as

Z kabk Ck t — ZTb) + (t) (226)

k=1:i=1

2.3.3 Received Signal for Asynchronous Multipath Channel

For asynchronous multipath channels, the impulse response of the channel from trans-

mitter to antenna array output for the kth user is given by

Zakp a(0s(1))8(t — 1) (2.27)

where a(0y,()) is the M-dimensional array response vector with direction-of-arrival
(DOA) 0, ,(t) for the pth path of the kth user, ay,(t) and 74, represents channel
attenuation and relative time delay for the kth user through the pth propagation
path, respectively. Py is the total number of the propagation paths for user k.

We assume 714, € [0,T}) for k € {1,---, K} and p € {1,---, P}, and 75, < 714 for
p < gq. The channel fading attenuations ay ,(¢) for k € {1,---, K} and p € {1,---, Py}
are assumed to be mutually independent and also independent of information bit

symbols.
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Thus, we obtain the received composite signal at the base-station antenna array

from K users

x(1) = 30 Y xelt) = 303 sult) + gelt) + nit) (225)

k=1 1=1 k=1:1=1
where the additive white Gaussian noise vector n(t) is the same as that for the

synchronous single-path case. Similar to Section 2.3.2, we also assume that oy (1)
and 0 ,(1) remain unchanged over the N-bit duration and denote these quantities as

ag,p and O, respectively. From (2.17),
N Py

Sk(t) * gk(t) = Ak Z Z ozk7pa((9k7p)ck(t — ZTb — Tk7p)bk(i) (229)
=1 p=1

We denote the channel array response vector through the pth path for the kth

user as

f]“p = Akozk7pa(0k7p) (230)

where the mth component of fy, is fI", = Arag,a™(0r,) and a™(0y,) is the mth

component of array response vector a(fy,). Then, the received signal at the mth

array element (for m =1,---, M) from the kth user is expressed as
K N P
J}ZL(t) = Z Z Z f,:?pck(t — ZTb — Tk7p)bk(i) —|— nm(t) (231)
k=11:i=1p=1

where n™(t) is AWGN at the mth array element. Similar to the synchronous case,

the received signal vector is given by
K N P
X(t) = Z Z Z f;“pck(t — ZTb — Tk7p)bk(i) —|— n(t) (232)
k=1:=1p=1
Multipath fading causes inter-symbol interference (ISI) and multi-access interfer-

ence (MAI) arises due to the asynchronous channel. Figure 2.6 shows the example

for a two-user system, where each user’s signal propagates through two paths.

2.4 Problem Formulation

The objectives of this thesis are to detect information bit sequences and estimate
channel array response vectors for all the users jointly and investigate performance

improvement using advanced signal processing techniques.
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Denote the bit vector, for e =1,---, N,

T
b(i) = | by(i) - bg(i) (2.33)
Then, the unknown parameters are bit vectors b(¢) for ¢ = 1,---, N and channel
array response vectors f, , for k=1,--- K and p=1,---, P,. We solve this problem

by maximizing the likelihood function of the received signal conditioned on these

unknown parameters

[b(i), fi,) = gn(i?ﬁm(x(t)|b(@'),fk,p,i =1,--,Nk=1,--- . K.,p=1,---,P)] (2.34)

where Q(x(¢)|b(¢),fxp,e = 1,--- Nk = 1,---,K,p = 1,---, P) is the likelihood
function of the received signal x(¢) conditioned on the unknown parameters b(¢) for
t=1,---,Nand fy , for k=1,--- Kand p=1,---, P

The difficulty of this problem is that since the unknown parameters for different
users are coupled together, the computational complexity of the exhaustive search
of the optimum solution in (2.34) is prohibitive. This motivates us to investigate
computationally efficient algorithms and corresponding performance measures. We

will address these issues in the following chapters.
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Chapter 3

Spatial-Temporal Decorrelating Receiver

for Synchronous Single-Path Channels

3.1 Introduction

The maximum-likelihood (ML) criterion is a well-principled approach to obtain prac-
tical estimators. However, computing the ML estimator may be difficult, or even make
the problem be intractable, when the unknown parameters from different sources are
combined together in the observation data such as in the case of the received com-
posite signal in multi-user communication systems. A numerical solution is needed
in this case. Newton-Raphson and scoring methods have been used to iteratively
compute an ML estimate. However, these two approaches suffer from convergence
problems [34]. A third iterative method, the expectation-maximization (EM) algo-
rithm, provides guaranteed convergence to a local maximum under mild conditions
5] 23]

Feder and Weinstein apply the expectation-maximization (EM) algorithm to pa-
rameter estimation of superimposed signals [17]. Bit sequence detection with joint
random parameter estimation using the EM algorithm is studied for single-user sys-
tems in [20]. Recently, applications of the EM algorithm to CDMA systems have
been proposed for signal detection [60], channel estimation [16] [15] and joint channel

estimation and signal detection [101]. The space-alternating generalized EM (SAGE)
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algorithm can achieve better performance than the standard EM algorithm [19]. Ap-
plications of the SAGE algorithm in multi-user CDMA channels can be found in [7]
[60] [78]. An iterative ML signal detector is proposed for known channels in [60] using
the SAGE algorithm. Application of the SAGE algorithm for channel parameter es-
timation can be found in [7]. In [78], joint parameter estimation and signal detection
is developed using the SAGE algorithm based on the discrete wavelet transform for

a single antenna system.

In this chapter, we investigate the integration of spatial signal processing with
multi-user signal detection for the synchronous CDMA systems with non-orthogonal
spreading codes over a single dominant-path Rayleigh fading channel. The motivation
to focus on synchronous systems is as follows: a A -user asynchronous system can be
modelled as a synchronous system with K x N users, where N is the number of bits in
each transmitted block [43]. Most importantly, the synchronous problem formulation
simplifies the derivation and analysis of the new algorithm and the results obtained

can be generalized to the case of higher complexity asynchronous multipath systems

11].

We first formulate a spatial-temporal decorrelator which we show to be near-
far resistant. Then, we derive two new receivers for jointly estimating channel array
response vectors and detecting information symbol sequences by applying the EM and
SAGE algorithms, respectively. The analytical bit error probability and Cramér-Rao
Lower Bound (CRLB) for the estimated channel are derived to measure performance

of the new receivers.

This chapter is organized as follows. The discrete-time system model is developed
in Section 3.2. In Section 3.3, we derive a spatial-temporal decorrelator using the
maximum likelihood criteria and analyze its asymptotic efficiency. EM-based and
SAGE-based spatial-temporal decorrelating receivers are obtained in Section 3.4 and
Section 4.5, respectively. The receivers’ performances are analyzed in Section 3.6.

Section 3.7 presents simulation results.
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3.2 Discrete-Time Formulation

We rewrite the received signal at the mth array element (for m = 1,---, M) from
(2.25)
K
(1) = Y bt — i) + nm (1) (3.1)
k=1

The received signal at each element first passes through a filter matched to the chip
waveform p(f) given in (2.18), and is then sampled at the chip rate. The received
discrete-time signal at the ith bit interval from the mth element can be obtained for
sample ¢ € {0,1,--+, L — 1} as
m( . (9+1)TC m e
(i, g) = / (e (3.2)
t=gTc
for the chip waveform p(t). Finally, the gth sample of the ith bit for the mth antenna
element is obtained in terms of the sampled chips ¢, by substituting (3.1) into (3.2)
yielding
K
2"(i ) = D> filergbi(i)/L +n" (i, g) (3-3)
k=1
where f[*, the mth component of the channel array response vector, is defined in

(2.24) and where
m N (g+1)Tc m *
i) = [ eyt (3.9)

=gTc
is Gaussian distributed with zero mean and variance o2/ L. We denote the code vector

for the kth user as
1 T
Cr = 7 [ Cko Ck1 """ Ck(L-1) (3.5)

The matched filter output at the mth element for m € {1,---, M} can be written in

vector form as
K
(i) = 32 7 buli)es + 07 () (3.6)
k=1

where n™(7) = [n™(2,0) n™(z,1) -+ n™(:, L — 1)]T.
We define the total impulse response vector for user k, including fading channel,

array response vector and spreading code vector defined above as

hy' (1) = fi*ck (3.7)
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Equation (3.6) can be written in terms of (3.7) as

X" (i) = éh?bk(i) + (i) (3.8)
Denote _
x(i) = [(x' ()" - M) (3.9)
hy = [(hy)" - (BT (3.10)
and

n(i) = [(n'(1))" - (M)

The received discrete-time signal from antenna array is given by

x(i) = gzxk(i) - g:hkbk(i) +n(i) (3.11)

where x;(¢) is the received signal from the kth user and n(7) is AWGN vector with
zero vector mean and covariance matrix %IML, where In;p, 1s an ML x M L identity
matrix.

Vector hy contains the spatial and temporal channel characteristics of our system.

The spatial-temporal channel vector h; can also be decomposed as

c. 0 .. 0 _f]i
0 ¢, . O ;
h, = ’ f’“ = Oyfs (3.12)
0 0 - ¢ | _féW_

where C} is an ML x M spreading code sequence matrix of the kth user, and 0
represents an L-dimensional zero column-vector.
Denoting
H =Th; --- hg] (3.13)

and
b(i) = [bi(i) -+ bx(2)] (3.14)
the received composite signal is given by
x(¢2) = Hb(7) 4+ n(7) (3.15)
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A necessary condition that K users are identifiable is that H is of full column rank,
which requires

ML > K (3.16)

3.3 Spatial-Temporal Decorrelator

In this section, we derive a spatial-temporal decorrelator based on the discrete-time
system model using the maximume-likelihood criteria for known channel array response
vectors, i.e., H is known at the receiver. Then we investigate the near-far resistance
of the new detector and compare the near-far resistance with that of the conventional

single-user detector.

3.3.1 Detector for Known Channel

The log-likelihood of the received signal x(7) conditioned on the bit vector b(¢)is given

by (for the sake of simplicity, we omit the time index ¢ in this section)

1
o?/L

Q(b) = ———(x — Hb)(x — Hb) (3.17)

where the superscript H denotes conjugate transpose. The unknown parameters are
the information bit vector b.

If H is available, i.e., the channel and array response vectors are known, the bit
vector decision variable by can be obtained by maximizing the above log-likelihood
function

b, = arg mgxﬂ(b) (3.18)

Taking the derivative of log-likelihood function (3.17) with respect to the bit vector

b, we obtain

o0(b) 1

ob UQ/L(

H?Hb — 2H"x) (3.19)

Since the bit vector is discrete-valued, this is not a standard maximum-likelihood

(ML) estimation problem. The approximate ML solution for the bit vector b can be
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found by equating (3.19) to zero. For BPSK modulation, we have

b = sign{[H" H]"' H"x} (3.20)
where
) I, if a>0
sign{a} =
-1, if a<0

We define the spatial-temporal cross-correlation matrix as
R=H"H (3.21)
From (3.12) and (3.13), the kjth component of matrix R is given by
Ry =hi'h; = f7CHCf;
Using the definition of C}, we obtain
CHC; =l eIy

Thus, Ry; is given by
Rk]‘ = C?C]‘ff]fj (322)

Define the spatial correlation between user k and user j as
frj =71 (3.23)
and the temporal correlation between user k and user j as

<1/L, if k#j
Pk; = CkHC]‘ (324)
=1/L, if k=j

The spatial-temporal correlation matrix can be written as

f11p11 f12p12 f1KP1K
R— f21‘/)21 f22p22 te les’"/?zK (3‘25)
i f K1PK1 f K2PK2 - f KKPKK |
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It the spreading codes are orthogonal, the cross-correlation between two differ-
ent codes is zero for a synchronous system, i.e., p;; = cfc; = 0 (for ¢ # j) for
a synchronous system. In this case, R is diagonal and no multi-access interference
exists. However, if the system is asynchronous, we cannot guarantee this zero cross-
correlation. If the spreading codes are not orthogonal, even for synchronous systems,
the cross-correlation between two different spreading codes will be nonzero. In this
chapter, we analyze a synchronous system with non-orthogonal spreading codes.

We may interpret (3.20) as a maximum SNR beamformer computational structure
using steering vector H followed by a decorrelator [HH H]~!. Using (3.20), (3.21),

the detected bit vector can be written in the form

b =sign{R"'z} = sign{ R~ "y} (3.26)
where
[ le or ... 07 17 V1 |
z=H"x = O'T f2H O‘T ij =y (3.27)
_OT or ... fIIx{_ _YK_

and the kth components in vector y represents the despreading output for user £ and
is given by
yr = Cf'x (3.28)

This detector structure is a conventional single-user detector with a maximum SNR
beamformer followed by a decorrelator, see Figure 3.1. Matrix R includes both the
temporal cross-correlation due to the non-orthogonal spreading codes and the in-
stantaneous spatial correlation because of the spatial distribution of the active users
in the system. This structure differs from that of [49] since the matched-filter (de-
spreader) occurs prior to beamforming. For unknown channels, in order to compute
the beamforming weight vector for each user, we have to estimate the correspond-
ing channel array response vector. For CDMA systems, it is necessary to despread

the received signal before estimating the related channel parameters. Therefore, the
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Figure 3.1: Spatial-Temporal Decorrelator Structure for Synchronous Single-path
Channels

detector structure obtained in this thesis is more practical than the one proposed in
[49].
Substituting (3.15) into (3.20) and using definition of R (c.f. (3.21)), the spatial-

temporal decorrelator output can be simplified to
b =sign{b 4+ R~ H"n} = sign{b + w} (3.29)

where w is the spatial-temporal decorrelator output AWGN vector with zero mean

and variance

2
Varlw) = E[|E~"Hn|"] = %R‘l

If there is no base-station antenna array, the spatial-temporal decorrelator reduces to
the classic decorrelating detector proposed in [43], which we refer to from here on as

temporal decorrelator.

3.3.2 Near-far Resistance

The asymptotic efficiency is a performance measure for multi-user signal detection in

the limit as the background noise goes to zero. The kth user’s asymptotic efficiency

is defined as [96]

j

Wy

7, = lim e(7) =sup{0<r<1: Lig)lpk(a)/Q( ) < 400} (3.30)

o—0 wk g
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where e,(0) is the kth user’s effective energy required to achieve the same error prob-
ability in the absence of interferers, w, is the received energy for user k, P.(o) rep-
resents bit-error-rate (BER) of the kth user when the variance of the background
thermal noise modelled by AWGN is o2 and

Q)= [ %c@

is the error function.
Because the asymptotic efficiency of the temporal decorrelator in a single-path
Rayleigh fading channel is the same as that of an additive white Gaussian channel

[114], we only consider the AWGN channel here. In this case,

The kth user error probability for the spatial-temporal decorrelator can be ob-

tained as

1
P=Q| ——
oSBT

where (R™'),, represents the kth diagonal element of matrix R~ [107]. Similar to the

(3.31)

case of single antenna systems [42], the asymptotic efficiency of the spatial-temporal

decorrelator for the kth user is given by

n = maz?{ 0 ! = 1 (3 32)
’ ’ Rkk(R_l)kk Rkk(R_l)kk '

The kth user’s bit error probability for the conventional single-user detector (c.f.

(3.26)) is given by

) R — Yo Ruhy
Pf=plz > 00b,=—1]=2"" 3 Q ( £ %/7%_ . ) (3.33)
bie{+1,-1} N kk

where the second equation is due to the usual assumption of equally probable trans-

mitted information symbols. When the background noise variance o2 tends to zero,
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(3.33) is dominated by the event corresponding to b; = —1, ¢ # k, i. e.,
B — X [ B
27 N Q| === (3.34)
bie{+1,—1} ( vV Ry

Thus, the kth user’s asymptotic efficiency of the conventional single-user detector, n;,
can be obtained by substituting (3.34) into (3.33) and (3.30)

, {07 VB — Y [ B /kak} — maz? {071 -3 [ } (3.35)
R ko TRk

The kth user’s near-far resistance is defined as its worst case asymptotic efficiency

N, = max

over all possible energies of the interferers and given by [43]

Nk = wé%ﬁ#k Nk (3.36)

If 5y is nonzero, the performance level of the corresponding detector is guaranteed no
matter how powerful the multi-access interference. The detector with nonzero 7; is
said to be near-far resistant.

Example: To numerically compare the asymptotic efficiency for the spatial-temporal
decorrelator and the conventional single-user detector, we consider a four-user sys-
tem based on a set of spreading codes from Gold sequences of length seven. The

corresponding cross-correlation matrix of the spreading codes is given by [9]

7 -1 3 3
1l =1 7 =1 3
R, =~
T3 -1 7 -1
3 3 -1 T

We assume a uniform linear array (ULA) with half-wavelength spacing at the base-
station, see Figure 3.2. The kth user antenna array response with the first element
as the reference point is given by
a(0,) =1 emizmdsinde/\ | =j2(M=1)rdsiny /N7 (3.37)
where d = A\/2 in our case and X is the propagation wavelength. For this antenna
array, R,, is given by
prAiArala,, of 1#£k

R, = (3.38)
MA?/L, if i=k
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Incoming Wave

]

Figure 3.2: Uniform Linear Array

To evaluate the effect of the base-station antenna array on detector performance, we
consider two cases: a single antenna and a three-element antenna array. The direction-
of-arrivals (DOAs) for four active users are [25°, 5°, —15°, —35°] with respect to the
array boresight. We refer the first user as the desired user and define the power ratio
as A7/A}, for k = 2,---, K. In this example, we assume that all interferers have equal

transmitted power.

Figure 3.3 compares the asymptotic efficiencies for the spatial-temporal decorre-
lator and the conventional single-user detector with and without an antenna array.
Conventional single-user detector with antenna arrays can be generalized from Figure
1.1 by incorporating a beamformer into detector structure between the despreading
matched filter and the decision rule for each user. Note that the asymptotic efficien-
cies of the spatial-temporal decorrelator for both single-antenna and antenna-array
cases are constant. This means that performance of the spatial-temporal decorrela-
tor is independent of the received energies from interferers provided that the array
response vectors of the active users are perfectly known or estimated at the receiver.
Therefore, the spatial-temporal decorrelator is near-far resistant. Also note that the
asymptotic efficiencies for both conventional single-user detectors tend to zero as the

interferers become stronger. Note that the conventional single-user detector is not
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Asymptotic Efficiency Comparison Between Spatial-Temporal Decorrelator and Coventional Detector
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Figure 3.3: Asymptotic Efficiencies for Single Antenna and a Three-Element Antenna

Array

near-far resistant when an antenna array is used . However, from Figure 3.3, it can
be observed that using an antenna array can significantly increase the asymptotic
efficiency for either the spatial-temporal decorrelator or the conventional single-user

detector.

Properties of the spatial-temporal decorrelator are summarized as follows:

1. The spatial-temporal decorrelator is near-far resistant.

2. Performance of the spatial-temporal decorrelator is independent of energies of

interferers.

3. Using antenna arrays can improve the asymptotic efficiency of the spatial-

temporal decorrelator.
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The above analysis is based on the assumption that matrix R is available, imply-
ing that the channel array response vectors, fi (for k = 1,---, K), are known at the
receiver. This is not the case in a practical application. We now investigate the prob-
lem of joint channel estimation and signal detection. In the following two sections, we
address the key implementation issues of the proposed spatial-temporal decorrelator.
From here on, we refer to the joint parameter estimation and spatial-temporal signal

decorrelation as the spatial-temporal decorrelating receiver.

3.4 EM-Based Decorrelating Receiver

In this section, we first briefly introduce the expectation-maximization (EM) algo-
rithm, then apply the EM algorithm to derive an iterative receiver structure. The

available observed data at the receiver is a data vector set {x(¢);1,---, N}.

3.4.1 EM algorithm

The EM algorithm is an iterative method to solve the maximum-likelihood (ML)
estimation problem given the observed data when direct maximization of likelihood
is not practical [8]. The EM algorithm is based on the notion of two data sets, the
incomplete data r and the complete data x. Incomplete data r (usually the observed
data) is available at the receiver, while the unavailable complete data forms a many-
to-one mapping x — r. The EM algorithm includes a two-step iteration consisting of
the E-step (expectation step) and the M-step (maximization step). In the E-step, the
conditional expectation of complete data x is computed given incomplete observed

data r and the current estimate of parameters 07 at jth iteration:
V(1) = Bllog f(x|0)lr, 8 (3.39)

In the M-step, the likelihood function is maximized to obtain the parameter estimate
at the next iteration

07" = arg max U(0]6%) (3.40)
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Each iteration of the EM algorithm increases the likelihood function U((9|éj) until a
point of maximum is reached. However, there is no guarantee that the convergence
will be to a global maximum. For likelihood functions with multiple maxima, the EM
algorithm may converge to a local maximum which depends on the initial estimate 4°.
Using multiple starting points, the EM algorithm could achieve better performance
at the expense of increased complexity. A more detained presentation of the EM

algorithm can be found in [54].

3.4.2 Iterative Parallel Recelver

We first rewrite equation (3.11) for times ¢ =1,--- N as

x(i) = éxk(@') - kz_j hybi(7) + (i) (3.41)

and choose the complete data set as in [17]

T
x“(i) = [ xT(4) x3(1) -+ xk(i) (3.42)
where superscript ¢ denotes complete data and xj(¢) (for & = 1,---, K) represents
the received signal from the kth user and is given by

where ny(¢) is the decoupled background noise vector for user k with zero mean and

o2

covariance matrix Z-
LK

In;z. Discarding the terms which are independent of the bit
vector b(7) and using the notation in (3.13) for matrix H, the log-likelihood function

of the complete data can be expressed in simplified notation as

. 1 N K . .
Q(Xc|b(l), H) = YT Z Z(Xk — hkbk(l))H(Xk — hkbk(l)) (344)
g /[X L =1 k=1
From (3.44), it is clear that the coupled K-user optimization problem in (3.41) has
been transformed to K parallel single-user optimization problems.

The expectation step (E-step) of the EM algorithm is to compute the condi-
tional expectation of the log-likelihood in (3.44) conditioned on hy and bg(¢) (for
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k=1,---,K and i = 1,---, N) given the maximum-likelihood estimates from the
previous iteration stage. For our decoupled problem, the E-step obtains the condi-
tional expectation of the complete data set which is calculated using standard prop-

erties of conditional multivariate Gaussian distributions [17] [68] (for & = 1,--- | K

andi=1,---,N)
57 (1) = Epa(0)|x(2), hi, 0(0)] = hibi () + Z hy, by, (4) (3.45)
where the superscript j denotes the jth iteration.

The maximization step (M-step) of the algorithm is to obtain maximum likelihood
estimates of hy, (for k = 1,---, K)and b(¢) (for k=1,---, K and ¢ =1,---, N) for the
next iteration by maximizing (3.44) given the conditional expectation of the complete
data

[fli“a?)i“(i)]—arghg}ba:g){ Z (i) = hibe () (37 (0) = hebu()} - (3.46)

Given the bit sequence detection results at the jth iteration, ?)fg(z) fork=1,---, K
and 2 =1,---, NV, fli"’l for k =1,---, K can be obtained by equating the derivative

of (3.46) with respect to hy to zero yielding

B = 3 s 00
i=1
Then, for a given channel array response vector estimate at the (j+1)st iteration, flf—l
fork =1,---, K, we obtain the bit sequences at the (j+1)st iteration, for k =1,--- | K
and s =1,---, N as
B () = (R ()

Rewriting (3.45) as

ki=1,k1 £k

cg+1,s _I(—lA‘A‘. 1 . K ﬁj ?)j .
X5, (1) = I% 1 br.(2) + I% x(2) — Z E kl(l) (3.47)

the EM-Based decorrelating receiver to jointly estimate channel array response vectors
and detect information symbols is summarized as follows:

E-step: compute the conditional expectation of interference
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plus noise, for k=1,---, K and:=1,---, N

GHG) = x() - Y B, 6) (3.13)

=1k £k
M-step: obtain the decoupled ML estimates, for K =1,---, K

ands=1,---, N

TR R S Gk PYIY PN DS TERINI I

hy, :ﬁ;( % hkbk(l)—l'?uk (1)) (3.49)
B — it (it (T Ly L it 550
o (0) = sign{(hy )" (" b (0) + 20 (0)) (3.50)

The above signal detection/estimation approach is actually K parallel conven-
tional single-user detectors at each iteration, as shown in Figure 3.4. The remark-
able advantage of the EM-based spatial-temporal decorrelating receiver is that the
K-dimensional optimization problem is decoupled to K parallel single dimensional
optimization problems, and hence, reduces computational complexity.

This section derives an iterative parallel multi-user receiver structure based on
the EM algorithm. Because the desired parameters are channel attenuations and bit
sequences for each user, we decompose the received signal (observed data) into its
signal components from all active users and choose the decomposed signals to form
the complete data set. After decomposition, the channel estimation and bit detection
problems have been transformed those of single-user receivers. The advantage of this
choice is that it is easy to derive joint channel estimation and bit detection algorithms
for each user.

There exists a tradeoff between the choice of the complete data set and the compu-
tational complexity. Different choices of the complete data set will result in different
receiver structures. An alternate choice of complete data set for multi-user signal
detection can be found in [60] for known channels. In [60], the interference users’s
bits are treated as missing data for each desired user. The missing data and received
incomplete data form the complete data set. At the E-step, the conditional expecta-
tion of the complete data is computed using the a prior: distribution of the missing
data. This choice results in improved convergence and increased complexity in terms

of the number of users.
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Figure 3.4: EM-Based Spatial-Temporal Receiver Structure at Each Iteration Cycle

3.5 SAGE-based Decorrelating Receiver

The M-step in the EM algorithm simultaneously maximizes the conditional expec-
tation of the complete-data likelihood. The simultaneous maximization necessitates
an overly informative complete-data and hence results in slow convergence. Inves-
tigation to improving the convergence rate of the EM algorithm leads to the space
alternating generalized expectation-maximization (SAGE) algorithm [19], which will

be addressed next.

3.5.1 SAGE Algorithm

Because less-informative complete-data lead to improved asymptotic convergence

rates which implies that the distance between successive iterations and the limit
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point of the EM algorithm tends to zero monotonically [22] with large step sizes
and greater likelihood increases in the early iterations [18] [22], minimizing the in-
formation of the complete-data set could achieve improved performance for the EM
algorithm. However, since the EM algorithm employs the simultaneous updates, a
less informative complete-data can result in an intractable problem formulation [§]
[18]. To overcome this problem, the SAGE algorithm maximizes a small group of the
unknown parameters sequentially by choosing a small hidden-data, or complete-data

set. Convergence of the SAGE algorithm has been established in [19].

The first step of the SAGE algorithm is to choose an index set. For a problem of
K unknown parameter sets, a set S is defined to be an index set if it is nonempty, is
a subset of the set {1,---, K'} and has no repeated entries [19]. Based on the index

set S, identifying an admissible hidden-data space x° which must be a complete-data

set in the sense of the standard EM algorithm in [8].

The SAGE algorithm iterates the following steps:

Starting with an initial parameter vector estimate at iteration j = 0.

1. Choose a new index set S = S7, a subset of the parameters, which defines an
S

admissible hidden-data space x

2. Compute the following conditional expectation of x*' given observed data x

and the previous estimate of parameter vector fi
0(05:16') = ElIn f(xs:103,)x, 0] (3.51)

3. Obtain the next estimate by maximizing over the chosen subset while keeping

the other parameters fixed

égl = arg maxg_, (0g+1 |é])

S (3.52)
0% =05,

where the index set 57 is the complement of S’

4. Increment j and go to step 1.
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3.5.2 Iterative Sequential Receiver

For the CDMA system model considered, we would like to estimate each user’s channel
parameter and detect the information symbol individually. In step 1, we choose user
index £ as the index set. Thus, the admissible hidden-data space for index & for
k=1,---,Kand ¢ =1,---, N is given by (c.f. 3.11)

0.2

x3 (i) ~ N (hybg(7), — ) (3.53)

where superscript S represents the hidden-data space and A denotes the multivariate
Gaussian distribution.
The log-likelihood function after removing the terms independent of hy and b(¢)
is straightforwardly computed as
1 N
Qi (1), -, X (N)) = oL ;(Xf(i) = hyebi ()" (x{ (1) — hibe(i))  (3.54)
Given the estimation results at the jth iteration, the conditional expectation of x7 (1)
(fork=1,---,K and ¢=1,---,N) in Step 2 is given by
K K
7 (0) = hibl() + (x() = YOBIbi() = x(i) = > hi, b, () (3.55)
i=1 =1k £k
where > 7p 4 Bil ?)fﬂ(z) is the sum of the received signals from all interfering users.
Substituting (3.55) into equation (3.54), we obtain the conditional expectation of the
log-likelihood function of x7(z). The maximization results at Step 3 are obtained as

{71070 = e s (= S22 ()= e () (527 0) — habuli)) - (3.56)

Equation (3.56) is similar to (3.46) except that the complete data estimate ﬁ(i"’l(i)
is replaced by the hidden-data space estimate kfj+1(i) for k = 1,---,K and 7 =
1,---,N.

Thus, SAGE-based receiver for joint channel array response vector estimation and

information symbol detection is obtained as

fory=1,2,...
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k= (j modulo K)
E-step: compute the conditional expectation of hidden-data
N

fore=1,---,

M) = Z hibl(i (3.57)
i=1,7#k

M-step: obtain the maximum-likelihood estimates h,. and l;k(@)

fore=1,---,N
o 1 X
hitt = = 3% (160 (3.58)
N =1
b () = sign{(h{T) 57 (1) (3.59)

forall iy e {1, - k=1, k+1,--- K}
hit' = hi,

) = B G0
The above steps can be interpreted as follows: substituting (3.57) into (3.59), we

obtain

bE (i) = sign{((hi™)"%(0) — Z S pra b1, (0))) (3.60)

=1k £k
where fH'1 ( ,gH)Hf,Zl is the estimated instantaneous spatial correlation defined in
(3.23) at the (j+1)st iteration and pgx, is the cross-correlation defined in equation
(3.24). Equation (3.60) implies that the information symbol detection at each iter-
ation involves explicit interference cancellation given the current channel estimation
and the previous bit detection results. Therefore, the SAGE-based receiver has a
sequential interference cancellation structure. We define the required K updating
steps for all K active users as one iteration cycle of the SAGE-based receiver. The
receiver structure for a single iteration cycle for a K-user system is illustrated in Fig-
ure 4.5. We observe that the optimization results from the previous users are used to
estimate channel array response vectors and detect bit sequences for the latter ones.

Therefore, in contrast to the parallel structure of the EM-based receiver in Figure 3.4,
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Figure 3.5: SAGE-Based Spatial-Temporal Receiver Structure at Each Iteration Cycle
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the SAGE-based spatial-temporal decorrelating receiver has a sequential structure at
each iteration cycle.

When there is only one active user in the system, the EM-based receiver and
the SAGE-based receiver are identical, and both receivers reduce to the joint fading
channel estimator and signal detector for a single-user system as proposed in [20]. It
can be observed from (3.48) and (3.49) that interference cancellation capability of the
EM-based receiver reduces as the number of the active users becomes large. When
the number of the active users in the system gets large so that I‘IT_I ~ 1 and % ~ 0,
the EM-based receiver reduces to the conventional single-user receiver. However, this
is not true for the SAGE-based receiver. As the number of active users in the system
increases, possible degradation of the SAGE-based receiver would be caused by less
accurate channel array response vector estimates and BER performance degradation
from interfering users. Therefore, the SAGE-based receiver would be expected to
have superior BER and channel estimates, in addition to the observed improved
convergence over that of the EM-based receiver.

REMARK 1: The algorithms derived in Sections 3.4 and 4.5 are applicable to
long code receivers as well as short code receivers. Because the multi-user signals
have been decoupled before bit detection, we do not need to compute the inversion of
the spreading code cross-correlation matrix, R~'. However, all users’ spreading codes
must be known at the base-station receiver.

REMARK 2: 1t is straightforward to extend the results in Sections 3.4 and 4.5
for BPSK modulation to other modulation schemes by modifying (3.50) and (3.59)
for the EM and SAGE algorithms, respectively.

3.6 Receiver Performance

In this section, we assess the performance of the proposed spatial-temporal decorre-
lating receiver. Since we propose to iteratively estimate the channel array response

vectors and detect the transmitted information symbols, we analyze the convergence
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of the receivers and determine the bit-error rate (BER) for symbol detection and the
Cramer-Rao lower bound (CRLB) for channel estimation. Finally. we calculate the

computational complexity of the iterative spatial-temporal decorrelating receivers.

3.6.1 Convergence

From (3.17), it can be easily verified that the log-likelihood function is continuous and
differentiable with respect to the unknown parameters. Since the likelihood function
increases monotonically with each iteration [8], it is bounded above and the proposed
receivers converge to fixed stationary points or local /global maxima depending on the
initial guess of the unknown parameters [106].

For a given maximume-likelihood estimate é, the convergence parameter is defined
as

7
p= ]Sr?}gg H (3.61)

where 67 and 671 are the estimates at the Jth and (j+1)st iterations, respectively.
From (3.61), the smaller the convergence parameter, the faster the algorithm con-
verges. The convergence rate is therefore proportional to 1/u. Since p is the smallest
one among the convergence parameters for all iteration steps, 1/u reflects the best
iteration step in which the most significant convergence occurs. In the simulation
results provided in Section 3.7, 1/u is corresponding to the largest convergence step
(c. f. Figures 3.11, 3.12, 3.13 and 3.14).

The convergence parameter of the EM-type algorithms can be shown to be bounded

below by the largest eigenvalue of the matrix [8] [23]
- FX(FXC)_I]

where Fyc and Fx are Fisher information matrices of the complete data and observed
data, respectively. Here, we would like to investigate the effect of using an antenna
array on receiver convergence. For simplicity and without loss of generality, we assume

that the channel array response vectors are given.
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Given the log-likelihood function 2(6) of the observed signal with respect to the
unknown parameter vector , the corresponding Fisher information matrix is defined

as [34]
9%Q(0)
06?

Iy = —E| ] (3.62)

The Fisher information matrix of the incomplete data (observed data) is obtained by

taking the derivative of (3.17) with respect to b,

4L
= —R

Fy = (3.63)

o
Taking the derivatives of (3.44) and (3.54) with respect to by, respectively, we can

obtain the required Fisher information matrix of the complete data used in the EM-

based receiver as
41K L

2

Fyoo =

Xy

R“ (3.64)

o
and the Fisher information matrix of the hidden-data space used in the SAGE-based
receiver as

Fys = — Ru (3.65)

k
where Ry, is the kth diagonal component of R and RY = diag{ Ry }. The convergence
parameters for the EM-based and SAGE-based receiver are obtained as

1

Rl R} (3.66)

pryv = maxeigenvalue{Iy —

and

fsace = maxeigenvalue{Ix — R R} (3.67)

From the definition of R, it can be verified that pgy and psagp are the functions
of the spatial correlation which is a function of the users’ positions as well as the
cross-correlation between the users’ spreading codes.

Example: We again consider a system with a uniform linear array at the base-
station over an AWGN channel. The inter-element spacing of antenna array is half-
wavelength and the DOAs of the active users are uniformly distributed in [—60°, 60°].
The Gold sequences of length 31 from [52] are assigned to mobile users. All active
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Figure 3.6: Convergence Rate Upper Bounds on the Proposed Receivers Defined as

1/

users have equal transmitted power. The convergence rate curves are plotted in terms
of the number of users and number of antennas and averaged over 5,000 trials. From
Figure 3.6, it can be observed that the convergence becomes slower as the number
of active users increases in the system. An interesting remark is that using a base-
station antenna array can accelerate the convergence rate of the iterative receivers.
We also observe that the SAGE-based receiver converges much faster than the EM-
based receiver and that the benefit in using base-station antenna arrays combined
with the SAGE-based receiver is more striking than that of the antenna-array EM-
based receiver. In Section 3.7, simulation results show that the SAGE-based receiver

does converge faster than the EM-based receiver.

Since we have assumed that channels remain unchanged during each block trans-
mission, larger bit block sizes result in more accurate channel estimates [16]. There-

fore, it is expected that large bit block size improve convergence of the proposed
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iterative receivers.

3.6.2 Bit Error Rate (BER)

Similar to the case of decorrelating detector for single-antenna single-path systems
[42] [107], the proposed spatial-temporal decorrelator with known channels completely
eliminates multi-access interference at the expense of increase of background noise.
Therefore, we will focus on computing the average SNR for the desired user. Then,
the analytical BER of the spatial-temporal decorrelator directly follows the standard
BER expression for corresponding single-user detector.

From (3.29), it is observed that the bit decision vector is an unbiased estimator
containing a zero-mean noise vector w whose covariance matrix is 2—2]%_1. Without
loss of generality, we assume that the first user is the desired user. The (1, 1) entry

of R is given by

Ry -+ Rax
1
(R~ = 0
| Rl
Rrz2 -+ Rik
Denoting
&= AiAzal aipg; (3.68)
the ¢jth entry of R is given by
Rij = oja;éy; (3.69)

Since R and its submatrix (without the first row and the first column) are Hermitian

symmetric, it can be easily shown that
Ry -+ Rox §o2 o+ Gok
. = |052|2"'|05K|2 :
Rra -+ Rrk {2 0 Ekk

and
&1 o Gk

7] = foa]* - ok |

le fKK
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where |ag|* = afag. We denote

ST SY S
dy=| + - :
k1 0 EkK
and
f2 o0 bok
dy=| 1+ - :
(k2 -0 EkK
Then [R™!']; is obtained as
d
-1 o 2
(B ] = diloal? (3.70)

The received SNR = for the desired user assuming a fixed fading attenuation oy

is v = j;—UL2|oz1|2. Thus, the average SNR is given by
di L
1= dl 2E[|0z1|2] (3.71)
20

where FE[.] represents expectation. Finally, the bit error probability for the first user
is obtained as [69]

| =
po=-{1_ 72
' 2( 1+71) (3.72)

3.6.3 Cramér-Rao Lower Bound (CRLB)

To measure channel array response vector estimation performance, we derive the
Cramér-Rao lower bound. We collect the unknown parameters into the column vector

T

T T

a = al P aB,

(3.73)

where a; = aja(fy) is the channel array response vector for the kth user.

For an M-element antenna array, we define the M x M matrix for the ith bit of

the kth user, k=1,--- K, as

By (i) = diag[be(i), -+, bi(d)]
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The CRLB matrix for parameter vector a is given by

CRLB(a) = %[é G))™! (3.74)
where
[ wenlu AeeBl) o ATReBu) |
(i) = \/WP‘UBU(@') 72/)‘22]M ' : (3.75)
| Vk i Barc(1) Ve prKIm

fori=1,---,N,j=1---.N

Ly, if be(i) = b;(i)
T, if be(d) = —by(i)

Byi(1) = BI'(1)B;(i) =

and v, = A?/0? is the signal-to-noise ratio (SNR) corresponding to the kth user and
pi; is the spreading code cross-correlation defined in (3.24). For a detailed derivation
of the CRLB, see Appendix A.

Clearly, the Fisher information matrix, S>%, G(i), is a function of SNR at the
ith bit and the cross-correlation between the spreading codes. The channel array

response estimates satisfy

El(a—a)(a—a)f] > CRLB(a) (3.76)

3.6.4 Computational Complexity

The additional computational complexity induced by the EM-based and SAGE-based
receivers at each iteration over the conventional single-user receiver is caused by multi-
user signal decoupling. After decoupling, the complexity for the channel estimation
and bit sequence detection is comparable to that for the conventional single-user
receiver. Since using digital signal processors (DSPs) makes it possible to complete
a multiplication within the time equivalent to perform an addition, we calculate
the computational burden for both multiplication and addition. We consider the

complexity for each user at each iteration cycle.
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Decoupling | Channel Estimation | Bit Detection
Multiplications | EM ML(K-1) MLN 2ML
SAGE | ML(K-1) MLN ML
Additions EM | (ML-1)(K-1) MLN(N-1) 2(ML-1)
SAGE | (ML-1)(K-1) ML(N-1) ML-1

Table 3.1: Computational Complexity for the EM-Based and SAGE-Based Receivers

We first consider the computational complexity of the EM-based receiver. From
(3.48), to obtain the conditional expectation of interference plus noise for each bit
of each user requires M L(K — 1) multiplications and (ML — 1)(K — 1) additions.
From (3.49) and (3.50), it needs M LN multiplications and M LN(N — 1) additions
to estimate channel array response vector for each user and 2M L multiplications and

2(ML — 1) additions to detect each bit for each user.

For the SAGE-based receiver, from (3.57), computing the conditional expectation
of hidden data corresponding to each user at each bit interval requires ML(K — 1)
multiplications and (M L—1)(K —1) additions. And from (3.58) and (3.59), it requires
M LN multiplications and M L(N —1) additions to obtain the channel array response
vector estimate for each user and ML multiplications and (ML — 1) additions to

detect each bit for each user.

The computational complexity comparison is summarized in Table 3.1. We ob-
serve that the computational complexity of both iterative receivers increases linearly
with the number of users in the systems. The channel estimation of the EM-based
receiver needs more additions than that of the SAGE-based receiver. The EM-based
receiver requires twice computational complexity than the SAGE-based receiver for

bit detection.
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3.7 Simulation Results

In this section, we present performance results for the proposed receivers. A ran-
domly generated Gold sequence of length 31 is assigned to each user in our CDMA
system [69]. In [16], it is shown that a bit block length larger than 20 is required to
achieve desired BER performance for Gauss-Seidel iterative receiver. Therefore, in
the simulations, we choose to transmit a 100-bit information sequence from each user
and assume the channels remain unchanged during the data-block transmission. The
bit sequences are randomly generated for each user with different seeds. We insert
one training bit in the first bit position in each sequence. The DOAs are uniformly
distributed in [—60°,60°]. The initial guesses of the channel and array response vec-
tors are obtained using the training bits. More training bits can result in better
initial channel estimates. However, this will reduce information transmission effi-
ciency. Then using (3.27), we obtain the initial detected information bit vectors. The
simulation results are computed from 10,000-200,000 trials, depending on the signal-
to-noise ratio, so that the BER is calculated to within £5% with a 95% confidence
for BER to 107*. [12].

Because of the computational complexity, we simulate only up to five users in
the system to demonstrate the multi-access interference suppression capability for
proposed receivers. A five-user system is not realistic for practical applications. To
predict system capacity, large numbers of users should be simulated. However, system
capacity estimation via exhausive simulation is computationally prohibitive. A pos-
sible approach for capacity prediction is to analyze the residual interference statistics
after the final iteration step.

Although the results are obtained by simulating small number of users, it is ex-
pected that with a large number of users a similar performance improvement would

also hold for the SAGE-based receiver, as has been explained in Section 3.5.2.

A. Performance Comparison

This example is used to compare performance of the proposed receivers. There are five
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Receiver Performance Comparison: Bit Error Probability
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Figure 3.7: Bit Error Rate of the Proposed Receivers for Single Antenna and a Three-

Element Antenna Array

active users in the system and either a single antenna or a three-element base-station
antenna array. For simplicity of analysis, all users have equal transmitted power. Both
the SAGE-based and EM-based decorrelating receivers use eight iterations. From
Figure 3.7, we can observe that both the EM-based and SAGE-based decorrelating
receivers significantly outperform the conventional single-user receiver. When a single
antenna is used, both EM and SAGE-based decorrelating receivers do not converge
to the spatial-temporal decorrelating receiver with perfect knowledge of channel and
array response vectors. However, the performance of the SAGE-based receiver is
greatly improved by using an antenna array. This is mainly due to the antenna
array’s improved channel estimates, as shown in Figure 3.8. When the SNR is larger
than 20dB, the channel estimates of the SAGE-based receiver do not reach the CRLB.
However, the loss in channel estimation performance at such a high SNR does not
have strong effect on symbol detection. At a BER of 1072, the three-element antenna

array can achieve about 6 dB gain over a single antenna.
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o Receiver Performance Comparison: MSE of Channel Estimates
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Figure 3.8: Mean Squared Error of Channel Estimates of the Proposed Receivers for

Single Antenna and a Three-Element Antenna Array

B. Near-Far Resistance

To address the near-far resistance of the proposed receivers, we consider five active
users and a two-element base-station antenna array. We assume that the first user
is the desired user with 20 dB SNR and fixed transmitted power. Again, all other
interferers are assumed to have equal and time-varying transmitted power. At the
power-ratio of 20 dB, the transmitted powers of the interferers are all 100 times
stronger than that of the desired user. This represents an extreme near-far envi-
ronment. Figure 3.9 shows that the SAGE-base decorrelating receiver converges to
the spatial-temporal decorrelating receiver with perfect knowledge of channel and
array response vectors and is therefore near-far resistant. Although the EM-based
decorrelating receiver is an improvement over the conventional single-user receiver,
neither receiver is near-far resistant as shown in Figure 3.9. From Figure 3.10, it

is observed that channel estimates the SAGE-based receiver has improved near-far
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o Receiver Performance in Near-Far Environment: Bit Error Rate
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Figure 3.9: Bit Error Rate of the Proposed Receivers for a Two-Element Antenna

Array in Near-Far Environment

resistance compared to that of the EM-based receiver.

C. Convergence

Two more examples are used to illustrate the convergence of the proposed iterative
receivers. In the first example, five users with equal transmitted power are consid-
ered in the system containing a three-element base-station antenna-array. Figures
3.11 and 3.12 show convergence and BER performance of the SAGE-based and EM-
based decorrelating receivers, respectively. The SAGE-based decorrelating receiver
converges faster than the EM-based decorrelating receiver. The former also achieves
better BER performance at the last stage than the latter. A final example is used
to compare the convergence of the two iterative receivers in near-far environment
for a five-user system with a two-element base-station antenna array. Again, the
SAGE-based receiver seems to converge faster than the EM-based receiver even when

strong interfering users exist, as shown in Figures 3.13 and 3.14. From Figure
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Receiver Performance in Near-Far Environment: MSE of Channel Estimates
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Convergence of SAGE-Based Receiver in Near—Far Environment: Bit Error Rate
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Convergence of the EM-Based Receiver in Near—Far Environment: Bit Error Rate
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3.14, we observe that iteration two achieves very little performance gain in low power
ratio region. This may be explained as follows: with the starting points, the likeli-
hood function slope from iteration two to iteration three is much steeper than that
from iteration one to iteration two. These results are consistent with the analytical
prediction developed in Section 3.5. Overall, the SAGE-based receiver has more mul-
tiple access interference suppression capability than the EM-based receiver for CDMA

systems.

Although Gold codes are used to simulate the proposed receivers, similar results
are also obtained using randomly generated PN (pseudo-noise) chip squences for
proposed spatial-temporal decorrelating receivers. Both the EM-based and SAGE-
based receivers show good convergence to fixed points even with random assigned
initial guesses and outperform conventional receiver. Similar result is also found in

[16] for channel estimation using the EM algorithm.

REMARK 3: Because the receivers converge very quickly in the low SNR region:

for a required BER, three iterations can achieve acceptable performance.

3.8 Conclusions

We have derived a spatial-temporal decorrelator based on a new discrete-time sig-
nal model as well as employing the maximum likelihood criteria for the CDMA up-
link with a base-station antenna array with Rayleigh fading. The spatial-temporal
decorrelator is near-far resistant. Numerical results show that the incorporation of
the base-station antenna array results in significant performance improvement. Two
receiver structures are obtained by applying the EM and SAGE algorithms to imple-
ment the spatial-temporal decorrelating receiver iteratively. Since the EM-based and
SAGE-based receivers have explicit interference cancellation capability, we also call
the new receivers as the EM-based and SAGE-based interference cancelling receivers,

respectively. It is shown that while the base-station antenna arrays can accelerate
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the convergence rate of the SAGE-based receiver, arrays have little effect on the EM-
based receiver’s convergence. The bit error probability and CRLB are derived for the
proposed receiver. Simulation results show that both the EM-based and SAGE-based
decorrelating receivers can achieve significant performance gain over the conventional
single-user receiver. Qut of the two receiver structures obtained, the SAGE-based
receiver outperforms the EM-based receiver while having similar computational com-
plexity and converges to the BER performance of the spatial-temporal decorrelating
receiver with known channels. The channel estimates of the SAGE-based receiver are
closer to the CRLB than those of the EM-based receiver. The simulated BER results

for the spatial-temporal decorrelating receiver agree closely with analytical results.
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Chapter 4

Spatial-Temporal Decorrelating Receiver
for Asynchronous Multipath Fading

Channels

4.1 Introduction

In CDMA systems, the time delay difference of different multipath channels for each
user is normally significantly larger than a spreading chip interval, and the wider the
bandwidth of the spread signal, the more resolvable the individual path components
are in time. Therefore, we can use this natural time diversity to combine the different
multipath components so as to reduce the received signal strength fluctuation due to

fading attenuations [84].

Since the results in the last chapter have demonstrated that the SAGE-based
receiver outperforms the EM-based receiver, we only consider the SAGE algorithm
in this chapter. We extend the spatial-temporal decorrelating receiver obtained in
Chapter 3 in several ways. First, we incorporate a maximal-ratio combiner into the
receiver structure. Utilization of the RAKE structure in multipath channels can
improve the receiver performance [32] [58]. Second, in addition to multi-user signal
decomposition, refer to Section 3.5.2, we estimate the channel array response vectors

by decoupling the multipath signals. Thus, we introduce a double decoupling for
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multi-user multipath channel estimation. Finally, we derive a BER lower bound for
asynchronous multipath CDMA systems with base-station antenna arrays.

In this chapter, we first develop a synchronous equivalent discrete-time model in
Section 4.2 and then formulate a spatial-temporal decorrelator for known channel
parameters in Section 4.3. In Section 4.4, we apply the SAGE algorithm to the
synchronous equivalent discrete-time system model and obtain an iterative receiver
structure for joint channel array response vector estimation and information symbol
detection for known time delays. A bit-error-rate (BER) lower bound is derived for

maximal-ratio diversity combining in Section 4.5. Simulation results are provided in

Section 4.6.

4.2 Synchronous Equivalent Discrete-Time Model

4.2.1 Discrete-Time Formulation

The synchronous equivalent discrete-time model is proposed for single-antenna single-
path additive white Gaussian noise (AWGN) channels in [44]. Here we extend the
synchronous equivalent model to multipath multi-antenna fading channels. Since we
have assumed time delays 7., € [0,T}) for k € {1,---, K} and p € {1,---, P} in
Section 2.3.3, one complete bit of each transmission falls in a time interval of length
2T}, as shown in Figure 2.6. Therefore, we choose 2T} to be the observation interval
to collect samples for each bit. To express the chip-waveform matched filter output

in a compact form, we denote

Tk7p = (u;“p —|— v]“p)Tc (41)

where wuy, € {0,---,L — 1} is an integer and vy, € [0,1) for & € {1,---, K} and
p € {l,---,P}. Let us denote a 2L-dimensional column spreading code vector by

appending L. zeros

1
cp = Z[cko ekt Crr—ny 0 -+ 0)F (4.2)
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From Figure 2.6, we observe that three consecutive bits contribute to each observation
interval. The received signal at each antenna element first passes through a filter
matched to the chip waveform, and is then sampled at the chip rate. The received
discrete-time signal at the ith observation interval from the mth element can be

obtained as

g = [ e (1.3)

=gTc

Using the notation in [44], the 2L sample vector for the ith observation interval from

the mth element can be written as

x" (i) = ki i[h;;mbk(i — 1)+ hy 7 be(i) + hy o be(i 4 1)] 4+ 0™ (4) (4.4)
o
where
hi b ™ = 701 = o) T e+ o, T o] = fieil (4.5)
RO = 1 [(1 = vp) )T " cx 4 v, To? ey] = fi el (4.6)
hi:;n = [l — vk,p)Téﬂk’pck + vk,pT?“’W“ck] = [l Chn (4.7)

and Tr and Tg are the acyclic left shift operator and right shift operator, respectively.

For example,

3 1 T
TLCk:Z[CkS ke 0 Cpr-1y 0 - 0
and
1 T
T%ckzz[o 00 oo o1 -+ crgery 0 - O
Denoting
T
x(i) = | ()T M) (4.8)
1 1,1 1.M T
hil=| (il o (M
0 0,1 o,M T
b, = ()T (T
1 1,1 1.M T
b, = | ()T - (hl)T
and
T




The received discrete-time signal from the antenna array can now be expressed as

K P
x(i) =Y Hi,pbi(1) +n(i) (4.9)
k=1 p=1
where
Hy, = [ hit ¢ hY, i hj, ] (4.10)

T

b}f(i):[bk(i—l) be(i) bp(i +1)

and n(z) is an AWGN vector with zero-mean and covariance matrix %IQML, where
Loar is a 2M L x 2M L identity matrix. The superscript win b’() denotes a three-bit
sliding window for each desired bit located in the center of the small window. Without
loss of generality, we assume that the number of the propagation channels for each
user is the same, i.e., P, = P for k =1,---, K. Actually, for the case of unequal P;’s,

we can let P = max{Py,---, Pk} and append P — Py zeros for k =1,---, K. Letting
P

Hy, =Y Hy, (4.11)
p=1

the 2M L received signal vector at the ith observation interval is given by

K
x(2) = Z Hiby (i) + n(e) (4.12)
k=1
Define a 2M L x 3K matrix
Hz[Hl SR HK] (4.13)

and a 3K dimensional column vector

T
be(i) = [ by(i)T - by(i)! (4.14)

the synchronous equivalent discrete-time model is given by
x(¢2) = Hb"(2) + n(z) (4.15)
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4.2.2 Spatial-Temporal Channel Matrix

In (4.11), matrix Hj, incorporates both spatial and temporal channel characteristics

of our system. Denote, for k € {1,--- K}, pe{l,---,P} and n € {—1,0,1},
f]%,pCZ,p CZ,p e O f]i,p
fé\gjc}ip 0 Cee Cz,p fé\é

From (4.10), we obtain

f,, 0 0O
H]“p = [C,;; Cl?,p Cép] 0 fk,p 0 = Ck7ka7p (417)
0 0 f,

The spatial-temporal channel matrix for the kth user is then given by (c.f. (4.11))
P
Hy=> CipFip (4.18)
p=1
where the 3M x 3 matrix [}, represents the spatial channel characteristic due to
antenna array and multipath fading attenuation and 2M L x3M matrix C , represents
the temporal channel characteristic, including spreading code and relative time delays,
corresponding to the pth path for the kth user.
A necessary condition that K users are identifiable is that H be of full column
rank. Based on the discrete-time system model developed in this section, a necessary

condition is

ML > 3K (4.19)

4.3 Signal Detection for Known Channels

In this section, we derive a spatial-temporal decorrelator based on the synchronous
equivalent discrete-time system model using the maximume-likelihood criterion for
known channels. For the sake of notational simplicity, we omit the time index ¢ in

this section.
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4.3.1 Spatial-Temporal Decorrelator

For a known spatial-temporal channel matrix H, the log-likelihood of the received

signal x conditioned on the bit vector b is given by

Q(b) = x — Hb")? (x — Hb") (4.20)

_m(
where the superscript H denotes conjugate transpose, b = [by --- bg]T. Vector b
can be obtained from b*.

The bit vector decision variable b can be obtained by maximizing the above log-
likelihood function

qu = arg mgxﬂ(b) (4.21)

Taking the derivative of log-likelihood function (4.20) with respect to the sliding

window bit vector b* defined in (4.14) and equating the result to zero, we obtain
b" = sign{[H"H]""H"x} (4.22)

where sign{a} =1ifa > 0or -1 if a <0.

We define the spatial-temporal cross-correlation matrix as
R=H"H=[H, --- Hg|"[H, --- Hg] (4.23)

The detector in (4.22) is a spatial-temporal decorrelating detector. The (k, j)th sub-

matrix in ‘R, Ry; is given by

P P
Ry =HIH; =% FLCI SN C F,

p=1 g=1

Using definition in (4.16) and (4.17), we obtain

“1H -1 oH —1
Crp CJ}qIM Ck,pCJ‘,qIM 0
H o —1H .0 0H .0 1H .0
C’WCM | Ckp Cj,qIM Ck,pcj,qIM Ck,pcj,qIM (4.24)
0H .1 1H 1
0 Ck,pcj,qIM Ck,pcj,qIM

Define the spatial correlation coefficient

fkj,pq = flfpr}q (4-25)
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and the temporal correlation coefficient

m,n _  omH _n
Pripg = Ckp Cjq (4'26)

where m € {—1,0,1} and n € {—1,0,1}. From (4.5), (4.6) and (4.7), we obtain

-11
Pkipqg = 0

and
Phipg = Phipa
We define the spatial-temporal correlation coefficient as
P P
" = 2D JrinaPiipg (4.27)
p=1g=1
where P is the number of propagation paths. Using (4.17), Ry, is obtained as
by O O
Rij=| op ' o o (4.28)
0 &y by
To derive the detector structure, we write the spatial-temporal channel matrix Hy

for k=1,---, K as

P
Hk == Z Ck7pAk7pOék7p (429)
p=1
where
a(@;“p) 0 0
Ay, = A 0 a(fr,) 0
0 0 a(@;“p)

Thus, we obtain
P *
Zp:l OélypAEpCpr
7z = Hx = (4.30)
P *
Zp:l O‘K,pAﬁp C};{px
The detector structure is illustrated in Figure 4.1. After sampling the chip-waveform

matched filter output, the received signal is first synchronized and despread. The de-

spread outputs for all K users are then beamformed by maximum-SNR beamforming.
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Figure 4.1: Spatial-Temporal Decorrelating Detector for Known Channel Parameters

The signals from different paths are then linearly combined using a maximal ratio
combiner (MRC). Finally, the decision variable is obtained by a spatial-temporal
decorrelator. Note that the decorrelator, R™!, decorrelates a combination of inter-
symbol interference caused by multipath propagation and multi-access interference

(MATI).

Substituting (4.15) into (4.22), the spatial-temporal decorrelating detector output

can be simplified to

b* = sign{b” + R™'H"n} = sign{b"® + w} (4.31)

where w is spatial-temporal decorrelating detector output AWGN vector with zero

. 2
mean and variance %R 1.
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4.3.2 Asymptotic Efficiency

The asymptotic efficiency of the spatial-temporal decorrelator for the Ath user is

obtained by a similar method as in Chapter 3:

nd = max>{0 ! = 1 (4.32)
k — 9 — — .
\/R(k—1)3+2(R_1)(k—1)3+2 R(k—1)3+2(R 1)(k—l)3-l-2

where R(p_1)342 is the (k — 1)3 4 2-th component of matrix R and (R7")x_1)342 is
the (k—1)342-th component of matrix R inverse. From (4.26) and (4.27), R(r—1)342

is given by
Rik-1)342 = Prp

The kth user’s asymptotic efficiency of the conventional single-user detector is given

by

K

Ri— _
e = max2{0,1 — Z [ Ri-1)342,(k-1)342] (4.33)
i=1,itk R(k—1)3+2

where R(;_1)3t2,(k—1)3+2 1S given by

Ri—1)342,(k-1)342 = ¢?1;0

Figure 4.2 and Figure 4.3 illustrate two numerical examples for the asymptotic ef-
ficiency. In these examples, we consider a five-user system and the Gold sequences of
length 31 from [52] are assigned to five users. We assume a uniform linear array with
half-wavelength spacing at the base-station and the DOAs for five users are uniformly
distributed in [—60°,60°] with respect to the array boresight. The relative time de-
lays are assumed to be uniformly distributed in [0, T};). The results are averaged over
2,000 trials for randomly generated Rayleigh fading attenuations, DOAs and time
delays. Figure 4.2 shows the results for a single antenna system. The asymptotic effi-
ciencies of the spatial-temporal decorrelator and the conventional single-user detector
are plotted for single dominant path channels and three-path channels. We observe
that although multipath diversity slightly improves the asymptotic efficiency of the
spatial-temporal decorrelator, the asymptotic efficiency of the conventional single-

user detector becomes worse for the multipath systems. This is because multipath
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Figure 4.2: Asymptotic Efficiency for a Single Antenna System
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induces more interference with respect to the desired user for a system with three
or more users. The asymptotic efficiencies of the spatial-temporal decorrelator and
the conventional single-user detector are provided in Figure 4.3 for single dominant
path channels. The results in this example show that using a base-station antenna
array improves the asymptotic efficiencies for both the spatial-temporal decorrela-
tor and the conventional single-user detector. From these numerical results, we find
that multipath diversity has little influence on asymptotic efficiency and the base-
station antenna array can be used to improve this performance. Also observed is that
similar to the synchronous single-path case, the asymptotic efficiency of the spatial-
temporal detector is invariant to the received signal energies from the interfering
users, and therefore, the spatial-temporal decorrelator is near-far resistant. However,
performance of the conventional single-user detector degrades when the interference
becomes stronger. As long as the cross-correlations between the spreading codes
over relative time delays are nonzero, i.e., R(i—1)s42,(k—1)3+2 is nonzero for 7 # k, the
asymptotic efficiency of the conventional single-user detector will tend to zero with

an increase of the interfering users’ energies.

4.4 Joint Signal Detection and Channel Estima-
tion

The results in Section 4.3 are based on the assumption that the relative time delays,
Tk, and channel array response vectors, fi, (for £k = 1,--- K and p = 1,---, P),
are known at the receiver. However, in practical applications, we have to estimate
these channel parameters. In this section, we investigate the problem of joint signal
detection and channel array response vector estimation assuming that we know the
time delays at the receiver. We apply the space alternating generalized expectation-
maximization (SAGE) algorithm [19] to derive a sequential receiver structure which
jointly estimates the channel array response vectors and detects the information sym-

bol sequences for all active users in the system.
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We assume that the relative time delays for all the users are known at the re-
ceiver. The timing error effects on multi-user signal detection are analyzed in [3] [5]
[63] [111] and it is found that the timing error is much more serious to multi-user
signal detector’s BER performance than any other channel parameter error. We will
study the time error effects on the iterative receiver developed in this section using

simulations.

4.4.1 SAGE-Based Receiver

The available observed incomplete data is a data vector set {x(¢);¢ = 1,---, N},
where N is the number of bits at each block. Similar to the approach in Chapter
3, we choose user index k as the index set to detect the information bit sequences,
thus the admissible hidden-data space, complete data, for index £ and ¢ = 1,---, N
is given by

xi (1) = Hyby(i) + n(t) = i Hy, b +n(1) (4.34)

p=1
where Hy , = Cj ,F ,. Given the spatial channel estimation results at the jth itera-
tion, F,fp, fork=1,---,Kandp=1,---, P, and symbol detection results, B};Uj, at the
jth iteration, the conditional expectation of x3(7), for k =1,---, K and ¢ = 1,--+, N,

is obtained as

x5 (1) = x(i) — Z ZHW n (4.35)

Fr =1,k £k p=1
where we have denoted ﬁip = Cka,zp for k=1,---,K and p = 1,---, P. Thus,
the log-likelihood function of %7 (), for & = 1,---, K, after discarding the terms
independent of Fj, and b)’(z), for k =1,---, K and p=1,---, P, is given by

QES(1), fciwv)):—ﬁ;(fcif zlﬂk,pbw >) ( zlﬂkpbk >)

(4.36)

The maximization results at the next iteration are given by

[Flz-l—lv B};UH ] = arg max Q(Xk (1)7 e 7§(5](N))
Hkvbw()
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Equating the derivative of (4.36) with respect to b}*(¢) to zero, for ¢ = 1,---, N, and
using the channel parameter estimation results, the symbol sequence detection results
are given by
by'™ = signl(RiF") AT &Y (1)
where
R]-I-l ﬁ,ﬁ“Hﬁg“
and

]+1 ]+1
Z Ck,p

To obtain the estimation results of £}, for k=1,---,Kandp=1,---, P, we further
decouple the complete data x}(z) by choosing path index p as the index subset, the
corresponding admissible hidden-data set for user index £ and path index p is given
by
x;, (1) = Hy by +n(t) (4.37)
where 7+ = 1,---, N. The conditional expectation of Xgp(i), fork=1,---,K, p =
1,---,Pand 2=1,---, N, is obtained as
s s P R p R K P
X)) =% = Y. Hep b =x()— X2 Hipby— > > HY bl
p1=1,p17#p p1=1,p17#p k1=1,k1 #k p=1
(4.38)
The log-likelihood function of )Zf7p(i), fork=1,---,K and p=1,---, P, is obtained

O, (1) KN)) = =3 SR — ey () (53500) - i, 0)
= (4.39)

By maximizing the likelihood, we obtain the estimate of the spatial-temporal channel

matrix, f{k,pv for k =1,---,K and p = 1,---, P, (see Appendix B for a detailed

derivation)
3 X ()b (d 3 b (i) b (7)1 4.40
Z (DI by ()b ()] (4.40)
=1 =1

Since [A{;W = CypFr,p with known Cy,,, we will use a least squares (LS) criterion

[34] to obtain the unknown matrix Fj ,. The LS estimate can be found by minimizing
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Figure 4.4: The Received Signal Decoupling Process

the following squared error
J(0) = (Hyp = CrpFip)! (Hip = CrpFiy) (4.41)
Equation (4.39) can be further written as
J(0) = H [y, — 20 CypFrp + FECH Crp Py

Taking the derivative of J(#) with respect to Fy,, we have

2.J(9)
oF,,

= 208 ., + 208 Cup B,

From (4.16) and (4.17), if the time delays are non-zero, the columns of Cj, ,, are linearly
independent, then €}, is full rank and the spatial channel matrix is obtained as a

least squares solution for a given C},, for k=1,--- K and p=1,---, P,
By = (CH Crp)  OF Ty, (4.42)

The key in this receiver algorithm is to decouple the received signal, as illustrated
in Figure 4.4. The first step is used to obtain the multi-user signals. The multipath
signals for each user are further decoupled at the second step. The final decoupled
signals are used to estimate the channel array response vector for each path of each
user by maximum likelihood criteria. The estimates of the channel array response

vectors are then used to detect the information sequence for each user.
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The SAGE-based receiver for joint channel estimation and symbol detection is
summarized as follows:
fory=1,2,---
k = (j modulo K)

E-step: compute the conditional expectation of the hidden-data

fore=1,---,N
K P o
X7 (0) =x(0) = Y Y Cupld b (1) (4.43)
klzl,kl;ﬁk p:l
forp=1,---,P
P
~Si - ~Si,. A w
Xk,]p(l) = %7 (1) — Z Ck,plFlg,plbk (4.44)

p1=1,p1#p

M-step: obtain the maximume-likelihood estimates f, for

p:1,---,Pandi)k(i)forizl,---,]\f

N ; ~ . N Aw' . Aw' . —
Frp = (CE.Cu) OIS 53 (0BT (O] b (b ()] (4.45)
=1 =1
byt = sign[(REH) ™ HITT R (1)) (4.46)
F]/m = Fﬂ/’p7 k/ % k

b/t (i) = b (i), K #k

The basic receiver structure is the same as Figure 3.5 for the case of synchronous
systems. For each decoupled user, the structure for each iteration is shown in Figure
4.5.

Since the SAGE algorithm guarantees that the likelihood function increases mono-
tonically with each iteration, the proposed iterative spatial-temporal decorrelating
receiver converges to a fixed stationary point or local/global maxima depending on
the initial guess of the unknown parameters. In Chapter 3, we have shown that us-
ing a base-station antenna array accelerates receiver’s BER convergence to that of

pertectly known channel parameters.
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Figure 4.5: SAGE-Based Receiver Structure for Each User at Each Iteration Cycle

4.4.2 Computational Complexity

We consider the computational complexity of the SAGE-based iterative receiver for
joint channel estimation and bit detection at each iteration cycle for each user. From
(4.43), (4.16) and (4.17), we obtain that the number of multiplications needed to
decouple the multi-user signals is (BMLP +6ML)(K —1) =3ML(P +2)(K —1) and
the number of additions is 6M L(P +1)(K —1). From (4.44), it requires SM L(P —1)+
6 ML = 3ML(P+ 1) multiplications and 6 M L P additions to decouple the multipath

signals for each user.

It will be shown in Section 5.3.2 that the multipath interference decorrelator is
not needed for wideband CDMA systems containing resolvable paths. If we do not
include the bit detection complexity from the multipath interference decorrelator,
from (4.46), detecting one bit for each user requires SMLP + 6ML = 3ML(P + 2)
multiplications and 6 M L(P + 1) additions.

Much computational complexity arises from the spatial channel matrix estimate
in (4.45). The number of multiplications required is 6 M?*L +3ML + 6 MLN + 9N
plus the complexity of a 3M x 3M matrix inverse and a 3 x 3 matrix inverse. Note
that the computational complexity increases linearly with the number of the users in
the system. From (4.24), we observe that 3M x 3M matrix C,f{pcw is block diagonal
and this property can be used to reduce the computational complexity to invert this

matrix. However, the total complexity of the channel estimation due to antenna array
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is still of the order M?2.

4.5 BER Lower Bound

In this section, we derive a lower bound of the bit-error-rate (BER) for the proposed
iterative multi-user receiver for asynchronous multipath case assuming that the multi-
user interference has been completely eliminated. The derivation of the analytical
BER in this chapter is more difficult to obtain than the synchronous single-path case
considered in Chapter 3. In the following, we assume that the channel array response
vector for each user is known as well as the bit sequences of all interfering users.
Therefore, the BER expression derived in this section provides an upper bound on
the performance of a system with imperfect interference cancellation.

From (4.43) and (4.46), we obtain the decision variable for the kth user

. A - A - I( A A .
gt = (R HT () - Y HLBY ()] (4.47)
k1=1,k1#k

From (4.47), it is observed that the multi-access interference is subtracted explicitly
at each iteration. To obtain a BER lower bound for the kth user, we assume that
the interference has been completely eliminated at the final iteration in the receiver
algorithm and the multipath channel array response vectors of user k are perfectly

known at the receiver. Thus, the decision variable of the kth user is given by
yi = Ry HY' [Hiby (i) + n(i)] = byl + wi(i) (4.48)

s . . . 2 _
where w(z) is a zero mean AWGN vector with covariance matrix %Rkkl To compute

the BER of the desired bit by(¢) which is the second component in vector by(z) =

[br(¢ — 1) br(2) br(z + 1)], we first derive the corresponding average SNR

_ 1
TR R -

where (R} )2 is the second diagonal component of matrix Ry and E[-] represents the

expectation over the Rayleigh-distributed channel attenuations. Since pz}gpq <1/L,
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-1,0 1,1 0,0 : .
and py’ . and pyy o are much smaller than py; . we make the following approxima-

tion to (4.28)

PP (N
Rk ~ 0 ¢y 0 (4.50)
0 0 o5

In Section 4.6, it is shown by simulation that the approximation (4.50) is a reasonably
good one. (Rj}!), is then obtained as

1
25:1 25:1 O‘z,pahqa(‘gk,p)a(ek,q)Pz}co,pq

Since we have assumed that the channel attenuations are mutually independent, we

(Ri )2

have

1
MA% ZP E[az,p]pzﬁpp

p=1

E[(Ry )2]

where oz?p = aj, ,ax,p. Because pg}gpp, for p=1,---, P, are statistically identical, the
average SNR for user k is obtained as

MLApyy &
= —— 0N Flag )] (4.51)

p=1

Vi
0—2

Assuming that E[af ] are identical for all P paths of user k, the BER lower bound
for the kth user can be obtained [69](p. 781)

P P—1+4p

Po=[(1—m/2]" [(1+ p)/2]7 (4.52)
p=0 P
where
p=
(1+7)
and oo
MILA%p
5. = kakk,ll E[Oéz,p]

4.6 Simulations

In this section, we present performance results for the proposed receivers. Gold

sequences of length 31 from [52] are assigned to mobile users. In the simulations,
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we transmit a 100-bit information sequence, i.e., a hundred-bit block, from each user
and assume that the channel attenuations and DOAs remain unchanged during the
data-block transmission. We insert one training bit in the first bit position in each
sequence to obtain the initial channel array response vector estimates. A uniform
linear array with half-wavelength spacing is used at the base-station and the DOAs
are assumed to be uniformly distributed in [—60°,60°]. The time delay of the first
path for each active user is uniformly distributed in (0, 7,/2) and the time delay
of the second path for each user is uniformly distributed in (7}/2,7,). Multipath
channels are assumed to be Rayleigh distributed with same covariance for all paths.
The channel array response vectors are assumed to be known for the spatial-temporal
decorrelating receiver and the conventional single-user receiver. In all the simulations,

we consider a CDMA system with base-station antenna arrays.

Figure 4.6 compares the BER performance among the proposed SAGE-based re-
ceiver (with unknown channel array response vectors), the spatial-temporal decorre-
lating receiver and the conventional single-user receiver. A three-element antenna
array is used at the base-station. All users have equal transmitted power. It is
observed that using RAKE combining, a two-path system can achieve significant
BER performance gain over a single path system. Although the BER performance
of the conventional single-user receiver for two-path channels outperforms that for
single path channels, both show a BER floor which is caused by multi-access interfer-
ence. The SAGE-based receiver for joint channel array response vector estimation and
bit sequence detection achieves much better BER performance over the conventional
single-user receiver and converges to the spatial-temporal decorrelating receiver. From
Figure 4.6, we observe that the simulated BER performance of the spatial-temporal
decorrelating receiver for multi-user systems is close to the BER lower bound. Figure
4.7 illustrates the corresponding channel estimates for the same system settings.
The CRLB is taken from the previous chapter and provides a loose lower bound. The
channel estimation performance for two-path systems is better than that for single

path systems at 5 dB, 10 dB and 15 dB SNR points and slightly worse at SNR = 20
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o Receiver Performance in Near—Far Environment: Bit Error Rate
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Figure 4.8: Near-Far Resistance of the Proposed Receiver

dB.

To verify the near-far resistance of the SAGE-based receiver, we consider a system
with a two-element antenna array over two-path fading channels. The SNR of the
desired user is 12 dB. All the interfering users have equal transmitted power and
the power ratio changes from -20 dB to 20 dB. From Figure 4.8, it is observed that
the BER of the conventional single-user receiver increases dramatically when the
interfering users’ signals becomes stronger. Thus, the conventional single-user receiver
is not near-far resistant. However, the BER performance of the SAGE-based receiver
is almost independent of the interfering user’s energies. Therefore, the SAGE-based
receiver is near-far resistant. Figure 4.9 illustrates the mean squared error of the
channel array response vector estimates by the SAGE-based receiver. The channel
estimation is near-far resistant and close to the CRLB obtained for the synchronous
system in Appendix A. From Figures 4.6 and 4.8, we observe that the simulated BER
results for the spatial-temporal decorrelating receiver with known channels are close

to the BER lower bound. This indicates that the approximation in (4.50) may be
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) Receiver Performance in Near-Far Environment: MSE of Channel Estimates
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Figure 4.9: Mean Squared Error of Channel Estimates of the SAGE-based Receiver

in Near-far Environment

reasonable.

BER convergence examples of the SAGE-based receiver are provided in Figure
4.10 for equal transmitted power and in Figure 4.11 for unequal transmitted power,
respectively. In Figure 4.10, we consider a system with a three-element antenna array
over two dominant path channels. The convergence of the receiver is very fast. After
three iterations, we can obtain an acceptable BER level. Figure 4.11 illustrates the
simulation results for a system with a two-element antenna array over two-path fading
channels. We observe that when the multi-access interference becomes stronger, the
convergence is slower.

In the previous examples, we assume that the relative time delays are known
at the receiver. The final two examples are used to study imperfect time delay
estimation effects on the SAGE-based receiver. We consider a four-user system with
a two-element base-station antenna array over two-path Rayleigh fading channels.

The timing errors are assumed to be uniformly distributed in [—7./d,T./d], where

84



-1

Receiver Performance: BER Convergence

Figure 4.10: BER Convergence of the Proposed Receiver
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Figure 4.11: BER Convergence of the Proposed Receiver in Near-Far Environment
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Receiver Performance with Timing Error: Bit Error Rate
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Figure 4.12: Timing Error Effect on BER Performance for the SAGE-Based Receiver

Receiver Performance in Near-Far Environment with Timing Error: Bit Error Rate
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Figure 4.13: Timing Error Effect on BER Performance for the SAGE-Based Receiver
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T./d denotes the maximum timing error deviation. We use four and five iterations to
obtain the results in Figures 4.12 and 4.13, respectively. Figure 4.12 shows the timing
error effect on a system where all users have equal transmitted power. We observe
that the BER performance degradation in low SNR regions due to timing errors is
not significant. However, in near-far environments, BER performance becomes worse
due to timing errors when the transmitted powers of the interferers get very large, as
shown in Figure 4.13. Therefore, accurate time delay estimation methods are needed
to make the SAGE-based receiver maintain near-far resistance. In [15], the root
mean squared error (RMSE) of timing estimates is reported to be less than 0.017,
using the EM algorithm for CDMA systems without a base-station antenna array.
Incorporating time delay estimation into the receiver developed in Section 4.4 is a

subject of future work which is discussed in Chapter 6.

4.7 Conclusions

In this chapter, we developed a synchronous equivalent discrete-time system model
for asynchronous multipath CDMA systems with base-station antenna arrays. The
spatial and temporal channel matrices are identified. Based on this model, we incor-
porated a maximal-ratio multipath combiner into the spatial-temporal decorrelator
for known channels. Asymptotic efficiency is analyzed and the numerical results show
that unlike base-station antenna arrays, multipath diversity does not improve a de-
tector’s asymptotic efficiency. The SAGE algorithm is applied to the synchronous
equivalent model to derive an iterative receiver for joint channel array response vec-
tor estimation and bit sequence detection assuming that the relative time delays are
known perfectly. A BER lower bound is derived to measure the receiver’s perfor-
mance. Simulation results show that the SAGE-based receiver is near-far resistant,
its BER performance converges to the spatial-temporal decorrelating receiver (when
all channel parameters are known) and the simulated BER is close to the derived lower

bound. The mean squared error of the channel estimates used by the SAGE-based
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receiver is close to the CRLB. Timing error effects on the SAGE-based receiver are
studied by simulation. It is observed that the BER performance degradation due to
timing error is not significant in the low SNR region when the transmitted powers for
all users are equivalent. However, the near-far resistance of the SAGE-based receiver

does suffer from timing errors.
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Chapter 5

Iterative Multi-User Receiver for

Multi-Rate Systems

5.1 Introduction

Future wireless communications systems aim at offering multi-rate transmission ser-
vices such as voice, data and video. The proposed next generation CDMA standard,
CDMA2000, will support the combination of voice and packet data transmission
[87]. To provide integrated multi-rate communications, several multi-rate multi-access

strategies have been studied [25] [50] [72]
1. Multi-code access
2. Fixed chip rate, variable processing gain
3. Fixed processing gain, variable chip rate

The multi-code access method multiplexes the high-rate user’s transmitted bit
sequences onto multiple low rate spreading codes. As a result, the bits from a high
rate user are transmitted in parallel at the same rate as that of the low rate users.
In the multi-code access strategy, all users have the same processing gain and each
high-rate user can virtually be viewed as rlow-rate users, where ris the ratio between

transmission rates for high rate users and low rate users.
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In fixed chip-rate, variable processing-gain access systems, all users have the same
chip rate. Thus, the processing gain for higher-rate users is smaller than that for
the lower-rate users. In contrast, in fixed processing gain, variable chip rate access
systems, the processing gain for all users is constant and the chip rate for high rate

users is higher than that for low rate users.

In [50], it is shown that multi-access strategy 2 can achieve better bit detection
performance in terms of asymptotic efficiencyfor high-rate users for realistic spreading
code cross-correlation values than strategy 1 using m-sequences and equi-correlated
PN codes. Performance for low-rate users is comparable in these two multi-access
systems. For access strategy 3, the receiver has to be synchronized to different rates
and the system needs additional frequency planning due to the unequal bandwidth
spreading of different rate users. It has been shown that access strategy 2 is more
efficient than access method 3 [73]. Therefore, we will only consider access method 2

- fixed chip rate, variable processing gain.

Multi-user signal detection approaches for multi-rate systems have been proposed
in [50] [72] [73] [74] for synchronous AWGN channels. A multi-user multi-rate decor-
relator is proposed in [75] for asynchronous AWGN channels with known parameters
and single antenna case. In this chapter, we investigate joint bit sequence detection
and channel array response vector estimation for dual rate systems with base-station
antenna arrays over asynchronous multipath fading channels. We extend multi-user

decoupling techniques developed in the previous chapters to multi-rate systems.

We first formulate a synchronous-equivalent discrete-time model for dual rate
asynchronous systems in Section 5.2 based on the technique in the previous chapter.
A joint bit sequence detection and channel estimation receiver is derived in Section 5.3
by applying the SAGE algorithm to the synchronous equivalent discrete-time system

model. Simulation results are provided in Section 5.4.
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5.2 Discrete-Time Dual-Rate System Formulation

5.2.1 Received Dual Rate Signal

We consider a dual-rate transmission system with an M-element base-station antenna
array over asynchronous multipath fading channels. The K users are grouped into
K}, high rate users and K; low rate users, where K = K, + K;. We assume that the
chip rates are the same for the two groups of users, i.e., both groups of users have
the same chip duration 7.. From here on, the subscripts h and [ denote parameters
for high rate and low rate users, respectively.
From (2.17), an Np-bit transmitted signal from the kp-th high rate user is given
by
Np,
s (1) = A, D i (i) ew, (8 — inTh) (5.1)

ip=1

where Ay, is the amplitude of the kp-th high rate user, by, (iz) € {—1,1} is the i5-th
transmitted bit of the kj-th user with equal probability and ¢, () has normalized
energy [ |cg, (¢)|*dt = 1, and represents the spreading waveform of the kj,-th high

rate user, which is given by

Lp—1

crn(t) = D crunpn(t — LT (5.2)

1h=0
where ¢g,;, € {+1,—1} (I, =0--- L;, — 1) is the spreading code corresponding to the
ky-th high rate user, T}, is the high rate user’s bit interval and the processing gain Ly,

of the high rate users is L, = T} /T.
Similarly, the transmitted signal from the k;-th low rate user is expressed as

Ny
si () = Ak D b (i) e, (t — 0T0) (5.3)

Q=1
where Ay, by, (4) € {—1,1} and ¢, (t) are the k;-th low rate user’s transmitted ampli-
tude, the ¢;-th transmitted bit with equal probability and the corresponding spreading

waveform with normalized energy, respectively. ¢, (1) is given by

-1

e (t) = Z crapi(t — LTL) (5.4)
{;=0
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Figure 5.1: Chip Waveforms for High Rate Users and Low Rate Users

where ¢, € {+1,—1} (I, =0--- L; — 1) is the spreading code. The processing gain
L, of low rate users is L; = T}/T., where T} is the low rate user’s bit interval. Since we
assume that the spreading waveforms have normalized energy for both high rate and
low rate users, the chip waveforms, p,(?) and pi(t), for high rate and low rate users
have different amplitude, as illustrated in Figure 5.1. The average SNRs per bit for

high rate and low rate users are therefore identical.

The total number of active users in the system is K = K; + K;. We assume
that the information bits from all K users are independent and the spreading code
sequences for all K users are mutually independent. The transmission rate of the low
rate users is 1/}, and the transmission rate of the high rate user is 1/7}. Define the

rate-ratio to be
=7

7

(5.5)

In the following, we assume that the rate-ratio r is an integer.

We assume that the propagation fading channels are asynchronous and contain
multipath, and the channel parameters remain unchanged during the N;-bit trans-
mission. The received composite signal vector at the base-station antenna array is

expressed as

x(t) = x,(t) + x(t) + n(t) (5.6)

where x;,(1) is the received signal from K}, high rate users (refer to Section 2.3.3)

Ky K, Np P
Xp(t) = Y X, (1) = > D > fupen, (t = nTh — Thy )b, (70) (5.7)
khzl kh:1 ’ihzl p:l
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and x;(t) is the received signal from K; low rate users

K K, Ny P

xi(t) = > xp(t) = D D> fuyper (t — 0T = 7 )b, (1) (5.8)

klzl klzl ilzl p:l
where 73, , is the time delay of the kj-th high rate user through the pth propagation
path, fi, , is the corresponding channel array response vector with channel fading

attenuation ay, , and direction-of-arrival (DOA) 6y, ,

fkmp = Akhakmpa(ekmp) (59)

T, p and fy, , are the counterparts for the low rate users and fy, , is given by
fkhp = Aklaklypa(ekhp) (510)

n(?) is the complex additive white Gaussian noise vector with zero mean and covari-

ance matrix o2I;, where Ip; is an M x M identity matrix.

5.2.2 Synchronous-Equivalent Discrete-Time Formulation

In this section, we extend the results in Section 4.2 for single-rate systems to dual-
rate systems and formulate a synchronous-equivalent discrete-time system model for
dual-rate multipath CDMA systems. For simplicity and without loss of generality,
we assume Tg, . Th.p € [0,Th) for ky € {1,---, K} and & € {1,---,K;} and p €
{1,--+, P}. Figure 5.2 illustrates an example of asynchronous received bits for a dual
rate system with rate-ratio 4. In this case, one complete bit of each transmission falls
in a time interval of length T}, + T} for low rate users. Therefore, we can choose T, +T;
to be the observation interval to collect samples of each bit for low rate users. In this
observation interval, we obtain samples of r complete bits for high rate users. We
sample the received signal at the chip rate after a filter matched to the chip waveform
of the low rate users, pi(¢). Then, for m =1,--- .M and ¢ = 1,---, N, we obtain the
sample at the gth chip interval

(i, q) = /t T (1) (5.11)

=g7T.
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Figure 5.2: Received bits for a dual rate system

Then, for each observation interval, we obtain L; 4+ L; samples from each antenna

element. For notational simplicity, we denote Ly = Lj, + L;.

We denote
Tonp = (Ukpp + Vkyp) Lo (5.12)
and
Thpp = (Ukyp + Ok p) Te (5.13)
where wuy, , and wuy, , are integers that take on values from {0,---, L, — 1}, vy, , and

vy, p arve fractions of T, for ky € {1,---, Ky}, ky € {1,---, K} and p € {1,---, P}.

Denote the L -dimensional column vectors

1
Ckh = ﬁ[Ckho Ckhl cee Ckh(Lh_l) 0 cee 0 T (514)

Li—zeros

and

1
Cr = L_l[ckzo Chyt """ Cly(Ly-1) uT (5'15)

Ly—zeros

Using the technique in Section 4.2, we obtain temporal spreading vectors for low rate

users
Li—u Li—u -1
-1 _ l ky,p ! ki.p
Crp — (1 - vkhp)TL Cr + vkhpTL Cky (516)
) = (1 —vp,)Tp'" ey +v Ty te (5.17)
kip = kip) R ky kip+R ky .
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Li4u Li4u +1
1 _ l kp,p l ki.p
Crp — (1 - vkhp)TR Cr + vkhpTR Cky (518)

where T and Tp are the acyclic left shift operator and right shift operator, respec-
tively defined in Section 4.2.1. Then, we obtain the following matrix for low rate
users for n € {—1,0,1}

ct, 0 0

Cro=1 + (5.19)

n
O Ckhp

M —columns

Similar to the case of single rate systems, the M L; x 3M temporal channel matrix

for low rate users for &y =1,---, K; and p=1,---, P can be expressed as
Crp=1C5Y 1 CR, t Cpl (5.20)

The corresponding 3M x 3 spatial matrices for low rate users are given by

f,, 0 0O
Fop=1 0 f,, O (5.21)
0 0 f,,
The spatial temporal channel matrix for low rate users, for & = 1,---, K; and p =
1,---, P, is then given by
Hy, o = Cly oy p (5.22)

Denoting the sliding window bit vectors for the 7;-th bit of the k-th low rate user as
bi (1) = [bi, (i1 = 1) by, (i2) b (01 + D) (5.23)

the received discrete-time signal vector (M L4-dimensional) at the 7;-th bit interval
from the low rate users is given by

K

Xl(il) = Z Hklb};ul(ll) (524)
k=1
where
P
Hy, = Z Hy, , (5.25)
p=1
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From Figure 5.2, it is observed that r consecutive bits (b, (¢4), bx, (¢n+1), -+, by, (en+
r — 1)) completely lie in the observation interval T}, + T}, and bits by, (¢, — 1) and
b, (¢, + r) lie partially in this interval and interfere with the r desired bits. Our
goal is to detect by, (¢4), bg, (in + 1), -+, by, (¢in + r — 1) in the ¢-th observation in-
terval. Referring to (4.12), the sampled data during the observation interval from

the mth antenna element can be expressed as an L4-dimensional column vector for

kp=1,---, Kp,and m=1,--- M

P
X (i) = YA b, (=) b, (i) - A hg " b, (i = 1)+ 0" by, (6 41)}
p=1
(5.26)
where
- fkh P kmp
0,m __
kh7p - fk}“pck}“p
hp " = fi e, for rp=1,---r
and the temporal spreading vectors for high-rate users are given by
Lp—u Lp—u
il = (1= )T "7 + o, T 07 ey, (5.27)
u u +1
szp - (1 - vkhvp)TRkhypckh + vkmpTRkhW Cky, (528)
forry=1,---,r
r r1Lp+u riLp+u +1
Cinp = (1 =0k )T " g, + oy, T ey, (5.29)

We express the temporal spreading vectors of the high-rate users in matrix form for
n e {—1,0,1,-",7“}

n
Ckh7p

A I (5.30)

kh7p

0

n
Ckh7p

M —columns

Following the same procedure as in Section 4.2.2, the ML, x (r 4+ 2)M temporal

channel matrix of high-rate users is written as
Ckh’p Ckh P Clgmp Do Clzmp (531)
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and the corresponding (r + 2)M x (r + 2) spatial matrix for high-rate users is given
by
fkh,p ce 0
By, » = el (5.32)
0 ce fkh,p

(r+2)—columns

Thus, the spatial temporal channel matrix corresponding to the high-rate users, for

kp=1,---,K, and p=1,---, P, is written as
Hk}“p = Ckh7kah7p (5'33)

Denoting the r 4+ 2 dimensional sliding window bit vectors for the high-rate users

during the ¢;-th observation interval
i (12) = [ow, (i = 1) by, (in) -+ b, (i 1))

the received discrete-time signal vector at the z;-th observation interval from the

high-rate users is given by

Ky
Xh(il) = Z Hkhb};uh(ll) (534)
kp=1
where
P
Hy, =S Hy, (5.35)
p=1

The composite discrete-time signal vector from both high-rate and low-rate users

at the 7;-th observation interval is expressed as

Ky K
X(il) =x;+ x5+ n(il) = Z Hkhb};uh(ll) + Z Hklb};ul (Zl) + n(il) (536)
kp=1 k=1

where n(7;) is the AWGN after sampling with zero mean and covariance Z—ZIMLd.

5.3 Iterative Dual-Rate Receiver

In this section, we derive an iterative receiver structure for the dual rate systems. We

assume that the relative time delays are known at the receiver. Applying the SAGE
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algorithm to our synchronous equivalent discrete-time model, we obtain joint channel
array response vector estimation and bit sequence detection for both high-rate and

low-rate users.

5.3.1 Receiver Derivation

We first decouple the received signal using the technique developed in Section 4.4.
We choose user index as the index set for multi-user signal decoupling. For high-rate

user ky, for k, = 1,---, K}, the hidden-data is given by

xi, (i) = Hy, by, (i1) +n Z Hy, pbj, + (i) (5.37)
p=1
The hidden-data corresponding to the low-rate users is, for k; = 1,---, K,
P
;. (i) = Hy by (1) + n(it) = > Hy, pbj +n(i)) (5.38)
p=1

Given the spatial matrix estimates and bit detection results at the jth iteration for all
the users except for the kp-th high rate user, the conditional expectation of th(il),
for ky =1,---, Ky and 7, = 1,---, NV}, is obtained as

IXh IXZ

x;, (i) =x(i) = > 5 i b (i) — > > i, by (i) (5.39)
k1=1,k1#ky p=1 k=1 p=1
Similarly, the conditional expectation of x3 (i), for ky = 1,---, Kj and iy = 1,---, N,
is given by
I‘l IXh
i (i) = x(i) = > Z b ) = Z i by (5.40)
k1=1,k1#k; p=1 kp=1p=1

where [A{,zmp = Ckh,pFth,p and ]:]th = Ckhpﬁ,zl’p forkp=1,--- K,k =1,---, K; and
p=1,---,P.

Using the approach in Section 4.4, we further decouple the multipath signals for
high-rate and low-rate users, respectively, for k, = 1,---, K, k; = 1,---, K; and
il: 17"'7N17

xj, (i) = Hy, ;bi +n(i)) (5.41)
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X3, (i) = Hi by + (i) (5.42)

The conditional expectations of Xfmp(il) and thp(il), for by = 1,--- . Ky, k =
l,---,Kyy,p=1,---,Pand ¢;=1,---,N;, are given by
P
A S . AS /- 7 w
th,p(ll) = th(ll) - Z Hkhvplbkh
p1=1,p17#p
and

P
}A(gz,p(il) = }A(gz(ll) - Z Hy, };”l

p1=1,p1#p

The maximum-likelihood channel array response vector estimates and detected bit
sequences are obtained by the same procedure as in Section 4.4.
The SAGE-based iterative channel array response vector estimation and bit se-
quence detection is summarized as follows:
fory=1,2---
k = (j modulo K)
E-step: compute the conditional expectation of hidden-data

if k is corresponding to high rate user k;

forilzl,---,Nl

Ky P K P
A Slit+1) . . P NP
xp i) =x(i) = Y 3 Crpky bRl () = Y0 > H by (1) (5.43)
klzl,kl;ﬁkh p:l klzl p:l
forp=1,---,P
P
~Si - ng(i+1) , . A wi s
X ) =% () = D> Oy B b (0) (5.44)
p1=1,p1#p

if k is corresponding to low rate user k;

forilzl,---,Nl

K P K, P
- S(H1) . ) f i e
Xp0 () =x() = Y0 YOk b i) = Y0 > Hy, b (i) (5.45)
kl :l,kl ;ﬁkl p:l khzl p:l
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forp=1,---,P

P
~Si - . o(G+1) , . . .
Xkl]vp(ll) = Xgl] (Zl) - Z Cklvpl Fiﬂ?l,pl bz}l](ll)

p1=1,p17#p
M-step: compute the channel array response vector estimates

for the high-rate user, compute f}%p

forp=1,---,P

Nl . ~ . Nl ~ . ~ .
Frpp = (CF L Cry ) CE LS %37 ()b ()] [ by (i) by (1))
=1 =1y

for low rate user, compute f, ,

forp=1,---,P

A Nl - A . . Nl A . 3 Aw‘ 3 _
Fryp = (Cfl,Crip) ™ ity 32 %0,(00b ™ (i0)]13 by (i)bi ™ (i0)] ™!

=1 =1y

detect the bit,
for the high-rate user, obtain l;kh(il),
kh = 1,"',[&% and il: 1,"',Nl

N . e H
b (i) = sign[(Rife, ) HITT %00 (00)]
for the low-rate user, obtain ?)kl(il),

by, (i1) = sign[(Ryf) T HL™ 55 (i0)]

FE = F K #ke{l, - Kyl -, K}
Bz}’j-l—l(il)) = Bz}’j(il)7 K 7£ ke {17 e 7[(h7 17 e 7](1}

(5.46)

(5.47)

(5.48)

(5.49)

(5.50)

The convergence of the SAGE-based iterative receiver has been studied in Chapter

3 and verified by simulation in Chapter 4.
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5.3.2 Simplified Bit Detection for Wideband CDMA Sys-

tems

The information bit detector in (5.49) has multipath interference decorrelation via
(ﬁiﬁh)_l which requires (r + 2) x (r + 2) matrix inversion. When the rate-ratio
r is large, the O(r®) computational complexity of the matrix inverse will be very
high. Since the differences between the relative time delays for different paths are
larger than the chip interval for high processing gain (i.e. wideband) CDMA system:s,
the despreading process can resolve the received signals from different paths for each
user. Although the decorrelation via (7%"’,1 )~! is eliminated, the despread signals
hi~h
from different paths are still combined to suppress multipath interference and take
advantage of time diversity. Therefore, it is expected that a simplified bit detector
without a multipath decorrelator would suffer from very little performance degra-
dation in wideband CDMA, since the multipath delay spread is larger than a chip

interval.

The algorithm in Section 5.3.1 is modified as follows: the high-rate user signal
detector in (5.49) is replaced by

Aw' . . AN HA 1.
b/ (1)) = sign[HIT %07 (17)] (5.51)

For the case of the low-rate user signal detector in (5.50), a 3 x 3 matrix inversion
can be avoided by replacing (5.50) by

byt (1) = sign[ AL %77 (iy)] (5.52)

The simplified bit detection algorithm can be interpreted as follows: the spatial-

temporal channel matrix in (5.34) corresponding to the high-rate user for k, =

1,---, K} becomes

P
Hkh = Z Ckh7pAkh7pO‘kh7p (553)

p=1
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where

0 - albh,,)

(r+2)—column

which is similar to that of single-rate systems. The spatial-temporal channel matrix

corresponding to the low-rate user for k; = 1,-- -, K; becomes
P
Hy = CrppAsy ik, p (5.54)

p=1

where
a(0y,,) 0 0
App = 0 a(0, )
0 0 a(0y,,)

Thus, high-rate and low-rate users have the identical bit detector structure in each

iteration illustrated in Figure 5.3.

Despreader Max SNR .
> * Beamformer > Maximal
Decoupled 71 1 Decision
Signal . . Ratio Variable
I L] L] _’-
Despreader Max SNR Combiner
> * Beamformer >
4P s

Figure 5.3: Simplified Bit Detection at Each Iteration

5.3.3 Performance Analysis

This section derives a BER lower bound for the SAGE-based receiver in dual-rate
systems to assess the simulation results provided in the next section. Similar to
the case for the single-rate systems, we again assume that we have cancelled all

the multiple access interference in the hidden-data set at the final iteration cycle.
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We assume that the spatial-temporal channel matrix for the desired user is known
pertfectly.

From (5.49) and (5.50) and straightforward application of the technique developed
in Section 4.5, we obtain the BER lower bound for high-rate and low-rate users, for
q € {h,1},

Pl P—1+4p

Py =[(1— /2" Y (1 + 1)/2) (5.55)
p=0 P
where
O 7
V)
and
_ ML Akqpquq,ll
711 2 E[O‘zq,p]
o
where

0,0
Plgkg,11 — |Czq,1|2

and ng,l is given in (5.17) and (5.28) for low-rate and high-rate users, respectively.
The average SNR for user k, is denoted by 74,, L, is the processing gain corresponding
to ¢ € {h,l} for high-rate and low-rate users, respectively, M and P are the numbers

of antenna elements and propagation paths, respectively.

5.4 Simulation Results

We consider a dual-rate system with rate-ratio r = 4. Gold sequences of length 31
from [52] are assigned to high-rate users. For low-rate users, we obtain length-124

spreading sequences by repeating each length-31 Gold sequence four times:

Clky0y * 5 Cky309 Cly0s ° ° * 5 Cy305 Cky0y * * ° 5 Cky305 Cky0y © 5 Ciy30

The length-31 Gold sequences for high-rate users and low-rate users are different to
avoid the possible confusion at the base-station receiver. In the simulations, we trans-

mit a 100-bit information sequence from each high-rate user and a 25-bit information
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sequence for each low-rate user in the same time interval. We assume that the chan-
nel attenuations and DOAs remain unchanged during the data-block transmission.
One training bit in the first bit position in each sequence is inserted to obtain the
initial channel array response vector estimates for either high-rate or low-rate users.
A uniform linear array with half-wavelength spacing is used at the base-station and
the DOAs are assumed to be uniformly distributed in [—60°,60°]. The time delay
of the first path for each active user is uniformly distributed in (0, 7},/2) and the
time delay of the second path for each user is uniformly distributed in (7%/2,T}).
Multipath channels are assumed to be Rayleigh-distributed with identical covariance
for all paths. We consider CDMA systems with two-element base-station antenna

arrays and two propagation paths for all of the following simulations.

In the first example, we consider a system with two high-rate users and two
low-rate users. Four iterations are used to obtain the results. Figures 5.4 and 5.5
show the bit-error-rate (BER) performance of the SAGE-based iterative receiver for
high-rate and low-rate users, respectively. It is observed that using the simplified
bit sequence detection in Section 5.3.2 can achieve comparable performance to the
detector having a multipath decorrelator for both high-rate and low-rate users. This
is consistent with our claim in Section 5.3.2. Note that the BER performance of the
simplified bit sequence detection is slightly better than that of the detector having a
multipath decorrelator in some SNR regions. This can be explained as follows: similar
to the multi-access interference decorrelator, the multipath decorrelator increases the
variance of the background thermal noise, therefore makes its BER performance worse
at some SNR points. Since the multipath signals for each user have been identified
using despreading, the multipath decorrelator is not necessary. BER performance
for high-rate and low-rate users is close to their lower bounds and two lower bounds
are equivalent. The BER convergence to the iterative receiver for the high-rate and
low-rate users is illustrated in Figures 5.6 and 5.7, respectively. We observe that the
BER of the high-rate user converges faster than that of the low-rate user. This means

that the BER of the low-rate users is much more sensitive to multi-access interference
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Figure 5.4: Bit Error Rate (BER) of the Desired High Rate User
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Figure 5.5: Bit Error Rate (BER) of the Desired Low Rate User
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Receiver Performance in Near—Far Environment: Bit Error Rate
10" T T T T T T T

Three High Rate Users, Two Low Rate Users

Asynchronous System, Rayleigh Fading Channel
Two Antennas, Two Propogation Paths

SNR of the desired high rate user: 10 dB

10

Initial Detection Results

1072 Simplified Bit Sequence Detection

Bit Error Rate of the Desired High Rate User

BER Lower Bound

10‘3 I I I I I I
=20 -15 -10 -5 0 5 10 15 20

Power Ratio (dB) (All Interfers have Equal Transmitted Powers)

Figure 5.8: BER Performance of the Desired High Rate User in Near-Far Environment

than that of the high-rate users in dual-rate systems. The results are consistent with

the findings in [12] that use a conventional single-user receiver with power control.

The second example is used to investigate BER performance of the iterative re-
ceiver in near-far environments. There exist three high-rate users and two low-rate
users in the system. The SNR of the desired high-rate user is 10 dB. All other users
have the same transmitted power and the power ratio changes from -20 dB to 20
dB. From Figure 5.8, we observe that the BER of the desired high rate user does
not change with an increase of power of the interfering users. Therefore, the SAGE-
based iterative receiver has near-far resistant behavior. Figure 5.9 shows the BER
convergence for high-rate users. We see that the iterative receiver achieves near-far
resistant BER performance at the expense of more iterations when the interferers

become stronger.

In the final example, we consider a system with fixed two low-rate users and

increase the number of the high-rate users. The SNRs for all users are the same
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Receiver Performance: Bit Error Rate
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and set to be 10 dB. Figure 5.10 compares the BER performance of the high-rate
and low-rate users. We observe that the BER performances are comparable and the
performance for the high-rate users are slightly better than that of the low-rate users
when the number of high-rate users gets large. BER convergences for high-rate and
low-rate users are illustrated in Figures 5.11 and 5.12, respectively. Again, the BER

of high-rate users converges faster than that of low-rate users.

5.5 Conclusions

We have extended the results in Chapter 4 for single-rate systems to dual rate sys-
tems in this chapter. We first developed a synchronous equivalent discrete-time sys-
tem model for dual rate systems with base-station antenna arrays over asynchronous

multipath fading channels. We applied the SAGE algorithm to this dual rate system
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model and obtained an iterative multi-user receiver for joint channel array response
vector estimation and bit sequence detection with known relative time delays for
all users. Simulation results show that the BER performance of the SAGE-based
iterative receiver is near-far resistant. The BERs for high-rate users and low-rate
users are equivalent and the BER of the high-rate user converges faster than that of
the low-rate user. It is shown that using simplified bit detection algorithm achieves
comparable BER performance to the detector having a multipath decorrelator for
wideband CDMA systems. We observe that the BER performance degradation is
very small for either high-rate users or low-rate users when the number of the high-

rate users in the system gets large.
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Chapter 6

Conclusions and Future Work

This chapter summarizes the major contributions in this thesis and presents possible

future directions which could be extensions of the research work in this thesis.

6.1 Thesis Summary

This thesis has investigated spatial-temporal signal processing required for implement-
ing channel estimation combined with multi-user signal detection. We considered the
CDMA uplink with base-station antenna arrays for fading channels. The objectives of
this work were to develop channel estimation and bit sequence detection algorithms
for near-far resistant receivers. The computational complexity of the new receiver
algorithms are shown to be linear in the number of users.

We first developed a spatial-temporal decorrelator for a synchronous single dominant-
path channel and analyzed the decorrelator’s asymptotic efficiency in Chapter 3. We
found in Section 3.3 that the spatial-temporal decorrelator is near-far resistant and
that using a base-station antenna array can significantly increase the asymptotic ef-
ficiency for either the spatial-temporal decorrelator or the conventional single-user
detector. To jointly estimate channel array response vectors and detect information
bit sequences for all active users, we applied the expectation-maximization (EM) and
the space alternating generalized expectation-maximization (SAGE) algorithms to

CDMA systems and obtained two iterative receiver structures in Sections 3.4 and
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3.5, respectively. It has been demonstrated in Section 3.6.1 that the SAGE-based
receiver converges faster than the EM-based receiver. We also found that using a
base-station antenna array accelerates the receiver’s convergence. It is shown that
using base-station antenna arrays can improve channel array response vector esti-
mates of the SAGE-based receiver and therefore improve the receiver’s bit error rate
(BER) performance. We observed that the BER performance of the SAGE-based
receiver is near-far resistant and close to the simulated and analytical results for the

case of known channels.

To extend the results obtained for synchronous systems to the case of asynchronous
multipath systems, we formulate a synchronous equivalent discrete-time system model
in Section 4.2. Based on this model, we derived a spatial-temporal decorrelator for
asynchronous multipath channels by incorporating a maximal ratio combiner in Sec-
tion 4.3. It is shown that this decorrelator is near-far resistant. We found that
unlike base-station antenna arrays, multipath diversity does not improve asymptotic
efficiency for either the spatial-temporal decorrelator or the conventional single-user
detector. For given relative time delays, in Section 4.4, we applied the SAGE algo-
rithm to obtain an iterative receiver structure for jointly estimating channel array
response vectors and detecting bit sequences for all active users. We introduced dou-
ble decoupling the multipath received signals to estimate the channel array response
vector for each path of each user. It is shown that the SAGE-based receiver for multi-
path channels is also near-far resistant and the BER performance of the SAGE-based
receiver is close to that for known channels. The approximation for analytical BER
lower bound derived in Section 4.5 is found to be reasonable. Simulation results show
that timing error effect is not significant for the case of equal transmitted powers and
in lower SNR regions. However, the near-far resistance of the SAGE-based receiver

degrades due to timing errors.

In Section 5.2, we formulated a discrete-time model for dual-rate systems with
fixed chip rate and variable processing gain. We obtained an iterative multi-user

receiver for joint channel array response vector estimation and bit sequence detection

114



for dual-rate systems with base-station antenna arrays and asynchronous multipath
fading channels by using the techniques developed for the case of single-rate systems
in Section 5.3. It is verified that multipath diversity combining is an efficient method
to combat multipath interference and improve receiver’s BER performance for COMA
systems. We found that using the SAGE-based receiver, the BER performance for
both high rate users and low rate users are equivalent and close to the analytical
BER lower bound. We have observed that using simplified bit detection algorithm
derived in Section 5.3.2 can achieve comparable performance to the detector having
a multipath decorrelator for wideband CDMA systems. It is shown that the BER
performance of the SAGE-based receiver is near-far resistant and less sensitive to
an increase of the number of the inteferers in the system at the expense of more

iterations.

6.2 Future Directions

Although this thesis has investigated the problem of joint channel array response
vector estimation and bit sequence detection by incorporating array signal processing
with multi-user signal detection, there are several issues that remain to be explored.

In this section, we discuss several important areas which require further study.

6.2.1 System Capacity Estimation

Due to the computational complexity of simultaneously estimating channel array re-
sponse vectors and detecting bits for all users, this thesis verified the performance of
proposed receivers by simulating a small number of users using bit error rate (BER).
It is expected that the improved BER performance can potentially increase system
capacity. However, direct system capacity estimation is more effective and straight-
forward to evaluate the proposed receivers for cellular communications. One possible
method to estimate system capacity using proposed receivers is to find the resid-

ual interference after the final-stage iteration. By analyzing the residual interference
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statistics, we could evaluate system capacity improvement using current methods such

as that in [57].

6.2.2 Time Delay Estimation

In this thesis, we have assumed that the relative time delays for all the users are known
at the base-station receiver. However, in practical applications, we have to estimate
these parameters. Previous study showed that the BER performance of multi-user
receivers degrades significantly due to time delay estimation errors for single-antenna
single-path systems [3] [5] [63] [111]. In [5], an improved minimum-mean-squared-
error (IMMSE) multi-user receiver is proposed taking into account the timing errors.
However, numerical results show that the IMMSE receiver performs worse than the
MMSE receiver in terms of bit error rate for small timing errors and still suffers
from timing errors. Therefore, higher precise approaches to time delay estimation are
required to achieve acceptable performance when the time delays are not available.
Time delay estimation for multi-user CDMA systems using subspace-based tech-
niques have been proposed in [2] and [83]. In [47], it is observed that using a base-
station antenna array can increase dimension of the noise subspace in [2] and hence
increase the number of users in the system whose parameters can be correctly esti-
mated. The application of the EM algorithm to time delay estimation is first reported
in [17] for superimposed signals. In [15], joint time delay and channel attenuation
estimation methods are proposed for multipath CDMA systems using the EM al-
gorithm and the alternating projection algorithm developed in [112]. Time delay
estimation, however, is computationally very complex. It is necessary to investigate
efficient estimation schemes for multi-user systems. In [79], polynomial rooting is used
to reduce computational complexity of time delay estimation for signal-user CDMA
systems. Since our discrete-time model for asynchronous systems is formulated with-
out assumption of priori knowledge of time delays for all the active users, it may be
possible to incorporate time delay estimation into the receiver algorithms for both

single-rate and multi-rate systems.
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6.2.3 Multi-User Receiver in Multi-Cell Systems

Since it is difficult for a base-station to know all the spreading codes used in other
cells, multi-user receivers only eliminate the multi-access interference (MAI) from the
same cell. Interference from other cells is normally weaker than the MAI from the
same cell and is a fraction f of the latter. The bound of capacity increase using multi-
user detection is (1+ f)/f [11]. For f = 0.55, this factor is 2.8 [99]. It is expected that
using a base-station antenna array could achieve higher capacity [11]. Therefore, it
could be beneficial to investigate performance improvement by incorporating antenna

array processing with multi-user signal detection for multi-cell systems.

6.2.4 Multi-user Receiver for Downlink

Much work on multi-user signal detection has been focused on the CDMA uplink
(mobile to base-station). Improving downlink (base-station to mobile) capacity is
also important. A joint transmitter-receiver structure is proposed based on the min-
imum mean squared error (MMSE) criterion for uplink multipath channel without
base-station antenna array in [28]. However, channel parameter estimation is not
addressed.

For antenna array CDMA systems, transmit beamforming can be used to improve
system performance for the downlink [21]. The difficulty for CDMA transmit beam-
forming is that the channel characteristics for uplink and downlink are different in
frequency division duplex systems since the estimated channel for uplink cannot be
directly used to downlink. However, the directions of arrival (DOAs) for two links
remain nearly the same if the channel changes slowly. Therefore, a possible transmit
beamformer weight can be obtained from the estimated DOAs. Although we did not
address the problem of DOA estimation in this thesis, it is straightforward to obtain
DOASs from the estimated channel array response vectors for all active users. Thus,
joint channel estimation and downlink multi-user detection by incorporating transmit

beamforming could be a possible research direction.
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Appendix A

Derivation of the Cramér-Rao Lower

Bound (CRLB)

This appendix derives the Cramér-Rao Lower Bound (CRLB) for the channel array
response vector estimates. Assumming that we have a block of received signal samples
over N information symbols {x(z),1 < i < N} and the channel and array response
vectors remain unchanged during the block transmission, then the likelihood function

of the data samples is given by

WMLN(Ui/L)MLN exp(—ﬁ > [x()

=1

Qx@)|i=1,---,N) = —Hb(i)]"[x(i)— Hb(i)])

(A1)

The unknown deterministic parameters are background noise covariance o2, the real
part and imaginary part of channel and array response vectors for K users. Denoting
a = a+ ja, where a and a are the real and imagenary parts of a, respectively, the
unknown deterministic parameters background noise covariance o?, a and a. The

parameter vector is defined as

(A.2)

Discarding the terms independent of the unknown parameter vecter ¢, the log-

likelihood function is given by

Q= —MLNIno® — 2 S [x(i) = Hb()]"[x(i) — Hb(i)]) (A.3)

2
=1
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Now, we compute the derivative of the above log-likelihood function with respect to

paramater vector ¢. The derivative with respect o? is given by

dlnQ MLN

do? Z
The derivative of In 2 with respect to a can be obtained by

JdlnQ B Jdln Q JIn .,
da Oay day

and (for k=1,---, K)
Jdln Q) JdlnQ  9InQ.,
— :[ —— *M]
Oay, day day:
where (for k=1,---, K and m=1,---, M)

olnQ 2L X aHH 2L Y ahH
= ] = — b* )
2 S o I i = 225 el
where Re(x) is the real part of x. Recall hy = Cify, and f;, = Agay, then
oh#
8&%: 07 ... Ayl ... 0F

where 0;, is an L-dimentional zero vector.

Denoting the M L x M channel derivative matrix as (for k=1, -+, K)

| Akck OL s OL ]
0 Age, . 0

Dy — L kCk L

i OL s 0 Akck ]
(A.6) can be obtained as

8lnﬂ oL XN

= B
et = 2L B DG

Using the following compact notation
D= [ Dy --- DK]

and

B(i) = diag[Bi(2), ---, Bg(i)]
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the derivative of log-likelihood function with respect to a is given by

515;9 - 20_5 > Be[B"(i)D"n(i)] (A.13)

Similarly, the derivative of log-likelihood function with respect to the imaginary part

of a, a, is given by

515;9 - %EIW[BH(@')DHH(@')] (A.14)

where I'm(x) represents the imaginary part of x.

The Fisher information matrix is given by [34]

dlnQ . 0Iln Q)

I(¢)=F T A.15
6 = B (A15)
First, we can obtain the following result [82]
0ln Q) MLN
2 2
o) = B = (A1)
and 881?29 1s uncorrelated with other two derivative vectors.

Using following relations [82]

Re(x)Re(y") = %[Re(xyT + Re(xy"] (A.17)
Im(x)Im(y") = —%[Re(xyT — Re(xy"] (A.18)
Re(x)Im(y") = %[]m(xyT — Im(xy™] (A.19)
and
En@n' (7)) =0: i=1, N and j=1,--.N (A.20)
B ()] = i = ) dars i = L N and =1 N (A21)

where Iy is an M x M indentity matrix, we obtain

dnQ 9nQ ;. 2L &

1) = BT PRy 2 25 pepr 0 DB (A2
Tws) = Bl G ") = =2 X Il B D" D () (A.23)
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Denoting signal-to-noise ratio (SNR) v = A7/o?* (for k =1,---, K), we can obtain

G(i) = BH(i)DY DB(i)

’71P11]M \/’71’72P12B12(i) te \/’71’71(/)11(]31]((1')
_ \/’71’72P12B12(i) ’72P22]M :
| VE ik Bik(7) e e v prKIm

where By;(i) = BH(1)B;(i) (for i = 1,---,N and j = 1,---, N). Since G is real, we

have
I(a)=1(a) = 20—[21 Z: G(1) (A.24)

and
I(aa) =0 (A.25)

Thus, the Fisher information matrix is given by

](02) OTMK OTMK
I(¢)=| oyx I(a) O (A.26)
Ok 0 I(a)

Using inverse of a partitioned matrix, we can obtain the Cramer-Rao lower bound

(CRLB) matrix for channel and array response vectors

CRLB(a) =I(a)™" +I(a)™" (A.27)
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Appendix B

Derivation of H;

In this Appendix, we derive the estimate of Hy ,, f{k,pv in (4.38). Rewrite the log-
likelihood function (4.37)

Q= —021/ 7 2 (ki (1) = Hiy B () (55,(7) = Heybi (1) (B.1)

Discarding the terms which are independent of Hj ,, the likelihood function can be

written as
1 a wil /- H wy ~SiH /- wy
0 = — ST ) 255 b (B2)
=1
We denote

Hyp[1,1] Hyep[1,2] Hp[1,3]
Hy, = : : : (B.3)
Hyp[2M L1 Hy,[2ML,2] Hy,[2ML,3]

where Hy ,[m,n], for m =1,---,2ML and n = 1,2,3, is the (m,n)th component of

the matrix Hy, .

~ASF - S; S T

Xpp() = ( T (O[] - 2 ()[2M L] ) (B.4)
For notational consistency, we also denote

by (1) = (b (O[] b (0)[2] b (1)[3])
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Thus, the likelihood function can be expressed as

bR [2) (b)) S2ME H7, [, 1) Hy [, 2)
h(0)[2] QMLHM[ 2)Hypfm, 2

2] ZzMLHkp[m Q]Hkp[m 3]
3] st H ylm, 31 Hpp[m, 3])
—2 (bw(i)[l] S (@, () m]) Hyplm, 1]

b (6)[2] a5 (&, (1) ] Hy o[, 2]

m=1
by (1

)
VB3] L (277, () m])" Hip[m, 3])

where Hj [m,n] is the complex conjugate of Hy,[m,n] for m = 1,---,2ML and

n =1,2,3. To obtain the ML estimate for Hy,, we take the derivative of (B.5) with

respect to Hy ,. The derivative is given in a matrix form

o0 o0 o0
5H, ,[L.1] 5H, ,[1.2] 5H, ,[1,3]
aQ P P P
oM.,
o0 o0 o0

9Hy, p2ML,1]  9Hy ,[2ML,2] 9Hj ,[2ML,3]

For m =1,---,2M L, we obtain

e bw< UG H s 1]+ ()1
bif (1) (1163 (1) [BLH y[m, 3] — b (1) [1]
= 1 i Hﬁ,p[m]b ()b (0[] = (&, (0)[m]) b (D)[1]
(B.7)
where Hj; [m]= (H} [m,1] Hf [m,2] Hj [m,3])is a 3-dimensional row vector for
m=1,---,2M L. Similarly, we have

o0 . » .
Ot [m2) 2/L ZHkp D)2 - RO EOR] (BS)

123



and

o0 B
OHy ,[m, 3] o

2 X I Sy s

oy ;Hk,p[m]bk(l)bk (6)[3] = (&7,()[m])"0} ()[3] (B.9)
Therefore, the derivative matrix is obtained as

afa—fip - ﬁzizl

Hi, [1b(2)b ()[1] Hi, [1b(2)b (4)[2] Hi, [1]b(2)b (4)[3]

EOB) |

H [2MLIbY ()b (1] HE, [2M LIby ()b (2)[2] HE ,[2M L]bj; (2)b]
] )b (1)[3]

(5 (D) b (1)]1] (D)L b ()[2] (a7, (0)1]

(Erp(ORML) b (1] (E7,(O2M L) b (D[] (&7,(1)[2M L))" bE (0)[3] |

(B.10)
Eqn. (B.10) can be expressed in a compact form as
15,9/ 9 N o -
S = 7L ;Hk,pbk ()b T (i) — (%2 ()) b (1) (B.11)

Equating (B.11) to zero, and noting that b}’(¢) is a real-valued vector, we obtain

Zx )by (3) wa )by T (4) (B.12)
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