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Abstract

To meet growing demand for wireless access to voice, data andmultimedia services,

current wireless communication technologies need furtherimprovement in spectral effi-

ciency. Many enabling technologies have been proposed, including multicarrier modula-

tion, multiple-input multiple-output (MIMO) and link adaptation. This thesis investigates

link adaptation, particularly transmit optimization in multicarrier and MIMO wireless com-

munications.

In the first part of this thesis, we propose a new bandwidth efficient Orthogonal Fre-

quency Division Multiplexing (OFDM) scheme with adaptive zero-padding (AZP-OFDM)

for wireless transmission. A new system design criterion based on the channel matrix con-

dition is studied and applied to the design of an AZP-OFDM system. It has been shown that

AZP-OFDM offers a more flexible tradeoff between performance, bandwidth efficiency

and complexity.

The second part of this thesis investigates power allocation for OFDM. We propose new

minimum bit error rate (MBER) and approximate MBER (AMBER) subcarrier power allo-

cation algorithms for cyclic prefix (CP)-OFDM. It is shown both analytically and by sim-

ulation that the proposed CP-OFDM with MBER and AMBER power allocation schemes

are superior to CP-OFDM without power allocation as well as zero-forcing (ZF)-equalized
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single-carrier with CP. BER performance analysis of power allocation with imperfect chan-

nel state information is conducted.

Precoding for MIMO spatial multiplexing generally requires high feedback overhead

and/or high complexity processing. In the third part of thisthesis, simultaneous reduction

in complexity and overhead is proposed by imposing a diagonal structural constraint to pre-

coding, i.e., power allocation. MBER is employed as the optimization criterion. It has been

shown that interference cancellation and detection ordering with MBER power allocation

offer superior performance over previously proposed MBER precoding with ZF equaliza-

tion as well as over MMSE precoding/decoding. Performance under noisy channels and

power feedback is analyzed.

In the fourth part of this thesis, transmit optimization fortwo-input multiple-output

(TIMO) spatial multiplexing systems is investigated. Approximate MBER transmit power

allocation for a variety of receiver structures is investigated. An approximate MBER

transmit beamforming scheme is proposed, which eliminateserror floors in ill-conditioned

TIMO channels.
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Chapter 1

Introduction

1.1 Motivation

Over past decades, wireless markets have been witnessing unprecedented growth fueled by

information explosion and technology revolution. Wireless communications is diverse and

ubiquitous in today’s world. The continued increase in demand for all types of wireless ser-

vices (voice, data and multimedia) has driven wireless communications to move fromnar-

rowbandto widebandin bothcellular mobile andfixed wirelessareas [9, 65]. In this con-

text, wireless communication technologies need further improvement in spectral efficiency

to satisfy the ever increasing demand for higher capacity and data rates. Many enabling

technologies that improve the spectral efficiency have beenproposed and/or standardized,

including, e.g., smart antennas, in particular multiple-input multiple-output (MIMO) tech-

nology, multicarrier modulation, and link adaptation techniques [9,14,17,39,98].

1



1.1.1 Multicarrier Wireless Transmission

Multicarrier transmission is a form of multichannel communications. The frequency band

of the multicarrier channel is subdivided into a number of subcarriers over which infor-

mation is transmitted [10]. As a bandwidth efficient multicarrier scheme, Orthogonal Fre-

quency Division Multiplexing (OFDM) has become a popular technique for transmission

of signals over wired and wireless channels [11,106].

Historically, OFDM was introduced in 1960s [19, 83, 87]. Further development, e.g.,

[10] and [21] enabled a growing interest in OFDM technology and applications with adop-

tion in wired and wireless standards, such as digital audio and video broadcasting (DAB

and DVB) in Europe [29, 30], high speed modem transmissions over copper wires (Asyn-

chronous Digital Subscriber Line, ADSL) [5], wireless Local Area Network (Wireless

LAN) standards IEEE 802.11 in North America [46], HIPERLAN/2in Europe [32] and

Multimedia Mobile Access Communication (MMAC) in Japan, and wireless Metropolitan

Area Network (Wireless MAN) IEEE 802.16 [47] and HIPERMAN [33]. OFDM is also

a potential candidate for dedicated short-range communications (DSRC) for road side to

vehicle communications and fourth-generation (4G) wireless mobile systems [98].

Wireless transmission experiences multipath fading due tothe nature of radio propaga-

tion. Multipath signals cause inter-symbol interference (ISI), which limits system perfor-

mance and data rate. In single-carrier communications, time-domain equalization (TDE)

is generally employed to mitigate ISI. With the increase of system bandwidth, multipath

effects become severe and the complexity of TDE increases, which can be prohibitively

high in particular wideband systems. On the other hand, by subdividing the channel fre-

quency band, OFDM effectively converts a frequency-selective channel into a number of

parallel frequency-flat subchannels. Therefore, equalization in OFDM systems degenerates

to scalar gain control, also known as one-tap equalization.
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In OFDM systems, subcarriers are separated by the minimum frequency separation

required to maintain orthogonality among their corresponding time domain waveforms,

while their corresponding signal spectra overlap in frequency. As a result, the channel

bandwidth is used efficiently in OFDM. To mitigate the effectof ISI, a guard interval of

length no shorter than the channel delay spread is generallyinserted between OFDM block

signals. The guard interval may be either cyclic prefix (CP) [82] or null [107], referred to

as, respectively, CP-OFDM and zero-padding (ZP) OFDM [106].The baseband modula-

tion/demodualtion of OFDM signals can be implemented efficiently using discrete Fourier

transform (DFT) [82]. These properties facilitate OFDM to be a favorable transmission

scheme for wideband wireless communications.

Besides its advantages, OFDM transmission experiences somedifficulties as well. For

example, OFDM signals have high peak-to-average power ratio (PAPR), which increases

the cost of linear amplifiers [73]. Compared with its single-carrier counterpart, OFDM is

sensitive to frequency offsets and time-varying channels,both of which destroy orthog-

onality among subcarriers and cause inter-carrier interference (ICI) and irreducible error

floors [113]. The problems of PAPR reduction and synchronization in OFDM have been

studied in [61,99,110].

Though OFDM uses the available frequency band efficiently, the overall system band-

width efficiency is not necessarily high due to the overhead incurred by guard intervals.

When either the channel delay spread or data rate increases, the length of the guard se-

quence has to be increased accordingly in order to avoid ICI, which reduces system band-

width efficiency. One method to improve efficiency is to increase the OFDM block size, at

the cost of increased latency and implementation complexity. Moreover, CP-OFDM offers

simplified equalization at the expense of symbol recovery capability, since subcarriers may

encounter channel nulls [106]. These problems comprise ourmain concerns about OFDM
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transmission in this thesis, where link adaptation schemeswill be investigated as solutions.

1.1.2 MIMO Wireless Communications

The fundamental work by Foschini and Gans [36] and Telatar [102] suggest that the use of

multiple transmit and receive antennas, referred to as a MIMO system, can provide higher

data rates over wireless links at no extra expenditure of bandwidth and power. MIMO

technologies essentially explore the spatial dimension inwireless communication links to

provide a promising means to increase spectral efficiency infuture wideband wireless trans-

mission.

MIMO technologies improve wireless system performance with array gain, diversity

gain, spatial multiplexing gain, andinterference reductioncapability [79,80]:

• Array gain results from coherent combining, increases average receive SNR, and can

be achieved through processing at the transmit and receive side [4];

• Diversity gain mitigates random fluctuation (or fading) of radio signals, and can be

made available at the receiver [50], the transmitter [3,100,101], or both;

• Spatial multiplexing offers a linear increase in capacity at no additional expenditure

of power or bandwidth, under conducive channel conditions,such as rich scattering

[36,102];

• Interference reduction algorithms cancel or reduce the co-channel interference (CCI)

by differentiating between the spatial signatures of the desired and CCI signals, allow

aggressive frequency reuse, and therefore improve the system capacity [81].

To achieve these gains afforded by MIMO technologies, appropriate transceiver de-

signs are necessary. We focus on MIMO spatial multiplexing systems in this thesis. Signal
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reception in MIMO spatial multiplexing can employ a varietyof criteria. While the opti-

mal maximum likelihood (ML) receiver lower bounds the errorrate performance of other

sub-optimal receivers, ML complexity grows exponentiallyin the number of the transmit-

ted signal streams. The linear ZF receiver, on the other hand, has low complexity, but

generally suffers from noise enhancement problems. Reasonable tradeoffs between perfor-

mance and complexity can be achieved by other sub-optimal receivers, such as minimum

mean squared-error (MMSE), successive interference cancellation (SIC), or ordered SIC

(OSIC) as, for example, in the case of the Vertical Bell Laboratories Layered Space-Time

(V-BLAST) [37,79].

When channel knowledge is available at the transmitter, referred to as CSIT, it can be

exploited to improve system performance [79]. While obtaining full CSIT is generally ex-

pensive, partial CSIT in the form of instantaneous channel parameters or its second-order

statistics can be easier to obtain. A variety of factors determine the scheme used to exploit

CSIT, such as receiver structure and optimization criterion(e.g., throughput or error rate).

Generally, CSIT is exploited by using precoding. A variety ofprecoding schemes have

been proposed for MIMO, including MMSE precoding/decoding[92], minimum bit error

rate (MBER) precoding for ZF receiver [28], and limited feedback precoding [58,59]. As a

special case of precoding, transmit antenna selection has also been proposed to reduced the

complexity/cost of radio frequency (RF) chains [42,64,89].Nevertheless, general precod-

ing for MIMO has high complexity (in obtaining the precoder)and/or feedback overhead

(in feeding back the channel or precoding matrix), which motivates our investigation of

new schemes to exploit CSIT with reduced complexity and overhead.
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1.1.3 Link Adaptation

Link adaptation refers to algorithms and protocols that dynamically adapt the modulation,

coding rate and/or other signal transmission parameters tothe changing channel condi-

tions. Good channel conditions result in the transmission of less redundant information

and therefore more efficiency [17]. Traditional link adaptation techniques employed in

cellular communication systems includepower control, adaptive modulation/codingand

water-filling [6]:

• Power control adjusts the power of the transmitted signal tomeeta target carrier-

to-interference-plus-noise ratio. It is commonly used in CDMA systems to reduce

interference, as well as in some TDMA systems. Downlink power control can be

viewed aspower allocationamong all of the active users.

• Adaptive modulation/coding adjusts the modulation level and coding formats tomatch

the current received signal quality. It is used in TDMA systems such as the Enhanced

Data for GSM Evolution (EDGE) as well as in some CDMA systems.

• Water-filling can be viewed as a combination of adaptive modulation/coding and

power allocation [20].

We note that traditional link adaptation techniques are primarily applied to multiuser

cellular systems. As additional signal dimensions (space and frequency) are exploited in

future wideband communications, a nature question is how todynamically allocate avail-

able resources among these dimensions for each user in orderto increase spectral efficiency.

As a heuristic solution, each signal stream can be viewed as avirtual user, resulting in a

virtual multiuser system. The existing link adaptation techniques then apply directly. Nev-

ertheless, compared with cellular multiuser systems, multicarrier and MIMO system design
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poses different technical challenges and provides new degrees of freedom as well. A few

examples are given next.

• In the uplink of a multiuser system, each user does not generally have full channel

knowledge of other users, but some transmission parametersfrom the basestation.

At the transmitter of a multicarrier or MIMO systems, on the other hand, CSI can

be made available to all virtual users. This makes collaboration among virtual users

(signal streams) possible.

• Traditional link adaptation in cellular wireless systems generally employ criteria such

as system capacity, peak data rate, and/or coverage reliability [6]. These criteria can

also be used in link adaptation of multicarrier and MIMO systems. Furthermore, tak-

ing into account the nature of optimization of single user performance, other criteria

such as error rate can be employed as well.

• In OFDM systems, redundancy is introduced in terms of CP or ZP for simplification

of equalization or symbol recovery. Such redundancy is fixedin existing standards.

This scheme is not efficient if the channel condition is good,and not robust when the

channel delay spread is large.

These motivate our investigation of link adaptation for multicarrier and MIMO systems.

Future wideband wireless networks are expected to support amix of real-time (delay-

sensitive) traffic such as voice, multimedia teleconferencing and games, and data traffic

such as Web-browsing, email and file transfers [94]. In this thesis, we assume the trans-

mission rate is fixed and study the redundancy and power aspects of link adaptation, which

may find application in real-time applications. Such link adaptation techniques are also

referred to astransmit optimizationin this thesis.
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1.2 Thesis Overview

This thesis investigates the transmit optimization problem for wireless multicarrier and

MIMO communications. There are seven chapters in this thesis addressing different aspects

of this topic.

In Chapter 2, the wireless channel model, including both SISOand MIMO, is first

described. Principles of wireless multicarrier and MIMO transmission as well as their

related issues are then reviewed, followed by a descriptionof the objectives of this thesis.

Chapter 3 proposes an adaptive zero-padding (AZP) OFDM transmission scheme which

offers flexible tradeoffs among performance, bandwidth efficiency and complexity. We first

analyze redundancy issues in OFDM schemes using cyclic prefix (CP), zero-padding (ZP)

as well as the use of no guard interval. A new system design criterion based on the channel

matrix condition is then proposed. Based on this criterion, an AZP-OFDM scheme is

proposed, which adjusts the length of guard interval in terms of zero-padding according to

the condition number of channel matrix. Performance of the proposed AZP-OFDM scheme

is assessed by Monte Carlo simulations.

A framework for analytical performance comparison betweenCP-based OFDM and

siggle-carrier block transmission schemes is presented inChapter 4. Motivated by the

analytical performance comparison, power allocation schemes using a variety of criteria

are proposed, including minimization of bit error rate (MBER), as well as an approximate

MBER (AMBER) scheme with a closed-form optimum solution and small performance

loss. Analytical performance comparison among a variety ofschemes is conducted. Per-

formance degradation of power allocation under imperfect CSI estimate/feedback is inves-

tigated as well.

In Chapter 5, we apply power allocation to MIMO spatial multiplexing systems. Sig-

nal reception methods and performances are first reviewed. An MBER transmit power
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allocation scheme is then proposed. It is shown that compared with existing precoding

schemes, the proposed MBER transmit power allocation together with detection ordering

and interference cancellation improves performance with reduced feedback overhead and

complexity. Performance degradation of transmit power allocation using noisy feedback

is also investigated, based on which a robust MBER power allocation scheme is proposed,

which takes into account both noisy CSI variance and error propagation.

Chapter 6 considers transmit optimization of TIMO spatial multiplexing systems, a

special case of MIMO. The MBER transmit power allocation method proposed in Chap-

ter 5 is applied to TIMO channels, with simple closed-form solutions. An approximate

MBER transmit beamforming scheme is also proposed, with the capability of mitigating

error floors in ill-conditioned TIMO channels.

Finally, Chapter 7 summarizes the conclusions and suggests possible directions for

future work.

1.3 Summary of Contributions

The primary contributions of this thesis are summarized as follows.

• Redundancy in OFDM schemes is analyzed. An OFDM system designcriterion

based on the channel matrix condition number is proposed. Using this criterion,

an AZP-OFDM scheme is developed. An algorithm for choice of AZP length is

provided.

• MBER and AMBER power allocation schemes and algorithms for CP-OFDM are

proposed. Analytical performance comparison among CP-OFDMand single-carrier

block transmission is conducted. Performance of power allocation under uncertain

CSI feedback/estimate is analyzed.
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• MBER power allocation is applied to MIMO spatial multiplexing systems. Perfor-

mance, complexity and feedback overhead using power allocation are analyzed and

compared to general precoding schemes. Performance degradation under noisy CSI

and power feedback is analyzed. A robust MBER power allocation using feedback

noise variance is proposed. Mitigation of error propagation in interference cancella-

tion receivers is addressed.

• MBER power allocation for TIMO spatial multiplexing is analyzed. An approx-

imate MBER transmit beamforming scheme for ill-conditionedTIMO channels is

proposed. Extension of the proposed transmit beamforming to high order modula-

tion schemes is investigated.
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Chapter 2

Background and Objectives

2.1 Wireless Channel Model

The mobile radio channel places fundamental limitations onreliability and throughput of

wireless communications. The mechanisms behind radio-wave propagation are compli-

cated. Due to scattering, reflection and diffraction of radiated energy from various objects,

the transmitted signal arrives the receiver along a number of distinct paths, resulting in

multipath fading. Multipath signals arrive at the receiver with different time-varying de-

lays, angles of arrival and attenuations. In a single-inputsingle-output (SISO) channel,

multipath causes the spreading of signals in time and frequency:

• frequency-nonselective fading due to constructive and destructive interference of

multipath signals;

• frequency-selective fading caused by multipath propagation delays;

• time-selective fading (Doppler spread) due to relative movements of the transmitter,

receiver and/or scatters.
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Radio propagation and wireless channel modelling issues have been covered in detail in

[50, 85]. For MIMO communications, multipath propagation results in the spreading of

signals in the spatial dimension in addition to time and frequency dimensions, i.e.,

• spatially selective fading due to angle spread.

MIMO channel modelling has been reviewed and studied in detail in [79,112].

2.1.1 SISO Wireless Channel

Consider a SISO wireless channel. Leth(τ, t) denote the overall time-varying impulse

response of the transmit-filter, continuous channel and receive-filter. Denotes(t) as the

transmitted signal. Ignoring the additive white Gaussian noise (AWGN), the received signal

r(t) is given by

r(t) =
∫ τL̃

τ1

h(τ, t)s(t − τ)dτ = h(τ, t)⋆s(t), (2.1)

where⋆ denotes convolution;τ1 andτL̃ denote the minimum and maximum path delays,

respectively.

2.1.1.1 Frequency-Nonselective Fading

If the delay spread is much less than the symbol periodTs, i.e.,τL̃−τ1 ≪ Ts, then (2.1) can

be approximated as

r(t) ≈ h(τ1, t)s(t − τ1)
def
= h(t)s(t − τ1). (2.2)

The channel isfrequency-nonselective.When there is a large number of multipath sig-

nals with uniformly distributed phase angles on[0,2π], the channel amplitude|h(t)| has a

Rayleigh distribution,

f|h(t)|(α) =
α
σ2

h

exp

{

− α2

2σ2
h

}

, α ≥ 0, (2.3)
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whereσ2
h is the power of the multipath signals. If there is a dominant path, usually a

line-of-sight (LOS) path,|h(t)| follows a Ricean distribution,

f|h(t)|(α) =
α
σ2

h

exp

{

−α2 +A2

2σ2
h

}

I0

(
αA

σ2
h

)

, α ≥ 0, (2.4)

whereA is the amplitude of the dominant path, andI0(·) denotes the zeroth-order modified

Bessel function of the first kind. The RiceanK-factor characterizes the dominance of the

LOS path and is defined as

K
def
=

A2

2σ2
h

. (2.5)

2.1.1.2 Frequency-Selective Fading

With a decrease in symbol duration, or, equivalently, an increase in signal bandwidth, the

received signal is a sum of resolvable delayed copies of the original signal,

r(t) =
L̃

∑̃
l=1

hl̃ (t)s(t − τl̃ (t)), (2.6)

wherehl̃ (t) andτl̃ (t) denote, respectively, the channel gain coefficient and delay of the l̃ -th

path. The frequency response of the channel in (2.6) fluctuates across the signal bandwidth,

and (2.6) isfrequency-selective. Note that in (2.6), when there is no delay spread, i.e.,

L̃ = 1, and the channel frequency response is flat across the signal bandwidth, and (2.6)

degenerates to the frequency-nonselective channel (2.2).

A frequency domain parameter related to channel frequency selectivity is coherence

bandwidth(Bc), which is inversely proportional to the delay spread. Frequency selectivity

depends on the bandwidth of signal (Bs) with respect to channel coherence bandwidthBc.

If Bs is relatively small compared toBc, the signal experiences frequency-nonselective

fading; otherwise, fading is frequency-selective. Frequency-selective fading introduces

inter-symbol interference (ISI) in single-carrier transmission, and time domain equalization

is typically employed to mitigate distortion and improve system performance. Complexity
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of time domain equalization increases with the number of channel taps. On the other hand,

in multicarrier systems, the total bandwidth is subdividedinto narrower (with respect to

channel coherence bandwidth) frequency bins for signal transmission. Such frequency

division mitigates channel frequency selectivity experienced by the transmitted signal and

simplifies equalization.

2.1.1.3 Time-Selective Fading

Scatter or transmitter/receiver relative motion results in variation of channel response in

time. In other words, the transmitted signal experiences different fading at different times,

which is referred to astime-selective fading. Motion results in frequency shift (Doppler

spread). Time-selective fading can be characterized by thechannel coherence time,Tc,

which is inversely proportional to Doppler spread. Most communications systems require

channel state information (CSI) at the receiver to decode thetransmitted information. For

channels with relative smallTc (with respect toTs), CSI has to be acquired frequently, which

increases overhead. In systems with transmit optimization, overhead due to estimation or

feedback of CSI or related information at the transmitter increases as well.

2.1.2 MIMO Wireless Channel

Consider a MIMO system withNt transmit antennas andNr receive antennas. The MIMO

channel matrix is obtained on the basis of SISO channels, i.e.,

H(τ, t) =













h1,1(τ, t) h1,2(τ, t) · · · h1,Nt (τ, t)

h2,1(τ, t) h2,2(τ, t) · · · h2,Nt (τ, t)

...
...

. . .
...

hNr ,1(τ, t) hNr ,2(τ, t) · · · hNr ,Nt (τ, t)













Nr×Nt

, (2.7)
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wherehm,n(τ, t) denotes the channel response between then-th (n = 1, · · · ,Nt) transmit

antenna and them-th (m= 1, · · · ,Nr) receive antenna. For simplicity of notation, we drop

thet dependence in (2.7). We also assume frequency-nonselective MIMO channels in this

thesis. Due to the introduction of the spatial dimension, compared with SISO channel

model, a number of new parameters are added in order to characterize MIMO channels.

We consider a general Ricean fading MIMO channel, which can bemodelled as the sum of

a LOS component and a scattered component [35]

H =

√

K
1+K

Hl +

√

1
1+K

Hs, (2.8)

where RiceanK-factor is defined as the ratio of LOS-to-scattered power. When K = 0,

(2.8) degenerates to a Rayleigh fading MIMO channel.Hl andHs denoteNr ×Nt channel

matrices of the LOS and scattered components, respectively.

2.1.2.1 LOS Component

Consider linear transmit and receive antenna arrays. The LOScomponentHl can be mod-

elled as [35]

Hl = ar (θr)at (θt)
T ,

where

ar (θr) =
[

1 e− j2πdr sin(θr ) · · · e− j2πdr sin((Nr−1)θr)
]T

,

at (θt) =
[

1 e− j2πdt sin(θt) · · · e− j2πdt sin((Nt−1)θt)
]T

,

are the array response vectors for the receiver and transmitter antenna arrays;θr andθt

are the angles of arrival and departure of the deterministiccomponent, respectively;dr

anddt are the receiver and transmitter antenna spacing expressedin terms of wavelengths,

respectively.
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2.1.2.2 Scattered Component

The entries of the scattered component are modelled as zero-mean complex Gaussian ran-

dom variables, with cross-correlations determined by antenna array geometry, angle spread,

mean direction of signal arrival/departure, etc. Spatial fading correlations indicate the avail-

able spatial diversity of a MIMO channel: little spatial diversity gain can be extracted from

highly correlated channels, and vice-versa. In [95], the spatial fading correlations were

derived for isotropic scattering around the mobile. A space-time fading correlation model

for general nonisotropic scattering around the mobile was proposed in [1].

In this thesis, we adopt the spatial fading correlation model given in [1]. A geometric

configuration of MIMO channel with local scatterers around the transmitter is illustrated

in Fig. 2.1. For isotropic scattering around the transmitter and a small angle spread∆, the

cross-correlation between channel coefficientshp,l andhq,m can be approximated as [1]

E
{

hp,lh
∗
q,m

}
≈ exp

{
jcpqcos(αpq)

}

×I0

(√

−b2
lm−c2

pq∆2sin2(αpq)−2cpqblm∆sin(αpq)sin(βlm)

)

(2.9)

where j =
√
−1; blm = 2πdlm andcpq = 2πδpq; dlm andδpq are the antenna spacings at

the receiver and transmitter expressed in terms of wavelengths; anglesαpq and βlm are

shown in Fig. 2.1. With the decrease of angle spread∆, spatial correlation increases. In a

Ricean fading channel (2.8), as the LOS component becomes prominent, i.e.,K increases,

the spatial correlations increase as well. We note that (2.8) includes both Rayleigh and

uncorrelated fading channels as special cases.

2.2 Multicarrier Wireless Communications

Frequency-selective multipath channels introduce ISI, which degrades performance and

limits maximum data rate [84]. If single-carrier (SC) modulation is employed, an equalizer
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Rxq

Rxp

Txl

Txm
αpq ∆ βlmδpq

dlm

scatterer ring

Figure 2.1. Geometric configuration of MIMO channel with local scatterers around the

transmitter: Rxp is thep-th antenna element at the receiver, Txl is thel -th antenna element

at the transmitter.

is required to compensate for the channel distortion. The complexity of an SC receiver

increases as the channel delay spread increases. Alternatively, multicarrier (MC) technolo-

gies can be used. In an MC system, the available bandwidth is subdivided into a number of

subcarriers, with each subcarrier experiencing nearly frequency-nonselective fading. From

a time-domain point of view, the symbol duration of each subcarrier in MC systems is

longer than that of SC systems, which increases robustness to channel delay spread and

simplifies equalization.

2.2.1 Principle of MC Modulation

Consider an MC system withN subcarriers. To eliminate inter-carrier interference (ICI),

subcarriers are chosen to be orthogonal to each other. Denote the symbol period of each

subcarrier asTs. When the frequency separation between subcarriers is∆ f = n/Ts,n =

1,2, · · · , subcarriers are orthogonal to each other [84]. The minimum frequency separation

between subcarriers for orthogonality is∆ fmin = 1/Ts. Multicarrier modulation with sub-

carrier frequency separation∆ fmin is usually referred to as orthogonal frequency division
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multiplexing (OFDM), which is also a topic of this thesis.

Denote the baseband frequency of thek-th subcarrier asfk = k/Ts,k ∈ [0,N−1]. The

transmitted signal is modelled as

s(t) =
1√
N

N−1

∑
k=0

uke
j2πkt/Ts, 0≤ t < Ts, (2.10)

whereuk is the information symbol transmitted over thek-th subcarrier. Whens(t) is

transmitted over a frequency-selective channel, the received signal is given by

rMC(t) = s(t)⋆h(t)+η(t), (2.11)

whereη(t) denotes the additive white Gaussian noise (AWGN) process. Ifwe assume that

the channel is constant over an OFDM block, and varying (slowly) from block to block,

(2.11) can be simplified, according to (2.6), as

rMC(t) =
L̃

∑̃
l=1

hl̃ s(t − τl̃ )+η(t). (2.12)

In successive transmission, (2.12) experiences inter-block interference (IBI) from previous

block. To avoid IBI, a guard interval of durationTg ≥ τL̃ in terms of cyclic prefix (CP) or

zero-padding (ZP) is usually inserted.

2.2.1.1 CP-OFDM

By inserting a cyclic prefix, the CP-OFDM transmitted signal becomes

sCP(t) =
1√
N

N−1

∑
k=0

uke
j2πkt/Ts, −Tg ≤ t < Ts, (2.13)

Denote the sampling period asTc = Ts/N. Sampling the continuous transmitted signal

(2.10) attn = nTc, the discrete transmitted signal becomes

sn =
1√
N

N−1

∑
k=0

uke
j2πkn/N, 0≤ n < N,
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which is the inverse discrete Fourier transform (IDFT) of{uk}N−1
k=0 . For convenience of no-

tation, we use matrix-vector representation in what follows. The transmitted signal vector

is given by

s = [s0 s1 · · · sN−1]
T = FH

Nu,

whereFN denotes theN-point discrete Fourier transform (DFT) matrix with[FN]m,n =

1√
N

e− j2πmn/N, andu = [u0 · · · uN−1]
T denotes the information symbol vector. ChooseTg

so thatG = Tg/Tc is an integer. The CP-OFDM signal vector is then obtained as

sCP = [sN−G · · · sN−1
︸ ︷︷ ︸

cyclic prefix

s0 · · · sN−1
︸ ︷︷ ︸

s

]T .

The multipath propagation channel can be modelled as a finiteimpulse response (FIR)

filter with tap coefficientsh0,h1, · · · ,hL. At the receiver, after discarding the firstG entries

corresponding to the CP, the received signal vector is obtained as,



















rCP,0

rCP,1

...

...

...

rCP,N−1




















︸ ︷︷ ︸

rCP

=




















h0 0 · · · 0 hL · · · h1

h1
.. . . . . . .. . . .

...
...

.. . . . . . .. . . . hL

hL
. . . . .. . .. 0

0
... ... ... . . .

...
...

.. . . . . . .. . . . 0

0 · · · 0 hL · · · h1 h0




















︸ ︷︷ ︸

HCP




















s0

s1

...

...

...

sN−1




















︸ ︷︷ ︸

s

+




















η0

η1

...

...

...

ηN−1




















︸ ︷︷ ︸

ηηηN

,

(2.14)

whereHCP is anN×N circulant matrix [41], andηηηN denotes anN×1 AWGN vector. Note

that due to CP insertion, the linear convolution model (2.12)becomes circular convolution

[75] in (2.14), i.e.,

rCP,n = hn⊗sn +ηn,
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where⊗ denotes circular convolution. Performing MC demodulationvia DFT, the frequency-

domain received signal vector is obtained as

r f = FNrCP

= FNHCPs+FNηηηN

= FNHCPFH
Nu+ηηη f

N, (2.15)

where the superscriptf denotes a frequency-domain variable. By using the well-known

property of circulant matrices, we have

r f = diag{FNh}
︸ ︷︷ ︸

def
=Dh

u+ηηη f
N, (2.16)

where theN× 1 vectorh def
= [h0 h1 · · · hL 0 · · · 0]T , and Dh

def
= diag{H0,H1, · · · ,HN−1}

with Hk
def
= [FNh]k denoting the channel frequency response ofk-th subcarrier. A block

diagram of CP-OFDM system is illustrated in Fig. 2.2. Essentially, by inserting CP and

performing MC modulation and demodulation,N effective frequency-nonselective fading

channels have been established, i.e.,

r f
k = Hkuk +η f

k , k = 0,1, · · · ,N−1, (2.17)

wherer f
k

def
= [r f ]k andη f

k
def
= [ηηη f

N]k. This is shown in Fig. 2.3. Equalization required for

(2.17) is scalar division, also know asone-tap equalization,

ûk =
r f
k

Hk
= uk +

η f
k

Hk
, k = 0,1, · · · ,N−1, (2.18)

where perfect channel state information (CSI) is assumed available at the receiver.

For simplicity of analysis purposes, we assume white input and noise, i.e.,E
{

uuH
}

=

EsIN and E
{

ηηηNηηηH
N

}
= N0IN. The input signal-to-noise ratio (SNR) is defined asγs

def
=

Es/N0. Note that DFT is a unitary operation, and the statistical properties ofηηη f
N are the
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- ûN−1

equivalent channel

(frequency-domain)
equalization

Figure 2.3. Equivalent model of a CP-OFDM system.

21



same as those ofηηηN. From (2.18), the decision-point SNR of thek-th subcarrier is then

obtained as

γk =
E

{
|uk|2

}

E

{∣
∣
∣η f

k /Hk

∣
∣
∣

2
} = γs|Hk|2, k = 0,1, · · · ,N−1. (2.19)

Using the decision-point SNR’s (2.19), the instantaneous average probability of error can

be readily obtained. For example, using binary phase shift keying (BPSK) modulation, the

instantaneous average bit error rate (BER) is given by [84]

Pb(γs;h) =
1
N

N−1

∑
k=0

Q

(√

2γs|Hk|2
)

, (2.20)

whereQ(x)
def
= 1√

2π

∫ ∞
x e−y2/2dy.

2.2.1.2 ZP-OFDM

The ZP-OFDM transmitted signal vector is given by

sZP = [s0 · · · sN−1
︸ ︷︷ ︸

s

0 · · · 0
︸ ︷︷ ︸

G

]T .

DenoteM = N+G. The received signal vector is obtained as
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︸ ︷︷ ︸

ηηηM

, (2.21)

whereHZP is anM×N tall Toeplitz matrix [41], andηηηM denotes anM×1 AWGN vector.

Since a tall Toeplitz matrix always has full rank, symbol recovery in (2.21) is guaranteed
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[106]. The ZP-OFDM receiver can employ either Zero-Forcing(ZF) or Minimum Mean

Squared-Error (MMSE) equalization, i.e.,

GZF = FNH†
ZP, GMMSE = FNHH

ZP

(
N0IM +HZPHH

ZP

)−1
.

However, direct ZF or MMSE equalization requires the inversion of anN×N or M ×M

matrix, respectively. The complexity can be reduced by using FFT’s [67]. Compared with

CP-OFDM, ZP-OFDM improves error rate performance at the expense of complexity.

2.2.2 Advantages of MC

Compared with SC, MC transmission offers a number of advantages in frequency-selective

channels, some of which have been mentioned previously.

• Robustness to multipath delay spread, and elimination of IBI by the insertion of a

guard interval in terms of CP or ZP.

• Low complexity implementation. As we see from Fig. 2.2, CP-OFDM modulation

and demodulation employ IDFT and DFT, which can be efficiently implemented

using the fast Fourier transform (FFT) algorithm [75]. ZP-OFDM also enjoys low

complexity implementation with FFT’s [67].

• Low complexity equalization. For CP-OFDM, this is indicatedby (2.18). ZP-OFDM,

on the other hand, has higher equalization complexity. Using fast algorithms in [67],

equalization complexity can be reduced significantly.

• Adaptive bit loading and/or power allocation across subcarriers to increase through-

put [24] or improve reliability [49,105].
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2.2.3 Disadvantages of MC

Disadvantages of MC transmission include:

• Lack of symbol recovery capability in CP-OFDM. As we can see from (2.17), when

channel frequency responseHk is very small, symbol recovery of the corresponding

subcarrier suffers from noise enhancement problems, resulting in error floors in the

overall average performance.

• High peak-to-average power ratio (PAPR). An MC-modulated signal is a summation

of a number of sinusoids and is approximately Gaussian [73].Therefore, highly

linear amplifiers with large back-off are required, which increases costs.

• Sensitivity to frequency offsets and time-selective fading. Both time variation of

channel response within an MC block and frequency offsets destroy orthogonality

among subcarriers, result in ICI, and cause error floors in performance [113].

• Low bandwidth efficiency. When duration of a guard interval isrelatively large com-

pared with symbol duration, the BW efficiency is low. For examples, in wireless

LAN standards such as HIPERLAN/2, the duration of guard interval is 1/4 of that of

the block of symbols, resulting in a bandwidth efficiency of 80% [31].

2.3 MIMO Wireless Communications

By employing multiple antennas at both the transmitter and receiver, known as MIMO,

the reliability (quality) and/or throughput of a wireless communication system can be im-

proved. Compared with SISO, MIMO technologies offer a numberof improvements [80]:

array gainandinterference reductioncapability inherited from antenna array technologies;

by transmitting the signal over multiple (ideally) independent fading paths in space,spatial
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diversity gainis achieved to mitigate fading effects; by transmitting independent signals

from the individual antennas (or, precisely, over spatially established channels), linear in-

crease in capacity can be achieved without additional powerand bandwidth expenditure,

which is known asspatial multiplexing gain. For MIMO transmission studied in this thesis,

we focus on the spatial multiplexing aspect.

2.3.1 MIMO Signal Reception

Consider a MIMO spatial multiplexing communication system with Nt transmit andNr

receive antennas whereNr ≥ Nt , as shown in Fig. 2.4. In this section, we review receiver

structures without transmit processing, i.e.,P = INt . The received signal can be modelled

as

r = Hs+ηηη , (2.22)

wheres is theNt ×1 transmitted signal vector;H is theNr ×Nt channel matrix, which is

assumed to be generally correlated Ricean fading as in Section 2.1.2; andηηη is anNr ×

1 AWGN vector. For simplification of analysis, we assume whitenoise and input, i.e.,

E[ssH ] = EsINt andE[ηηηηηηH ] = N0INr , input SNRγs
def
= Es/N0.

2.3.1.1 Maximum Likelihood (ML) Receiver

Assuming equiprobable transmitted signal vectors, the ML receiver estimates the transmit-

ted signal vector by

ŝML = argmin
s
‖r−Hs‖2, (2.23)

where the minimization is performed over all possible transmitted signal vectors. If the

signal transmitted from each antenna is drawn from anM-ary signal constellation, the op-

timal ML receiver requires search over a total ofMNt signal vectors. The complexity of
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Figure 2.4. Block diagram of a MIMO spatial multiplexing transceiver.

the optimal ML receiver grows exponentially in the number oftransmit antennas,Nt . Ef-

forts to reduce the complexity of optimal ML receiver include fast sphere decoding algo-

rithms [26,43] and detectors that combine linear processing with local ML search [56].

2.3.1.2 Linear Receivers

The complexity of the optimal ML receiver can be significantly reduced by using a linear

filter to estimate the transmitted signal vector, as shown inFig. 2.4. Linear receivers can

employ criteria like zero-forcing (ZF) or minimum mean squared-error (MMSE) [37].

• ZF receiver:The ZF receive matrix filter is given by

GZF = H†. (2.24)

The output of the ZF receiver is obtained as

ŝZF = GZFr = s+H†ηηη . (2.25)

26



From (2.25), it is clear that̂sZF is an unbiased estimate ofs. The ZF receiver de-

couples the MIMO channel intoNt parallel SISO channels with additive spatially-

correlated noise. Each SISO channel is decoded independently which reduces re-

ceiver complexity significantly. Compared to the optimal ML decoding, the ZF so-

lution suffers from noise enhancement problem, resulting in significant performance

degradation [80].

• MMSE receiver: The MMSE receiver minimizes the mean squared-error (MSE),

MSE(G) = E
{
‖s−Gr‖2

}
. By using the orthogonality principle [77],

E
{
(Gr− s)rH}

= 0,

the MMSE matrix filter is obtained as

GMMSE =
(
N0INt +HHH

)−1
HH . (2.26)

The output of the MMSE receiver

ŝMMSE = GMMSEr

=
(
N0INt +HHH

)−1
HHH · s+

(
N0INt +HHH

)−1
HHηηη , (2.27)

which is a biased estimate ofs. Compared to the ZF solution, the MMSE receiver

balances interference mitigation against noise enhancement.

2.3.1.3 Successive Interference Cancellation (SIC) Receiver

Performance and complexity issues of linear receivers can be addressed by employing a

multistage interference cancelling structure. Without loss of generality, we assume stream

k = 1 is detected first; then the interference due to the first stream is regenerated and sub-

tracted, and streamk = 2 is detected. This procedure is repeated until all streams are
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detected. A schematic diagram of thek-th stage is illustrated in Fig. 2.5, whereH(k) is gen-

erated in a recursive fashion by nulling the(k−1)-st column ofH(k−1) for k = 2, · · · ,Nt ,

andH(1)
def
= H; hk denotes thek-th column ofH(k−1); r(k) = r(k−1)− ŝkhk for k = 2, · · · ,Nt ,

andr(1)
def
= r; andgk denotes thek-th row of the linear receiver matrixG.

The linear receiver employed in an SIC receiver may be eitherZF or MMSE. Ignoring

error propagation, the equivalent system after thek-th stage is MIMO withNt −k transmit

andNr receive antennas. The SIC receiver essentially converts the MIMO channel intoNt

parallel channels with increasing diversity order [79].

2.3.1.4 Ordered SIC (OSIC) Receiver

To improve SIC performance, the streams can be reordered, resulting in an ordered SIC

(OSIC) receiver, which is used in V-BLAST [37]. This receiver differs from the previous

SIC only in the detection ordering. An SNR-based ordering scheme that maximizes mini-

mum SNR appears in [37, 109], and is reproduced in Table 2.1. This ordering scheme has

been shown to be optimal for the SIC receiver. Using OSIC withSNR-based ordering, the
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decoded stream has an inherent form of selection diversity [79].

Table 2.1. SNR-Based Ordering Algorithm

Initialization i = 1; HO
(1) = H

Recursion if (i ≤ Nt)

{

ki = argminl

[((

HO
(i)

)H
HO

(i)

)†
]

l ,l

;

reorder HO by interchanging its

i-th column and ki-th column;

i ← i +1

}

2.3.2 Transmit Processing

When channel state information (CSI) is available at the transmitter, system performance

can be improved. Transmit processing can be linear or nonlinear [16], redundant or non-

redundant [57, 72]. Generally speaking, linear transmit processing schemes require low

implementation complexity at the expense of performance compared to nonlinear schemes;

introducing redundancy in transmit processing improves reliability by means of diversity

at the expense of efficiency. In this thesis, we will focus on linear non-redundant transmit

processing.

A block diagram of MIMO with linear transmit processing is illustrated in Fig. 2.4. The

received signal can be modelled as

rP = HPs+ηηη , (2.28)
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whereP is anNt ×Nt transmit processing matrix. In practice, there is constraint on transmit

power. Assuming that the total transmit power is the same forschemes with and without

transmit processing, we obtain the equivalent constraint on P,

trace
{

PPH}
= Nt . (2.29)

In addition to the total transmit power constraint (2.29), other constraints can be imposed,

such as the dynamic range of the power amplifier at each transmit antenna, and the PAPR

[76]. If a linear receiverG is employed, the estimate of the transmitted signal vectors is

given by

ŝ = GrP = GHPs+Gηηη . (2.30)

We next review several existing precoding schemes.

2.3.2.1 Linear MMSE Precoding/Decoding [92]

The linear MMSE precoding/decoding seeks a precoderP and decoderG that minimizes

MSE(P,G) = E
{
‖ŝ− s‖2}

= trace
{

Es(GHP− I)(GHP− I)H +N0GGH
}

.

Denote the eigenvalue decompositionHHH = WΛΛΛWH . The MMSE precoder using total

transmit power constraint (2.29) can be derived as

PMMSE = WΦΦΦ, (2.31)

whereΦΦΦ is anNt ×Nt diagonal matrix with(k,k)-th entry satisfies

∣
∣
∣[ΦΦΦ]k,k

∣
∣
∣

2
=

(

Nt +∑N̄
n=1λ−1

n

γsλ
1/2
k ∑N̄

n=1λ−1/2
n

− 1
γsλk

)

+

,

with λk
def
= [ΛΛΛ]k,k, andN̄ ≤ Nt is such that

∣
∣
∣[ΦΦΦ]k,k

∣
∣
∣ > 0 for n∈ [1, N̄] and

∣
∣
∣[ΦΦΦ]k,k

∣
∣
∣ = 0 for all

othern. The corresponding MMSE decoder is given by

GMMSE = PH
MMSEHH

(

HPMMSEPH
MMSEHH +

1
γs

INr

)−1

. (2.32)
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A generalization of this method was given in [88] where a weighted MMSE is used as the

optimization criterion.

2.3.2.2 MBER Precoding for ZF Equalization [28]

The MBER precoding for block transmission with ZF equalization given in [28] can be

readily applied to MIMO systems. Using a ZF receiver, the MBERprecoding matrix is

given by

PMBER-ZF =

√
√
√
√

Nt

trace
(

ΛΛΛ−1/2
)WΛΛΛ−1/4FNt , (2.33)

whereFNt is theNt ×Nt DFT matrix.

2.3.2.3 Precoding with Reduced Feedback

When CSI is unavailable at the transmitter, it is desirable to perform transmit processing

with limited feedback in order to reduce the feedback overhead [58]. Existing precoding

with reduced feedback can be categorized into two types, namely, CSI quantizationand

limited feedback signal design[59]. Precoding using CSI quantization, by its name, per-

forms transmit processing based on a quantized version of CSIfeedback [52,69]. Limited

feedback signal design methods optimize the transmitted signal at the receiver and feed it

back to the transmitter [44,55]. Recently, a hybrid limited feedback precoding scheme with

quantized precoding codebook was proposed in [59].

2.3.2.4 Transmit Antenna Selection

By using multiple antennas, MIMO systems offer significant gains in quality and/or ca-

pacity. While antenna elements and digital signal processing are usually cheap, the RF

components are expensive [64]. A cost-effective solution is to perform transmission over a
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selected subset of available antenna elements [13,42,44,89,108]. Transmit antenna selec-

tion can be viewed as a special precoding scheme. SupposeN out of Nt transmit antennas

are to be selected. TheNt ×N precoding matrixP for transmit antenna selection consists

of N column vectors drawn fromINt . The solution is a function of the signaling scheme,

receiver structure and available CSI. A variety of optimization criteria can be employed,

such as information rate and error rate [79].

2.3.3 Implementation Issues

As stated above, MIMO technologies improve quality and/or capacity of wireless com-

munication systems at the expense of transceiver complexity, and, thus, cost. Moreover,

exploiting channel knowledge at the transmitter by means oftransmit processing requires

related information to be fed back, which increases feedback overhead.

2.3.3.1 Transceiver Complexity/Cost

The performance of the ML receiver lower bounds all suboptimal receivers, while its im-

plementation complexity is exponential in the number of transmit antennas. Reasonable

tradeoffs between performance and complexity can be achieved via linear (ZF, MMSE) or

nonlinear (SIC, OSIC) suboptimal receivers.

When linear precoding is performed, diagonalization of channel matrix is required,

which involves singular value decomposition (SVD) of anNr ×Nt complex channel matrix

H to obtain singular values (ΛΛΛ) and right singular vectors (W). The complexity to compute
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such an SVD is given by either [41]1







32NrN2
t +64N3

t (flops) (Golub-Reinsch SVD)

16NrN2
t +88N3

t (flops) (R−SVD)
.

Moreover, linear precoding also requires matrix-matrix and/or matrix-vector multiplica-

tions at both the transmitter and the receiver. Limited feedback precoding using a codebook,

on the other hand, does not require on-line diagonalizationof channel matrix, but matrix

multiplications. However, a pre-designed codebook has to be stored, which increases the

memory cost.

2.3.3.2 Feedback Overhead

In channels lacking reciprocity in the up- and downlink, such as in frequency division

duplex (FDD), full CSI is not available at the transmitter. Toenable linear precoding, either

the channel or a precoding matrix is required to be fed back. Channel matrix feedback is

equivalent to feeding back 2NtNr real numbers, while a precoding matrix feedback requires

2N2
t + Nt real numbers. Precoding with limited feedback signal design [55], on the other

hand, reduces the feedback amount to 2Nt real numbers, which is a factor of 1/Nr savings.

Precoding using channel quantization reduces feedback overhead significantly [52].

Assuming thatNq bits are used to describe each real element ofH, the total amount of

1Denote the SVDH = UΛΛΛVH , and the unitary matrixT = 1√
2
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.

Therefore, computation of the SVD of a complex matrix can be transformed into an equivalent SVD of a real

matrix.
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feedback is 2NqNtNr bits. A quantitative study of feedback overhead for MIMO with adap-

tive modulation is provided in [96]. Feedback overhead is further reduced in precoding

using a codebook [59].

2.4 Objectives

Mathematically, both multicarrier and MIMO can be described by matrix-vector signal

models, and multicarrier systems can be viewed as special cases of MIMO with structural

channel matrix, as is clear from (2.14), (2.16), (2.21) and (2.22). In practical scenarios,

however, they face different difficulties as discussed in the previous sections. The ob-

jectives of this thesis are to develop cost-effective transmit optimization techniques for

multicarrier and MIMO wireless communications.

2.4.1 Bandwidth Efficient OFDM Wireless Transmission

Existing CP- and ZP-OFDM transmission schemes utilize a fixed-length guard interval. In

channels with small delay spread with respect to the duration of guard interval, this limits

the system bandwidth efficiency. On the other hand, when channel delay spread is longer

than the duration of the guard interval, residual IBI occurs which destroys orthogonality

among subcarriers and limits system performance. We develop an adaptive ZP-OFDM

scheme that adjusts the guard duration according to the channel condition.

2.4.2 Power Efficient Multicarrier Wireless Transmission

Joint bit loading and power allocation has been widely studied and deployed in wire-line

multicarrier communications where the channel is regardedas static. We investigate fixed
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rate wireless multicarrier transmission employing power allocation, which could be appli-

cable to delay-sensitive applications. Power allocation for wireless multicarrier systems

reduces transceiver complexity, increases system power efficiency, and improves link relia-

bility. To this end, error rate minimization is employed as an optimization criterion. Effects

of channel knowledge uncertainty are studied.

2.4.3 Power Efficient MIMO Wireless Transmission

To reduce complexity and/or feedback overhead of existing precoding methods, we apply

error-rate-minimizing power allocation to MIMO wireless communications. This scheme

could be regarded as an extension of power allocation for OFDM. Specific aspects of

MIMO need to be taken into account, such as different transceiver structures, ill-conditioned

channels and imperfect feedback.
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Chapter 3

Adaptive Zero-Padding OFDM over

Frequency-Selective Multipath Channels

3.1 Introduction

Orthogonal Frequency Division Multiplexing (OFDM) has been receiving growing interest

in recent years and has been adopted in many standards. For example, OFDM has been cho-

sen as a solution for digital audio and video broadcasting (DAB and DVB) in Europe, and

applied for high speed Digital Subscriber Line (DSL) modemsover twisted pairs (ADSL,

HDSL, and VDSL). Recently, it has also been proposed for Digital Cable Television sys-

tems and adopted in new standards for wireless Local Area Networks (wireless LAN) in

North America (IEEE 802.11a), in Europe (HIPERLAN/2) and in Asia (MMAC) [106].

All standard OFDM systems are based on insertion of a cyclic prefix (CP) to eliminate

inter-block interference (IBI) between successive blocks.A CP of length of no less than the

channel order is inserted per transmitted block. Discarding the CP at the receiver not only

suppresses IBI, but also converts the linear channel convolution into a circular one, which

facilitates the diagonalization of the channel matrix, andmakes single-tap equalization us-

ing scalar division possible [106]. An obvious problem in CP-OFDM systems is that the
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transmitted symbols cannot be recovered when some channel nulls are located on subcar-

riers. Recently, it has been proposed in [91, 106] to replace CPinsertion by zero-padding

(ZP) at the end of the block of symbols to be transmitted. The padded zeros determinis-

tically suppress the IBI but lead to a larger number of observed samples. That way, the

transmitted symbols can always be retrieved regardless of the channel null locations [106].

Note that since the number of padded zeros required to cancelIBI equals the CP length,

ZP- and CP-OFDM transmission have the same bandwidth efficiency. For some existing

OFDM systems, such as HIPERLAN/2 and DAB physical layer, the length of the CP is

chosen to be 1/4 of the block size, which results in a bandwidth efficiency of 80%.

Approaches that have been proposed to increase the bandwidth efficiency in OFDM

systems include [103, 104, 111]. In [103], an OFDM system that does not use a guard

interval (referred to here as NGI-OFDM) was proposed. Because equalization in such a

system may be ill-conditioned, a Moore-Penrose pseudoinverse of the channel matrix has

to be performed. A partial response (PR) OFDM transmission scheme has been proposed

in [104] that employs a smooth window function. In [111], a vector OFDM scheme was

proposed which performs cyclic prefix insertion after blocking of conventional OFDM data

blocks, so that the average overhead due to the guard interval is decreased. In wireline

applications, channel impulse response shortening techniques have been developed so that

the length of the guard interval can be reduced [62]. Application in wireless systems may

be difficult/expensive due to the time-varying characteristic of wireless channels.

In this chapter, we propose a new OFDM transmission scheme with adaptive zero-

padding (AZP-OFDM). We first examine the redundancy introduced in CP- and ZP-OFDM

as well as OFDM without using a guard interval. The reductionof redundancy is then inves-

tigated and a new system design criterion based on channel matrix condition is introduced.
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Using this criterion, a bandwidth efficient AZP-OFDM schemeis developed. Complex-

ity issues are also addressed in system design, which results in more flexibility in that

one can make tradeoffs among performance, efficiency and complexity. Generally mul-

ticarrier transmission suffers from problems including high peak-to-average power ratio

(PAPR) [71]. By reducing the redundancy, the proposed AZP scheme achieves improved

signal-to-noise ratio (SNR) compared to that of ZP-OFDM, which is an added benefit be-

sides increased bandwidth efficiency. In channels with large delay spread, simulation re-

sults show that the proposed AZP-OFDM offers better performances than those of both

CP- and ZP-OFDM with fixed guard interval lengths.

This chapter is organized as follows: a brief description ofCP- and ZP-OFDM as

well as OFDM transmission without using a guard interval areprovided in Section 3.2.

Section 3.3 addresses redundancy issues in these schemes. In Section 3.4, we first propose

a system design criterion based on channel matrix condition. The application to OFDM to

trade off bandwidth efficiency and performance leads to our proposed AZP-OFDM scheme.

A modification to lower equalization complexity is also discussed, along with an algorithm

for choosing the key parameter. Simulation results and somefurther discussions in the

context of HIPERLAN/2 channel models as well as channels withexponential power delay

profiles are provided in Section 3.5.

3.2 System Model

3.2.1 CP-OFDM

A baseband discrete-time equivalent model of a CP-OFDM transmitter is shown in Fig. 3.1.

A serial stream of information bits,bn, is first passed through an error-control encoder,

then serial-to-parallel (S/P) converted into data blocks of sizeN, u def
= [u0,u1, · · · ,uN−1]

T .
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Figure 3.1. Block diagram of CP-OFDM transmitter.

Performing multicarrier modulation via inverse Discrete Fourier Transform (IDFT), we

obtain

s = FH
Nu.

A length G CP is then inserted between each block, and the resulting redundant block

{sCP} of lengthM = N+G is parallel-to-serial (P/S) converted into time-domain samples

{sCP,n} and sent sequentially through the channel. The input back-off (IBO) and nonlinear

distortion introduced by the power amplifier (PA) will be discussed in Section 3.5. The

multipath propagation channel can be modelled as a finite impulse response (FIR) filter with

tap vectorh def
= [h0,h1, · · · ,hL,0, · · · ,0]T and additive white Gaussian noise (AWGN)ηn ∼

N(0,σ2). This baseband discrete-time equivalent model combines effects of the spectral-

shaping, sampling the continuous-time channel, and the receive-filter.

We assume perfect symbol and block synchronization. If the length of the CP,G, is no

less than the channel model order,L, after discarding the firstG entries corresponding to

the CP, we obtain1

rCP = HCPs+ηηηN, (3.1)

whereHCP is theN×N circulant matrix [41] with first column[h0, · · · ,hL,0, · · · ,0]T ; and

1Note that ifG < L, (3.1) is not valid due to residual IBI. For a general signal model with IBI, see [54].

39



ηηηN is anN×1 AWGN vector. After demodulation by DFT, we obtain

r f
CP = FNHCPFH

Nu+FNηηηN

= Dhu+ηηη f , (3.2)

where the superscriptf denotes a frequency-domain variable,Dh = diag{H0,H1, · · · ,HN−1}

with Hk = ∑L
l=0hl e− j2πkl/N denoting the channel frequency response on thek-th subcarrier,

andηηη f = FNηηηN is the DFT-processed noise vector.

3.2.2 ZP-OFDM

ZP-OFDM [91] differs from CP-OFDM only in that instead of CP insertion, a guard inter-

val of G zeros is padded at the end of each block. AssumingG≥ L, the received block is

now given by

rZP = HZPs+ηηηM (3.3)

whereHZP is aM×N tall Toeplitz matrix with first column[h0,h1, · · · ,hL,0, · · · ,0]T . Zero-

forcing (ZF) or minimum mean squared error (MMSE) equalization can be performed at

the receiver [106]. However, direct ZF or MMSE equalizationrequires the inversion of a

M×M or N×N matrix, respectively. The computation can be lowered with fast algorithms

based on the Fast Fourier Transform (FFT) [67].

3.2.3 NGI-OFDM

An OFDM transmission scheme without using guard intervals,which we refer to as NGI-

OFDM, for frequency-selective channels was proposed in [103] to achieve maximal band-

width efficiency. NGI-OFDM has the same transmitter structure as CP-OFDM except that

there is no guard interval inserted and removed. The IBI due totime dispersion of the
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channel is combated by interference cancellation as in [54]. After IBI cancellation, the

“IBI-free” received block symbol is given by

rNGI = HNGIs+ηηηN (3.4)

where HNGI is an N × N lower triangular Toeplitz matrix with first column

[h0,h1, · · · ,hL,0, · · · ,0]T , which is not circulant and cannot be diagonalized with DFT

and IDFT matrices. Therefore, inter-carrier interference(ICI) has been introduced and

must be mitigated for symbol detection by solving (3.4). To avoid stability problems with

matrix inversion for a probably ill-conditioned channel matrix, Moore-Penrose pseudo in-

version [41] is employed in [103]. However, the ICI cancellation algorithm in [103] does

not take advantage of the lower triangular Toeplitz structure of the channel matrixHNGI.

Furthermore, from our analysis (Section 3.3) and simulations (Section 3.5) in the context

of standard HIPERLAN/2 channel models, the system performance of NGI-OFDM over

hostile wireless propagation channels is not acceptable.

3.3 Redundancy Issues in OFDM Transmission

Note that the length of the guard interval in ZP-OFDM is the same as that in CP-OFDM.

Both have the same bandwidth efficiencyN/(N + G). Typically, G = N/4, (e.g., in DAB

and HIPERLAN/2), which results in a bandwidth efficiency of 80%. The insertion of CP

or ZP introduces redundancy in OFDM transmission and decreases the system through-

put, which is unattractive for wideband communications. Wenow discuss whether such

redundancy is necessary for OFDM systems.
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3.3.1 CP- and ZP-OFDM

As described above, CP-OFDM uses redundancy in the cyclic prefix to cancel IBI and

transform the linear convolutional channel into a circularone (cf. (3.1)), which makes

simple one-tap equalization possible (cf. (3.2)). One mainproblem in CP-OFDM is that

the transmitted symbols cannot be recovered when some subcarriers encounter channel

nulls even in the absence of noise [106]. Moreover, if a channel null is located close to

the DFT grid (|H(k0)| ≪ 1 for somek0 ∈ [0,N−1]), then equalization will suffer from a

“noise-enhancement” problem. Therefore,CP-OFDM offers simple equalization without

guaranteed symbol recovery.

In ZP-OFDM, redundancy is introduced in terms ofG trailing zeros, which not only

cancels IBI but also guarantees symbol recovery. This can be shown as follows. Consider

the noise-free received block in (3.3). TakingZ -transform

RZP(z) = HZP(z)S(z). (3.5)

ZF equalization for ZP-OFDM turns out to be a deconvolution procedure. The DFT of

rZP(i) is obtained by sampling its Fourier transform

RZP(e
jω) = RZP(z)|z=ejω = HZP(e

jω)S(ejω). (3.6)

To avoid aliasing, at leastM(≥ N+L) samples should be evaluated [48]2

RZP

(

ej2kπ/M
)

= HZP

(

ej2kπ/M
)

S
(

ej2kπ/M
)

, k = 0,1, · · · ,M−1, (3.7)

i.e., there areM virtual subcarriers compared to CP-OFDM where the number of subcar-

riers isN. Heuristically, more virtual subcarriers offer diversityand immunity to channel

nulls. In other words, robustness to channel nulls in ZP-OFDM is achieved by means of

usingM virtual subcarriers. The price paid for this benefit is increased equalization com-

plexity [67]. Therefore,ZP-OFDM guarantees symbol recovery with increased complexity.

2Note that this has also been used in [67] for fast ZF and MMSE equalization of ZP-OFDM.
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3.3.2 NGI-OFDM

Equalization in NGI-OFDM is achieved by solving the linear systems of equations in (3.4).

The perturbation analysis of direct methods for solving such linear equations (see, e.g.,

[25,27]) is summarized in the following theorem3.

Theorem 1 ( [25, Theorem 7.7.4]) Consider the linear systemAx = b, where the matrix

A ∈ Rn×n is nonsingular. Let(A + δA)(x + δx) = b + δb, be a perturbed system, and

assume that

ε def
= ‖A−1‖ · ‖δA‖ = κ(A)

‖δA‖
‖A‖ < 1. (3.8)

Then(A+δA) is nonsingular and the norm of the perturbationδx is bounded by

‖δx‖
‖x‖ ≤ κ(A)

1− ε

(‖δA‖
‖A‖ +

‖δb‖
‖b‖

)

, (3.9)

whereκ(A)
def
= ‖A‖ · ‖A−1‖ is the condition number with respect to the problem of matrix

inversion.

We note thatκ(A) depends on the choice of matrix norm, e.g., if the 2-norm is chosen,

κ2(A) = σmax/σmin with σmax andσmin denote, respectively, the maximum and minimum

singular values ofA [25]. Consider the equalization problem of NGI-OFDM in (3.4). For

simplicity of notation, we drop the indices and subscripts,

r = Hs+ηηη .

Assuming no channel mismatch i.e.,δH = 0, the condition in (3.8) is satisfied sinceε =

‖H−1‖ · ‖δH‖ = 0. Define the signal-to-noise ratio (SNR) at the input and output of the

3Note that this theorem holds for any consistent vector and matrix norms, and is not restricted to the

2-norm [25].
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equalizer as, respectively,

γin
def
=

‖Hs‖2

‖ηηη‖2 , γout
def
=

‖s‖2

‖ŝ− s‖2 ≡ ‖s‖2

‖H†r− s‖2 , (3.10)

whereŝ = H†r is the output of the equalizer. We have the following corollary.

Corollary 1 The relative estimation error and the SNR at the output of equalizer of NGI-

OFDM are bounded by, respectively,

‖ŝ− s‖
‖s‖ ≤ κ(H)

‖ηηη‖
‖Hs‖ , (3.11)

γout ≥ γin

κ2(H)
. (3.12)

Since multicarrier demodulation using DFT is a unitary transform, the SNR remains the

same at the input of decision devices, which determines system performance. For example,

for QPSK modulation, the symbol error rate (SER) is given by [84]

Ps = 2Q(
√

γout)
(
1− 1

2Q(
√

γout)
)
. (3.13)

An example of the equalizer output SNR,γout, with ZF equalization in HIPERLAN/2

channel A [31] and the bound from Corollary 1 is shown in Fig. 3.2. Table 3.1 summarizes

the channel models that were standardized for HIPERLAN/2. Wecan see from Fig. 3.2

that the bound is not tight. However, from Fig. 3.2, we can seethat this bound is propor-

tional to the mean square estimation error (MSEE). Therefore the lower bound in (3.12)

may serve as a predictor forγout. Fig. 3.3 shows an example of the condition number of

NGI-OFDM channel matrix varying with time in HIPERLAN/2 channel A with a terminal

speedv = 3(m/s). As a comparison, those of CP- and ZP-OFDM are also shown. From

Fig. 3.3 we can see that the condition number of NGI-OFDM is usually very large, which
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Table 3.1. Channel Models for HIPERLAN/2

Channel Model RMS delay spread Ricean factor

A 50 ns -

B 100 ns -

C 150 ns -

D 140 ns 10 dB

E 250 ns -

makes equalization in (3.4) an ill-conditioned problem, and moreover causes unacceptable

performance in NGI-OFDM, as will be shown in Section 3.5.

We note that equalization in CP-OFDM also requires solving linear equations (3.1).

So the above perturbation analysis for NGI-OFDM applies. For ZP-OFDM, the system is

overdetermined and the above analysis has to be modified, as detailed in Section 3.4. From

Fig. 3.3, we see that the condition number of the CP-OFDM channel matrix is usually

much smaller compared to that of NGI-OFDM, which explains why CP-OFDM offers bet-

ter performance than NGI-OFDM. This can also been shown froma signals-and-systems

viewpoint. From the received signal models in (3.3) and (3.4), we know that the NGI sig-

nal is a length-N rectangularly windowed version of ZP-OFDM, which suffers fromGibbs

Phenomenon[63]. In theZ -transform domain,RNGI(z) is obtained by discarding those

items with power less than 1−N. Consider the system identification problem to find an

equivalent convolutional channel for NGI-OFDM, i.e., to find ĤNGI(z) such that

RNGI(z) = ĤNGI(z)S(z)

SinceS(z) dividesRZP(z), it cannot divideRNGI(z). Therefore the effective channel im-

pulse response,ĥNGI(l) = Z −1{ĤNGI(z)}, is lengthened. Fig. 3.4 shows an example of the
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NGI-OFDM (N = 64,L = 14).

channel impulse response lengthening effect in NGI-OFDM systems. Now that the effec-

tive channel order is larger than the original one,L, there are more channel nulls and the

possibility for subcarriers encounter channel nulls is also increased.

Compared with CP- and ZP- based schemes, NGI-OFDM offers high bandwidth effi-

ciency, but suffers from inferior performance and high complexity, as will be discussed.

We conclude that redundancy is required for OFDM transmission over wireless channels.

Therefore it is meaningful to investigate introducing redundancy in a “better” way, or, in

other words, to find better tradeoffs among efficiency, performance and complexity.
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3.4 Proposed Adaptive Zero-Padding (AZP) OFDM

To increase the bandwidth efficiency of ZP-OFDM systems, redundancy introduced in

transmission must be reduced. In fact, from the guaranteed symbol recovery property of

ZP-OFDM discussed in the previous section, we find that the necessary amount of redun-

dancy isL. Padding more zeros does not affect the system performance and only results

in lower bandwidth efficiency. On the other hand, if we loosenthe constraint on symbol

recovery slightly by padding fewer zeros, higher bandwidthefficiency may be achieved.

This does not mean a loss of symbol recovery capability, but atradeoff between efficiency

and performance, as will be made clear in Section 3.4.1. Tradeoffs in complexity will be

discussed in Section 3.4.2.

3.4.1 AZP-OFDM Scheme

Consider the signal model in ZP-OFDM. Rewrite (3.3) as

r = Hs+ηηη (3.14)

Equalization in ZP-OFDM requires solving an overdetermined system, which can be eas-

ily treated as full rank least squares (LS) problem [25, 27, 41]. The sensitivity of the LS

problem is characterized by the condition of channel matrixH with respect to the 2-norm,

κ2(H)
def
= σ1/σN, whereσ1 andσN denote, respectively, the maximum and minimum sin-

gular values ofH.

Theorem 2 ( [27, Theorem 3.4]) Suppose thatA is m-by-n with m≥ n and has full rank.

Suppose thatx minimizes‖Ax − b‖. Let ξξξ = Ax − b be the residual. Let̂x minimize

‖(A+δA)x̂− (b+δb)‖. Assume

ε def
= max

(‖δA‖
‖A‖ ,

‖δb‖
‖b‖

)

<
1

κ2(A)
≡ σn

σ1
(3.15)
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Then

‖x̂−x‖
‖x‖ ≤ ε ·

(
2κ2(A)

cos(θ)
+ tan(θ)(κ2(A))2

)

+O
(
ε2) ≡ ε ·κLS+O

(
ε2) . (3.16)

whereθ is defined bysin(θ)
def
= ‖ξξξ‖

‖b‖ , i.e.,θ is the angle between the vectorsb andAx and

measures whether the residual norm‖ξξξ‖ is large (near‖b‖) or small (near 0).κLS is the

condition number of the LS problem.

Note that the assumptionε ·κ2(A) < 1 guarantees thatA+δA has full rank so that̂x is

uniquely determined. This bound can be interpreted as [27]:if θ is 0 or very small, then the

residual is small and the effective condition number is about 2κ2(A), much like ordinary

linear equation solving; ifθ is not small but not close toπ/2, the residual is moderately

large, and then the effective condition number can be much larger (on the order ofκ2
2(A));

if θ is close toπ/2, the true solution is nearly zero, then the effective condition number

becomes unbounded even ifκ2(A) is small.

For our equalization problem in (3.14), if we assume no channel mismatch, i.e.,δH = 0;

then the residualξξξ def
= Hs− (r−ηηη) = 0, so sin(θ) = 0, tan(θ) = 0. Defineε def

= ‖ηηη‖
‖Hs‖ , and

the SNR at the input of the equalizerγin
def
= ‖r‖2

‖ηηη‖2 = 1
ε2 . The condition (3.15) is equivalent to

γin > κ2
2(H), (3.17)

which may be violated, but (3.16) still holds except that thebound is loosened in this case,

becauseH always has full rank and̂s = H†r is uniquely determined, as required by the

condition in (3.15). Therefore, we have the following corollary.

Corollary 2 The relative estimation error of equalization in ZP-OFDM isbounded by

‖ŝ− s‖
‖s‖ ≡ ‖H†r− s‖

‖s‖ ≤ 2κ2(H)√γin
+O

(
1

γin

)

. (3.18)
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Figure 3.5. Mean squared estimation error (MSEE) and boundsfor ZF equalization in

HIPERLAN/2 channel A.

Fig. 3.5 shows the MSEE of ZF equalization in HIPERLAN/2 channel A and the upper

bound from Corollary 2. We can see that the upper bound is not tight. This is due to

a probable violation of the condition in (3.17). However, from Fig. 3.5 we can see that

this bound is proportional to the MSEE. Therefore the bound acts as a prediction for the

MSEE. We note thatγin may range from 0 to 20 dB in wireless communications and usually

κ2(H) ≫ 1. ThereforeO
(

1
γin

)

is usually negligible in (3.18). If we define the SNR at the

output of the equalizerγout
def
= ‖s‖2

‖ŝ−s‖2 ≡ ‖s‖2

‖H†s−s‖2 as in (3.10), we obtain approximately

γout ≥
γin

4κ2
2(H)

(3.19)

An example of the output SNR,γout, for ZF equalization in HIPERLAN/2 channel A is

also shown in Fig. 3.2 together with the bound from Corollary 2. Again, the bound gives a
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good prediction ofγout.

Since system performance is determined by the SNR at the equalizer output,γout, which

can be predicted byκ2(H) together withγin, we may useκ2(H) as a system design crite-

rion. To be specific, redundancy introduced by zero-paddingcan be reduced by means of

inserting fewer zeros at the end of each block, which is referred to as adaptive ZP-OFDM

(AZP-OFDM), while keepingκ2(H) relatively low. AssumeK zeros are padded, with

0≤ K ≤ L, the new signal model is given by

r′ = H′s+ηηη ′ (3.20)

wherer′ andηηη ′ are(N + K)-vectors andH′ is a (N + K)×N matrix, respectively. Note

that the received signal in AZP-OFDM (3.20) is just a “truncated” version of ZP-OFDM.

The corresponding channel matrixH′ is a submatrix of the ZP-OFDM channel matrixH

constructed by deleting its lastM −N−K rows. Let{σi}N
i=1 denote the singular values

of H and{σ ′
i }N

i=1 denote the singular values ofH′, both arranged in nonincreasing order.

From the interlacing property of singular values [45], we know σ1 ≥ σ ′
1 ≥ σ2 ≥ σ ′

2 ≥

·· · ≥ σN ≥ σ ′
N ≥ 0. Usuallyσ1 ≫ σN. Heuristically,σN is more sensitive to perturbation.

Therefore deleting some of the last rows ofH, or in other words, padding with fewer zeros

in ZP-OFDM, increasesκ2(H), as is confirmed by simulations. This is the price paid for

increased bandwidth efficiency.

Of course, in so doing, the received signal will experience IBI, which can be canceled

via decision feedback. Note that in AZP-OFDM, redundancy isreduced but still exists,

which makes robust symbol recovery possible. Either ZF or MMSE equalization can be

employed. Similar to ZP-OFDM, equalization in AZP-OFDM requires the solution of an

overdetermined system of equations. The fast equalizationalgorithms developed in [67]

cannot be applied due to their different required channel matrix structure. Therefore, AZP-

OFDM trades off efficiency and performance, with the price ofincreased complexity.
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3.4.2 Modification for Low Complexity Equalization

Alternatively, by taking advantage of the band-Toeplitz structure of the channel matrix, we

propose a modification to the AZP-OFDM scheme. To be specific,if we discardK initial

observations, we obtain a system with the same number of observations as unknowns, i.e.,

r′′ = H′′s+ηηη ′′ (3.21)

wherer′′ andηηη ′′ are N-vectors andH′′ is an N×N Toeplitz matrix. We note that the

received signal in (3.21) is a “windowed” version of that in ZP-OFDM (see (3.3)), with

window width N and delayK. As a result, ZF equalization is transformed into solving a

band-Toeplitz system (with band widthL), for which there are efficient solvers [18].

We note that the modified scheme differs from AZP-OFDM in the number of trailing

zeros,K, (as will be discussed in Section 3.4.3) and in equalizationat the receiver. Both

the NGI and the proposed methods are windowed versions of ZP-OFDM with the same

window width, but in the modified AZP scheme, the window is shifted to a “best” position

to capture more of the transmitted energy in the received signal, while in NGI-OFDM, the

window is always fixed at the head part of the received block; in other words, the modified

AZP system itself is nearly as overdetermined as in ZP-OFDM (therefore, redundancy-

based), but transformed for simpler equalization, while NGI-OFDM does not introduce

redundancy. Of course, by discarding some observations, welose part of the redundancy in

the received signal. As a result, the system performance will be slightly worse. However,

due to the choice of AZP length (as will be clear in Section 3.4.3), the resulting system is

still well-conditioned, as has been confirmed by simulations.
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3.4.3 Choice of ZP Length

From the previous discussion, the condition number of the channel matrix can be used as

a system design criterion. However, the calculation of the condition number of a matrix is

computationally complex. Sinceκ2(H) = σ1/σN andσN is more sensitive to perturbation,

κ2(H) depends mainly onσN. Hence, instead of using condition number, we consider the

smallest singular value of the channel matrix,σN, as a criterion. In (3.18), if we substitute

κ2(H) by 1
σN

, we obtain an approximation bound for MSEE andγout as, respectively,

‖ŝ− s‖
‖s‖

<
∼

2
σN

√γin
+O

(
1

γin

)

(3.22)

γout
>
∼

1
4

γinσ2
N (3.23)

To gain more insight into the criteria for choice of ZP length, we consider a special case

of a two-tap channel, i.e.,h = [h0,h1,0, · · · ,0]T . For this channel, the ZP lengthK ∈ {0,1}.

It can be shown that singular values of channel matrices (of both K = 0 and 1) depend

only on|h0| and|h1|. Fig. 3.6 compares two criteria for choice of ZP length in allpossible

two-tap channels. We see that 1/σN offers a close approximation toκ2(H), up to a scaling

factor. An example of the approximate bound for the MSEE is also shown in Fig. 3.5. From

Fig. 3.5, we see that (3.22) can also be used to predict the MSEE.

Fortunately, some efficient algorithms have been developedfor calculating the smallest

singular value of a matrix [27]. Here we adopt the power method, which can find the largest

magnitude eigenvalue of a matrixA and the corresponding eigenvector. To find the other

eigen pairs, the power method can be applied to(A−σI)−1 for someshift σ , and it will

converge to the eigenvalue with magnitude closest toσ . By choosingσ close to a desired

eigenvalue, convergence of the algorithm can be accelerated [27]. Table 3.2 details the

algorithm. For a complete treatment of the power method and its variations, see [25,27].

To estimate the smallest singular value ofH, the power method can be applied to
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Table 3.2. Inverse Iteration of Power Method

Initialization choosex0; i = 0.

Iteration until convergence

yi+1 = (A−σI)−1xi

xi+1 = yi+1/‖yi+1‖2 (approximate eigenvector)

λi+1 = xH
i+1Axi+1 (approximate eigenvalue)

i ← i +1

(HHH−σ2I)−1 with an initial shift σ equal to 0. The initial guess of the singular value

can be chosen to be previous estimate as well, due to the slow changing property of the

channel matrix spectra as will be discussed in Section 3.5. Specifically, for the modified

AZP-OFDM, to take the advantage of the channel matrix structure, we setσ = 0 so that

in every iteration, the computational cost is mainly in solving two band-Toeplitz systems,
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i.e., (HHH)−1 = H−1H−H . The convergence criterion for the power method used in our

proposed method can be set quite loose because we are not required to estimate the singular

value accurately.

Remark: We note that the choice of the number of padding zeros of modified AZP-

OFDM may be different from that of the original AZP-OFDM. Forthe original AZP

scheme, the condition number of the channel matrix will decrease with an increase of

AZP length. Therefore the singular value finding algorithm may stop whenever the small-

est singular value is large enough to guarantee symbol recovery. Beyond that, increasing

AZP length will improve system performance, but the bandwidth efficiency will decrease,

and therefore its choice may depend on the system requirements. On the other hand, in the

modified scheme, there exists some optimal choice of AZP length. Heuristically, if we slide

a window over the received block, there exists an optimal shift for the windowed sequence

to capture most of the energy in the original sequence. This can be achieved by a simple

search procedure.

3.5 Simulation Results and Discussions

3.5.1 Statistics of AZP Length

Standard HIPERLAN/2 channel models [31] are used. The OFDM block size of 64 and

a terminal speed of 3m/s are assumed. The expected bandwidth efficiency for different

channel models ranges from 93%–100%, while employing CP- or ZP-OFDM, bandwidth

efficiency is fixed at 80%. The variation of AZP length dependson the velocity of the

mobile terminal. An example of the variation of the channel matrix condition number with

different numbers of padding zeros as well as variation of the estimatedK with time is

shown in Fig. 3.7 for HIPERLAN/2 channel A with a terminal speed of 3m/s.
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Figure 3.7. Variation of AZP length with time for HIPERLAN/2 channel model A with

terminal speedv = 3(m/s).

We see that for a terminal speed of 3m/s, the AZP length varies very slowly and it most

likely changes among neighboring values. This is due to small changes in the channel only

resulting in small variations of the spectra of the channel matrix [45].

3.5.2 Complexity Issues

The AZP length results lead to further reductions in implementation complexity in that the

AZP length need not be updated very frequently. The search algorithm can be simplified,

examining several neighboring values, instead of performing exhaustive search over the

set of all possible values. Moreover, since in the proposed schemes, accurate estimate of

the smallest singular value is not required, the convergence criterion in applying the power

method can be very loose, which will reduce the number of iterations significantly.

Equalization in (3.20) is a band Toeplitz LS problem, for which special methods

56



have been devised of complexityO((N+K)N). Some “super-fast” methods require only

O((N+K) logN) operations [12]. For modified AZP-OFDM, in each iteration for choos-

ing AZP length and in the processing of each data block, the main cost is for solving band

Toeplitz equations. Usually the system design results in a narrow band matrix. As a result

the computational cost can be significantly reduced [25]. The complexity of CP-OFDM is

O(N logN), while using ZP-OFDM with fast equalization algorithms [67], the complexity

is O(M logM). In our simulations under the context of HIPERLAN/2 channel models, we

estimate AZP length every 20 blocks and the power method usually converges in several it-

erations. In summary, the proposed scheme has almost the same complexity as ZP-OFDM,

both of which are slightly higher than that of CP-OFDM.

3.5.3 Clipping Effects

As is well-known, one of the major drawbacks of OFDM is the high peak-to-average power

ratio (PAPR) of the signal to be transmitted. As a result, OFDMsignals cause serious prob-

lems such as distortion of the transmitted signal due to the PA nonlinearity. We consider the

simplified PA model shown in Fig.3.8, with both input and output normalized, as in [67].

According to [67], by defining theclipping ratio, C , as the number of clipped symbols over

the total number of symbols, and the IBO as the ratio of the meanpower at PA input to the

input saturation power, (which is a function ofC ), the transmitter output SNR difference

between CP- and ZP-OFDM is given by [67]

∆ZP(C ) = 10log

(
P
N

)

+ IBOZP(C )− IBOCP(C )

Therefore, such SNR loss will be smaller with a shorter guardinterval, as is the case in

our proposed AZP-OFDM. Since the length of AZP,K, is not fixed, we can estimate the
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Figure 3.8. A simplified power amplifier model.

expected SNR loss compared with CP-OFDM as

∆AZP(C ) = EK

[

10log
N+K

N
+ IBOAZP(C )− IBOCP(C )

]

(3.24)

For HIPERLAN/2 transmission, Fig. 3.9 shows the simulated SNR loss for ZP- and

AZP-OFDM with respect to CP-OFDM. The clipping effect alone requires reducing the

transmit-power by less than 0.3 dB compared to CP-OFDM in order to guarantee the same

amount of out-of-band radiation, while the reduction for ZP-OFDM is about 0.9 dB [67].

3.5.4 Uncoded BER performance

Example 1: (uncoded BER in HL/2 channel A)Fig. 3.10 shows the uncoded BER per-

formances of NGI-, CP-, ZP- and the proposed modified AZP-OFDMscheme in channel

A. The AZP length,K, is updated every 20 blocks. NGI-OFDM experiences serious er-

ror floors. AZP-OFDM has similar performance to CP-OFDM at lowSNR, and both are

slightly worse than that of ZP-OFDM. This is due to the guaranteed symbol recovery capa-

bility in ZP-OFDM, whereas for AZP-OFDM, this property has been sacrificed to achieve

higher bandwidth efficiency and lower complexity.
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Example 2: (uncoded BER in channels with exponential power delay profile)We as-

sume channel model orderL = N, and channel tap powersρ2
l = βe−α l , for l = 0,1, · · · ,N−

1, with β chosen to normalize the total channel power, i.e.,β = 1
∑N−1

l=0 e−α l and∑N−1
l=0 ρ2

l = 1.

Obviously, smallα corresponds to large rms delay spread. Fig. 3.11 shows the uncoded

BER performance of CP-OFDM, ZP-OFDM and AZP-OFDM in a system with block size

N = 32 and guard lengthG = 4. We see that for smallα, both CP- and ZP-OFDM,

with fixed guard length, experience serious error floors. Using AZP-OFDM, since the

guard length is adaptive, the system is more robust to channels with large delay spread.

The expected bandwidth efficiencies of AZP-OFDM for different α are, respectively,

71.35%(α = 0.05), 77.20%(α = 0.1), and 90.27%(α = 0.5), compared with fixed band-

width efficiencies in CP- and ZP-OFDM, 88.89%. In other words, when the delay spread

is low, AZP-OFDM has performance slightly below that of CP- and ZP-OFDM, while if

the delay spread is large, performance can be maintained at the expense of bandwidth effi-

ciency.

3.6 Conclusion

This chapter has shown how to optimize the transmit redundancy for OFDM transmission

over wireless channels to tradeoff performance, complexity and bandwidth efficiency. A

new bandwidth efficient zero-padding scheme, AZP-OFDM, wasproposed based on the

channel matrix condition, which is flexible for system design compared with the standard

CP-/ZP-OFDM. The new AZP-OFDM transmission method offers robust performance over

a large range of time dispersion (delay spread) while keeping implementation complexity

low.
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Chapter 4

Minimum BER Power Allocation Schemes for

Multicarrier Wireless Transmission

4.1 Introduction

Wideband wireless communication signals suffer from serious inter-symbol interference

(ISI) due to frequency-selective channels. Multicarrier (MC) modulation, especially Or-

thogonal Frequency Division Multiplexing (OFDM) using a cyclic prefix (CP) has been

receiving growing interest in recent years as countermeasures of frequency selectivity of

wireless channels due to simplified frequency-domain equalization (FDE) [106]. Time-

domain equalization (TDE) of conventional single-carrier(SC) transmission usually has

much higher complexity, especially when the channel delay spread is large.

Comparison between MC and SC has been investigated over the years. Simulations [90]

have shown that theuncodedperformance of SC transmission with FDE substantially

outperforms that of CP-OFDM. It was also suggested [90] for CP-OFDM to use power-

ful channel coding and frequency-domain interleaving to combat performance degrada-

tion from channel nulls. Recently, it has been shown that block SC transmission with

similar block structure and FDE to CP-OFDM, has similar equalization complexity and
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coded performance as OFDM [34]. Single-carrier employing adecision feedback equal-

izer (DFE) was proposed [8] and shown to have similar capacity and complexity compared

with OFDM. In this chapter, we present a framework for analytical comparison among CP-

based MC and SC block transmission schemes. From our analysis in Section 4.4, uncoded

CP-OFDM is shown to be inferior to CP-SC block transmission with the same processing

complexity, which motivates optimization of MC transmission by utilizing channel state

information (CSI) — we term this aspower allocation.

Joint power and bit allocation has been widely studied in Discrete Multitone (DMT) —

a multicarrier scheme in wire-line applications, where thechannel is regarded as static [10].

Adaptive modulation for OFDM over wideband wireless channels has been studied in [24].

Wireless systems, however, are time-varying. For simplicity of implementation, power

allocation alone may be employed as an alternative to joint power and bit allocation. A

minimum aggregateerror rate power allocation algorithm was proposed in [40],which

minimizes the block error rate. In this chapter, we propose aminimum averagebit error

rate (BER) power allocation algorithm for multicarrier wireless communications, which we

denote as MBER. Due to the nonlinear nature of the MBER power allocation problem, there

is no closed-form solution, with high implementation complexity. To lower complexity,

we propose a simpler approximate MBER algorithm with closed-form optimum solution

and small performance loss. Power allocation using equal gain (EG) and minimum mean

squared error (MMSE) criteria are also considered. Analytical performance comparison

among SC and a variety of MC schemes are presented. Simulations are provided and

compared to our analyses.

Conventional OFDM without power and bit allocation is an open-loop scheme, which

assumes no CSI knowledge at the transmitter. On the other hand, OFDM with power allo-

cation, is a closed-loop scheme, requiring CSI. In time-division duplex (TDD), due to the
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reciprocity of the uplink and downlink channels, CSI can be obtained from uplink measure-

ments using pilot and/or data symbols. For frequency-division duplex (FDD) systems, CSI

estimates require a feedback channel. Uncertain CSI arises due to [114]: 1) outdated esti-

mates due to feedback delay; 2) channel estimation error; 3)quantization error; 4) errors

introduced by feedback channel. This motivates analysis ofthe performance of closed-loop

MC transmission under CSI uncertainty.

The rest of this chapter is organized as follows. Section 4.2describes system models

for CP-OFDM and CP-SC, and analyzes their error rate performance with linear equaliza-

tion. Power allocation algorithms for CP-OFDM with perfect CSI are developed in Section

4.3. In Section 4.4, we compare CP-SC to a variety of MC schemes, and demonstrate per-

formance improvements of the closed-loop transmission schemes studied in Section 4.3.

Section 4.5 is devoted to the study of power allocation with imperfect CSI. Section 4.6

presents numerical results which are compared to our analyses.

4.2 Background

As described in Chapter 2, a serial stream of data,un, is serial-to-parallel (S/P) converted

into data blocks of sizeN, u def
= [u0,u1, · · · ,uN−1]

T . For MC transmission, MC modulation

is performed via IDFT to obtain the time-domain signal block, FHu, whereF is theN-point

DFT matrix. For SC systems, no MC modulation is performed. A guard interval in terms of

CP of lengthG is then inserted between each block, and the resulting cyclic-prefixed block

is parallel-to-serial (P/S) converted and sent sequentially through the channel. A multipath

propagation channel can be modelled as a finite impulse response (FIR) filter with tap

vector [h0,h1, · · · ,hL]
T and AWGN ηn ∼ N (0,N0). At the receiver, the firstG entries

corresponding to the CP are removed. For simplicity of analysis purposes, we assume that
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both input and noise are white, and the length of the CP,G, is no less than the channel

model order,L.

4.2.1 CP-OFDM

In CP-OFDM, the received block can be written as (after CP removal)

rMC = HFHu+ηηη , (4.1)

whereH is anN×N circulant channel matrix with first columnh def
= [h0, · · · ,hL,0, · · · ,0]T

andηηη is the N× 1 AWGN vector. By assumption,Ruu
def
= E{uuH} = EsI and Rηη

def
=

E{ηηηηηηH} = N0I. Performing MC demodulation via DFT, we obtain the frequency-domain

received block

r f
MC

def
= FrMC = Du+ηηη f , (4.2)

whereD def
= diag(Fh), and the superscriptf denotes the frequency-domain variable. The

frequency-domain zero-forcing (ZF) and MMSE equalizers are given by, respectively

[106],

GMC
ZF = D†, GMC

MMSE = DH
(

1
γs

I +DDH
)−1

. (4.3)

whereγs
def
= Es/N0. Since both frequency-domain equalizers are diagonal matrices, matrix

inversion is trivial, also know as one-tap equalization.

4.2.2 Single-Carrier with CP (CP-SC)

After CP removal at the CP-SC receiver, the received block can be written as

rSC = Hu+ηηη , (4.4)
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The ZF and MMSE time-domain equalizers are given by circulant matrices, respectively

[106],

GSC
ZF = H†, GSC

MMSE = HH
(

1
γs

I +HHH
)−1

, (4.5)

for which there exist FFT-based implementations, also known as FDE [34]. To be specific,

the received block is first transformed to the frequency domain, i.e.,

r f
SC

def
= FrSC = DFu+ηηη f . (4.6)

Equalization is then performed in the frequency domain witheither ZF or MMSE criterion,

as in CP-OFDM (see (4.3)). Finally, the equalized block is transformed back to the time

domain (via IFFT) to obtain the estimate of transmitted block.

4.2.3 Instantaneous BER Performance

For simplicity of analysis, we consider BPSK modulation. Theinstantaneous BER is de-

fined as the BER for a fixed channel realization.

In CP-OFDM, the one-tap equalizer outputs are given by, respectively, (for k =

0,1, · · · ,N−1)

[

ûMC
ZF

]

k
= uk +H−1

k [ηηη f ]k, (4.7)

[

ûMC
MMSE

]

k
=

|Hk|2
γ−1
s + |Hk|2

uk +
H∗

k

γ−1
s + |Hk|2

[ηηη f ]k, (4.8)

whereHk
def
= [Fh]k = 1√

N ∑L
l=0hl e− j 2πkl

N is the channel frequency response of thek-th sub-

carrier. Since |Hk|2
γ−1
s +|Hk|2

6= 1 for γs < ∞, we see that the MMSE equalization outputûMC
MMSE

in (4.8) is a biased estimate of the transmitted signals. Furthermore, from (4.7) and (4.8),

we have
[

ûMC
MMSE

]

k
=

|Hk|2
γ−1
s + |Hk|2

[

ûMC
ZF

]

k
,
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i.e., the MMSE estimate is actually a scaled version of the ZFestimate. The corresponding

decision-point SNR’s are given by, respectively (fork = 0,1, · · · ,N−1),

γMC
ZF,k =

E

{

|uk|2
}

E

{∣
∣H−1

k [ηηη f ]k
∣
∣
2
} = γs|Hk|2, (4.9)

γMC
MMSE,k =

E

{

|uk|2
}

E

{∣
∣uk− [ûMC

MMSE]k
∣
∣2

} = 1+ γs|Hk|2. (4.10)

The above SNR’s of MMSE equalization do not take into account the bias in the decision

variable, and the increased SNR is an artifact of the SNR definition [22]. Since there is no

inter-carrier interference (ICI), it is shown in Appendix A that the error rate performance

can be approximately determined by the unbiased SNR [22]1. By scaling (4.8) to remove

the bias, we calculate the unbiased SNR for MMSE equalization γMC
MMSE-U,k = γs|Hk|2,

which is exactly the same as that of ZF equalization. Therefore, from here on, only ZF

equalization is considered in CP-OFDM. The average instantaneous BER is given by

PMC(h) =
1
N

N−1

∑
k=0

Q

(√

2γs|Hk|2
)

, (4.11)

whereQ(x)
def
= 1√

2π

∫ ∞
x e−y2/2dy.

For CP-SC, the ZF equalization output is

ûSC
ZF = u+H†ηηη . (4.12)

Clearly, (4.12) is an unbiased estimate, and there is no ISI. The error rate performance is

determined by the decision-point SNR,

γSC
ZF,k =

Es

N0[(HHH)†]k,k

=
γs

1
N ∑N−1

l=0 |Hl |−2
, ∀k. (4.13)

1The noise term in the decision variable is generally not AWGN.Assuming AWGN gives a good approx-

imation to the BER performance.
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Using (4.13), the average instantaneous BER is given by

PSC
ZF (h) = Q

(√

2γs
1
N ∑N−1

l=0 |Hl |−2

)

. (4.14)

For MMSE-equalized CP-SC, the decision variable is

ûSC
MMSE = Bu+GSC

MMSEηηη , (4.15)

whereB def
= GSC

MMSEH = HH
(
γ−1
s I +HHH

)−1
H is generally not diagonal, and (4.15) expe-

riences ISI. In this case, the decision-point SNR cannot be used to calculate BER because

the ISI term cannot be approximated as Gaussian according toour simulations. Since both

GSC
MMSE andH are circulant,B is also circulant. The coefficients of the desired and inter-

fering terms are the same for all symbols in the block, which can be calculated efficiently

using an FFT. Denoting, respectively,

Θk
def
=

|Hk|2
γ−1
s + |Hk|2

,

Θ def
= [Θ0, · · · ,ΘN−1]

T ,

θ def
= FH

NΘ = [θ0, · · · ,θN−1]
T ,

we have

B = HH (
γ−1
s I +HHH)−1

H

= FH
N DH (

γ−1
s I +DDH)−1

D
︸ ︷︷ ︸

diag{Θ}

FN

= circulant{θ}, (4.16)

where circulant(x) denotes a circulant matrix with first columnx. Therefore,θ0 is the

coefficient of the desired signal, and{θk}N−1
k=1 represent ISI coefficients. The noise variance

in (4.15) is given by

σ2
k = N0

[

GSC
MMSE

(

GSC
MMSE

)H
]

k,k
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= N0 ·
1
N

N−1

∑
l=0

|Hl |2
(γ−1

s + |Hl |2)2

def
= σ2, (4.17)

which is independent ofk. Using Beaulieu series [7], we calculate

PSC
MMSE(h) ≈ 1

2
− 2

π

M

∑
m=1
modd

1
m

e−
m2ω2

2 sin

(
mωθ0

σ

)N−1

∏
k=1

cos

(
mωθk

σ

)

,

where the choice of parametersM andω is described in [7].

4.3 Power Allocation for CP-OFDM with Perfect CSI

We now consider CP-OFDM transmission utilizing perfect CSI atthe transmitter. A gen-

eral power allocation method is briefly introduced and a variety of new schemes are then

proposed. Power allocation algorithms adjust the transmitted signal power across sub-

carriers under the constraint of constant power per block. Denotep2
k as the transmitted

power of thek-th subcarrier (k = 0,1, · · · ,N−1), and define the power allocation matrix

P = diag{p0, p1, · · · , pN−1} . The block power constraint can be normalized as

trace{P2} =
N−1

∑
k=0

p2
k = N. (4.18)

From (4.2), the received frequency-domain block is given byr f
PMC = DPu+ηηη f , where the

subscriptPMC denotes MC with power allocation. With one-tap equalization, we obtain,

ûPMC = u+(DP)†ηηη f . (4.19)

Using (4.9), the decision-point SNR of thek-th subcarrier is given byγPMC
k = γs|Hk|2p2

k,

and the average instantaneous BER2

P(h,P) =
1
N

N−1

∑
k=0

Q

(√

2γs|Hk|2p2
k

)

. (4.20)

Note that CP-OFDM without power allocation is a special case of P = I.
2For simplicity of notation, we drop super- and subscripts.
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4.3.1 MBER Power Allocation

By differentiating (4.20), we note that∇2
p2

k
P(h,P) > 0, the Hessian matrix is diagonal with

positive diagonal entries, and, therefore, positive definite. Hence,P(h,P) is a convex func-

tion of {p2
k}N−1

k=0 . Also, it is readily verified that the block power constraint(4.18) defines a

convex feasible region. Therefore, power-constrained MBERpower allocation






minP(h,P) = 1
N ∑N−1

k=0 Q
(√

2γs|Hk|2p2
k

)

subject to ∑N−1
k=0 p2

k = N
, (4.21)

is a convex programming problem, for which there exists a unique global minimum [60].

Due to the high nonlinearity of the objective function, there is no closed-form solution to

this problem. A solution of this “water-filling”-like problem is given in Appendix B. The

solution{p2
MBER,k}N−1

k=0 is unique and satisfies

√

γs|Hk|2
p2

k

e−γs|Hk|2p2
k = µ, (k = 0,1, · · · ,N−1), (4.22)

which can be solved numerically. The parameterµ is chosen numerically according to

the total power constraint (4.18). To be specific, we can bound the parameterµ as follows:

since∑N−1
k=0 p2

k = N, we have mink p2
k ≤ 1≤maxk p2

k. Furthermore, since
√

γs|Hk|2
p2

k
e−γs|Hk|2p2

k

is monotone decreasing inp2
k, we have

min
k

√

γs|Hk|2e−γs|Hk|2

︸ ︷︷ ︸

µmin

≤ µ ≤ max
k

√

γs|Hk|2e−γs|Hk|2

︸ ︷︷ ︸

µmax

.

An algorithm for MBER power allocation is summarized in Table4.1. This algorithm re-

quires an iterative procedure to obtain the optimum solution andN nonlinear equations

must be solved numerically in each iteration. Therefore MBERsuffers from slow con-

vergence and high computational complexity, which motivates the approximate MBER

algorithm discussed next.
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Table 4.1. MBER Power Allocation Algorithm

Initialization µ0 ← µmin, µ1 ← µmax;

p2
k ← 1 for k = 0,1, · · · ,N−1;

choose error tolerance ε.

Iteration do {

µ ← µ0+µ1
2

solve (4.22)for k = 0,1, · · · ,N−1

if (∑k p2
k < N), µ1 ← µ

else µ0 ← µ

} until |∑k p2
k −N| ≤ ε

4.3.2 Approximate MBER (AMBER) Power Allocation

Instead of solving (4.21) directly, we approximate the objective function to find a subopti-

mal solution. An expression for the approximate BER is given by [116]

Pb ≈
1
5

e−cγs, (4.23)

wherec is a constellation-specific constant, e.g., for BPSK,cBPSK = 1. Accordingly, we

formulate the AMBER power allocation problem as






min 1
5N ∑N−1

k=0 exp(−γs|Hk|2p2
k)

subject to ∑N−1
k=0 p2

k = N
, (4.24)

which is also a convex programming problem. Using Lagrange multipliers, we obtain the

closed-form solution,

p2
AMBER,k =

ln |Hk|2 +ν
γs|Hk|2

, ν def
=

γs− 1
N ∑N−1

l=0 |Hl |−2 ln |Hl |2
1
N ∑N−1

l=0 |Hl |−2
. (4.25)
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However, the above solution doesnot take into account the inherent inequality constraints,

p2
k ≥ 0,∀k, which are satisfied only if

ν ≥ max
k

{
− ln |Hk|2

}
. (4.26)

Otherwise, according to Appendix B, the solution should be modified as3

p2
AMBER,k =

(
ln |Hk|2 +ν

γs|Hk|2
)

+

, (4.27)

where(x)+
def
= max{0,x}, andν is chosen to satisfy the block power constraint (4.18). Note

that the block power∑k p2
k(ν) = ∑k

(
ln |Hk|2+ν

γs|Hk|2
)

+
is a piecewise-linear increasing function

of ν , with breakpoints at− ln |Hk|2. Thereforeν is unique and can be readily determined.

Table 4.2 summarizes an algorithm for AMBER power allocation. Compared to the MBER

power allocation algorithm in Table 4.1, the AMBER algorithmincludes a sorting proce-

dure, but no numerical solution of nonlinear equations. TheAMBER algorithm requires at

mostN recursions.

4.3.3 Equal-Gain (EG) Power Allocation

Since theQ(·) function decreases very rapidly in its argument, the BER (4.20) is usu-

ally dominated by a few terms with smallest|Hk|’s. Power allocation algorithms try to

pre-equalize the gains of subcarriers,|Hk|pk. One empirical solution is to allocate the

transmitted power so that all gains are equal4, i.e.,






|Hk|2p2
k = C, (k = 0,1, · · · ,N−1)

∑N−1
k=0 p2

k = N
, (4.28)

whereC is a constant independent ofk. From the first equation in (4.28), we have

p2
k = C|Hk|−2. Substituting p2

k into the second equation in (4.28), we obtainC =

3An equivalent solution is obtained in [49] by minimizing theChernoff upper bound of BER.
4This scheme was also addressed in [10] as an approximate of power allocation at high SNR.
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Table 4.2. AMBER Power Allocation Algorithm

Initialization sort {|Hk|2}N−1
k=0 in decreasing order⇒{dk}N−1

k=0 ;

if (4.26)holds, go to Solution;

k = 0, P0 = 0.

Recursion if (Pk < N), do {

k← k+1

Pk = Pk−1 +(lndk−1− lndk)∑k−1
l=0

1
γsdl

}

ν = γs(N−Pk−1)
(

∑k−1
l=0 d−1

l

)−1
− lndk−1

Solution p2
AMBER,k =

(
ln |Hk|2+ν

γs|Hk|2
)

+
, for k = 0,1, · · · ,N−1

( 1
N ∑N−1

l=0 |Hl |−2
)−1

. Therefore, the EG solution is given by

p2
EG,k =

|Hk|−2

1
N ∑N−1

l=0 |Hl |−2
, (k = 0, · · · ,N−1). (4.29)

4.3.4 MMSE Power Allocation

From (4.19), we obtain the mean squared-error (MSE) for CP-OFDM equalization with

power allocation as

MSE = E
{
‖ ûPMC−u ‖2}

= trace
{

(DP)†
E

{
ηηηηηηH}

[(DP)†]H
}

= N0

N−1

∑
k=0

p−2
k |Hk|−2. (4.30)

Using Lagrange multipliers, the MMSE power allocation solution under the block power

constraint (4.18) can be found as

p2
MMSE,k =

|Hk|−1

1
N ∑N−1

l=0 |Hl |−1
, (k = 0, · · · ,N−1). (4.31)
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Comparing (4.31) to (4.29), we note that

p2
EG,k

p2
MMSE,k

=
1

|Hk|
· ∑N−1

l=0 |Hl |−1

∑N−1
m=0 |Hm|−2

︸ ︷︷ ︸

constant

(4.32)

i.e., the EG solution allocates more power to weaker subcarriers.

4.4 Comparison of CP-OFDM and CP-SC

From the previous sections (4.2.3 and 4.3), we note that since closed-form decision-point

SNR and instantaneous BER performance are available, an analytical performance compar-

ison is possible. We compare the instantaneous BER of ZF-equalized CP-SC and several

CP-OFDM schemes.

4.4.1 CP-SC versus CP-OFDM without Power Allocation

From (4.11) and (4.14), the average instantaneous BER expressions can be unified as

P({ξk}N−1
k=0 ) =

1
N

N−1

∑
k=0

Q

(√

2γs

ξk

)

, (4.33)

whereξk’s for OFDM and SC are given by, respectively,

ξ MC
k = |Hk|−2, ξ SC

k =
1
N

N−1

∑
l=0

|Hl |−2 def
= ξ SC. (4.34)

From the second derivatives of (4.33),

d2P

dξ 2
k

=
1

2N

√

γs

πξ 5
k

(
γs

ξk
− 3

2

)

e
− γs

ξk , (4.35)

we know that the Hessian matrix is positive definite, as long as the decision-point SNR

γk = γs
ξk

> 3
2 (1.76 dB). This condition holds asymptotically whenγs is large. Under this con-

dition,P({ξk}N−1
k=0 ) is a convex function ofξk’s. From (4.34), we knowξ SC= 1

N ∑N−1
k=0 ξ MC

k .

By Jensen’s inequality, we conclude that

PSC
ZF (h) ≤ PMC(h). (4.36)
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4.4.2 CP-SC versus CP-OFDM with EG Power Allocation

For CP-OFDM with EG power allocation, we calculate the decision-point SNR (cf. (4.29))

γPMC
EG,k =

γs
1
N ∑N−1

l=0 |Hl |−2
≡ γSC

k . (4.37)

Therefore, CP-OFDM with EG power allocation has the same performance as ZF-equalized

CP-SC.

4.4.3 CP-SC versus CP-OFDM with MMSE Power Allocation

From (4.20), (4.33) and (4.31), we have

ξ PMC
MMSE,k =

1
|Hk|

· 1
N

N−1

∑
l=0

1
|Hl |

.

Whenγs≫ 1, by Taylor series expansion ofP({ξ PMC
MMSE,k}) atξ SC, we can writePPMC

MMSE(h)

as

PPMC
MMSE(h) = P(ξ SC)+

(

1
N

N−1

∑
k=0

ξ PMC
MMSE,k−ξ SC

)

dP(ξ SC)

dξ

+
1

2N

N−1

∑
k=0

(

ξ PMC
MMSE,k−ξ SC

)2 d2P(ξ SC)

dξ 2 + · · · . (4.38)

We note that in the above series expansion,

1
N

N−1

∑
k=0

ξ PMC
MMSE,k−ξ SC =

(

1
N

N−1

∑
l=0

1
|Hl |

)2

− 1
N

N−1

∑
l=0

1
|Hl |2

≤ 0,

while
N−1

∑
k=0

(

ξ PMC
MMSE,k−ξ SC

)2
≥ 0.

However, from the first and second derivatives ofP(ξ ), we obtaind2P/dξ 2

dP/dξ = 1
ξ

(
γs
ξ − 3

2

)

.

Whenγs ≫ 1, we haved2P
dξ 2 ≫ dP

dξ , and, accordingly, from (4.38),

PSC(h) ≤ PPMC
MMSE(h). (4.39)
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4.4.4 CP-SC versus CP-OFDM with AMBER Power Allocation

Note that in (4.25), at high SNR, the conditionν ≥ maxk
{
− ln |Hk|2

}
holds, and the AM-

BER power allocation can be obtained as

p2
k =

ln |Hk|2 +ν
γs|Hk|2

, ν def
=

γs− 1
N ∑N−1

l=0 |Hl |−2 ln |Hl |2
1
N ∑N−1

l=0 |Hl |−2
. (4.40)

From (4.20), (4.33) and (4.27), we obtain, for AMBER power-allocated CP-OFDM,

ξ PMC
AMBER,k =

1
N ∑N−1

l=0 |Hl |−2

1+ 1
γs
· 1

N ∑N−1
l=0 |Hl |−2(ln |Hk|2− ln |Hl |2)

. (4.41)

At moderate to high SNR,γs ≫ 1, and we can approximate

ξ PMC
AMBER,k ≈ ξ SC

(

1− 1
γs
· 1
N

N−1

∑
l=0

ln |Hk|2− ln |Hl |2
|Hl |2

)

. (4.42)

From Taylor’s series expansion ofPPMC
AMBER(h) at ξ SC, we have

PPMC
AMBER(h) ≈ P(ξ SC)− ξ SC

γs

dP(ξ SC
ZF )

dξ
×

(

1
N

N−1

∑
l=0

ln |Hl |2 ·
1
N

N−1

∑
l=0

1
|Hl |2

− 1
N

N−1

∑
l=0

ln |Hl |2
|Hl |2

)

︸ ︷︷ ︸

≥0

≤ P(ξ SC) = PSC(h).

4.5 Power Allocation with Imperfect CSI

Let ĥ def
= [ĥ0, · · · , ĥL,0, · · · ,0]T , where{ĥl}L

l=0 denotes an estimate of{hl}L
l=0 available at

the transmitter. Assume{ĥl}L
l=0 and{hl}L

l=0 are jointly complex Gaussian. The statistics

of the partial CSI and its relation to the true channel are described by the mean vectormĥ,

covariance matrixRhh, and cross-covariance matrixRhĥ [53].
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4.5.1 Analysis of Power Allocation with Imperfect CSI

Since only the estimated CSI,ĥ, is available at the transmitter, the allocated power is a

function ofĥ, i.e.,{p2
k(ĥ)}N−1

k=0 . Accordingly, the instantaneous BER is given by

P(h, ĥ,P) =
1
N

N−1

∑
k=0

Q

(√

2γs|Hk|2p2
k(ĥ)

)

. (4.43)

Using the approximation given in [116], we have the approximate instantaneous BER,

P̃(h, ĥ,P) =
1

5N

N−1

∑
k=0

exp{−γs|Hk|2p2
k(ĥ)}. (4.44)

Applying the analysis in [53], we obtain the closed-form approximate BER as5

P̃(ĥ,P) =
1

5N

N−1

∑
k=0

exp{mHR−1(ΨΨΨ−1
k −R)R−1m}

det(RΨΨΨk)

def
= P̃b. (4.45)

whereΨΨΨk
def
= γsp2

kfkfH
k + R−1, andfk denotes thek-th column ofFH . By using the matrix

inversion lemma6, we have

ΨΨΨ−1
k −R = − γsp2

kRfkfH
k R

1+ γsp2
kfH

k Rfk
,

and (4.45) can be simplified to

P̃b =
1

5N

N−1

∑
k=0

1

1+ γsp2
kfH

k Rfk
exp

{

− γsp2
k|fH

k m|2
1+ γsp2

kfH
k Rfk

}

, (4.46)

where the fact det(RΨΨΨk) = det(I + γsp2
kRfkfH

k ) = 1+ γsp2
kfH

k Rfk has been used.

4.5.2 Special Cases

Three cases of partial CSI are investigated:delayed CSI, noisy CSIandcovariance feedback

[114].

5We drop the subscripts ofm andR for simplicity of notation.
6A = B−1 +CD−1CH , A−1 = B−BC(D+CHBC)−1CHB
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4.5.2.1 Delayed CSI

We assume that the channel is time-varying with a delay ofD blocks in CSI feed-

back information, a symbol durationTs, and a fading channel using Jakes’ model and

Doppler frequencyfD. In order to investigate the effect of channel variation indepen-

dent of channel estimation schemes, it is further assumed that the CSI at the transmitter

is perfect but outdated, i.e.,̂h(t) = h(t −DNTs). The cross-covariance matrix ofh and

ĥ is given byRhĥ = ρDh, whereρ def
= J0(2π fDDNTs) is the correlation coefficient, and

Dh
def
= E{hhH}= E{ĥĥH}= diag{σ2

0 ,σ2
1 , · · · ,σ2

L ,0, · · · ,0}with σ2
l = E{|hl |2}. Note thatρ

is a measure of the quality of the partial CSI:ρ = 1 corresponds to perfect CSI whileρ = 0

corresponds to no CSI. Sinceh andĥ are jointly complex Gaussian, we have the conditional

mean and covariance ofh givenĥ, respectively,m = E[h|ĥ] = ρĥ, R = (1−ρ2)Dh.

Without loss of generality, we assume normalized total channel tap power trace{Dh} =

∑l σ2
l = 1. The approximate BER (4.46) can be simplified as

P̃′
b =

1
5N

N−1

∑
k=0

1

1+ γsp2
k(1−ρ2)/N

exp

{

− γsp2
k|Ĥk|2ρ2

1+ γsp2
k(1−ρ2)/N

}

, (4.47)

whereĤk
def
= fH

k ĥ, and the factfH
k Dhfk = 1/N has been used.

We now consider the special cases of perfect and no CSI.

• Perfect CSI (ρ = 1): The above analysis does not apply becauseR = 0. However, as

ρ approaches 1, we have

lim
ρ→1

P̃′
b =

1
5N

N−1

∑
k=0

exp{−γsp2
k|Hk|2},

which reduces to the case analyzed in previous sections. Therefore, (4.47) includes

the perfect CSI scenario as a special case.

• No CSI (ρ = 0): Eq. (4.47) reduces to

P̃′
b =

1
5N

N−1

∑
k=0

1

1+ γsp2
k|Ĥk|2/N

.
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Using Lagrange multipliers, it is easy to verify that the optimal power allocation

solution under the total power constraints isP = I. In other words, when no CSI

available at the transmitter, OFDM without power allocation is optimum in the sense

of minimum BER.

4.5.2.2 Noisy CSI

We assume the CSI available at the transmitter is modelled ash = ĥ + e, where e ∼

N (0,σ2
eI) denotes noise in CSI, due to quantization error, estimation error, or feedback

channel error [114]. Here,m = E[h|ĥ] = ĥ, R = σ2
eI, and (4.46) can be simplified as

P̃′′
b =

1
5N

N−1

∑
k=0

1

1+ γsp2
kσ2

e/N
exp

{

− γsp2
k|Ĥk|2

1+ γsp2
kσ2

e/N

}

. (4.48)

We note that taking limσ2
e→0 P̃′′

b , (4.48) reduces to the case of power allocation with perfect

CSI.

4.5.2.3 Covariance Feedback

Assuming knowledge of channel covariance, while the mean isset to zero, i.e.,̂h ∼

N(0,Dh)
7, (4.46) simplifies to

P̃′′′
b =

1
5N

N−1

∑
k=0

1

1+ γsp2
k|Ĥk|2/N

. (4.49)

As in the case of no CSI, the optimal constrained power allocation solution isP = I.

Remark:When the conditional CSI statisticsm andR are available at the transmitter,

such information can be used in the design of power allocation schemes that are robust to

CSI uncertainty [49]. The MBER power allocation algorithm in Table 4.1 applies straight-

forwardly.

7This is a valid assumption when channel varies too fast for transmitter to estimate its local mean [114].
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4.6 Numerical Results and Discussions

We now compare our analytical results in the previous sections to simulations.

4.6.1 Power Allocation with Perfect CSI

4.6.1.1 Illustration of MBER and AMBER Power Allocation

We verify the minimum BER property of the MBER power allocationalgorithm, as well

as the approximating ability of the AMBER scheme. For convenience of illustration, we

consider the block sizeN = 2 system over the two-tap channelh2
0 = 0.8,h2

1 = 0.2, with

γs = 20 (13 dB). In this case, the power allocation solution can be normalized as

P(θ) =
√

2






cosθ 0

0 sinθ




 ,

whereθ is a function of the power allocation scheme. For CP-OFDM without power allo-

cation,θ = π/4, corresponding toP = I. Fig. 4.1 illustrates a polar plot of− log10(P(h,θ))

versusθ . As we can see, the MBER solution points in the minimum BER direction, and the

AMBER solution offers a close approximation. Both of them offer improved performance

over CP-OFDM without power allocation.

4.6.1.2 Instantaneous BER Performance

For analytical comparisons of asymptotic performances in Section 4.4, it is of interest to

compare them to simulations of finite SNR’s. The channel is randomly generated, with

frequency response shown in the upper part of Fig. 4.2. The power allocation coefficients

of EG, MMSE, AMBER and MBER schemes are also shown in the lower part of Fig. 4.2.

We can see that AMBER solution is very close to that of MBER. The instantaneous BER

performance of this channel is plotted in Fig. 4.3. At all SNR’s shown, CP-OFDM with
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Figure 4.1. A polar plot of− log10P(h,θ) vs. θ .

MBER and AMBER power allocation outperforms ZF-equalized SC (or OFDM with EG

power allocation) and conventional CP-OFDM without power allocation.

4.6.1.3 BER Performance in Fading Channels

We compare the BER performance of CP-SC and a variety of CP-OFDM schemes

in fading channels. The channel models in [54] are used. Channel 1 with tap

powers [0.15,0.65,0.15,0.05] has moderate nulls, while channel 2 with tap powers

[0.39,0.16,0.26,0.19] has severe nulls, as shown in Fig. 4.4. From Figs. 4.5 and 4.6,we

see that CP-OFDM with AMBER power allocation offers performance very close to that of

the MBER scheme in fading channels. Both algorithms outperform ZF-equalized SC (or,

equivalently, CP-OFDM with EG power allocation) and conventional CP-OFDM without

power allocation. At a BER of 10−3, CP-OFDM with MBER or AMBER power allocation

has a gain of around 7.5 dB as compared to EG power allocation as well as scheme without
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Figure 4.2. Channel frequency response and corresponding power allocation coefficients at

γs = 20 (dB) (N = 64).

power allocation. We also note from these figures that CP-OFDMwith EG (equivalently,

CP-SC with ZF equalization) and MMSE power allocation has poor BER performance in

fading channels at all SNR shown. It is expected, however, when the input SNR is high

enough, power allocation will outperform no-power-allocation.

Remark 1:In MC systems, each symbol occupies a narrow spectral band and a long

time duration, which increases resistance to frequency-selective (multipath) fading. In SC

systems, block equalization can be viewed as a form of diversity combining, which offers

multipath diversity gain. For MC schemes, the equivalent channel is decoupled in the

frequency domain. Multipath signals are non-resolvable inthe frequency domain which

results in a loss of multipath diversity gain in MC systems.

Remark 2:Recall from Section 4.3 that the power allocation matrixP is constrained to

be diagonal, in order not to introduce ICI. However, if we allow ICI in power allocation,
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Figure 4.3. Instantaneous BER comparison of single and multicarrier (N = 64).

improvements from precoding are possible [91], at the cost of higher processing complex-

ity8.

4.6.2 Power Allocation with Imperfect CSI

An example of the approximate instantaneous BER as a functionof the normalized Doppler

frequencyfDDNTs is shown in Fig. 4.7. We see that for this channel realization, the per-

formance of all power allocation schemes approach their optimum when the normalized

Doppler frequencyfDDNTs is less than 10−2. When fDDNTs > 0.1, the performances of

power-loaded schemes drop rapidly asfDDNTs increases. As an example, we consider the

system parameters chosen in wireless LAN standards. For theterminal velocityv = 108

8We note that the optimal precoder and decoder for MC and SC systems will converge since they solve

the same problem in different domains: the IFFT and FFT operation will be absorbed in the precoder and

decoder of the SC system.
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Figure 4.4. Magnitude spectrum of ISI channel (N = 64).

km/hour, the Doppler frequency isfD = 500 Hz. If we choose the feedback delayD = 5

blocks, we have the normalized Doppler frequencyfDDNTs = 10−2, i.e., the power alloca-

tion performance will not be affected significantly by the feedback delay. However, if the

feedback delayD > 50 blocks, power allocation schemes will not perform well.

4.7 Conclusion

Cyclic-Prefix-based single-carrier (SC) and OFDM multicarrier schemes are compared in

this chapter. It has been shown that uncoded CP-OFDM is inferior to CP-SC in frequency-

selective channels. Power allocation algorithms are proposed for CP-OFDM. Analytical

performance comparison and simulation results show that CP-OFDM with either MBER

or AMBER power allocation offer superior performance to CP-SCwith ZF equalization.

Power allocation with imperfect channel knowledge is also analyzed.

84



0 5 10 15 20 25

10
−3

10
−2

10
−1

Signal−to−Noise Ratio  (dB)

A
ve

ra
ge

 B
E

R

SC − ZF equalization
MC − no power allocation
MC − EG power allocation
MC − MMSE power allocation
MC − AMBER power allocation
MC − MBER power allocation

Figure 4.5. BER comparison in fading channel 1 (N = 16).

0 5 10 15 20 25

10
−3

10
−2

10
−1

Signal−to−Noise Ratio  (dB)

A
ve

ra
ge

 B
E

R

SC − ZF equalization
MC − no power allocation
MC − EG power allocation
MC − MMSE power allocation
MC − AMBER power allocation
MC − MBER power allocation

Figure 4.6. BER comparison in fading channel 2 (N = 16).

85



10
−3

10
−2

10
−1

10
−4

10
−3

10
−2

10
−1

f
D
DNT

s

A
pp

ro
xi

m
at

e 
B

E
R

no power allocation
MMSE power allocation
EG power allocation
AMBER power allocation
MBER power allocation

Figure 4.7. An example of the approximate instantaneous BER as a function of the nor-

malized Doppler frequency for various power allocation schemes (N = 64,γs = 20 dB).

86



Chapter 5

Minimum BER Power Allocation for MIMO

Spatial Multiplexing Systems

5.1 Introduction

The capacity of wireless communications systems can be increased substantially by using

multiple transmit and receive antennas, known as multiple-input multiple-output (MIMO)

systems, provided that multipath scattering effects have been exploited appropriately [37].

MIMO communications offers key advantages over single-input single-output (SISO) com-

munications, such as diversity gain and spatial multiplexing gain [80]. Diversity gain im-

proves link reliability, while spatial multiplexing gain increases the transmission rate. Our

goal of this chapter is to investigate transmit optimization for MIMO spatial multiplexing,

which is receiver-dependent. Signal reception for MIMO spatial multiplexing can employ

criteria such as zero-forcing (ZF), minimum mean-squared error (MMSE), maximum like-

lihood (ML), successive interference cancellation (SIC), or ordered SIC (OSIC) as, for

example, in the case of the Vertical Bell Laboratories Layered Space-Time (V-BLAST) ar-

chitecture [37,109]. Among these schemes, ZF has both lowest computational complexity

and performance, while ML has highest complexity and performance.
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In order to achieve high MIMO diversity and/or spatial multiplexing gains, appropriate

transceiver designs are necessary. Efforts to optimize MIMO transceiver structures have in-

volved joint transmit-receive optimization and linear precoding for specific receivers. Joint

precoding/decoding optimization under MMSE criterion is investigated in [92], and [76]

presents a unified framework for joint transmit-receive design using convex optimization.

Minimum bit error rate (MBER) precoding for ZF equalization ofblock transmission [28]

is readily applicable to MIMO systems, as well as precoding for multicarrier MIMO us-

ing ML receiver and pairwise error probability as criterion[86]. These designs generally

require high complexity processing at both the transmitterand the receiver as well as high

feedback overhead. Precoded MIMO transmission with reduced feedback has been re-

cently proposed, based on quantized channel state information (CSI) feedback and limited

feedback signal design. For example, quantized CSI feedbackhas been incorporated into

transmitter optimization [52, 69]. Limited feedback signal design also occurs at the re-

ceiver [44,55,59]. However, existing precoding schemes with reduced feedback generally

also require high processing complexity, e.g., diagonalization of the channel matrix and/or

precoding codebook design.

In this chapter, we consider simultaneous reduction of complexity and feedback over-

head by constraining precoding to transmit power allocation, i.e., we optimize only the

transmit power of signal streams, but apply a more suitable criterion1. As opposed to

MMSE precoding/decoding [92], we consider MBER as the optimization criterion. Com-

pared to MBER precoding for ZF receivers, we apply MBER power allocation to SIC

and OSIC as well. General power allocation by minimizing error rate doesnot have a

closed-form solution, and has high computational complexity. An approximate solution

1Power allocation for multicarrier MIMO systems was considered in [78], where MIMO was operated in

a diversity mode and the transmit power was allocated acrossthe frequency dimension (subcarriers).
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can be found instead, which was originally given in [74], andapplied to power alloca-

tion for multicarrier systems [49, 78, 105]. The approximate MBER (AMBER) solution

offers performance close to that of the exact solution with low computational complex-

ity [105]. Recently, it has come to our attention that a similar AMBER power allocation

for V-BLAST was proposed independently [68], which is a special case of our proposed

solution for well-conditioned channels, as shown in Section 5.3. Simulation results show

that in generally correlated fading channels [1], our proposed AMBER power allocation to-

gether with SIC or OSIC (V-BLAST) reception offers superior performance over existing

precoding schemes with closed-form solutions.

Transmitter-side power allocation ideally requires CSI or allocated power to be avail-

able at the transmitter. In some cases, CSI can be made available at the transmitter, e.g.,

in time-division duplex (TDD) systems, due to the reciprocity of the uplink and downlink

channels. In this case, all existing limited feedback schemes donotpossess any advantages

since feedback overhead is not a concern. However, power allocation is still attractive due

to the significant reduction in processing complexity. On the other hand, in channels that

lack reciprocity in uplink and downlink, e.g., frequency-division duplex (FDD), complete

CSI is not available at the transmitter, and CSI or power information has to be fed back.

Regardless of availability, CSI or power feedback is imperfect in practice due to channel es-

timation, quantization, feedback delay, and/or errors introduced by feedback channel [115].

This motivates performance analysis of power allocation under uncertain feedback. While

a general analysis is difficult, we analyze the special casesof noisy CSI and power feed-

back. Based on this analysis, we propose an AMBER power allocation algorithm that takes

statistical knowledge of noisy feedback into account. Furthermore, as a byproduct, a mod-

ified algorithm for perfect CSI which takes into account errorpropagation effects in SIC

and OSIC receivers is devised.
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The rest of this chapter is organized as follows: MIMO signalreception and per-

formance are introduced in Section 5.2. Section 5.3 investigates power allocation for

MIMO with ZF, SIC and OSIC receivers and their performances.In Section 5.4, per-

formance degradation and power allocation under imperfectfeedback are studied. Section

5.5 presents numerical results in general correlated fading channels.

5.2 MIMO Signal Reception and Performance

Consider a MIMO spatial multiplexing communication system with Nt transmit andNr

receive antennas whereNr ≥ Nt . The received signal can be modelled as

r = Hs+ηηη , (5.1)

wheres is theNt ×1 transmitted signal vector;H is theNr ×Nt channel matrix, which is

assumed to be generally correlated Ricean fading as in Section 2.1.2; andηηη is theNr ×1

additive Gaussian noise vector. For simplification of analysis, we assume white noise and

input, i.e.,E[ssH ] = EsINt andE[ηηηηηηH ] = N0INr , and define the input signal-to-noise ratio

(SNR)γs
def
= Es/N0. Binary phase shift keying (BPSK) modulation is assumed without loss

of generality (as will be made clear in Section 5.3.2).

5.2.1 ZF Receiver

With ZF equalization, the estimate of the transmitted signal s is given by

ŝ = H†r = s+H†ηηη . (5.2)

The decision-point SNR of thek-th signal stream, i.e., the signal from thek-th transmit

antenna, 1≤ k≤ Nt , is obtained as

γZ,k = γs

[(
HHH

)−1
]−1

k,k

def
= γsg

2
Z,k, (5.3)
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whereg2
Z,k

def
=

[(
HHH

)−1
]−1

k,k
denotes the power gain of thek-th stream using ZF equaliza-

tion.

5.2.2 SIC Receiver

Without loss of generality, we assume streamk = 1 is detected first. The interference due

to the first stream is then regenerated and subtracted beforestreamk = 2 is detected. This

procedure is repeated successively until all streams are detected. We ignore error propa-

gation from early stages, which is a valid assumption at moderate-to-high SNR. Assuming

ZF equalization is employed at each stage, the decision-point SNR of thek-th stream at the

k-th stage is given by

γS,k = γs

[(

HH
(k)H(k)

)†
]−1

k,k

def
= γsg

2
S,k, (5.4)

whereH(k) is generated in a recursive fashion by nulling the(k−1)-st column ofH(k−1)

for k = 2, · · · ,Nt , andH(1)
def
= H (cf. Section 2.3.1.3).

5.2.3 OSIC Receiver

To improve SIC performance, the streams can be reordered based on SNR at each stage.

This receiver differs from SIC receiver only in the detection ordering. An SNR-based

ordering scheme that maximizes minimum SNR appears in [37,109], and is reproduced in

Table 2.1. The decision-point SNR of thek-th stream at thek-th stage is given by

γO,k = γs

[(

(HO
(k))

HHO
(k)

)†
]−1

k,k

def
= γsg

2
O,k, (5.5)

whereHO denotes the reordered channel matrix as in Table 2.1.
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The average BER of the above receivers can be calculated as [84]2

P̄(γs;{g2
k}) =

1
Nt

Nt

∑
k=1

Q

(√

2γsg2
k

)

, (5.6)

whereQ(x)
def
= 1√

2π

∫ ∞
x e−y2/2dy; the gaing2

k depends on the receiver structure and is given

in (5.3), (5.4) and (5.5).

5.3 AMBER Power Allocation with Perfect Feedback

5.3.1 MIMO with Power Allocation

Denote the power allocated to thek-th stream asp2
k. The received signal can be written as

r = HPs+ηηη , (5.7)

whereP def
= diag{p1, · · · , pk} denotes the power allocation matrix. We assume the total

transmit power is constrained via

tr(PPT) =
Nt

∑
k=1

p2
k = Nt . (5.8)

Compared with general precoding, power allocation constrains the precoder to a diagonal

matrix.

5.3.2 AMBER Power Allocation Algorithm

The average BER of MIMO spatial multiplexing in (5.6) can be straightforwardly general-

ized to

P̄
(
γs;{p2

k};{g2
k}

)
=

1
Nt

Nt

∑
k=1

Q

(√

2γsg2
kp2

k

)

, (5.9)

2This is a lower bound for SIC and OSIC due to the neglecting of error propagation, which is also an

accurate approximate at moderate-to-high SNR’s.
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which is the same as the MBER power allocation problem for CP-OFDM in Chapter 4.

Therefore, the results in Section 4.3 can be applied directly. For general constellations,

the BER can be approximated asPb(γ) ≈ 1
5 exp{−cγ}, wherec is a constellation-specific

constant [116]. For BPSK modulation,c = 1, and the average BER in (5.9) can be approx-

imated as

P̄
(
γs;{p2

k};{g2
k}

)
≈ 1

5Nt

Nt

∑
k=1

exp{−γsp2
kg2

k}
def
= P̃

(
γs;{p2

k};{g2
k}

)
. (5.10)

Minimization of (5.10) under power constraint (5.8) results in the power allocation [105]3

p2
k = γ−1

s g−2
k

(
lng2

k +ν
)

+
, 1≤ k≤ Nt , (5.11)

where(x)+
def
= max{0,x}, andν is chosen to satisfy the power constraint (5.8). Note that the

total power∑k p2
k(ν) = ∑k γ−1

s g−2
k

(
lng2

k +ν
)

+
is a piecewise-linear increasing function of

ν , with breakpoints at− lng2
k’s. Thereforeν is unique and can be readily determined. A

recursive algorithm is given in Table 4.2, which requires atmostNt recursions. Extension

of the results to other constellations is straightforward.

5.3.3 Remarks on Performance, Complexity and Overhead

5.3.3.1 AMBER Power Allocation versus General Precoding

While other precoding schemes either apply an MBER criterion to ZF equalization [28], or

use an MMSE criterion [92], the proposed power allocation enables SIC and OSIC under

an MBER criterion.
3As shown in [49, 74], an equivalent solution can be obtained by minimizing a Chernoff upper bound of

the BER [84].
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5.3.3.2 Asymptotic Performance

By substituting (5.11) into (5.9), we obtain the average BER ofpower allocation as

P̄pa
(
γs;{g2

k}
)

=
1
Nt

Nt

∑
k=1

Q
(√

2
(
lng2

k +ν
)

+

)

, (5.12)

which makes performance comparison difficult due to the nonlinear operator(·)+. How-

ever, at moderate-to-high SNR, it is possible to proceed. Whenthe condition

ν ≥ max
k

{
− lng2

k

}
(5.13)

is valid, the power allocation in (5.11) simplifies to

p2
k = γ−1

s g−2
k (lng2

k +ν), (5.14)

andν is obtained in closed-form as

ν =
γs− 1

Nt
∑Nt

l=1
lng2

l
g2

l

1
Nt

∑Nt
l=1

1
g2

l

def
= νa. (5.15)

From (5.13) and (5.15), we observe that the simplified power allocation (5.14) is valid

at moderate-to-high SNR regimes (γs ≫ 1), and/or when the channel is well-conditioned

(when the gainsgk’s are less spread)4. Furthermore, if (5.13) holds, the average BER of the

power allocation in (5.12) can be approximated by

P̄pa(γs;{g2
k}) =

1
Nt

Nt

∑
k=1

Q

(√

2
(
lng2

k +νa
)
)

(5.16)

≈ 1
5Nt

e−νa
Nt

∑
k=1

g−2
k

def
= P̃pa(γs;{g2

k}). (5.17)

4We note that power allocation proposed in [68] is equivalentto (5.14) and (5.15), representing a special

case of the general solution (5.11).
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5.3.3.3 Asymptotic Optimality of AMBER Solution

The exact MBER solution satisfies
√

γsg2
k

p2
k

e−γsg2
k p2

k = ζ , ∀k∈ [1,Nt ],

whereζ is chosen to satisfy the power constraint (5.8) [74]. Therefore, we have

g2
kp2

k −g2
mp2

m =
ln p2

mg2
k − ln p2

kg2
m

2γs
, ∀k,m∈ [1,Nt ],

which impliesg2
kp2

k
(γs→∞)

= g2
mp2

m. We obtain

lim
γs→∞

p2
MBER,k =

g−2
k

1
Nt

∑Nt
l=1g−2

l

.

On the other hand, from (5.14) and (5.15), we have

lim
γs→∞

p2
AMBER,k =

g−2
k

1
Nt

∑Nt
l=1g−2

l

,

i.e., the AMBER solution asymptotically converges to the exact MBER solution.

5.3.3.4 AMBER Power Allocation versus No Power Allocation

A comparison between asymptotic performances of schemes with and without power allo-

cation follows Section 4.4. Generally, power allocation improves error rate performance at

moderate-to-high SNR.

5.3.3.5 ZF versus SIC

For MIMO without power allocation, it has been shown in [109]that SIC receiver offers

better performance than that of ZF receiver. We now compare the performances of ZF

and SIC under power allocation. From (5.3) and (5.4), it is easily seen thatg2
Z,1 = g2

S,1.
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Considerk = 2, · · · ,Nt . Denotehk as thek-th column of matrixH, andHk̄ as the sub-

matrix consisting of all but thek-th column ofH. We have

g2
Z,k = [(HHH)−1]−1

k,k =
det(HHH)

det(HH
k̄

Hk̄)
=

∥
∥
∥ϒϒϒ⊥

Hk̄
hk

∥
∥
∥

2
, (5.18)

whereϒϒϒ⊥
X

def
= I−X(XHX)−1XH , is the orthogonal projection matrix. Similarly,

g2
S,k =

∥
∥
∥ϒϒϒ⊥

H(k+1)
hk

∥
∥
∥

2
. (5.19)

SinceHk̄ = [ h1
...· · · ...hk−1

...H(k+1)], we haveg2
Z,k ≤ g2

S,k for k = 2, · · · ,Nt . From (5.17), we

observe that̃Ppa(γs;{gk}) is a monotone decreasing function ing2
k. Therefore, we conclude

that

P̃pa(γs;{g2
S,k}) ≤ P̃pa(γs;{g2

Z,k}), (5.20)

i.e., with power allocation, SIC outperforms ZF as well.

5.3.3.6 SIC versus OSIC

Comparison between SIC and OSIC involves examining whether the SNR-based ordering

is still optimal under power allocation. While a generally strict analysis is difficult, we

provide a few observations as a heuristic solution. At moderate-to-high SNR(γs ≫ 1), νa

in (5.15) can be approximated as

νa ≈
γs

1
Nt

∑Nt
k=1

1
g2

k

.

We can further approximate the average BER of power allocation schemes (5.17) as

P̃pa(γs;{g2
k}) ≈

1
5

(

1
Nt

Nt

∑
k=1

1

g2
k

)

exp







− γs
(

1
Nt

∑Nt
k=1

1
g2

k

)







def
= P̃′

pa

(

γs;
1
Nt

Nt

∑
k=1

1

g2
k

)

. (5.21)

From (5.21),P̃′
pa

(

γs; 1
Nt

∑Nt
k=1

1
g2

k

)

is a monotone increasing function in1Nt
∑Nt

k=1
1
g2

k
, and is

dominated by smallg2
k’s. SNR-based ordering maximizes mink{g2

k}. Therefore, heuristi-

cally, SNR-based ordering is expected to offer improved performance in power allocation
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schemes. We will verify this by simulation in Section 5.5.

5.3.3.7 Feedback Overhead

In channels that lack reciprocity between uplink and downlink, MIMO with general pre-

coding requires eitherNt ×Nr complex channel coefficients or precoding matrix feedback.

On the other hand, if the proposed power allocation scheme isemployed, onlyNt real

coefficients are required at the transmitter, a factor of1
2Nr

savings.

5.3.3.8 Complexity

Precoding schemes require diagonalization of a channel matrix as well as matrix trans-

formations [28, 92]. Using power allocation, operations performed at the transmitter are

trivial.

5.3.3.9 Simplified Scenarios

Some aspects of power allocation for general MIMO spatial multiplexing are open prob-

lems, as shown in the above. However, for a special case of two-input multiple-output

(TIMO) system, closed-form analytical results can usuallybe obtained, as shown in Chap-

ter 6.

5.4 AMBER Power Allocation with Imperfect Feedback

Here we assume that perfect CSI is available at the receiver, while noisy feedback of CSI or

allocated power is available at the transmitter. Noisy feedback is modelled as a zero-mean

Gaussian random variable as in [49]. Such a noisy CSI model arises in, e.g., ML channel

estimation [78]. An SIC receiver is considered. For an OSIC receiver, the analysis applies
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directly after ordering. Extension to ZF receiver is also straightforward.

5.4.1 Power Allocation with Noisy CSI Feedback

Since only the CSI feedback,̂H, is available at the transmitter, the allocated power is a

function of Ĥ, i.e., {p2
k(Ĥ)}Nt

k=1; while the power gains are functions of perfect CSI at

the receiver, i.e.,{g2
k(H)}Nt

k=1. From (5.9), the conditional approximate average BER is

obtained as

P̃(γs;H;Ĥ) =
1

5Nt

Nt

∑
k=1

exp{−γsp2
k(Ĥ)g2

k(H)}. (5.22)

By averaging both sides of (5.22) over the Gaussian conditional distribution fH|Ĥ
(
H|Ĥ

)
as

in [53], we obtain the approximate BER

P̃(γs;Ĥ) =
1

5Nt

Nt

∑
k=1

∫

exp{−γsp2
k(Ĥ)g2

k(H)} fH|Ĥ
(
H|Ĥ

)
dĤ. (5.23)

Generally, it is difficult to find a closed-form expression for (5.23), due to nonlinearity of

g2
k(H). In what follows, we study a special case when CSI at the transmitter is noisy, and

obtain a closed-form error rate by using approximation techniques.

Noisy CSI is modelled by[H]m,n = [Ĥ]m,n + εh
m,n, for 1 ≤ m≤ Nr ,1 ≤ n ≤ Nt , where

εh
m,n denotes a zero-mean complex Gaussian CSI feedback noise withvarianceσ2

h . From

Section 5.3, power gains of SIC can be expressed as

g2
k =

[(

HH
(k)H(k)

)†
]−1

k,k
=

∥
∥
∥ϒϒϒ⊥

H(k+1)
hk

∥
∥
∥

2
, (1≤ k≤ Nt). (5.24)

Conditioned onĤ, HH
(k)H(k) is distributed as complex noncentral Wishart [51]. While it is

difficult to obtain a closed-form density function ofg2
k, which is the Schur complement of

the(k,k)-th entry of a noncentral Wishart matrix [66], we approximate the density function.

In (5.24), we note that conditioned on̂H, bothϒϒϒ⊥
H(k+1)

andhk are random, which makes

analysis difficult. We therefore approximate

g2
k =

∥
∥
∥ϒϒϒ⊥

H(k+1)
hk

∥
∥
∥

2
≈

∥
∥
∥ϒϒϒ⊥

Ĥ(k+1)
hk

∥
∥
∥

2 def
= g̃2

k,
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i.e., we useĤ(k+1) to approximateH(k+1) at stagek.

Claim 5.1 The approximate power gaiñg2
k, conditioned onĤ has a noncentral chi-square

density function with2(Nr −Nt +k) degrees of freedom and noncentrality parameterĝ2
k

def
=

ĥH
k ϒϒϒ⊥

Ĥ(k+1)
ĥk.

A proof is given in Appendix C.

We now use ˜g2
k to approximateg2

k in (5.23), and obtain an approximate BER in closed-

form. From the distribution of ˜g2
k given by Claim 5.1, we obtain its characteristic function

as [84]

ψg̃2
k
( jω)

def
= E

{

ejωg̃2
k

}

= (1− jωσ2
h)−(Nr−Nt+k) exp

(
jωĝ2

k

1− jωσ2
h

)

. (5.25)

Using the characteristic function in (5.25), we can approximate the average BER (5.23) as

P̃(γs;Ĥ;σ2
h) ≈ 1

5Nt

Nt

∑
k=1

∫

exp{−γsp2
kg̃2

k} fg̃2
k|Ĥ

(
g̃2

k|Ĥ
)

dĤ

=
1

5Nt

Nt

∑
k=1

(1+ γsp2
kσ2

h)−(Nr−Nt+k) exp

(

− γsp2
kĝ2

k

1+ γsp2
kσ2

h

)

def
= ˜̃P(γs;Ĥ;σ2

h) (5.26)

Remarks:

• For perfect CSI at the transmitter,Ĥ = H andσ2
h = 0, and (5.26) reduces to

˜̃P(γs;Ĥ;0) =
1

5Nt

Nt

∑
k=1

exp
(

−γsp2
khH

k ϒϒϒ⊥
H(k+1)

hk

)

=
1

5Nt

Nt

∑
k=1

exp
(
−γsp2

kg2
k

)
,

which is the approximate BER for power allocation with perfect feedback.

• Since

lim
γs→∞

˜̃P(γs;Ĥ;σ2
h)

γ−(Nr−Nt+1)
s

=
1

5Nt

exp
(
−ĝ2

1/σ2
h

)

(p2
1σ2

h)(Nr−Nt+1)

def
= ch,

we have, forγs ≫ 1,

˜̃P(γs;Ĥ;σ2
h) ≈ ch · γ−(Nr−Nt+1)

s ,
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decreasing exponentially as(Nr −Nt + 1)-th power ofγs. Therefore, robustness to

noisy CSI increases as the number of receive antennas,Nr , is increased relative to the

number of transmit antennas,Nt . On the other hand, from (5.6), the BER of MIMO

without power allocation can be approximated as

P̄
(
γs;{g2

k}
)
≈ 1

5Nt

Nt

∑
k=1

e−γsg2
k,

decreasing exponentially inγs. Thus, for sufficiently largeγs, power allocation

schemes with noisy CSI at the transmitter are inferior to MIMOwithout power allo-

cation, which is not affected by noisy CSI feedback.

5.4.2 Power Allocation with Noisy Power Feedback

Denotep = [p1, p2, · · · , pNt ]
T andp̂ = [p̂1, p̂2, · · · , p̂Nt ]

T , wherep̂k denotes a noisy feedback

of power. Noisy power feedback is modelled asp̂ = p+εεε p, whereεεε p is a noise vector with

distributionN (0,R) .

With noisy power, the conditional approximate average BER can be written as

P̃(γs;{g2
k};{p̂2

k}) =
1

5Nt

Nt

∑
k=1

exp
{
−γsp̂2

kg2
k

}
. (5.27)

By averaging both sides of (5.27) over the distribution ofεεε p, the approximate BER is

obtained as

P̃(γs;{g2
k};{p2

k}) =
1

5Nt

Nt

∑
k=1

∫

exp{−γs(pk + ε p
k )2g2

k} fεεε p (εεε p)dεεε p

=
1

5Nt

Nt

∑
k=1

∫ exp
{
−γsg2

k(p+εεε p)TekeT
k (p+εεε p)− 1

2(εεε p)TR−1εεε p
}

(2π)Nt/2 [det(R)]1/2
dεεε p

=
1

5Nt

Nt

∑
k=1

(1+2γsg
2
k[R]k,k)

−1/2exp

{

− γsp2
kg2

k

1+2γsg2
k[R]k,k

}

, (5.28)

whereek denotes thek-th column ofINt , and the derivation follows [53]. When the noise
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termsε p
k ’s are independent and identically distributed asN (0,σ2

p), we have

P̃(γs;{g2
k}) =

1
5Nt

Nt

∑
k=1

(1+2γsg
2
kσ2

p)
−1/2exp

{

− γsp2
kg2

k

1+2γsg2
kσ2

p

}

def
= ˜̃P

(
γs;{g2

k};σ2
p

)
.

(5.29)

Remarks:

• For perfect power feedback,p̂ = p andσ2
p = 0, and the above analysis does not apply

becauseR = 0. However, from (5.29), we have the limiting case of high quality

feedback

lim
σ2

p→0

˜̃P(γs;{g2
k};σ2

p) =
1

5Nt

Nt

∑
k=1

exp
(
−γsp2

kg2
k

)
,

which reduces to the approximate BER for power allocation with perfect feedback.

Therefore, (5.29) includes perfect power feedback as a special case.

• From (5.29), we have

lim
γs→∞

˜̃P(γs;{gk};σ2
p)

γ−1/2
s

=
1

5Nt

Nt

∑
k=1

exp
{

− p2
k

2σ2
p

}

√
2gkσp

def
= cp,

i.e., whenγs ≫ 1,

˜̃P(γs;{gk} ;σ2
p) ≈ cp · γ−1/2

s ,

decreasing inγ−1/2
s . Therefore, for sufficiently largeγs, power allocation schemes

with noisy power feedback are inferior to MIMO without powerallocation.

5.4.3 Power Allocation Using Feedback Noise Variance

When knowledge of the variance of noisy CSI,σ2
h , or noisy power feedback,σ2

p, is avail-

able at the transmitter, power allocation can be modified to take feedback noise variance

into account as in [49, 86]. To this end, a constrained optimization problem, referred to as
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modified AMBER power allocation, can be formulated as






min ˜̃P

subject to ∑Nt
k=1 p2

k = Nt

, (5.30)

where ˜̃P is the objective function from (5.26) or (5.29). It can be verified that d2 ˜̃P

d(p2
k)

2 > 0,

i.e., ˜̃P is convex inp2
k. A solution to the convex optimization problem (5.30) is given by

(cf. Appendix B)

p2
k = (φk)+ , (5.31)

whereφk is the root of the equationd ˜̃P
d(p2

k)
= µ, and µ is chosen to satisfy the transmit

power constraint. By noting the normalized transmit power constraint∑Nt
k=1 p2

k = Nt , we

have mink p2
k ≤ 1≤ maxk p2

k, and the parameterµ can be bounded as

min
k







d ˜̃P

d
(
p2

k

)

∣
∣
∣
∣
∣
p2

k=1







︸ ︷︷ ︸

µmin

≤ µ ≤ max
k







d ˜̃P

d
(
p2

k

)

∣
∣
∣
∣
∣
p2

k=1







︸ ︷︷ ︸

µmax

The iterative algorithm in Table 4.1 can be used to solve thisproblem numerically.

Remark: In our analysis above, we have assumed AWGN only in feedback channels.

In practice, however, such analysis is a bit optimistic due to fading, delay, noise and errors

in feedback channels.

5.5 Numerical Results and Discussions

We compare the performances of a variety of power allocationschemes in fading channels.

The channel model in Section 2.1.2 is used in simulations. Performances of transmission

methods discussed earlier are simulated, and compared to MBER precoding with ZF equal-

ization [28] as well as optimal MMSE precoding and decoding using trace criterion [92]. In

our simulations, we assume linear array geometry and the following parameters are chosen:
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Nt = 4 transmit andNr = 8 receive antennas; antenna spacings aredt = 0.5 anddr = 10;

angles of arrival/departure of deterministic component are π/6 and 0, respectively; angle

spread 10◦; K = 8 dB for Ricean fading channels; and BPSK modulation is used forthe

purposes of comparison with [28]. For SIC and OSIC receivers, actual decisions are used

for interference cancellation in all simulations.

5.5.1 AMBER Power Allocation with Perfect Feedback

5.5.1.1 Rayleigh Fading

Fig. 5.1 is a plot of the average uncoded BER of different transceivers in an uncorrelated

Rayleigh fading channel. We observe that at a BER of 10−3, AMBER power allocation

offers 1.2, 1.5 and 0.6 dB SNR gains over ZF, SIC and OSIC receivers, respectively. At

all SNR’s shown, MMSE precoding/decoding offers performance between that of ZF with

and without AMBER power allocation, while MBER precoding for ZF equalization has

performance between that of SIC with and without AMBER power allocation.

In Fig. 5.2, average uncoded BER’s in a correlated Rayleigh fading channels are illus-

trated. It is seen that at a BER of 10−3, AMBER power allocation offers 1.9 and 1.0 dB

SNR gains over SIC and OSIC, respectively. Comparing to precoding schemes, similar

relationship as in uncorrelated Rayleigh fading can be observed.

5.5.1.2 Ricean Fading

In Figs. 5.3 and 5.4, we illustrate average BER’s in Ricean uncorrelated and correlated

fading channels, respectively. In uncorrelated Ricean fading, SNR gains offered by AM-

BER power allocation for SIC and OSIC are 2.9 and 1.5 dB, respectively; while the gains

increase to 3.1 and 2.0 dB in correlated Ricean fading. We alsoobserve that MMSE pre-

coding/decoding has performance similar to that of SIC without power allocation, while
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Figure 5.1. Average BER performance in uncorrelated Rayleighfading MIMO channel

(Nt = 4,Nr = 8).

performances of MBER precoding for ZF equalization and OSIC without power allocation

are nearly identical.

Remarks:

• Comparison among ZF, SIC and OSIC with AMBER Power Allocation: For all chan-

nels simulated and employing AMBER power allocation, SIC outperforms ZF and

OSIC outperforms SIC, which agrees with the heuristic results in Section 5.3.

• Effects of Spatial Correlation: With increasing channel spatial correlation, the SNR

gains offered by AMBER power allocation increase.

• Effects of Successive Interference Cancellation and Ordering: In all simulation re-

sults obtained, successive interference cancellation offers greater gains for AMBER

power allocation than no-power-allocation, while ordering offers relatively lower
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Figure 5.2. Average BER performance in correlated Rayleigh fading MIMO channel (Nt =

4,Nr = 8).

gains for AMBER power allocation.

• AMBER Power Allocation versus Ordering for SIC: From all simulations, it is also

observed that SIC with AMBER power allocation outperforms OSIC without power

allocation, i.e., AMBER power allocation outperforms SNR-based ordering for SIC

receivers.

• AMBER Power Allocation versus General Precoding: In all simulated channels,

SIC and OSIC with AMBER power allocation outperform both MMSEprecod-

ing/decoding and MBER precoding with ZF equalization. Thesetwo precoding

schemes are chosen due to existence of closed-form solutions. Their complexity,

though higher than that of power allocation, is comparable to power allocation. On
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Figure 5.3. Average BER performance in uncorrelated Ricean fading MIMO channel (Nt =

4,Nr = 8, K = 8 dB).

the other hand, MBER precoding solutions can be found for SIC and OSIC by us-

ing numerical methods and/or exhaustive search. While MBER precoding would be

expected to outperform power allocation, complexity may beprohibitively high.

• Effects of Fewer Receive Antennas: We have simulated BER performances of a

MIMO system with 4 transmit and 8 receive antennas. When thereare fewer re-

ceive antennas, sayNt = Nr = 4, error propagation effect might be significant for

uncoded systems. Such effects should be considered in future work.
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Figure 5.4. Average BER performance in correlated Ricean fading MIMO channel (Nt =
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5.5.2 AMBER Power Allocation with Imperfect Feedback

5.5.2.1 AMBER Power Allocation with Noisy Power Feedback

Fig. 5.5 compares instantaneous approximate BER of OSIC withand without AMBER

power allocation as a function of feedback power noise variance. The channel is modelled

as Ricean fading withK = 8 dB. From Fig. 5.5, when power feedback noise varianceσ2
p

is larger than 0.01, OSIC without power allocation outperforms power allocation, which

suggests AMBER power allocation to be quite sensitive to imperfect power feedback.

5.5.2.2 AMBER Power Allocation Using Noisy CSI Variance

Fig. 5.6 depicts average BER performances of OSIC without power allocation, with AM-

BER power allocation (5.11) and with modified power allocation (5.31), respectively, in
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Figure 5.5. An example of approximate BER versus noise variance of power feedback

(Nt = 4,Nr = 8, K = 8 dB,γs = 10 dB).

a correlated Ricean fading channel. Perfect knowledge of noise varianceσ2
h is assumed.

Ordering is conducted at the transmitter based on noisy CSI. We observe that performance

of OSIC without power allocation also degrades with an increase of CSI noise power. Also,

when the CSI noise variance is larger than 0.6, AMBER power allocation (5.11) has perfor-

mance inferior to that of no-power-allocation. At all CSI noise variances shown, modified

power allocation (5.31) outperforms the other OSIC methods.

Remark:From Fig. 5.6, we also observe that whenσ2
h = 0, i.e, perfect CSI case, us-

ing (5.31) outperforms (5.11). This can be explained as follows: the modified power al-

location solution for perfect CSI is given by(p′k)
2 = (φk)+ , whereφk is the solution to

d ˜̃P(γs;Ĥ;σ2
h )

d(p′k
2)

∣
∣
∣
∣
σ2

h=0
= µ, which is equivalent to

(
p′k

)2
=

(

ln
[
g2

k − γ−1
s (Nr −Nt +k)

]
+ µ ′

γsg2
k

)

+

, k = 1,2, · · · ,Nt , (5.32)
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Figure 5.6. Average BER performance versus noisy CSI variancein correlated Ricean

fading MIMO channel (Nt = 4,Nr = 8, K = 8 dB,γs = 10 dB).

whereµ and µ ′ are chosen to satisfy the transmit power constraint. Comparing (5.32)

with AMBER power allocation (5.11), it is obvious that in the modified scheme, more

power is allocated to earlier successive interference cancellation stages. This change has

the benefit of reducing error propagation from earlier stages to later ones, which improves

the error rate performance. Note that the power allocation algorithm in Table 4.2 can be

easily adapted to solve (5.32) without increasing complexity, resulting in a modified power

allocation algorithm that takes error propagation of interference cancellation into account.

5.6 Conclusion

Power allocation using an approximate minimum BER (AMBER) criterion for MIMO spa-

tial multiplexing is studied in this chapter. AMBER power allocation schemes for a variety
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of receiver structures have been proposed. Compared with existing precoding schemes,

the proposed schemes reduce both complexity and feedback overhead significantly. This

method is motivated by an approximate BER analysis, which is also used to develop an

AMBER power allocation scheme that uses the variance of the feedback or CSI noise. Sim-

ulation results show that the proposed power allocation method improves performance for

ZF, SIC and OSIC receivers. Particularly, SIC and OSIC employing AMBER power allo-

cation have the potential to offer superior performances over existing precoding schemes.
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Chapter 6

Minimum BER Transmit Power Allocation and

Beamforming for TIMO Spatial Multiplexing

Systems

6.1 Introduction

As shown in Chapter 5, it is difficult to analyze general multiple-input multiple-output

(MIMO) systems. Our goal of this chapter is to investigate transmit optimization for a

MIMO spatial multiplexing system with two transmit antennas, known also as two-input

multiple-output (TIMO). The study of such a system can be motivated in a number of

ways: 1) TIMO systems are important in practical scenarios where there are limitations on

cost and/or space to install more antennas; 2) a virtual TIMOchannel is created when two

single-antenna mobiles operate in cooperative communication mode [93]; 3) when transmit

antenna selection is employed in MIMO to achieve diversity with reduced cost of transmit

radio frequency chains [42], selecting two out of multiple transmit antennas turns MIMO

into TIMO; 4) it is easier to analyze TIMO systems than the more general MIMO systems,

and these analyses offer insights into MIMO system design and performance.
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When channel state information (CSI) is available at the transmitter, system perfor-

mance can be improved. The availability of CSI at the transmitter is achievable in time-

division duplex (TDD) systems due to the reciprocity of the uplink and downlink chan-

nels, or in frequency-division duplex (FDD) systems with a feedback channel. Transmit

optimization is receiver-dependent. Signal reception forspatial multiplexing can employ

criteria such as zero-forcing (ZF), minimum mean squared-error (MMSE), successive in-

terference cancellation (SIC), or ordered SIC (OSIC) as, for example, in the case of the Ver-

tical Bell Laboratories Layered Space-Time (V-BLAST) [37]. Efforts to optimize MIMO

transceiver structures have involved linear MMSE precoding/decoding [92], MBER pre-

coding for ZF equalization [28] and limited feedback precoding schemes [59]. These

schemes, however, generally require high feedback overhead and/or high complexity pro-

cessing, e.g., diagonalization of the channel matrix and/or matrix transformations at both

the transmitter and the receiver.

In this chapter, we consider complexity and feedback overhead reduction by introduc-

ing structural constraints to precoding. Minimization of bit error rate (MBER) is employed

as the optimization criterion while the throughput is fixed.Such a transmission scheme

is attractive in delay-sensitive applications, e.g., voice and video communications. We

categorize TIMO channels into well- and ill-conditioned cases. Channel condition is deter-

mined by a number of factors, such as Ricean factor and/or spatial correlation. For well-

conditioned TIMO channels, precoding is constrained totransmit power allocation, i.e.,

we optimize only the transmitted power of signal streams, resulting in reduced processing

complexity compared to general precoding. Approximate MBER(AMBER) power alloca-

tion is proposed for TIMO spatial multiplexing in well-conditioned channels. In principle,

power allocation for general MIMO systems proposed in Chapter 5 can be applied directly

to TIMO systems. Nevertheless, useful simplifications and insights can be obtained for
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TIMO systems, which are practical in their own right and do not apply to general MIMO

systems. An example is the ill-conditioned pinhole channelthat can be easily modelled

in TIMO systems. When the TIMO channel is ill-conditioned, power allocation is shown

to experience error floors. We introduce added degrees of freedom and develop an AM-

BER transmit beamformingscheme, which can eliminate these error floors. Compared to

precoding which exploits spatial correlation of transmit antennas [2], the proposed trans-

mit beamforming method utilizes instantaneous CSI and does not depend on the channel

model used. It is shown both analytically and by simulation that the proposed transmit

optimization schemes offer superior performance comparedto existing precoding methods

in generally correlated fading channels. As in existing limited feedback schemes, overhead

is reduced as the proposed transmit optimization can be conducted at the receiver and fed

back to the transmitter.

The rest of this chapter is organized as follows: TIMO signalreception and performance

are introduced in Section 6.2, and the ill-conditioned TIMOchannel model is defined.

Section 6.3 investigates power allocation for MIMO with ZF,SIC and OSIC receivers and

their performance. In Section 6.4, an AMBER transmit beamforming scheme is proposed

for ill-conditioned TIMO channels. Section 6.5 presents numerical results in generally

correlated fading channels.

6.2 TIMO Channel and Signal Reception

Consider a TIMO system withNr ≥ 2 receive antennas. The received signal can be mod-

elled as

r = Hs+ηηη

= s1h1 +s2h2 +ηηη , (6.1)
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wheres = [s1,s2]
T denotes a transmitted signal vector,H = [h1

... h2] is anNr ×2 channel

matrix, which is assumed to be generally correlated Ricean fading (cf. Section 2.1.2) andηηη

is anNr ×1 additive Gaussian noise vector. For simplicity of analysis purposes, we assume

white noise and input, i.e.,E[ssH ] = EsI2 andE[ηηηηηηH ] = N0INr , and define the input signal-

to-noise ratio (SNR)γs
def
= Es/N0. Binary phase shift keying (BPSK) modulation is assumed

at first. Extension to other constellations will be addressed later.

6.2.1 TIMO Signal Reception

6.2.1.1 ZF Receiver

With ZF equalization, the transmitted signal is estimated as

ŝ = H†r = s+H†ηηη , (6.2)

where(·)† denotes Moore-Penrose pseudoinverse. The decision-pointSNR of thek-th

signal stream is obtained as

γZ,k =
Es

N0

[

(HHH)−1
]

k,k

def
= γsg

2
Z,k, k = 1,2, (6.3)

whereg2
Z,k

def
= [(HHH)−1]−1

k,k denotes the power gain ofk-th stream using ZF equalization.

The power gains can be calculated as

g2
Z,1 =

∆H

‖h2‖2 , g2
Z,2 =

∆H

‖h1‖2 , (6.4)

where∆H
def
= ‖h1‖2‖h2‖2−|hH

2 h1|2.

6.2.1.2 SIC Receiver

Without loss of generality, we assume that streamk = 1 is detected first. Assuming ZF

equalization is employed, the power gain in detectings1 is the same as that of the ZF
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receiver, i.e.,

g2
S,1 = g2

Z,1 =
∆H

‖h2‖2 . (6.5)

Assuming that ˆs1 = s1, the interference due to the first stream is then regeneratedand

subtracted, i.e.,

r′ = r− ŝ1h1 = s2h2 +ηηη . (6.6)

The detection ofs2 in (6.6) with ZF equalization is given by

ŝ2 = h†
2r′ = s2 +

hH
2 ηηη

‖h2‖2 ,

which is equivalent to maximal ratio combining (MRC), with power gain

g2
S,2 = ‖h2‖2. (6.7)

6.2.1.3 OSIC Receiver

To improve SIC performance, the streams can be reordered based on SNR at each stage.

The SNR-based ordering scheme [37] detects the stream with largest decision-point SNR

first, or, equivalently, detects the stream with largest power gain first. From (6.3) and (6.4),

the stream to be detected first is

k1 = argmax
l

γZ,l = argmax
l

g2
Z,l = argmax

l
‖hl‖2,

i.e., SNR-based ordering is equivalent to norm-based ordering in TIMO systems1. There-

fore, we obtain the power gains as

g2
O,1 =

∆H

min{‖h1‖2,‖h2‖2} , g2
O,2 = min{‖h1‖2,‖h2‖2}. (6.8)

The average BER of the above receivers can be calculated as [84]

P̄(γs;g
2
1,g

2
2) =

1
2

Q

(√

2γsg2
1

)

+
1
2

Q

(√

2γsg2
2

)

, (6.9)

1We note that this does not apply to general MIMO systems withNt ≥ 3.
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where the power gainsg2
1 andg2

2 depend on the receiver structure and are given in (6.4),

(6.5), (6.7) and (6.8);Q(x)
def
= 1√

2π

∫ ∞
x e−y2/2dy. We note that for SIC and OSIC receivers,

(6.9) is only a lower bound due to the neglecting of error propagation. However, at

moderate-to-high SNR regimes, this lower bound closely approximates the average BER

since error propagation is minimal.

6.2.2 Ill-Conditioned TIMO Channels

Since theQ(·) function decreases rapidly in its argument, the average BER in (6.9) is

dominated by the term with smaller power gain. In the extremecase with a vanishing

power gain, the system experiences an error floor. We refer tothis as anill-conditioned

TIMO channel. From gains in (6.4), (6.5), (6.7) and (6.8), the channel is ill-conditioned

when either∆H ≈ 0 or min{‖h1‖2,‖h2‖2} ≈ 0.

• The condition∆H ≈ 0 is equivalent to‖h1‖2 · ‖h2‖2 ≈ |hH
1 h2|2. We have

|hH
1 h2|2
‖h2‖2 = hH

1 ϒϒϒh2h1 = ‖ϒϒϒh2h1‖2 ≈ ‖h1‖2,

whereϒϒϒX
def
= X(XHX)−1XH , is the projection matrix. Therefore, without loss of

generality, we can assumeh2 ≈ a·h1 with a∈ C, and the channel matrix

H ≈ h1[1 a], (6.10)

which is also an example of a “pinhole” channel [38]. The least-squares (LS) estimate

of a can be found to be

âLS = h†
1h2 =

hH
1 h2

‖h1‖2 . (6.11)

• Denotem= argmink{‖hk‖2}. The condition min{‖h1‖2,‖h2‖2}≈ 0 implieshm≈ 0,

i.e., the link from them-th transmit antenna to all receive antennas is blocked. Note

that in this case, the model (6.10) is still valid witha≈ 0.
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6.3 Transmit Power Allocation for TIMO

6.3.1 AMBER Transmit Power Allocation

Denote the power allocated to thek-th stream asp2
k (k = 1,2). The received signal can be

written as

r = HPas+ηηη = p1s1h1 + p2s2h2 +ηηη , (6.12)

wherePa
def
= diag{p1, p2}. We assume that the total transmit power is constrained via

tr
{

P2
a

}
= p2

1 + p2
2 = 2. (6.13)

According to (5.11), the approximate MBER power allocation for TIMO is obtained as

p2
k = γ−1

s g−2
k

(
lng2

k +ν
)

+
, (k = 1,2). (6.14)

whereν is chosen to satisfy power constraint (6.13). Note the fact that the total transmit

powerp2
1 + p2

2 is a piecewise-linear function inν , with breakpoints at− lng2
1 and− lng2

2.

Without loss of generality, we assumeg2
1 ≥ g2

2. We can simplify the solution (6.14) as






p2
1 = 2, p2

2 = 0 if ln g2
1− lng2

2 ≥ 2γsg2
1

p2
1 =

lng2
1+νa

γsg2
1

, p2
2 =

lng2
2+νa

γsg2
2

otherwise
, (6.15)

whereνa =
2γsg2

1g2
2−g2

1 lng2
2−g2

2 lng2
1

g2
1+g2

2
.

In the first case of (6.15), the solutionp2
1 = 2 andp2

2 = 0 implies that the stream with

weaker power gain is dropped, and all available power is allocated to the stronger stream.

This occurs when lng2
1− lng2

2 ≥ 2γsg2
1, i.e., eitherg2

1 ≫ g2
2 or γs is small. In this case, if

both streams are used for transmission, an error floor is inevitable. To avoid such error

floors, only one stream may be transmitted, and power allocation turns out to betransmit

antenna selection[89]. We note that the condition lng2
1− lng2

2 ≥ 2γsg2
1 is also a necessary

condition of ill-conditioned TIMO channel defined in Section 6.2.2. An alternative scheme

to eliminate error floor effects will be addressed in Section6.4.
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6.3.2 Remarks

6.3.2.1 Feedback Overhead and Complexity Issues

As discussed in Chapter 5, the proposed power allocation scheme has less overhead and

complexity compared to that of general precoding schemes.

6.3.2.2 Application Scenarios

A TIMO configuration is appropriate for the uplink of a wireless system, where each mobile

terminal is equipped with dual transmit antenna while the basestation has more antennas.

Equivalently, when transmit antenna selection is employedin a MIMO uplink, selecting

two out of multiple transmit antennas creates a TIMO uplink.The downlink, on the other

hand, has a multiple-input two-output (MITO) structure. Toexploit the inherent transmit

diversity in such a MITO system, transmit processing is necessary. For example, linear

precoding schemes optimizing system error rate performance [28] or alternatives [92] may

be employed, which are beyond the scope of this paper. Alternatively, transmit antenna

selection may be employed. We note that selecting two out of multiple transmit antennas

results in a two-input two-output system, which belongs to the general TIMO family, and

the proposed power allocation applies.

6.3.2.3 Effects of Power Allocation on Detection Ordering

For OSIC, we examine the effect of power allocation on ordering. Without loss of gen-

erality, we assume‖h1‖ ≥ ‖h2‖. In norm-based ordering,s1 is detected first. Denote the

corresponding power gains as, respectively,α2
1 = ∆H

‖h2‖2 , α2
2 = ‖h2‖2. Consider the op-

posite detection ordering. Denote the resulting power gains as, respectively,β 2
1 = ∆H

‖h1‖2 ,

β 2
2 = ‖h1‖2. While a general analysis is difficult, we consider the asymptotic case. Ap-

plying similar arguments as in Section 5.3, at moderate-to-high SNR (γs ≫ 1), the BER of
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power allocation method (6.14) can be approximated as

P̄
(
γs;g

2
1,g

2
2

)
≈ 1

10
e−νa

(
g−2

1 +g−2
2

)

≈ 1
10

(
g−2

1 +g−2
2

)
exp

{

− 2γs

g−2
1 +g−2

2

}

def
= P̃a

(
γs;g

2
1,g

2
2

)
. (6.16)

From (6.16),P̃a
(
γs;g2

1,g
2
2

)
is an monotone increasing function ing−2

1 + g−2
2 . Note that

α2
1α2

2 = β 2
1 β 2

2 . By assumption (‖h1‖ ≥ ‖h2‖), we haveβ 2
1 ≤ α2

1 ≤ β 2
2 , andβ 2

1 ≤ α2
2 ≤ β 2

2 .

Therefore,α−2
1 +α−2

2 ≤ β−2
1 +β−2

2 . We conclude

P̃a(γs;α2
1,α2

2) ≤ P̃a(γs;β 2
1 ,β 2

2 ),

i.e., for TIMO at moderate-to-high SNR, norm-based ordering(or, equivalently, SNR-based

ordering), optimal for TIMO without power allocation as in Section 6.2.1, is also asymp-

totically optimal for the case of power allocation, in the sense of minimizing average BER.

6.3.2.4 Performance in Ill-Conditioned Channels

Without loss of generality, we assume|a| ≤ 1 in the ill-conditioned channel (6.10). The

power gains of OSIC can be obtained as

g2
O,1 ≈ 0, g2

O,2 = |a|2‖h1‖2.

Applying power allocation in (6.14), we obtainp2
1 = 0, and p2

2 = 2. The average BER of

power allocation for ill-conditioned channels can be approximated as

P̄(γs;h1,a) ≈ 1
10

+
1
10

exp
{
−2γs|a|2‖h1‖2} , (6.17)

which experiences an obvious error floor. This motivates ourstudy of transmit beamform-

ing for ill-conditioned TIMO channels.
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6.4 Transmit Beamforming for Ill-Conditioned TIMO

Channels

We study the receiver structure for ill-conditioned TIMO channels to observe the error floor

effects in performance. A new transmit beamforming method is then proposed in order to

mitigate the error floor.

6.4.1 Signal Reception and Performance

Consider the received signal (6.1) in an ill-conditioned TIMO channel (6.10). The ZF

equalization output can be obtained as





y1

y2




 = H†r = H†Hs+H†ηηη

=
1

(1+ |a|2)






s1 +as2

a∗s1 + |a|2s2




+

hH
1 ηηη

(1+ |a|2)‖h1‖2






1

a∗




 . (6.18)

From (6.18), we observe that the transmitted signalss1 ands2 are coupled iny1 andy2, and

y2 = a∗y1. Therefore, it suffices to process one of the estimates, sayy1. Without loss of

generality, we assume‖h1‖ ≥ ‖h2‖, or, equivalently,|a| ≤ 1. Consider detectings1 ands2

in a SIC fashion. Since the power ofs1 contained iny1, E[|s1|2] = Es, is larger than that

of s2 contained iny1, E[|as2|2] = |a|2Es, the optimal order is chosen to detects1 first. The

error probability in detection ofs1, regardings2 as noise, can be calculated as

Pr(ŝ1 6= s1) =
1
2

Q

(√

2γs‖h1‖2[1−ℜ(a)]2
)

+
1
2

Q

(√

2γs‖h1‖2[1+ℜ(a)]2
)

. (6.19)

Assumings1 is correctly detected, and performing interference cancellation, s2 is then

detected. The error probability of detectings2 can be obtained as

Pr(ŝ2 6= s2|ŝ1 = s1) = Q

(√

2γs‖h1‖2[ℜ(a)]2
)

. (6.20)
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The average BER is given bȳP(γs;a,h1) = 1
2Pr(ŝ1 6= s1) + 1

2 Pr(ŝ2 6= s2), which can be

approximated as

P̄(γs;a,h1) ≈ 1
20

exp
{
−γs‖h1‖2[1−ℜ(a)]2

}
+

1
20

exp
{
−γs‖h1‖2[1+ℜ(a)]2

}

+
1
10

exp
{
−γs‖h1‖2[ℜ(a)]2

}
. (6.21)

It is obvious that (6.21) experiences an error floor when eitherℜ(a)≈ 0 orℜ(a)≈±1.

This occurs, e.g., when transmit fading coefficients are either in phase or in quadrature, re-

spectively. Furthermore, as shown in Appendix D, power allocation alone cannot eliminate

error floors. This motivates our study of a precoding scheme.

6.4.2 Transmit Beamforming Method

Now we consider general precoding for ill-conditioned TIMOchannels. Denote the pre-

coding matrix

Pb =






p11 p12

p21 p22




 .

The normalized transmit power constraint is given by

tr
(
PbPH

b

)
= |p11|2 + |p12|2 + |p21|2 + |p22|2 = 2. (6.22)

The received signal isr = HPbs+ηηη . With ZF equalization, the estimate of the transmitted

signal is given by





z1

z2




 = H†r =

1
1+ |a|2











1 a

a∗ |a|2











p11s1 + p12s2

p21s1 + p22s2




 +

1
‖h1‖2






hH
1 ηηη

a∗hH
1 ηηη









 .

From (6.23), we knowz2 = a∗z1. Therefore, it suffices to processz1 only. Consider

z′1
def
= (1+ |a|2)z1 = (p11+ap21)s1 +(p12+ap22)s2 +

hH
1 ηηη

‖h1‖2 . (6.23)
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By symmetry in{p11, p12} and{p21, p22}, we know that the detection order can be deter-

mined arbitrarily. Without loss of generality, we assume






ℜ(p11+ap21) ≥ 0,

ℜ(p12+ap22) ≥ 0,

ℜ(p11+ap21) ≥ ℜ(p12+ap22).

As a result,s1 is detected first. Similar to the analysis in Section 6.4.1, we obtain the

approximate average BER

P̄(γs;h1,a;Pb) ≈ 1
20

exp
{

−2γs‖h1‖2 [ℜ(p11+ap21− p12−ap22)]
2
}

+
1
20

exp
{

−2γs‖h1‖2 [ℜ(p11+ap21+ p12+ap22)]
2
}

+
1
10

exp
{

−2γs‖h1‖2 [ℜ(p12+ap22)]
2
}

. (6.24)

At moderate-to-high SNR,γs ≫ 1, the second term in (6.24) is relatively small compared

to the first term in (6.24). We can approximate

P̄(γs;h1,a;Pb) ≈ 1
20

exp
{

−2γs‖h1‖2 [ℜ(p11+ap21− p12−ap22)]
2
}

+
1
10

exp
{

−2γs‖h1‖2 [ℜ(p12+ap22)]
2
}

def
= P̃IC. (6.25)

An approximate solution that minimizes (6.25) under the transmit power constraint (6.22)

is given in Appendix E. The precoder is found to be

Pb = (1+ |a|2)−1/2






1

a∗






︸ ︷︷ ︸

vBF

×
√

2
5

[

2 1

]

︸ ︷︷ ︸

vT
PA

def
= vBFvT

PA. (6.26)

Note that the precoder (6.26) has rank one, and can be viewed as power allocationvPA fol-

lowed by transmit beamformingvBF pointing in the approximate MBER direction. Also,

note thatvPA pre-mixes the two streams with different allocated powers in the sense of ap-

proximate MBER using OSIC. We will refer to this scheme as OSIC with beamforming. It
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is worth noting that the solution in (6.26) is not necessarily unique due to an approxima-

tion introduced in Appendix E. Substituting (6.26) into (6.25), we obtain the approximate

average BER as

P̄BF
IC (γs;h1,a) ≈ 3

20
exp

{

−4
5

γs‖h1‖2(1+ |a|2)
}

, (6.27)

which does not experience error floors. Comparing (6.27) withthe performance results

of power allocation in Appendix D (cf. (D.5)), we conclude that power allocation alone

cannot eliminate error floors in ill-conditioned TIMO channels, while power allocation

together with beamforming can overcome the error floors.

Remarks:

• Comparison with Existing Methods:The precoder in (6.26) mixes two BPSK streams

into a single 4-ary PAM. The receiver is assumed to use the in-phase component of

the received signal for BPSK signal reception. In [23], a precoder that mixes two

BPSK streams into one QPSK stream is proposed for TIMO spatialmultiplexing. We

note that different precoder receiver structures are required for the two approaches.

In summary, the more complex ML receiver in [23] would be expected to have higher

performance.

• Feedback Overhead and Complexity Issues:From (6.26), only an estimate ofa is

required at the transmitter, which can be obtained using (6.11). Operations performed

at the transmitter are also trivial.
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Figure 6.1. Signal space diagram for 4-PAM with precoding inill-conditioned channels.

6.4.3 Extension to High-Order Modulations

6.4.3.1 Extension toM-ary PAM

Denote the set of possible amplitudes of anM-ary PAM signal as{Am}M
m=1, with Am taking

discrete values

Am = (2m−1−M)d, m= 1,2, · · · ,M,

where 2d is the distance between adjacent signal amplitudes [84]. A signal space diagram

of the equalization output (6.23) of quaternary PAM is illustrated in Fig. 6.1, where only

two signal points ofs1 are shown for brevity. By similar argument in Section 6.4.2, we

obtain an approximate precoder as

Pb =
√

2(M2 +1)−1/2(1+ |a|2)−1/2






1

a∗






[

M 1

]

. (6.28)

We note that (6.28) includes (6.26) as a special case whenM = 2.

6.4.3.2 Extension to QPSK

We consider extension to QPSK as an example. Fig. 6.2 shows a signal space diagram of

the equalization output (6.23), where for brevity of illustration purposes, only one point

of s1 is shown. Without loss of generality, we assumep11 + ap22
def
= ρ1 ≥ 0. Denote
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Figure 6.2. Signal space diagram for QPSK with precoding in ill-conditioned channel.

p12+ap22
def
= ρ2ejθ , whereθ ∈ [0,π/4) is assumed without loss of generality. At moderate-

to-high SNR’s, the BER is dominated by contributions from the set of closest points to the

decision region boundary, denoted asw(θ) in Fig. 6.2. The average BER can be approxi-

mated by

P̄(γs;θ) ≈ 1
4

Q

(√

2γsw2(θ)

)

def
= P̃(γs;θ).

From Fig. 6.2, we calculatew(θ) as

w(θ) =

√
2

2
[ρ1−ρ2(sinθ +cosθ)] .

SincedP̃(γs;θ)/dθ < 0, we have

argmin
θ

P̃(γs;θ) = 0,
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i.e., p12+ ap22 is also real positive. Following the same argument as in Appendix E, we

obtain an approximate MBER precoder for QPSK as

Pb =

√

2
5
(1+ |a|2)−1/2






1

a∗






[

2 1

]

, (6.29)

which is the same as that of BPSK. We note that this result applies directly to 4-QAM with

a single amplitude level [84], since it is just a rotated version of QPSK.

Remark: Extension to higher order 2-dimensional modulations may beconducted in

a similar manner. Performance gains for higher order 2-dimensional modulations using

transmit beamforming need to be investigated in future work.

6.5 Numerical Results and Discussions

We compare BER performance of the proposed MBER power allocation method for ZF,

SIC and OSIC receivers with two existing precoding methods in well-conditioned and ill-

conditioned channels, respectively. In addition, comparison of OSIC with MBER transmit

beamforming as proposed in Section 6.4 is also made. The channel model in Section 2.1.2

is used in simulations. We assume linear transmit and receive antenna arrays. The follow-

ing parameters are chosen:Nr = 4 receive antennas; transmit and receive antenna spacings

expressed in wavelength are 0.5 and 10, respectively; angles of arrival/departure of deter-

ministic component areπ/6 and 0, respectively; angle spread 10◦; K = 8 dB for Ricean

fading channels; and BPSK modulation is used for the purposesof comparison with [28].

6.5.1 Rayleigh Fading

Fig. 6.3 is a plot of the average BER for a variety of transceivers in an uncorrelated Rayleigh

fading channel. To clarify the plot, performances of ZF withpower allocation and SIC
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without power allocation are not shown since they are nearlyidentical to that of MMSE

precoding/decoding; OSIC without power allocation (also not shown) has performance

close to that of ZF with MBER precoding. We observe that at a BER of 10−3, the proposed

power allocation scheme offers 0.6, 1.4 and 0.8 dB gains overZF, SIC and OSIC receivers,

respectively. Both SIC and OSIC with power allocation outperform precoding schemes,

e.g., at a BER of 10−3, OSIC with power allocation offers 1.0 dB and 1.9 dB SNR gains

over MBER precoding with ZF equalization and MMSE precoding/decoding, respectively.

We can also see that OSIC with MBER beamforming, though designed for ill-conditioned

channels, outperforms OSIC without power allocation at SNR’s larger than 5 dB.
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Figure 6.3. Average BER performance in uncorrelated Rayleighfading TIMO channel

(Nt = 2, Nr = 4).

Fig. 6.4 illustrates average BER performance in correlated Rayleigh fading. Similar

relationships among ZF, SIC, OSIC and precoding schemes as inuncorrelated Rayleigh

fading channels are observed. It is also shown that OSIC withbeamforming outperforms
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all other schemes at SNR’s larger than 7 dB.
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Figure 6.4. Average BER performance in correlated Rayleigh fading TIMO channel (Nt =

2, Nr = 4).

6.5.2 Ricean Fading

Figs. 6.5 and 6.6 illustrate average BER’s in uncorrelated andcorrelated Ricean fading

channels, respectively. Performance of SIC without power allocation (not shown) is nearly

identical to that of MMSE precoding/decoding. Again, SIC and OSIC with power alloca-

tion outperform precoding schemes. We also observe that theproposed OSIC with MBER

beamforming offers significant gain over power allocation and precoding schemes shown:

at a BER of 10−3, 7.0 dB SNR gain over OSIC with power allocation in uncorrelated fading,

and 8.5 dB in correlated fading are observed. This is as excepted since in Ricean fading,

due to the existence of a line-of-sight (LOS) component, thechannel matrix is likely to be

ill-conditioned.
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Figure 6.5. Average BER performance in uncorrelated Ricean fading TIMO channel (Nt =

2, Nr = 4, K = 8 dB).

6.6 Conclusion

Minimum BER (MBER) transmit power allocation and beamforming for TIMO spatial

multiplexing are proposed in this chapter. It is shown that SIC and OSIC with approximate

MBER (AMBER) power allocation outperform existing precoding schemes in Rayleigh

fading channels, e.g., at a BER of 10−3, OSIC with AMBER power allocation offers 1.0

dB and 1.9 dB SNR gains over MBER precoding with ZF equalization and MMSE pre-

coding/decoding, respectively. The proposed OSIC with AMBER transmit beamforming

eliminates error floors and offers superior performance over both power allocation and pre-

coding schemes in Ricean fading channels, e.g., at a BER of 10−3, OSIC with AMBER

beamforming offers 7.0 dB and 8.5 dB SNR gain over OSIC with AMBER power alloca-

tion in uncorrelated and correlated Ricean fading, respectively. Compared to more general
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Figure 6.6. Average BER performance in correlated Ricean fading TIMO channel (Nt = 2,

Nr = 4, K = 8 dB).

precoding methods, the proposed schemes reduce both complexity and feedback overhead

and improve error rate performance.
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Chapter 7

Summary, Conclusions and Future Work

In this chapter, we summarize the major contributions in this thesis, and suggest possible

future directions which could be extensions of the researchpresented in this thesis.

7.1 Summary and Conclusions

After providing motivation in Chapter 1, an overview of wireless channel model, multicar-

rier and MIMO wireless communications is provided in Chapter2.

Chapter 3 focuses on optimization of transmit redundancy forOFDM transmission to

tradeoff performance, complexity and bandwidth efficiency. In Section 3.3, we analyzed

redundancy issues in OFDM transmission using a guard interval of CP and ZP as well

as no guard interval. It is found that redundancy introducedin OFDM transmission is

closely related to system performance and complexity. In Section 3.4, a new system design

criterion based on the channel matrix condition number is proposed. This criterion is then

applied to the design of an AZP-OFDM, as well as a modificationto reduce equalization

complexity. An algorithm based on inverse iteration of power method is provided for the

choice of the ZP length. Simulation results show that the proposed AZP-OFDM offers

robust performance over a large range of channel time dispersion (delay spread) while
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keeping the implementation complexity low.

In Chapter 4, optimization of transmit power for CP-OFDM is investigated. This is

motivated by the analytical performance comparison between CP-OFDM and CP-SC in

Section 4.4, where it is shown that uncoded CP-OFDM is inferior to CP-SC in frequency-

selective channels. In Section 4.3, power allocation for CP-OFDM is formulated and solved

using a variety of criteria, particularly minimum BER (MBER) and its approximation (AM-

BER). Algorithms to find MBER and AMBER power allocation solutions are also given in

Section 4.3. In Section 4.4, a framework for analytical performance comparison between

CP-SC and CP-OFDM is proposed and applied to asymptotic performance comparison

among a variety of schemes. It has been established that uncoded CP-OFDM is inferior

to ZF-equalized CP-SC, CP-OFDM with EG power allocation has thesame performance

at ZF-equalized CP-SC, and CP-OFDM with AMBER power allocation outperforms ZF-

equalized CP-SC. In Section 4.5, performance degradation of power allocation due to im-

perfect CSI feedback is analyzed; special cases of CSI uncertainty, including delayed CSI,

noisy CSI and covariance feedback are discussed.

In Chapter 5, power allocation is applied to MIMO spatial multiplexing systems. A

variety of signal reception methods of MIMO spatial multiplexing, including ZF, SIC and

OSIC, as well as their error rate performance are reviewed in Section 5.2. Assuming per-

fect CSI available at the transmitter, power allocation using an AMBER criterion is then

applied to MIMO spatial multiplexing in Section 5.3. Compared with general precoding

methods, the proposed power allocation enables interference cancellation and detection

ordering under an MBER criterion, with significant reductionin both feedback overhead

and processing complexity. In Section 5.4, performance degradation of power allocation

with noisy CSI and power feedback is analyzed. The analysis isused to develop a mod-

ified AMBER power allocation scheme that uses the variance of the feedback, with the
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capability of mitigating error propagation in interference cancellation. Simulation results

in Section 5.5 show that SIC and OSIC employing MBER power allocation have the po-

tential to offer superior performance over existing precoding schemes. For example, in a

correlated Ricean fading channel, at a BER of 10−3, MBER power allocation for OSIC

offers, respectively, 2.0 and 4.0 dB SNR gains over MBER precoding for ZF equalization

and MMSE precoding/decoding.

Chapter 6 investigates transmit optimization for TIMO spatial multiplexing, which is a

special case of MIMO with two transmit antennas. In Section 6.2, signal reception meth-

ods discussed in Section 5.2 are customized for TIMO. Based onperformance analysis, a

model of ill-conditioned TIMO channel is proposed, which isan example of a “pinhole”

channel. AMBER power allocation proposed in Chapter 5 is then applied, and closed-

form solution as well as performance analysis are provided in Section 6.3. Section 6.4

is dedicated to transmit optimization for ill-conditionedTIMO channels. An approximate

MBER transmit beamforming method is proposed which is shown to eliminate error floors

in ill-conditioned channels. Simulation results in Section 6.5 show that the proposed ap-

proximate MBER transmit beamforming scheme offers superiorperformance in fading

channels. For example, in uncorrelated Rayleigh fading, at aBER of 10−3, OSIC with

AMBER power allocation offers 1.0 dB and 1.9 dB SNR gains over MBER precoding with

ZF equalization and MMSE precoding/decoding, respectively; in Ricean fading channels,

at a BER of 10−3, OSIC with AMBER beamforming offers 7.0 dB and 8.5 dB SNR gain

over OSIC with AMBER power allocation in uncorrelated and correlated Ricean fading,

respectively.
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7.2 Future Directions

In this section, we discuss several issues that remain to be explored, as well as possible

extensions of the results in this thesis.

7.2.1 Effects of/Robustness to Imperfect Knowledge

Although this thesis has investigated imperfect channel knowledge issues of power alloca-

tion for OFDM and MIMO spatial multiplexing, several open problems remain regarding

imperfect knowledge.

• In Section 3.4, we have assumed that the channel is known perfectly. It is therefore of

interest to investigate the effects of imperfect channel knowledge on the performance

of AZP-OFDM. Matrix perturbation theory [97] may be used in the analysis. Based

on the analysis, robustification of AZP-OFDM may be considered.

• The modified MBER power allocation for MIMO spatial multiplexing proposed in

Section 5.4 assumes perfect knowledge of the variance of noisy feedback. One may

consider the effects of imperfect estimates of the noise variance.

• Transmit beamforming for ill-conditioned TIMO channels proposed in Section 6.4

also assumes perfect estimation of the parametera. Therefore, effects of and robus-

tification to imperfect estimate/feedback ofa require further investigation.

7.2.2 Partial versus Full CSI for Transmit Optimization

Transmit power allocation for MIMO spatial multiplexing can be viewed as a way of ex-

ploiting partial/imperfect CSI at the transmitter (CSIT). Itis of interest to compare power

allocation (exploiting partial CSI) with existing precoding schemes that rely on full CSI.
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While numerical comparisons in terms of error rate performance have been provided in

Chapter 5, a fundamental question is: what potential capacity is lost by employing power

allocation versus precoding? To be specific, using notations in Chapter 2, capacity of a

MIMO channel is given by [79]

C = max
trace{PPH}≤Nt

log2det
(
INt + γsΛΛΛWHPPHW

)
, (7.1)

whereW andΛΛΛ are eigenvector and eigenvalue matrices ofHHH, respectively.

• No CSIT. By choosingP = INt , we have

Cno =
Nt

∑
k=1

(
1+ γsλ 2

k

)
bits/sec, (7.2)

whereλ 2
k

def
= [ΛΛΛ]k,k.

• Full CSIT. The capacity-achieving precoder is given byP = WD, where D def
=

diag{d1, · · · ,dNt} anddk’s are obtained asdk =
√(

µ − γ−1
s λ−2

k

)

+
, whereµ is cho-

sen to satisfy the transmit power constraint, i.e.,∑Nt
k=1d2

k = trace{PPH} ≤ Nt . The

capacity of MIMO with full CSIT is given by

Cf ull =
Nt

∑
k=1

log2

(
1+ γsλ 2

k d2
k

)
bits/sec. (7.3)

• Partial CSIT. For transmit power allocation, the precoding matrix, P, is constrained

to be diagonal. The capacity of MIMO with power allocation isgiven by

Cpartial = max
trace{P2}≤Nt

log2det
(
INt + γsHHHP2) bits/sec. (7.4)

Obviously,Cno ≤ Cpartial ≤ Cf ull . The potential capacity loss due to power allocation

needs to be quantified.
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7.2.3 Cross-Dimension Transmit Optimization

Multiple dimensions are explored to meet the increasing requirement of high data rates,

including space, time and frequency. Recently, cooperativecommunication has been pro-

posed that achieves performance improvement via multi-user cooperation [70]. It if of in-

terest to consider the joint optimization of resource allocation among multiple dimensions

as well as multiple users. Some interesting problems are discussed next.

• Joint space-frequency power allocation for MIMO-OFDM systems. In [78], power

allocation for an OFDM-MIMO system is investigated, where the MIMO system

is used for transmit-receive diversity, and power allocation is conducted along fre-

quency dimension only. It is of interest to consider joint space-time power allocation

for MIMO-OFDM spatial multiplexing systems. This can be viewed as an extension

of results of Chapters 4 and 5 in thesis.

• Joint space-time power allocation for transmit diversity systems. Generally transmit

diversity does not require CSIT. When CSIT is available and exploited, array gain

offered by multiple transmit antennas can be achieved [79].One interesting prob-

lem is how to optimize transmit power to trade off between array gain and feedback

overhead when it is difficult/expensive to acquire full CSIT.

• Multi-user joint power allocation. This thesis has investigated power allocation

among subcarriers and transmit antennas of a single (virtual) user. Traditionally,

power control has been widely employed in multi-user communications to allocate

transmit power among different users. One may therefore consider joint transmit

power allocation and power control to gain further performance improvement.
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Appendix A

SER Depends on Unbiased SNR in

Frequency-Flat Channels

Obviously, scaling of the received signal affects only amplitude-modulated signals, not

phase- or frequency-modulated signals. Denoting thek-th constellation point assk, the

unbiased received signal is given byr = sk + η , where the noise termη has probability

density function (pdf)fη(η). Denote the unbiased decision-point SNR asγu = E{|sk|2}
E{|η |2} .

The conditional probability of correct decision is given by

P(c|sk) =
∫

Dk

fη(r −sk)dr, (A.1)

whereDk denotes the decision region forsk. The average SER, as a function ofγu, is given

by averaging (A.1) over all constellation points, i.e.,

Ps(γu) = ∑
k

P(sk) [1−P(c|sk)]

= 1−∑
k

P(sk)P(c|sk),

whereP(sk) is thea priori probability ofsk.

Now we consider a scaled version ofr,

r ′ = αr = αsk + αη
︸︷︷︸

η ′

,
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whereα is a scaler determined by the receiver. The biased decision-point SNR is given by

γb =
E{|sk|2}

E{|r ′−sk|2}
=

γu

(1−α)2γu +α2 .

The pdf ofη ′ is fη ′(η ′) = 1
α fη

(
η ′
α

)

. Similar to the unbiased case, we calculate the condi-

tional probability of correct decision as

P′(c|sk) =
∫

D ′
k

fη ′(r ′−αsk)dr′

=
∫

D ′
k

fη

(
r ′

α
−sk

)
dr′

α
.

whereD ′
k denotes the decision region ofsk in the biased case. It is easily seen that the

biased decision regionD′
k is also a scaled version ofDk. By a change in variables, we have

P′(c|sk) =
∫

Dk

fη(z−sk)dz≡ P(c|sk).

Therefore, the SER in the biased case is given by

P′
s(γb) = 1−∑

k

P(sk)P
′(c|sk) ≡ Ps(γu),

i.e., the SER performance of frequency-flat channel is determined by the unbiased SNR.
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Appendix B

Solution of A Class of Convex Optimization

Problems

We solve a class of constrained convex optimization problems, which can be found in,

e.g., [15,74], for some special cases. Consider






min∑N−1
k=0 fk(xk)

subject to ∑N−1
k=0 xk = C; xk ≥ ck, (k = 0, · · · ,N−1),

, (B.1)

where fk(·)’s are convex and continuously differentiable;C andck’s are constants. The

solution set is nonempty only if

C≥
N−1

∑
k=0

ck. (B.2)

It is readily verified that the constraints define a convex solution set. Therefore, the above

optimization problem is convex, for which the Kuhn-Tucker conditions are sufficient and

necessary for optimality. Introducing Lagrange multipliers{µk}N−1
k=0 for the inequality con-

straints, and multiplierν for the equality constraint, we obtain the Lagrangian

L =
N−1

∑
k=0

fk(xk)+
N−1

∑
k=0

µk(ck−xk)+ν

(

C−
N−1

∑
k=0

xk

)

. (B.3)
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The Kuhn-Tucker conditions are given by







dL

dxk
= d fk(xk)

dxk
−µk−ν = 0

∑N−1
k=0 xk = C

xk ≥ ck; µk ≥ 0; µk(ck−xk) = 0

, (k = 0,1, · · · ,N−1). (B.4)

Eliminating the slack variableµk in (B.4), we obtain the alternative optimality conditions







d fk
dxk

≥ ν

∑N−1
k=0 xk = C, xk ≥ ck

(
d fk
dxk

−ν
)

(ck−xk) = 0

, (k = 0,1, · · · ,N−1). (B.5)

Since f (x) is convex,d2 f (x)/dx2 > 0, therefored f(x)/dx is monotone increasing. Denote

gk(·) as the inverse function ofd fk/dxk, which is also monotone increasing. Consider the

condition (B.5). If there exists a solution ofd fk/dxk = ν such thatxk = gk(ν) ≥ ck, the

conditions in (B.5) are satisfied, and hence such a solution solves the original optimization

problem (B.1). Otherwise,ν < d fk/dxk, and we havexk = ck according to the third con-

dition in (B.5). We note that the existence and uniqueness of such a solution is guaranteed

sinced fk/dxk’s are monotone increasing. Therefore, the solution of (B.1)is given by

x∗k = max{ck,gk(ν)}, (B.6)

whereν is chosen to satisfy the equality constraint in (B.1), i.e.,

N−1

∑
k=0

max{ck,gk(ν)} = C, (B.7)

which can be solved numerically. Since∑N−1
k=0 max{ck,gk(ν)} is monotone increasing, such

ν exists and is unique as long as the feasibility condition (B.2) is satisfied.
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Appendix C

Proof of Claim 5.1

We make the following observations.

1. Conditioned on̂H, hk is distributed asN (ĥk,σ2
hINr ).

2. ϒϒϒ⊥
Ĥ(k+1)

has rankNr −Nt +k, and eigenvalue decomposition,

ϒϒϒ⊥
Ĥ(k+1)

= U






INr−Nt+k 0

0 0




UH . (C.1)

3. Denotev = UHhk. Conditioned onĤ, v is distributed asN (UH ĥk,σ2
hINr ). Fur-

thermore, by denoting(·)ℜ = ℜ{(·)} and(·)ℑ = ℑ{(·)}, we have, conditioned on

Ĥ,

vℜ ∼ N

(

ℜ{UH ĥk},
σ2

h

2
INr

)

, vℑ ∼ N

(

ℑ{UH ĥk},
σ2

h

2
INr

)

, E
{

vℜvT
ℑ
}

= 0,

where the factsUℜUT
ℜ +UℑUT

ℑ = INr andUℜUT
ℑ = UℑUT

ℜ have been used.

4. We have

g̃2
k =

∥
∥
∥ϒϒϒ⊥

Ĥ(k+1)
hk

∥
∥
∥

2
= hH

k ϒϒϒ⊥
Ĥ(k+1)

hk = vH






INr−Nt+k 0

0 0




v =

Nr−Nt+k

∑
l=1

(

v2
ℜ,l +v2

ℑ,l

)

.

(C.2)
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Therefore, conditioned on̂H, g̃2
k is the sum of squares of 2(Nr −Nt + k) independent real

Gaussian random variables with varianceσ2
h/2, which is chi-square distributed with 2(Nr −

Nt +k) degrees of freedom. The noncentrality parameter is calculated to be

ĥH
k U






INr−Nt+k 0

0 0




UH ĥk = ĥH

k ϒϒϒ⊥
Ĥ(k+1)

ĥk = ĝ2
k.

This establishes Claim 5.1.
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Appendix D

Transmit Power Allocation for Ill-Conditioned

TIMO Channels

Similar as in Section 6.3, we apply power allocation (6.12) and (6.13) to ill-conditioned

channels (6.10). The estimate of the transmitted signal using ZF equalization is given by





y1

y2




 = H†r = H†HPs+H†η

=
1

1+ |a|2











1 a

a∗ |a|2











p1s1

p2s2




+

hH
1 η

‖h1‖2






1

a∗









 . (D.1)

We observe thaty2 = a∗y1 in (D.1). It suffices to consider

y′1
def
= (1+ |a|2)y1 = p1s1 +ap2s2 +

hH
1 η

‖h1‖2 .

A signal space diagram is illustrated in Fig. D.1. We assume for nows1 is detected first,

and consider the opposite detection order later. Similar tothe analysis in Section 6.4.1, we

obtain the approximate average BER

P̄(γs;h1,a; p1, p2) ≈ 1
20

exp
{

−γs‖h1‖2(p1−ℜ(a)p2)
2
}

+
1
20

exp
{

−γs‖h1‖2(p1 +ℜ(a)p2)
2
}
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+
1
10

exp
{

−γs‖h1‖2(ℜ(a)p2)
2
}

. (D.2)

To minimize (D.2) under the transmit power constraint (6.13), no closed-form solution

exists. However, at moderate-to-high SNR, (D.2) can be further approximated as

P̄(γs;h1,a; p1, p2) ≈ 1
10

exp
{

−γs‖h1‖2(p1−ℜ(a)p2)
2
}

+
1
20

exp
{

−γs‖h1‖2(p1 +ℜ(a)p2)
2
}

. (D.3)

A closed-form solution that approximately minimize (D.3) under the transmit power con-

straint (6.13) is found to be

p1 = 2|ℜ(a)|p2, p2 =

√

2
1+4[ℜ(a)]2

. (D.4)

The average BER for power allocation (D.4) in ill-conditioned channels can be approxi-

mated as

P̄PA
IC (γs;h1,a) ≈ 3

20
exp

{

−2γs‖h1‖2[ℜ(a)]2

1+4[ℜ(a)]2

}

. (D.5)

If s2 is detected first, by similar argumentations, an approximate solution can be obtained

as

p′1 =
|ℜ(a)|

2
p′2, p′2 =

√

8
4+[ℜ(a)]2

. (D.6)

The average BER for power allocation (D.6) in ill-conditioned channels can be approxi-

mated as

P̄PA′
IC (γs;h1,a) ≈ 3

20
exp

{

−2γs‖h1‖2[ℜ(a)]2

4+[ℜ(a)]2

}

. (D.7)

Comparing (D.7) with (D.5), by assumption|a| ≤ 1, we know detectings1 first is optimal.

It is obvious that (D.5) experiences error floors whenℜ(a) ≈ 0. This motivates our study

of general precoding scheme for ill-conditioned channels.
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Figure D.1. Signal space diagram for BPSK with transmit powerallocation in ill-

conditioned channels.
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Appendix E

Transmit Beamforming for Ill-Conditioned

TIMO Channels

Consider the optimization problem of minimizing (6.25) under the constraint (6.22). De-

note∠x as the phase angle ofx. Since phase angles ofp11, p12, p21 andp22 are irrelevant

to the power constraint (6.22), we consider optimizing the phase angles first. A few obser-

vations are now in order.

1. The optimalp11 must be real; otherwise, by multiplyingp11 by e− j∠p11, P̃IC is re-

duced without violating the power constraint, i.e., a better precoder can be found.

Therefore, without loss of generality, we havep11 ≥ 0.

2. Similarly, optimalp21 satisfiesap21 ≥ 0.

3. For simplicity of notation, denotex = p11 + ap21, y = ℜ(p12 + ap22), and γ =

2γs‖h1‖2. By assumption (6.24), we havex≥ y. RewriteP̃IC in (6.25) as

P̃IC =
1
20

e−γ(x−y)2
+

1
10

e−γy2
.

Its derivative with respect toy is obtained as

dP̃IC

dy
=

1
10

γ(x−y)e−γ(x−y)2 − 1
5

γye−γy2
. (E.1)
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We now have two cases:

(a) if x > 2y, we havedP̃IC
dy < 0, i.e., P̃IC is decreasing iny. Therefore,P̃IC achieves

its local minimum whenp12+ap22 is real and non-negative, because otherwise,

by multiplying p12 and p22 by e− j∠(p12+ap22), a better precoder can be found.

Furthermore, bothp12 andap22 must be real and non-negative by similar argu-

mentation;

(b) otherwise,y≤ x≤ 2y, we havedP̃IC
dy > 0, P̃IC is increasing iny, andP̃IC achieves

its local minimum aty = 0, i.e.,p12+ap22 is purely imaginary.

Comparing the local minimum values of these two cases,

P̃IC|ℑ(p12+ap22)=0 =
1
20

e−γ(x−y)2
+

1
10

e−γy2
,

P̃IC|ℜ(p12+ap22)=0 =
1
10

e−γx2
+

1
10

,

it is easily seen that whenp12 ≥ 0, ap22 ≥ 0, andp11+ ap21 > 2(p12+ ap22), P̃IC

can achieve a global minimum.

Therefore, without loss of generality, the precoder minimizing (6.25) under the power

constraint (6.22) satisfies

p11 ≥ 0, p12 ≥ 0, ap21 ≥ 0, ap22 ≥ 0. (E.2)

Denotep21 = a∗q21 and p22 = a∗q22, whereq21 ≥ 0,q22 ≥ 0. The approximate average

BER (6.25) can be written as

P(γs;h1,a;Pb) ≈ 1
10

exp
{

−2γs‖h1‖2(
p11+ |a|2q21− p12−|a|2q22

)2
}

+
1
10

exp
{

−2γs‖h1‖2(
p12+ |a|2q22

)2
}

. (E.3)

By using the method of Lagrange multipliers, the solution to the problem of minimizing

(E.3) can be obtained as

q21 = p11, q22 = p12, p11 = 2p12. (E.4)
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To satisfy the power constraint (6.22), we have

p11 =

√

8
5(1+ |a|2) , p12 =

1
2

p11, p21 = a∗p11, p22 = a∗p12, (E.5)

from which the precoder (6.26) is obtained.
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