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Abstract

To date the majority of research in the area of cooperative communications fo-

cuses on maximizing throughput and reliability while assuming perfect channel

state information (CSI) and synchronization. This thesis, seeks to address perfor-

mance enhancement and system parameter estimation in cooperative networks

while relaxing these idealized assumptions.

In Chapter 3 the thesis mainly focuses on training-based channel estimation in

multi-relay cooperative networks. Channel estimators that are capable of deter-

mining the overall channel gains from source to destination antennas are derived.

Next, a new low feedback and low complexity scheme is proposed that allows

for the coherent combining of signals from multiple relays. Numerical and simu-

lation results show that the combination of the proposed channel estimators and

optimization algorithm result in significant performance gains.

As communication systems are greatly affected by synchronization parameters,

in Chapter 4 the thesis quantitatively analyzes the effects of timing and frequency

offset on the performance of communications systems. The modified Cramer-Rao

lower bound (MCRLB) undergoing functional transformation, is derived and ap-

plied to determine lower bounds on the estimation of signal pulse amplitude and

signal-to-noise ratio (SNR) due to timing offset and frequency offset, respectively.
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In addition, it is shown that estimation of timing and frequency offset can be de-

coupled in most practical settings.

The distributed nature of cooperative relay networks may result in multiple

timing and frequency offsets. Chapters 5 and 6 address multiple timing and fre-

quency offset estimation using periodically inserted training sequences in coop-

erative networks with maximum frequency reuse, i.e., space-division multiple ac-

cess (SDMA) networks. New closed-form expressions for the Cramer-Rao lower

bound (CRLB) for multiple timing and multiple frequency offset estimation for

different cooperative protocols are derived. The CRLBs are then applied in a novel

way to formulate training sequence design guidelines and determine the effect of

network protocol and topology on synchronization parameter estimation. Next,

computationally efficient estimators are proposed. Numerical results show that

the proposed estimators outperform existing algorithms and reach or approach

the CRLB at mid-to-high SNR. When applied to system compensation, simulation

results show that application of the proposed estimators allow for synchronized

cooperation amongst the nodes within the network.
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Chapter 1

Introduction

1.1 Cooperative Systems for Future Wireless Commu-

nications

THE advances in wireless communications have revolutionized many aspects of

everyday life. Information is more freely accessible, resulting in higher produc-

tivity and a better standard of living. The information age has also put a surging

demand on throughput and coverage of wireless systems [16]. On the other hand,

the fading channel (fading refers to the rapid fluctuations of the amplitude, phase,

or multipath delays of a radio signal over short travel distances or time [83]) has

always been a major obstacle for the designers and engineers on the path to higher

throughput and coverage. At any given time the wireless channel between two

end points could suffer from the effects of deep fading, resulting in severe signal

attenuation and reduced quality of service. There are many ways to overcome such

an effect with diversity being a well-known and effective method.

Diversity might be viewed as a form of redundancy. Specifically, if several repli-

cas of a signal are transmitted over different fading channels, then the probability
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of one signal arriving at the destination without suffering from the effects of deep

fading is increased. Time, frequency, and space diversity are the three main types

of diversity under consideration. In the case of frequency diversity, different repli-

cas of the signal are transmitted over different frequency bands. Time diversity

is achieved when different replicas of the signal are transmitted at different time

slots [36]. Space diversity, which has given birth to multiple-input-multiple-output

(MIMO) and cooperative systems, occurs when multiple transmitting and/or re-

ceiving antennas are used.

By exploiting spatial diversity, MIMO systems have been shown to significantly

improve both the throughput and reliability of wireless networks without requir-

ing additional power or frequency spectrum, [18,19,31,32,95,96,105]. Furthermore,

assuming spatially uncorrelated channels, the capacity of MIMO systems scales

with the number of antennas resulting in multiplexing gain (see Fig. 1.1) [10, 77].

Due to its promise of high impact in many sectors, cooperative communica-

tions has become an expanding area of research. In particular, cooperative commu-

nications enables efficient spectrum usage by resource sharing amongst multiple

nodes in the network. Fundamental pioneering work in this area in an idealized

setting can be found in [12, 51, 97, 99, 112]. Fig. 1.2 provides a comparison between

two commonly studied cooperative schemes, specifically the relay channel and the

two or multi-hop cooperative channel. In [51] the authors first introduce two im-

portant cooperative protocols amplify-and-forward (AF) and decode-and-forward

(DF) (see Fig. 1.3). Furthermore, the authors in [51] introduce the repetition-based

cooperative protocol, where the source broadcasts the signal to the relays and the

relays subsequently retransmit the signal to the destination during the allocated

time slots. It is demonstrated in [51] that both AF and selection DF are capable of
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Figure 1.1: MIMO channel with M transmit and N receive antennas.

providing full diversity equivalent to the number of cooperating terminals.

As desirable theoretical properties of cooperative communications are discov-

ered and proposed idealized systems demonstrate potential for practical applica-

tion, estimating and determining the effect of non-ideal system parameters on the

overall performance of cooperative systems becomes more significant.

1.2 Motivation and Thesis Overview

Most of the current studies in the area of cooperative communications are focused

on enhancing capacity and reliability while assuming perfect channel estimation

throughout the network [50, 51, 84, 111, 114]. However, in cooperative networks
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Figure 1.2: The conventional direct link, two-hop, and relay communications

schemes [16]. Note that S, R, and D stand for source, relay, and destination, re-

spectively.

Figure 1.3: Block diagram representing the algorithm executed at the relay under

AF and DF protocols. Note that S and D stand for source and destination, respec-

tively.
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as envisioned for practical applications, the channel gains and synchronization

parameters such as timing and frequency offset need to be estimated and equalized

at the receiver [67]. Knowledge of the channel state information (CSI) can be also

used to optimize the cooperative network’s performance as shown in [15, 45, 48,

86, 94, 111]. However, the algorithms proposed in [15, 45, 48, 86, 94, 111] require

perfect CSI to be available at the relays and/or source terminals. Such an approach

requires considerable feedback, which reduces bandwidth efficiency and increases

overhead.

This thesis primarily seeks to address channel estimation in AF relaying multi-

input-multi-output (MIMO) cooperative networks. In contrast, DF relaying MIMO

cooperative networks require channel estimation and detection at both the relays

and destination terminals [23], where algorithms similar to those employed for

multi-input-single-output (MISO) systems can be used to estimate CSI [9, 35, 85].

However, in the case of amplify-and-forward (AF) relaying cooperative networks,

the relays do not need to estimate CSI since the received signal is not decoded.

Therefore, the network’s overall CSI must be estimated at the destination node

[23].

To reduce the amount of feedback associated with distributed beamforming

schemes outlined in [15,45,48,86,94,111], a new capacity optimization algorithm is

proposed in this thesis that results in the coherent combining of signals transmitted

from multiple relays at the destination through the application of a phase shift

at each relay. The optimum set of phases is determined at the destination and

fed back to the relays, where it is shown that each phase shift can be represented

using only a few bits (2-3). Such an approach is demonstrated to converge very

quickly and does not require the network’s complete CSI to be fed back to the
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relays and/or source.

Quantifying the effect of timing and frequency offset on the performance of

communication systems is difficult. In the case of timing offset, one approach is

to simply calculate the received SNR for every possible timing offset and then

to average the result over an assumed distribution of timing jitters yielding an

average-bit-error rate (ABER) [3, 4]. This approach, while straightforward in prin-

ciple, is dependent upon receiver signal processing algorithm, e.g., sampling rate,

matched filter, decision device, etc. The effect of inter-carrier interference (ICI)

causing frequency offset on performance of orthogonal frequency division multi-

plexing (OFDM) systems has been extensively researched in the literature and is

summarized in [41, 70]. However, the variance or even bounding the variance of

the signal-to-noise ratio (SNR) loss due to ICI has not been addressed to date. In

this thesis, we first drive the functional transformation for the modified Cramer-

Rao lower bound (MCRLB) and use this relationship to quantitatively determine

the effect of timing and frequency offset on the performance of communication

systems.

Due to the distributed nature of the network and simultaneous transmissions

from separate nodes, each employing different oscillators, cooperative networks

require the estimation of multiple timing and frequency offsets at the receiver [66,

67]. In [64, 103, 110, 115] and references therein, space time coding techniques are

proposed that provide full spatial diversity in the presence of timing and frequency

offsets. However, the schemes in [64, 103, 110, 115] also require carrier frequency

offsets (CFOs) to be estimated and equalized at the destination.

This thesis formulates a system model for timing and frequency offset estima-

tion in distributed cooperative networks. New closed-form expressions for the
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Cramer-Rao lower bound (CRLB) are derived and are used to assess training se-

quence performance for timing and frequency offset estimation. The CRLBs are

also applied in a novel way to determine the effect of network protocol and topol-

ogy on synchronization parameter estimation in distributed cooperative networks.

Next, computationally efficient multiple timing and frequency offset estimators are

proposed that are shown to reach the CRLB at mid-to-high SNR and outperform

existing algorithms. When combined with timing and frequency offset compensa-

tion algorithms, the proposed estimators are shown to result in significant perfor-

mance gains. The thesis is organized as follows:

In Chapter 2, the basics of MIMO and cooperative communications systems for

slow flat-fading channels are presented and the system model for the cooperative

communications system under consideration in this thesis is briefly outlined.

In Chapter 3, two channel estimators are proposed based on the maximum-

likelihood (ML) and least squares (LS) methods that can estimate the overall CSI

of an AF relaying multi-relay MIMO cooperative network at the destination si-

multaneously. Next, a capacity optimization algorithm based on the application

of a phase shift at each relay for multi-relay MIMO AF cooperative networks is

proposed [62, 114].

In Chapter 4, the discrete MCRLB, which similar to CRLB is a lower bound

on the variance of an unbiased estimator is derived. Next, an expression for the

functional transformation of the MCRLB is obtained and then used to determine

the lower bound on the variance of signal pulse amplitude estimation as a function

of timing offset. The functional of transformation of the MCRLB is also applied to

determine a lower bound on outage probability for OFDM systems in the presence

of inter-carrier interference (ICI) causing frequency offset. Finally, the relationship
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between the CRLB and MCRLB for the estimation of synchronization parameters

is analyzed and it is shown that the estimation of timing and frequency offset can

be decoupled in some important practical scenarios.

Chapter 5 first derives the CRLBs for timing offset estimation for decode-and-

forward (DF) and AF cooperative systems consisting of R relay nodes in Rician

fading and Gaussian channels. In the case of AF, a low-complexity baseband pro-

cessing structure is proposed that enables accurate joint multiple timing offset es-

timation at the destination. Next, an iterative multiple timing offset estimator is

proposed that transforms the R-dimensional estimation problem into R single pa-

rameter estimation problems that can then be solved using known timing estima-

tion methods including, the 1-dimensional maximum-likelihood estimator (MLE),

Gardner’s detector (GD), or the Mueller and Muller (MM) estimator [71]. Sim-

ulation results show that when combined with timing offset compensation algo-

rithms, application of the proposed estimators results in timing synchronization

throughout the network.

In Chapter 6, a system model for CFO estimation in DF and AF relaying net-

works is outlined. Analogous to Chapter 5, new closed-form CRLB expressions

for CFO estimation for DF and AF multi-node cooperative systems are derived. In

addition to serving as a benchmark for assessing the performance of CFO estima-

tors, the CRLBs are used in a novel way to quantitatively determine the effect of

network protocol and number of relays on CFO estimation accuracy. An algorithm

that employs distinct training sequences transmitted from each relay to accurately

estimate and assign each CFO to its corresponding relay is proposed. Unlike the

algorithms in [6,58,78,109] the proposed estimators have accuracies that are main-

tained over a wide range of possible CFO values. Moreover, it is shown that the
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proposed CFO estimators are also applicable to both DF and AF relaying networks.

A complexity analysis for both estimators is presented. Numerical results show

that the proposed estimators reach or approach the CRLB at mid-to-high SNR. By

combining the proposed estimators with the CFO compensation method in [102],

it is also demonstrated that frequency synchronization in multi-relay cooperative

networks can be achieved.

1.3 Thesis Contributions

The primary contributions of this thesis are briefly summarized as follows:

• Channel estimators based on the maximum-likelihood (ML) and least squares

(LS) methods are proposed that can estimate the overall CSI of an AF relaying

multi-relay MIMO cooperative network at the destination simultaneously.

• An optimization scheme for multi-relay MIMO AF relaying cooperative net-

works, denoted by amplify-phase-shift-and-forward (APSF) is proposed that re-

sults in significant performance gain with limited feedback.

• The discrete and the functional transformation of MCRLB, which similar to

CRLB is a lower bound on the variance of an unbiased estimator is derived.

The effect of timing and frequency offset on the performance of communica-

tion systems is quantitatively determined by employing the MCRLB and its

functional transformation. The relationship between the MCRLB and CRLB

under different synchronization scenarios is determined, as well as the re-

quired conditions for the CRLB and the MCRLB to be equivalent.
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• The CRLBs for timing offset estimation for DF and AF multi-node cooper-

ative systems for Rician fading and Gaussian channels are derived. In the

case of AF, a new low complexity baseband processing structure is proposed

that enables accurate joint multiple timing offsets estimation at the destina-

tion. The CRLBs are used to design more effective training sequences and

to determine the effect of number of relays and relay locations on timing

offset estimation in distributed DF and AF cooperative networks. An iter-

ative multiple timing offset estimator is proposed that significantly reduces

the computational complexity and overhead required for achieving timing

synchronization in multi-relay cooperative networks.

• The system model for CFO estimation in DF and AF relaying networks is

outlined. New closed-form CRLB expressions for CFO estimation for DF

and AF multi-node cooperative systems are derived. In addition to serving

as a benchmark for assessing the performance of CFO estimators, the CRLBs

are uniquely used to quantitatively determine the effect of network protocol

and number of relays on CFO estimation accuracy. A novel multiple CFO

estimator based on the MUSIC algorithm is proposed, which unlike existing

algorithms, has accuracy that is maintained over the range of possible CFO

values.
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Chapter 2

Background

THIS section provides a brief background on multi-input-multi-output (MIMO)

systems, cooperative communication systems, two well known protocols, amplify-

and-forward (AF) and decode-and-forward (DF), and synchronization in commu-

nications systems. The system model under consideration is illustrated in Fig. 2.1,

where R relay terminals are located randomly and independently throughout the

network. The case where a single source, a single destination, and multiple relays

is considered. Note that throughout this thesis, source, destination, and the kth

relay, for k = 1, 2, · · · , R, are denoted by S, D, and Rk, respectively. Given that the

main goal of this thesis is to expand the area of coverage through cooperation, a

two-hop scenario is assumed throughout the thesis, where there is no direct link

between S and D. Data is transmitted from the source to the destination through

R relays over two time-slots in half-duplex mode.

2.1 Point-to-Point MIMO Systems

Fig. 1.1 represents a point-to-point MIMO channel between a source and a destina-

tion. Let hn,m be the complex channel gain between the mth transmit antenna and
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Figure 2.1: System model for a MIMO cooperative network.

the nth receive antenna. Let x = [x1, x2, · · · , xM ] represent the transmitted complex

set of signals. Then the received signal model at the nth receive antenna, yn, can be

expressed as

yn =
M∑

m=1

hn,mxm + wn, (2.1)

where wn is the average white Gaussian noise (AWGN) at the nth receive antenna

that models the thermal noise of the electronic components at the receiver.

Eq. (2.1) can be easily represented in matrix format

y = Hx+w, (2.2)

where x and y are the M×1 transmit and N×1 receive signal vectors, respectively,
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w is the white Gaussian noise vector of size N × 1, and matrix H is

H =


h1,1 · · · h1,M

... . . . ...

hN,1 · · · hN,M

 . (2.3)

If a signal is transmitted consecutively over T time-slots, the received signal can

be alternatively arranged in matrix format as

Y = HX+W, (2.4)

where

Y = [y1,y2, · · · ,yT], (2.5)

X = [x1,x2, · · · ,xT], and (2.6)

W = [w1,w2, · · · ,wT]. (2.7)

The Shannon channel capacity provides the highest theoretically achievable

data rate in a wireless system. In the case of single-user MIMO systems, the chan-

nel capacity based on the model presented in (2.2) in bits per second is given by [47]

C(H) = B log2

∣∣∣∣I + 1

σ2
HRxxH

H

∣∣∣∣ , (2.8)

where B is the bandwidth of the channel in Hz, Rxx is the covariance matrix for

the zero-mean input vector, and | · | denotes the determinant.

2.2 Cooperative Systems

Denoting the M × 1 transmitted signal vector from S as s, the signal model at Rk is

given by

rk =

√
Ps

M
hks+ vk, (2.9)
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where rk is the N × 1 received signal, vk is zero-mean AWGN vector, and hk is

the 1 × M channel matrix from the source to the kth relay. Note that throughout

this thesis for ease of deployment, the relays are assumed to be equipped with a

single antenna. The received signal at the destination depends on the choice of the

cooperative protocol, e.g., AF or DF, and is outlined in the following subsections.

To ensure high frequency reuse and throughput, space-division multiple access

(SDMA)-based cooperative networks are considered throughout this thesis, where

the R relays transmit their signals simultaneously to the destination.

Cooperative diversity is the result of the broadcast nature of cooperative sys-

tems. The basic idea of the cooperative diversity is that several terminals cooper-

ate, providing spatial diversity.

2.2.1 Amplify-and-Forward

Amplify-and-forward is a conceptually simple cooperation protocol that allows for

the relays to retransmit a noisy version of a received signal to the destination [51].

Based on the proposed system model in Fig. 2.1, the vector of received signals, y,

at the destination can be expressed as

y =
R∑

k=1

√
Pk

M

(
E
[
rkr

H
k

])−1/2
gkrk +w, (2.10)

where gk is the N × 1 channel matrix from kth relay to destination and w is the

N × 1 additive white Gaussian noise (AWGN) at D. By substituting (2.9) in (2.10),

y can be rewritten as

y =
R∑

k=1

√
Pk

M

(
E
[
rkr

H
k

])−1/2
(gkhks+ gkvk) +w. (2.11)

In (2.11), the term Gkvk represents amplification of the noise, representing one of

the drawbacks of AF. In [51] it has been demonstrated that for a two-user single
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antenna system, an AF relaying cooperative network can achieve a diversity order

of two. Note that in [14], the pair-wise error probability (PEP) of the AF protocol

over a half-duplex channel has been analyzed and a closed-form expression has

been presented.

2.2.2 Decode-and-Forward

Decode-and-forward, [51] requires the relays to first decode the received signal

before forwarding it to D. DF seeks to address the noise amplification issue associ-

ated with the AF protocol. The signal model at Rk in (2.9) is also valid for the case

of DF relaying. On the other hand, the received signal at the destination in the case

of DF relaying is given by

y =
R∑

k=1

√
Pk

M
gkŝ+w, (2.12)

where ŝ represents the estimated signal at the relays. If the decoding by the Rk,

for k = 1, 2, · · · , R, is unsuccessful and there is no scheme put in place (e.g., a

cyclic redundancy check (CRC) code) to detect such errors, the erroneous signal

forwarded by Rk can negatively affect the overall performance of the cooperative

system. That is why hybrid schemes are proposed in [51]. However, the focus of

this thesis is only on AF and DF relaying cooperative networks.

2.3 Channel Model

In a flat-fading channel, each signal path is represented by a random complex

fading coefficient (channel gain) [13, 80, 83], so that the overall MIMO coopera-

tive relay channel in Fig. 2.1 is conveniently described by vectors hk and gk, for
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k = 1, 2 · · · , R. The ith and jth elements of hk and gk, denoted by hk,i and gk,j ,

respectively, represent the channel gains from the ith source antennas to the kth

relay and from the kth relay to the jth receive antenna of the destination, respec-

tively. As hk and gk, for k = 1, 2, · · · , R, play an important role in characterizing

the performance of cooperative systems, it is important to develop a model that

statistically describes the elements of both matrices.

The random channel gains are modeled by circularly symmetric complex Gaus-

sian random variables [13, 80, 83], denoted by hk,i ∼ CN (µhk,i
, σ2

hk,i
) and gk,j ∼

CN (µgk,j , σ
2
gk,j

) ∀k, j, i. If the mean of the channel gain, µhk,i
is non-zero, the chan-

nel is said to undergo Ricean fading. If µhk,i
= 0, the channel undergoes Rayleigh

fading [13]. If the variance of the channel gains, σ2
hk,i

, is zero the channel is consid-

ered to be Gaussian. Note that the models used in this thesis vary among Rician,

Rayleigh, and Gaussian.

A fading MIMO channel is said to be spatially white and is denoted by Hw if

E
(
hj,ih

∗
n,m

)
= 0, for i,m = 1, 2, · · ·M , j, n = 1, 2, · · ·N , i ̸= m, and j ̸= n. Here we

have used E(·) to denote the expectation of a random variable [13]. Note that

hw , vec (Hw) ∼ CN (0, INM) ,

where vec(·) denotes the vectorization operation, and IN×M denotes the N × M

identity matrix. When there is spatial correlation, the following nonparametric

channel model is commonly used [17, 88]

H = R
1
2
RHwR

1
2
T, (2.13)

where RR (N × N) and RT (M × M ) denote the transmit and receive correlation

matrices, respectively. Based on (2.13), we can write [52]

h = vec (H) =
(
R

T
2
R ⊗R

1
2
T

)
hw ∼ CN

(
0,R

T
2
R ⊗R

1
2
T

)
, (2.14)
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where ⊗ denotes Kronecker product, and the identity vec(ABC) =
(
CT ⊗ A

)
vec(B)

has been used [11].

Note that since in the case of cooperative communication systems the relays are

distributed throughout the network and are distant from one another, throughout

this thesis the channels between nodes are assumed to be spatially white and for

notational simplicity, the subscript w is omitted.

2.4 Synchronization Parameters

In synchronous digital communication systems, the information is conveyed by

uniformly-spaced continuous pulses and the received signal is completely known

at the receiver except for the data symbols and a set of system parameters [66].

Even though the ultimate goal of the receiver is to determine the data symbols,

successful detection and decoding of the data symbols requires knowledge of these

system parameters. Synchronization refers to the topic of estimating and com-

pensating these system parameters so the data symbols can be extracted from the

received signal.

Synchronization has a significant impact on the performance of communica-

tions systems [66,67], and is measured using three different parameters: frequency

offset, ν, timing offset, τ , and phase offset, θ, where these parameters need to be

estimated and compensated for at the receiver.

A received waveform in additive white gaussian noise (AWGN) can be repre-

sented as

r(t) =
L−1∑
n=0

sng(t− nT − τT )ej(νnT+θ) + v(t), (2.15)
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where v(t) is the zero-mean complex AWGN with variance N0/2, sn are the trans-

mitted symbols, g(t) is the signaling pulse of energy
∫∞
∞ |g(t)|2dt, T is the signaling

interval, θ is the signal phase, L is the number of symbols in the observation inter-

val, ν = fc − fcl
1 is the carrier frequency offset, and τ is the timing offset.

2.4.1 Timing Offset

In a baseband pulse amplitude modulation (PAM) system the received waveform

is first passed through a matched filter and is then sampled at the symbol rate.

The optimum sampling times correspond to the peaks of the signal pulses [66].

Deviations from this optimum sampling point result in timing offset.

If the sampling does not occur at the the peaks of the signal pulse due to timing

offset, the signal corresponding to one symbol interferes with subsequent symbols.

This phenomenon results in signal distortion, loss of signal-to-noise ratio (SNR),

and is referred to as inter-symbol interference (ISI).

An eye pattern, also known as an eye diagram, refers to the output of the

matched filter at the receiver that is repeatedly plotted over time. Eye diagrams are

used to qualitatively determine the effect of ISI on the performance of communi-

cations systems. In Fig. 2.2 the eye diagram for raised cosine (RC) pulse is plotted.

The smaller the eye opening, the larger is the SNR loss due to ISI. Therefore, the

accuracy by which the peak of the signal pulse can be estimated in the presence of

timing offset has a direct impact on the performance of communication systems.

The main sources of timing offset are channel delay and oscillator mismatch

[66]. For efficient detection, the timing offset between the transmitter and receiver

1fcl is the receiver’s oscillator frequency.
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needs to be estimated and compensated. In the case of multi-relay cooperative sys-

tems, due to simultaneous transmissions from multiple nodes, the received signal

at the receiver can be affected by multiple timing offsets.
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Figure 2.2: Eye diagram representing the effect of ISI.

2.4.2 Carrier Frequency Offset (CFO)

The baseband signal at the receiver is derived using a local reference oscillator with

the same frequency and phase as the incoming signal’s carrier [66]. However, due

to oscillator mismatch and Doppler shift the baseband received signal is affected

by frequency and phase offsets, which introduce crosstalk between the in-phase

and quadrature channels of the receiver and degrade the detection process as is

illustrated in Fig. 2.3 [66].
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Figure 2.3: Constellation rotation due to frequency offset.

Orthogonal frequency division multiplexing (OFDM) is an interface protocol

that divides the incoming data stream into substreams with specifically designed

overlapping frequency bands that can be then transmitted in parallel over orthogo-

nal subcarriers. OFDM minimizes the multipath distortion associated with single-

carrier systems. Orthogonal frequency division multiple access (OFDMA) com-

bines features of OFDM and frequency division multiple access. OFDM carries

data for a single user in each transmitted data block while OFDMA divides sub-

carriers into discrete subchannels, which are then assigned to different users for

multiple and simultaneous transmissions.

Frequency offset significantly affects the performance of OFDM and OFDMA

systems. Carrier frequency offset results in a shift of the received signal in the fre-

quency domain, resulting in the loss of orthogonality amongst subcarriers, which
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in turn results in inter-carrier interference (ICI) and SNR loss [70]. Let us denote

the SNR of an OFDM system with perfect and imperfect frequency offset estima-

tion by SNR[ideal] and SNR[real], respectively. Define γ as

γ(ν) =
SNR[ideal]

SNR[real] ,

where γ is a measure of SNR loss due to frequency offset, ν. In Fig. 2.4, γ is

plotted as a function of ν for different SNR values. Fig. 2.4 illustrates that in the

case of OFDM systems SNR loss due to frequency offset is more significant as the

estimation error for ν increases.
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Figure 2.4: SNR loss due to frequency offset, ν for OFDM systems.

Cooperative communication systems are affected by multiple CFOs due to the

effect of Doppler shift and oscillator mismatch. A main focus of this thesis is to
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analyze the estimation of multiple timing and frequency offsets in distributed co-

operative networks.

2.4.3 Phase Offset

Considering complex-valued channel gains, h, (2.15) can be rewritten as

r(t) =
L−1∑
n=0

hsng(t− nT − τT )ej(νnT ) + v(t), (2.16)

where h = aej(θ), a and θ denote the channel gain magnitude and phase, respec-

tively. Based on the system model in (2.16), phase offset estimation is equivalent

to the estimation of real and imaginary parts of channel gains in communications

systems.

2.4.4 Cramer-Rao Lower Bound

The Cramer-Rao lower bound (CRLB) is a lower bound of the variance of any

unbiased estimator, λ̂, of a parameter λ, i.e.,

var{λ̂(r)} ≥ CRLB(λ), (2.17)

where

CRLB(λ) , − 1

Er

{
d2 lnΛ(r|λ)

dλ2

} =
1

Er

{[
d ln Λ(r|λ)

dλ

]2} , (2.18)

var stands for variance, Er{·} represents the expectation with respect to r, and ln is

the natural logarithm function. In general, the CRLB is not easy to evaluate. Only

for certain special cases, such as in the case when the nuisance parameters, u are

assumed to be Gaussian distributed, is CRLB evaluation straightforward.
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2.4.5 MUSIC Algorithm for Frequency Offset Estimation

The multiple signal characterization (MUSIC) algorithm is a spectral estimation

method based on the eigen-decomposition of the covariance matrix of a received

signal [59].

Consider a signal model that consists of P complex exponentials

x(n) =
P∑

p=1

αpe
j2πnνp + w(n), (2.19)

where:

• νp is the normalized frequency for p = 1, 2, · · · , P ,

• αp = |αp|ejθp is the complex gain, and

• w(n) is the AWGN.

Considering a time window of size Nl, (2.19) can be rewritten in vector form as

x(n) =
P∑

p=1

αpγpe
j2πnνp +w(n), (2.20)

where:

• γp =
[
1, ej2πνp , · · · , ej2π(Nl−1)νp

]T ,

• x(n) , [x(n), x(n+ 1), · · · , x(n+Nl − 1)]T , and

• w(n) , [w(n), w(n+ 1), · · · , w(n+Nl − 1)]T .

The temporal autocorrelation matrix of x(n) can be written as the sum of the signal

and noise autocorrelation matrices [59]

Rx =
P∑

p=1

|αp|2γpγ
H
p + σ2

wINl
. (2.21)
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The autocorrelation matrix can be written in terms of its eigendecomposition

Rx =

Nl∑
i=1

λiψiψi
H , (2.22)

where λi, for i = 1, 2, · · · , Nl, are the eigenvalues in descending order, that is, λ1 ≥

λ2 ≥ · · · ≥ λNl
, and ψi, for i = 1, 2, · · · , Nl, are their corresponding eigenvectors.

The eigenvalues in (2.22) can be written as the sum of signal power and noise [59]

λi = Nl|αi|2 + σ2
i , for i ≤ P.

The remaining eigenvalues are due to the noise only, that is,

λi = σ2
i , for i > P.

Therefore, the autocorrelation matrix, Rx, in (2.22) can be partitioned into portions

due to the signal and noise eigenvectors according to

Rx =
P∑
i=1

(
Nl|αi|2 + σ2

w

)
ψiψi

H +

Nl∑
i=P+1

σ2
wψiψi

H . (2.23)

Due to the fact that the noise and signal subspaces are orthogonal to one an-

other, for each eigenvector ψi, for i = P + 1, P + 2, · · · , Nl, we can write [59]

γH
p ψi = 0, for p = 1, 2, · · · , P. (2.24)

Using (2.24) the MUSIC estimates of the P signal frequencies can be determined

via

ν̂music = argmax
ν

(
γ̂H
p ΨnΨn

H γ̂p
)−1

, for p = 1, 2, · · ·P, (2.25)

where:

• ν = [ν1, ν2, · · · , νP ],

• ν̂music is the vector of signal frequency estimates,
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• Ψn = [ψP+1,ψP+2, · · · ,ψNl
], and

• γ̂p =
[
1, ej2πν̂p , · · · , ej2π(Nl−1)ν̂p

]T .

One of the shortcomings of the MUSIC algorithm is that it cannot distinguish

between closely spaced frequencies [56]. This is illustrated in Figs. 2.5 A. and B.,

where the maximization in (2.25) is plotted versus the normalized frequency, ν. In

Fig. 2.5 A., the received signal is a combination of 4 signals with 4 well-spaced

frequency values while in Fig. 2.5 B. 2 frequencies are close to one another, ν1 = .2

and ν2 = .205. Note that in the case of 4 well-spaced frequencies, the maximization

in (2.25) results in 4 distinguishable peaks at each frequency. However, in Fig. 2.5

B. the peaks corresponding to ν1 = .2 and ν2 = .205 have converged, making it

impossible to distinguish between the two close frequency values.
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Figure 2.5: Maximization in (2.25) versus the normalized frequency for Nl = 16

and SNR= 20. A. The received signal is a combination of 4 signals with ν1 = .1,

ν2 = .2, ν3 = .3, and ν4 = .4. B. The received signal consists of 4 signals with

ν1 = .205, ν2 = .2, ν3 = .3, and ν4 = .4.
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Chapter 3

Channel Estimation and Capacity

Optimization for Cooperative Networks

3.1 Introduction

COOPERATIVE communications has attracted considerable research due to

its potential for multiplexing and diversity gain through resource sharing amongst

nodes within the network. Pioneering contributions can be found in [50, 84, 111]

and results on multi-input-multi-output (MIMO) broadcast and multiple-access

channels have been reported in [15, 45, 48, 86, 94, 114]. Note that almost all of the

proposed algorithms require knowledge of channel state information (CSI) to de-

liver the promised performance enhancements. Therefore, accurate and efficient

channel estimators are key to future deployments of MIMO cooperative networks.

Decode-and-forward (DF) relaying MIMO cooperative networks require chan-

nel estimation and detection at both the relays and destination terminals [23],

where algorithms similar to that of multi-input-single-output (MISO) systems can

be used to estimate the channel state information (CSI) [9, 35, 85]. However, in

the case of amplify-and-forward (AF) relaying cooperative networks, the relays
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do not need to estimate the CSI since they do not need to decode the received

signal. Therefore, the network’s overall CSI must be estimated at the destination

node [23]. This approach does not require the relays to estimate and forward their

CSI to the destination which improves bandwidth efficiency, reduces power con-

sumption, and avoids further distorting the estimates by transmitting them over

the relay-to-destination link. In [27,76] channel estimation and the effect of imper-

fect CSI on the performance of single-relay single-input-single-output (SISO) AF

relaying cooperative networks is analyzed, where it is shown that accurate knowl-

edge of CSI can improve system performance. However, the results are limited

to the case of single-relay networks only. In [21, 22] channel estimation and train-

ing sequence design in two-way AF relaying cooperative networks is analyzed.

However, the channel estimation problem is made considerably simpler, since the

network consists of a single relay. In [23], channel estimation in AF relaying SISO

multi-relay cooperative networks is addressed. However, direct extension of the

estimators in [23] to the case of MIMO multi-relay cooperative networks requires

training sequences to be transmitted using time division multiplexing, which re-

sults in significant delay.

In addition to enabling coherent detection, knowledge of the CSI can be ap-

plied to optimize the cooperative network as shown in [15,45,48,86,94,111]. How-

ever, the algorithms proposed in [15, 45, 48, 86, 94, 111] require perfect CSI to be

available at the relays and/or source terminals. Such an approach requires con-

siderable feedback, which reduces bandwidth efficiency and increases overhead.

Moreover, the algorithms proposed in [15, 45, 48, 86, 94, 111] require the channel

gains corresponding to source-relay and relay-destination links to be separately

estimated and known. Therefore, such an approach requires the relays to estimate
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the source-relay channel gains and forward them to destination, which results in

additional hardware and training overhead. It is also important to note that unlike

the optimization algorithm proposed here, which entails applying a phase shift

at each relay with a fixed gain or weight, the algorithms in [48] and references

therein require the application of variable gains at the relays, which can result in

power saturation issues and excessive power consumption. Finally, compared to

the capacity optimization proposed in this thesis, the distributed beamforming al-

gorithms in [15, 45, 48, 86, 94, 111] require more quantization bits to be fed back to

the relays.

In this chapter we propose two channel estimators based on maximum-likelih-

ood (ML) and least squares (LS) methods that can estimate the overall CSI of an AF

relaying multi-relay MIMO cooperative network at the destination simultaneously.

Numerical results show that the proposed estimators outperform the existing al-

gorithm, while at the same time reduce overhead. Next, we outline an optimiza-

tion scheme for multi-relay MIMO AF relaying cooperative networks, denoted by

amplify-phase-shift-and-forward (APSF) [62, 114]. The practical case of imperfect CSI

is considered and the computational complexity of the proposed algorithm is in-

vestigated. Numerical and simulation results show that the proposed algorithm

results in significant performance gain compared to AF, even in the presence of

imperfect CSI.

This chapter is organized as follows: in Section 3.2 the system model for the

AF relaying cooperative networks is outlined, Section 3.3 proposes and derives

the ML and LS channel estimators. Section 3.4 presents the proposed optimization

algorithm while Section 3.5 presents numerical simulation results.
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Figure 3.1: System model for the multi-relay two-hop cooperative network.

3.2 System Model

A half-duplex wireless network consisting of a designated source-destination pair

and R relays is considered (see Fig. 3.1). The source and destination, equipped

with M and N antennas, respectively, are denoted as S and D. To reduce hardware

complexity and minimize overall feedback to the relays, the kth relay employs a

single transmit and receive antenna and is denoted by Rk (k = 1, 2, · · · , R), where

it is assumed that R ≥ M .

Transmission is divided temporally into two intervals: training and data trans-

mission. During the training interval, a short training sequence is used to estimate

the channel gains from each of M source antennas to N antennas at D, simultane-

ously. Next, the estimated channel state information (CSI) is used for optimization
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and coherent detection at the destination in the data transmission interval. The set

of phases that optimize the capacity of the overall system are determined at the

destination and fed back to the relays. In both intervals, the signal from S is trans-

mitted to D over two time slots: in the first time slot S broadcasts its signal to the

relays and in the second time slot the relays simultaneously transmit their signals

to D. Similar to the results in [9,23,27,35,85] it is assumed that all the nodes within

the network are synchronized. This assumption is justified since in most practical

scenarios synchronization parameter estimation and compensation precedes chan-

nel estimation and signal detection. The channels are modeled as quasi-static and

frequency-flat fading, where the channel gains do not change over the length of a

frame but can change from frame to frame. A frame is a set of symbols that is trans-

mitted during one time slot. The topics of frequency and time synchronization are

addressed in Chapters 5 and 6.

3.2.1 Training Interval

Based on the above assumptions, the vector of received training symbols at Rk, rk,

is given by

rk =

√
P

M

M∑
i=1

hi,kt
[s]
i + vk, k = 1, 2, · · · , R (3.1)

where:

• t
[s]
i , [t

[s]
i (0), t

[s]
i (1), · · · , t[s]i (L− 1)]T is the known training sequence transmit-

ted from the ith antenna of S, for i = 1, 2, · · · ,M ,

• L denotes the length of the training sequence,

• hi,k is the unknown channel gain from the ith source antenna to Rk dis-

tributed as CN (0, σ2
hi,k

),
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• P is the power available at the source, and

• vk , [vk(0), vk(1), · · · , vk(L − 1)] is the zero-mean additive white Gaussian

noise (AWGN) at Rk with covariance matrix Σvk
= σ2

vk
I.

3.2.2 Data Transmission Interval

In the data transmission interval, the kth relay’s received signal model at time n is

given by

rk(n) =

√
P

M
hk

T s(n) + vk(n), k = 1, 2, · · · , R (3.2)

where:

• s(n) , [s1(n), s2(n), · · · , sM(n)]T is the transmit signal vector at time n with

covariance matrix, I,

• hk
T , [h1,k, h2,k, · · · , hM,k]1×M is the channel vector from S to Rk, and

• vk(n) is the zero-mean AWGN, with variance σ2
vk

.

3.3 Channel Estimation

Coherent detection of the received signal at the destination requires knowledge of

the overall channel gains from S to D. Thus, in this section maximum-likelihood

(ML) and least squares (LS) estimators for the estimation of the RMN channel

gains are derived.

To enable simultaneous channel estimation at the destination, we propose the

transmission of orthogonal training sequences from each source antenna such that
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(
t
[s]
m

)H
t
[s]
i = 0 for i ̸= m. Next, a linear transformation of the received training

signal at the kth relay, rk, denoted by γ [r]
i,k, should be transmitted from Rk such that

γ
[r]
i,k = Γi,krk =

√
P

M
hi,kt

[r]
k + ṽk, k = 1, 2, · · · , R and i = 1, 2, · · · ,M (3.3)

where Γi,k , t
[r]
k

(
t
[s]
i

)H
is an L× L matrix, t[r]k is the kth relay’s training sequence,

and ṽk , Γi,kvk. Eq. (3.3) follows from the assumptions that orthogonal train-

ing sequences are transmitted from the source and that without loss of generality,(
t
[s]
i

)H
t
[s]
i = 1 for i = 1, 2, · · · ,M . Note that the training sequences, t[r]k and t

[r]
m are

also assumed to be orthogonal for k ̸= m.

Using (3.3), the vector of received training signals at the jth antenna of the

destination, yj, when the ith source antenna’s training sequence is forwarded from

the relays is given by

yj =
R∑

k=1

ξi,kgk,jγ
[r]
i,k +wj

=
R∑

k=1

ξi,k

(√
P

M
hi,kgk,jt

[r]
k + gk,jṽk

)
+wj, j = 1, · · · , N, i = 1, · · · ,M (3.4)

where ξi,k ,
√

ηk
P
M

σ2
hi,k

+σ2
vk

satisfies Rk’s power constraint, ηk is the power avail-

able at Rk, gk,j is the channel gain from Rk to the jth antenna of the destination,

CN (0, σ2
gk,j

), and wj , [wj(0), wj(1), · · · , wj(L− 1)] is the zero-mean AWGN at the

jth antenna of the destination with covariance matrix Σwj
= σ2

wI.

The training method is summarized as follows: in the first time slot, S simul-

taneously broadcasts its training sequences to the relays. In the next M time slots,

all relays simultaneously forward the training sequence corresponding to the ith

source antenna to the destination for i = 1, 2, · · · ,M . As a result, the transmission

of the training sequences from S to D requires a total of M + 1 time slots of the

same duration. In comparison, the algorithm outlined in [23] combined with time

33



division multiplexing would require 2M time slots to estimate the RMN channel

gains.

Eq. (3.4) can be rewritten in matrix form as

yj = T[r]Ξiαi,j + ṼΞigj +wj︸ ︷︷ ︸
,w̃j

, j = 1, 2, · · · , N (3.5)

where:

• T[r] ,
[
t
[r]
1 , t

[r]
2 , · · · , t[r]R

]
L×R

,

• Ξi , diag (ξi,1, ξi,2, · · · , ξi,R)R×R ,

• αi,j , [hi,1g1,j, hi,2g2,j, · · · , hi,RgR,j]
T ,

• gj , [g1,j, g2,j, · · · , gR,j]
T , and

• Ṽ , [ṽ1, ṽ2, · · · , ṽR]L×R.

The covariance matrix of the overall noise, w̃j in (3.5), can be approximated as

Σw̃j
=

R∑
k=1

σ2
gk,j

ξ2i,kσ
2
vk
t
[r]
k

(
t
[r]
k

)H
+ σ2

wI, (3.6)

where |gk,j|2 is replaced by its expected value σ2
gk,j

.

3.3.1 Maximum-Likelihood Estimator (MLE)

Since Σw̃j
is positive definite, using Cholesky decomposition, Σw̃j

can be rewritten

as

Σ−1
w̃j

= Πj
HΠj. (3.7)

Moreover, since yj in (3.5) is a Gaussian observation vector, the log-likelihood func-

tion (LLF) of the channel gains, αi,j, is given, up to an additive constant, by

ϱ(yj) = (yj −T[r]Ξiαi,j)
HΣ−1

w̃j
(yj −T[r]Ξiαi,j) (3.8)
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and can be easily shown to be maximized by

α̂
[ML]
i,j =

(
Ξi

(
T[r]
)H

Σ−1
w̃j
T[r]Ξi

)−1

Ξi

(
T[r]
)H

Σ−1
w̃j
yj, (3.9)

where the fact that Ξi is real for i = 1, 2, · · · ,M is used.

3.3.2 Least Squares (LS) Estimator

Least squares estimates of the overall channel gains from the ith source antenna to

the jth destination antenna, α̂[LS]
i,j , can be determined as

α̂
[LS]
i,j = Ξi

−1
(
T[r]
)H

yj = αi,j + diag{ξ−1
i,1 , ξ

−1
i,2 , · · · , ξ−1

i,R}
(
T[r]
)H

w̃j︸ ︷︷ ︸
,∆αi,j

, (3.10)

where (3.10) follows from (3.5) and the orthogonality of T[r]. The covariance matrix

of the LS estimation error, ∆α[LS]
i,j , can be readily calculated as

Σ
[LS]
∆αi,j

=

(
R∑

k=1

|gk,j|2ξ2i,kσ2
vk
t
[r]
k

(
t
[r]
k

)H
+ σ2

wI

)
Ξi

−2. (3.11)

3.4 Relaying Scheme

In this section an optimization algorithm for AF relaying multi-relay MIMO coop-

erative networks is outlined [62, 114]. It is assumed that the channel gains corre-

sponding to the cooperative network are estimated using the algorithms outlined

in Section 3.3. At the destination, the estimated channel gains are used to deter-

mine and feed back the set of phases that optimize the overall system capacity.

Note that for notational simplicity gk and hk are used instead of ĝk and ĥk, respec-

tively.
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The capacity enhancement is achieved through application of phase shifts at

the relays, where the transmitted pulse at Rk, tk, is given by

tk(n) =
√
ηk

∑M
i=1

√
P
M
hi,ksi(n) + vk(n)√∑M

i=1
P
M
σ2
hi,k

+ σ2
vk

ejθk . (3.12)

In (3.12), θk denotes the phase shift at Rk that is used to enhance the capacity of the

overall network.

Using (3.12) the received signal model at the destination at time n is determined

as

y(n) =
R∑

k=1

gktk(n) +w(n) =
R∑

k=1

ζk
√
ηk

(√
P

M
gkhk

T s(n) + gkvk(n)

)
ejθk +w(n)

(3.13)

where:

• y(n) , [y1(n), y2(n), · · · , yN(n)]T is the received signal vector at the destina-

tion,

• gk , [gk,1, gk,2, · · · , gk,N ]T ,

• ζk , 1/
√∑M

i=1
P
M
σ2
hk

+ σ2
vk

, and

• w(n) , [w1(n), w2(n), · · · , wN(n)]
T represents the circularly symmetric AWGN

with covariance matrix Σw = σ2
wI.

Through simple manipulations, (3.13) can be reformulated as

y =
R∑

k=1

Uks+ z, (3.14)

where Uk , gkhk
T ζk

√
P
M
ηke

jθk , z ,
∑R

k=1 ζk
√
ηkgkvke

jθk + w, and for notational

simplicity, time index n is dropped. The covariance matrix of the overall noise, z,

36



can be readily determined as

Σz = E[zzH ] =
R∑

k=1

ζ2kηkgkgk
H + I, (3.15)

where, without loss of generality, it is assumed that σ2
vk

= σ2
w = 1 for k = 1, 2, · · · , R.

The capacity of the cooperative system may be calculated via [34] as

Cθ1,θ2,...,θR = max
θ1,θ2,...,θR

1

2
log2 det

I+Σ−1
z

(
R∑
l=1

Ul

)(
R∑

m=1

Um

)H
 . (3.16)

Assuming the set of phases, (θ1, . . . , θk−1, θk+1, . . . , θR), is fixed and separating the

terms with θk, (3.16) can be rewritten as

Cθk =
1

2
log2 det(Ω) +

1

2
max
θk

log2 det
(
I+Ake

jθk +Ak
He−jθk

)
, (3.17)

where Ω , I+Σ−1
z

(
UkUk

H +
(∑R

m=1,m ̸=k Um

)(∑R
l=1,l ̸=k Ul

)H)
, and

Ak , Ω−1Σ−1
z

Uk

ejθk

(∑R
m=1,m̸=k Um

)H
.

Note that in [111] the authors propose a beamforming scheme using phase

shifts at the relays, which optimizes the overall SNR of a multi-relay cooperative

network. However, the proposed scheme is based on perfect channel estimation,

requires the source-relay and relay-destination links channel gains to be estimated

separately, and is designed for the case of SISO cooperative networks.

3.4.1 Determining the Phase Shift: SISO Cooperative Network

In the case of SISO cooperative networks, there exists a closed-form solution for

the optimum phase shift at the kth relay, θk, when fixing ∀θi, i ̸= k. The following

analysis also pertains to the feasibility of maximizing locally with respect to θk

when all other phases are fixed. Taking the first derivative of C with respect to θk,

and equating it to zero results in two roots, θk,1 and θk,2. It can be further shown
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that ∂2C
∂θ2k

|θk=θk,1 and ∂2C
∂θ2k

|θk=θk,2 are of opposite signs. Therefore, either θk,1 or θk,2

represent a maximum. θk,1 and θk,2 are determined explicitly via [62, 114]

θk,1 =
1

2
arctan

(
ℑ{ak}
ℜ{ak}

)
,

θk,2 = π +
1

2
arctan

(
ℑ{ak}
ℜ{ak}

)
, (3.18)

where ak is the scalar version of A in (3.17).

3.4.2 Determining the Phase Shift: MIMO Cooperative Network

Due to the non-convex nature of the problem in the case of MIMO cooperative net-

works, there does not exist a closed-from solution for the optimum set of phases

[62, 114]. Therefore, Golden Section (GS) search is used [46]. Since the logarithm

function is monotonically increasing, maximizing C(θ1, θ2, . . . , θR) in (3.16) is equiv-

alent to maxθ1,θ2,...,θR det(Ψ), where

Ψ = I+Σ−1
n

(
R∑
l=1

Ul

)(
R∑

m=1

Um

)H

. (3.19)

To optimize the set of phases the following algorithm successively narrows the

range of possible phase values that would result in an extremum and also results

in a higher capacity at every iteration:

Step 1. Choose an initial set of randomly generated phases.

Step 2. Cycle through each of the R relay phases, fixing all but one. Using Golden

Section (GS) search, determine the phase set that maximizes det(Ψ) in (3.19).

Step 3. Repeat until system capacity reaches a stopping criterion, e.g, capacity dif-

ference from previous iteration falls below a threshold.
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Note that even though the proposed GS algorithm may not converge to a global

maximum capacity, it certainly converges to a local maximum capacity, since the

overall capacity is upper-bounded by the total power constraint at the source and

the GS search algorithm monotonically increases the capacity at every iteration.

We also remark that convergence to a capacity maximum does not imply con-

vergence of the phases. However, a unique solution for the set of phases is not

required.

3.5 Numerical Results and Discussions

Throughout this section the propagation loss is modeled as β = (d/d0)
−m [67],

where d is the distance between the transmitter and receiver, d0 is the reference

distance, and m is the path loss exponent. The following results are based on

d0 = 1km and m = 2.7, which corresponds to urban area cellular networks. The

relays’ distances from the source and destination, d[sr] = d[rd] = 1km unless oth-

erwise specified. The channel gains from source antennas to relays and relays to

destination antennas are modeled as i.i.d complex Gaussian random variables with

CN (0, 1). Walsh-Hadamard codes of length L = 8 combined with BPSK modula-

tion are used during the training interval. During the data transmission interval

the VBLAST proposed in [106] is employed, where QPSK modulation is used with

a frame length of 128, resulting in an overall estimation overhead of 6%. A mini-

mum of 1000 Monte-Carlo trials are used. Finally, SNR is defined as 1/σ2
v and 1/σ2

w

for both source-relay and relay-destination links, respectively.

Fig. 3.2 presents the mean-square error (MSE) of the ML and LS channel esti-

mators for R = {4, 6} relays, M = N = {2, 4}, and L = 16, where the MSE plot for
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Figure 3.2: Comparison of the proposed channel estimators for AF relaying net-

works vs. the estimator in [23].

the MLE for R = 6 relays is omitted, since it is similar to the case of LS. Moreover,

the performance of the proposed estimators are compared against the LS estimator

in [23], where time division multiple access (TDMA) is used at the source antennas

to extend the results in [23] to the case of MIMO cooperative networks. The train-

ing sequence length is set to L = 8, which is chosen to ensure a fair comparison,

since the estimator in [23] requires twice the number of time slots compared to the

ML and LS estimators proposed in this chapter. Fig. 3.2 illustrates that both the

MLE and LS algorithms proposed in this chapter outperform the estimator in [23]

by an average margin of 2dB. Note that the LS method requires O(L) multiplica-

tions per S-D antenna pair while the MLE requires at least O(L3) multiplications
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due to the L× L matrix inversions.
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Figure 3.3: Capacity of the 2-hop cooperative network for both AF and APSF with

R = {3, 6, 8} relays and M = N = 2.

Fig. 3.3 illustrates the capacity of the two-hop cooperative network for AF and

APSF. It is shown that unlike AF in the case of APSF, addition of relays to the net-

work results in significant capacity gains. This considerable performance gap is

caused by the fact that the signals from multiple relays are coherently combined

at the destination due to the phase shift applied by APSF. Note that a compari-

son between APSF and the schemes in [15, 45, 48, 86, 94, 111] is not made, since

the algorithms proposed in [15, 45, 48, 86, 94, 111] require the estimation of source-

relay and relay-destination links channel gains separately, which adds significantly

more training overhead and hardware complexity at the relays.
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Figure 3.4: BER performance of AF and APSF for the case perfect and estimated

CSI. R = {2, 4, 6} relays, M = N = 2, training length, L = 8 and frame length=128.

Fig. 3.4 shows the average-bit-error-rate (ABER) for AF and APSF relaying co-

operative networks in the presence of perfect and estimated CSI for R = {2, 4, 6}

relays. The iterative Golden Section (GS) search algorithm is stopped after 10 iter-

ations. Fig. 3.4 illustrates that in the case of AF relaying, increasing the number of

relays from 4 to 6 does not result in any noticeable cooperation gain, similar to the

results in Fig. 3.3. The results in Fig. 3.4 illustrate that in cases of both perfect and

estimated CSI, APSF results in performance gains of 5dB and 8dB compared to AF

when the cooperative network is equipped with 4 and 6 relays, respectively. Note

42



that for clarity, the plot for AF relaying with R = 6 and estimated CSI is omitted,

since it is the same as for the case of R = 4.
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Figure 3.5: ABER of APSF when the number of iteration for the Golden Section

search algorithm is set to 1, 5, and 10 vs. SNR for R = {4} relays.

Fig. 3.5 presents the ABER plots for an APSF relaying cooperative network

with R = 4 relays when the GS search algorithm’s number of iterations is fixed

at 1, 5, and 10. Fig. 3.5 illustrates that the proposed GS algorithm converges very

quickly (in 5 iterations in this scenario), where the majority of the performance

gain is achieved with very few iterations, e.g., after 1 and 5 iteration APSF relaying

delivers a 5dB and 8dB performance gain, respectively, compared to AF relaying

in the mid SNR region. The plots for the case of estimated CSI are not presented,

since APSF also converges very quickly in the case of imperfect CSI.

Fig. 3.6 investigates the performance of APSF in the case of quantized phase
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Figure 3.6: Comparison of ABER of APSF and AF for uniformly quantized phase

values vs. SNR for K = {4} relays.

values. A uniform quantizer is used at the destination limiting the amount of

feedback to the relays. The results in Fig. 3.6 illustrate that the phase shifts at

the relays can be represented using a 2 or 3 bit quantizer without any significant

performance loss due to the effect of quantization. This result can be compared

against the investigations outlined in [26] for CSI quantization.

Fig. 3.7 represents a comparison between APSF and AF when relays are at dif-

ferent geographical locations. Positions 1, 2 , and 3 refer to relays that are 1, 2, and

3 kms away from source, respectively, and d[sr] + d[rd] = 4kms. Fig. 3.7 illustrates

that the performance gains promised by APSF are still attainable, even if the relays
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are distributed throughout the network. Note that since the results presented in

Fig. 3.7 are scenario dependent, more general quantitative conclusions regarding

relays’ locations and ABER performance cannot be made.

3.6 Conclusions

In this chapter, new training methods and algorithms for estimation of channel

gains in AF relaying MIMO cooperative networks are presented. A new training

method that allows for simultaneous estimation of the overall channel gains from

source to destination in 2-hop multi-relay cooperative networks are derived. Nu-

merical results show that the proposed LS and ML channel estimators outperform

the existing algorithms.

Next, a new distributed beamforming algorithm for the optimization of multi-

relay MIMO cooperative networks is outlined that is shown to result in signifi-

cant performance gain in realistic settings. The performance gains promised by

APSF are achieved with minimal added feedback, since the proposed algorithm

only requires the set of quantized phases to be fed back to the relays and does not

add to the channel estimation overhead already required by AF relaying networks.

Moreover, the computational overhead at the destination is minimal due to the fact

that the iterative Golden Section search algorithm converges quickly. Finally, even

though employing APSF entails additional hardware and requires the application

of phase shifts at the relays, the required hardware can be implemented using sim-

ple digital signal processing algorithms.
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Chapter 4

Effects of Timing Jitter and Frequency Offset

on System Performance

4.1 Introduction

TIMING jitter and frequency offset represent important communications sys-

tems parameters that often require estimation and compensation. As a result, the

estimation accuracy of these parameters greatly affects the performance of com-

munications systems. This chapter seeks to determine quantitative bounds on the

performance of communications systems in the presence of imperfect timing and

frequency offset estimation.

The Cramer-Rao lower bound (CRLB) is the lower bound on the variance of an

unbiased estimator of unknown parameters [44]. Here, unknown parameters refer

to the absence of any assumed statistical distributions. For applications to com-

munication signals, evaluation of the CRLB is further complicated by unknown
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nuisance parameters, e.g., the problem of determining the CRLB for frequency off-

set estimation for a signal received in white Gaussian noise in the presence of un-

known phase offset. To overcome this, a more easily evaluated modified Cramer-

Rao lower bound (MCRLB) is proposed in [1], though it is a looser bound [113].

Classically, inter-symbol interference (ISI) is determined as a function of a given

timing offset. Performance may be depicted graphically in the form of the well-

known eye diagram as illustrated in Fig. 2.2. Characterizing the effect of tim-

ing error normally assumes that a deterministic slowly varying component can be

tracked and compensated for with well-understood signal processing algorithms

such as the Gardner detector (GD) [25, 55]. The unknown, uncompensated timing

offsets give rise to a source of random fluctuation in the received signal-to-noise

ratio (SNR).

Quantifying the effect of timing error is difficult. One approach is to simply

calculate the received SNR for every possible timing offset and then average the re-

sult, yielding an average-bit-error-rate (ABER) [3,4]. This approach, while straight-

forward in principle, is dependent upon receiver signal processing algorithm, e.g.,

sampling rate, matched filter, decision device, etc. Also problematic is the depen-

dence of the above approach on an assumed probability distribution of the timing

offset, which is completely unknown in practice. The alternative approach taken

in this thesis is to determine the inherent effects of design decisions such as pulse

shape, signal bandwidth, carrier separation, etc. using a non-random, unknown

model of timing offset on system performance, independent of receiver algorithm,

by generalizing and extending techniques that determine variance lower bounds.
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The effect of frequency offset on the performance of orthogonal frequency di-

vision multiplexing (OFDM) systems has been extensively researched in the liter-

ature and is summarized in [70]. Fractional frequency offsets with respect to the

subcarrier spacing results in inter carrier interference (ICI) and SNR loss at the

receiver which has been quantitatively analyzed in [70] and [41]. However, the

variance or even bounding the variance of the SNR loss due to ICI has not been

addressed to date. As outlined in [1] and [113], the CRLB for frequency offset esti-

mation is complicated due to unknown phase offset and channel fading. A lower

bound on the variance of SNR due to ICI is determined by analyzing the proper-

ties of the MCRLB under functional transformation. Next, the outage probability

for OFDM systems due to frequency offset is analyzed. In [2], the outage proba-

bility versus signal-to-interference ratio (SIR) is determined for an OFDM system

based on Monte-Carlo simulations. In this chapter, using the derived lower bound

on the variance of SNR with respect to frequency offset, a closed-form expression

for the outage probability as a function of frequency offset for OFDM systems is

numerically calculated.

The idea of functional transformation for the CRLB appears in [44]. In this

chapter, we first generalize the results in [44] to functional transformations for the

MCRLB, and then apply them to determine the lower bound on the variance of

signal pulse estimation due to timing offset for different types of pulses, includ-

ing raised cosine (RC) [73], root-raised cosine (RRC) [33], and flipped exponential

(FEX) [4] [3]. The new approach, however, is not restricted to these three pulses

but can be generalized to other pulse designs. The functional transformation for

the MCRLB is also used to determine a lower bound for the variance of SNR due to

frequency offset. The derived lower bound on SNR uncertainly is applied to assess
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outage probability. Finally, the relationships between the MCRLB and CRLB un-

der different synchronization scenarios are determined, as well as necessary con-

ditions for the CRLB and the MCRLB to be equivalent.

This chapter is organized as follows: Section 4.2 derives the MCRLB for discrete-

time signals in additive white Gaussian noise. Section 4.3 derives a general expres-

sion for functional transformation of the MCRLB. Section 4.4 applies the functional

transformation of the MCRLB to derive a lower bound on the estimation signal

pulse and SNR as a function of timing offset and frequency offset, respectively. Fi-

nally, Section 4.5 analyzes the applicability of the MCRLB as a lower bound for the

estimation of synchronization parameters by comparing it against the CRLB.

4.2 Modified CRLB

The modified Cramer-Rao lower bound (MCRLB) for continuous-time signals was

proposed in [1]. In this section we derive the MCRLB for discrete-time signals

received in white Gaussian noise.

Recall that the Cramer-Rao lower bound (CRLB) can be expressed as

CRLB(λ) , − 1

Er

[
∂2 ln p(r|λ)

∂λ2

] =
1

Er

[(
∂ ln p(r|λ)

∂λ

)2] , (4.1)

where E{·} represents the expectation with respect to p(r, λ), and ln(·) represents

the natural logarithm function. For (4.1) to hold, the PDF p(r, λ) must satisfy the

regularity condition [44, 79] (note that strictly speaking there are four regularity

conditions that (4.2) arises from [79])

Er

[
∂ ln p(r|λ)

∂λ

]
= 0. (4.2)
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Assuming

r[n] = s[n;λ] + w[n] n = 0, 1, · · · , L− 1 (4.3)

is observed in white gaussian noise (WGN), the conditional probability of r given

the parameter of interest λ, termed the likelihood function, is represented as

p(r|λ) = 1

(2πσ2)N/2
exp

{
1

2σ2

N−1∑
n=0

|r[n]− s[n;λ]|2
}
. (4.4)

Differentiating p(r|λ) once results in

∂ ln p(r|λ)
∂λ

=
1

σ2

N−1∑
n=0

|r[n]− s[n;λ]| ∂s[n;λ]
∂λ

. (4.5)

A second differentiation results in

∂2 ln p(r|λ)
∂λ2

=
1

σ2

N−1∑
n=0

[
|r[n]− s[n;λ]|∂

2s[n;λ]

∂λ2
−
(
∂s[n;λ]

∂λ

)2
]
. (4.6)

Taking the expectation with respect to r results in

Er

(
∂2 ln p(r|λ)

∂λ2

)
= − 1

σ2

N−1∑
n=0

∂2s[n;λ]

∂λ2
. (4.7)

Applying (4.1),

var(λ̂) ≥ σ2∑N−1
n=0

∂2s[n;λ]
∂λ2

. (4.8)

Now suppose instead that the PDF p(r|λ) is also dependent on a set of extrane-

ous parameters u, expressed as p(r|λ,u), then to determine the CRLB(λ), p(r|λ,u)

needs to be first averaged over the unwanted parameters via

p(r|λ) =
∫ −∞

∞
p(r|λ,u)p(u)du. (4.9)

Determining the CRLB is further complicated in this case, since to evaluate (4.9),

assumptions regarding the distributions of the nuisances parameters, u, need to
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be made. In addition, due to the fact that (4.9) is a multi-dimensional integration,

evaluating it, unfortunately is not easy for most distributions. Thus, to avoid car-

rying out (4.9), the following modified CRLB, where from here on is denoted as

the MCRLB, is given by

MCRLB(λ) =
1

Er,u

[(
∂ ln p(r|λ,u)

∂λ

)2] , (4.10)

is proposed in [1]. The MCRLB is derived based on [1]

Er,u

[(
λ̂(r)− λ

)2]
= Eu

[
Er|u

[(
λ̂(r)− λ

)2]]

≥ Eu

 1

Er|u

[(
∂ ln p(r|λ,u)

∂λ

)2]


≥ 1

Eu

[
Er|u

[(
∂ ln p(r|λ,u)

∂λ

)2]]
=

1

Er,u

[(
∂ ln p(r|λ,u)

∂λ

)2] , (4.11)

where the first inequality in (4.11) follows from the properties of the CRLB and the

second inequality is based on Jenson’s inequality and convexity of the 1
x

function

for x > 0. According to (4.11), it can be deduced that the MCRLB is a lower bound

on the CRLB and is a looser lower bound on the variance of an unbiased estimator.

In the case of synchronization parameter estimation, Section 4.5 determines the set

of conditions that need to be met for the CRLB and MCRLB to coincide.

Using (4.7) and (4.10), we express the discrete MCRLB for a signal transmitted

in white Gaussian noise as

Er,u

[
∂2 ln p(r|λ,u)

∂λ2

]
= − 1

σ2
Eu

[
N−1∑
n=0

∂2s[n;λ,u]

∂λ2

]
. (4.12)
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Therefore, an alternative to (4.8) is given by

var(λ̂) ≥ σ2

Eu

[∑N−1
n=0

∂2s[n;λ,u]
∂λ2

] . (4.13)

Note that (4.7) and (4.12) differ by the expectation term Eu(·). The MCRLB can

also be extended to arbitrary smooth functions of λ̂, denoted as f(λ̂), as described

in Section 4.3.

4.3 MCRLB under functional transformation

In this section we derive the MCRLB for a parameter β = f(λ) whose probabil-

ity distribution function (PDF) is parameterized by λ. We consider all unbiased

estimators, i.e. those for which

f(λ) = Er[β̂] = β. (4.14)

After differentiating both sides

∂f(λ)

∂λ
=

∫
β̂
∂p(r|λ)
∂λ

∂r

=

∫ ∫
β̂
∂p(r|λ,u)

∂λ
p(u)∂r∂u

= Eu

[∫
β̂
∂p(r|λ,u)

∂λ
∂r
]

= Eu

[∫
β̂
∂ ln p(r|λ,u)

∂λ
p(r|λ,u)∂r

]
. (4.15)

In addition, due to the regularity condition (4.2), we have

Eu

[∫
β
∂ ln p(r|λ,u)

∂λ
p(r|λ,u)∂r

]
=

∫
β
∂ ln p(r|λ)

∂λ
p(r|λ)∂r

= βEr

[
∂ ln p(r|λ)

∂λ

]
= 0. (4.16)
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Using (4.16), (4.15) can be rewritten as

∂f(λ)

∂λ
= Eu

[∫
(β̂ − β)

∂ ln p(r|λ,u)
∂λ

p(r|λ,u)∂r
]
. (4.17)

Squaring both sides(
∂f(λ)

∂λ

)2

≤ Eu

[∫
(β̂ − β)

∂ ln p(r|λ,u)
∂λ

p(r|λ,u)∂r
]2

, (4.18)

where the inequality in (4.18) follows from Jensen’s inequality and the convexity

of φ(x) = x2. The Cauchy-Schwarz inequality can be applied to (4.18)(
∂f(λ)

∂λ

)2

≤ Eu

[∫
(β̂ − β)

∂ ln p(r|λ,u)
∂λ

p(r|λ,u)∂r
]2

= Eu

[
Er|u

[
(β̂ − β)

∂ ln p(r|λ,u)
∂λ

]]2
≤ Eu

[
Er|u

[
(β̂ − β)2

]
Er|u

[(
∂ ln p(r|λ,u)

∂λ

)2
]]

= var(β̂)Eu,r

[(
∂ ln p(r|λ,u)

∂λ

)2
]
. (4.19)

From (4.19), the variance of β̂ can be lower bounded as

MCRLB(β̂) =

(
∂f(λ)
∂λ

)2
Er,u

[(
∂ ln p(r|λ,u)

∂λ

)2] , (4.20)

which is the required generalization of the MCRLB of λ given in (4.10).

4.4 Applications of the Functional Transformation of

the MCRLB

In this section the functional transformation of the MCRLB, derived in Section 4.3,

is applied to derive a quantitative relationship between the lower bound on estima-

tion of synchronization parameters and performance of communications systems.
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4.4.1 Effect of Timing offset on the RC, RRC, and FEX Pulses

In a baseband pulse amplitude modulation (PAM) system the received waveform

is first passed through a matched filter and is then sampled at the symbol rate,

where the optimum sampling times correspond to the peaks of the signal pulses

[66]. Therefore, the accuracy by which the signal pulse can be estimated has a

direct impact on the performance of a communications system. In this subsection,

we apply the MCRLB to derive the lower bound on the variance of estimating the

raised-cosine (RC), root-raised cosine (RRC) [33], and flipped exponential (FEX)

[3, 4] signal pulses in the presence of timing offset.

4.4.1.1 The Raised-Cosine (RC) Pulse

The RC signal pulse, gRC, as a function of the timing offset, τ , is given by

gRC(τ) =
sin(πτ/T )

πτ/T

cos(απτ/T )

1− 4α2τ 2/T 2
, (4.21)

where T is the symbol duration and α is the roll-off factor. The roll-off factor, α, is a

measure of the excess bandwidth of the filter, i.e. the bandwidth occupied beyond

the Nyquist bandwidth of 1
2T

[33]. If the excess bandwidth is denoted by ∆f , then

α = 2T∆f.

Using (4.21) and (4.20), the lower bound on the variance of estimating the RC

signal pulse as a function of timing offset, gRC(τ), can be determined as

1

T 2
× MCRLB (gRC(τ)) =

(
∂gRC(τ)

∂τ

)2
8π2LξRC

Es

N0

, (4.22)

where L denotes the length of the observation interval, in symbols, Es/N0 is the

SNR, and the normalized mean-square bandwidth of the RC pulse, ξRC , is defined
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as

ξRC , T 2

∫∞
−∞ f 2|GRC(f)|2df∫∞
−∞ |GRC(f)|2df

. (4.23)

Note that GRC(f) in (4.23) is given by

GRC(f) =


1, |f | ≤ 1−α

2T

1
2

[
1 + cos

(
πT
α

[
|f | − 1−α

2T

])]
, 1−α

2T
< |f | ≤ 1+α

2T

0, otherwise.

(4.24)

After simple algebraic manipulation, ξRC is calculated to be

ξRC =
1
12

− α
16

+ α2

4
+ 5α3

16
− 2α2

π2 + α3

8π2

1− α
4

. (4.25)

In addition, in (4.22), ∂gRC(τ)
∂τ

can be evaluated as

∂gRC(τ)

∂τ
=

cos(απτ
T
)(πτ

T
cos(πτ

T
)− sin(πτ

T
))

πτ2

T
(1−4α2τ2

T
)

−
sin(πτ

T
)

πτ
T

(
πα
T
sin(απτ

T
)

1−4α2τ2

T 2

−
8α2τ
T 2 cos(απτ

T
)

(1−4α2τ2

T 2 )2

)
. (4.26)

Fig. 4.1 depicts the MCRLB of estimating the RC signal pulse, MCRLB(gRC(τ)),

versus timing offset for different values of roll-off factor, α. Note that in Fig. 4.1,

MCRLB(gRC(τ)) more slowly increases as the timing offset increases for larger roll-

off factor values. This indicates that in the presence of timing offset, the RC signal

pulse and its peak can be more accurately estimated for larger roll-off factor values.

This reduces the effect of ISI due to timing offset, which is also shown qualitatively

using eye diagrams in [66].

4.4.1.2 Root-Raised Cosine (RRC) Pulse

In the case of RRC pulse, (4.20) can be reused to derive the lower bound on the vari-

ance of estimating the RRC signal pulse in the presence of timing offset, MCRLB−
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Figure 4.1: MCRLB(gRC(τ)) for the RC pulse, with L = 10, SNR=10dB, and α =

{0, .5, 1}.

(gRRC(τ)). Note that the RRC signal pulse, gRRC, as a function of the timing offset,

τ , is given by

gRRC(τ) =
sin
(

(1−α)πτ
T

)
+ 4ατ

T
cos
(

(1+α)πτ
T

)
π t

T

(
1−

(
4ατ
T

)2) , (4.27)

where similar to (4.21), the roll-off factor, α, is a measure of the excess bandwidth.

Using (4.27), ∂gRRC(τ)
∂τ

can be expressed as

∂gRRC(τ)

∂τ
=

4B
πT

(
− (1+α)π sin( (1+α)πτ

T )
T

− T sin( (1−α)πτ
T )

4ατ2
+

(1−α)π cos( (1−α)πτ
T )

4ατ

)
(1−

(
4ατ
T

)2
)

+

128α3

πT 3

(
cos
(

(1+α)πτ
T

)
+ T

4ατ
sin
(

(1−α)πτ
T

))
τ
(
1−

(
4ατ
T

)2)2 . (4.28)
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Finally, to determine the MCRLB(gRRC(τ)), the normalized mean-square bandwidth,

ξRRC, also needs to be determined. Note that

GRRC(f) =
√

GRC(f), (4.29)

where GRC(f) is defined in (4.24). Using (4.29) and GRRC(f) instead of GRC(f) in

(4.23), the normalized mean-squared bandwidth for the RRC pulse, after simple

algebraic manipulations is calculated as

ξRRC =
(1 + 3α2)

12
− 2α2

π2
. (4.30)

Fig. 4.2 plots the lower bound on the variance of RRC signal pulse estimation

in the presence of timing offset, MCRLB(gRRC(τ)), for different roll-off factor val-

ues. Note that similar to the results in Fig. 4.1, as the roll-off factor, α, increases,

MCRLB(gRRC(τ)) more slowly increases with the timing offset. Therefore, it can

be concluded that RRC signal pulse timing can be more accurately estimated for

larger roll-off factor values, which also agrees with observations in [66].

4.4.1.3 Flipped Exponential (FEX) pulse

According to eye diagram plots and average-bit-error-rate (ABER) simulations in

[3, 4], compared to the RC pulse, the flipped exponential (FEX) pulse has been

found to improve system performance in the presence of timing offset. Here, we

derive the lower bound on the estimation variance of FEX pulse, MCRLB(gFEX(τ)),

and quantitatively compare the results with those of the RC and RRC pulses.

The FEX signal pulse, gFEX, as a function of the timing offset, τ , is given by

gFEX(τ) = sinc(τ/T )
4βπτ sin(πατ/T ) + 2β2 cos(πατ/T )− β2

(2πτ)2 + β2
, (4.31)
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Figure 4.2: MCRLB(gRRC(τ)) for the RRC pulse, with L = 10, SNR=10dB, and α =

{0, .5, 1}.

where β = 2T ln 2
α

. Using (4.31), ∂gFEX(τ)
∂τ

can be derived as

∂gFEX(τ)

∂τ
=

cos(πτ
T

)

τ

(
4βπτ sin(πτα

T
) + 2β2 cos(πτα

T
)
)

(4π2τ 2 + β2)

−
1/2 sin(πτ

T
)

πτ2B
(4βπτ sin(πτα

T
) + 2β2 cos(πτα

T
)− β2)

(4π2τ 2 + β2)

+

1/2 sin(πτ
T

)

πτB
(4βπ sin(πτα

T
) + 8βπ2τBα cos(πτα

T
)− 4β2πBα sin(πτα

T
))

(4π2τ 2 + β2)

−
4π sin(πτ

T
)

B
(4βπτ sin(πτα

T
) + 2β2 cos(πτα

T
)− β2)

(4π2τ 2 + β2)2
. (4.32)

Next, (4.23) and the frequency domain representation of the FEX pulse, GFEX(f),
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given by

GFEX(f) =



1, |f | ≤ 1−α
2T

exp
(
β
(
1−α
2T

− |f |
))

, 1−α
2T

< |f | ≤ 1
2T

1− exp
(
β
(
|f | − 1+α

2T

))
, 1

2T
< |f | ≤ 1+α

2T

0, otherwise,

(4.33)

are used to determine the normalized mean-square bandwidth of the FEX pulse,

ξFEX , which after simple algebraic manipulations is calculated as

ξFEX =
1
24

+ .0225α + .34169α2 + .20137α3

.5− α
8 ln(2)

. (4.34)

Fig. 4.3 depicts the lower bound on the variance of FEX signal pulse estima-

tion, MCRLB(gFEX(τ)), for different roll-off factor values. Comparing the results

in Figs. 4.1 and 4.3, it is clear that for the same value of timing offset and roll-

off, α, the MCRLB(gFEX(τ)) is smaller than that of MCRLB(gRC(τ)). This indicates

that in the presence of timing offset, the FEX’s signal pulse can be more accurately

estimated compared to that of the RC pulse. Therefore, it can be concluded that

the application of the FEX pulse in a communications system reduces the effect

of ISI due to timing offset and improves system performance. This quantitative

results agrees with qualitative eye diagrams and ABER results presented in [3, 4].

Note that a more fair comparison between the lower bound on the variance of RC,

RRC, and FEX signal pulse estimation based on the normalized square bandwidth

is performed in Section 4.4.1.4.

4.4.1.4 Performance Comparison of the RC, RRC, and FEX Pulses

In this section we compare the MCRLB(g(τ)) for the RC, RRC, and FEX pulses. Fig.

4.4 A. illustrates that for the same roll-off factor values, α, the FEX pulse results in

60



−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Normalized Timing Offset

M
C

R
L

B
(g

F
E

X
(τ

))

 

 
SNR=10, α=0, L

0
=10

SNR=10, α=.5, L
0
=10

SNR=10, α=1, L
0
=10

Figure 4.3: MCRLB(gFEX(τ)) for the FEX pulse, with L = 10, SNR=10dB, and α =

{0, .5, 1}.

a lower variance for the estimation of the signal pulse when compared to the RC

and RRC pulses.

From the MCRLB plots in Fig. 4.4 A. it can be concluded that the lower bound

for the estimation of the FEX signal pulse in the presence of timing offset is smaller

than that of the RC and RRC pulses, which indicates that the FEX signal pulse can

be estimated with higher accuracy in the presence of timing offset. This result,

which also supports the qualitative results observed in [3, 4, 33], show that the

application of the FEX pulse reduces ISI due to timing offset and improves system

performance.

While Fig. 4.4 A. performs the comparison in a manner consistent with that
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Figure 4.4: A. MCRLB(gRC(τ)), MCRLB(gRRC(τ)), and MCRLB(gFEX(τ)) with L =

10, SNR=10dB, and for the same roll-off factor, α = .35. B. MCRLB(gRC(τ)),

MCRLB(gRRC(τ)), and MCRLB(gFEX(τ)) with L = 10, SNR=10dB, and the same

normalized mean-square bandwidth ξ=.09.

presented in [4] and [3], we now present a more appropriate comparison based on

the normalized mean square bandwidth as defined in (4.23). Fig. 4.4 B. compares

the RC, RRC, and FEX pulses for ξRC = ξRRC = ξFEX = .09. As shown in Fig. 4.4

B. the FEX pulse still outperforms both the RC and RRC pulses but not by as large

of a margin as the somewhat misleading results indicate in Fig. 4.4 A.

4.4.2 Effect of Frequency Offset on OFDM Systems

The effect of inter carrier interference (ICI) causing frequency offset on the perfor-

mance of orthogonal frequency division multiplexing (OFDM) systems is briefly

summarized in Section 2.4. In this section the effect of CFO estimation uncertainty
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on SNR uncertainty is determined.

Let us denote the SNR of an OFDM system with perfect and imperfect fre-

quency offset estimation by SNR[ideal] and SNR[real], respectively. The relationship

between SNR[ideal], SNR[real], and frequency offset, ν, in an OFDM system contain-

ing Ns subcarriers is shown to be [70]

γdB(ν) =
SNR[ideal]

SNR[real] = 10 log

(
1

fNs(ν)
2

{
1 + SNR[1− fNs(ν)

2]
})

, (4.35)

where γdB(ν) is a measure of SNR loss due to frequency offset and

fNs(x) =
sin(πx)

Ns sin(πx/Ns)
. (4.36)

Using (4.20), the lower bound on the estimation of γdB(ν) in the presence of fre-

quency offset, ν, can be determined using

MCRLB(γdB(ν)) =

(
∂γdB(ν)

∂ν

)2
L(L− 1)2 Es

N0
T 2/3

, (4.37)

where L represents the length of the pilot signal in symbols and Es/N0 is the SNR.

Note that to derive (4.37), the MCRLB of estimation of ν in [1] and the functional

transformation of the MCRLB in (4.20) are used. In (4.37), ∂γdB(ν)
∂ν

can be derived as

∂γdB(ν)

∂ν
=

10 sin2(πν)

ln(10)N2
s sin

2(πν/Ns)
(
1 + Es/N0

(
1− sin2(πν)

N2
s sin2(πν/Ns)

))
×

[
−2N2

s π cos(πν) sin2(πν/Ns)

sin3(πν)

(
1 + Es/N0

(
1− sin2(πν)

N2
s sin

2(πν/Ns)

))
+

2Nsπ cos(πν/Ns) sin(πν/Ns)

sin2(πν)

(
1 + Es/N0

(
1− sin2(πν)

N2
s sin(πν/Ns)2

))
+

N2
s sin

2(πν/Ns)Es/N0

sin2(πν)

(
−2π sin(πν) cos(πν)

N2
s sin

2(πν/Ns)
+

2π cos(πν/Ns) sin
2(πν)

N3
s sin

3(πν/Ns)

)]
,

(4.38)
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Using the relationships in (4.35) and (4.38) the probability of outage for an

OFDM system as a function of frequency offset can be determined. The proba-

bility of outage here is defined as

Poutage = p(SNR[real] < SNRT), (4.39)

where SNRT represents the target threshold SNR for acceptable system perfor-

mance.

Approximating the outage distribution as Gaussian, (4.39) can be lower bounded

as

Poutage = Q

(
γdB(ν)− SNRT

σdB(ν)

)
, (4.40)

where σdB(ν) =
√

MCRLBν(SNR) is determined using (4.37), and tail probability

Q(z) =

∫ ∞

z

1√
2π

e−y2/2dy. (4.41)

Fig. 4.5 A. plots SNR[real] vs. frequency offset for different SNR[ideal] values using

(4.35). Fig. 4.5 B. plots MCRLB(γdB(ν)) vs. frequency offset, and Fig. 4.5 C. depicts

the lower bound on probably of outage using (4.40) for different SNR[ideal] values

when SNRT is set to 0dB. In the calculations of outage probability, the MCRLB is

used to determine the lower bound on SNR variance. The length of the observation

interval L = 5 is motivated by the short training sequence used in IEEE 802.11a

[89].

Even though in [70] and references therein, the mean SNR loss due to ICI caus-

ing frequency offset is extensively analyzed, the effect of frequency offset on the

variance of SNR has been mainly ignored. The approach outlined above allows for

a quantitative method of determining the variance of lower bound on the variance

of SNR due to frequency offset in OFDM systems.
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Figure 4.5: In the above figures we consider an OFDM system with Ns=512 and

L=5. A. SNR vs. normalized frequency offset based on (4.35). B. MCRLB(SNR)

vs. normalized frequency offset using (4.37) and (4.38). C. Poutage vs. normalized

frequency offset with SNRT=0dB according to (4.40).

Note that when compared to the CRLB, the MCRLB is a looser lower bound

on the variance of an unbiased estimator. Therefore, to justify the application

of the MCRLB as lower bound for the estimation of synchronization parameters,

we show, in the following section, that in some important practical scenarios, the

CRLB and MCRLB coincide.
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4.5 MCRLB vs. CRLB for Synchronization Parameter

Estimation

Although the MCRLB and CRLB have been used in the literature, the difference

between the two bounds for estimating synchronization parameters has not been

carefully addressed. In this section, it is demonstrated that the MCRLB coincides

or is close to the CRLB for synchronization parameter estimation in many practical

situations and that the simplicity associated with the MCRLB justifies its use in

circumstances where calculation of the CRLB is difficult.

This section also shows that timing and frequency offset estimation in commu-

nications systems can be decoupled from one another. This result is applied in

Chapters 5 and 6 to simplify the analyses for synchronization parameter estima-

tion in multi-relay cooperative communications systems and separately address

multiple timing and frequency offsets estimation.

For joint vector parameter estimation, λ = [λ1, λ2, · · · , λp], the CRLB for the

estimation of the ith component λi is given by [44]

CRLB(λi) =
[
FIM−1(λ)

]
i,i
, (4.42)

where FIM(λ) is the p×p Fisher’s information matrix (FIM). Note that the elements

of FIM(λ), fλi,λj
, for i, j = 1, 2, · · · , p, are given by

fλi,λj
= −E

[
∂2 ln p(r,λ)
∂λi∂λj

]
. (4.43)

To derive the MCRLB for the estimation of λi, the remaining parameters λj ,

for j = 1, 2, · · · , j ̸= i, · · · , p, are assumed to be nuisance parameters. Based on

definition (4.11), the MCRLB for the estimation of λi is expressed as [30]

MCRLB(λi) =
1

Eu[fλi,λi
]
, for i = 1, 2, · · · , p (4.44)
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where in this case the vector of nuisance parameters, u = [λ1, λ2, · · · , λj ̸=i, · · · , λp].

By comparing (4.42) and (4.44), it can be deduced that if the off-diagonal elements

of the FIM are zero, i.e., [fλi,λj
] = 0 for i ̸= j, then the estimation of λi, for i =

1, 2, · · · , p, can be decoupled and the CRLB and MCRLB are equivalent.

Let us determine the CRLB and MCRLB for the joint estimation of synchroniza-

tion parameters for a signal received in zero-mean white Gaussian noise (WGN)

using (4.42) and (4.44), respectively. The continuous-time received signal, r(t), for

a passband communication system can be expressed as

r(t) =
L−1∑
n=0

sng(t− nT − τT )ej(νkT+θ) + v(t), (4.45)

where L is the length of the sequence in symbols, sn are data symbols belonging

to some M -ary constellation, g(t) is an even-symmetric real-valued transmitted

pulse, τ represents the timing offset, ν is the frequency offset, θ is the phase offset,

and v(t) is the zero-mean additive white Gaussian noise (AWGN) with variance

N0. Here, the joint estimation of λ = [τ, ν, θ] is considered.

The FIM for the joint estimation of timing, frequency, and phase offset can be

written as

FIM(λ) =


fτ,τ fτ,ν fτ,θ

fν,τ fν,ν fν,θ

fθ,τ fθ,ν fθ,θ

 . (4.46)

Since the focus is on determining the difference between the CRLB and MCRLB,

we only discuss the off-diagonal elements of the FIM(λ) matrix in (4.46). In (4.46),

fτ,ν , fτ,ν , and fτ,ν are given by [67]

fτ,ν = fν,τ = −LTℑ
{∫ ∞

−∞
(t+ τ)g∗(t)g(t)dt

}
× SNR, (4.47)
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fτ,θ = fθ,τ = −LTℑ
{∫ ∞

−∞
g∗(t)g(t)dt

}
× SNR, (4.48)

and

fν,θ = fθ,ν = L

[
τT +

∫ ∞

−∞
t|g(t)|2dt

]
× SNR, (4.49)

where ℑ denotes the imaginary part.

Given that g(t) is real-valued pulse in most communication systems, the terms

in (4.47) and (4.48) vanish. Therefore, FIM(λ) can be rewritten as

FIM(λ) =


fτ,τ 0 0

0 fν,ν fν,θ

0 fθ,ν fθ,θ

 . (4.50)

Based on (4.50), it can be concluded that the estimation of timing offset can be de-

coupled from frequency offset and phase offset estimation. This result corroborates

existing contributions presented in [25], which show that in the case of a Gardner

detector, timing offset estimation can be performed accurately in the presence of

frequency offset. In addition, we can conclude that the MCRLB and CRLB for the

estimation of timing offset, τ , are equivalent. This shows that the MCRLB is a valid

and tight lower bound on the variance of timing offset estimators.

Even though the CRLB and MCRLB for the estimation of τ are the same under

the above assumptions, the two bounds are very different under the consideration

of Rayleigh fading channels [49], with the MCRLB being considerably easier to

determine. On the other hand, the CRLB can only be determined under specific

scenarios. For details on the determination of the CRLB and MCRLB for fading

channels, see [49].
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For frequency offset and phase offset estimation based on the fact that off-

diagonal elements fν,θ and fθ,ν in (4.49) are non-zero, we can conclude that com-

pared to the CRLB, the MCRLB for frequency offset estimation is a looser lower

bound. However, for real-valued even-symmetric signals, g(t), the integral in

(4.49) is equal to zero and as the timing offset, τ , goes to zero the terms fν,θ and fθ,ν

vanish. Therefore, we can conclude that under the assumption of perfect timing

synchronization, the MCRLB and CRLB for phase and frequency offset estimation

are equivalent.

4.6 Conclusions

In this chapter, the functional transformation for the modified CRLB is derived and

is applied to determine lower bounds on the estimation of signal pulse amplitude

and SNR as a function of timing and frequency offset, respectively. Unlike Monte-

Carlo based comparisons, e.g., eye-diagrams and ABER plots that are dependent

on simulation parameters, the derived closed-form expressions can be applied to

quantitatively determine the effect of different system parameters on the perfor-

mance of communications systems. Next, the relationship between the MCRLB

and CRLB under different synchronization scenarios is determined, where it is

demonstrated that the MCRLB is a tight lower bound for most practical scenarios.

In addition our analysis demonstrates that timing and frequency offset estimation

in communications systems can be decoupled and investigated as two separate

problems. As a result, in Chapters 5 and 6 we separately address the topics of mul-

tiple timing and frequency offsets estimation in distributed cooperative networks.
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Chapter 5

Timing Offset Estimation in Distributed

Cooperative Networks

5.1 Introduction

EVEN though many cooperative strategies have been proposed that provide

full spatial diversity in the presence of multiple timing offsets, they result in re-

duced transmission rates and/or also require timing offsets to be accurately esti-

mated for effective detection and equalization (see, e.g., [53,90,115] and references

therein). In this chapter we seek to address timing synchronization using a training

sequence in distributed amplify-and-froward (AF) and decode-and-forward (DF)

cooperative networks.

Due to the distributed nature of the network and simultaneous transmissions

from separate nodes with different oscillators, cooperative networks require the

estimation of multiple timing offsets to combat the resulting inter-symbol inter-

ference (ISI) and signal-to-noise ratio (SNR) loss [66, 67]. Moreover, even though

multi-input-single-output (MISO) systems are a critical component of cooperative

communication networks, the timing offset estimation algorithms available in the
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literature for MISO systems, e.g., [57,72,82,107] are not applicable in the case of co-

operative communication systems, due to the existence of multiple timing offsets.

In [38, 63, 74] the effect of timing synchronization errors on the performance of co-

operative relay networks is analyzed, where it is demonstrated that timing offsets

much smaller than the symbol interval can result in considerably higher pair-wise

error probabilities. In [37] it is shown that in the case of multi-relay DF cooper-

ative networks, as the number of relays increases, timing synchronization errors

have an adverse effect on the signal-to-interference-noise ratio (SINR) and outage

probability of cooperative networks. Thus, achieving timing synchronization via

accurate multiple timing offset estimation algorithms is key to future deployments

of cooperative networks.

Several algorithms are proposed for accurate timing offset estimation in the

case of point-to-point single-input-single-output (SISO) systems [24, 25, 55, 67, 71].

In [67], the maximum-likelihood estimator (MLE) for timing offset estimation in

the case of SISO systems is presented. In [25] Gardner proposes an estimator that

can accurately determine the timing offset between the transmitter and receiver at

considerably lower computational complexity compared to the MLE in [67]. Pa-

pers [55] and [24] further enhance the performance of Gardner’s detector. Tim-

ing offset estimation in the case of point-to-point multiple-input-multiple-output

(MIMO) systems is addressed in [57, 72, 82, 107], where it is shown that achieving

timing synchronization in MIMO systems comes at higher overhead and complex-

ity.

In [54] the topic of timing synchronization in DF cooperative networks is con-

sidered, where the emphasis is on timing offset compensation. Even though an
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MLE-based multiple timing offset estimator for DF cooperative networks is pre-

sented, the proposed estimator has a very high computational complexity, since it

entails solving an R-dimensional maximization problem, where R is the number

of relay nodes. Moreover, to achieve timing synchronization the proposed MLE re-

quires each relay’s timing offset to not exceed one symbol timing duration, which

is not justifiable in the case of cooperative networks consisting of multiple dis-

tributed relays with different oscillators. Finally, [54] does not analyze or investi-

gate the effect of the training sequence and network topology on timing estimation

performance. To the best of the author’s knowledge, timing offset estimation in AF

cooperative networks has not been addressed to date.

In [60] frequency offset estimation in distributed DF and AF relaying multi-

relay cooperative networks is addressed. However, the Cramer-Rao lower bounds

(CRLBs) and estimators proposed in [60] are not applicable to the case of timing

offset estimation due to the considerably different signal model. Moreover, unlike

the results in [60], as outlined in this thesis, to achieve timing synchronization in

distributed cooperative networks, timing offsets need to be estimated at both the

relays and destination in both cases of DF and AF relaying cooperative networks.

Finally, accurate timing offset estimation entails specific training sequence design

that is different from the case of frequency offset estimation.

The CRLB [44] is used as a quantitative benchmark for the performance of tim-

ing offset estimators [39,54,55,57,72] and [93]. Moreover, the CRLB can be applied

to determine the effect of network protocol, topology, choice of training sequence,

and number of relays on timing offset estimation accuracy in cooperative systems.

The CRLB of timing offset estimation for point-to-point SISO systems is derived

in [39], where it is demonstrated that the choice of training sequence significantly
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impacts estimation accuracy. In [93] the CRLB for the estimation of timing offset

using an array of antennas is derived and it is shown that the CRLB can be reached

at mid-to-high SNR. In [57], results in [93] are extended to the CRLB for timing off-

set estimation in Gaussian and Rayleigh flat-fading channels for MIMO systems.

In [54] the CRLB for timing offset estimation in DF cooperative networks is de-

rived, but the analysis is limited to the case of Gaussian channels and closed-form

expressions are not provided.

This chapter first derives the CRLBs for timing offset estimation for DF and AF

multi-node cooperative systems for Rician fading and Gaussian channels. In the

case of AF, a new low complexity baseband processing structure is proposed that

enables accurate joint multiple timing offsets estimation at the destination. The

CRLBs are used to design more effective training sequences and to determine the

effect of number of relays and relay locations on timing offset estimation in dis-

tributed DF and AF cooperative networks. Next, an iterative multiple timing off-

set estimator is proposed that transforms the R-dimensional maximization prob-

lem into R single parameter estimation problems that can then be solved using

the 1-dimensional MLE, Gardner’s detector, or Mueller and Muller estimator [71].

As a result, the proposed multiple timing offset estimator significantly reduces the

computational complexity and overhead required for achieving timing synchro-

nization in multi-relay cooperative networks. Furthermore, the proposed estima-

tor is capable of estimating timing offsets much larger than one symbol duration

and simulation results show that its performance approaches or reaches the CRLB

at low, mid, and high SNR. Note that in [54], it has been shown that when com-

bined with re-synchronization filters, timing offset estimators that reach the CRLB

significantly improve the ABER of multi-relay distributed cooperative networks.
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This chapter is organized as follows: in Section 5.2, the system model for the

cooperative system is presented, Section 5.3 derives the CRLBs for DF and AF

relaying. In Section 5.4 the effect of training sequence on the CRLB is analyzed

and the proposed training sequence design for multi-relay cooperative networks

is outlined. Section 5.5 overviews the MLE for timing offset estimation, outlines

the iterative multiple timing offset estimator, and analyzes the complexity of the

proposed algorithm. Section 5.6 presents numerical results that investigate the

effect of number of relays, training sequence, and network topology on timing

synchronization in cooperative networks and compares the performance of the

proposed estimator against the CRLB.

5.2 System Model

A half-duplex cooperative network consisting of a source and destination pair and

a cluster of R relay nodes is considered, where the relays are assumed to be dis-

tributed throughout the network as shown in Fig. 5.1 A. As illustrated in Fig. 5.1

B. transmission is divided into two intervals: i) training interval and ii) data trans-

mission interval.

In this chapter, multiple timing offset estimation using a training sequence is

analyzed, where during the training interval the timing offsets and channel gains

corresponding to the R relay nodes are estimated. These estimates can be applied

in the data transmission interval to mitigate inter-symbol interference (ISI) and

improve system performance. Throughout this chapter the following set of as-

sumptions and system design parameters are considered:

1. In Phase I, the source broadcasts its training sequence to the relays. In Phase II
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to efficiently estimate the timing offsets, the relays transmit R distinct train-

ing sequences simultaneously to the destination (see Fig. 5.1).

2. Timing offsets are modeled as unknown non-random parameters.

3. The effect of carrier frequency offset (CFO) on the received training signal is

not considered since as discussed in [28] and Chapter 4, timing offset estima-

tion can be decoupled from CFO estimation. Refer to Chapter 6 or [60] for

a detailed analysis of the topic of frequency synchronization in distributed

multi-relay cooperative networks.

4. Colored zero-mean additive Gaussian noise (AGN) is considered at the relays

and destination.

5. Without loss of generality, it is assumed that unit-amplitude phase-shift key-

ing (PSK) training sequences are transmitted.

Note that Assumptions 2 and 3 are in line with previous timing offset estima-

tion analyses performed for point-to-point systems in [39, 54, 57, 72, 82, 107] and

are also intuitively justifiable, since the main sources of timing offset are oscillator

mismatch and channel delay [67]. Both of these effects are assumed to not signifi-

cantly change throughout the short training sequence. Assumption 4 ensures that

the results in this chapter are applicable to a wide range of scenarios, e.g., when

timing offset estimation is performed after matched filtering, the resulting noise is

not white [39].
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Figure 5.1: A. The system model for the cooperative network. B. Scheduling dia-

gram for training and data transmission intervals.

5.2.1 Training Signal Model at the Relays

The sampled baseband received training signal, prior to the matched filter, rk(iTs),

at the kth relay, 1 ≤ k ≤ R is given by

rk(iTs) =
√

p[s]hk

L−1∑
n=0

t[s](n)g(iTs − nT − τ
[sr]
k T ) + vk(iTs), (5.1)

where:

• L and T denote the length of the training sequence and the symbol duration,

respectively,

• T = NtTs, where Ts is the sampling time and Nt is the number of samples per

symbol,
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• t[s](n) is the known nth training symbol broadcast from the source to the re-

lays,

• τ
[sr]
k is the normalized timing offset from the source to the kth relay,

• hk represents the unknown channel gain from the source to the kth relay that

is assumed to not change over the interval n = 1, 2, · · · , L,

• p[s] is the transmitted power from the source, and

• vk(n) is the AGN at the kth relay with mean zero and variance σ2
vk

, which is

denoted by CN (0, σ2
vk
).

Eq. (5.1) can be represented in matrix and vector form as

rk =
√

p[s]hkG
[sr]
k t[s] + vk, (5.2)

where:

• rk , [rk(0), rk(1), · · · , rk(NtL− 1)]T ,

• t[s] , [t[s](0), t[s](1), · · · , t[s](L− 1)]T ,

• vk , [vk(0), vk(1), · · · , vk(NtL− 1)]T , and

• G
[sr]
k is an NtL× L matrix, where

[
G

[sr]
k

]
m,l

, g(mTs − lT − τ
[sr]
k T ).

Note that the subsequent sections assume that after estimation and compensa-

tion of the timing offsets τ [sr] ,
[
τ
[sr]
1 , · · · , τ [sr]R

]
at the relays, the residual offsets

propagate to the destination where they are estimated and mitigated.
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5.2.2 Training Signal Model at the Destination for DF Relaying

Cooperative Networks

The decode-and-forward (DF) protocol requires the signals at the relays to be de-

coded and timing offsets, τ [sr] to be estimated and equalized at the relays. There-

fore, t[s] received in Phase I is used for timing offset estimation similar to that of

a point-to-point single-input-single-output (SISO) system as shown in Fig. 5.2.

Moreover, to ensure successful cooperation in Phase II, the estimated timing off-

sets, τ [sr], are applied to align the relays’ transmissions in time with respect to the

source. Note that the timing corrector in Fig. 5.2 is similar to a voltage-controllable

delay line, which produces synchronized samples [66].

Unlike Phase I, in Phase II or the cooperation phase, the superposition of training

signals received from the relays must be used to jointly estimate the timing offsets

from the relays to the destination, τ [rd] ,
[
τ
[rd]
1 , · · · , τ [rd]R

]
.

Figure 5.2: Block diagram of the baseband receiver at the kth relay for DF net-

works.

The sampled baseband received training signal model, y , [y(0), y(1), · · · , y(Nt
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L− 1)]T , for a DF cooperative network consisting of R relay nodes is given by

y =
R∑

k=1

(√
p
[r]
k fkG

[rd]
k t

[r]
k

)
+w, (5.3)

where:

• G
[rd]
k is an NtL × L matrix, where

[
G

[rd]
k

]
m,l

, g(mTs − lT − τ
[rd]
k T ) and τ

[rd]
k

is the normalized timing offset from the kth relay to the destination,

• t
[r]
k , [t

[r]
k (0), · · · , t[r]k (L − 1)]T is the known transmitted training sequence

specific to the kth relay,

• fk represents the unknown channel gain from the kth relay to the destina-

tion that is assumed to not change over the interval n = 1, · · · , L, p[r]k is the

transmitted power from the kth relay, and

• w , [w(0), w(1), · · · , w(NtL − 1)]T is the zero mean AGN at the destination

with w(n) distributed as CN (0, σ2
w) and the covariance matrix of w denoted

by Σw.

5.2.3 Training Signal Model at the Destination for AF Relaying

Cooperative Networks

To enable synchronous transmission and successful cooperation in Phase II, similar

to DF, in AF networks the relays need to estimate timing offsets from the source to

the relays, τ [sr], where the training sequence transmitted from the source in Phase

I can be used similar to that of a point-to-point SISO system. Furthermore, to

ensure accurate timing offset estimation at the destination, the kth relay’s trans-

mitted training signal needs to be distinct for 1 ≤ k ≤ R. Hence, to achieve timing
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synchronization throughout an AF relaying cooperative network, we propose the

baseband processing structure in Fig. 5.3 at the relays. Note that the block dia-

gram in Fig. 5.3 suggests a considerably simpler implementation compared to that

of DF networks in Fig. 5.2, since the received signal at the relays does not need to

be matched filtered, decoded, and encoded before retransmission.

Figure 5.3: Block diagram of the proposed baseband processing at the kth relay for

timing estimation and compensation in AF networks.

Using the AF relay processing indicated in the block diagram in Fig. 5.3 and the

fact that the received signal vector at the kth relay, rk, is amplified and forwarded

without being decoded, the sampled baseband representation of the received train-

ing signal model at the destination in Phase II is given by

y(iTs) =
R∑

k=1

L−1∑
n=0

p
[sd]
k ζkfkhkt

[s](n)t
[r]
k (i)g(iTs − nT − τ

[rd]
k T )︸ ︷︷ ︸

desired signal

+
R∑

k=1

ζk

√
p
[r]
k fkṽk(iTs) + w(iTs)︸ ︷︷ ︸

overall noise

, (5.4)

where:

• ṽk(iTs) , vk(iTs)t
[r]
k (i) and t

[r]
k (i) is the ith symbol of the kth relay’s training

sequence,
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• ζk , 1/
√

p[s]|hk|2 + σ2
vk

satisfies the kth relay’s power constraint, and p
[sd]
k ,√

p
[r]
k p[s].

Eq. (5.4) can be represented in matrix and vector form as

y =
R∑

k=1

ζkp
[sd]
k fkhk

(
G

[rd]
k t[s]

)
⊙ t

[r]
k +

R∑
k=1

ζk

√
p
[r]
k fkṽk +w, (5.5)

where t
[r]
k ,

[
t
[r]
k (0), , · · · , t[r]k (NtL− 1)

]T
as shown in Fig. 5.3, ⊙ denotes the Schur

(element-wise) product, and ṽk , [ṽk(0), ṽk(1), · · · , ṽk(NtL− 1)].

5.2.4 Multiple Timing Offset Estimation in Cooperative Networks

In Phase I of the training interval, timing offset estimation at the relays is similar

to that of point-to-point SISO systems, which has been extensively investigated in

the literature (e.g., see, [39] and [25]). However, in Phase II, since the asynchronous

training signals from R relay nodes are received simultaneously at the destination,

the timing offsets, τ [rd] in (5.3) and (5.5), need to be jointly estimated. Despite

the simpler overall baseband processing structure, timing offset estimation in the

case of AF relaying is actually very complicated due to the more complex training

signal model at the destination as noted in (5.5).

To date the MLE proposed in [81] and [54] are the only methods of determining

the timing offsets in the case of distributed cooperative networks. Even though

joint MLE can in principle accurately estimate timing offsets, its computational

complexity is extremely high and is not amenable to practical implementation.

Therefore, in this chapter we propose a multiple timing offset estimation algorithm

that seeks to reduce the overhead associated with timing synchronization in dis-

tributed cooperative networks. Since the CRLB is used as a benchmark to assess

the performance of the proposed estimators, we first derive the CRLB.
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5.3 Cramer-Rao Lower Bound

In this section, the CRLB for timing offset estimation for DF and AF multi-relay

cooperative networks is derived.

Note that since the channel gains are assumed to be unknown, for more a com-

plete analysis the CRLBs need to be derived for the joint estimation of both timing

offsets and channel gains. However, the CRLB expressions for the joint estima-

tion of these 3R parameters (R real and imaginary part of channel gains and R

timing offsets) are too complex and provide little insight on the effect of training

sequence, network protocol, and topology on timing offset estimation. As a result,

in this section the CRLB expressions for the joint estimation of the R timing offsets

are derived. Numerical results in Section 5.6 show that the CRLBs derived in this

section are tight and are reached by the proposed estimators in Section 5.5. Note

that the numerical results in Section 5.5 assume unknown and estimated channels.

5.3.1 Decode-and-Forward Cooperative Networks

The general case of Rician fading channels is considered, where the channel gain

from the kth relay to the destination, fk, is modeled as a Gaussian random vari-

able with mean and variance µfk and σ2
fk

, respectively. Note that Rayleigh fading

represents the special case where the mean line-of-sight path has zero power.

According to (5.3), for DF networks the set of timing offsets, τ [rd] =
[
τ
[rd]
1 , · · · , τ [rd]R

]
needs to be jointly estimated at the destination. For notational clarity, (·)[DF] is used

instead of (·)[rd] below.

Derivation of the CRLB for the joint estimation of τ [DF]:

For notational convenience the following variables are defined
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• Df , diag
(√

p
[r]
1 µf1 ,

√
p
[r]
2 µf2 , · · · ,

√
p
[r]
R µfR

)
is an R×R matrix,

• ∆[DF] ,
[
δ[DF]

1 , δ[DF]
2 , · · · , δ[DF]

R

]
is an NtL × R matrix, δ[DF]

k , ∂ξ[DF]
k /∂τ

[DF]
k =

∂G[DF]
k

∂τ
[DF]
k

t
[r]
k ,

• ξ[DF]
k , G[DF]

k t
[r]
k , and

• Γ[DF]
k , δ[DF]

k

(
ξ[DF]

k

)H
+ ξ[DF]

k

(
δ[DF]

k

)H
is an NtL×NtL matrix.

Under the stated assumptions, y is distributed as y ∼ CN (µy,Σy), where

µy = E[y] =
R∑

k=1

√
p
[r]
k µfkξ

[DF]
k , and (5.6a)

Σy = E[(y − µy)(y − µy)
H ] =

R∑
k=1

p
[r]
k σ2

fk
ξ[DF]

k

(
ξ[DF]

k

)H
+Σw. (5.6b)

To determine the CRLB, the R×R Fisher’s Information Matrix (FIM) needs to be de-

termined. In the case of parameter estimation in a complex Gaussian observation

sequence, the entries of FIM are given by [44]

FIM(λ)k,m = 2Re

[
∂µH

y

∂λk

Σ−1
y

∂µy

∂λm

]
+ Tr

[
Σ−1

y

Σy

λk

Σ−1
y

Σy

λm

]
, (5.7)

where λ =
[
τ
[DF]
1 , τ

[DF]
2 , · · · , τ [DF]

R

]
,

∂µy

∂τ
[DF]
k

=

√
p
[r]
k µfkδ

[DF]
k , and (5.8)

∂Σy

∂τ
[DF]
k

= p
[r]
k σ2

fk

(
δ[DF]

k

(
ξ[DF]

k

)H
+ ξ[DF]

k

(
δ[DF]

k

)H)
= p

[r]
k σ2

fk
Γ[DF]

k . (5.9)

Note that δ[DF]
k is dependent on the choice of the transmitted pulse, g(t), in (5.1).

Using (5.7), (5.8), and (5.9) the entries of the FIM are determined as

[
FIM(τ [DF])

]
k,m

=2Re
{√

p
[r]
k p

[r]
k µ∗

fk
µfm

(
δ[DF]

k

)H
Σ−1

y δ
[DF]
m

}
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+ Tr
[
p
[r]
k p[r]mσ2

fk
σ2
fmΣ

−1
y Γ[DF]

k Σ−1
y Γ[DF]

m

]
. (5.10)

Let FIMDF = FIM(τ [DF]). Then the CRLB for the estimation of τ [DF] is given by the

diagonal elements of the inverse of FIMDF, which are calculated as

CRLBR(τ
[DF]) = diag

{
FIM−1

DF

}
= diag

{(
2Re

{
DH

f

(
∆[DF])H Σ−1

y ∆[DF]Df

}
+Υ[DF]

)−1
}
, (5.11)

where the elements of the R×R matrix Υ[DF] are given by[
Υ[DF]]

k,m
, Tr

[
p
[r]
k p[r]mσ2

fk
σ2
fmΣ

−1
y Γ[DF]

k Σ−1
y Γ[DF]

m

]
. (5.12)

Note that in the case of additive white Gaussian noise (AWGN) and slow fading

channels, σ2
fk

= 0, for 1 ≤ k ≤ R, the covariance matrix of the observation vector,

y, Σy = σ2
wI. Therefore, Υ[DF] in (5.12) vanishes to zero and the CRLB simplifies to

CRLBG(τ
[DF]) = diag

{
σ2
w

2

(
Re
{

DH
f

(
∆[DF])H ∆[DF]Df

})−1
}
. (5.13)

Based on (5.11) and (5.13) the following remarks are in order:

1. When the same training sequence is transmitted from all the relays
(
t
[r]
1 = t

[r]
2

= · · · = t
[r]
R

)
and timing offsets from the relays to the destination are approx-

imately the same
(
τ [DF]
1 ≃ τ [DF]

2 ≃ · · · ≃ τ [DF]
R

)
, the matrix FIMDF becomes sin-

gular, pointing to the fact that an unbiased estimator does not exist (see,

e.g., [91]) and the CRLBs in (5.11) and (5.13) approach infinity. Therefore,

the training sequences transmitted from each relay needs to be linearly in-

dependent to ensure accurate timing offset estimation. This is investigated

further in Section 5.4.

2. Using (5.13) it can be shown that the application of orthogonal training se-

quences minimizes the CRLB and improves estimation performance. More

details are provided in Sections 5.4 and 5.6.
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3. In the case of R = 1 and AWGN, the CRLBs in (5.11) and (5.13) simplify to

CRLBR(τ
[DF]) =

σ2
w

2p[r]

(
|µf |2Re

{(
δ[DF])H Σ−1

y δ
[DF]
}

+ Tr
[(
p[r]
)2

σ4
fΣ

−1
y Γ[DF]Σ−1

y Γ[DF]
])−1

, and (5.14)

CRLBG(τ
[DF]) = − σ2

w

2p[r]|f |2

(
L∑

n=−L

g̈(nT )
L∑

i=−L

t[r](i)
(
t[r](i− n)

)∗)−1

, (5.15)

respectively, where g̈(t) = ∂2g(t)
∂t2

and for notational convenience, t[r](x) , 0

for x < 0 and x ≥ L. Eq. (5.15) is the closed-form expression for the CRLB

for the estimation of τ [DF] and is similar to the CRLB in [39].

4. Note that an expression similar to (5.15) may represent the CRLB for the es-

timation of τ [sr]k at the kth relay, where the parameters corresponding to the

source to relay link are used instead.

5.3.2 Amplify-and-Forward Cooperative Networks

For AF relaying cooperative networks under the consideration of Rician or Rayleigh

frequency-flat fading channels, there does not exist an explicit CRLB expression for

the estimation of timing offsets, τ [rd], due to the presence of the term fkhk in (5.5)

and since the product of two Gaussian random variables is not Gaussian and its

probability distribution function (PDF) is very difficult to calculate, [20]. Thus, in

this chapter the CRLB is derived for the case of quasi-static fading channels, where

hk and fk are assumed to not change over the length of training sequence. Zero-

mean AGN is considered, where ṽk and w are distributed according to CN (0,Σṽk
)

and CN (0,Σw), respectively. Moreover, ṽk, ṽm, and w are assumed to be mutually

independent for k ̸= m and ∀k, respectively.
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According to (5.5), the set of R timing offsets, τ [rd] =
[
τ
[rd]
1 , · · · τ [rd]R

]
needs to be

jointly estimated at the destination. For notational clarity, (·)[AF] is used instead of

(·)[rd].

Derivation of the CRLB for the joint estimation of τ [AF]:

For notational convenience the following variables are defined

• Dα , diag(α1, · · · , αR) is an R×R matrix, αk , ζkp
[sd]
k fkhk, βk , ζk

√
p
[r]
k fk,

• ∆[AF] , [δ[AF]
1 , δ[AF]

2 , · · · , δ[AF]
R ] is an NtL × R matrix, δ[AF]

k , ∂ξ[AF]
k /∂τ

[AF]
k =(

∂G[AF]
k

∂τ
[AF]
k

t[s]
)
⊙ t

[r]
k , and

• ξ[AF]
k ,

(
G[AF]

k t[s]
)
⊙ t

[r]
k .

Based on the above definitions, (5.5) can be rewritten as

y =
R∑

k=1

αkξ
[AF]
k +

R∑
k=1

βkṽk +w. (5.16)

According to (5.16), y, is distributed as

y ∼ CN (µy,Σy), (5.17)

where

µy =
R∑

k=1

αkξ
[AF]
k (5.18a)

Σy =
R∑

k=1

|βk|2Σṽk
+Σw. (5.18b)

To determine the CRLB, the R×R FIM according to (5.7) needs to be determined

where λ =
[
τ
[AF]
1 , τ

[AF]
2 , · · · , τ [AF]

R

]
,

∂µy

∂τ
[AF]
k

= αkδ
[AF]
k , and (5.19)

∂Σy

∂τ
[AF]
k

= 0. (5.20)
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Using (5.7), (5.19), and (5.20) the entries of the FIM are determined as

[
FIM(τ [AF])

]
k,m

= 2Re
{
α∗
kαm

(
δ[AF]

k

)H
Σ−1

y δ
[AF]
m

}
. (5.21)

Let FIMAF = FIM(τ [AF]). Then the CRLB for the estimation of τ [AF] is given by the

diagonal elements of the inverse of FIMAF, which are calculated as

CRLBR(τ
[AF]) = diag

{
FIM−1

AF

}
= diag

{(
2Re

{
DH

α

(
∆[AF])H Σ−1

y ∆[AF]Dα

})−1
}
.

(5.22)

In the case of AWGN, where ṽk and w are distributed according to CN (0, σ2
ṽk

I)

for k = 1 · · ·R and CN (0, σ2
wI), respectively, the covariance matrix of y simplifies

to

Σy =

(
R∑

k=1

(
|βk|2σ2

ṽk

)
+ σ2

w

)
I. (5.23)

Subsequently, the CRLB in (5.22) can be rewritten as

CRLBG(τ
[AF]) = diag

{∑R
k=1

(
|βk|2σ2

ṽk

)
+ σ2

w

2

(
2Re

{
DH

α

(
∆[AF])H ∆[AF]Dα

})−1
}
.

(5.24)

Based on (5.22) the following remarks are in order:

1. For R = 1 the training sequence at the relay can be set to t
[r]
k = [1, 1, · · · , 1],

and the CRLB in (5.24) can be expressed in closed-form as

CRLBG(τ
[AF]) =

|β|2σ2
ṽ + σ2

w

2|α|2

(
L∑

n=−L

g̈(nT )
L∑

i=−L

t[s](i)
(
t[s](i− n)

)∗)−1

, (5.25)

where for notational convenience, t[s](x) , 0 for x < 0 and x ≥ L.

2. Based on (5.24), similar to DF relaying, to accurately estimate the timing off-

set for each relay node (nonsingular FIMAF), the transmitted training signals

from each relay need to be distinct, ξ[AF]
1 ̸= ξ[AF]

2 ̸= · · · ̸= ξ[AF]
R .
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5.4 Training Sequence Design

Throughout this section it is assumed that BPSK signaling is used for the transmis-

sion of the training sequences.

5.4.1 Training Sequence Design for DF Relaying Networks

We first show that orthogonal training sequences such that

(
t
[r]
k

)H
t
[r]
i =


∑L

n=1

(
t
[r]
i (n)

)2
k = i

0 k ̸= i
, k = 1 · · ·R (5.26)

result in a reduced CRLB for the estimation of the timing offsets from the relays to

the destination, τ [DF].

In the case of DF relaying cooperative networks, under the assumption of real

transmitted pulses, g(t), the CRLB in (5.13) can be rewritten as

CRLBG(τ
[DF]) = diag

{
FIM−1

DF

}
= diag

{
σ2
w

2

(
D−1

f

((
∆[DF])H ∆[DF]

)−1 (
DH

f

)−1
)}

.

(5.27)

Note that for most communications systems, g(t), is real. Moreover, (5.27) follows

from the facts that the diagonal elements of the FIM are real for real transmitted

pulses, g(t) and Df is a diagonal matrix.

Theorem 5.1: The CRLBG in (5.27) is minimized, when the matrix Ω ,
(
∆[DF])H

∆[DF] is diagonal.

Proof: According to (5.27), minimizing the CRLB for the estimation of τ [DF]

is equivalent to minimizing the trace of the matrix CRLBG. Moreover, based on

results in [44], for an M ×M positive definite matrix X the following holds,

Tr
[
X−1

]
≥

M∑
j=1

1

[X]jj
, (5.28)
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with equality if X is diagonal. Let us assume that the optimum Ω that minimizes

Tr
[
CRLBG(τ

[DF])
]

is not diagonal. Then, based on (5.27), we can conclude that

FIMDF is also not diagonal. Using (5.28) we obtain that

Tr
[
CRLBG(τ

[DF])
]
= Tr

[
(FIMDF)

−1] ≥ M∑
j=1

1

[FIMDF]jj
. (5.29)

According to (5.29), there exists a matrix F̃IMDF = diag {FIMDF} that results in a

lower Tr
[
CRLBG(τ

[DF])
]
. This leads to a contradiction. Hence, the optimum Ω

must be diagonal.

Note that Ω ,
(
∆[DF])H ∆[DF] and ∆[DF] =

[
∂G[DF]

1

∂τ
[DF]
1

t
[r]
1 , · · · , ∂G

[DF]
R

∂τ
[DF]
R

t
[r]
R

]T
. Since

the matrices G[DF]
1 , · · · ,G[DF]

R are unknown as they are a function of the unknown

timing offsets, τ [DF], the known training sequences must be designed in a such a

fashion to lower the off-diagonal elements of Ω and minimize the CRLB. Numeri-

cal analysis in Section 5.6 show that transmission of orthogonal training sequences,

when combined with the set of all possible timing offsets, lowers the CRLB.

In practice point-to-point communication systems often use sign-alternating

preambles or training sequences to improve timing offset estimation [25, 67]. Al-

though the complexity of the CRLB expressions for multi-relay cooperative com-

munications systems in (5.11) and (5.22) makes it very difficult to analytically show

that training sequences that alternate in sign from one symbol to another such that

t
[r]
i (n) = (−1)n (5.30)

result in a lower CRLB, numerical analysis observed in Section 5.6 indicate that

under the assumption of Nyquist transmitted pulses, g(t), the alternating one-zero

sequence results in the lowest possible CRLB in the case of multiple timing offset

estimation. This is also empirically justifiable since Gardner’s detector and the
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timing offset estimators proposed in [25] and Section 5.5 also perform better if the

continuous signal pulse changes sign from one symbol to another.

The Walsh-Hadamard an orthogonal family of codes. The Walsh-Hadamard

matrix is a square matrix with dimensions of 2k, for k = 1, 2, 3, · · · , and entries of

+1 or −1. The Walsh-Hadamard matrices are given by the recursive relationship

[42, 68]

W
(
2k
)
=

 W
(
2k−1

)
W
(
2k−1

)
W
(
2k−1

)
−W

(
2k−1

)
 = W (2)⊗W

(
2k−1

)
. (5.31)

Even though satisfying both conditions (5.26) and (5.30) is not possible, well-

performing training sequences can be designed based on Walsh-Hadamard codes

using the following steps:

1. Select Walsh-Hadamard code sequences of length Lt, sk = [sk(0), sk(1), · · · , sk

(Lt − 1)] with emphasis on selecting the code sequences that alternate in sign

the most.

2. The orthogonal training sequence, t[r]k , for k = 1, 2, · · · .R is designed such

that

t
[r]
k = [sk(0), sk(1), · · · , sk(Lt − 1), · · · , sk(0), sk(1), · · · , sk(Lt − 1)︸ ︷︷ ︸

L

]T , (5.32)

where by repeating shorter codewords of length Lt, training sequences of

length L can be constructed without a performance penalty. Therefore, log2R <

Lt ≤ L.

For example let us consider R = 4, L = 64, Nt = 2, and Lt = 8. Then

• t
[r]
1 =

L=64︷ ︸︸ ︷
[1,−1, 1,−1, 1,−1, 1,−1︸ ︷︷ ︸

s1

, · · · ]T , t[r]2 =

L=64︷ ︸︸ ︷
[1,−1,−1, 1,−1, 1, 1,−1︸ ︷︷ ︸

s2

, · · · ]T ,
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• t
[r]
3 = [1, 1,−1,−1, 1, 1,−1,−1︸ ︷︷ ︸

s3

, · · · ]T , and t
[r]
4 = [1,−1,−1, 1, 1,−1,−1, 1︸ ︷︷ ︸

s4

, · · · ]T .

5.4.2 Training Sequence Design for AF Relaying Networks

Similar steps to that of Subsection 5.4.1 can be used to show that orthogonal train-

ing sequences also result in a lower CRLB and improve the estimation performance

in the case of AF relaying cooperative networks. Therefore, Walsh-Hadamard code

sequences can be used to design good training sequences for AF relaying networks.

For example let us consider R = 2, L = 64, Nt = 2, and Lt = 8. Then

• t[s] =

L=64︷ ︸︸ ︷
[−1, 1,−1, 1,−1, 1,−1, 1, · · · ]T ,

• t
[r]
1 =

L×Nt=128︷ ︸︸ ︷
[1,−1, 1,−1, 1,−1, 1,−1︸ ︷︷ ︸

s1

, · · · ]T , and t
[r]
2 =

L×Nt=128︷ ︸︸ ︷
[1,−1,−1, 1,−1, 1, 1,−1︸ ︷︷ ︸

s2

, · · · ]T .

Note that as shown in (5.5) in the case of AF relaying, the choice of the training

sequence transmitted from the source, t[s] affects timing offset estimation perfor-

mance at the destination.

5.5 Proposed Timing Offset Estimator

In this section, a brief overview of the MLE for multiple timing offset estimation

is provided. More details can be found in [54, 93]. Next, the proposed multiple

timing offset estimators, iterative-MLE (I-MLE) and iterative-Gardner detector (I-GD)

are outlined. Throughout this section the following assumptions are made:

• The number of relays, R, and training sequences are assumed to be known at

the destination,
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• AWGN noise is assumed at all terminals,

• the noise at each relay and destination are assumed to be mutually mutually

independent,

• similar to the results in [39,54,57,72,82,107], quasi-static fading channels are

considered, where channel gains are assumed to be constant over the length

of the training sequence, and

• the channel gains are assumed to be unknown at the receiver, since in prac-

tical communication systems, timing offset estimation is performed priori to

channel estimation [67].

For readability purposes, the case of DF cooperative networks is discussed first

and to simplify notation τ [DF] is represented by τ .

5.5.1 MLE for Multiple Timing Offset Estimation

In order to determine the MLE for timing offset estimation we first need to de-

termine the joint log-likelihood function (LLF) of timing offsets and channel gains.

Assuming that the received signal at the destination, y, is Gaussian distributed,

the LLF is proportional to

y = Ξ[DF](τ )η +w, (5.33)

where:

• η ,
[√

p
[r]
1 f1,

√
p
[r]
2 f2, · · · ,

√
p
[r]
R fR

]T
,

• Ξ[DF](τ ) ,
[
ξ[DF]

1 , ξ[DF]
2 , · · · , ξ[DF]

R

]
, and ξ[DF]

k is defined in Section 5.3.1.

Note that Ξ[DF](τ ) and ξ[DF]
k , for k = 1, · · · , R, are both functions of τ .
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Using the fact that the vector of received training signals, y, is a Gaussian ran-

dom variable, the LLF ρ(τ ,η) is given up to an additive constant by

ρ(τ ,η) =
∥∥y −Ξ[DF]η

∥∥2 . (5.34)

It is a well known fact that for a given τ , the minimizer of (5.34) is given by

η̂ =
((

Ξ[DF])H Ξ[DF]
)−1 (

Ξ[DF])H y. (5.35)

Inserting (5.35) into (5.34), the timing offset estimates can be obtained as

τ̂ [DF] = argmax
τ

yHΞ[DF]
((

Ξ[DF])H Ξ[DF]
)−1 (

Ξ[DF])H y, (5.36)

where in Matlab notation the set of possible timing offsets, τ = {τ1 · · · τR} can be

represented as

τk ∈ {−ϵk : ∆τk : ϵk} for 1 ≤ k ≤ R, (5.37)

with [−ϵk, ϵk) and ∆τk denoting the range and step size for the timing offset corre-

sponding to the kth relay, respectively. Based on (5.36) the following remarks are

in order:

1. As the timing offset values become close to one another (τ1 ≃ τ2 ≃ · · · ≃ τR)

and the transmitted training sequences become more highly correlated, the

MLE does not exist due to the term
((

Ξ[DF])H Ξ[DF]
)−1

going to infinity in

(5.36). This outcome is consistent with the CRLB results in Section 5.3.

2. The maximization in (5.36) is very complex, since it is R-dimensional and

requires carrying out large size matrix multiplications and inversion. This

will be discussed in more detail in Subsection 5.5.5. Moreover, even though

the application of the iterative alternating projection method outlined in [117]

can reduce the complexity of MLE, it still requires evaluating (5.36) at every

iteration.
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3. To accurately estimate each relay’s timing offset and reach the CRLB the step

size for the maximization in (5.36) needs to be small. For example to obtain

useful accuracy, it is required that ∆τk ≤ 10−4, for 1 ≤ k ≤ R, resulting in a

large set of possible timing offsets, further increasing the overall complexity

of the MLE.

4. When new relays are added to the network or when the nodes within the net-

work require re-synchronization, the complex R-dimensional maximization

in (5.36) needs to be performed again.

5.5.2 I-MLE for DF Networks

To address the above shortcomings, we propose an iterative MLE (I-MLE). While

estimating the mth relay’s timing offset, I-MLE uses initial estimates of the tim-

ing offsets and knowledge of the training sequences to eliminate the signal cor-

responding to the remaining relays. Based on this approach the training signal

model in (5.3) can be rewritten as

y =

√
p
[r]
m fmG

[DF]
m t[r]m︸ ︷︷ ︸

desired term

+
R∑

k=1,k ̸=m

(√
p
[r]
k fkG

[DF]
k t

[r]
k

)
︸ ︷︷ ︸

interference

+ w︸︷︷︸
noise

. (5.38)

Note that by using the alternating projection method [117] and large initial step

sizes, e.g., ∆τk = 5 × 10−2 for 1 ≤ k ≤ R, the maximization in (5.36) can be used

to calculate rough initial estimates of the timing offsets, (τ̂ )[1], where due to the

significantly smaller set of possible values the complexity of this step in terms of

the number of times that (5.36) needs to be performed is considerably less than that

of the MLE. Next, (τ̂ )[1] and the corresponding initial channel gain estimates, (η̂)[1]

calculated using (5.35), can be applied to reduce the interference term in (5.38)
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according to

qm , y −
R∑

k=1,k ̸=m

(√
p
[r]
k

(
f̂k

)[1] (
Ĝ

[DF]
k

)[1]
t
[r]
k

)
, (5.39)

where,
(
Ĝ

[DF]
k

)[1]
is a function of (τ )[1] and is defined in (5.3). In (5.39), qm ,

[qm(0), qm(1), · · · , qm(NtL − 1)] is used in the next iteration to estimate the timing

offset corresponding to the mth node using a 1-dimensional MLE according to

τ̂ [DF]
m = arg max

τm∈[(τ̂m)[1]−ε:∆ϱm:(τ̂m)[1]+ε)

qH
mξ

[DF]
m

(
ξ[DF]

m

)H
qm(

ξ[DF]
m

)H
ξ[DF]

m

, (5.40)

where

• ∆ϱm is the smaller step size of the 1-dimensional MLE, e.g., ∆ϱm = 10−4 for

1 ≤ m ≤ R,

• [(τ̂m)
[1] − ε, (τ̂m)

[1] + ε) represents the new smaller estimation range centered

around initial timing offset estimates, (τ̂m)
[1], and ξ[DF]

m is defined in (5.11).

Note that the range of timing offset estimation for the 1-dimensional MLE in (5.40)

can be chosen to be considerably smaller than that of (5.36), since the initial esti-

mates can be applied to narrow down the set of possible timing offsets. Moreover,

(5.40) does not require large matrix inversions and multiplications, further reduc-

ing the computational complexity of the timing offset estimator.

The iterative algorithm stops when the absolute difference between the LLF of

two iterations is smaller than a threshold value χ∣∣∣∣∣
∥∥∥∥y −

(
Ξ̂

[DF]
)[o+1]

(η̂)[o+1]

∥∥∥∥2 − ∥∥∥∥y −
(
Ξ̂

[DF]
)[o]

(η̂)[o]

∥∥∥∥2
∣∣∣∣∣ ≤ χ, (5.41)

where (·)[o] represents the estimates corresponding to the oth iteration. Table 5.1

summarizes the I-MLE algorithm. The following remarks are in order:
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1. The above approach decouples the joint timing offset estimation problem into

multiple single-parameter estimation problems, where the application of 1-

dimensional MLE in (5.40), does not require an R×R matrix inversion. More-

over, single parameter timing offset estimation can be solved using compu-

tationally simpler estimators such as GD [25] and MM [71].

2. Since the initialization step of I-MLE uses large step sizes, ∆τk, ϵ in (5.37) can

be selected to be much larger than the symbol duration, T . This expands the

estimation range of I-MLE.

3. Even though similar to the alternating projection MLE in Subsection 5.5.1 and

in [54, 81] the I-MLE solution may converge to a local maximum depending

on the particular initialization [117]. In our experiments, I-MLE converges to

the true timing offsets after only 2-4 iterations as observed in Section 5.6.

5.5.3 I-GD for DF Networks

Gardner’s detector (GD) outlined in [24,25,55] has been widely applied in the case

of point-to-point SISO systems, due to the simplicity of its structure and capabil-

ity to estimate timing offset in the presence of unknown carrier frequency offset.

However, the application of GD in the case of cooperative networks is complicated

due to the more complex training signal model and the presence of multiple tim-

ing offsets. To address this shortcoming, we propose the iterative Gardner detector

(I-GD).

In the case of SISO systems the output of the Gardner detector, ϖm(n) is given

by

ϖm(n) = Re
{
q∗m(tn− 1

2
) [qm(tn)− qm(tn−1)]

}
, (5.42)
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Table 5.1: I-MLE Timing offset Estimator

Step 1) Initialization

• Set the timing offsets to zero, (τ̂ )[0] = 0.

• Use the alternating projection method and a large step size,

e.g., ∆τk = 5× 10−2 for 1 ≤ k ≤ R, to solve the maximization

in (5.36) and calculate rough initial estimates of

the timing offsets, (τ̂ )[1].

• Calculate the initial channel gains corresponding to

(τ̂ )[1], η̂[1], using (5.35).

Step 2) Iteration

Note: Ξ̂
[DF]

is defined in (5.33) and y is the received

training signal and is represented in (5.3).

o = 1

While condition (5.41) holds do

• For m = 1, 2, · · · , R

− Compute (qm)[o] from (5.39) and then use (qm)[o]

to determine the mth relay’s timing offset,
(
τ̂ [DF]
m

)[o+1]

according to (5.40) with a small step size,

e.g., ∆ϱm = 10−4 for 1 ≤ m ≤ R.

− Compute the channel gains

corresponding to
(
τ̂ [DF])[o+1]

, η̂[o+1], using (5.35).

• o = o+ 1

end While
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where tn and tn−1/2 represent the interpolation instances of the nth symbol and are

calculated as

tn = nT + τ̂m(n), and (5.43)

tn− 1
2
= nT − T

2
+

τ̂m(n) + τ̂m(n− 1)

2
, (5.44)

respectively. τ̂m(n) represents the nth estimate of the timing offset corresponding

to the mth relay. Note that mean of ϖm is zero at the proper timing assuming

symmetric pulses, e.g., raised-cosine pulse.

Fig. 5.4 represents the proposed block diagram for I-GD. In Fig. 5.4 the interfer-

ence canceller uses the initial timing offsets and channel gains estimates to obtain

the training signal corresponding to the mth relay, qm, according to (5.39). The

practical structure and design of the interpolator, timing controller, and loop filter

in Fig. 5.4 are outlined in [25, 67].

Figure 5.4: Block diagram of the proposed I-GD algorithm.
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5.5.4 I-MLE and I-GD for AF Networks

In the case of AF networks, by combining the noise terms in (5.16) the training

signal model at the destination can be represented as

y =
R∑

k=1

αkξ
[AF]
k + zc, (5.45)

where the overall noise, zc is given by

zc =
R∑

k=1

βkṽk +w. (5.46)

Under the assumption of AWGN with covariance matrices, Σw = σ2
wI and Σṽk

=

σ2
ṽk
I for 1 ≤ k ≤ R and quasi-static frequency-flat fading channels, the covariance

matrix of zc is equal to Σzc =
(∑R

k=1

(
|βk|2σ2

ṽk

)
+ σ2

w

)
I. Therefore, since in the case

of AF networks the overall noise is still white Gaussian and the signal model in

(5.45) is similar to that of DF networks in (5.3), I-MLE and I-GD can be applied to

estimate τ [AF].

5.5.5 Complexity Analysis and Comparison

The initialization step for I-MLE and I-GD requires

CompIN =R× 2ϵ

∆ι

[
R3 + 2R2LNt + (R + 1)L2N2

t + LNt

]
︸ ︷︷ ︸

Eq. (5.36)

+R3 + 2R2LNt +RL2N2
t︸ ︷︷ ︸

Eq. (5.35)

, (5.47)

additions and multiplications, where ∆ι represents the step size. Subsequently, the

computational complexity of I-MLE and I-GD in terms of the number of required

additions and multiplication can be determined as

CompI-MLE =CompIN

99



+ ϑ×
R∑

m=1

 2ε

∆ϱm

(
L2N2

t + LNt

)
︸ ︷︷ ︸

Eq. (5.40)

+R3 + 2R2LNt +RL2N2
t︸ ︷︷ ︸

Eq. (5.35)

 , and

(5.48)

CompI-GD = CompIN + ϑR×

 5L︸︷︷︸
[55]

+R3 + 2R2LNt +RL2N2
t︸ ︷︷ ︸

Eq. (5.35)

 , (5.49)

respectively. In (5.48) and (5.49) ∆ϱm and ε denote the mth relay’s step size and es-

timation range for the 1-dimensional MLE in (5.40), respectively, and ϑ represents

the number of iterations.

To ensure a fair comparison, the computational complexity of I-MLE and I-

GD are compared against the less complex MLE based on the iterative alternating

projection algorithm (MLE-AP). The number of additions and multiplications for this

approach is given by

CompMLE-AP =κ×R× 2ϵ

∆ς

[
R3 + 2R2LNt + (R + 1)L2N2

t + LNt

]
︸ ︷︷ ︸

Eq. (5.36)

+R3 + 2R2LNt +RL2N2
t︸ ︷︷ ︸

Eq. (5.35)

, (5.50)

where ∆ς and κ denote the step size and the number of iterations, respectively.

Table 5.2 compares the complexity of MLE-AP, I-MLE, and I-GD for different num-

bers of relays and training sequence lengths using (5.50), (5.48), and (5.49), respec-

tively. When compared to MLE-AP, I-MLE and I-GD are on average 40 and 1800

times less computationally intensive, respectively. This significant complexity re-

duction enables more practical application of I-MLE and I-GD in distributed coop-

erative networks. Note that the choices of κ = 3 iterations for MLE-AP and ϑ = 4
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iterations for I-MLE and I-GD in Table 5.2 are motivated by the results in [81] and

the numerical analyses in Section 5.6, respectively.

Table 5.2: Number of additions and multiplication for MLE-AP, I-MLE, and I-GD

×107

∆ς = 10−4, ∆ϱm = 10−4 for 1 ≤ m ≤ R, ∆ι = 5× 10−2,

κ = 3, ϑ = 4, ϵ = 10, ε = 1, and Nt = 2

MLE-AP I-MLE I-GD

L = 64, R = 2 6030 266 4.02

L = 64, R = 4 20700 535 13.7

L = 64, R = 8 78900 1084 47.7

L = 128, R = 2 23800 1061 15.8

L = 128, R = 4 80700 2133 54.1

5.6 Numerical Results and Discussions

Throughout this section the propagation loss is modeled as [67]

β = (d/d0)
−m , (5.51)

where d is the distance between the transmitter and receiver, d0 is the reference

distance, and m is the path loss exponent. The following results are based on

d0 = 1km and m = 2.7, which corresponds to urban area cellular networks. The

relays’ distances from the source and destination, d[sr] = d[rd] = 1km unless other-

wise specified. The transmit pulse shaping filter, g(t) is RRC, which ensures a net

transmit and receive filter response of raised-cosine pulse. The roll-off factor and
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the range of timing offset estimation are set to 0.22 and [−10T, 10T ), respectively.

When not specified, the training sequence design outlined in Section 5.4 is used.

Without loss of generality only the timing offset estimation performance for the

first node, τ1, is presented and σ2
v1

= · · · = σ2
vk

= σ2
w. Finally, SNR is defined as 1/σ2

v

and 1/σ2
w for both source-relay and relay-destination links, respectively.

5.6.1 Estimation Performance
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Figure 5.5: CRLBs for timing offset estimation with the relays at different locations

with L = 64 and Nt = 2. A. The CRLBs for timing offset estimation for DF co-

operative networks. B. The CRLB for timing offset estimation for AF cooperative

networks.
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Fig. 5.5 shows the effect of network topology on frequency synchronization in

distributed cooperative systems by comparing the CRLB in (5.13) and (5.24) for

DF and AF protocols, respectively. Three different relay locations are taken into

consideration (d[sr] + d[rd] = 2km for all nodes): d[rd] = .5km, d[sr] = d[rd], and

d[rd] = 1.5km. According to Fig. 5.5 A., the best overall timing offset estimation

at the destination in DF networks is achieved when the relay nodes are closer to

the destination. In comparison, Fig. 5.5 B. shows that for AF networks moving

the nodes closer to the destination from the mid-point do not result in significant

improvement in estimation performance due to noise at the relay nodes that is

amplified and forwarded to the destination. These findings can be combined with

relay selection methods to improve timing synchronization in distributed cooper-

ative networks.

Fig. 5.6 presents a comparison between the CRLB for timing offset estimation

in DF and AF relaying cooperative networks, as the number of relays increases.

The CRLBs in (5.13) and (5.24) are plotted for R = 2 and R = 4 relays, and

τ [DF] = τ [AF] = {.1, .2, .3, .4}. Fig. 5.6 demonstrates that compared to DF, an AF

relaying cooperative network requires the SNR from the relays to the destination

to be a minimum of 5dB higher in order to reach the same timing offset estimation

accuracy. Fig. 5.6 also shows that due to the term
(∑R

k=1

(
|βk|2σ2

vk

)
+ σ2

w

)
in (5.24)

in the case of AF relaying cooperative networks, as the number of relays within the

network increases, timing offset estimation accuracy decreases. This is in contrast

to the CRLB for DF relaying cooperative networks in (5.13) and demonstrates an-

other advantage of the DF protocol over AF in achieving timing synchronization

in multi-relay networks.

Fig. 5.7 illustrates that for non-orthogonal training sequences (dotted lines) the
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Figure 5.6: Comparison of the CRLB in (5.13) and (5.24) for different number of

relays in the case of DF and AF relaying cooperative networks, respectively (L = 64

and Nt = 2).

CRLB significantly increases when the timing offset values are close to one another.

However, in the case of orthogonal training sequences (solid lines) the CRLB is not

significantly influenced by the value of timing offsets, τ [DF], resulting in accurate

joint timing offset estimation for both close and far apart timing offset values. To

obtain the results in Fig. 5.7 in the non-orthogonal scenario, the training sequences

are chosen such that t[r]1 = t
[r]
2 = [1,−1, 1,−1 · · · ]T and in the orthogonal case t

[r]
1 =

[1, 1,−1,−1, · · · ]T and t
[r]
2 = [1,−1, 1,−1, · · · ]T .

Numerical analysis in Fig. 5.8 illustrates that mutual orthogonality of the train-

ing sequences is not the only condition that affects timing offset estimation perfor-

mance, showing training sequences that alternate in sign more frequently perform
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Figure 5.7: Comparison of the CRLB in (5.13) for orthogonal and non-orthogonal

training sequences when τ [DF]
1 ≃ τ [DF]

2 and τ [DF]
1 ̸= τ [DF]

2 (R = 2, L = 64, and Nt = 2).

considerably better. The timing offset values are set to τ [DF] = {.1, .2} in all simu-

lation runs and the training sequences are

TS-1) t
[r]
1 = [1, 1,−1,−1, 1, 1,−1,−1, · · · ]T and t

[r]
2 = [1,−1, 1,−1, 1,−1, 1,−1, · · · ]T

for the � plot,

TS-2) t
[r]
1 = [1,−1,−1, 1,−1, 1, 1,−1, · · · ]T and t

[r]
2 = [1,−1, 1,−1, 1,−1, 1,−1, · · · ]T

for the + plot, and

TS-3) t
[r]
1 = [1,−1, 1,−1, 1,−1, 1,−1, · · · ]T and t

[r]
2 = [1,−1,−1, 1,−1, 1, 1,−1, · · · ]T

for the ◦ plot.

Note that t[r]1 in TS-1, TS-2, and TS-3 alternate in sign, 3, 5, and 7 times, respectively,

where as shown in Fig. 5.8, TS-3 with the largest number of sign alternations has
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Figure 5.8: Comparison of the CRLB (5.13) for different orthogonal training se-

quences, demonstrating that orthogonality is not the only condition that affects

timing offset estimation in cooperative networks (R = 2, L = 64, and Nt = 2).

the lowest CRLB.

Fig. 5.9 compares the performance of I-MLE and I-GD for the estimation of

τ [DF] in DF networks against the CRLB, (5.13). The MSE for the initialization step

of I-MLE and I-GD is also presented. As anticipated the initialization step of I-MLE

performs poorly and suffers from an error floor due to the larger step sizes, which

reduce the computational complexity of this step but adversely affect its perfor-

mance. Using the iterative step the performance of the initialization step of I-MLE

is improved, where I-MLE is close to the CRLB at low SNR and reaches the CRLB

at mid-to-high SNR. On the other hand, I-GD demonstrates good performance,

but similar to the GD, suffers from an error floor at high SNR values due to the
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Figure 5.9: The MSE of I-MLE, I-GD, and the initial MLE for the estimation of τ [DF]
1

for DF networks VS. the CRLB in (5.13) with R = 4, L = 64, and Nt = 2.

self-noise as also shown in [55]. Note that the modified GD outlined in [55] is used

to obtain the results in Fig. 5.9. The threshold in (5.41) is set to χ = .001, which

corresponds to 2−4 iterations as shown in Fig. 5.11. The same channels are used in

all simulations. More precisely, f are drawn from independent and identically dis-

tributed zero-mean complex Gaussian processes with unit variance. For our par-

ticular channels f = [.2790− .9603i, .8837+ .4681i, .5377+ .1834i,−.2588+ .8622i]T .

The timing offsets are set to τ [DF] = {.1, 1.2, .12, .4} to examine the estimators’ per-

formance for close and far apart timing offset values.

Fig. 5.10 compares the performance of I-MLE and I-GD for the estimation of

τ [AF] in AF networks against the CRLB in Eq. (5.24). The MLE used as the initial-

ization step for both I-MLE and I-GD is also presented for comparison purposes.
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Figure 5.10: The MSE of I-MLE, I-GD, and the initial MLE for the estimation of τ [AF]
1

for AF networks VS. the CRLB in (5.13) with R = 4, L = 64, and Nt = 2.

The threshold in (5.41), χ = .001. The channel gains from the source to the relays

and from the relays to the destination are, h = [.7820+ .6233i, .9474− .3203i, .3188−

.1308i,−.4359+.3426]T and f = [.2790−.9603i, .8837+.4681i, .5377+.1834i,−.2588+

.8622i]T , respectively. The timing offset are set to τ [AF] = {.1, 1.2, .12, .4}. Similarly,

the modified GD is used to obtain the results in Fig. 5.10. Note that the results in

Figs. 5.10, 5.10, and 5.11 are obtained through 1000 Monte Carlo trials.

Figs. 5.9 and 5.10 reveal that the CRLB expressions derived in Section 5.3 can be

reached over a wide range of SNR values and are valid lower bounds that can be

applied to assess the effect of training sequence, network protocol, and topology on

multiple timing offset estimation in cooperative networks. Figs. 5.9 and 5.10 also

show even though I-MLE and I-GD are computationally simpler than the MLEs
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Figure 5.11: Number of iterations for I-MLE and I-GD with L = 64, Nt = 2, and

R = 2. A. DF cooperative networks corresponding to Fig. 5.9. B. AF cooperative

networks corresponding to Fig. 5.10.

in [54, 93], this considerably complexity reduction does not come at the cost of

significant loss of estimation performance. This is an important finding, since as

shown in the following subsection and in [54], timing offset estimation accuracy

has a direct impact on the performance of cooperative communications systems.

Fig. 5.11 A. and B. compare the number of iterations for I-MLE and I-GD for

DF and AF relaying cooperative networks, respectively, showing that both algo-

rithms converge to the true timing offsets estimates with very few iterations. This

result, combined with the complexity analysis in (5.48) and (5.49), demonstrate

that I-MLE and I-GD are capable of effectively achieving timing synchronization
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with reduced computational complexity. Moreover, in [54] it has been shown that

when combined with re-synchronization filters, timing offset estimators that reach

the CRLB significantly improve the average-bit-error-rate (ABER) of multi-relay

distributed cooperative networks.

5.6.2 Cooperative Network Performance

In this subsection the ABER of multi-relay cooperative communications systems

in the presence of multiple timing offset is investigated. During the data transmis-

sion interval the quadrature phase-shift keying (QPSK) modulation is used for data

transmission with a frame length of 1024 symbols, which corresponds to an overall

synchronization overhead of 6.25%.

For both cases of DF and AF relaying, the timing offsets from the source-to-

relays, τ [sr] are estimated and compensated at the relays in a similar manner to

that of a point-to-point system [67]. Note that the proposed simulation setup does

not make any assumptions regarding timing synchronization errors at the relays.

The timing offsets from the relays-to-destination links are estimated using I-MLE

and I-GD.

In the presence of a single timing offset, the resulting inter-symbol interference

(ISI) can be eliminated by applying a matched filter at the destination that is de-

layed by τd, where τd is chosen to be the opposite of the timing offset [54, 67]. On

the other hand, in the presence of multiple timing offsets, τd is selected to minimize

the resulting ISI. The optimum τd for DF relaying is given by [54]

τ [DF]
d =

∑R
k=1 |f̂k|2τ̂k∑R
k=1 |f̂k|2

. (5.52)
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This result can be straightforwardly extended to the case of AF relaying and rewrit-

ten as

τ [AF]
d =

∑R
k=1 |α̂k|2τ̂k∑R
k=1 |α̂k|2

, (5.53)

where αk is defined in (5.45). Fig. 5.12 outlines the receiver structure at the des-

tination, where τd in (5.52) and (5.53) is used to compensate the effect of multiple

timing offsets.

Figure 5.12: The receiver structure used to compensate multiple timing offsets at

the destination in the case of AF and DF relaying networks.

Figs. 5.13 and 5.14 illustrate the ABER of DF and AF relaying SISO multi-relay

cooperative networks, respectively. Here I-MLE and I-GD acquire the completely

unknown timing offsets and compensate their effect using (5.52) and (5.53). This

result is compared to unsynchronized systems with timing offsets in the range

[−.1T, .1T ) and [−.3T, .3T ) per relay node, as well as to perfectly synchronized

systems. The results in both figures show that timing offsets as small as 0.1T per

relay node have a significant impact on the performance of cooperative networks

while offsets in the range [−.3T, .3T ) per relay node result in a systematic failure

in both cases of DF and AF relaying. Figs. 5.13 and 5.14 also show that compared

to DF, the performance of AF relaying networks is more significantly impacted by

timing offsets. This outcome is anticipated, since in the case of AF relaying due
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to the lower overall SNR at the destination the multiple timing offset estimators

I-MLE and I-GD have lower estimation accuracies.

Figs. 5.13 and 5.14 illustrate that both I-MLE and I-GD can be utilized to accu-

rately estimate multiple timing offsets and significantly improve the performance

of cooperative networks. Note that in the case of DF relaying in Fig. 5.13, the ABER

plots for perfectly synchronized, I-MLE, and I-GD systems are supper imposed,

since the performance degradation caused by I-MLE and I-GD’s estimation errors

does not exceed .2dB, which is an important threshold as outlined in [67]. How-

ever, in the case of AF relaying as shown in Fig. 5.14 at low SNR, the performance

degradation caused by I-GD exceeds .2dB and indicates that the proposed I-GD

estimator is more suitable for timing offset estimation in AF relaying networks at

mid-to-high SNR.

5.7 Conclusion

In this chapter the system model for timing offset estimation in multi-relay dis-

tributed cooperative networks is outlined. The CRLB expressions for the joint esti-

mation of timing offsets in DF and AF relaying cooperative networks are derived

and are applied in a novel way to propose new training sequence design guide-

lines.

Two new multiple timing offset estimators are proposed that are shown to sig-

nificantly reduce the complexity and overhead associated with timing synchro-

nization in distributed cooperative networks. Simulation results show the impor-

tance of timing synchronization in distributed cooperative networks while at the

same time demonstrating that application of the proposed estimators significantly
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Figure 5.13: ABER plots for DF relaying for perfectly synchronized, imperfectly

(estimated) synchronized via I-MLE and I-GD, and unsynchronized systems with

timing offsets in the range [−.1T, .1T ) and [−.3T, .3T ) per node (R = 4, L = 64, and

Nt = 2).

improves overall network’s performance.
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Figure 5.14: ABER plots for AF relaying for perfectly synchronized, imperfectly

(estimated) synchronized via I-MLE and I-GD, and unsynchronized systems with

timing offsets in the range [−.1T, .1T ) and [−.3T, .3T ) per node (R = 4, L = 64, and

Nt = 2).
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Chapter 6

Carrier Frequency Offset Estimation in

Distributed Cooperative Networks

6.1 Introduction

THE presence of multiple carrier frequency offsets (CFOs) in distributed cooper-

ative networks arises due to simultaneous transmissions from spatially separated

nodes with different oscillators and Doppler shifts. The CFOs result in the rotation

of the signal constellation causing signal-to-noise ratio (SNR) loss. The amount

of SNR loss and channel estimation accuracy are highly dependent on CFO es-

timation precision at the receiver [67]. Thus, accurate CFO estimation is key to

successful deployments of cooperative networks.

In [64, 103, 110] and references therein, space time coding techniques are pro-

posed that provide full spatial diversity in the presence of CFOs. However, the

schemes outlined in [64, 103, 110] require CFOs to be estimated and equalized at

the destination. Note that the results in [64, 103, 110] do not address CFO estima-

tion.
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Previously proposed multiple CFO estimation methods for multiple-input-mul-

tiple-output (MIMO) systems include [6, 58, 78, 109]. In [6], a maximum-likelihood

estimator (MLE) is presented that requires exhaustive search and performs poorly

when the CFOs are close to one another. In [109], a correlation-based estimator

(CBE) is proposed using orthogonal training sequences transmitted from different

antennas. However, the CBE suffers from an error floor, requires the use of corre-

lators at the receiver, and performs very poorly when normalized CFO values are

larger than .05. In [58] and [78], iterative schemes are proposed to eliminate the

CBE’s error floor. However, since CBE is used as the initial estimator, the estima-

tors in [58] and [78] also perform poorly at large CFO values. While the assumption

of small CFO values in [58,78,109] might hold for point-to-point MIMO systems, it

is not justifiable for cooperative systems with distributed nodes and independent

oscillators. In addition, the estimators in [6, 58, 78, 109] cannot be directly applied

to the case of amplify-and-forward (AF) relaying networks due to the different

training signal model.

In [75] a maximum a posterior (MAP) CFO estimator for single-relay 3-terminal

decode-and-forward (DF) networks is presented. However, the approach in [75] is

limited to the case of DF relaying and suffers from the same shortcomings as in [6].

While, a multiple CFO estimator for DF relaying cooperative networks is proposed

in [5], no specific performance analysis is provided. In [101], CFO estimation in

two-way AF relaying networks is investigated. However, the system model con-

sists of a single relay only, the effect of Doppler shift is ignored, and it is assumed

that the received signal is affected by only a single CFO. In [116], CFO estimation in

multi-relay orthogonal frequency division multiple access (OFDMA)-based coop-

erative networks is addressed. However, to simplify the CFO estimation problem,

116



it is assumed in [116] that at any given time only a single relay transmits its sig-

nal to the receiver. Finally, CFO estimation in AF relaying single-relay orthogonal

frequency division multiplexing (OFDM)-based cooperative networks has been

analyzed in [40], where similar to [116], it is assumed that the received signal is

affected by only a single CFO.

The Cramer-Rao lower bound (CRLB) [44] has been used as a quantitative per-

formance measure for CFO estimators [6, 28, 29] and can be applied to determine

the effects of network protocol and topology on CFO estimation accuracy in coop-

erative systems. The CRLB for CFO estimation in MIMO point-to-point systems

is derived in [6]. In [75], the CRLB for 3-terminal DF cooperative networks is pre-

sented. However, the analysis in [75] is limited to single-relay DF networks and

the results are based on an assumed Gaussian distribution for the CFO, which is

not realistic, given that the sources of CFO do not undergo significant changes, as

shown in [6, 28, 29, 58, 78, 108, 109]. To the best of author’s knowledge there are no

CRLB results in the literature for joint estimation of CFOs in a distributed multi-

relay cooperative network.

The multiple signal characterization (MUSIC) algorithm is a spectral estima-

tion method that has been applied to the estimation of parameters of a received

signal, including CFO and direction-of-arrival in point-to-point systems [92]. The

application of the MUSIC algorithm to CFO estimation in multi-relay or multi-user

networks is difficult, however, due to the following shortcomings: (i) estimating

close CFO values, and (ii) assigning each CFO to its source. In the case of OFDMA-

based systems, the MUSIC algorithm has been proposed as a suitable method of

estimating each user’s CFO [69, 104]. However, to address the shortcomings of

MUSIC, the algorithms in [69, 104] are based on the assumptions that in OFDMA
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systems, the users’ carrier frequencies are well spaced and each user has a specific

set of subcarriers assigned to it. Both of these assumptions are not applicable to the

case of space-division multiple access (SDMA) cooperative networks, where mul-

tiple relays simultaneously transmit their signals over the same frequency band to

the destination [103, 111, 114].

This chapter seeks to extend the results in [60] so as to provide a more comprehen-

sive investigation of the performance of the proposed estimators, and gain insight

on the effect of CFO estimation accuracy on the performance of cooperative net-

works. The contributions and organization of this chapter can be summarized as

follows:

• In Section 6.2, a system model for CFO estimation in DF and AF relaying networks

is outlined.

• Analogous to Chapter 5, in Section 6.3, new closed-form CRLB expressions for

CFO estimation for DF and AF multi-relay cooperative systems are derived. In

addition to serving as a benchmark for assessing the performance of CFO estima-

tors, the CRLBs are used in a novel way to quantitatively determine the effect of

network protocol and number of relays on CFO estimation accuracy.

• Section 6.4, proposes an algorithm that uses distinct training sequences transmit-

ted from each relay to address certain shortcomings of MUSIC and accurately es-

timate and assign each CFO to its corresponding relay. Unlike the algorithms

in [6,58,78,109] the proposed estimators have accuracies that are maintained over

the range of possible CFO values. Moreover, it is shown that the proposed CFO

estimators are also applicable to AF relaying networks. Finally, a complexity anal-

ysis for both estimators is presented.
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• Section 6.5, numerical analyses are presented showing that the proposed estima-

tors either reach or approach the CRLB at mid-to-high SNR. By combining the

proposed CFO estimation technique with the CFO compensation method in [102],

it is also shown that frequency synchronization and significant performance gains

in cooperative networks can be achieved.

6.2 System Model

Analogous to Chapter 5, a half-duplex space division multiple access (SDMA) co-

operative network consisting of a source and destination pair and a cluster of R

relay nodes is considered, where the relays are assumed to be distributed through-

out the network as shown in Fig. 5.1 A. Multiple CFO estimation using a training

sequence is analyzed, where during the training interval, the CFOs and channel

gains corresponding to R relay nodes are estimated. These estimates can be ap-

plied in the data transmission interval to improve system performance. Through-

out this chapter, the following set of assumptions and system design parameters

are considered:

1. In Phase I the source broadcasts its training sequence to the relays and in

Phase II the relays transmit R distinct training sequences simultaneously to

the destination, as in Fig. 5.1 B.

2. Without loss of generality, it is assumed that unit amplitude phase-shift key-

ing (PSK) training sequences are transmitted.

3. Unless specified, quasi-static channels are considered, where the channel

gains are assumed not to change over the length of a frame of symbols but to

change from frame to frame.
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4. CFOs are modeled as unknown non-random parameters with no assump-

tions on their distributions.

5. Similar to most CFO and channel estimation methods, it is assumed that

nodes within the network are synchronized in time [6,58,78,109]. In addition,

it is noted in [6, 28, 29] that timing offset estimation can be decoupled from

CFO estimation. Finally, timing offset estimation in distributed cooperative

networks has been comprehensively addressed in [61].

Note that Assumptions 2, 3, and 4 are in line with previous CFO estimation analy-

ses in [6,28,58,78,109] and are also intuitively justifiable, since the main sources of

CFO are oscillator mismatch and Doppler shift. In addition, oscillator properties,

Doppler shifts, and channel gains are assumed not to change significantly during

the short training sequence.

6.2.1 Training Signal Model for DF Relaying Cooperative Net-

works

6.2.1.1 Training Signal Model at the Relays

For DF relaying, the signal at the relays is down-converted to baseband, matched-

filtered, and decoded [50, 84, 87, 103]. Thus, the CFO from the source to the kth

relay, ν [sr]
k , for k = 1 · · ·R, needs to be estimated at each relay, similar to that of a

single-input-single-output (SISO) system. The baseband received training signal,

rk(n) at the kth relay node at time n is given by

rk(n) =
√
p[s]hke

j2πnν
[sr]
k t[s](n) + vk(n), n = 1, · · · , L, k = 1, · · · , R (6.1)

where:
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• L denotes the length of the training sequence,

• t[s] ,
[
t[s](1), · · · , t[s](L)

]
is the known training sequence broadcast from the

source to the relay nodes,

• ν
[sr]
k , ∆ν

[sr]
k T is the sampled (normalized) CFO from the source to the kth

relay node, where T is the symbol duration,

• hk represents the unknown channel gain from the source to the kth relay

node,

• p[s] is the transmitted power from the source, and

• vk(n) is the AGN at the kth relay node with mean zero and variance σ2
vk

and

is denoted by CN (0, σ2
vk
).

Given that CFO estimation in SISO systems has been extensively addressed in

the literature, estimation of ν [sr] ,
[
ν
[sr]
1 , ν

[sr]
2 , · · · , ν [sr]

R

]
is not discussed further.

Instead the reader is referred to [67].

6.2.1.2 Training Signal Model at the Destination

The baseband received training signal model at destination, y for a DF cooperative

network consisting of R relay nodes is given by

y(n) =
R∑

k=1

√
p
[r]
k fke

j2πnν
[rd]
k t

[r]
k (n) + w(n), n = 1, · · · , L (6.2)

where:

• t
[r]
k ,

[
t
[r]
k (1), t

[r]
k (2), · · · , t[r]k (L)

]
is the known transmitted training sequence

distinct to the kth relay,

• gk denotes the unknown channel gain from the kth relay to the destination,
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• p
[r]
k is the transmitted power from the kth relay,

• ν
[rd]
k , ∆ν

[rd]
k T is the normalized CFO from the kth relay to the destination,

and

• w(n) is the AGN at the destination with CN (0, σ2
w).

According to (6.2), the CFOs, ν [rd] ,
[
ν
[rd]
1 , ν

[rd]
2 , · · · , ν [rd]

R

]
, need to be jointly

estimated at the destination.

6.2.2 Training Signal Model for AF Relaying Cooperative Net-

works

6.2.2.1 Training Signal Model at the Relays

Since signals traveling through different channels experience different Doppler

shifts, the received signal at the destination is affected by multiple CFOs even if

the relay does not convert the signal to baseband. In addition, to accurately esti-

mate multiple CFOs corresponding to each source-relay-destination link, the train-

ing sequence forwarded from each relay needs to be distinct. Hence, the proposed

baseband processing structure in Section 5.2 as illustrated in Fig. 5.1, can be also

applied in the case of CFO estimation to ensure that each relay’s training sequence

is distinct.

6.2.2.2 Training Signal Model at the Destination

For AF relaying the signal model at the destination is given by

y(n) =
R∑

k=1

ζk

√
p
[r]
k p[s]fkhke

j2πnν
[sum]
k t̃

[r]
k (n)t[s](n)︸ ︷︷ ︸

desired signal
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+
R∑

k=1

ζk

√
p
[r]
k fke

j2πnν
[rd]
k t̃

[r]
k (n)vk(n) + w(n)︸ ︷︷ ︸

overall noise

, (6.3)

where:

• ζk , 1/
√

p[s]|hk|2 + σ2
vk

satisfies the kth relay’s power constraint,

• ν
[sum]
k , ν

[rd]
k + ν

[sr]
k , and

• t̃
[r]
k is used to modulate the received training sequence, t[s] to ensure the kth

relay has a specific training sequence.

Eq. (6.3) follows from the fact that the received signal, rk(n), is amplified and

forwarded without being decoded. Note that in (6.3) the factor of vk, t̃[r]k , does not

change the statistical properties of the noise assuming unit-amplitude PSK training

symbols.

According to (6.3), 2R quantities containing CFOs are present in the signal

model:

1. ν [sum] ,
[
ν
[sum]
1 , ν

[sum]
2 , · · · , ν [sum]

R

]
, which result in rotation of the signal con-

stellation and

2. ν [rd] ,
[
ν
[rd]
1 , · · · , ν [rd]

R

]
, which affect the AGN at the relays.

Since ν [rd] only phase-shift the noise in (6.3) and do not affect signal detection,

the terms ν [sum] are the only CFO-related quantities that influence system perfor-

mance. From the above, we conclude that it suffices to estimate ν [sum] at the desti-

nation.
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6.3 Cramer-Rao Lower Bound

In this section the CRLBs for joint CFO estimation for DF and AF relaying networks

are derived.

Note that analogous to Chapter 5, since the channel gains are assumed to be

unknown, for more a complete analysis the CRLBs need to be derived for the joint

estimation of both CFOs and channel gains. However, the CRLB expressions for

the joint estimation of these 3R parameters (R real and imaginary part of channel

gains and R timing offsets) are too complex and provide little insight on the effect

of training sequence, network protocol, and topology on CFO estimation. As a

result, in this section the CRLB expressions for the joint estimation of the R CFOs

are derived. Numerical results in Section 5.6 show that the CRLBs derived in this

section are tight and are reached by the proposed estimators in Section 6.4. Note

that the numerical results in Section 6.4 assume unknown and estimated channels.

6.3.1 Decode-and-Forward Cooperative Networks

According to the received signal model in (6.2), the CFOs, ν [rd], need to be jointly

estimated at the destination. Unlike the results in [6], the CRLB is derived here for

the general case of Rician frequency-flat fading channels where gk is a Gaussian

random variable with CN (µgk , σ
2
gk
) and zero-mean colored AGN, and where w =

[w(1), w(2), · · · , w(L)]T with CN (0,Σw). For notational convenience we introduce

the following variables:

• Eν[rd] , [e[rd]
1 , e[rd]

2 , · · · , e[rd]
R ] is an L×R matrix,

• e[rd]
k ,

[
t
[r]
k (1), t

[r]
k (2)ej2πν

[rd]
k , · · · , t[r]k (L)ej2π(L−1)ν

[rd]
k

]T
,

• Dη , diag(η1, · · · , ηR) is an R×R matrix with ηk ,
√

p
[r]
k µgk ,
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• DL , diag(0, 2π, · · · , (L− 1)2π) is an L× L matrix, and

• X is an L× L matrix with Xk,m = j2π(k −m).

According to (6.2), the vector y , [y(1), y(2), · · · , y(L)]T of the received signals

at the destination is distributed as y ∼ CN (µy,Σy), where
µy = E[y] =

∑R
k=1 ηke

[rd]
k

Σy = E[(y − µy)(y − µy)
H ] =

∑R
k=1 p

[r]
k σ2

fk
e
[rd]
k

(
e
[rd]
k

)H
+Σw

. (6.4)

To determine the CRLB, the R × R Fisher’s Information Matrix (FIM) needs to be

determined. In the case of parameter estimation from a complex Gaussian obser-

vation sequence, the FIM entries are given by [44]

FIM(λ)k,m = 2Re

[
∂µH

y

∂λk

Σ−1
y

∂µy

∂λm

]
+ Tr

[
Σ−1

y

Σy

λk

Σ−1
y

Σy

λm

]
, (6.5)

where λ =
[
ν
[rd]
1 , ν

[rd]
2 , · · · , ν [rd]

R

]
,

∂µy

∂ν
[rd]
k

= ηk
∂e

[rd]
k

∂ν
[rd]
k

, and (6.6)

∂Σy

∂ν
[rd]
k

= p
[r]
k σ2

fk

∂e
[rd]
k

∂ν
[rd]
k

(
e
[rd]
k

)H
+ e

[rd]
k

∂
(
e
[rd]
k

)H
∂ν

[rd]
k

 . (6.7)

The term ∂e
[rd]
k /∂ν

[rd]
k in (6.6) and (6.7) is a column vector with its nth element given

by

∂e
[rd]
k

∂ν
[rd]
k

(n) = j2πnt
[r]
k (n)ej2πnν

[rd]
k n = 1, · · · , L. (6.8)

Using (6.8), Eq. (6.7) can be rewritten as

∂Σy

∂ν
[rd]
k

= p
[r]
k σ2

fk
e
[rd]
k

(
e
[rd]
k

)H
⊙X. (6.9)
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Using (6.5), (6.6), (6.8), and (6.9) the entries of the FIM are determined as

FIM(ν [rd])k,m =2Re
{
η∗kηm

(
e
[rd]
k

)H
DLΣ

−1
y DLe

[rd]
m

}
(6.10)

+ Tr
[
p
[r]
k p[r]mσ2

fk
σ2
gmΣ

−1
y

(
e
[rd]
k

(
e
[rd]
k

)H
⊙X

)
Σ−1

y

(
e[rd]m

(
e[rd]m

)H ⊙X
)]

.

Let FIMDF , FIM(ν [rd]). Then the CRLB for the estimation of ν [rd] is given by the

diagonal elements of the inverse of FIMDF, which are calculated as

CRLBR(ν
[rd]) = FIM−1

DF =
(
2Re

{
DH

η EH
ν[rd]DLΣ

−1
y DLEν[rd]Dη

}
+Ξν[rd]

)−1
, (6.11)

where the elements of the R×R matrix Ξν[rd] are given by

Ξν[rd](·)k,m = Tr
[
p
[r]
k p[r]mσ2

fk
σ2
gmΣ

−1
y

(
e
[rd]
k

(
e
[rd]
k

)H
⊙X

)
Σ−1

y

(
e[rd]m

(
e[rd]m

)H ⊙X
)]

.

(6.12)

Based on (6.11) the following remarks are in order:

•

• In the case of the case of additive white Gaussian noise (AWGN) and quasi-static

channels, where σ2
gk

= 0, the covariance matrix of the observation vector, y,

Σy = σ2
wI. Therefore, Ξν[rd] = 0 in (6.11) and the CRLB simplifies to

CRLBQ(ν
[rd]) =

σ2
w

2

(
Re
{

DH
η EH

ν[rd]D
2
LEν[rd]Dη

})−1
. (6.13)

• According to (6.13) when the same training sequence is transmitted from all

the relays (t[r]1 = t
[r]
2 = · · · = t

[r]
R ) and when CFOs from the relays to the

destination are close to one another (ν [rd]
1 ≃ ν

[rd]
2 ≃ · · · ≃ ν

[rd]
R ), the matrix

FIMDF becomes singular, due to the term EH
ν[rd]D2

LEν[rd] . According to [91] a

singular FIM, points to the fact that an unbiased estimator does not exist

that can jointly estimate ν [rd]. Moreover, the CRLB, which is the inverse of

126



FIMDF approaches infinity indicating that the CFOs estimation errors become

unbounded. It is, therefore, necessary that the training sequence transmitted

from each relay be distinct.

6.3.2 Amplify-and-Forward Cooperative Networks

For AF relaying networks, there does not exist an explicit CRLB for the estimation

of ν [sum] in Rician fading channels, due to the presence of the term gkhk in (6.3).

We note that the product of two Gaussian random variables is not Gaussian and

its probability distribution function (PDF) is difficult to calculate, [20]. This motivates

the derivation of the CRLB for the joint estimation of ν [sum] for quasi-static fading

channels, i.e., where hk and gk are modeled as constants. Zero-mean colored AGN

is considered, where vk = [vk(1), vk(2), · · · , vk(L)]T , for k = 1 · · ·R, and w are

distributed according to CN (0,Σvk
) and CN (0,Σw), respectively. Moreover, vk,

vm, ∀k ̸= m, and w, are assumed to be mutually independent.

Eq. (6.3) can be rewritten as

y(n) =
R∑

k=1

(
αke

j2πnν
[sum]
k ck(n) + βke

j2πnν
[rd]
k ṽk(n)

)
+ w(n). (6.14)

where:

• ck(n) , t̃
[r]
k (n)t[s](n) and ṽk , t̃

[r]
k (n)vk(n),

• αk , ζk

√
p
[r]
k p[s]fkhk and βk , ζk

√
p
[r]
k fk.

According to (6.14), the mean and covariance of y are given by
µy =

∑R
k=1 αke

[sum]
k

Σy =
∑R

k=1 |βk|2Σvk
⊙ Uk +Σw

, (6.15)
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respectively. Next, using similar steps as in Section 6.3.1 the CRLB for the joint es-

timation of ν [sum] at the destination is given by the diagonal elements of the inverse

of FIMAF, which are calculated as

CRLBQ(ν
[sum]) = FIM−1

AF =
(
2Re

{
DH

αEH
ν[sum]DLΣ

−1
y DLEν[sum]Dα

}
+Ξν[sum]

)−1
,

(6.16)

where:

• Dα , diag(α1, · · · , αR) is an R×R matrix

• Eν[sum] , [e
[sum]
1 , e

[sum]
2 , · · · , e[sum]

R ] is an L×R matrix,

• e
[sum]
k ,

[
ck(1), ck(2)e

j2πν
[sum]
k , · · · , ck(L)ej2π(L−1)ν

[sum]
k

]T
,

• Ξν[sum](·)k,m , Tr
[
|βk|2|βm|2Σ−1

y (Σvk
⊙Uk ⊙X)Σ−1

y (Σvm ⊙Um ⊙X)
]
, is an

R×R matrix,

• Uk , uku
H
k is an L× L matrix, and

• uk ,
[
ej2πν

[rd]
k t̃

[r]
k (1), ej4πν

[rd]
k t̃

[r]
k (2), · · · , ej2πLν

[rd]
k t̃

[r]
k (L)

]T
.

The following remarks are in order:

• In the case of white Gaussian noise, where vk and w are distributed according

to CN (0, σ2
vk

I) and CN (0, σ2
wI), respectively, the covariance matrix of y simpli-

fies to Σy =
(∑R

k=1

(
|βk|2σ2

vk

)
+ σ2

w

)
I. Subsequently, the CRLB in (6.16) can

be rewritten as

CRLBAWGN(ν
[sum]) =

∑R
k=1

(
|βk|2σ2

vk

)
+ σ2

w

2

(
Re
{

DH
αEH

ν[sum]D
2
LEν[sum]Dα

})−1
.

(6.17)
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• In contrast to (6.13), for AF, the summation term in (6.17), increases the CRLB

with the number of relays unlike the DF case. This demonstrates the ad-

vantage of the DF protocol versus AF in estimating the CFOs and achieving

frequency synchronization as the number of relays increases. Fig. 6.1 illus-

trates this finding, where the CRLBs for DF and AF cooperative networks for

R = {1, 2, 4} are plotted.

• Fig. 6.1 also shows that compared to DF, an AF cooperative network requires

the SNR between the nodes to be a minimum of 5dB higher in order to reach

the same frequency estimation accuracy.

• For the case of R = 1, (6.17) can be expressed in closed-form as

CRLBGaussian(ν
[sum]) =

3

4π2L(L− 1)(2L− 1) |α|2
|β|2σ2

v+σ2
w

. (6.18)

• Based on (6.17), similar to DF relaying, to accurately estimate the CFO for

each relay node (nonsingular FIMAF), the transmitted training sequences need

to be distinct, c1 ̸= c2 ̸= · · · ̸= cR, where ck = [ck(1), · · · , ck(L)].

6.4 Proposed CFO Estimators

In this section we propose two estimators based on multiple signal characterization

(MUSIC), namely, iterative-MUSIC (I-MUSIC) and iterative correlation-based-MUSIC

(I-C-MUSIC) and highlight their novelty.

6.4.1 I-MUSIC for DF Networks

For notational clarity ν [rd] is denoted by ν throughout this subsection. Let us par-

tition the training sequence, t[r]k , of length L symbols into Ml blocks of length Nl
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Figure 6.1: CRLB for the estimation of νrd and νsum in DF and AF relaying cooper-

ative networks, respectively. ν [rd] = ν [sum] = {.1, .2, .3, .4} and L = 24.

symbols (Ml = L/Nl). The signal model in (6.2) can be rewritten in vector form as

y(m) = Γ(ν)s(m) + w(m), m = 1 · · ·Ml (6.19)

where:

• Γ(ν) , [γ(ν1), · · · ,γ(νR)] is an Nl ×R matrix

with γ(νk) =
[
ej2πνk , ej4πνk , · · · , ejNπνk

]T ,

• y(m) , [y(m+ 1), · · · , y(m+N)]T ,

• w(m) , [w(m+ 1), · · · , w(m+N)]T , and
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for notational simplicity the channel gains and the transmitted training se-

quences are incorporated in the R× 1 vector

• s(m) , [s1(m), · · · , sR(m)]T , with kth element given by sk(m) ,
√

p
[r]
k fkt

[r]
k (m).

Based on (6.19) the temporal covariance matrix of y(m), Qy, can be straightfor-

wardly determined as

Qy = E[y(m)yH(m)] = E[y(m)yH(m)] = Γ(ν)SΓH(ν) + σwI, (6.20)

where S = E[s(m)sH(m)]. Let ς1 ≥ ς2, · · · ,≥ ςNl
denote the eigenvalues of Qy. If

the CFO values are distinct, rank
(
Γ(ν)SΓH(ν)

)
= R and it follows that ςk > σw for

k = 1, · · · , R and ςk = σw for k = R + 1, · · · , Nl. Denote the the unit-eigenvectors

corresponding to ςR+1, · · · , ςNl
as Ψ[Nl] = [ψR+1, · · · ,ψNl

]. Using the steps outlined

in [60], the MUSIC estimate of ν is given by

ν̂ = argmax
ν

1

γH(ν)Ψ[Nl]
(
Ψ[Nl]

)H
γH(ν)

. (6.21)

Note that the covariance matrix Qy can be estimated by time averaging over M

blocks

Q̂y =
1

Ml

Ml∑
m=1

y(m)yH(m). (6.22)

Though accurate, the above MUSIC-based CFO estimator, similar to MLE, can-

not distinguish among close CFO values [59, 60] and does not associate estimated

CFOs to corresponding relays, which is necessary for equalization and detection

at the destination. These shortcomings are addressed below by utilizing the dis-

tinctiveness of the training sequences transmitted from each relay.
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6.4.1.1 Initialization of I-MUSIC

Let q denote the number of distinct CFOs present in y, where q can be estimated

using the algorithms in [8, 98, 100]. The following two possible scenarios are con-

sidered:

Scenario 1) q=R: Given that y is distributed as CN (µy, σ
2
wI), the negative log

likelihood function (LLF) of the CFO vector and the channel gains is proportional to

δ(ν, f) = ∥y − Eνf∥2, (6.23)

where for a given ν, the minimizer of (6.23) and the ML estimates of the channel

gains, f̂ are given by

p[r] ⊙ f̂ = (EH
ν Eν)

−1EH
ν y, (6.24)

where p[r] , {
√

p
[r]
1 , · · · ,

√
p
[r]
R }T and f̂ , {f̂1, · · · , f̂R}.

To estimate the CFOs, the first Ml − 1 blocks of the received training signal, y[c] ,

[y(1), · · · , y((m − 1)Nl)]
T are input to the MUSIC algorithm, where in (6.21) the

search is performed for q = R maxima. Using (6.24), the channel gain corre-

sponding to each CFO is determined. Given that distinct training sequences are

transmitted from each relay node, the Mlth block of received training signals,

y[n-c] , [y((m− 1)Nl + 1), · · · , y(mNl)]
T and the LLF in (6.23) are used to assign

the pairs ν̂ and ĝ to specific relays by carrying out the minimization

ν̂ [A], f̂ [A] = argmin
ν̂ ,̂f

δ(ν, f) =
∥∥y[n-c] − Ēνf

∥∥2 , (6.25)

where:

• Ēν̂ , [ē1, · · · , ēR],

• ēk ,
[
t
[r]
k ((m− 1)Nl + 1)ej2π((m−1)Nl+1)νk , · · · , t[r]k (mNl)e

j2πmNlνk

]T
,

for k = 1 · · ·R, and

132



• ν̂ [A] and f̂ [A] denote the set of estimated CFOs and channel gains correspond-

ing to each relay node, respectively.

Scenario 2) q<R: Select among the combinations of CFOs: See the algorithm in

Table 6.1.

Table 6.1: Initialization Steps for I-MUSIC and I-C-MUSIC

Step 1) Initialization

Using the method in [7] determine q.

Using (6.21) determine the set of q distinct CFOs, ν̂ [q].

Step 2) Iteration

For o = 1, 2, · · · ,
(
R−1
q−1

)
• Construct (ν̂)[i] = ν̂ [q]∪(ν̂ [R-q]

)[i], where ν̂ [R-q]

is a combination of frequencies selected from ν̂ [q].

• Using (6.24) determine
(
f̂
)[i]

corresponding to (ν̂)[i].

• Determine
(
ν̂ [A]

)[i]
and

(
f̂ [A]
)[i]

using (6.25).

Select
(
ν̂ [A]

)[i]
and

(
f̂ [A]
)[i]

that result in the smallest

LLF value, δ(
(
ν̂ [A]

)[i]
,
(
f̂ [A]
)[i]

) for o = 1, · · ·
(
R−1
q−1

)
as

ν̂ [A] and f̂ [A], the set of estimated CFO and channel gains

corresponding to each relay node, respectively.

The initialization step for I-MUSIC has low computational complexity since

(6.21) requires solving a set of decoupled 1-dimensional maximization problems

and no matrix inversion.
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6.4.1.2 Iterative Step for I-MUSIC

Since the unit amplitude PSK training sequences are known, the effect of data mod-

ulation corresponding to the ith node can be eliminated according to

ỹi(n) =y(n)
(
t
[r]
i (n)

)∗
=

√
p
[r]
i gie

j2πnν
[rd]
i t

[r]
i (n)

(
t
[r]
i (n)

)∗
+

(
R∑

k=1,k ̸=i

√
p
[r]
k fke

j2πnν
[rd]
k t

[r]
k (n) + w(n)

)(
t
[r]
i (n)

)∗
=

√
p
[r]
i gie

j2πnν
[rd]
i︸ ︷︷ ︸

desired term

+
R∑

k=1,k ̸=i

√
p
[r]
k fke

j2πnν
[rd]
k t

[d]
k,i(n)︸ ︷︷ ︸

interference

+ w̃i(n)︸ ︷︷ ︸
noise

, (6.26)

where t
[d]
k,i(n) = t

[r]
k (n)

(
t
[r]
i (n)

)∗
and w̃i(n) = w(n)

(
t
[r]
i (n)

)∗
. Note that w̃i(n) has the

same statistical properties as w(n), since multiplication by
(
t
[r]
i (n)

)∗
only results in

a phase shift of the noise.

The initial estimates of ν [rd] and g,
(
ν̂ [rd]

)[1]
and (ĝ)[1], respectively, are used to

reduce the interference term in (6.26) according to

qi(n) , ỹi(n)−
R∑

k=1,k ̸=i

√
p
[r]
k ĝke

j2πnν̂
[rd]
k t

[d]
k,i(n), (6.27)

where qi = [qi(1), · · · , qi(L)] is applied in the next iteration to estimate the CFO

corresponding to the ith node using (6.21). This approach transforms the joint

CFO estimation problem into multiple single-parameter estimation problems and

ensures that I-MUSIC approaches the CRLB. In addition, for close CFO values the

MLE in (6.24) does not perform well since the term EH
ν Eν in (6.24) becomes nearly

singular. To address this shortcoming, at each iteration the ith relay’s channel gain

is estimated via √
p
[r]
i f̂i =

1

L

L∑
n=1

qi(n)

ej2πnν̂
[rd]
i

, (6.28)
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which is based on the expectation conditional maximization (ECM) algorithm [65].

The iteration stops when the absolute difference between the LLF of two iterations

is smaller than a threshold value χ∣∣∣∣∥y − E
(ν̂[rd])

[o+1]

(
f̂
)[o+1]

∥2 − ∥y − E
(ν̂[rd])

[o]

(
f̂
)[o]

∥2
∣∣∣∣ ≤ χ, (6.29)

where
(
ν̂ [rd]

)[o]
and

(
f̂
)[o]

denote CFO and channel gain estimates corresponding

to the oth iteration.

6.4.2 I-C-MUSIC for DF Networks

Note that by transforming the estimation problem from R-dimensional to one-

dimensional, a variety of CFO estimation methods suitable for different scenarios

may be applied to improve upon the proposed CFO estimation algorithm [43, 67].

Here we apply the estimator in [43], which consists of estimating the ith node’s

CFO as

2πν̂
[rd]
i =

L−1∑
n=1

ϖ(n)angle{q∗i (n)qi(n+ 1)}, (6.30)

where ϖ(n) is a window designed to reduce the estimator’s variance (see [43] for

details). Similar steps as outlined in Section 6.4.1 can be used to determine the

CFO values, where (6.30) is used instead of (6.21) in the iterative step (see [60] for

details).

6.4.3 CFO Estimation in AF Networks

In order to apply the MUSIC algorithm for CFO estimation, three conditions need

to be met: 1) The length of each block, Nl, needs to be larger than the number

of relays, 2) The additive noise needs to be zero-mean, and 3) The additive noise
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needs to be white [92]. In this subsection, based on the assumption of independent

and identically distributed (i.i.d.) zero-mean additive Gaussian noise at the relays

and destination, we show that these conditions are met in the case of AF relay-

ing so that the MUSIC algorithm may be applied to determine the CFOs, ν [sum],

simultaneously at the destination.

By combining the noise terms in (6.3) the signal model at the destination is

represented as

y(n) =
R∑

k=1

ζk

√
p
[r]
k p[s]ϱke

j2πnν
[sum]
k t̃

[r]
k (n)t[s](n) + zsum(n) (6.31)

where zsum(n) ,
∑R

k=1 ζk

√
p
[r]
k fke

j2πnν
[rd]
k t̃

[r]
k (n)vk(n) + w(n) and ϱk , fkhk.

Condition 1: Simply choose Nl to be larger than R.

Condition 2:

E[zsum(n)] = E

[
R∑

k=1

ζk

√
p
[r]
k fke

j2πnν
[rd]
k t̃

[r]
k (n)vk(n)

]
+ E[w(n)]

=
R∑

k=1

(
ζk

√
p
[r]
k fkE

[
ej2πnν

[rd]
k t̃

[r]
k (n)

]
E[vk(n)]

)
= 0 (6.32)

Condition 3:

E[zsum(m)zHsum(m)]l,i =E

[(
R∑

k=1

ζk

√
p
[r]
k fke

j2πlν
[rd]
k t̃

[r]
k (l)vk(l) + w(l)

)

×

(
R∑

x=1

ζx

√
p
[r]
x gxe

j2πiν
[rd]
x t̃[r]x (i)vx(i) + w(i)

)H
 (6.33a)

=
R∑

k=1

R∑
x=1

ζkζ
∗
x

√
p
[r]
k p

[r]
x fkg

∗
x

× E
[
ej2πlν

[rd]
k t̃

[r]
k (l)

(
ej2πiν

[rd]
x t̃[r]x (i)

)∗]
E[vk(l)v

∗
x(i)]

+ E[w(l)w∗(i)] (6.33b)

=

 0 i ̸= l∑R
k=1 |ζfk|2p

[r]
k σ2

vk
+ σ2

w i = l
(6.33c)
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(6.33b) follows from the fact that the noise at the destination and kth relay, w and

vk, respectively, are independent with respect to one another ∀k, and (6.33c) fol-

lows from the properties of AWGN, where E[v(i)v(l)] = E[w(i)w(l)] = 0 for i ̸= l.

According to (6.32) and (6.33c), zsum is CN (0,Σzsum), where

Σzsum =
(∑R

k=1

(
|ζfk|2p[r]k σ2

vk

)
+ σ2

w

)
I. Thus, the proposed I-MUSIC and I-C-MUSIC

algorithms can be applied to AF relaying to determine the overall CFOs corre-

sponding to the source-relay-destination links simultaneously at the destination.

6.4.4 Complexity of I-MUSIC and I-C-MUSIC

The initialization step for I-MUSIC and I-C-MUSIC requires

ComplexityI =

(
R− 1

q − 1

)Ml ×N2
l + 1︸ ︷︷ ︸

(6.22)

+(Nl −R + 2ϑ)×N2
l + 1︸ ︷︷ ︸

(6.21)

+ R3 +R2 ×MlNl +M2
l N

2
l︸ ︷︷ ︸

(6.24)

 , (6.34)

additions and multiplications, where ϑ is dependent on the resolution of the 1-

dimensional search in (6.21).

Using (6.34) the computational complexity of I-MUSIC and I-C-MUSIC can be

determined as

ComplexityI-MUSIC =ComplexityI + κ×R

×

N2
l (Nl −R) + ϑ× 2N2

l + 1︸ ︷︷ ︸
(6.21)

+2MlNl + 1︸ ︷︷ ︸
(6.28)

 , and (6.35)

ComplexityI-C-MUSIC =ComplexityI + κ×R×

2MlNl − 2︸ ︷︷ ︸
(6.30)

+2MlNl + 1︸ ︷︷ ︸
(6.28)

 , (6.36)

where κ represents the number of iterations. (6.35) and (6.36) demonstrate that
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the computational complexity of I-MUSIC is considerably higher than that of I-C-

MUSIC for the same κ. A comparison between the number of iterations required

for each algorithm to reach the CRLB is provided in 6.5.

Note that compared to the multiple CFO estimators in [6] and [78], the imple-

mentation of I-MUSIC and I-C-MUSIC at the receiver comes at a lower computa-

tional complexity, given that the MLE in [6] requires carrying out an exhaustive

search to estimate each CFO while the estimator in [78] requires correlating the

received signal with each training sequence.

6.5 Numerical Results and Discussions

Analogous to Chapter 5, throughout this section the propagation loss is modeled

as [67], β = (d/d0)
−m, where d is the distance between the transmitter and receiver,

d0 is the reference distance, and m is the path loss exponent. The following results

are based on d0 = 1km and m = 2.7, which corresponds to urban area cellular net-

works. Without loss of generality, Walsh-Hadamard codes defined in Section 5.4

are used as the training sequences. Binary phase-shift keying (BPSK) modulation

is used for transmission of the training sequences. The normalized CFOs are in the

range of [−.5, .5), unless otherwise specified. Finally, SNR is defined as 1/σ2
v and

1/σ2
w for both source-relay and relay-destination links, respectively.

6.5.1 Estimation Performance

Throughout this subsection the length of training sequence, L = 24, and the block

length, Nl = 8. Cooperative networks with R = 2 relays are considered, and

without loss of generality, only CFO estimation performance for the first node is

138



presented. The estimators’ performances are investigated for both far apart and

close CFO values.

6.5.1.1 DF cooperative networks

Fig. 6.2 compares the performance of I-MUSIC and I-C-MUSIC for the estimation

of ν [rd] in DF relaying networks against the CRLB in Eq. (6.13), the MLE in [6], and

the estimator in [78]. In (6.29), the threshold is set to χ = .001, which corresponds

to approximately 6− 20 iterations. Similar to [6] and [78], the channel gains, h are

drawn from i.i.d zero-mean complex Gaussian processes with unit variance. For

our particular channels h = [.2790− .9603i, .8837+ .4681i]T . Two sets of CFO values

are selected, ν [rd] = {.1, .2} and ν [rd] = {.2, .205}, which in Fig. 6.2 are represented

by solid lines and dotted lines, respectively. For the case of ν [rd] = {.1, .2}, sim-

ulation results reveal that I-MUSIC is close to but does not reach the CRLB. This

is due to the inherent shortcoming of the MUSIC algorithm [59]. However, I-C-

MUSIC reaches the CRLB at mid-to-high SNR but exhibits poorer performance at

low SNR. Fig. 6.2 also shows that both algorithms outperform the MLE and the es-

timator in [78] at mid-to-high SNR. The MLE, on the other hand, requires that only

one node transmits its training sequence at a time. Therefore, for a fair compari-

son, in the case of MLE a training sequence length equal to L/R is used, resulting

in higher mean-square error (MSE). As expected, the estimator in [78] fails since the

initial CFO estimates are extremely poor whenever the CFOs are larger than .05

(the results in [78] are based on normalized CFO values of .01 and .015). For the

case of close CFO values (ν [rd] = {.2, .205}) Fig. 6.2 illustrates that I-MUSIC and

I-C-MUSIC approach the CRLB but do not reach it.

Fig. 6.3 compares the number of iterations for I-MUSIC, I-C-MUSIC, and the
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Figure 6.2: The MSE of I-MUSIC and I-C-MUSIC for the estimation of ν [rd]
1 for DF

networks VS. the algorithms in [6] and [78] and the CRLB in (6.13) (L = 24).

estimator in [78]. Note that both I-MUSIC and I-C-MUSIC algorithms require very

few iterations to reach or approach the CRLB. As illustrated in Fig. 6.3 as the

CFO values get close, I-MUSIC and I-C-MUSIC both require more iterations to

approach the CRLB, due to the rough initial estimates. However, even for close

CFO values both algorithms require considerably fewer iterations and overhead

compared to [78], at all SNR values.
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Figure 6.3: Average number of iterations for I-MUSIC, I-C-MUSIC, and the algo-

rithm in [78] for the estimation of ν [rd]
1 for DF networks (L = 24).

6.5.1.2 AF cooperative networks

Fig. 6.4 compares the performance of I-MUSIC and I-C-MUSIC for the estima-

tion of ν [sum] in AF networks against the CRLB in (6.17). Again, the threshold in

(6.29), χ = .001. The channel gains are h = [.2790 − .9603i, .8837 + .4681i]T and

g = [.7820 + .6233i, .9474 − .3203i]T . The normalized CFOs are ν [sum]{.1, .2} and

ν [sum] = {.21, .2}, which in Fig. 6.4 are represented by solid lines and dotted lines,

respectively.
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Figure 6.4: The MSE of I-MUSIC and I-C-MUSIC for the estimation of ν [sum]
1 for AF

networks VS. the CRLB in (6.16) (L = 24).

Note that in the case of AF relaying I-C-MUSIC reaches the CRLB, while I-

MUSIC is very close to the CRLB and demonstrates better performance at low

SNR values. Also, for the case of close CFO values, the performance gap between

I-MUSIC and I-C-MUSIC and the CRLB is larger for the case of AF compared to

that of DF. This can be explained by the fact that the noise at the relay nodes, which

is amplified and forwarded to the destination, cannot be removed by iteration.

Fig. 6.5 compares the number of iterations of I-MUSIC and I-C-MUSIC for AF
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Figure 6.5: Average number of iterations for I-MUSIC and I-C-MUSIC for the esti-

mation of ν [sum]
1 for AF networks (L = 24).

cooperative networks, where it is illustrated that both algorithms require fewer it-

eration to reach the CRLB when the CFOs are not very close. I-C-MUSIC requires

fewer iterations to reach/approach the CRLB at low-to-mid SNR compared to I-

MUSIC, while this advantage is reversed as the SNR increases. Both algorithms

require considerably more iterations to approach the CRLB for close CFO values

for the case of AF compared to that of DF. These results demonstrate that in addi-

tion to requiring higher SNRs between the nodes, AF networks also require more

time and overhead to achieve frequency synchronization.
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6.5.2 Cooperative Network Performance

During the data transmission interval binary phase-shift keying (BPSK) modulation

is used with a frame length of 512 symbols and a synchronization overhead of 11%.

An orthogonal space-time block code (OSTBC) with a code rate of 3/4, [52], is used

for the transmission of the signals from R = 4 relays. Quasi-static fading chan-

nels are considered, where new channel gains are generated from frame to frame

(channel coefficients are complex Gaussian random variables with mean zero and

unit variance). For DF relaying it is assumed that only relays that correctly de-

code the received signal, are selected for retransmitting the signal. Finally, the

relays are uniformly distributed throughout the network such that d[sr] ≤ 1km and

d[rd] =
(
1− d[sr]

)
km.

At the receiver, a minimum mean-square error (MMSE) finite impulse response (FIR)

filter with order Nf is used to compensate the channel and CFOs. The filter coeffi-

cient, ρ[MMSE]
k , are given by [102]

ρ
[MMSE]
k =

(
HkH

H
k + cINf

)−1
Hkid, (6.37)

where Hk are the kth symbol’s channel gains that are time varying due to the CFOs,

c = 1/SNR is a constant, D = (Nf − 1)/2 is the estimation delay to make the filter

causal, and id is vector with 1 at the D + 1st element and zeros elsewhere. As

shown in Section 6.4.3 the overall noise at the destination is white in the case of

AF relaying. Thus, (6.37) can be also applied to compensate the effect of multiple

CFOs for AF networks.

Figs. 6.6 and 6.7 illustrate the average-bit-error-rate (ABER) of DF and AF relay-

ing SISO multi-relay cooperative networks, respectively. Here I-MUSIC acquires

the completely unknown CFOs and compensates their effect using the MMSE FIR
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Figure 6.6: ABER plots for perfectly synchronized, estimated/imperfectly synchro-

nized via I-MUSIC and the MLE in [6], and unsynchronized systems with normal-

ized CFO in the range [−.5, .5) per node for R = 4 relays.

equalizer in (6.37). This result is compared to an unsynchronized system with nor-

malized CFOs uniformly distributed in the range [−.5, .5) per node, as well as to

perfectly synchronized systems. Figs. 6.6 and 6.7 reveal that there is a significant

performance gap between ABER performances of practical cooperative networks

that estimate and compensate multiple CFOs and idealistic systems that assumed

perfect synchronization at low-to-mid SNR.
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chronized via I-MUSIC, and unsynchronized systems with normalized CFO in the

range [−.5, .5) per node for R = 4 relays.

Figs. 6.6 and 6.7 also demonstrate that compared to DF, the performance of

AF relaying networks is more significantly impacted by CFOs. This outcome is

anticipated, since CFO estimation in the case of DF relaying can be performed

more accurately as predicted by the CRLB analysis in Fig. 6.1. In addition, due to

this difference in estimation performance, unlike the case of DF relaying, at high

SNR, the ABER of an AF relaying network synchronized via I-MUSIC does not
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reach that of a perfectly synchronized system.

6.6 Conclusion

In this chapter we have addressed the topic of CFO estimation in multi-relay co-

operative networks. The system model for DF and AF relaying networks in the

presence of multiple CFOs has been presented and new CRLB expressions are de-

rived, in closed-form. Two novel multiple CFO estimators are outlined. Numerical

analyses demonstrate that the proposed estimators performance reach or approach

the CRLB at mid-to-high SNR and outperform the existing algorithms. The perfor-

mance of DF and AF relaying cooperative networks in the presence of multiple

CFOs has been investigated showing that the application of the proposed estima-

tors result in significant performance gains. In addition, the results in Section 6.5

reveal that up to an SNR of 12 and 15dB for DF and AF relaying, respectively,

there is a large performance gap between the ABER of idealized cooperative sys-

tems that assume perfect frequency synchronization and actual cooperative sys-

tems that require the CFOs to be estimated and compensated for at the receiver.

Thus, it is important to consider the effect of imperfect CFO estimation when as-

sessing the performance of cooperation methods, e.g., distributed beamforming

and distributed space-time coding.
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In this chapter, the major contributions in this thesis are summarized, and pos-

sible future research directions are presented.

7.1 Conclusions

In this thesis, the estimation of system parameters in distributed multi-relay coop-

erative communications systems is analyzed.

In Chapter 3, a new channel estimation method for multi-input-multi-output

(MIMO) multi-relay cooperative networks is proposed that is capable of estimat-

ing the overall channel gains from source-relay-destination simultaneously at the

destination. Numerical results based on mean square error (MSE) reveal that the

proposed estimator outperforms the existing channel estimators by a minimum of

2dB. Next, a novel optimization scheme for MIMO multi-relay cooperative net-

works, denoted as amplify-and-phase-shift-forward (APSF), is proposed that is

shown to significantly improve the performance of cooperative networks while re-

quiring only 2-3 bits to be fed back to the relays. The proposed algorithm is also

shown to converge quickly, typically in 4-5 iterations.

In Chapter 4, the functional transformation for the CRLB is derived and applied

to quantitatively determine the effect of timing and frequency offset on the perfor-

mance of communications systems. The numerical results show that the functional

transformation of the MCRLB can be effectively applied to determine the perfor-

mance of different transmitted pulse shapes, i.e., RC, RRC, and FEX pulses, in the

presence of timing jitter. In addition, closed-form expressions for the probability

of outage for OFDM systems due to frequency offset are derived. Finally, the rela-

tionship between the MCRLB and CRLB under different synchronization scenarios
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is determined, and it is shown that the MCRLB is shown to be a tight lower bound

in some important practical scenarios.

In Chapter 5, estimation of multiple timing offsets in distributed cooperative

networks is analyzed. New closed-form expressions for the CRLB are derived and

a baseband processing structure that allows for the accurate estimation of timing

offsets at the destination is proposed.

The CRLB expressions are applied in a novel way to propose new training se-

quence design guidelines and determine the effect of network protocol and topol-

ogy on timing offset estimation. Two new iterative timing offset estimators, de-

noted as I-MLE and I-GD, are proposed. The proposed estimators lower the com-

putational complexity associated with timing offset estimation by a factor of 40 and

1800 (in terms of the number of additions and multiplications required to perform

timing offset estimation), respectively. Numerical results show that I-MLE reaches

the CRLB over a wide rage of SNR values while the significantly less complex I-

GD method shows good performance. By combining the proposed estimators with

timing compensation algorithms, it is demonstrated that both I-MLE and I-GD re-

sult in significant performance gains in terms of ABER.

In Chapter 6, multiple CFO estimation in distributed cooperative networks is

analyzed. New closed-form CRLB expressions for the estimation of multiple CFOs

at the destination for SDMA-based cooperative networks are derived. The CRLBs

are applied to reveal that compared to DF relaying networks, in the case of AF

relaying, the SNR between the nodes within the network needs to be on average

of 5dB higher to reach the same CFO estimation accuracy. Unlike DF relaying, the

CRLB expressions demonstrate that in the case of AF relaying, addition of more
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relays degrades CFO estimation performance. Two novel multiple CFO estima-

tors, denoted by I-MUSIC and I-C-MUSIC are proposed. The numerical results

presented in Chapter 6 demonstrate that both algorithms reach or approach the

CRLB in the SNR range of 10-40dB and outperform the existing estimators.

7.2 Future Work

In this section, possible future research directions or investigations are presented.

• The CRLB derivation for the joint estimation of multiple timing offsets, frequency

offsets, and imaginary and real parts of channel gains in multi-relay cooperative net-

works:

Chapters 5 and 6 derive the CRLB expressions for the joint estimation of mul-

tiple timing offsets or frequency offsets only, even though the channel gains

are assumed to be unknown. Therefore, to perform a more comprehensive

analysis, the CRLB expressions need to be derived for the joint estimation

of timing offsets, frequency offsets, and real and imaginary parts of channel

gains. Such an approach provides more insight on the coupling between the

estimation of these system parameters in the case of cooperative communi-

cations systems.

• Synchronization parameter estimation in MIMO cooperative Networks:

In Chapters 5 and 6, timing and frequency offset estimation in single-input-

single-output (SISO) multi-relay cooperative networks have been analyzed.

However, it would be important to extend these results to the more general

case of MIMO cooperative networks, where the source, relay, and destination

terminals can be equipped with multiple antennas.
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• Analytical determination of the effect of CFO and channel estimation error on the

performance of multi-relay cooperative networks:

Even though the effect of multiple timing offsets on the performance of co-

operative networks has been analytically determined, little work has been

done to quantify the effect of CFO and channel estimation error on such sys-

tems. Chapters 3 and 6 carry out simulations that investigate the effect im-

perfect channel and CFO estimation on the ABER of cooperative networks.

Nevertheless, analytical results would provide greater insight on the effect of

imperfect system parameters on the performance of cooperative networks.

• Performing synchronization in a more decentralized fashion:

The estimation methods outlined in Chapters 5 and 6 require the synchro-

nization parameters to be estimated at the destination. Based on the pro-

posed schemes, the destination or receiver terminal is responsible for coor-

dinating the transmission of distinct training sequences from different ter-

minals, estimating the synchronization parameters, and compensating their

effects. However, performing synchronization in a more decentralized fash-

ion is needed to reduce overhead and complexity. Such an approach could

significantly reduce the complexity and overhead associated with the esti-

mation of multiple system parameter while at the same time maintaining or

even improving their performance.

• Further reducing the complexity of the multiple synchronization parameter estima-

tion methods:

As shown in both Chapters 5 and 6, the estimators proposed in this thesis
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significantly reduce the computational complexity associated with synchro-

nization in distributed cooperative networks. However, further complexity

reduction is required to prepare such estimators for applications in practical

scenarios, where the processing and available power is limited.

• Synchronization in cooperative cognitive radio networks:

The focus of Chapters 5 and 6 have been on estimating synchronization pa-

rameters over a wide range of SNR values. On the other hand, cooperative

CR networks need to operate at low SNRs. Therefore it is important to ex-

plore estimators that can accurately determine multiple synchronization pa-

rameters and reach the CRLB at low SNR values.

• Relay selection and optimization algorithms in the presence of imperfect system pa-

rameters:

To date, most of the optimization and performance enhancement algorithms

in the area of cooperative communication are based on the assumption of

both perfect channel gain and synchronization parameter estimation. How-

ever, as shown in Chapters 3, 5, and 6, the performance of cooperative sys-

tems are greatly influenced by how accurately these system parameters can

be estimated. In addition, as shown in this thesis the accuracy of the system

parameter estimators are affected by other factors besides the link SNR, e.g.,

choice of training sequences, network protocol, number of relaying nodes,

and timing and frequency offset values. Therefore, it is important for fu-

ture relay selection and optimization algorithms to take the effect of such

imperfect system parameters into account, to ensure that the promised per-

formance gains are achievable in practical scenarios.

152



Bibliography

[1] A. D. Andrea, U. Mengali, and R. Reggiannini, “The modified Cramer-Rao

bound and its application to synchronization problems,” IEEE Trans. on Com-

mun., vol. 42, pp. 1391–1399, Feb. 1994.

[2] M. A. Asr, A. H. Shaban, and W. H. Tranter, “Outage probability and per-

centage of cell area for OFDMA cellular systems with sectoring,” IEEE CNSR

2007, pp. 107–116, May 2007.

[3] A. Assalini and A. M. Tonello, “Improved Nyquist pulses,” IEEE Commun.

Letters, vol. 8, no. 2, pp. 87–89, Feb. 2004.

[4] N. C. Beaulieu, C. C. Tan, and M. O. Damen, “A better than Nyquist pulse,”

IEEE Commun. Letters, vol. 5, no. 9, pp. 367–368, Sept. 2001.

[5] N. Benvenuto, S. Tomasin, and D. Veronesi, “Multiple frequency offsets es-

timation and compensation for cooperative networks,” in Proc. of IEEE Wire-

less Commun. and Net. Conf., pp. 891–895, Mar. 2007.

[6] O. Besson and P. Stoica, “On parameter estimation of MIMO flat-fading

channels with frequency offsets,” IEEE Trans. on Signal Proc., vol. 51, no. 3,

pp. 602–613, Mar. 2003.

153



[7] G. Bienvenu and L. Kopp, “Adaptivity to background noise spatial coher-

ence for high resolution passive methods,” in Proc. IEEE int. Conf. Acoust.,

Speech, Signal Processing, Denver. CO, vol. ASSP-31, no. 12, pp. 307–310, Dec.

1980.

[8] ——, “Optimality of high resolution array processing,” IEEE Trans. on

Acoust., Speech, Signal Proc., vol. ASSP-31, pp. 1235–1248, Oct. 1983.

[9] M. Biguesh and A. B. Gershman, “Training based MIMO channel estimation:

a study of estimator tradeoffs and optimal training signals,” IEEE Trans. on

Signal Proc., vol. 54, pp. 884–893, 2006.

[10] H. Bolcskei, et al., “On the capacity of OFDM-based spatial multiplexing

systems,” IEEE Trans. on Commun., vol. 50, no. 2, pp. 225–234, Dec 2002.

[11] J. Brewer, “Kronecker products and matrix calculus in system theory,” IEEE

Trans. Circuits and Systems, vol. 25, no. 9, pp. 772–781, Sept. 1978.

[12] A. Dana and B. Hassibi, “On the power efficiency of sensory and ad-hoc

wireless networks,” IEEE Trans on Info. Theory, vol. 52, no. 3, pp. 2890–2914,

Nov 2006.

[13] M. Ding, “Multiple-input multiple-output wireless system design with im-

perfect channel knowledge,” A thesis submitted to the Department of Electrical

and Computer Engineering, Jul. 2008.

[14] Y. Ding, J. K. Zhang, and K. M. Wong, “The amplify-and-forward half-

duplex cooperative system: pairwise error probability and precoder design,”

IEEE Trans on Signal Proc., vol. 55, no. 2, pp. 605–618, Feb. 2007.

154



[15] Y. Fan and J. Thompson, “MIMO configurations for relay channels: Theory

and practice,” IEEE Trans. on Wireless Commun., vol. 6, pp. 1774–1786, May

2007.

[16] F. H. P. Fitzek and M. d. Katz, Cooperation in Wireless Networks: Principles and

Applications. Spinger, 2006.

[17] A. Forenza, D. J. Love, and R. W. Heath, “Simplified spatial correlation mod-

els for clustered MIMO channels with different array configurations,” IEEE

Trans. Veh. Technol., vol. 56, no. 4, pp. 1924–1934, Jul. 2007.

[18] G. J. Foschini Jr., “Layered space-time architecture for wireless communica-

tion in a fading environment when using multi-element antennas,” Bell Lab

Tech., pp. 41–59, 1996.

[19] G. J. Foschini Jr. and M. J. Gans, “On limits of wireless communication in a

fading environment when using multiple antennas,” Wireless Personal Com-

mun., vol. 6, pp. 311–335, 1998.

[20] J. Galambos and I. Simonelli, Products of random variables: applications to prob-

lems of physics and to arithmetical functions. New York: Marcel Dekker, 2004.

[21] F. Gao, R. Zhang, and Y. C. Liang, “Channel estimation for OFDM modulated

two-way relay networks,” IEEE Trans. on Signal Proc., vol. 57, no. 11, pp.

4443–4455, Jun. 2009.

[22] ——, “Optimal channel estimation and training design for two-way relay

networks,” IEEE Trans. on Commun., vol. 57, no. 10, pp. 3024–3033, Oct. 2009.

155



[23] F. Gao, T. Cui, and A. Nallanathan, “On channel estimation and optimal

training design for amplify and forward relay networks,” IEEE Trans. on

Wireless Commun., vol. 7, no. 5, pp. 1907–1916, May 2008.

[24] W. Gappmair, S. Cioni, G.E. Corazza, and O. Koudelka, “Extended Gard-

ner detector for improved symbol-timing recovery of M-PSK signals,” IEEE

Trans. on Commun., vol. 54, no. 11, pp. 1923–1927, Nov. 2006.

[25] F. M. Gardner, “A BPSK/QPSK timing-error detector for sampled receivers,”

IEEE Trans. on Commun., vol. 34, no. 10, pp. 423–429, Oct. 1986.

[26] B. Gedik and M. Uysal, “Two channel estimation methods for amplify-and-

forward relay networks,” Elec. and Computer Engineering Conf., pp. 615–618,

May 2008.

[27] ——, “Imapct of imperfect channel estimation on the performance of

amplify-and-forward relaying,” IEEE Trans. on Wireless Commun., vol. 8,

no. 3, pp. 1468–1479, Mar. 2009.

[28] F. Gini and R. Reggiannini, “On the use of Cramer-Rao-like bounds in the

presence of random nuisance parameters,” IEEE Trans. Commun., vol. 48,

no. 12, pp. 2120–2127, Dec. 2000.

[29] F. Gini, M. Luise, and R. Reggiannini, “Cramer-Rao bounds in the paramet-

ric estimation of fading radiotransmission channels,” IEEE Trans. Commun.,

vol. 46, no. 10, pp. 1390–1399, Oct. 1998.

[30] F. Gini, R. Reggiannini, and U. Mengali, “The modified Cramer-Rao bound

in vector parameter estimation,” IEEE Letter on Commun., vol. 46, no. 1, pp.

52–61, Jan. 1998.

156



[31] L. C. Godara, “Applications of antenna arrays to mobile communications,

part I: Performance improvement, feasibility, and system considerations.”

[32] ——, “Applications of antenna arrays to mobile communications, part II:

Beamforming and direction-of-arrival considerations,” Proc. IEEE, vol. 85,

pp. 1195–1245, Aug. 1997.

[33] A. Goldsmith, Wireless Communications. Cambridge University Press, 2004.

[34] A. Goldsmith, S. A. Jafar, N. Jindal, and S. Vishwanath, “Capacity limits of

MIMO channels,” IEEE J. Selected Areas Commun., vol. 21, no. 5, pp. 684–702,

June 2003.

[35] B. Hassibi and B. M. Hochwald, “How much training is needed in multiple-

antenna wireless links?” IEEE Trans. on Info. Theory, vol. 48, no. 4, pp. 951–

963, 2003.

[36] S. Haykin, Communication Systems. John Wiley and Sons Inc., 2001.

[37] A. S. Ibrahim and K. J. R. Liu, “Mitigating channel estimation error with tim-

ing synchronization tradeoff in cooperative communications,” IEEE Trans.

on Signal Process., vol. 58, no. 1, pp. 337–348, Jan. 2010.

[38] S. Jagannathan, H. Aghajan, and A. Goldsmith, “The effect of time synchro-

nization errors on the performance of cooperative miso systems,” in Proc.

IEEE Globecom, pp. 102–107, Nov. 2004.

[39] Y. Jiang, F. Sun, and J. S. Baras, “On the performance limits of data-aided

synchronization,” IEEE Trans. on Info. Theory, vol. 49, no. 1, pp. 191–204, Jan.

2003.

157



[40] Q. Jiang, K. Zhang, J. Liu, and G. Shen, “Joint carrier frequency offset and

channel estimation for AF cooperative OFDM systems,” Wireless Personal

Communications, pp. 1–27, Aug. 2009.

[41] L. Jungwon, L. Hui-Ling, D. Toumpakaris, and J. Cioffi, “Effect of carrier

frequency offset on OFDM systems for multipath fading channels,” IEEE

Global Tel. Conf., vol. 6, no. 4, pp. 3721–3725, Nov. 2004.

[42] P. Kanjilal, Adaptive prediction and predictive control. Peter Peregrinus Ltd.

(on behalf of I.E.E. London), 1995.

[43] S. Kay, “A fast and accurate single frequency estimator,” IEEE Trans. on

Acoust., Speech, Signal Proc., vol. 37, no. 12, pp. 1987–1990, Dec. 1989.

[44] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory.

Prentice Hall, 1993.

[45] B. Khoshnevis, W. Yu, and R. Adve, “Grassmannian beamforming for MIMO

amplify-and-forward,” CISS, pp. 161–166, Mar. 2008.

[46] J. Kiefer, “Sequential minimax search for a maximum,” Proc. of the American

Math. Society, vol. 4, pp. 502–506, 1953.

[47] I. M. Kim, MIMO communications, lecture notes for elec 869, winter term, 2006.

[48] J. Kim and D. Kim, “Performance of dual-hop amplify-and-forward beam-

forming and its equivalent systems in rayleigh fading channels,” IEEE Trans.

on Commun., vol. 58, no. 3, pp. 729–732, Mar. 2010.

158



[49] R. J. Kozick and B. M. Sadler, “Bounds and algorithms for time delay estima-

tion on parallel, flat fading channels,” IEEE Int. Conf. on Acoustics, Speech and

Signal Proc., vol. 7, pp. 2413–2416, April 2008.

[50] J. N. Laneman and G. W. Wornell, “Distributed space-time-coded protocols

for exploiting cooperative diversity in wireless networks,” IEEE Trans. on

Info. Theory, vol. 49, no. 10, pp. 2415–2425, Oct. 2003.

[51] J. N. Laneman, D. N. C. Tse, and G. W. Wornell, “Cooperative diversity in

wireless networks: Efficient protocols and outage behavior,” IEEE Trans. on

Info. Theory, vol. 50, no. 12, pp. 3062–3080, Dec. 2004.

[52] E. G. Larsson and P. Stoica, Space-Time Block Coding for Wireless Communca-

tions. Cambridge Press, 2003.

[53] X. Li, “Space-time coded multi-transmission among distributed transmitters

without perfect synchronization,” IEEE Signal Process. Letters, vol. 11, no. 12,

pp. 948–951, Jan. 2005.

[54] X. Li, Y. Wu, and E. Serpedin, “Timing synchronization in decode-and-

forward cooperative communication systems,” IEEE Trans. on Signal Process.,

vol. 57, no. 4, pp. 1444–1456, Apr. 2009.

[55] D. Lim, “A modified Gardner detector for symbol timing recovery of M-PSK

signals,” IEEE Trans. on Commun., vol. 52, no. 10, pp. 1643–1647, Oct. 2004.

[56] J. Lin, W.H. Fang, Y.Y. Wang, and J. Chen, “FSF MUSIC, for joint DOA and

frequency estimation and its performance analysis,” IEEE Trans. on Signal

Proc., vol. 54, no. 12, pp. 4529–4542, Dec. 2006.

159



[57] Y. Liu, T. F. Wong, and A. Pandharipande, “Timing estimation in multiple-

antenna systems over Rayleigh flat-fading channels,” IEEE Trans. on Signal

Process., vol. 53, no. 6, pp. 2074–2089, Jun. 2005.

[58] Z. Lu, J. Li, L. Zhao, and J. Pang, “Iterative parameter estimation in MIMO

flat-fading channels with frequency offsets,” in Proc. IEEE Int. Conf. Advanced

Inf. Net. App., vol. 2, 2006.

[59] D. G. Manolakis, V. K. Ingle, and S. M. Kogon, Statistical and Adaptive Signal

Processing: Spectral Estimation, Signal Modeling, Adaptive Filtering and Array

Processing. Artech House Signal Processing Library, 2007.

[60] H. Mehrpouyan and S. D. Blostein, “Synchronization in distributed coop-

erative networks: Algorithms for estimation of multiple frequency offsets,”

IEEE International Conf. on Commun., by May 2010.

[61] ——, “Synchronization in distributed cooperative networks: Bounds and al-

gorithms for estimation of multiple timing offsets,” submitted to IEEE Trans.

on Signal Processing., Jan. 2010.

[62] H. Mehrpouyan, Y. Zheng, and S. D. Blostein, “Channel estimation and

capacity enhancement for multi-relay mimo cooperative networks,” IEEE

Trans. on Wireless Commun. (under review), (submitted) Feb. 2010.

[63] Y. Mei, Y. Hua, A. Swami, and B. Daneshrad, “Combating synchronization

errors in cooperative relays,” in Proc. IEEE ICASSP, vol. 3, pp. 369–372, Mar.

2005.

160



[64] ——, “Spacetime coded multi-transmission among distributed transmitters

without perfect synchronization,” IEEE ICASSP, vol. 3, pp. 369–372, Mar.

2005.

[65] X. L. Meng and D. B. Rubin, “Maximum likelihood estimation via the ECM

algorithm: A general framework,” Biometrika, vol. 80, no. 2, pp. 267–278, Jun.

1993.

[66] U. Mengali and A. N. D. Andrea, Synchronization Techniques for Digital Re-

ceivers. Plenum Press, 1997.

[67] H. Meyr, M. Moeneclaey, and S. A. Fechtel, Digital Communication Re-

ceivers: Synchronization, Channel Estimation, and Signal Processing. Wiley-

InterScience, John Wiley & Sons, Inc., 1997.

[68] ——, Performance Comparison of Orthogonal Gold and Walsh Hadamard

Codes for Quasi-Synchronous CDMA Communication. Publisher Springer

Berlin/Heidelberg, 2009.

[69] R. Miao, J. Xiong, L. Gui, and J. Sun, “Iterative approach for multiuser carrier

frequency offset estimation in interleaved OFDMA uplink,” IEEE Trans. on

Consumer Electronics, vol. 55, no. 3, pp. 1039–1044, 2009.

[70] M. Morelli, C. Jay Kua, and M. O. Pun, “Synchronization techniques for or-

thogonal frequency division multiple access (OFDM):a tutorial review,” in

Proc. of IEEE, 2004, pp. 1281–1285.

[71] K. Mueller and M. Muller, “Timing recovery in digital synchronous data re-

ceivers,” IEEE Trans. on Commun., vol. 24, no. 5, pp. 516–531, May 1976.

161



[72] A. F. Naguib, V. Tarokh, N. Seshadri, and A. R. Calderbank, “A spacetime

coding modem for high-data-rate wireless communications,” IEEE J. Select.

Areas Commun., vol. 16, pp. 1459–1478, Oct. 1998.

[73] H. Nyquist, “Certain topics in telegraph transmission theory,” AIEE Trans.,

vol. 47, no. 2, pp. 617–644, Feb. 1928.

[74] R. Palat, A. Annamalai, and J. Reed, “Accurate bit-error-rate analysis of

bandlimited cooperative OSTBC networks under timing synchronization er-

rors,” IEEE Trans. on Vehicular Tech., vol. 58, no. 5, pp. 2191–2200, Jun. 2009.

[75] P. Parker, P. Mitran, D. W. Bliss, and V. Tarokh, “On bounds and algorithms

for frequency synchronization for collaborative communication systems,”

IEEE Trans. on Signal Proc., vol. 56, no. 8, pp. 3742–3752, Aug. 2008.

[76] C. S. Patel and G. L. Stuber, “Channel estimation for amplify and forward

relay based cooperation diversity systems,” IEEE Trans. on Wireless Commun.,

vol. 6, no. 6, pp. 2348–2356, Mar. 2007.

[77] A. Paulraj, et al., “An overview of MIMO communications: A key to gigabit

wireless,” Proc. IEEE, vol. 92, no. 2, Feb 2004.

[78] T. Pham, A. Nallanathan, and Y. Liang, “Joint channel and frequency offset

estimation in distributed MIMO flat-fading channels,” IEEE Trans. on Wire-

less Commun., vol. 7, no. 2, pp. 648–656, Feb. 2008.

[79] H. V. Poor, An Introduction to Signal Detection and Estimation. Springer, Sec-

ond Edition, 1994.

[80] J. G. Proakis, Digital Communications. 4th ed. New York, NY: McGraw-Hill,

2001.

162



[81] M. O. Pun, M. Morelli, and C. C. J. Kuo, “Maximum-likelihood synchroniza-

tion and channel estimation for OFDMA uplink transmissions,” IEEE Trans.

on Commun., vol. 54, no. 4, pp. 726–736, Apr. 2006.

[82] K. Rajawat and A. Chaturvedi, “A low complexity symbol timing estimator

for MIMO systems using two samples per symbol,” IEEE Commun. Letters,

vol. 10, no. 7, pp. 525–527, Jul. 2006.

[83] T. S. Rappaport, Wireless Communications Principles and Practice, 2002.

[84] A. Sendonaris, E. Erkip, and B. Aazhang, “User cooperative diversity-part I:

system description; part II: implementation aspects and performance analy-

sis,” IEEE Trans. on Commun., vol. 51, pp. 1927–1948, Nov. 2003.

[85] S. Serbetli and A. Yener, “MMSE transmitter design for correlated MIMO

systems with imperfect channel estimates: Power allocation trade-offs,”

IEEE Trans. on Wireless Commun., vol. 5, no. 8, pp. 2295–2304, 2006.

[86] H. Shi, T. Abe, T. Asai, and H. Yoshino, “Relaying schemes using matrix

triangularization for MIMO wireless networks,” IEEE J. Selected Areas Com-

mun., vol. 55, no. 9, pp. 1683–1688, Sept. 2007.

[87] O. Shin, A. Chan, H. T. Kung, and V. Tarokh, “Design of an OFDM cooper-

ative space-time diversity system,” IEEE Trans. on Vehicular Technol., vol. 56,

pp. 2203–2215, Jul. 2007.

[88] D. Shiu, G. J. Foschini, M. J. Gans, and J. M. Kahn, “Fading correlation and

its effect on the capacity of multielement antenna systems,” IEEE Trans. Com-

mun., vol. 48, no. 3, pp. 502–513, Mar. 2000.

163



[89] E. Sourour, H. El-Ghoroury, and D. McNeill, “Frequency offset estimation

and correction in the IEEE 802.11a WLAN,” IEEE VTC, vol. 7, pp. 4923–4927,

Sept. 2004.

[90] P. Stoica and E. Lindskog, “Space-time block coding for channels with in-

tersymbol interference,” in Proc. IEEE Asilomar Conf. on Signals, Systems and

Computers, vol. 1, pp. 252–256, Nov. 2001.

[91] P. Stoica and T. L. Marzetta, “Parameter estimation problems with singular

information matrices,” IEEE Trans. on Signal Proc., vol. 49, no. 1, pp. 87–90,

Jan. 2001.

[92] P. Stoica and A. Nehorai, “MUSIC, maximum likelihood, and Cramer-Rao

bound,” IEEE Trans.on Acoust., Speech, Signal Proc., vol. 37, no. 5, pp. 720–

741, May 1989.

[93] A. L. Swindlehurst, “Time delay and spatial signature estimation using

known asynchronous signals,” IEEE Trans. on Signal Process., vol. 46, no. 2,

pp. 449–462, Feb. 1998.

[94] X. Tang and Y. Hua, “Optimal design of non-regenerative MIMO wireless

relays,” IEEE Trans. on Wireless Commun., vol. 6, no. 4, pp. 1398–1407, Apr.

2007.

[95] V. Tarokh, N. Seshadri, and A. R. Calderbank, “Space-time codes for high

data rate wireless communication: performance criterion and code construc-

tion,” IEEE Trans. on Info. Theory, vol. 44, pp. 744–765, Mar. 1998.

[96] E. Telatar, “Capacity of multi-antenna Gaussian channels,” Tech. Rep., AT&T

Bell Labs, 1995.

164



[97] D. N. C. Tse, P. Viswanath, and L. Zheng, “Multiple-antenna coopera-

tive wireless systems: A diversity-multiplexing tradeoff perspective,” IEEE

Trans. on Info. Theory, vol. 50, no. 9, pp. 1859–1874, Sept. 2004.

[98] F. Tuteur and Y. Rockah, “The covariance difference method in signal detec-

tion,” in Proc. 3rd ASSP Workshop on Spectrum Estimation and modeling, Boston,

MA, pp. 120–122, Nov. 1986.

[99] S. Vishwanath, N. Jindal, and A. Goldsmith, “Duality, achievable rates, and

sum-rate capacity of gaussian MIMO broadcast channels,” IEEE Trans. on

Info. Theory., vol. 49, no. 10, pp. 2658–2668, Oct. 2003.

[100] H. Wang and M. Kaveh, “On the performance of signal-subspace processing-

Part 1: Narrow-band systems,,” IEEE Trans. on Acoust., Speech, Signal Process-

ing, vol. ASSP-34, pp. 1201–1209, Oct. 1986.

[101] G. Wang, F. Gao, and C. Tellambura, “Joint frequency offset and channel

estimation methods for two-way relay networks,” IEEE Globecom, pp. 1–5,

Nov. 2009.

[102] H. Wang, X. G. Xia, and Q. Yin, “Computationally efficient equalization

for asynchronous cooperative communications with multiple frequency off-

sets,” IEEE Trans. on Wireless Commun., vol. 8, no. 2, pp. 1039–1044, Feb. 2009.

[103] ——, “Distributed space-frequency codes for cooperative communication

systems with multiple carrier frequency offsets,” IEEE Trans. on Wireless Com-

mun., vol. 8, no. 1, pp. 1–11, Jan. 2009.

165



[104] A. Wang, Y. Qiu, L. Lin, and S. Li, “A blind carrier frequency offset esti-

mation algorithm for OFDMA based on improved MUSIC algorithm,” IEEE

ICNC, vol. 5, pp. 145–149, 2008.

[105] J. H. Winters, “Smart antennas for wireless systems,” IEEE Personal Commun.,

vol. 5, pp. 23–27, Feb. 1998.

[106] P. W. Wolniansky, G. J. Foschini, G. D. Golden, and R. A. Valenzuela, “V-

BLAST: an architecture for realizing very high data rates over the rich-

scattering wireless channel,” in URSI, Oct 1998, pp. 295–300.

[107] Y. C. Wu, S. C. Chan, and E. Serpedin, “Symbol-timing estimation in space-

time coding systems based on orthogonal training sequences,” IEEE Trans.

on Wireless Commun., vol. 4, pp. 603–613, Mar. 2005.

[108] F. Yan, W. Zhu, and M. O. Ahmad, “Carrier frequency offset estimation and

I/Q imbalance compensation for OFDM systems,,” EURASIP Journal on Ad-

vances in Signal Processing,, vol. 8, no. 1, pp. 1–11, Jan. 2007.

[109] Y. Yao and T. Ng, “Correlation-based frequency offset estimation in MIMO

system,” in Proc. IEEE Veh. Technol. Conf., vol. 1, p. 438442, 2003.

[110] A. Yilmaz, “Cooperative diversity in carrier frequency offset,” IEEE Com-

mun. Letter, vol. 11, no. 4, pp. 307–309, 2007.

[111] J. Yindi and H. Jafarkhani, “Network beamforming using relays with perfect

channel information,” IEEE Trans. Acoust., Speech, Signal Process., vol. 3, pp.

473–476, Apr. 2007.

[112] W. Yu and J. M. Cioffi, “Sum capacity of Gaussian vector broadcast chan-

nels,” IEEE Trans. on Info. Theory, vol. 50, no. 9, pp. 1875–1892, Sept. 2004.

166



[113] Y. V. Zakharov, V. M. Baronkin, and D. A. J. Pearce, “Asymptotic and mod-

ified cramer-rao bounds for frequency estimation in parallel fading chan-

nels,” IEEE Trans. on Signal Proc., vol. 54, no. 4, pp. 1554–1557, April 2006.

[114] Y. Zheng, H. Mehrpouyan, and S. D. Blostein, “Application of phase shift in

coherent multi-relay MIMO communications,” IEEE ICC, pp. 1–5, June 2009.

[115] Z. Zhong, S. Zhu, and A. Nallanathan, “Delay-tolerant distributed lin-

ear convolutional space-time code with minimum memory length under

frequency-selective channels,” IEEE Trans. on Wireless Commun., vol. 8, no. 8,

pp. 3944–3950, Aug. 2009.

[116] Z. Zhongshan, Z. Wei, and C. Tellambura, “OFDMA uplink frequency offset

estimation via cooperative relaying,” IEEE Trans. on Wireless Commun., vol. 8,

no. 9, pp. 4450–4456, 2009.

[117] I. Ziskind and M. Wax, “Maximum likelihood localization of multiple

sources by alternating projection,” IEEE Trans. on Acoust., Speech, Signal Pro-

cess., vol. 36, no. 10, pp. 1553–1560, Apr. 1988.

167


