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ABSTRACT

Employing multiple transmit and receive antennas for wireless transmissions opens up

the opportunity to meet the demand of high-quality high-rate services envisioned for future

wireless systems with minimum possible resources, e.g., spectrum, power and hardware.

Empowered by linear precoding and decoding, a spatially multiplexed multiple-input

multiple-output (MIMO) system becomes a convenient framework to offer high data rate,

diversity and interference management. While most of the current precoding/decoding de-

signs have assumed perfect channel state information (CSI) at the receiver, and sometimes

even at the transmitter, in this thesis we will design the precoder and decoder with imperfect

CSI at both the transmit and the receive sides, and investigate the joint impact of channel

estimation errors and channel correlation on system structure and performance. The mean-

square error (MSE) related performance metrics will be used as the design criteria.

We begin with the minimum total MSE precoding/decoding design for a single-user

MIMO system assuming imperfect CSI at both ends of the link. Here the CSI includes the

channel estimate and channel correlation information. The closed-form optimum precoder

and decoder are determined for the special case with no receive correlation. For the general

case with correlation at both ends, the structures of the precoder and decoder are also

determined. It is found that compared to the perfect CSI case, linear filters are added

to the transceiver structure to balance the channel noise and the additional noise caused

by imperfect channel estimation, which improve system robustness against imperfect CSI.
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Furthermore, the effects of channel estimation error and channel correlation are coupled

together, and are quantified by simulations.

With imperfect CSI at both ends, the exact capacity expression for a single-user MIMO

channel is difficult to obtain. Instead, upper- and lower-bounds on capacity have been de-

rived, and the lower-bound has been used for system design. The closed-form transmit co-

variance matrix for the lower-bound has not been found in literature, which is referred to as

the maximum mutual information design problem with imperfect CSI. Here we transform

the transmitter design into a joint precoding/decoding design problem. The closed-form

optimum transmit covariance matrix is then derived for the special case with no receive cor-

relation, whereas for the general case with non-trivial correlation at both ends, the optimum

structure of the transmit covariance matrix is determined. The close relationship between

the maximum mutual information design and the minimum total MSE design is discovered

assuming imperfect CSI. The tightness and accuracy of the capacity lower-bound is eval-

uated by simulation. The impact of imperfect CSI on single-user MIMO ergodic channel

capacity is also assessed.

For robust multiuser MIMO communications, minimum average sum MSE transceiver

(precoder-decoder pairs) design problems are formulated for both the uplink and the down-

link, assuming imperfect channel estimation and channel correlation at the base station

(BS). We propose improved iterative algorithms based on the associated Karush-Kuhn-

Tucker (KKT) conditions. Under the assumption of imperfect CSI, an uplink–downlink

duality in average sum MSE is proved, which is often used to simplify the more involved

downlink design. As an alternative for solving the uplink problem, a sequential semidefi-

nite programming (SDP) method is proposed. Simulations are provided to corroborate the

analysis and assess the impacts of channel estimation errors and channel correlation at the

base station on both the uplink and the downlink system performances.
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Chapter 1

Introduction

1.1 MIMO Systems for Future Wireless Communications

The goal of future wireless communications systems is to provide a wide variety of high-

quality high-rate services with minimum requirements on spectrum, power consumption

and hardware complexity. Toward this end, proper system structures as well as robust sys-

tem designs are required to meet the challenges in wireless transmissions, such as multipath

fading, limited spectrum resource, and interference. Recent research results have unveiled

the multiple-input multiple-output (MIMO) system as a potential candidate to play a key

role in future wireless [74].

A MIMO wireless system is commonly deployed by using multiple transmit and receive

antennas. Early work on multi-antenna systems involves the use of antenna arrays at the

receiver to provide spatial diversity against the random destructive effect of fading [9,42,78,

81]. There is a recent rich literature on employing multiple antennas at the transmitter and

achieving diversity through space-time coding when there is no channel state information

at the transmitter (CSIT) [2,41,99–101,116], or through transmit beamforming when there

is perfect CSIT [56]. Clearly, a MIMO system can be designed to fully exploit the transmit

1



and receive spatial diversity provided by the channel. The improvement in reliability of a

MIMO system compared to that of a traditional single-input single-output (SISO) system

is typically quantified by the diversity gain and the coding gain [53].

The use of multiple transmit and receive antennas also opens up the spatial domain

for boosting data rate. While a flat-fading SISO Gaussian channel provides only a sin-

gle narrow data pipe, a coherent MIMO channel can be represented as a set of parallel

Gaussian channels and thus creates multiple data pipes for data transmissionwithout addi-

tional power or spectrum[26, 28, 29, 102], an appealing feature to cope with the scarcity

of wireless spectrum and the stringent power constraint on terminals. In particular, the er-

godic (Shannon) capacity of a coherent MIMO channel scales linearly with the minimum

of (nT ,nR) [denoted asmin(nT ,nR)] in a rich-scattering spatially white environment, where

nT andnR are the numbers of the transmit and receive antennas, respectively [29,102]. The

gain in terms of ergodic capacity achieved by a coherent MIMO channel over that of a

SISO channel is termed the spatial multiplexing gain [129], which can be reaped using the

Bell Laboratories Layered Space-Time (BLAST) architecture [26,27,117].

Interestingly, MIMO spatial multiplexing systems harness the randomness of the chan-

nel, whereas MIMO space-time coded systems combat it [104]. Although both spatial

multiplexing and diversity gains can be simultaneously achieved by a MIMO system, there

is a basic tradeoff between them [129].

For applications such as in wireless local area network (LAN) as well as in cellular

communications, MIMO systems will likely be set up in a multiuser environment, where a

multi-antenna base station (BS) simultaneously communicates with several multi-antenna

mobile stations (MSs). There are two basic multiuser channels here. One is the multiple-

access channel (MAC), also known as the uplink or the many-to-one channel [17, 24].
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The other is the broadcast channel (BC), also referred to as the downlink or the one-to-

many channel [16, 17]. Recent results from information-theoretic studies have completely

characterized the capacity regions of the coherent Gaussian MIMO MAC [31, 54, 124]

and BC [11, 107, 115, 123]. It has been found that in a multiuser environment, the use

of multiple antennas introduces more flexibility to deal with the multiuser interference

and enables simultaneous high-rate, multiuser communications, besides providing spatial

multiplexing and diversity gains [104]. Similar to the single-user case, there is a tradeoff

among the capabilities of spatial multiplexing, diversity and interference management in

multiuser MIMO systems [105].

Thus, MIMO systems have been established as a promising transmission structure to

achieve the goal of future wireless systems.

1.2 MIMO System Designs and Channel Knowledge

The promise of a high performance return from using MIMO systems largely relies on

the assumption of perfect coherent reception, i.e., perfect channel state information at the

receiver (CSIR), and even perfect CSIT with some designs.

In practice, however, perfect coherent reception (perfect CSIR) is unattainable due to

channel estimation errors. Consequently, it is necessary to design a system robust to im-

perfect CSIR.

Some popular MIMO systems, such as space-time coded systems and the BLAST ar-

chitecture, have considered no CSIT, whereas others, e.g., transmit beamforming [3, 56]

or generalized beamforming systems [85, 87, 120], have assumed perfect CSIT. Practical

situations indicate that some forms ofpartial CSIT can be available [68, 109]. For exam-

ple, partial CSIT can be acquired by transferring the CSIR to the transmitter via a feedback
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link. Feedback is not an uncommon feature and it is present in most wireless systems,

e.g., the power control channel in Code Division Multiple Access (CDMA) systems. If

a system operates in the time-division duplex (TDD) mode, the transmitter can infer the

CSI by measuring its received signal based on the reciprocity of wireless channels. CSIT

obtained this way is usually imperfect due to channel estimation errors, erroneous CSIR,

and/or limitation of the feedback link. However incomplete, CSIT, if efficiently used, can

yield considerable performance gain in both space-time coded [44,130,131] and spatially-

multiplexed systems [40], as opposed to the case of no CSIT. Therefore, intelligent MIMO

systems designs must exploit the available CSIT.

The uncertainty in CSI can be modeled and dealt with in two different ways. One way

is to model the error in channel knowledge as unknown but deterministic and bounded

in a certain region. Worst-case optimizations are then employed to guarantee a (certain)

minimum reliability level [33, 72, 111] [69, Chapter 7]. However, a worst-case design is

rather conservative, since the worst case usually occurs with low probability [112]. Thus, an

alternative way, which models the uncertainty by its first-order and second-order statistics

[30, 31, 40, 44, 68, 109, 130, 131], is of particular interest and has been widely adopted.

A design based on statistical channel information is called a stochastic robust design [69,

Chapter 7].

As far as statistical uncertainty models are concerned, the channel mean information

(CMI) and channel correlation information (CCI), obtained from channel estimation and

propagation geometry measurement, respectively, are extensively used [31]. The CMI and

CCI can be conveniently exploited using precoding or joint precoding and decoding. In

particular, linear precoding/decoding is often preferred, due to the complexity constraint,

especially for mobile terminals.
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To make statistical CSI available at the transmitter, feedback is required, albeit infre-

quent in slow-fading channels. If the feedback link is bandwidth-constrained, it will be

more appropriate to employ limited-feedback designs [6,55,57,58,65,118]. Nevertheless,

the general stochastic robust designs usually lead to solutions that clearly describe sys-

tem structures, and thus provide direct information on how impairments such as erroneous

channel estimation and channel correlation affect system performance. The results from

the general designs are also helpful in identifying key channel parameters that should be

quantized and transferred back to the transmitter, as well as in assessing the performance

of limited-feedback designs. Therefore, it is of great importance to study MIMO system

designs with uncertain CSI modeled statistically.

1.3 Motivation and Thesis Overview

With proper linear precoder designs or joint linear precoder-decoder designs, a spatial mul-

tiplexing system becomes a convenient framework to improve data rates, enhance link re-

liability as well as offer a flexible diversity-multiplexing tradeoff for both single-user and

multiuser MIMO communications. The joint precoder-decoder design is also known as

(joint) transceiver optimization.

For single-user MIMO systems, various performance measures have been considered

as the precoder design or joint design criteria, e.g., minimum total mean-square error

(MSE) from all data streams [87, 120], minimum weighted MSE [85], maximum mutual

information (capacity) [85,87,102], minimum Euclidean distance between received signal

points [14], and minimum bit error rate (BER) [113,119]. A comprehensive study of joint

precoder-decoder designs under the MSE-based, the signal-to-interference-plus-noise-ratio

(SINR)-based, or the BER-based criteria has been presented in [70].
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Among the above performance measures, the MSE-related design criteria are of par-

ticular interest to us. The minimum total MSE criterion aims at minimizing the trace of a

MSE matrix, and balances interference and noise suppression. In addition, minimum sum

MSE linear precoding and decoding designs have been applied to multiuser MIMO sys-

tems [45,91,125]. The maximum mutual information design is also a MSE-related design,

since it is equivalent to minimizing the determinant of the MSE matrix [87]. Although the

minimum total (sum) MSE criterion does not account for the fairness among data streams

(users), it generally leads to tractable analysis and overall good performance.

Most previous work on linear precoder designs or joint linear precoder and decoder de-

signs for single-user MIMO spatial multiplexing systems has assumed perfect CSIR. Only

a few studies have considered imperfect CSI at both ends, but these have not considered

the effect of channel estimation error when coupled with channel transmit and/or receive

correlation. Since these two impairments often coexist, it is important to investigate their

joint impacts. Similar observations also apply to existing multiuser MIMO system designs.

In this thesis, we will employ the spatial multiplexing framework with joint linear pre-

coding and decoding for both single-user and multiuser communications in slow, Rayleigh

flat-fading MIMO channels. We optimize the transceiver using the MSE-related design

criteria. In the single-user case, the imperfect channel estimate as well as both transmit and

receive correlation is assumed to be known to both ends of the link. In a multiuser scenario,

we consider both channel estimation errors and channel correlation at the BS.

Note that the generic MIMO system model subsumes many other communication chan-

nels, e.g., a bundle of twisted pairs in Digital Subscriber Line (DSL) or a frequency-

selective channel with transmit and receive filterbanks [70, 80, 85, 86]. Therefore, by con-

sidering narrow-band (flat-fading) channels does not necessarily limit our results for other

channel conditions and system applications.

6



In Chapter 2, we briefly introduce basic MIMO communications in slow flat fading. The

MIMO channel model used in this thesis is described. Single-user and multiuser MIMO

systems with linear precoding and decoding are introduced here.

In Chapter 3, we study the joint linear precoding/decoding design to minimize total

MSE from all data streams in a single-user MIMO system, under the assumption of imper-

fect CSI at both ends. A detailed channel estimation method is introduced, which presents

the specific CSI assumptions used thereafter. The minimum total MSE design is formu-

lated as a non-convex optimization problem subject to a total transmit power constraint.

The closed-form optimum precoder and decoder are derived for the special with no receive

correlation. The optimum transceiver structure for the general case is also determined.

Based on the optimum transceiver pair, we investigate the effects of channel estimation

error and channel correlation on system structure and average BER performance.

In Chapter 4, we consider maximum mutual information design for a single-user MIMO

system under the same CSI assumption as described in Chapter 3. With the assumed CSI,

exact capacity expressions are difficult to determine. Instead, tight upper- and lower-bounds

on the mutual information are employed for system design. While a capacity lower-bound

has been formulated previously, the closed-form optimum transmit covariance matrix re-

mains to be determined, subject to a total transmit power constraint. This is known as the

maximum mutual information design, or the capacity lower-bound problem, in the case

of imperfect CSI. We relate this problem to that of minimizing the log determinant of the

MSE matrix, which is a non-convex problem. We then derive the structure of the opti-

mum transmit covariance matrix by solving this new non-convex problem using the same

methodology as in Chapter 3. Through this approach, the relationship between the mini-

mum total MSE design and the maximum mutual information design is also unveiled under

the assumption of imperfect CSI. Using Monte Carlo simulations, we examine the tightness
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of the ergodic capacity bounds and investigate the effects of channel estimation error and

channel correlation.

Chapter 5 focuses on the joint linear precoder/decoder designs to minimize the sum

MSE in multiuser MIMO systems. Both the uplink and the downlink are considered. Under

similar CSI assumptions as in Chapter 3, we formulate the uplink and downlink minimum

average sum MSE transceiver optimization problems. We extend and improve previous

Karush-Kuhn-Tucker(KKT)-conditions-based algorithms so that they can be used in our

case with reduced complexity. A duality in the average sum MSE between the uplink

and the downlink is proved. For the uplink optimization, we also propose a sequential

semidefinite programming (SDP) method. Based on optimized transceiver pairs, the effects

of channel estimation errors and channel correlation at the BS are assessed.

Chapter 6 concludes this thesis and suggests future work.

1.4 Thesis Contributions

The primary contributions of this thesis are briefly summarized below:

• The minimum total MSE design is studied with imperfect CSI at both ends of a

single-user MIMO link. Both channel estimation error and channel correlation are

considered. Optimum structures of the linear precoder and decoder are derived. Our

results gracefully fit those in the literature as channel estimation error diminishes.

Based on analytical and simulation results, the impact of channel estimation error as

well as the effect of transmit and receive correlation is assessed.

• When CSI is imperfect at both ends of a single-user MIMO link, the maximum mu-

tual information design relies on a tight lower-bound on capacity. Previously, a nu-

merical search method has been employed to find the optimum transmit covariance
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matrix for this lower-bound. Here, the expression for the optimum transmit covari-

ance matrix is determined by using a novel approach which solves an equivalent

problem. The analytic solution clearly describes the transmitter structure. The accu-

racy of using the optimum transmit covariance matrix is shown by comparing it with

the uniform power allocation strategy. The effect of imperfect CSI on the ergodic

capacity is also investigated.

• Under the imperfect CSI assumption, the relationship between the minimum total

MSE design and the maximum mutual information design is discovered. Interest-

ingly, analogous to the perfect CSI case, the two share the same transmitter struc-

ture and differ mainly in power allocation with imperfect CSI. Alternatively, the two

designs (under imperfect CSI) are connected through the minimum weighted MSE

design. Therefore, our results provide a new perspective of the connection between

two important quantities in estimation theory and information theory, i.e., the MSE

from data estimation and the mutual information between channel input and output.

• Minimum average sum MSE transceiver optimization problems are formulated for

multiuser MIMO uplink and downlink considering channel estimation errors and

channel correlation at the BS. A duality in average sum MSEs for both links is proved

theoretically. Unlike previous methods to prove duality, our method is solely based

on the associated Karush-Kuhn-Tucker (KKT) conditions, and thus provides insight

into the relation between the dual links. Improved KKT-conditions-based iterative

algorithms are proposed for both links. For the uplink optimization, we also pro-

pose a sequential SDP method. Effects of imperfect CSI are evaluated by computer

simulations.
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Chapter 2

Background

2.1 Single-user MIMO Communications over Flat-fading

Wireless Channels

2.1.1 MIMO Channel Model and System Model

Consider a wireless communication system withnT antennas at the transmitter andnR

antennas at the receiver (see Fig. 2.1) [53]. In a flat-fading channel, each signal path is

represented by a random complex fading coefficient (channel gain) [78, 81], so that the

MIMO channel in Fig. 2.1 is conveniently described by a matrixH, with its( j, i)-th element

h j,i denoting the channel gain from transmit antennai to receive antennaj, i = 1, . . . ,nT , j =

1, . . . ,nR:

H =




h1,1 . . . h1,nT

. . . . . . . . .

hnR,1 . . . hnR,nT




.

The random channel gains are modeled by circularly symmetric complex Gaussian random

variables [78,81], denoted ash j,i ∼Nc(m
j,i
h ,1), ∀i, j. If the mean of the channel gain (mj,i

h )
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Figure 2.1. A single-user (point-to-point) wireless channel with multiple transmit and re-

ceive antennas.

is non-zero, the channel is said to undergo Ricean fading. Ifmj,i
h = 0, the channel undergoes

Rayleigh fading. Note that the settings in this thesis are for Rayleigh fading channels.

A Rayleigh fading MIMO channel is said to be spatially white ifE(h j,ih∗n,m) = 0, i,m=

1, . . . ,nT , j,n = 1, . . . ,nR, i 6= m, j 6= n, and is denoted byHw. Here we have usedE(·) to

denote the expectation of a random variable. Note that

hw
def= vec(Hw)∼Nc(0, InR×nT ),

wherevecdenotes the vectorization operation, andIm denotes them×m identity matrix.

When there is spatial correlation, the following nonparametric channel model is commonly

used [25,95]:

H = R
1
2
R Hw R

1
2
T , (2.1)

whereRT (nT×nT) andRR (nR×nR) denote the transmit and receive correlation matrices,

respectively. Thus [53],

h def= vec(H) = (R
T
2
T ⊗R

1
2
R) hw∼Nc(0,RT

T ⊗RR), (2.2)

where⊗ denotes Kronecker product, and the identityvec(ABC) = (CT ⊗A)vec(B) has

been used [10, Table II, T2.13] (Note that this identity holds for complex matrices).
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In practical downlink channels, the mobile is likely to be surrounded by a large number

of local scatterers. The BS antennas, on the other hand, are often situated at high enough

elevation to limit scattering and thus channels arising from the transmit antennas (in the

downlink) are correlated. In this case,

H = Hw R
1
2
T . (2.3)

For an urban transmission environment, the exponential model has been proposed for

transmit and receive correlation [12,30]. This means that the( j, i)-th element ofRT is given

by ρ | j−i|
T for i, j ∈ {1, . . . ,nT}, whereρT represents the real-valued transmit correlation for

signals on adjacent antennas. The receive correlation matrixRR is similarly defined with

ρT replaced byρR and with the indices ranging from 1 tonR. In subsequent chapters,

the exponential correlation model will be used for Monte Carlo simulations. However, it

should be noted that our analytical results can be applied to any correlation model.

At a specific time slot, the received signal at antennaj is given by

y j =
nT

∑
i=1

h j,ixi +n j , j = 1, . . . ,nR,

or, in a vector form,

y = Hx +n, (2.4)

wherey = [y1, . . . ,ynR]
T , n = [n1, . . . ,nnR]

T andx = [x1, . . . ,xnT ]T are the received signal

vector, the noise vector and the transmitter signal vector, respectively. The noise vectorn

is assumed to be spatially white and is distributed asn∼Nc(0,σ2
n · InR).

Further, consider the transmission of anT ×N signal matrix composed ofN data vec-

tors,X = [xt1, . . . ,xtN ], overN consecutive time slots. In a slow-fading channel, it is often

assumed that the channel matrix is constant over a block ofN time slots, i.e.,

Ht1 = Ht2 = . . . = HtN = H.
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Then,

Y = HX +N,

whereY andN denote the received signal matrix and the noise matrix, respectively,Y =

[yt1, . . . ,ytN ] andN = [nt1, . . . ,ntN ]. An equivalent vector signal model here is given by [53]

vec(Y) = (XT ⊗ InR) h+vec(N).

2.1.2 Space-Time Coding for MIMO Systems

For slow-fading narrow-band transmissions, space-time coding is an important technique

to extract the spatial diversity provided by the MIMO channel [2,41,99–101]. Block trans-

mission is often assumed, as described in Subsection 2.1.1. HereX is referred to as the

codeword matrix and is carefully designed with added redundancy. Two basic space-time

codes, the space-time block code (STBC) and space-time trellis code (STTC), have been

extensively studied. The orthogonal STBC (OSTBC) and the quasi-orthogonal STBC are

two popular STBCs. In particular, the OSTBC is capable of providing full diversity gain

(nRnT) of the rich-scattering channel with low decoding complexity. Below is an example

of the OSTBC withnT = N = 2 (also known as the Alamouti code [2]):

X =




x1 −x∗2

x2 x∗1


 .

At each time slot, a column of the codeword matrix is transmitted across different antennas.

At the end of a block, the receiver employs maximum-likelihood (ML) decoding to separate

different transmitted symbols contained in a codeword.

In the design of a space-time code, several factors are considered: the diversity gain, the

coding gain, the decoding complexity, the decoding delay (related to the block lengthN),

and the symbol rate (defined as the ratio of the number of different symbols in a codeword

and the block lengthN; 1 for the Alamouti code).
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2.1.3 Spatial Multiplexing

In contrast to the space-time coded system, a spatially multiplexed system transmits differ-

ent signal vectors across the transmit antennas at different time slots, as described by (2.4).

At the receiver, to minimize the error probability, ML detection should be employed. The

problem with ML detection is its high complexity, which motivates the use of suboptimum

detection schemes. Linear detection methods, such as the zero-forcing (ZF) and minimum

MSE (MMSE), are widely used. The non-linear detectors, such as ZF detection with suc-

cessive interference cancelation (ZF-SIC) and MMSE detection with SIC (MMSE-SIC),

generally provide improved performance at the cost of increased complexity [53,75].

2.1.4 Capacity of Coherent MIMO Channels in Flat Fading

Consider a Gaussian MIMO channel whose input-output relationship is given by (2.4). In

coherent communications, the channelH is perfectly known at the receiver. GivenH, the

capacity is expressed as [102]

C(H) = max
p(x)

I(x;y) = max
Qº0

tr{Q}≤PT

log2det

[
InR +

1
σ2

n
HQHH

]
(bits/channel use),

wherep(x) denotes the input distribution,I(· ; ·) denotes the mutual information between

channel input and channel output,PT is the total transmit power, andQ def= E(xxH) is the

transmit signal covariance matrix.Q º 0 means thatQ is positive semidefinite. Here the

transmitted signal vector is assumed to be zero-mean.

If the channel is unknown to the transmitter, uniform power allocation is used at the

transmitter, i.e.,Q = PT
nT

InT , and

Cuni(H) = log2det

[
InR +

PT

nTσ2
n

HHH
]
.

On the other hand, if the channel is perfectly known at the transmitter, the matrix channel

can be decoupled into a set of parallel scalar Gaussian channels by means of singular value
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decomposition (SVD) [37]. Specifically, letr̆ = rank(H) and letH be represented by its

SVD:

H = Ŭ Λ̆ΛΛ
1
2 V̆H ,

whereŬ, Λ̆ΛΛ andV̆ arenR× r̆, r̆× r̆ andnT × r̆ matrices, respectively.̆ΛΛΛ = diag(λ̆1, . . . , λ̆r̆)

denotes a diagonal matrix composed of the non-zero eigenvalues ofHHH arranged in de-

creasing order. Then we have

y̆i =





√
λ̆i x̆i + n̆i , i = 1, . . . , r̆,

n̆i , i = r̆ +1, . . . ,nR,

wherey̆ = ŬHy, x̆ = V̆Hx, andn̆ = ŬHn. The transmit power is optimally allocated among

the effectiver̆ scalar channels using the well-known water-filling procedure [17, Chapter

10, pp. 250-253]. As a result [102],

P̆opt
i = (µ̆−σ2

n/λ̆i)+, i = 1, . . . , r̆,

where µ̆ is determined by∑r̆
i=1 P̆opt

i = PT , and (a)+ denotesmax(a,0). The capacity-

achieving input distribution is giving byx∼Nc(0,Q̆), where

Q̆ = V̆ ·diag(P̆opt
1 , . . . , P̆opt

r̆ ) · V̆H

= V̆ · (µ̆I r̆ −σ2
nΛ̆ΛΛ−1

)+ · V̆H , (2.5)

and the capacity is given by

Cw f(H) =
r̆

∑
i=1

log2

[
1+

(λ̆i µ̆−σ2
n)+

σ2
n

]
.

It is important to note that, due to CSIT,Cw f(H) is usually larger thanCuni(H), es-

pecially in the low to medium SNR region. For full-rank channels,Cuni(H) approaches

Cw f(H) whenPT goes to infinity.
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Figure 2.2. A single-user (point-to-point) MIMO system with linear precoding/decoding.

The ergodic capacity of a coherent MIMO fading channel is the capacityC(H) averaged

over different channel realizations:

C = EH

{
max

Q,tr(Q)≤PT

log2det

[
InR +

1
σ2

n
HQHH

]}
.

In [26,102], it has been shown that ifH = Hw, then the capacity as expressed in this formula

scales linearly withmin(nT ,nR).

2.1.5 Exploiting CSIT Using Linear Precoding/Decoding in Coherent

Spatial Multiplexing

In traditional space-time coded or spatially multiplexed systems, no CSI is needed at the

transmitter. However, an efficient use of the available CSIT is beneficial to system perfor-

mance. A good example has been seen in Subsection 2.1.4, where CSIT is exploited to

improve capacity. Through proper designs, it can also ameliorate error rate performance.

To account for CSIT, a simple and general framework employs linear precoding and

decoding, as depicted in Fig. 2.2. The information symbols to be sent are denoted by a

B×1 vectors, where the number of data streams,B (≤ nT), is properly chosen and fixed.

The input signals is assumed to be zero-mean and white [E(ssH) = IB], and independent of
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channel realizations. The data vector is then fed into the precoder, denoted byF, which is a

nT×B linear matrix processor and takes the available CSIT into account. In the literature,F

is sometimes referred to as a generalized beamformer or a prefilter. After the precoder, the

data vector is transmitted across the slow-varying flat-fading MIMO channelH. ThenR×1

received signal vector at the receive antennas isy = HFs+n, wheren is the spatially and

temporally white additive Gaussian noise with distributionNc(0,σ2
n · InR). In the receiver,

a linear decoder described by theB× nR matrix G is employed to recover the original

information. The decoder can be interpreted as an equalizer. At the output of the decoder,

the signal vectorr is given by

r = Gy = G(HFs+n).

In some system structures, the decoderG does not appear, or equivalently,G is rep-

resented by an identity matrix. For example, in Subsection 2.1.4, for the perfect CSIT

case,F = Q̆
1
2 [see (2.5)] andG is not needed. [Here the inputs is an independent and

identically-distributed (i.i.d.) Gaussian vector, distributed ass∼Nc(0, InT ).]

The framework in Fig. 2.2 subsumes both space-time coded systems [44, 84, 130, 131]

and spatially multiplexed systems [1,14,40,50,70,85,87]. With linear precoding/decoding,

spatial multiplexing is not only capable of providing high data rate, but also capable of

introducing redundancy (diversity) into the precoded data streams, as well as achieving

a tradeoff between diversity and multiplexing. Therefore, throughout this thesis, we will

concentrate on joint transceiver designs for spatially multiplexed systems.

As mentioned in Section 1.3, various design criteria have been considered, among

which the MSE-related ones are most popular. Most of the existing MSE-related designs

have assumedperfect CSIR, while the CSIT has been assumed to be perfect or partial. In

Chapter 3 and Chapter 4, we will considerimperfect CSIR(i.e., non-ideal coherent recep-

tion) and imperfect CSIT in the transceiver designs, and investigate the joint impact of
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channel correlation and erroneous channel estimation on system structure as well as on

error rate or data rate performance.

2.2 Multiuser MIMO Communications over Flat-fading

Wireless Channels

2.2.1 Multiuser MIMO Uplink and Downlink Systems in Flat Fading

Consider a single cell in a cellular communication system. The BS is equipped withM

antennas. There areK users (mobile stations), each withNi antennas,i = 1, . . . ,K. The

uplink channels are denoted byH i , i = 1, . . . ,K, whereas the downlink channels are given

by HH
i , i = 1, . . . ,K. (In Subsection 2.2.2, we will explain why the uplink and the downlink

channels are denoted using the same set of symbols.)

2.2.1.1 The Uplink System Model

Let the(Nk×1) transmitted signal vector from the antennas of userk be denoted byxul,k,

k= 1, . . . ,K. The signal vector received at the BS antennas is a blend of those from different

users contaminated by channel fading and noise, i.e.,

yul =
K

∑
k=1

Hkxul,k +nul.

2.2.1.2 The Downlink System Model

In the downlink, the BS broadcasts a mixture ofK (M×1) signal vectors, each intended

for a different user. Different MSs receive different copies of the mixture which have gone

through individual fading processes. For userj,

ydl, j = HH
j

[
K

∑
k=1

xdl,k

]
+ndl, j , j = 1, . . . ,K.
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2.2.2 Multiuser MIMO Channels: Capacity Regions, Sum Capacities

and Duality

In multiuser communications, it is the simultaneously achievable performances for all users

that interest us.

Given perfect knowledge of{Hk}K
k=1, the capacity region of a MIMO MAC has been

reported in [31,54,124], which characterizes all the simultaneously achievable data rates of

individual users. In particular, it has been shown that the sum capacity (i.e., the sum of data

rates of all users) of a coherent Gaussian MIMO MAC grows linearly withmin(M,∑K
k=1Nk)

[102].

In cellular systems, the demand of the downlink data transfer is expected to be several

times greater than that of the uplink [4]. This makes the MIMO downlink transmission

particularly important. On the other hand, it is often harder to find the optimum transmit

strategy for the downlink [17, Chapter 14]. In fact, given perfect channel knowledge, the

capacity region of a coherent Gaussian MIMO BC has only recently been determined in

[115], where it is shown to coincide with the previously found dirty-paper coding (DPC)

achievable rate region [11,15,31,107,123].

Interestingly, it has been proved in [107,115] that the capacity regions of the Gaussian

MIMO MAC and BC are identical under the same sum power constraint. Furthermore, if a

specific set of transmit covariance matrices in MAC/BC achieve a certain set of data rates,

then there exists another set of transmit covariance matrices in the BC/MAC that achieve the

same set of rates. The explicit transformation between the two sets of covariance matrices

is also described in [107]. This relationship between the MAC and the BC is known as

the MAC-BC duality [107]. With duality, the capacity region of the MIMO BC can be

computed more easily.

Note that to apply the duality, we only need to fabricate avirtual dual channel, find
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the optimum transmit strategy for the dual channel and then transform it back to the actual

channel under investigation. No channel reciprocity is invoked. This explains the notation

we have used for the MAC and BC channels in Subsection 2.2.1.

2.2.3 Linear Processing for Multiuser MIMO

Along with the discovery of capacity-achieving transmit strategies for multiuser MIMO,

signal processing techniques have been proposed to approach the proposed capacity limits,

e.g., Tomlinson-Harashima precoding and vector perturbation techniques for the downlink

[36,123]. In practice, we attempt to approach the limits using signal processing techniques

that are easy to implement. As for single-user MIMO systems, linear signal processing

plays an important role also for multiuser MIMO.

Various linear processing techniques have been proposed for multiuser MIMO systems,

including those for both the uplink [43,45,91] and the downlink [13,43,47,76,89,96,103,

125].

The minimum sum MSE (MSMSE) linear precoding/decoding design has been studied

in [91] for the uplink, as well as in [47,89,103,125] for the downlink, as a low-complexity

and effective signal processing technique to manage both inter-stream and multiuser inter-

ferences and to provide high data rate and diversity. A schematic overview of multiuser

MIMO systems with linear precoding/decoding is presented in Fig. 2.3.

2.2.3.1 The Uplink System Model with Linear Precoding/Decoding

Suppose that useri hasl i data streams, denoted by thel i ×1 [l i ≤min(M,Ni)] vectorsul,i ,

i = 1, . . . ,K. These data vectors are assumed to be zero-mean, white[E(sul,i sH
ul,i) = I l i ,∀i],

and mutually independent among users. Before the data streams are sent into the air, a

linear precoder is employed for each user, which is denoted by theNi × l i matrix Fi , i =
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Figure 2.3. Uplink and downlink MIMO transmissions with linear precoders/decoders

1, . . . ,K. The signal vector received at the BS antennas is given by

yul =
K

∑
i=1

H iFisul,i +nul.

The noise vectornul is assumed to be zero-mean, white, and complex Gaussian, i.e., dis-

tributed according toNc(0,σ2
n · IM). The data vectors and the noise vector are assumed to

be statistically independent. At the BS, to recover the data for the userj, a linear decoder,

denoted by thel j ×M matrixG j , is used. An estimate of the data vector for userj can thus

be expressed as

rul, j = G j ·yul = G j

[
K

∑
i=1

H iFisul,i

]
+G j nul, j = 1, . . . ,K.
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2.2.3.2 The Downlink System Model with Linear Precoding/Decoding

In the downlink, it is assumed that the data streams of useri are denoted by thel i × 1

vectorsdl,i , and the linear precoder for useri at the BS is denoted by theM× l i matrix T i ,

i = 1, . . . ,K. Similar to the uplink, the data vectors are assumed to be zero-mean and white

[E(sdl,i sH
dl,i) = I l i ,∀i]. All data vectors are assumed to be mutually independent. The signal

received at the antennas of userj is given by:

ydl, j = HH
j

[
K

∑
i=1

T isdl,i

]
+ndl, j , ∀ j.

It is assumed that the noise vectors are mutually independent andndl, j is distributed ac-

cording toNc(0,σ2
n · INj ),∀ j. Again, the data and the noise are assumed to be statistically

independent. A linear decoderR j (l j ×Nj ) is employed to recoversdl, j , which gives the

following estimate ofsdl, j :

rdl, j = R j ·ydl, j = R jHH
j

[
K

∑
i=1

T isdl,i

]
+R j ·ndl, j , j = 1, . . . ,K.

2.2.3.3 Duality in Linear Precoding/Decoding designs for Multiuser MIMO Uplink

and Downlink

Not surprisingly, an uplink–downlink duality also exists in the achievable MSE regions or

the signal-to-interference-plus-noise ratio (SINR) regions of both links with linear precod-

ing/decoding [89].PerfectCSI and the same sum power constraint are assumed. Based

on the duality, the more involved downlink minimum sum MSE linear precoding/decoding

design has been tackled by forming and solving a dual uplink problem [89]. The same idea

has also been adopted in [47].

In Chapter 5, we will further study the minimum sum MSE designs for both links and

establish the duality in sum MSE with imperfect CSI.
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Chapter 3

Minimum Total MSE Design with Imperfect CSI

at Both Ends

3.1 Introduction

Previously, the minimum total MSE transceiver designs for single-user MIMO systems

have been studied with different assumptions of channel state information (CSI). In [70,85,

87,120], perfect channel state information at the transmitter (CSIT) as well as at the receiver

(CSIR) is assumed. Later there have been more practical designs that consider imperfect

CSIT. In [49], the minimum total MSE design has been studied with outdated CSIT and

perfect CSIR. In [126, 127] [128, Section VII], it is assumed that the CSIT is the channel

mean information (CMI) and/or the channel correlation information (CCI), whereas the

receiver has perfect CSI. The more important case with imperfect CSIR has also been

considered. For example, in [69, Chapter 7], the same imperfect CSI is assumed at both

ends, but there the channel correlation has not been accounted for. In [128, Section VI],

closed-form robust designs (including the minimum total MSE design) have been derived

assuming that the same imperfect CSI, includingchannel mean and receive correlation

information, is available to both ends. The same CSI assumption is also used in [92], where
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the minimum total MSE design has been specifically studied. However, to the best of our

knowledge, little attention has been paid to the joint design where the same imperfect CSI,

including the channel mean andtransmit correlationinformation, is available at both ends.

This case is very interesting, since, as we have mentioned in Subsection 2.1.1 [see (2.3)],

in practical downlink systems, the mobile is often surrounded by many local scatterers

and channels from different antennas tend to be uncorrelated, whereas the channels from

different BS antennas are often correlated due to limited scattering. The more general case,

when there is channel estimation error and there is transmit and receive correlation, also

remains as an open problem.

In this chapter, we address the problem of linear precoding/decoding to minimize the

total MSE with imperfect CSI at both ends of a single-user MIMO link [18, 20]. The

CSIR here is composed of the estimated channel (channel mean) as well as transmit (and

more generally, transmit and receive) correlation information. To simplify the analysis,

we assume the feedback is error-free and instantaneous, as in [66, 92, 121] [128, Section

VI], which implies that the CSIT is the same as CSIR1. The assumption of instantaneous

feedback is partly justified since, as will be shown by our simulations, the system maintains

acceptable performance with a reasonably low feedback delay. The design under the above

assumption is a step forward from that assuming perfect CSI at both ends [70,85,86,120].

It can also serve as a basis for comparison to future system designs which explicitly take

into account the errors and/or delays in the feedback link.

The basic system model used in this chapter has been introduced in Subsection 2.1.5.

We consider a slowing-varying flat-fading MIMO channel, which is modeled as in [95],

i.e., H = R
1
2
RHwR

1
2
T , whereHw is a spatially white matrix whose entries are independent

1One can equivalently assume that the system is implemented offline, and the precoding matrix is calcu-

lated at the receiver and then fed back to the transmitter [91].
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and identically distributed (i.i.d.)Nc(0,1) [see Subsection 2.1.1, (2.1)-(2.2)]. The matrices

RT andRR represent normalized transmit and receive correlation (i.e., with unit diagonal

entries), respectively. BothRT andRR are assumed to befull-rank.

The rest of this chapter is organized as follows. The imperfect channel estimation

is modeled in Section 3.2. Then a mathematical description of the minimum total MSE

design with imperfect CSI at both ends is given in Section 3.3. In Section 3.4 the minimum

total MSE design problem is solved assuming channel mean and transmit correlation at

both ends. In Section 3.5, the analysis is extended to the more general case with both

transmit and receive correlation as well as channel mean information at both ends. For

wider applications, in Section 3.6, we extend the analysis to the minimum weighted MSE

design. Numerical results are presented in Section 3.7. Section 3.8 summarizes this chapter.

Detailed derivations and proofs are presented in Section 3.9.

3.2 Modeling Imperfect Channel Estimation

SinceRT andRR are full-rank and assumed to be known, channel estimation is performed

on Hw using the well-established orthogonal training method [34, 66, 92, 122]. At the re-

ceive antennas, the signal matrixYtr = HStr +Ntr is received innT successive time slots,

whereStr is a knownnT ×nT training signal matrix andNtr is the collection of channel

noise vectors. Thus,

Ytr = R
1
2
RHwR

1
2
TStr +Ntr . (3.1)

Let Ptr denote the total training power, i.e., tr(StrSH
tr ) = Ptr . ChooseStr = R

− 1
2

T S0, where

S0 is a unitary matrix scaled by
√

Ptr/tr(R−1
T ). Pre-multiplying both sides of (3.1) byR

− 1
2

R

and then post-multiplying the resultant formula byS−1
0 , we obtain

H̃w = R
− 1

2
R YtrS−1

0
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= Hw +R
− 1

2
R NtrS−1

0

= Hw +R
− 1

2
R N0. (3.2)

In the above, we have definedN0 = NtrS−1
0 , whose entries are i.i.d.Nc(0,σ2

ce) with σ2
ce =

tr(R−1
T ) ·σ2

n/Ptr . To obtain a better channel estimation performance, the minimum MSE

(MMSE) channel estimation ofHw is performed based on (3.2) [66, 92, 106, 121], which

yields

Ĥw = E[Hw|H̃w] = [InR +σ2
ce·R−1

R ]−1H̃w. (3.3)

Furthermore,Hw is expressed as the sum ofĤw and the estimation error matrix [46, Chapter

12], i.e.,

Hw = Ĥw +R
− 1

2
R [InR +σ2

ce·R−1
R ]−

1
2Ew, (3.4)

where the entries ofEw are i.i.d.Nc(0,σ2
ce), and are independent from those ofĤw. De-

tailed derivations of (3.3) and (3.4) are provided in Subsection 3.9.1. Let

Re,R = [InR +σ2
ce·R−1

R ]−1.

The CSI model is described by

H = Ĥ +E, (3.5)

whereH is the true channel matrix,̂H = R
1
2
RĤwR

1
2
T is the estimated channel matrix (i.e., the

channel mean), andE = R
1
2
e,REwR

1
2
T is the channel estimation error matrix.

In summary, the CSI is given by (3.3)-(3.5). In subsequent sections, we assume thatĤ,

RR, RT , σ2
ce andσ2

n are known to both ends of the link, which is referred to asthe channel

mean as well as both transmit and receive correlation information.

We point out that in [66], a different CSI model for the channelH = R1/2
R HwR1/2

T is

employed, which is given byH = Ĥ + E, with Ĥ = R1/2
R ĤwR1/2

T andE = R1/2
R EwR1/2

T ,
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where the entries of̂Hw andEw are assumed to be i.i.d.. However, in [66] it is assumed

that a genie-provided estimate ofHw (i.e. Ĥw) is available at the receiver. In comparison,

this is not required in our channel estimation method or CSI model. Also, in [128, Section

VI], it has been assumed thatH = H + R1/2
R E

w
R1/2

T , whereH is the channel mean, and

E
w

is spatially white (i.e., with i.i.d. entries). It is important to note that the analysis to

be presented in this paper can be applied exactly the same way when using the CSI model

in [66] or [128, Section VI].

3.3 A Mathematical Description

With the CSI modeled in previous section, the received signal vectory can be written as

(refer to Subsection 2.1.5):

y = ĤFs+ EFs+n︸ ︷︷ ︸
total noise

. (3.6)

The system MSE matrix is calculated as

MSE(F,G) = E
[
(r −s)(r −s)H]

= E
{
[G(Ĥ +E)F− IB] ssH [G(Ĥ +E)F− IB]H

}
+σ2

n ·GGH . (3.7)

Using our assumptions on the statistics of the channel (see Subsection 2.1.5), noise and

data, with some manipulations, we can simplify (3.7) as

MSE(F,G) = GĤFFHĤHGH −GĤF−FHĤHGH + IB

+ [σ2
ce· tr(RTFFH)] ·GRe,RGH +σ2

n ·GGH . (3.8)

In the above, we have used the resultE
[
EwAEH

w

]
= σ2

ce· tr(A) · InR, if the entries of matrix

Ew are i.i.d.Nc(0,σ2
ce), as well as the identity tr(A1A2) = tr(A2A1).

Our goal is to find a pair of appropriateF andG, such that the sum of MSEs from
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different data streams is minimized subject to a total power constraintPT , i.e.,

minF, G tr [MSE(F,G)]

subject to tr(FFH)≤ PT . (3.9)

This is referred to as the minimum total MSE design with imperfect CSI at both ends. We

are also interested in determining the effects of channel correlation and channel estimation

error on system performance.

Note that whenσ2
ce= 0, our problem in (3.9) reduces to those treated in [70,85,87,120].

Also, whenσ2
ce 6= 0 andRT = InT , tr(FFH) is replaced byPT as in [69, Chapter 7] [92] [128,

Section VI], and the problem (3.9) becomes mathematically equivalent to the perfect CSI

case. It is whenσ2
ce 6= 0 and RT 6= InT that the problem in (3.9) becomes particularly

challenging. No result has been obtained for this case in the literature.

The objective function in (3.9), i.e., tr[MSE(F,G)], is non-convex in(F,G). Thus, the

methods designed for convex problems are not applicable here. Fortunately, it can be shown

that a global minimum exists for the problem in (3.9) (see Subsection 3.9.2). Furthermore,

the objective and constraint functions of (3.9) arecontinuously differentiable(with respect

to G and/orF). Since there is only one inequality constraint and no equality constraints

in (3.9), any feasible precoder-decoder pair is regular whether the inequality constraint

is active or inactive [5, pp. 309-310]2. The global-minimum-achieving(F,G) therefore

satisfies the first-order Karush-Kuhn-Tucker (KKT) necessary conditions for optimality [5,

p. 310,Proposition 3.3.1]. Therefore, our method is to find all the solutions which satisfy

the KKT conditions and identify the optimum(F,G) among them.

Note that if (F,G) minimizes the total MSE, so does(FU,UHG), with U being an

2According to [5, pp. 309-310], a feasible point is said to beregular if either (i) all equality constraint

gradients and active inequality constraint gradients at this point are linearly independent, or (ii) in the case of

no equality constraints, all the inequality constraints are inactive at this point.
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arbitraryB×B unitary matrix. Below we refer to a specific optimum precoder-decoder

pair as the optimum solutionup to a unitary transform[37].

3.4 Closed-form Optimum Solution for a Special Case

In this section, we consider the special case whenRT 6= InT andRR = InR. From (3.2)-

(3.4), it can be shown that whenRR = InR, Hw = Ĥw0+Ew0, with bothĤw0 andEw0 being

spatially white. The entries of̂Hw0 and Ew0 are mutually uncorrelated (independent if

Gaussian), and are i.i.d.Nc(0,1−σ2
E) andNc(0,σ2

E), respectively, withσ2
E = σ2

ce/(1+

σ2
ce). The CSI model is described by

H = (Ĥw0 +Ew0)R
1
2
T = Ĥ +E,

whereĤ = Ĥw0R
1
2
T is the channel mean, andE = Ew0R

1
2
T . Here we assume that̂H, RT ,

σ2
E andσ2

n are known to both ends, which is referred to asthe channel mean and transmit

correlation information.

WhenRR = InR, the MSE matrix in (3.8) reduces to

MSE(F,G) = GĤFFHĤHGH −GĤF−FHĤHGH + IB

+[σ2
n +σ2

E · tr(RTFFH)]GGH . (3.10)

The problem formulation here is the same as (3.9), except that the MSE matrix is given by

(3.10). The associated Lagrangian is

L1(F,G,µ1) = tr [MSE(F,G)]+ µ1 · [tr(FFH)−PT ],

whereµ1 is the Lagrange multiplier. By taking the derivatives ofL1(F,G,µ1) with respect

to F∗ andG∗ [60], together with the power constraint and the complementary slackness [7],

the associated KKT conditions can be obtained as follows:

ĤF =
{

ĤFFHĤH +
[
σ2

n +σ2
E · tr(RTFFH)

] · InR

}
GH , (3.11)
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GĤ = FH [
ĤHGHGĤ +σ2

E · tr(GGH) ·RT + µ1 · InT

]
, (3.12)

µ1≥ 0, tr(FFH)−PT ≤ 0, (3.13)

µ1 · [tr(FFH)−PT ] = 0. (3.14)

Detailed derivations of the above conditions are presented in Subsection 3.9.3.

Clearly, if F = 0, an obvious solution satisfying the KKT condition is:F = 0, G = 0

andµ1 = 0. However, this case is not interesting to us in practice. Therefore, we proceed

to search for those solutions withF 6= 0 (referred to as thenon-zerosolutions).

Lemma 1 For any solution satisfying the KKT conditions (3.11)-(3.14),

µ1 = σ2
n · tr(GGH)/PT . (3.15)

Proof. See Subsection 3.9.4.

Consider the following eigenvalue decomposition (EVD) [37]:

[
σ2

E ·PT ·RT +σ2
n · InT

]− 1
2 ĤHĤ

[
σ2

E ·PT ·RT +σ2
n · InT

]− 1
2

=
[
V Ṽ

]



ΛΛΛ 0

0 Λ̃ΛΛ




[
V Ṽ

]H
. (3.16)

Let r denote the rank of the estimated matrixĤ in (3.16), i.e.,r = rank(ΛΛΛ), the number

of non-zero channel eigenmodes. Here the entries of the diagonal matrixΛΛΛ are the non-

zero eigenvalues and those ofΛ̃ΛΛ are all zero. ThenT × (nT − r) matrix Ṽ consists of basis

vectors for the null space of (3.16), whereas thenT × r matrix V is composed of the basis

eigenvectors corresponding to the non-zero eigenvalues. Without loss of generality, the

entries of the diagonal matrixΛΛΛ are arranged indecreasingorder.

Lemma 2 Assume that the number of data streamsB is equal tor. The precoder and

decoder satisfying the KKT conditions (3.11)-(3.14) can be expressed as

F =
[
σ2

E ·PT ·RT +σ2
n · InT

]− 1
2 VΛΛΛF , (3.17)
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G = ΛΛΛGVH [
σ2

E ·PT ·RT +σ2
n · InT

]− 1
2 ĤH , (3.18)

whereΛΛΛF andΛΛΛG are arbitrary r× r matrices, andV comes from (3.16).

Proof. See Subsection 3.9.5.

Theorem 1 Assume that the number of data streamsB is equal tor. The optimum precoder

and decoder for (3.9) have the following general expressions, respectively,

Fopt =
[
σ2

E ·PT ·RT +σ2
n · InT

]− 1
2 VΛΛΛFopt, (3.19)

Gopt = ΛΛΛGoptVH [
σ2

E ·PT ·RT +σ2
n · InT

]− 1
2 ĤH , (3.20)

where diagonalr× r matricesΛΛΛFopt andΛΛΛGopt are given by

ΛΛΛFopt =
[

τ
1
2
1 µ−

1
2

1 σn ·ΛΛΛ−
1
2 − τ1 ·ΛΛΛ−1

] 1
2

+
, (3.21)

ΛΛΛGopt =
[

µ
1
2
1 τ−

1
2

1
1

σn
·ΛΛΛ− 1

2 − µ1

σ2
n
·ΛΛΛ−1

] 1
2

+
ΛΛΛ−

1
2 , (3.22)

and

τ1 =
a2 ·PT

PT ·a3 +a1 ·a3−a2 ·a4
, (3.23)

µ1 =
a2 ·σ2

n(PT ·a3 +a1 ·a3−a2 ·a4)
(PT +a1)2 ·PT

. (3.24)

Scalarsa1, a2, a3 anda4 are traces of thek0×k0 top-left submatrices of

ΛΛΛ−1, ΛΛΛ−
1
2 , ΛΛΛ−

1
2VH [

σ2
EPTRT +σ2

n InT

]−1
V, andΛΛΛ−1VH [

σ2
EPTRT +σ2

n InT

]−1
V,

respectively. The integerk0 denotes the number of the non-zero entries ofΛΛΛFopt (k0 ≤ r).

The optimum precoder-decoder pair obtained here is unique up to a unitary transform.

Proof. As derived in Subsection 3.9.6, all the non-zero solutions of(F,G,µ1) satisfy-

ing the KKT conditions are given by (3.19)-(3.24) up to a unitary transform. The method
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Figure 3.1. Explicit structures of the optimum precoder and decoder.

to determine the numberk0 is also included in Subsection 3.9.6. Thus, we have obtained

all the solutions satisfying the KKT conditions (3.11)-(3.14), including (F = 0, G = 0,

µ1 = 0), and the non-zero solutions given by (3.19)-(3.24) up to a unitary transform. It

can be readily shown that all the non-zero solutions lead to the same total MSE, which is

lower than the MSE yielded by (F = 0, G = 0, µ1 = 0) (see Subsection 3.9.6 for the com-

parison). Therefore, we conclude that the non-zero solutions [(3.19)-(3.24), up to a unitary

transform] are equivalent global MSE-minimizers.

The explicit structures of the optimum precoder and decoder are shown in Fig. 3.1. Let

ΛΛΛ = diag{λ1, . . . ,λr}. The channel diagonalization is illustrated in Fig. 3.2.

Remark 3.1: Whenσ2
E = 0 (σ2

ce = 0), Theorem 1 reduces to the results in [70, 85,

87, 120]. Compared with the results obtained under the assumption of perfect CSI, from

(3.19) and (3.20), a linear filter is added to both the transmitter and receiver here, to bal-

ance the suppression of channel noise and the noise from imperfect channel estimation.

Furthermore, the estimation error varianceσ2
E is coupled with the transmit correlationRT .

Remark 3.2: From (3.16)-(3.18), whenRT = InT , transmission along the eigenmodes

of ĤHĤ is optimum, and the channel estimation error simply contributes additional noise
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Figure 3.2. Diagonalization of the equivalent channel (3.16).

(σ2
E ·PT). This result has been mentioned in [69, Chapter 7] and [92]. WhenPT/σ2

n → ∞,

the filter [σ2
E ·PT ·RT + σ2

n · InT ]−
1
2 becomes a scaled version ofR

− 1
2

T . This implies that

the optimum precoder asymptotically cancels the effect ofRT and transmits along channel

eigenmodes of the white part of the channel estimate (Ĥw0).

Remark 3.3: As an alternative, one can verify the results inTheorem 1 using the

Saddle Point Theorem [5, p. 491,Proposition 5.1.6]. Basically, the optimum solution

obtained here satisfies a necessary and sufficient condition for global optimality.

3.5 Optimum transceiver structure for the General Case

Now we consider the general problem formulated in (3.9) (RT 6= InT andRR 6= InR). We

apply the same method as for the special case. The associated Lagrangian is

Lg(F,G,µg) = tr [MSE(F,G)]+ µg · [tr(FFH)−PT ],
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whereµg is the Lagrange multiplier. Correspondingly, the KKT conditions associated with

(3.9) can be derived (using the same method as in Subsection 3.9.3), as given by (3.25)-

(3.28):

ĤF =
[
ĤFFHĤH +σ2

ce· tr(RTFFH) ·Re,R+σ2
n · InR

]
GH , (3.25)

GĤ = FH [
ĤHGHGĤ +σ2

ce· tr(GRe,RGH) ·RT + µg · InT

]
, (3.26)

µg≥ 0, tr(FFH)−PT ≤ 0, (3.27)

µg · [tr(FFH)−PT ] = 0. (3.28)

Similar to the proof forLemma 1 in Subsection 3.9.4, it can be shown that

µg = σ2
n · tr(GGH)/PT , (3.29)

for any solution satisfying the KKT conditions (3.25)-(3.28). Define

τ2 = tr(GRe,RGH) and τ3 = σ2
ce· tr(RTFFH). (3.30)

Consider the following EVD:

[τ2 ·σ2
ce·RT + µg · InT ]−

1
2 ĤH [τ3 ·Re,R+σ2

n · InR]
−1Ĥ[τ2 ·σ2

ce·RT + µg · InT ]−
1
2

= [Vg Ṽg]




ΛΛΛg 0

0 Λ̃ΛΛg


 [Vg Ṽg]H , (3.31)

where the subscript “g” means the general case. The matrixΛΛΛg is a diagonal matrix whose

entries are the non-zero eigenvalues of the matrix in (3.31) arranged in decreasing order.

The entries of the diagonal matrix̃ΛΛΛg are all zero. The matricesVg andṼg are composed of

eigenvectors corresponding to the non-zero eigenvalues and zero eigenvalues, respectively.

Let rg denote the rank of the matrix in (3.31), i.e.,rg = rank(ΛΛΛg).
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Theorem 2 Assume that the number of data streamsB is equal torg. The optimum pre-

coder and decoder for (3.9) can be generally expressed as

Fgopt = [τ2 ·σ2
ce·RT + µg · InT ]−

1
2VgΛΛΛF,gopt, (3.32)

Ggopt = ΛΛΛG,goptVH
g [τ2 ·σ2

ce·RT + µg · InT ]−
1
2 ĤH [τ3 ·Re,R+σ2

n · InR]
−1, (3.33)

whereVg is from (3.31),ΛΛΛF,gopt andΛΛΛG,gopt are rg× rg diagonal matrices, as given below

ΛΛΛF,gopt =
[
ΛΛΛ−

1
2

g −ΛΛΛ−1
g

] 1
2

+
, (3.34)

ΛΛΛG,gopt =
[
ΛΛΛ−

1
2

g −ΛΛΛ−1
g

] 1
2

+
ΛΛΛ−

1
2

g . (3.35)

Inserting (3.32)-(3.35) into the power constraint tr(FFH)= PT , together with the definitions

of τ2 andτ3 in (3.30), leads to three equations withτ2, τ3 andµg being the unknowns. By

solving these equations numerically, the values ofτ2, τ3 and µg can be determined. The

optimum solution obtained using this method is unique up to a unitary transform.

Proof. See Subsection 3.9.7.

Theorem 2, hence, provides the structures of the optimum precoder and decoder. How-

ever, the scalarsτ2, τ3 andµg need to be determined numerically, which is inconvenient,

because the three unknowns are involved together. Alternatively, (3.9) can be solved using

an iterative algorithm developed from the KKT conditions, which is given in Table 3.1.

This algorithm converges according to [125]. Furthermore, starting from a non-zero feasi-

ble F, this algorithm obtains a non-zero solution satisfying the KKT conditions. Since all

the non-zero solutions satisfying the KKT conditions lead to the same minimum total MSE

(see Subsection 3.9.7), we conclude that the iterative algorithm obtains a solution equiva-

lent to the one obtained fromTheorem 2(up to a unitary transform). Therefore, Table 3.1

presents a convenient method for the general case.
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Table 3.1. An iterative algorithm for solving (3.9) in the general case

1) InitializeF = F0; the upperB×B sub-matrix ofF0 is chosen to be a scaled identity

and to satisfy the power constraint with equality, while the remaining entries ofF0

are set to zero.

2) UpdateG using (3.25);

3) Updateµg using (3.29);

4) UpdateF using (3.26);

5) If the termination condition is met, stop; otherwise, go back to 2).

Remark 3.4: We have assumedB = r in Theorem 1 andB = rg in Theorem 2. If

the number of data streamsB is chosen to be strictly smaller than the number of non-zero

channel eigenmodes, i.e., theB strongest eigenmodes are used, then redundancy is intro-

duced, which can be translated into improved diversity and thus performance improve-

ment [50, 85]. However, the diversity effect is achieved at the cost of a reduced number

of data streams (and thus reduced data rate). Therefore, there is a diversity-multiplexing

tradeoff here [129]. The choice ofBaccording to channel conditions to guarantee a constant

data rate has been studied in [50] assuming perfect CSI at both ends. Also, the optimum

choice ofB to guarantee that the MSE in every data stream is lower than a given target

has been studied in [92] where channel estimation error and receive correlation only are

considered. It is possible to extend the method in [92] to the more general setting presented

in this section.

3.6 Extension to Minimum Weighted MSE Design

In [85], the minimum weighted MSE transceiver design has been studied with perfect CSI

at both ends. It includes several other designs as special cases, e.g., the quality-of-service

(QoS)-based designs that achieve different SNRs on different sub-channels by adjusting
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the weighting matrix. It is straightforward to extend our analysis in previous sections to the

minimum weighted MSE design under imperfect CSI. The impacts of channel estimation

error and channel correlation on the QoS-based designs can then be investigated.

To give an example, recall the system model in Subsection 2.1.5 and consider the spe-

cial case of imperfect CSI as in Section 3.4. The minimum weighted MSE design is for-

mulated as

min
F,G

E
[
‖W

1
2 (r −s) ‖2

]

subject to tr(FFH)≤ PT , (3.36)

whereW is a diagonal positive definite weighting matrix. The weighted MSE matrix is

defined as

MSEwt (F,G) def= E
[
W

1
2 (r −s)(r −s)H W

1
2

]

= W
1
2 ·MSE(F,G) ·W 1

2 , (3.37)

whereMSE(F,G) in the second equation is from (3.10). The objective function in (3.36)

is simply given by

tr [MSEwt (F,G)] = tr [W ·MSE(F,G)] .

The Lagrangian associated with (3.36) is

Lwt (F,G,µwt) = tr [MSEwt (F,G)]+ µwt ·
[
tr

(
FFH)−PT

]
,

whereµwt is the Lagrange multiplier. Using exactly the same method as in previous sec-

tions, we can obtain the following theorem, whose proof is omitted for brevity.

Theorem 3 Assume that the number of data streamsB is equal tor, wherer is from (3.16).

The optimum precoder and decoder for (3.36) have the following general expressions:

Fwt,opt =
[
σ2

E ·PT ·RT +σ2
n · InT

]− 1
2 VΛΛΛFwt,opt, (3.38)
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Gwt,opt = ΛΛΛGwt,optVH [
σ2

E ·PT ·RT +σ2
n · InT

]− 1
2 ĤH , (3.39)

and the diagonalr× r matricesΛΛΛFwt,opt andΛΛΛGwt,opt are given by

ΛΛΛFwt,opt =
[

τ
1
2
wtµ

− 1
2

wt σn ·W
1
2ΛΛΛ−

1
2 − τwt ·ΛΛΛ−1

] 1
2

+
, (3.40)

ΛΛΛGwt,opt =
[

µ
1
2
wtτ

− 1
2

wt
1

σn
·W− 1

2ΛΛΛ−
1
2 − µwt

σ2
n
·W−1ΛΛΛ−1

] 1
2

+
ΛΛΛ−

1
2 , (3.41)

whereV andΛΛΛ are from (3.16),

τwt =
ã2 ·PT

PT · ã3 + ã1 · ã3− ã2 · ã4
, (3.42)

µwt =
ã2 ·σ2

n(PT · ã3 + ã1 · ã3− ã2 · ã4)
(PT + ã1)2 ·PT

. (3.43)

Scalarsã1, ã2, ã3 andã4 are traces of thekwt×kwt top-left submatrices of

ΛΛΛ−1, W
1
2ΛΛΛ−

1
2 , W

1
2ΛΛΛ−

1
2VH [

σ2
EPTRT +σ2

n InT

]−1
V, andΛΛΛ−1VH [

σ2
EPTRT +σ2

n InT

]−1
V,

respectively. The integerkwt denotes the number of the non-zero entries ofΛΛΛFwt,opt (kwt ≤
r). The optimum precoder-decoder pair obtained here is unique up to a unitary transform.

Remark 3.5: WhenW = IB, Theorem 3reduces toTheorem 1.

Similar to Section 3.5, we can also extend the weighted minimum total MSE design to

the case whenRT 6= InT ,RR 6= InR.

3.7 Simulation Results and Discussions

1. Simulation Scenario

Let nT = nR = 4. The exponential model introduced in Subsection 2.1.1 is used for
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transmit and receive channel correlation, i.e.,

RT =




1 ρT ρ2
T ρ3

T

ρT 1 ρT ρ2
T

ρ2
T ρT 1 ρT

ρ3
T ρ2

T ρT 1




,

andRR is similarly defined withρT replaced byρR (0≤ ρT ,ρR < 1). 4-QAM is used

for each data stream. The optimum matricesFopt andGopt or Fgopt andGgopt are

chosen specifically as given by (3.19)-(3.20) or (3.32)-(3.33), respectively. For the

minimum total MSE design, a relevant performance measure is the average bit error

rate (ABER) per data stream [48,69,85], defined as

ABER=
1
B

B

∑
j=1

BERj ,

whereBERj is the BER of data streamj. Define SNR asPT/σ2
n . For fair compar-

isons, we fixPtr/σ2
n in the training stage and letσ2

ce = tr(R−1
T ) ·σ2

n/Ptr vary with

RT . In our simulations,Ptr/σ2
n is chosen to be 16.016 dB or 26.016 dB, which cor-

responds toσ2
ce = 0.1 or 0.01 ifRT = InT .

2. Effects of Channel Correlation Alone (σ2
ce = 0)

Fig. 3.3 is obtained when there is no channel estimation error (σ2
ce = 0). High corre-

lation is observed to have a large impact on system performance. For example, when

B = 4 andρR = 0, asρT increases from 0 to 0.5, the loss in SNR is around 1.67 dB.

WhenρT further increases from 0.5 to 0.9, approximately 6.67 dB loss is incurred in

the medium to high SNR range. It is clear that reducingB introduces diversity and

thus compensates for the loss caused by channel correlation. Therefore, the num-

ber of data streams,B, should be chosen carefully according to channel correlation

information.
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Figure 3.3. The ABER from minimum total MSE design with perfect CSI.nT = nR = 4, B

= 3 or 4. Different amounts of channel correlation are considered:ρT = 0.0,0.5,0.9 and

ρR = 0.0,0.5.
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3. Effects of Channel Estimation Error and Channel Correlation

Fig. 3.4 shows the ABERs from using the optimum precoder and decoder when the

CSI is imperfect.

Comparing Figs. 3.4 and 3.3, we observe that channel estimation error alone has a

tremendously detrimental effect on system ABER performance. Specifically, with

ρT = ρR = 0 andB = 3, at SNR = 20 dB, the ABER is7.6× 10−7 whenσ2
ce = 0

(see Fig. 3.3). It then increases to1.4× 10−5 at the same SNR whenσ2
ce = 0.01

[corresponding to usingPtr/σ2
n = 26.016dB at the training stage (see Fig. 3.4)]. At

medium to high SNR, the performance degradation caused by channel estimation

error can be compensated by introducing diversity (i.e., reducing the number of data

streams), at the expense of reduced data rate. Also, channel estimation error causes

an irreducible error floor at high SNR. High channel correlation further deteriorates

system performance. For example, from Fig. 3.4, withρR = 0 andB = 3, at SNR

= 20 dB, whenρT increases from 0 to 0.5, the ABER increases from1.4×10−5 to

6.8×10−5, and whenρT increases from 0.5 to 0.9, the ABER increases drastically

from 6.8×10−5 to 8.8×10−3.

4. Optimum Precoder vs. Two Asymptotically Optimum Precoders

Consider the special case without receive correlation as in Section 3.4. A subopti-

mum transceiver can be obtained by ignoring the channel correlation information at

the transmitter, treatinĝH as if it were the true channel and then applying the results

in [85]. In this way, the precoder is restricted to be of the formFNS= V1ΛΛΛFNS, where

the matrixV1 consists of the effective eigenvectors (corresponding to the non-zero

eigenvalues) of̂HHĤ andΛΛΛFNS is a diagonal matrix for power allocation. The de-

coder is obtained from (3.25) or (3.45). Based onRemark 3.1andRemark 3.2, this
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Figure 3.4. The ABER from minimum total MSE design with imperfect CSI.nT = nR = 4,

B = 3 or 4. Different amounts of channel correlation are considered.Ptr/σ2
n = 26.016

dB. The values ofσ2
ce are 0.01, 0.015, and 0.0739, forρT = 0.0, 0.5, and 0.9, respectively.

Correspondingly, the values ofσ2
E are 0.0099, 0.0148, and 0.0689, forρT = 0.0, 0.5, and

0.9.
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precoder is asymptotically optimum whenσ2
ce→ 0 (and thus the additive noise is the

dominant source of error), or whenRT → InT . We refer to it as the noise-suppression

precoder.

On the other hand, we obtain another transceiver structure by restricting the pre-

coder asFCC = R
− 1

2
T V2ΛΛΛFCC, whereV2 is composed of the effective eigenvectors of

ĤH
w0Ĥw0 andΛΛΛFCC is also a diagonal power allocation matrix. Again, the decoder is

determined from (3.45). Based onRemark 3.2, this precoder here is asymptotically

optimum whenPT/σ2
n goes to infinity so that channel estimation error becomes the

dominant source of error, or whenRT → InT . We refer to this as the correlation-

cancelation precoder.

It is interesting to compare the optimum precoder inTheorem 1and the above two

suboptimum ones. The three schemes here have similar computational complexity.

Compared to the other two, the noise-suppression precoder does not require correla-

tion information at the transmitter. The performance comparisons shown in Fig. 3.5

remind us of the relationship between the matched filter (the noise-suppression pre-

coder), the zero-forcing filter (the correlation-cancelation precoder), and the opti-

mum linear MMSE filter in multiuser detection [51]. From Fig. 3.5, we observe

again the tremendous effect of channel estimation error on system performance.

The noise-suppression precoder represents the direct application of previous results

assuming perfect CSI [70,85,87] to the case with imperfect CSI. Clearly, this causes

a large performance loss at medium to high SNR. We also notice that the correlation-

cancelation precoder has close-to-optimum performance at medium to high SNR,

since it also utilizes the transmit correlation information. However, inverting the

transmit correlation is not optimum at low SNR, and thus the correlation-cancelation

structure performs worse than the optimum transmitter in a lower SNR region.

43



0 5 10 15 20 25 30 35
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR = P
T
/σ

n
2 (dB)

A
 B

 E
 R

noise−suppression
correlation−cancelation
optimum

σ
E
2=0.1962

σ
E
2=0.0238

Figure 3.5. Comparison of the optimum and two suboptimum transceivers.nT = nR = 4, B

= 3, ρT = 0.7, ρR = 0.0. Two values of the training power are used:Ptr/σ2
n = 26.016dB

(corresponding toσ2
E = 0.0238), andPtr/σ2
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5. Effect of Transmit Correlation vs. Effect of Receive Correlation

Fig. 3.6 is a comparison of the effects of transmit and receive correlation. It is clear

that the same amount of transmit or receive correlation has exactly the same effect

on system performance when the CSI is perfect.

In the channel estimation described in Section 3.2, the knowledge ofRT is explicitly

used in the training signal design, but the knowledge ofRR is not. This means the

knowledge ofRT andRR is not exploited the same way. Therefore, when there is

channel estimation error, the same amount of correlation at the transmitter and the

receiver affects system performance differently3.

6. Effect of Feedback Delay

We now simulate the effect of feedback delay on the joint precoder/decoder design.

Both spatial and temporal channel correlation are considered. At any time instant,

the spatial correlation is modeled in the same way as in Subsection 2.1.1. Using the

Jakes’ model [42], the temporal magnitude correlation of two channel realizations

separated∆ seconds apart is given byρ∆ = J2
0(2π fd∆), whereJ0(·) denotes the zero-

th order Bessel function of the first kind, andfd is the maximum Doppler frequency.

As in [132], we consider the system working at a carrier frequency offc = 2 GHz.

The data rateRs on each data stream is set to be 400 kilo-symbols per second (ks/s),

which implies the symbol durationTs = 1/Rs = 2.5× 10−6 s. The terminal speed

is v = 30 m/s. Thenfd is calculated to be 200 Hz. We simulate the fading channel

according to [73].

3As mentioned in Section 3.2, a different CSI model has been used in [66], in which the functions ofRT

andRR are symmetric. It is interesting to note that, after applying our analysis with the CSI model used there,

the effect ofRT andRR is the same whether there is channel estimation error or not. The same comments

also apply to the CSI model used in [128, Section VI].
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Figure 3.6. Effect of transmit correlation vs. effect of receive correlation.nT = nR = 4, B

= 3 or 4,(ρT ,ρR) = (0.5, 0.0) or (0.0, 0.5), In the case of imperfect CSI,Ptr/σ2
n = 26.016

dB. The values ofσ2
ce are 0.01 and 0.015, forρT = 0.0 and 0.5, respectively.
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Figure 3.7. The effect of feedback delay on system performance.nT = nR = 4, B = 3,

ρT = 0.7, ρR = 0.0, Ptr/σ2
n = 26.016dB (corresponding toσ2

E = 0.0238).

At time t, the receiver obtainŝHt , an estimate of the true channelHt . Here the

superscript denotes the time index, as in Subsection 2.1.1. Due to the feedback delay

∆, the transmitter only knowŝHt−∆, i.e., the estimate ofHt−∆. Therefore, at timet,

the precoderF can only be calculated according toĤt−∆. The decoderG is calculated

from (3.25) or (3.45), and is matched to the precoder. The resulting performances for

such a scenario are shown in Fig. 3.7 with different values of∆.

As shown, as long as the normalized delayfd ·∆ is smaller than 0.01 (i.e.,∆≤ 20Ts

in the example above), the performance degradation is small. Note thatfd ·∆ = 0.01
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is observed as a critical normalized delay in [19, 132], below which the system can

operate satisfactorily. Thus, our system design is robust against reasonably small

delays. Similar results can also be observed using other values of system parameters

(ρT ,Ptr/σ2
n ,B, etc.).

3.8 Summary

We have formulated and solved a minimum total MSE transceiver design problem for

MIMO systems with channel mean as well as both transmit and receive correlation in-

formation at both ends. The structures of the optimum precoder and decoder are obtained.

Our results gracefully fit those in the existing literature as channel estimation error dimin-

ishes. Simulation results are provided. We have observed that channel estimation error

causes an error floor at high SNR and a large performance degradation across the whole

SNR range. At medium to high SNR, this degradation can be compensated by introducing

diversity. High correlation has a large impact on system performance as well. The same

amounts of transmit and receive correlation impact the system performance equivalently

under the assumption of perfect channel estimation, whereas under imperfect channel esti-

mation, these two might show different effects on the system performance, depending on

the specific channel estimation method employed. The more general minimum weighted

MSE design has also been studied, which can be used to assess the performance of some

QoS-based designs with imperfect CSI.
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3.9 Derivation and Proof Details

3.9.1 Derivations of (3.3) and (3.4)

Perform vectorization operation on (3.2) to obtain

vec(H̃w) = vec(Hw)+(InT ⊗R
− 1

2
R )vec(N0).

Then the minimum MSE (MMSE) estimate ofvec(Hw) is given by [77, p. 156, Eq.

(IV.B.53)]

vec(Ĥw) = [InTnR + InT ⊗R−1
R ·σ2

ce]
−1vec(H̃w)

= {InT ⊗ [InR +R−1
R ·σ2

ce]
−1}vec(H̃w).

Then (3.3) is obtained by convertingvec(Ĥw) back to its matrix version. The resulting

estimation error covariance matrix is [77, p. 156, Eq. (IV.B.54)]

ΨΨΨ = E
{[

vec(Hw)−vec(Ĥw)
][

vec(Hw)−vec(Ĥw)
]H

}

= InTnR− [InTnR +σ2
ce· (InT ⊗R−1

R )]−1

= InT ⊗ [InR− (InR +σ2
ceR

−1
R )−1]

= σ2
ce· InT ⊗ [R−1

R (InR +σ2
ceR

−1
R )−1]︸ ︷︷ ︸

ΨΨΨ0

.

The estimation error vector can be represented byΨΨΨ
1
2
0vec(Ew), whereEw stands for anR×

nT matrix whose entries are i.i.d.Nc(0,σ2
ce) [equivalently,vec(Ew) ∼Nc(0,σ2

ce· InTnR)].

The matrix version ofΨΨΨ
1
2
0vec(Ew) is given byR

− 1
2

R (InR+σ2
ce·R−1

R )−
1
2Ew, and (3.4) follows.

¤
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3.9.2 Proof of Existence of a Global Minimum for (3.9)

The problem in (3.9) can be equivalently formulated as [7, p. 130, Section 4.1.3]

min
F, tr(FFH)≤PT

min
G(F)

tr{MSE[F,G(F)]} . (3.44)

The minimizingG for the inner unconstrained minimization is readily shown to be4:

G = FHĤH [
ĤFFHĤH +σ2

ce· tr(RTFFH) ·Re,R+σ2
n · InR

]−1
, (3.45)

which is the linear MMSE data estimator (Wiener filter) givenĤ andF [46, Chapter 12]

[77]. Substituting (3.45) into (3.44), the problem in (3.9) can be equivalently formulated as

min
F, tr(FFH)≤PT

tr [MSE(F)] , (3.46)

where

MSE(F) =
{

IB +FHĤH [σ2
ce· tr(RTFFH) ·Re,R+σ2

n · InR]
−1ĤF

}−1
. (3.47)

The feasible set of (3.46) is
{

F|tr(FFH)≤ PT
}

, a (closed and bounded) Frobenius norm

ball of radius
√

PT [7]. The objective function of (3.46) is continuous at all points of

the feasible set. Thus, according to Weierstrass’ Theorem [5, p. 654,Proposition A.8],

there exists a global minimum for the problem given by (3.46). Since (3.9) and (3.46) are

equivalent, the same global minimum also exists for (3.9) [7, p. 130, Section 4.1.3]. In

addition, the minimizingF is the same for both problems, while the minimizingG for (3.9)

is calculated according to (3.45).¤

3.9.3 Derivations of (3.11)-(3.14)

For partial derivatives of a scalar-valued trace function of complex matrices, one can simply

apply the results in [35, Table II]. However, in many cases, it is desirable to have a sys-

tematic way of calculating derivatives of more complicated scalar-valued functions with

4In fact, the inner optimization problem is a convex quadratic program [7, p. 152].
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respective to their matrix arguments. Below we introduce preliminary results on complex

matrix differentiation, which are used in this chapter as well as in subsequent chapters.

3.9.3.1 Preliminaries of Complex Matrix Differentials

We first present some complex matrix differential identities, which will be used in subse-

quent derivations. Herei =
√−1. Based on derivative operations on real-valued matri-

ces [60] [63, Appendix C, p. 525], we obtain:

∂ tr
[
AZH

]

∂ ℜZ
= A, i · ∂ tr

[
AZH

]

∂ ℑZ
= A,

∂ tr [BZ]
∂ℜZ

= BT , i · ∂ tr [BZ]
∂ℑZ

=−BT .

The following definition of the generalized complex derivative will be used [8]. Letz

be a complex-valued scalar variable.

d f(z)
dz

=
1
2

[
∂ f (z)
∂ℜz

− i · ∂ f (z)
∂ℑz

]
.

The conjugate complex derivative is given by

d f(z)
dz∗

=
1
2

[
∂ f (z)
∂ℜz

+ i · ∂ f (z)
∂ℑz

]
.

Furthermore, according to [8] [35,Theorem 2], to find a stationary point of the real

scalar functionf (Z,Z∗), it suffices to determine it fromeitherof the following:

d f (Z,Z∗)
dZ

= 0, or
d f (Z,Z∗)

dZ∗
= 0.

Therefore, to derive (3.11)-(3.12) in our case, we only need to consider taking the partial

derivatives ofL1(F,G,µ1) with respect toF∗ andG∗. In fact, taking the partial derivatives

of L1(F,G,µ1) with respect toF andG yields the same equations.
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3.9.3.2 Derivations of (3.11)-(3.14)

Note that (3.13)-(3.14) follow from the power constraint and the complementary slackness,

respectively.

Using the identities presented earlier, we obtain, with respect toF andFH ,

∂L1(F,G,µ1)

= tr
[
GĤ(∂F) FHĤHGH −GĤ(∂F)+GĤF(∂FH) ĤHGH − (∂FH) ĤHGH]

+σ2
E · tr(GGH) · tr[RT(∂F)FH +RTF(∂FH)

]
+ µ1 · tr

[
(∂F)FH +F(∂FH)

]

= tr
{[

FHĤHGHGĤ−GĤ +σ2
E · tr(GGH) ·FHRT + µ1 ·FH]

(∂F)
}

+ tr
{[

ĤHGHGĤF− ĤHGH +σ2
E · tr(GGH) ·RTF+ µ1 ·F

]
(∂FH)

}
.

Therefore,

∂L1(F,G,µ1)
∂ℜF

=
[
FHĤHGHGĤ−GĤ +σ2

E · tr(GGH) ·FHRT + µ1 ·FH]T

+
[
ĤHGHGĤF− ĤHGH +σ2

E · tr(GGH) ·RTF+ µ1 ·F
]
,

i · ∂L1(F,G,µ1)
∂ℑF

=− [
FHĤHGHGĤ−GĤ +σ2

E · tr(GGH) ·FHRT + µ1 ·FH]T

+
[
ĤHGHGĤF− ĤHGH +σ2

E · tr(GGH) ·RTF+ µ1 ·F
]
,

and

∂L1(F,G,µ1)
∂F∗

=
1
2

[
∂L1(F,G,µ1)

∂ℜF
+ i · ∂L1(F,G,µ1)

∂ℑF

]

= ĤHGHGĤF− ĤHGH +σ2
E · tr(GGH) ·RTF+ µ1 ·F.

Similarly, with respect toG andGH ,

∂L1(F,G,µ1)

= tr
{[

ĤFFHĤHGH − ĤF +[σ2
n +σ2

E · tr(RTFFH)] ·GH]
(∂G)

}

+ tr
{[

GĤFFHĤH −FHĤH +[σ2
n +σ2

E · tr(RTFFH)] ·G]
(∂GH)

}
.

52



Thus,

∂L1(F,G,µ1)
∂ℜG

=
[
ĤFFHĤHGH − ĤF +[σ2

n +σ2
E · tr(RTFFH)] ·GH]T

+
[
GĤFFHĤH −FHĤH +[σ2

n +σ2
E · tr(RTFFH)] ·G]

,

i · ∂L1(F,G,µ1)
∂ℑG

=− [
ĤFFHĤHGH − ĤF +[σ2

n +σ2
E · tr(RTFFH)] ·GH]T

+
[
GĤFFHĤH −FHĤH +[σ2

n +σ2
E · tr(RTFFH)] ·G]

,

and

∂L1(F,G,µ1)
∂G∗ =

1
2

[
∂L1(F,G,µ1)

∂ℜG
+ i · ∂L1(F,G,µ1)

∂ℑG

]

= GĤFFHĤH −FHĤH +[σ2
n +σ2

E · tr(RTFFH)] ·G.

Set

∂L1(F,G,µ1)
∂ F∗

= 0 and
∂L1(F,G,µ1)

∂ G∗ = 0,

and then we obtain (3.11)-(3.12). This finishes the calculations of (3.11)-(3.14).¤

3.9.4 Proof of Lemma 1

Pre-multiplying both sides of (3.11) byG, we obtain

GĤFFHĤHGH +[σ2
n +σ2

E · tr(RTFFH)] ·GGH = GĤF. (3.48)

Similarly, post-multiplying both sides of (3.12) byF, to get

FHĤHGHGĤF +σ2
E · tr(GGH) ·FHRTF+ µ1 ·FHF = GĤF. (3.49)

Clearly,GĤF must be Hermitian. From (3.48) and (3.49),

[σ2
n +σ2

E · tr(RTFFH)] ·GGH = σ2
E · tr(GGH) ·FHRTF+ µ1 ·FHF.

Taking the traces at both sides, we obtainσ2
n · tr(GGH) = µ1 · tr(FHF). Due to (3.14), if

µ1 > 0, tr(FHF) must be equal toPT , which yieldsµ1 = σ2
n · tr(GGH)/PT , the desired
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result. AssumeF 6= 0 [i.e., tr(FFH) > 0]. Then, if µ1 = 0, we must have tr(GGH) = 0, and

µ1 = σ2
n · tr(GGH)/PT is still valid. Finally, it is easy to see that it holds even whenF = 0,

G = 0 andµ1 = 0. This concludes the proof ofLemma 1. ¤

3.9.5 Proof of Lemma 2

AssumedB = r. Let the matrixF be expressed as

F =
[
σ2

E ·PT ·RT +σ2
n · InT

]− 1
2 [V Ṽ][ΛΛΛH

F Λ̃ΛΛH
F ]H

=
[
σ2

E ·PT ·RT +σ2
n · InT

]− 1
2 [VΛΛΛF︸︷︷︸

F‖

+ ṼΛ̃ΛΛF︸︷︷︸
F⊥

], (3.50)

whereV andṼ come from (3.16), andΛΛΛF andΛ̃ΛΛF are arbitraryr× r and(nT − r)× r ma-

trices, respectively. Since[σ2
E ·PT ·RT +σ2

n · InT ] is of full rank, [V Ṽ] is anT ×nT unitary

matrix and[ΛΛΛH
F Λ̃ΛΛH

F ]H denotes an arbitrarynT× r matrix, (3.50) is a general expression for

F. DefineF‖ = VΛΛΛF andF⊥ = ṼΛ̃ΛΛF . It can be verified that

FH
⊥F‖ = 0, and FH

‖ F⊥ = 0. (3.51)

Furthermore, due to (3.16), we have the following singular value decomposition

Ĥ
[
σ2

E ·PT ·RT +σ2
n · InT

]− 1
2 = U1ΛΛΛ

1
2VH ,

whereU1 is anR× r matrix satisfyingUH
1 U1 = I r andV is the same as in (3.16). Then it

can be easily seen that

Ĥ
[
σ2

E ·PT ·RT +σ2
n · InT

]− 1
2 F⊥ = 0. (3.52)

By usingLemma 1, (3.12) can be rewritten as

FHĤHGHGĤ +
tr(GGH)

PT
·FH [σ2

E ·PT ·RT +σ2
n · InT ] = GĤ. (3.53)
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Post-multiplying both sides of (3.53) by
[
σ2

E ·PT ·RT +σ2
n · InT

]− 1
2 F⊥, using (3.51) and

(3.52), we getFH
⊥F⊥ = 0, i.e.,F⊥ = 0. This means

F = [σ2
E ·PT ·RT +σ2

n · InT ]−
1
2VΛΛΛF ,

and thus (3.17) holds. Now letτ1 = σ2
n + σ2

E · tr(RTFFH). The matrixG satisfying (3.11)

is given by

G = FHĤH [ĤFFHĤH + τ1 · InR]
−1

= [FHĤHĤF + τ1 · I r ]−1FHĤH

= [FHĤHĤF + τ1 · I r ]−1ΛΛΛH
F︸ ︷︷ ︸

J1

VH [
σ2

E ·PT ·RT +σ2
n · InT

]− 1
2 ĤH ,

where the second equation is obtained using the matrix inversion lemma [60], the third

equation is obtained by substituting (3.17), andJ1
def= [FHĤHĤF + τ1 · I r ]−1ΛΛΛH

F is an arbi-

trary r× r matrix. LetΛΛΛG denote an arbitraryr× r matrix. The generalG satisfying (3.11)

can thus be expressed as

G = ΛΛΛGVH [
σ2

E ·PT ·RT +σ2
n · InT

]− 1
2 ĤH .

Therefore, (3.18) holds.¤

3.9.6 Deriving (3.19)-(3.24) and Determiningk0 in Theorem 1

AssumeF 6= 0. We first show how to obtain (3.19)-(3.24). Post-multiplying both sides of

(3.53) [which is from (3.12)] byF, we get

FHĤHGHGĤF +
tr(GGH)

PT
·FH [σ2

E ·PT ·RT +σ2
n · InT ]F = GĤF. (3.54)

55



Let τ1 = σ2
n + σ2

E · tr(RTFFH) as in Subsection 3.9.5. PerLemma 2, substituting (3.17)

and (3.18) into (3.48) and (3.54), usingLemma 1, we obtain the following identities, re-

spectively,

ΛΛΛG ΛΛΛ ΛΛΛF = ΛΛΛG ΛΛΛ ΛΛΛF ΛΛΛH
F ΛΛΛ ΛΛΛH

G + τ1ΛΛΛG ΛΛΛ ΛΛΛH
G,

ΛΛΛG ΛΛΛ ΛΛΛF = ΛΛΛH
F ΛΛΛ ΛΛΛH

G ΛΛΛG ΛΛΛ ΛΛΛF +(µ1/σ2
n)ΛΛΛH

F ΛΛΛF .

Based on the above two equations, the optimumΛΛΛF andΛΛΛG can be shown to be diagonal

without loss of generality as in [85], and are given byΛΛΛFopt andΛΛΛGopt in (3.21) and (3.22),

respectively. Finally, insert (3.19)-(3.22) into tr(FFH) = PT andµ1 = σ2
n · tr(GGH)/PT , to

obtain two equations withτ1 andµ1 being the variables. Solving these two equations, we

can findτ1 andµ1 as given by (3.23) and (3.24), respectively.

An iterative procedure for calculating the numberk0 in Theorem 1 is described below.

Let λl be thel -th entry on the main diagonal ofΛΛΛ (l = 1, . . . ,B= r). Recall that the diagonal

elements ofΛΛΛ are arranged in decreasing order. Initializek = B.

1. Calculateτ1 andµ1 from (3.23) and (3.24), respectively. Ifµ1 ≤ λkσ2
n/τ1, stop and

setk0 = k; else: go to step 2.

2. Let ΛΛΛFopt,k := 0 andk := k−1. Go to step 1.

We now compare the total MSE obtained from the non-zero solutions and the zero

solution satisfying the KKT conditions (3.11)-(3.14). The MSE corresponding to the zero

solution is simply given by

msezero= tr(IB) = B,

whereas the MSE corresponding to all non-zero solutions is the same and is given by:

msenz = tr

[(
IB +

1
τ1
·FH

optĤ
HĤFopt

)−1
]

.
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Since it can be verified by direct calculations thatFH
optĤ

HĤFopt is positive semidefinite,

we have

IB +
1
τ1
·FH

optĤ
HĤFopt º IB.

Note that if two positive semidefinite matricesA andB satisfyB º A (or A ¹ B), then

B−A is a positive semidefinite matrix. The above inequality implies

[
IB +

1
τ1
·FH

optĤ
HĤFopt

]−1

¹ IB.

According to [64, pp. 585-586], ifA1 ¹ A2, then tr(A1) ≤ tr(A2). Therefore,msenz≤
msezero. ¤

3.9.7 Proof of Theorem 2

AssumeB = rg. It is easy to identify the zero solution satisfying the KKT conditions

(3.25)-(3.28):F = 0,G = 0,µg = 0. We now focus on finding the non-zero solutions.

First, following the same line in Subsection 3.9.4, based on the KKT conditions (3.25)-

(3.28), it can be shown that

µg = σ2
n · tr

(
GGH)

/PT .

In general, the matrixF can be expressed as

F =
[
τ2 ·σ2

ce·RT + µg · InT

]− 1
2
[
Vg Ṽg

][
ΛΛΛH

F,g Λ̃ΛΛH
F,g

]H
,

whereτ2 has been defined in (3.30), andVg and Ṽg have been defined in (3.31). Here

ΛΛΛF,g andΛ̃ΛΛF,g denoterg× rg andrg× (nT − rg) arbitrary matrices, respectively. Same as in

Subsection 3.9.6, we expressF as follows:

F =
[
τ2 ·σ2

ce·RT + µg · InT

]− 1
2


VgΛΛΛF,g︸ ︷︷ ︸

Fg,‖

+ ṼgΛ̃ΛΛF,g︸ ︷︷ ︸
Fg,⊥


 , (3.55)
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where we have definedFg,‖ = VgΛΛΛF,g andFg,⊥ = ṼgΛ̃ΛΛF,g. Clearly,

FH
g,⊥Fg,‖ = 0, and FH

g,‖Fg,⊥ = 0. (3.56)

Using similar arguments as for (3.52) in Subsection 3.9.5, we can show that

[
τ3 ·Re,R+σ2

n · InR

]− 1
2 Ĥ

[
τ2 ·σ2

ce·RT + µg · InT

]− 1
2 Fg,⊥ = 0,

whereτ3 has been introduced in (3.30), and then

Ĥ
[
τ2 ·σ2

ce·RT + µg · InT

]− 1
2 Fg,⊥ = 0. (3.57)

From (3.26),

FHĤHGHGĤ +FH [
τ2 ·σ2

ceRT + µg · InT

]
= GĤ.

Post-multiplying both sides of the above equation by
[
τ2 ·σ2

ce·RT + µg · InT

]− 1
2 Fg,⊥, using

(3.55), (3.56) and (3.57), we obtainFH
g,⊥Fg,⊥ = 0, i.e., Fg,⊥ = 0. Therefore, the general

expression of matrixF satisfying the KKT condition (3.26) can be written as:

F =
[
τ2 ·σ2

ce·RT + µg · InT

]− 1
2 VgΛΛΛF,g. (3.58)

From (3.25),

G = FHĤH [
ĤFFHĤH + τ3 ·Re,R+σ2

n · InR

]−1

=
{

I rg +FHĤH [
τ3 ·Re,R+σ2

n · InR

]−1
ĤF

}−1

︸ ︷︷ ︸
Jg

FHĤH [
τ3 ·Re,R+σ2

n · InR

]−1

= JgΛΛΛH
F,gVH

g

[
τ2 ·σ2

ce·RT + µg · InT

]− 1
2 ĤH [

τ3 ·Re,R+σ2
n · InR

]−1

= ΛΛΛG,gVH
g

[
τ2 ·σ2

ce·RT + µg · InT

]− 1
2 ĤH [

τ3 ·Re,R+σ2
n · InR

]−1
, (3.59)

where we have used the matrix inversion lemma [60], (3.58) and have definedΛΛΛG,g =

JgΛΛΛH
F,g. Due toΛΛΛF,g, ΛΛΛG,g is a corresponding arbitraryrg× rg matrix. Pre-multiplying
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(3.25) byG, post-multiplying (3.26) byF, substituting (3.58) and (3.59) into the resulting

two equations, and using (3.31), we get

ΛΛΛG,g ΛΛΛg ΛΛΛF,g = ΛΛΛG,g ΛΛΛg ΛΛΛF,g ΛΛΛH
F,g ΛΛΛg ΛΛΛH

G,g +ΛΛΛG,g ΛΛΛg ΛΛΛH
G,g,

ΛΛΛG,g ΛΛΛg ΛΛΛF,g = ΛΛΛH
F,g ΛΛΛg ΛΛΛH

G,g ΛΛΛG,g ΛΛΛg ΛΛΛF,g +ΛΛΛH
F,g ΛΛΛF,g.

Again, applying the method in [85], to obtainΛΛΛF,gopt andΛΛΛG,gopt as given by (3.34) and

(3.35), respectively. ReplacingΛΛΛF,g andΛΛΛG,g in (3.58) and (3.59), respective, we obtain

(3.32) and (3.33).

In the above, we have identified the structures of the non-zero precoder and decoder

satisfying the KKT conditions (3.25)-(3.28). All the non-zero solutions lead to the same

MSE, denoted asmsenz,g here. Using (3.25), similar to (3.47), we obtain

msenz,g = tr

{[
IB +FH

goptĤ
H(σ2

ce· tr
(
RTFgoptFH

gopt) ·Re,R+σ2
n · InR

)−1
ĤFgopt

]−1
}

.

It remains to comparemsenz,g with the MSE obtained from the zero solution, i.e.,

msezero,g = tr(IB) = B.

Using (3.32), (3.34) and (3.31), it is easy to show that

FH
goptĤ

H [
σ2

ce· tr
(
RTFgoptFH

gopt

) ·Re,R+σ2
n · InR

]−1
ĤFgopt

is positive semidefinite. As in Subsection 3.9.6, it can be shown thatmsenz,g ≤ msezero,g.

This establishes the global optimality of the non-zero solutions. Therefore,Theorem 2 is

proved.¤
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Chapter 4

Maximum Mutual Information Design with

Channel Uncertainty

4.1 Introduction

The mutual information between the input and the output of a channel and the minimum

mean-square error (MMSE) in estimating the input given the output are two basic quan-

tities in information theory and estimation theory. In [32, 71], fundamental relationships

between the mutual information and the minimum mean-square error have been discov-

ered for discrete-time, continuous-time, scalar and vector channels with Gaussian noise.

In particular, it is found in [71] that in vector (MIMO) Gaussian channels1, the gradient

of the mutual information with respect to the channel matrix is equal to the product of the

channel matrix and the error covariance matrix of the best estimate of the input given the

output (i.e., the MMSE matrix).

In [87], it has been shown that with perfect channel state information (CSI) at both ends,

1Here, by vector Gaussian channels, we mean that the channel matrix is fixed and the noise is Gaussian.

The input distribution can be arbitrary [71].
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the maximum mutual information (capacity) design minimizes the (log) determinant2 of the

MSE matrix, whereas the minimum total MSE design minimizes the trace. The optimum

linear transmitters for both designs consist of a diagonal power allocation matrix followed

by a general beamforming matrix composed of the effective channel eigenmodes [see Sub-

section 2.1.4, and Section 3.4 withσ2
E = 0]. The two differ only in the diagonal power

allocations. In [85], the minimum weighted MSE design is considered. The minimum to-

tal MSE design turns out to be a special case with the weighting matrix being an identity

matrix, whereas the maximum mutual information design corresponds to the case when the

weighting matrix is equal to the diagonal non-zero eigenvalue matrix.

Two natural questions arise here are: how should one design a MIMO system for max-

imum mutual information with imperfect CSI? What is the relationship between these two

designs in this case?

From Subsection 2.1.4, we have seen the enormous potential of a coherent MIMO sys-

tem to provide high data rate in a rich-scattering environment. However, the capacity of a

single-user MIMO channel depends on the CSI available at both ends. Correspondingly,

different transmit strategies should be used with different types of CSI. As we have already

known, the case when the fading channel is perfectly known to both ends has been studied

in [85, 87, 102]. More recently, the optimum transmit strategies are obtained for the case

with perfect CSI at the receiver (CSIR) and with the CSI at the transmitter (CSIT) being

the channel mean information (CMI) or channel correlation information (CCI) [38, 40].

In [39,61], the non-coherent case with no instantaneous CSIT or CSIR has been studied. A

comprehensive overview of the capacity results of MIMO channels can be found in [31].

In the above, either a perfect coherent system (perfect CSIR) or a non-coherent system (no

2Since the log function is monotonically increasing, minimizing the determinant of a matrix (assumed to

be positive) is equivalent to minimizing its log determinant [87].
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instantaneous CSIR at all) has been assumed.

In [121], a different MIMO channel scenario is considered, where the CSIR is obtained

through channel estimation and thus contains estimation errors (nonideal coherent recep-

tion). The CSIT is assumed to be transferred from the receiver via a lossless feedback

link, and is thus the same as the CSIR. Under this assumption of CSI, an exact capacity

expression is hard to obtain. Instead, tight upper- and lower-bounds on capacity have been

proposed for system designs [121], which are generalizations from those for a SISO chan-

nel [62]. The case when the CSI at both ends consists of channel estimates and channel

correlation has been studied in [66, 122]. In particular, the lower-bound on the MIMO

channel ergodic capacity has been formulated and used as the design criterion [66, 122].

A numerical search method has been proposed in [122] to find the optimum transmit co-

variance matrix for the lower-bound. Unfortunately, so far, the optimum structure of the

transmit covariance matrix has not been obtained for the lower-bound. For convenience,

we refer to this problem as the capacity lower-bound problem or the maximum mutual

information design with channel uncertainty (imperfect CSI).

In this chapter, we will show that a globally optimum transmit covariance matrix ex-

ists for the capacity lower-bound with the channel mean (i.e., the channel estimate) and

channel correlation information at both ends. We will also present its explicit structure,

which can be conveniently determined. For the special case with no receive correlation,

the closed-form optimum transmit covariance matrix will be provided. The CSI assumed

in this chapter is the same as in that in Chapter 3. In the end, we will be able to answer the

question raised earlier: the relation between the maximum mutual information design and

the minimum total MSE design in Chapter 3 will be elucidated.

This chapter is unfolded as follows. Section 4.2 describes the design problem at hand.

In Section 4.3, the optimum transmit covariance matrix is determined for the capacity
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lower-bound whenRT 6= InT and RR = InR. Results for the more general case when

RT 6= InT andRR 6= InR are presented in Section 4.4. Section 4.5 discusses the relation

between the minimum total MSE design in Chapter 3 and the maximum mutual informa-

tion in this chapter. Simulation results are provided in Section 4.6, which show that it is

appropriate to use the capacity lower-bound as a design criterion with the above assumed

CSI, since the upper- and lower-bounds are close to each other. The advantage of using

the optimum transmitter is demonstrated. The effect of channel estimation error and chan-

nel correlation are also assessed by simulation. A summary of this chapter is given in

Section 4.7. Derivation and proof details are collected in Section 4.8.

4.2 Upper- and Lower-bounds on the Mutual Information

Consider a single-user MIMO communication system, described by

y = Hx +n.

Herex is thenT ×1 zero-mean data vector (channel input) with a covariance matrix given

by Q =E(xxH). ThenR×1 received signal vectory denotes the channel output. ThenR×1

channel noise vectorn is assumed to be independent of both data and channel fades, spa-

tially and temporally white, zero-mean and circularly symmetric complex Gaussian [i.e.,

distributed according toNc(0,σ2
n · InR)].

As mentioned in Subsection 2.1.1, the slow-varying flat-fading channel is modeled as

H = R
1
2
RHwR

1
2
T . BothRT andRR are assumed to befull-rank as in Chapter 3. The imperfect

channel state information is modeled in the same way as in Section 3.2. To facilitate the

presentation in this chapter, we summarize it here:

H = Ĥ +E, Ĥ = R
1
2
RĤwR

1
2
T , E = R

1
2
e,REwR

1
2
T , (4.1)
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whereĤw is the estimate ofHw, Re,R = [InR +σ2
ce·R−1

R ]−1, and the entries of the spatially

white matrixEw are i.i.d.Nc(0,σ2
ce). Furthermore,̂H is the estimate ofH, E is the overall

channel estimation error matrix, andσ2
ce = tr(R−1

T ) · σ2
n/Ptr , wherePtr is the power for

training. Similar to [66,92,121], we assume the same channel information is made available

at the transmitter via an error-free and low-delay feedback link, i.e., CSIT is the same as

CSIR. Therefore,̂H, RR, RT , σ2
ce andσ2

n represent the CSI known to both ends. Note that

this implies knowledge ofRe,R.

Under the above channel uncertainty model, the channel output can be written as

y = Ĥx +Ex+n.

Here the total noise is given byntotal
def= Ex + n, with zero mean and a covariance matrix

given by

Rntotal = E
[
(Ex+n)(Ex+n)H]

= E
[
R

1
2
e,REwR

1
2
T(xxH)R

1
2
TEH

wR
1
2
e,R

]
+σ2

n · InR

= σ2
ce· tr(RTQ) ·Re,R+σ2

n · InR,

where the expectation is taken over the distributions ofx, n andEw. Note that herentotal

is not a Gaussian noise vector. Therefore, with the imperfect CSI assumed earlier, an exact

capacity expression is hard to obtain. For the purpose of system design, tight upper- and

lower-bounds on capacity have been proposed. With the above assumed CSI, the mutual

information betweeny andx givenĤ is bounded as [62,66,121,122]

Ilow≤ I(x,y|Ĥ)≤ Iup,

where

Ilow = log2det
[
InR + ĤQĤHR−1

ntotal

]
, (4.2)

64



Iup = Ilow + log2det[Rntotal]−E
{

log2det
[
σ2

ce· tr(RTxxH) ·Re,R+σ2
n · InR

]}
. (4.3)

Here Ilow and Iup denote the lower- and upper-bounds on the actual mutual information,

respectively. The expectation in (4.3) is taken over the distribution ofx.

For convenience, below we will use the lower-bound as a design criterion [121], whereas

the upper-bound will be used for comparison. To obtain the highest data rate from using

the lower-bound, we need to solve the following problem [66,122]

Ilow = max
Qº0

tr{Q}≤PT

log2det
[
InR + ĤQĤHR−1

ntotal

]
. (4.4)

The lower-bound on the ergodic capacity is then given by [121,122]

Clow = E [Ilow] , (4.5)

where the expectation is taken over the fading distribution. Note that the power constraint

is imposed in the spatial domain. No temporal power allocation is considered.

The problem in (4.4) is referred to as themaximum mutual information designwith

imperfect channel knowledge. This explains the title of this chapter.

In general, (4.4) is a non-convex optimization problem. The special case withRR = InR

has been studied in [122], where a numerical search method was proposed to find the

optimum transmit covariance matrixQ. No closed-form result has been obtained. The

general problem (4.4) has been formulated in [66]. Again no closed-form optimumQ has

been reported. Despite the unwieldy looking of the problem in (4.4), the optimum structure

of its transmit covariance matrix can be determined, and the closed-form optimumQ exists

for the special case with no receive correlation, as will be shown in subsequent sections.
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4.3 A Special Case: RT 6= InT ,RR = InR

As in Chapter 3, we begin with the special case withRR = InR and then extend our results

to the general problem (4.4).

In this case, the CSI is the same as in Section 3.4, which is summarized below:

H = (Ĥw0 +Ew0)R
1
2
T = Ĥ +E,

whereĤ = Ĥw0R
1
2
T is the channel mean, andE = Ew0R

1
2
T . The entries ofĤw0 andEw0

are mutually uncorrelated, and are i.i.d.Nc(0,1−σ2
E) andNc(0,σ2

E), respectively, with

σ2
E = σ2

ce/(1+σ2
ce). HereĤ, RT , σ2

E andσ2
n are assumed to be known to both ends, which

has been referred to as the channel mean and transmit correlation information.

The problem in (4.4) becomes

Ilow = max
Qº0

tr{Q}≤PT

log2det

[
InR +

ĤQĤH

σ2
E · tr(RTQ)+σ2

n

]
, (4.6)

which is identical to the problem formulation in [122, Section IV-B].

Our approach to obtain the optimumQ relies on solving an equivalent problem of (4.6).

Toward this end, we introduce a virtual auxiliary precoder-decoder pair(F,G) in our sys-

tem model (see Fig. 2.2), whereF andG arenT × r andr×nR matrices, respectively, and

r = rank(Ĥ). The repetitive notation ofr (see Section 3.4) will soon be justified [after

(4.13)], and the choice of the sizes ofF andG will be explained in Subsection 4.8.3. Here

x = Fs, ands is a zero-meanr×1 data vector whose entries are i.i.d. with unit variances.

Thus,Q = E(xxH) = FFH . We now have

y = ĤFs+EFs+n.

The received vector after the decoder is given byr = Gy. Define

MSE(F,G) def= E{(r −s)(r −s)H}
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= E{[G(Ĥ +E)F− I r ] s sH [G(Ĥ +E)F− I r ]H}+σ2
n ·GGH

= GĤFFHĤHGH −GĤF−FHĤHGH + I r

+ [σ2
n +σ2

E · tr(RTFFH)] ·GGH . (4.7)

In the above, the expectation is taken over the distributions ofs,n andEw. It is easy to see

(4.7) is identical to (3.10), except for the difference in the dimension of matrices.

Lemma 3 The problem (4.6) is equivalent to the following optimization problem

min
F,G

tr{FFH}≤PT

lndet[MSE(F,G)] , (4.8)

whereMSE(F,G) is given by (4.7) andln denotes the natural log function. Let the opti-

mum solution for (4.8) be(Fc,opt,Gc,opt). Then the optimum covariance matrix for (4.6) is

related to the optimum solution for (4.8) byQopt = Fc,optFH
c,opt. A global maximum exists

for (4.6) and a global minimum exists for (4.8).

Proof. See Subsection 4.8.1.

Therefore, to solve (4.6), we attempt to solve (4.8) instead. Note that (4.8) is also

a non-convex problem. Nevertheless, the objective and constraint functions of (4.8) are

continuously differentiable with respect toF∗ andG∗ (or F andG). There is only one in-

equality constraint here, so that any feasible solution is regular. Thus, the global minimum

(which exists according toLemma 3) should satisfy the first-order KKT necessary condi-

tions associated with (4.8) [5]. Our method is the same as in Section 3.3, i.e., it is to find all

the solutions satisfying the KKT conditions and then identify the optimum(Fc,opt,Gc,opt)

among them. Note that if(Fc,opt,Gc,opt) is optimum, so is(Fc,optU,UHGc,opt), whereU

is an arbitraryr × r unitary matrix. As in Chapter 3, below we refer to(Fc,opt,Gc,opt) as

an optimum solution for (4.8)up to a unitary transform. However, the optimum transmit

covariance matrixQopt = Fc,optFH
c,opt is unique.
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We can see that the maximum mutual information design here and the minimum total

MSE design in Subsection 3.4 are related. The former is to minimize the log determinant

of the MSE matrix (4.7), whereas the latter is to minimize its trace. Indeed, the content in

this chapter is parallel to that in Chapter 3. We will reveal more of the relationship between

these two designs later in Section 4.5. For now, we focus on solving (4.8).

With the MSE matrix given by (4.7), the Lagrangian associated with (4.8) is

L2(F,G,µ2) = lndet[MSE(F,G)]+ µ2 ·
[
tr(FFH)−PT

]
,

whereµ2 is the Lagrange multiplier. By taking the derivative of the Lagrangian with respect

to F∗ andG∗, respectively, we obtain the KKT conditions for (4.8):

ĤF =
[
ĤFFHĤH + τ4 · InR

]
GH , (4.9)

ĤHGH [MSE(F,G)]−1(GĤF− I r)

+ σ2
E · tr

{
[MSE(F,G)]−1GGH} ·RTF+ µ2F = 0, (4.10)

µ2≥ 0, tr(FFH)−PT ≤ 0, (4.11)

µ2 · [tr(FFH)−PT ] = 0, (4.12)

whereτ4 = σ2
n +σ2

E · tr(RTFFH). Detailed derivations are presented in Subsection 4.8.2.

It turns out that, to solve (4.8), we need to consider the following eigenvalue decompo-

sition, which is exactly the same as in (3.16):

[
σ2

E ·PT ·RT +σ2
n · InT

]− 1
2 ĤHĤ

[
σ2

E ·PT ·RT +σ2
n · InT

]− 1
2

= [V Ṽ]




ΛΛΛ 0

0 Λ̃ΛΛ


 [V Ṽ]H . (4.13)

All the variables involved here are defined in the same way as those in (3.16). In particular,

r = rank(Ĥ) = rank(ΛΛΛ) denotes the number of non-zero channel eigenmodes, as before.
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This explains the use ofr earlier in this section. Without loss of generality, the entries of

the diagonal matrixΛΛΛ are arranged in decreasing order.

Theorem 4 With the MSE matrix given by (4.7), the optimum precoder and decoder for

(4.8) are given by

Fc,opt =
[
σ2

E ·PT ·RT +σ2
n · InT

]− 1
2 VΦΦΦFopt, (4.14)

Gc,opt = ΦΦΦGoptVH [
σ2

E ·PT ·RT +σ2
n · InT

]− 1
2 ĤH , (4.15)

respectively, where

ΦΦΦFopt =
(
µ2/σ2

n

)− 1
2
[
I r − (µ2τ4/σ2

n) ·ΛΛΛ−1] 1
2
+ , (4.16)

ΦΦΦGopt =
(
µ2/σ2

n

) 1
2
[
I r − (µ2τ4/σ2

n) ·ΛΛΛ−1] 1
2
+ΛΛΛ−1. (4.17)

The scalarsµ2 andτ4 are given by

µ2 =
σ2

nb1PT +σ2
nb1b3−m0σ2

nb2

PT(PT +b3)
, (4.18)

τ4 =
m0PT

b1PT +b1b3−m0b2
, (4.19)

where the integerm0 (m0≤ r) denotes the non-zero entries of matrixΦΦΦFopt. Scalarsb1, b2

and b3 are traces of them0×m0 top-left submatrices ofVH
[
σ2

E ·PT ·RT +σ2
n · InT

]−1V,

ΛΛΛ−1VH
[
σ2

E ·PT ·RT +σ2
n · InT

]−1V andΛΛΛ−1, respectively. The optimum solution is unique

up to a unitary transform.

Proof. See Subsection 4.8.3. The method to determinem0 is also included there.

Corollary 1 The unique optimum covariance matrix for (4.8) can be written as

Qopt = [σ2
E ·PT ·RT +σ2

n · InT ]−
1
2VΦΦΦQVH [σ2

E ·PT ·RT +σ2
n · InT ]−

1
2 ,

whereΦΦΦQ = ΦΦΦFoptΦΦΦH
Fopt andΦΦΦFopt is fromTheorem 4.
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Proof. The result follows immediately fromLemma 3andTheorem 4.

Remark 4.1: Whenσ2
E = 0, Corollary 1 reduces to the capacity result obtained in [75,

85, 102] (see Subsection 2.1.4). The explicit structure of the optimum transmitter is the

same as the precoder shown in Fig. 3.1, except thatΛFoptΛFoptΛFopt is replaced byΦFoptΦFoptΦFopt.

Remark 4.2: In [122, Theorem 5], it has been pointed out that whenPT/σ2
n goes to

infinity, the optimum transmit strategy is to perform water-filling over the eigenmodes of

Ĥw0 and then invert the effect ofRT . This agrees withCorollary 1 .

4.4 The General Case: RT 6= InT ,RR 6= InR

The same method for the special case is used here. It is easy to extend the proof ofLemma

3 to the general case. Our method for solving (4.4) is then to solve an equivalent problem

formulated as in (4.8), where, withRT 6= InT andRR 6= InR, the MSE matrix is given by

MSE(F,G) = GĤFFHĤHGH −GĤF−FHĤHGH + I rgc

+ [σ2
ce· tr(RTFFH)] ·GRe,RGH +σ2

n ·GGH . (4.20)

Note that (4.20) is the same as (3.8), except for the difference in the dimension of matrices.

Herergc = rank(Ĥ). Define

τ5 = tr
{

GRe,R[σ2
ce· tr(RTFFH) ·Re,R+σ2

n · InR]
−1ĤF

}
, (4.21)

µgc =
σ2

n

PT
· tr{G[σ2

ce· tr(RTFFH) ·Re,R+σ2
n · InR]

−1ĤF
}

, (4.22)

τ6 = σ2
ce· tr(RTFFH). (4.23)

The Lagrangian here is

Lgc(F,G,µgc) = lndet[MSE(F,G)]+ µgc · [tr(FFH)−PT ],
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whereµgc is the Lagrangian multiplier here. Similar to Subsection 4.8.2, the KKT condi-

tions in the general case can be obtained, and are given by

ĤF =
[
ĤFFHĤH +σ2

ce· tr(RTFFH) ·Re,R+σ2
n · InR

]
GH , (4.24)

ĤHGH [MSE(F,G)]−1(GĤF− I rgc)

+ σ2
ce· tr

{
[MSE(F,G)]−1GRe,RGH

}
·RTF+ µgc ·F = 0, (4.25)

µgc≥ 0, tr(FFH)−PT ≤ 0, (4.26)

µgc · [tr(FFH)−PT ] = 0. (4.27)

Consider the following EVD

[
σ2

ceτ5 ·RT + µgc · InT

]− 1
2 ĤH [

τ6 ·Re,R+σ2
n · InR

]−1
Ĥ

[
σ2

ceτ5 ·RT + µgc · InT

]− 1
2

=
[
Vgc Ṽgc

]



ΛΛΛgc 0

0 Λ̃ΛΛgc




[
Vgc Ṽgc

]H
, (4.28)

whereVgc, Ṽgc, ΛΛΛgc and Λ̃ΛΛgc are defined similarly as those in (3.31). Note thatrgc =

rank(ΛΛΛgc). The entries of the diagonal matrixΛΛΛgc are arranged in decreasing order.

Theorem 5 With the MSE matrix given by (4.20), the optimum precoder and decoder for

(4.8) are given by

Fc,gopt =
[
σ2

ce· τ5 ·RT + µgc · InT

]− 1
2 VgcΦΦΦF,gopt, (4.29)

Gc,gopt = ΦΦΦG,goptVH
gc

[
σ2

ceτ5 ·RT + µgc · InT

]− 1
2 ĤH [

τ6 ·Re,R+σ2
n · InR

]−1
, (4.30)

ΦΦΦF,gopt =
[
I rgc−ΛΛΛ−1

gc

] 1
2
+ , (4.31)

ΦΦΦG,gopt =
[
I rgc−ΛΛΛ−1

gc

] 1
2
+ΛΛΛ−1

gc . (4.32)

Inserting (4.29)-(4.32) into (4.21)-(4.23) yields three equations withµgc, τ5 and τ6 being

the only three variables. By solving these three equations numerically,µgc, τ5 andτ6 are

determined. The optimum solution is unique up to a unitary transform.
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Proof. See Subsection 4.8.4.

Theorem 5clearly describes the structure of the optimum precoder and decoder. How-

ever, µgc, τ5 and τ6 need to be determined numerically, which is inconvenient. As in

Section 3.5, we now provide a KKT-conditions-based iterative algorithm to determine the

optimum solution. From (4.52) we obtain

F =
[
σ2

ce· τ5 ·RT + µgc · InT

]−1
ĤHGH . (4.33)

The above formula is used in the iterative algorithm given in Table 4.1. This algorithm

converges, because the value of the objective function is reduced at each iteration and is

bounded from below. Furthermore, as shown in the proof ofTheorem 4, any non-zero

solution to the KKT conditions leads to the same value of the objective function. Thus,

starting from a non-zero matrixF0, the algorithm in Table 4.1 converges and yields the

optimum (Fc,gopt,Gc,gopt) up to a unitary transform.

The following corollary follows immediately.

Corollary 2 The unique optimum covariance matrix for (4.4) is given by

Qgopt = Fc,goptFH
c,gopt,

whereFc,gopt is fromTheorem 5.

4.5 Relation to Minimum Total MSE Design

By now, we have observed much of the parallelism between Chapter 3 and this chapter. In

this section, we summarize the connection between these two important designs assuming

the same imperfect CSI.

To elucidate their relation, we first delve into how the capacity lower-bound (4.2) is

obtained. As mentioned in Section 4.2, with imperfect CSI, the total noise is no longer
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Table 4.1. An iterative algorithm for solving (4.8) [with the MSE matrix given by (3.8)]

1) InitializeF = F0; the upperrgc× rgc sub-matrix ofF0 is chosen be a scaled identity

to and to satisfy the power constraint with equality, while the remaining entries of

F0 are set to zero.

2) UpdateG using (4.48) [i.e., (4.24)];

3) Updateµgc andτ5 using (4.22) and (4.21), respectively;

4) UpdateF using (4.33);

5) If the termination condition is met, stop; otherwise, go back to 2).

Gaussian, and it is hard to find the optimum input distribution to maximize

I(x;y|Ĥ) = dh(x|Ĥ)−dh(x|y, Ĥ), (4.34)

wheredh(·) denotes the differential entropy [17, Chapter 9, p. 224]. The lower-bound on

the above mutual information is obtained using the following two steps [62,66,121]:

• assuming the channel input is Gaussian (although here the Gaussian input may no

longer be the mutual information maximizer) and thus fixing the first term in the

right-hand side of (4.34);

• upper-bounding the second term in the right-hand side of (4.34) by the differential

entropy of a Gaussian random vector whose covariance matrix is equal to the mean-

square error matrix from the linear MMSE estimation ofx giveny andĤ.

Therefore, the derivation of (4.2) is related to the linear MMSE data estimation [46,

Chapter 12] [77]. Interestingly, with the lower-bound derived using the above approach,

the optimum transmitters for both designs still share the same structures with differences

mainly in the power allocation, as can be seen from Chapter 3 and this chapter.
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Analogous to the perfect CSI case, both transmitters can be derived from the minimum

weighted MSE design. In the special case with only transmit correlation, from Sections 3.4,

3.6 and 4.3, it can be seen that the minimum total MSE design is a special case withW = IB,

whereas the maximum mutual information design corresponds to the case whenW = ΛΛΛ.

4.6 Simulation Results and Discussions

Let nT = nR = 4. The channel correlation model used here is described in Subsection 2.1.1

(see also Section 3.7, Part 1). Below the ergodic capacity or its bounds will be shown

(in bits/channel use), calculated by averaging the instantaneous mutual information (or its

bounds) over the fading distribution [similar to (4.5)]. The SNR here is defined asPT/σ2
n .

1. Comparison of the Ergodic Capacity Bounds

Fig. 4.1 shows a comparison between the ergodic capacity upper- and lower-bounds,

calculated using (4.3) and (4.2), respectively, and then averaged over the fading dis-

tribution.

Note that CLB and CUB in the figures denote the capacity lower-bound and capacity

upper-bound, respectively. The optimum covariance matrix for the lower-bound de-

rived in this chapter is used as the transmit strategy in the calculations of both (4.3)

and (4.2). From Fig. 4.1, we observe that the two bounds are very close to each

other, especially in the low to medium SNR region (≤ 20 dB), and thus are both

tight. This justifies the use of the lower-bound as a design criterion to maximize the

mutual information. More asymptotic analysis of the difference between the upper-

and lower-bounds can be found in [66,121].

2. Optimum Transmit Strategy vs. Uniform Power Allocation
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Figure 4.1. Comparison of the capacity upper- and lower-bounds. Both bounds are obtained

using the optimum transmit covariance matrix for the lower-bound.nT = nR = 4, ρR = 0.0,

Ptr/σ2
n = 26.016dB. The values ofσ2

E are 0.0099, 0.0148, and 0.0689, forρT = 0.0, 0.5,

and 0.9, respectively.
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In the case of imperfect CSI here, the optimum transmit strategy refers to that for

the capacity lower-bound. As mentioned in Subsection 2.1.4, the uniform power

allocation scheme distributes the total transmit power evenly among all antennas

without requiring any CSI.

As expected (see the discussions in Subsection 2.1.4), from Fig. 4.2, with perfect

CSI at both ends, the capacities obtained from using the optimum transmit strategy

and uniform power allocation converge at high SNR for our channel model. The case

with imperfect CSI is shown in Fig. 4.3. Clearly, with imperfect CSI, the uniform

power allocation (used in [66]) performs strictly worse over the entire SNR range

when the channel correlation is high. This, in turn, shows the advantage (in terms of

accuracy) of using the optimum covariance matrix for the lower-bound.

3. Effects of Channel Estimation Error and Channel Correlation

Figs. 4.4 and 4.5 give the capacity without channel estimation error, and the capacity

lower-bound with imperfect CSI, respectively.

It is observed that channel estimation error causes a huge loss in ergodic capac-

ity. For example, from Fig. 4.4, withρT = 0.5 andρR = 0, the ergodic capacity is

about 15.9 bits/channel use at SNR = 15 dB. However, if the CSI is obtained from

channel estimation withPtr/σ2
n = 26.016 dB, the ergodic capacity shrinks to 14.1

bits/channel use at the same SNR (see Fig. 4.5). From Figs. 4.1 and 4.5, at high

SNR, the capacity is saturated due to channel estimation error. Channel correlation

can also significantly reduce the ergodic capacity. For instance, from Fig. 4.5, with

ρR = 0, at SNR = 15 dB, the capacity decreases from 14.1 bits/channel use to around

8.75 bits/channel use ifρT increases from 0.5 to 0.9. (At SNR = 15 dB, the capacity

upper- and lower-bounds are fairly close.)
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Figure 4.2. Ergodic capacity of a MIMO channel: optimum vs. uniform.nT = nR = 4,

ρR = 0.0. Perfect CSI at both ends is assumed for the optimum strategy.
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Figure 4.3. Ergodic capacity lower-bound of a MIMO channel: optimum vs. uniform.

nT = nR = 4, ρR = 0.0, Ptr/σ2
n = 26.016dB. The values ofσ2

E are 0.0148 and 0.0689, for

ρT = 0.5 and 0.9, respectively.
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Figure 4.4. Ergodic capacity of a MIMO channel.nT = nR = 4. The two curves overlap
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Figure 4.5. Ergodic capacity lower-bound of a MIMO channel using the optimum transmit

covariance matrix.nT = nR = 4, Ptr/σ2
n = 26.016dB. The values ofσ2

E are 0.0099, 0.0148,

and 0.0689, forρT = 0.0, 0.5, and 0.9, respectively. The two curves do not overlap for

(ρT ,ρR) = (0.5,0.0) and(ρT ,ρR) = (0.0,0.5).
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Based on Figs. 4.4 and 4.5, the two curves marked with(ρT ,ρR) = (0.5,0.0) and

(ρT ,ρR) = (0.0,0.5) overlap with perfect CSI, but they do not overlap with imper-

fect CSI. Again, this is due to the unsymmetrical use ofRT andRR in our channel

estimation.

4. Optimum vs. Two Suboptimum Transmitters with Asymptotic Optimality

We now consider the special case without receive correlation as in Section 4.3 or in

Part 4 of Section 3.7.

Two suboptimum transmission strategies can be obtained:

• by ignoring the channel correlation information at the transmitter, treatingĤ as

if it were the actual channel,

• or by a water-filling type of power allocation to the effective channel eigen-

modes ofĤH
w0Ĥw0 (see Section 3.4) followed by a cancelation of the effect of

RT .

We refer to them as the noise-suppression structure and the correlation-cancelation

structure, respectively, as in Part 4 of Section 3.7. Fig. 4.6 shows the comparison of

the optimum and two suboptimum schemes.

It is interesting to note that the relation between these three curves is analogous to

that observed in Fig. 3.5.

4.7 Summary

In this chapter, we have used a tight capacity lower-bound as the design criterion to maxi-

mize the mutual information of a MIMO channel with imperfect channel knowledge at both

ends. The tightness of the lower-bound has been shown by simulation. The closed-form
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0.0238 forρT = 0.7.
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optimum transmit covariance matrix (or the precoder matrix) for this lower-bound has been

determined for the special case with no receive correlation, and the optimum structure of

the transmitter has been presented for the general case with correlation at both ends. The

optimum transmit covariance matrix is shown to be advantageous over the non-optimum

uniform power allocation scheme. The effects of channel estimation error and channel cor-

relation have been assessed. We have also revealed the relationship between the capacity

lower-bound problem and the minimum total MSE design.

4.8 Derivation and Proof Details

4.8.1 Proof of Lemma 3

We first equivalently formulate (4.8) as [7, p. 130, Section 4.1.3]

min
F,tr(FFH)≤PT

min
G(F)

lndet[MSE[F,G(F)]] .

The inner minimization is achieved by

G = FHĤH {
ĤFFHĤH +

[
σ2

n +σ2
E · tr(RTFFH)

] · InR

}−1
. (4.35)

This can be easily shown by taking the derivative oflndet[MSE(F,G)] with respect toG

(see Subsection 4.8.2). Substituting this formula into (4.7), (4.8) can then be equivalently

formulated as

min
F,tr(FFH)≤PT

− lndet

[
InR +

ĤFFHĤH

σ2
n +σ2

E · tr(RTFFH)

]
. (4.36)

In the above, we have used the resultdet[I +AB] = det[I +BA]. DefineQ = FFH , and then

it is obvious that (4.36) is equivalent to (4.6).

The problem (4.36) has a closed and bounded feasible set and its objective function

is continuous at all points of the feasible set. Thus, by Weierstrass’ Theorem [5, p. 654,
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Proposition A.8], a global minimum exists for (4.36). By equivalence [7, p. 130, Section

4.1.3], the same global minimum exists for (4.8). Again, by equivalence, a global maximum

exists for (4.6) and the maximizingQopt for (4.6) is related to the minimizingFc,opt for

(4.36) or (4.8) asQopt = Fc,optFH
c,opt. This concludes the proof ofLemma 1. ¤

4.8.2 Derivations of (4.9)-(4.12)

Note that (4.11) and (4.12) come from the power constraint and the complementary slack-

ness, respectively. To derive (4.9)-(4.10), the preliminaries presented in Subsection 3.9.3

are needed. As before, we only need to take the partial derivatives ofL2(F,G,µ2) with

respect toF∗ andG∗, i.e., we need to find∂L2/∂ F∗ and∂L2/∂ G∗.

From [60],∂ [lndetX] = tr(X−1∂X). Therefore, with respect toF andFH ,

∂L2(F,G,µ2)

= tr
{

[MSE(F,G)]−1[
GĤ(∂F)FHĤHGH +GĤF(∂FH)ĤHGH]}

− tr
{
[MSE(F,G)]−1[

GĤ(∂F)+(∂FH)ĤHGH]}
+ µ2 · tr

[
(∂F)FH +F(∂FH)

]

+σ2
E · tr

{
[MSE(F,G)]−1GGH} · tr[RT(∂F)FH +RTF(∂FH)

]

= tr
{[

[FHĤHGH − I r ][MSE(F,G)]−1GĤ + µ2 ·FH]
(∂F)

}

+ tr
{[

ĤHGH [MSE(F,G)]−1[GĤF− I r ]+ µ2 ·F
]
(∂FH)

}

+σ2
E · tr {[MSE(F,G)]−1GGH} · tr[FHRT(∂F)+RTF(∂FH)

]
.

Using the identities in Subsection 3.9.3,

∂L2(F,G,µ2)
∂ℜF

=
{[

FHĤHGH − I r
]
[MSE(F,G)]−1GĤ + µ2 ·FH

}T

+ ĤHGH [MSE(F,G)]−1(
GĤF− I r

)
+ µ2 ·F

+σ2
E · tr

{
[MSE(F,G)]−1GGH

}
·
[(

FHRT
)T

+RTF
]
,

i · ∂Lc(F,G,µc)
∂ℑF

=−
{[

FHĤHGH − I r
]
[MSE(F,G)]−1GĤ + µ2 ·FH

}T
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+ ĤHGH [MSE(F,G)]−1(
GĤF− I r

)
+ µ2 ·F

+σ2
E · tr

{
[MSE(F,G)]−1GGH

}
·
[
−(

FHRT
)T

+RTF
]
.

Therefore,

∂L2(F,G,µ2)
∂F∗

=
1
2

[
∂L2(F,G,µ2)

∂ℜF
+ i · ∂L2(F,G,µ2)

∂ℑF

]

= ĤHGH [MSE(F,G)]−1(GĤF− I r)+ µ2 ·F

+σ2
E · tr

{
[MSE(F,G)]−1GGH} ·RTF.

Similarly, with respect toG andGH ,

∂L2(F,G,µ2) = tr
{[

ĤF(FHĤHGH − I r)+ τ4 ·GH]
[MSE(F,G)]−1(∂G)

}

+ tr
{

[MSE(F,G)]−1[
(GĤF− I r)FHĤH + τ4 ·G

]
(∂GH)

}
,

whereτ4 = σ2
n +σ2

E · tr(RTFFH), as defined in Section 4.3, and

∂L2(F,G,µ2)
∂ℜG

=
{[

ĤF(FHĤHGH − I r)+ τ4 ·GH]
[MSE(F,G)]−1

}T

+[MSE(F,G)]−1[
(GĤF− I r) ·FHĤH + τ4 ·G

]
,

i · ∂L2(F,G,µ2)
∂ℑG

=−
{[

ĤF(FHĤHGH − I r)+ τ4 ·GH]
[MSE(F,G)]−1

}T

+[MSE(F,G)]−1[
(GĤF− I r) ·FHĤH + τ4 ·G

]
.

Therefore,

∂L2(F,G,µ2)
∂G∗ =

1
2

[
∂L2(F,G,µ2)

∂ℜG
+ i · ∂L2(F,G,µ2)

∂ℑG

]

=[MSE(F,G)]−1[
G(ĤFFHĤH + τ4 · InR)−FHĤH]

.

Set

∂L2(F,G,µ2)
∂ F∗

= 0 and
∂L2(F,G,µ2)

∂ G∗ = 0.

Using the fact thatMSE(F,G) is full-rank, we obtain (4.9)-(4.10). This finishes the deriva-

tion of (4.9)-(4.12).¤

85



4.8.3 Proof of Theorem 4

As outlined in Section 4.3, our method is to find all the solutions satisfying the KKT condi-

tions (4.9)-(4.12) and then identify the optimum solution. An obvious solution that satisfies

the conditions isF = 0,G = 0,µ2 = 0. Clearly, this solution is of no practical use, except

that it will be used for comparison later. For now, we consider the case whereF 6= 0.

From (4.9), we can expressG in terms ofF as in (4.35). Substituting (4.35) into (4.7),

using the matrix inversion lemma [60], we obtain

MSE(F,G) = I r −GĤF (4.37)

= τ4 ·
[
FHĤHĤF + τ4 · I r

]−1
, (4.38)

G =
[
FHĤHĤF + τ4 · I r

]−1
FHĤH . (4.39)

Clearly, hereGĤF is a Hermitian matrix, i.e.,GĤF = FHĤHGH . Based on (4.37), (4.38)

and (4.39),

tr
{

[MSE(F,G)]−1GGH
}

= tr
(
FHĤHGH)

/τ4,

= tr
(
GĤF

)
/τ4. (4.40)

Using (4.37) and (4.40), (4.10) can be simplified as

ĤHGH =
{

µ2 · InT +[tr(GĤF)/τ4] ·σ2
E ·RT

}
F. (4.41)

First pre-multiplying both sides of (4.41) byFH and then taking the trace of both sides,

using the fact thatGĤF is Hermitian, we obtain

τ4 · tr
(
GĤF

)
= µ2τ4 · tr

(
FFH)

+ tr
(
GĤF

) ·σ2
E · tr

(
RTFFH)

.

Using the definition ofτ4, we obtain

µ2 · τ4 · tr
(
FFH)

= σ2
n · tr

(
GĤF

)
.
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Due to (4.12), ifµ2 > 0, tr(FFH) must be equal toPT , which yields

µ2 = σ2
n · tr

(
GĤF

)
/(τ4 ·PT). (4.42)

AssumeF 6= 0 [i.e., tr(FFH) > 0]. Then if µ2 = 0, we must have tr
(
GĤF

)
= 0, and (4.42)

is still valid. Furthermore, (4.42) holds even whenF = 0,G = 0,µ2 = 0.

Using (4.42), (4.41) can be rewritten as

(µ2/σ2
n)FH [

σ2
E ·PT ·RT +σ2

n · InT

]
= GĤ. (4.43)

In general, the matrixF can be expressed as

F =
[
σ2

E ·PT ·RT +σ2
n · InT

]− 1
2
[
V Ṽ

][
ΦΦΦH

F Φ̃ΦΦH
F

]H

=
[
σ2

E ·PT ·RT +σ2
n · InT

]− 1
2


VΦΦΦF︸︷︷︸

Fc,‖

+ ṼΦ̃ΦΦF︸︷︷︸
Fc,⊥


 ,

whereV andṼ have been defined in (4.13),ΦΦΦF andΦ̃ΦΦF arer×B and(nT− r)×B arbitrary

matrices, respectively (r ≤ B≤ nT). As in Subsection 3.9.5, it can be verified that

FH
c,‖Fc,⊥ = 0, FH

c,⊥Fc,‖ = 0, and Ĥ
[
σ2

E ·PT ·RT +σ2
n · InT

]− 1
2 Fc,⊥ = 0.

Post-multiplying (4.43) by
[
σ2

E ·PT ·RT +σ2
n · InT

]− 1
2 Fc,⊥, using the above identities, we

obtainFc,⊥ = 0. Thus, theF matrix satisfying the KKT conditions can be expressed as

F =
[
σ2

E ·PT ·RT +σ2
n · InT

]− 1
2 VΦΦΦF . (4.44)

Furthermore, based on (4.9), using a method similar to that in Subsection 3.9.5, we can

show that theG matrix satisfying the KKT conditions can be expressed as

G = ΦΦΦGVH [
σ2

E ·PT ·RT +σ2
n · InT

]− 1
2 ĤH , (4.45)

whereΦΦΦG is an arbitraryB× r matrix corresponding toΦΦΦF .
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Up to now,ΦΦΦF andΦΦΦG are arbitraryr×B andB× r matrices, respectively, whereB can

be any integer satisfyingr ≤ B≤ nT . Since our ultimate goal is to determineQ, which is

given byQ = FFH , the quantity of interest is ther× r matrixΦΦΦFΦΦΦH
F . We can then safely

chooseB = r without incurring any loss of generality for our problem. This explains why

we have chosen the size of the precoder matrixF to benT × r in Section 4.3.

AssumeF 6= 0. Post-multiply both sides of (4.43) byF and pre-multiply both sides of

(4.9) byG. Substitute (4.14) and (4.15) into the resulting formulas, to obtain

ΦΦΦG ΛΛΛ ΦΦΦF = ΦΦΦG ΛΛΛ ΦΦΦF ΦΦΦH
F ΛΛΛ ΦΦΦH

G + τ4 ·ΦΦΦG ΛΛΛ ΦΦΦH
G, (4.46)

ΦΦΦG ΛΛΛ ΦΦΦF = (µ2/σ2
n) ·ΦΦΦH

F ΦΦΦF . (4.47)

Based on the above two formulas, using the method in [85], the optimumΦΦΦFopt (up to

a unitary transform from the right-hand side) andΦΦΦGopt (up to a unitary transform from

the left-hand side) can be shown to be diagonal without loss of generality and are given by

(4.16) and (4.17), respectively. Inserting (4.14), (4.15), (4.16) and (4.17) into the expression

for µ2 and the power constraint tr(Fc,optFH
c,opt) = PT , we can obtain two equations. By

solving them, we obtainµ2 andτ4 as given by (4.18) and (4.19), respectively.

An iterative procedure is used to determine the numberm0 in the expressions of (4.18)

and (4.19). Letλl be thel -th element ofΛΛΛ (1≤ l ≤ r). Initialize m= r.

1. Calculateτ4 andµ2 from (4.19) and (4.18). Ifµ2 ≤ λmσ2
n/τ4, stop and setm0 = m;

else: go to step 2.

2. Let ΦΦΦFopt,m := 0 andm := m−1. Go to step 1).

So far, we have shown that all the solutions satisfying the KKT conditions (4.9)-(4.12)

with F 6= 0 are given by (4.14)-(4.19), up to a unitary transform. All these solutions differ

only in a unitary transform, and thus lead to the same value of the objective function in

88



(4.8), which, based on (4.9), can be shown to be

− lndet

[
I r +

1
τ4

FH
c,optĤ

HĤFc,opt

]
.

SinceFH
c,optĤ

HĤFc,opt is positive semidefinite, it is easy to see that the above is lower than

the value of the objective function from (F = 0,G = 0,µ2 = 0). Therefore, we conclude

thatTheorem 4holds.¤

4.8.4 Proof of Theorem 5

As in Subsection 4.8.3, we start from the KKT conditions (4.24)-(4.27).

The zero solution satisfying these conditions, i.e.,F = 0,G = 0,µgc = 0, is immediately

identified, and is left aside for now. We go on to find out the non-zero solutions.

From (4.24), using the matrix inversion lemma [60], we obtain

G = FHĤH [
ĤFFHĤH +σ2

ce· tr
(
RTFFH) ·Re,R+σ2

n · InR

]−1
(4.48)

=
{

I rgc +FHĤH [
σ2

ce· tr
(
RTFFH) ·Re,R+σ2

n · InR

]−1
ĤF

}−1

·FHĤH [
σ2

ce· tr
(
RTFFH) ·Re,R+σ2

n · InR

]−1
. (4.49)

Based on (4.48) and the matrix inversion lemma, the following holds:

MSE(F,G) = I rgc−GĤF

=
{

I rgc +FHĤH [
σ2

ce· tr
(
RTFFH) ·Re,R+σ2

n · InR

]−1
ĤF

}−1
. (4.50)

From (4.49) and (4.50),

GRe,RGH [MSE(F,G)]−1

= GRe,R
[
σ2

ce· tr
(
RTFFH) ·Re,R+σ2

n · InR

]−1
ĤF,

tr
{

[MSE(F,G)]−1GRe,RGH
}
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= tr
{

GRe,R
[
σ2

ce· tr
(
RTFFH) ·Re,R+σ2

n · InR

]−1
ĤF

}

︸ ︷︷ ︸
τ5, as defined in(4.21)

. (4.51)

From (4.51), (4.25) and the first equation in (4.50), we can show that

ĤHGH [MSE(F,G)]−1[GĤF− I rgc]+
[
σ2

cetr{[MSE(F,G)]−1GRe,RGH}RT + µgcInT

]
F

=−ĤHGH +
[
σ2

ce· τ5 ·RT + µgc · InT

]
F

= 0,

i.e.,

GĤ = FH [
σ2

ce· τ5 ·RT + µgc · InT

]
. (4.52)

From (4.51),

τ5 = tr
{

GRe,R[σ2
ce· tr(RTFFH) ·Re,R+σ2

n · InR]
−1ĤF

}

=
tr

{
G[σ2

cetr(RTFFH) ·Re,R+σ2
n InR−σ2

n InR][σ2
cetr(RTFFH) ·Re,R+σ2

n InR]
−1ĤF

}

σ2
ce· tr(RTFFH)

=
tr

(
GĤF

)−σ2
n · tr

{
G[σ2

ce· tr(RTFFH) ·Re,R+σ2
n · InR]

−1ĤF
}

σ2
ce· tr(RTFFH)

. (4.53)

On the other hand, from (4.52),

tr
{

FHĤHGH}
= τ5 ·σ2

ce· tr(FHRTF)+ µgc · tr(FFH). (4.54)

From (4.53) and (4.54), using the fact thatGĤF is Hermitian, it is clear that

µgc · tr(FFH) = σ2
n · tr

{
G[σ2

ce· tr(RTFFH) ·Re,R+σ2
n · InR]

−1ĤF
}

. (4.55)

Due to (4.27), ifµgc > 0, tr(FFH) must be equal toPT , which yields

µgc =
σ2

n

PT
tr

{
G[σ2

ce· tr(RTFFH) ·Re,R+σ2
n · InR]

−1ĤF
}

,

i.e., (4.22). AssumeF 6= 0 [i.e., tr(FFH) > 0]. Then if µgc = 0, the right-hand side of

(4.55) must be zero and the above identity is still valid. Furthermore, (4.22) holds even

whenF = 0,G = 0,µgc = 0.
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From (4.52), using the method used for deriving (4.44) and (4.45) in Subsection 4.8.3 as

well as the method used in Subsection 3.9.7, it can be shown that the precoder and decoder

matrix satisfying (4.24)-(4.27) can be expressed as

F =
[
σ2

ce· τ5 ·RT + µgc · InT

]− 1
2 VgcΦΦΦF,g, (4.56)

G = ΦΦΦG,gVH
gc

[
σ2

ce· τ5 ·RT + µgc · InT

]− 1
2 ĤH [

τ6 ·Re,R+σ2
n · InR

]−1
, (4.57)

whereτ6 = σ2
ce· tr(RTFFH), as in (4.23).

Pre-multiply (4.24) byG, and post-multiply (4.52) byF to obtain two equations. Sub-

stituting (4.56) and (4.57) into these two equations, we get

ΦΦΦG,g ΛΛΛgc ΦΦΦF,g = ΦΦΦH
F,g ΦΦΦF,g,

ΦΦΦG,g ΛΛΛgc ΦΦΦF,g = ΦΦΦG,g ΛΛΛgc ΦΦΦF,g ΦΦΦH
F,g ΛΛΛgc ΦΦΦH

G,g +ΦΦΦG,g ΛΛΛgc ΦΦΦH
G,g.

Once again applying the method in [85], we obtain (4.31) and (4.32). The constants in-

volved here, i.e.,τ5,µgc andτ6 can be determined numerically. Therefore, we have deter-

mined the non-zero solutions to (4.4), as given by (4.29)-(4.32), up to a unitary transform.

Finally, as in Subsection 4.8.3, by comparing the values of the objective function from

using the non-zero solutions and from using the zero solution, it is easy to verify that the

non-zero solutions are all optimum. This concludes the proof forTheorem 5. ¤
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Chapter 5

Minimum Sum MSE Transceiver Optimization

for Multiuser MIMO Systems with Imperfect

Channel Knowledge

5.1 Introduction

In Subsection 2.2.3, minimum sum mean-square error (MSMSE) linear transceiver de-

signs under sum power constraints for multiuser MIMO systems have been introduced as a

low-complexity and effective signal processing technique to manage both inter-stream and

multiuser interferences as well as to offer diversity and high data rate.

The MSMSE linear precoding/decoding design has been studied for the uplink in [91],

and for the downlink in [47, 89, 103, 125]. Most of previous work on this design has as-

sumed perfect channel state information (CSI). In this chapter, the imperfectness of channel

knowledge is taken into account [22, 23]. Two sum MSE minimization problems are for-

mulated for the uplink and the downlink, respectively, subject to sum power constraints

and under imperfect CSI. Iterative algorithms based on the Karush-Kuhn-Tucker (KKT)

conditions are proposed for both the uplink and the downlink optimizations. Since the
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KKT-conditions-based algorithm is not guaranteed to achieve the globally optimum solu-

tion, a sequential semidefinite programming (SDP) method is also proposed for the uplink

optimization, which not only represents a feasible method to find the solution, but also

serves a way to check the performance of the KKT-conditions-based algorithm.

As mentioned in Subsection 2.2.2, from the information-theoretic point of view, the

multiple access channel (MAC, uplink) is better understood than the broadcast channel

(BC, downlink), due to their differences in interference and cooperation [17, 31]. From

the viewpoint of signal processing, the uplink is also easier to deal with than the down-

link [82, 83, 88, 108]. Thus, the uplink–downlink duality is an important tool to sim-

plify the downlink system design (see Subsections 2.2.2 and 2.2.3). To be specific, in a

multiuser system with multiple antennas at the base station (BS) and with single-antenna

users, under perfect channel knowledge, with the same sum power, the achievable signal-

to-interference-plus-noise ratio (SINR) regions and normalized MSE regions for both links

are the same, when noise variances are identical at all receivers [82, 94, 110]. Because of

duality, beamforming problems in the downlink can be solved by forming and solving a

dual uplink problem [82, 88, 108]. The same idea has been applied to the linear precoder-

decoder designswhen both the BS and mobile stations (MSs) are equipped with multiple

antennas[47,89], the scenario considered in this chapter.

Here in the context of joint linear precoder-decoder designs with sum power constraints,

the uplink–downlink duality in average sum MSE is proved with imperfect CSI. Based on

this duality, the minimum sum MSEs in both links are the same. Any uplink MSMSE

design satisfying the associated KKT conditions can be translated for application to the

downlink. Unlike the methods in [21, 89, 93] that show the duality by direct calculations

of the MSEs or SINRs of all users, our proof here is solely based on the associated KKT

conditions and thus provides an interesting new perspective to the relation of the dual links.
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In Section 5.2, we describe the two design problems mathematically. Section 5.3

presents two KKT-conditions-based iterative algorithms for both the uplink and the down-

link. The duality in sum MSE is presented in Section 5.4. The sequential SDP method for

the uplink design is proposed in Section 5.5. Simulation results in Section 5.6 corroborate

our analysis and show the effect of imperfect CSI. We supply all the derivation and proof

details in Section 5.8.

5.2 Uplink and Downlink System Designs with Imperfect

Channel Knowledge

Consider the multiuser MIMO system model with linear precoding/decoding in Fig. 2.3. It

is assumed that the channels arising from the antennas at each MS are spatially uncorrelated

due to the presence of sufficient local scattering. Therefore, the uplink channel model is

given by [95] (see also Subsection 2.1.1):

H i = ΣΣΣ
1
2
i Hwi,

whereΣΣΣi is the normalized channel correlation matrix at the BS (with unit diagonal entries)

seen by useri, i = 1, . . . ,K. The entries ofHwi are independent and identically-distributed

(i.i.d.) Nc(0,1), ∀i. The dual downlink channel model is given by

HH
i = HH

wi ΣΣΣ
1
2
i , i = 1, . . . ,K.

In practice, CSI is obtained through channel estimation. As mentioned earlier, the

downlink is more likely to become the bottleneck in data transfer than the uplink [4].

Therefore, we put more emphasis on the downlink, and assume that the channel estima-

tion is performed there. A common training signal matrix can be broadcast to all users for
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them to obtain the channel estimates. More generally, to account for different QoS require-

ments of individual users, separate training signal matrices can be employed to obtained

channel estimates for different users. In the latter case, for each user, the channel estima-

tion process is exactly the same as described in Section 3.2 and Section 3.4. Therefore, the

downlink CSI model is given by

HH
i = ĤH

i +EH
i , ĤH

i = ĤH
wi ΣΣΣ

1
2
i , and EH

i = EH
wi ΣΣΣ

1
2
i , i = 1, . . . ,K.

The entries ofĤH
wi andEH

wi are i.i.d.Nc(0,1−σ2
Ei) andNc(0,σ2

Ei), respectively, where

σ2
Ei is the channel estimation error variance for useri, i = 1, . . . ,K. It is assumed that the

channel estimation errors are independent of the data and channel noises. Denote the power

of the training signal matrix for useri asPtr,i, ∀i. Then, as explained in Section 3.4,

σ2
Ei =

tr(ΣΣΣ−1
i ) ·σ2

n/Ptr,i

1+
[
tr(ΣΣΣ−1

i ) ·σ2
n/Ptr,i

] , ∀i.

The dual uplink CSI model at the BS can be expressed as:

H i = Ĥ i +Ei , i = 1, . . . ,K.

In the downlink, to make the transmitter aware of the channel state, the channel esti-

mates are fed back to the BS from the MSs. Thus, we assume that the estimated chan-

nel matrices{Ĥ i}K
i=1 (or, equivalently,{ĤH

i }K
i=1), the channel estimation error variances

{σ2
Ei}K

i=1, the noise varianceσ2
n , and the channel correlation matrices{ΣΣΣi}K

i=1 are available

at the BS. As in [91], it is assumed that the joint optimizations are performed at the BS, and

then the optimum filters (i.e., precoders/decoders) for the users are sent to the MSs.

5.2.1 The Uplink Design

With the above CSI model,

yul =
K

∑
i=1

(Ĥ i +Ei) Fi sul,i +nul.
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The MSE matrix for userj, j = 1, . . . ,K, is given by

MSEul, j = E
[
(rul, j −sul, j)(rul, j −sul, j)H]

= G j

{[
K

∑
i=1

Ĥ iFiFH
i ĤH

i

]
+σ2

n · IM

}
GH

j −G jĤ jF j −FH
j ĤH

j GH
j + I l j

+ G j

[
K

∑
i=1

σ2
Ei · tr(FiFH

i ) ·ΣΣΣi

]
GH

j . (5.1)

The detailed derivation of (5.1) is given in Subsection 5.8.1. The sum MSE from all users

is then given by

mseul,t =
K

∑
j=1

tr(MSEul, j).

The uplink problem is to minimize the sum MSE from all users subject to a sum power

constraintPS, i.e.,

min
{(F j ,G j )}K

j=1

mseul,t

subject to
K

∑
j=1

tr(F jFH
j )≤ PS. (5.2)

5.2.2 The Downlink Design

With imperfect CSI, for eachj, j = 1, . . . ,K,

ydl, j = (ĤH
j +EH

j )

[
K

∑
i=1

T i sdl,i

]
+ndl, j .

Similar to the uplink case, the MSE matrix for userj is calculated as

MSEdl, j = E
[
(rdl, j −sdl, j)(rdl, j −sdl, j)H]

= R j

{
ĤH

j

[
K

∑
i=1

T iTH
i

]
Ĥ j +σ2

n · INj

}
RH

j −R jĤH
j T j −TH

j Ĥ jRH
j + I l j

+σ2
E j · tr

{
ΣΣΣ j

[
K

∑
i=1

T iTH
i

]}
·R jRH

j . (5.3)
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Detailed calculations of (5.3) are presented in Subsection 5.8.2. The sum MSE for the

downlink can be expressed as

msedl,t =
K

∑
j=1

tr(MSEdl, j).

The downlink problem is formulated as

min
{(T j ,R j )}K

j=1

msedl,t

subject to
K

∑
j=1

tr(T jTH
j )≤ PS. (5.4)

5.3 Iterative Algorithms Based on the KKT Conditions

5.3.1 The KKT Conditions

Consider the uplink problem (5.2). We first formulate the associated Lagrangian:

Lul

[{
(F j ,G j)

}K
j=1 ,µul

]
= mseul,t + µul ·

{[
K

∑
j=1

tr(F jFH
j )

]
−PS

}
,

whereµul is the Lagrange multiplier associated with the uplink sum power constraint. The

associated KKT conditions can be obtained using the same method as in Subsection 3.9.3,

and are given by (5.5)-(5.8).

FH
k ĤH

k = Gk

[
K

∑
j=1

Ĥ jF jFH
j ĤH

j +σ2
n · IM +

K

∑
j=1

σ2
E j · tr(F jFH

j ) ·ΣΣΣ j

]
, (5.5)

ĤH
k GH

k =

{
ĤH

k

[
K

∑
j=1

GH
j G j

]
Ĥk + µul · INk +σ2

Ek ·
[

K

∑
j=1

tr(G jΣΣΣkG
H
j )

]
· INk

}
Fk, (5.6)

k = 1, . . . ,K,

µul ≥ 0,
K

∑
j=1

tr(F jFH
j )≤ PS, (5.7)

µul ·
[

K

∑
j=1

tr(F jFH
j )−PS

]
= 0. (5.8)
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Similarly, for the downlink problem (5.4), the Lagrangian is given by

Ldl

[{
(T j ,R j)

}K
j=1 ,µdl

]
= msedl,t + µdl ·

{[
K

∑
j=1

tr(T jTH
j )

]
−PS

}
,

whereµdl is the Lagrange multiplier. The associated KKT conditions for (5.4) are obtained

similarly as in the uplink case, and are given by (5.9)-(5.12).

ĤkR
H
k =

{
K

∑
j=1

Ĥ jRH
j R jĤH

j + µdl · IM +
K

∑
j=1

σ2
E j · tr(R jRH

j ) ·ΣΣΣ j

}
Tk, (5.9)

TH
k Ĥk = Rk

{
ĤH

k

[
K

∑
j=1

T jTH
j

]
Ĥk +σ2

n · INk +σ2
Ek ·

K

∑
j=1

tr(TH
j ΣΣΣkT j) · INk

}
, (5.10)

k = 1, . . . ,K,

µdl ≥ 0,
K

∑
k=1

tr(TkT
H
k )≤ PS, (5.11)

µdl ·
[

K

∑
k=1

tr(TkT
H
k )−PS

]
= 0. (5.12)

5.3.2 Relation between the Lagrange Multipliers and the Decoders

Lemma 4 [Relation between the Lagrange multipliers and the receive filters (decoders)]

For any solutions satisfying the KKT conditions, the following identities hold:

µul = (σ2
n/PS) ·

K

∑
k=1

tr(GkG
H
k ), (5.13)

µdl = (σ2
n/PS) ·

K

∑
k=1

tr(RkR
H
k ). (5.14)

Proof. See Subsection 5.8.3.

5.3.3 Iterative Algorithms Based on KKT Conditions

The problems (5.2) and (5.4) are not convex. However, it can be shown that a global

minimum exists for both (5.2) and (5.4) (see Subsection 5.8.4). The objective and constraint
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functions for both problems arecontinuously differentiable. Furthermore, since there is

only one inequality constraint here, any feasible solution is regular. With these properties,

we conclude that the KKT conditions are necessary for local minimums (including the

global minimums) [5]. Therefore, we now propose two algorithms developed from the

KKT conditions [(5.5)-(5.8) and (5.9)-(5.12)], as given in Tables 5.1 and 5.2, for solving

both problems.

Table 5.1. The KKT-based iterative algorithm for solving (5.2)

1) InitializeFk, k = 1, . . . ,K, which are non-zero and satisfy the power constraint

with equality.

2) UpdateGk using (5.5),k = 1, . . . ,K;

Gk = FH
k ĤH

k [∑K
j=1 Ĥ jF jFH

j ĤH
j +σ2

n · IM +∑K
j=1σ2

E j · tr(F jFH
j ) ·ΣΣΣ j ]−1;

3) Updateµul using (5.13);

4) UpdateFk using (5.6),k = 1, . . . ,K;

Fk = [ĤH
k (∑K

j=1GH
j G j)Ĥk + µul · INk +σ2

Ek ·∑K
j=1 tr(G jΣΣΣkGH

j ) · INk]
−1ĤH

k GH
k ;

5) If the termination condition is met, stop; otherwise, go back to 2).

Table 5.2. The KKT-based iterative algorithm for solving (5.4)

1) InitializeTk, k = 1, . . . ,K, which are non-zero and satisfy the power constraint

with equality.

2) UpdateRk using (5.10),k = 1, . . . ,K;

Rk = TH
k Ĥk[ĤH

k (∑K
j=1T jTH

j )Ĥk +σ2
n · INk +σ2

Ek ·∑K
j=1 tr(TH

j ΣΣΣkT j) · INk]
−1;

3) Updateµdl using (5.14);

4) UpdateTk using (5.9),k = 1, . . . ,K;

Tk = [∑K
j=1 Ĥ jRH

j R jĤH
j + µdl · IM +∑K

j=1σ2
E j · tr(R jRH

j ) ·ΣΣΣk]−1ĤkRH
k ;

5) If the termination condition is met, stop; otherwise, go back to 2).

Similar algorithms have been used in [91, 125] with perfect CSI. However, here the

update of the Lagrange multipliers is based on (5.13) and (5.14), which is simpler and more

accurate than the method in [91,125], as the latter requires eigenvalue decompositions and
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a solution to a non-linear equation for each update of the Lagrange multiplier. This will be

demonstrated by an example in Part 2 of Section 5.6.

As in [47,91,125], we cannot show that the iterative algorithm in Table 5.1 or Table 5.2

is guaranteed to achieve the globally optimum solution (except whenK = 1 [20]), despite

the fact that the global minimum exists, since the objective function in (5.2) or (5.4) are

not convex in{Fi ,Gi}K
i=1 or {T i ,Ri}K

i=1
1. However, as indicated by the simulations in

Section 5.6, starting from a set of non-zero{Fi}K
i=1, the algorithms yield reasonable results,

consistent with those obtained from alternative algorithms.

5.4 Uplink–Downlink Duality in Average Sum MSE with

Imperfect Channel Knowledge Via KKT Conditions

Theorem 6 (Uplink–downlink duality in average sum MSE)

Let {Fk,Gk}K
k=1 denote an admissible set of precoder-decoder pairs for the uplink

average sum MSE performance that satisfies the KKT conditions (5.5)-(5.8). LetTk =
√

σ2
n/µul ·GH

k , and letRk satisfy (5.10),k= 1, . . . ,K. Then under the same sum power con-

straint, the average sum MSE achieved in the uplink by using{Fk,Gk}K
k=1 can be achieved

by {Tk,Rk}K
k=1, which satisfies the KKT conditions for the downlink problem. Conversely,

assume that{T j ,R j}K
j=1 is an admissible set for the downlink sum MSE performance that

satisfies the KKT conditions (5.9)-(5.12). LetF j =
√

σ2
n/µdl ·RH

j , and letG j satisfy (5.5),

j = 1, . . . ,K. Then under the same sum power constraint, the average sum MSE achieved

in the downlink by{T j ,R j}K
j=1 can be achieved by{F j ,G j}K

j=1, which satisfies the KKT

conditions for the uplink problem.

1Note that in (5.2) and (5.4), the objective function is non-convex in{Fi ,Gi}K
i=1 or {T i ,Ri}K

i=1 even when

σ2
Ei = 0,∀i.
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Proof. See Subsection 5.8.5.

We have shown that if a solution satisfying the uplink KKT conditions achieves a certain

average sum MSE, this sum MSE can also be achieved by a solution satisfying the downlink

KKT conditions, and vice versa.

As mentioned in Subsection 5.3.3, here the KKT conditions are only necessary for local

minimums in both links. However, byTheorem 6, every possible local minimum (satisfy-

ing the KKT conditions) of the uplink sum MSE corresponds to a same local minimum in

the downlink. We then conclude that the globally minimum sum MSEs for the uplink and

downlink must be the same (under the same sum power constraint and the same imperfect

CSI).

According to the proof ofTheorem 6 in Subsection 5.8.5, at each local optimum (in-

cluding the global optimum), each user’s average MSEs in both links are the same, not just

the average sum MSEs. See (5.37)-(5.38) and (5.40)-(5.41).

Theorem 6matches the duality results in [47,89,93] whenσ2
E j = 0 and generalizes the

sum MSE duality results whenσ2
E j > 0,∀ j. It reveals the underlying connection between

the uplink and downlink joint MSMSE linear precoder-decoder designs based on the KKT

conditions, whereas previous duality results were obtained by calculating the individual

SINRs or MSEs for each user in both links [21,47,89,93].

Remark 5.1: According to the uplink–downlink duality with imperfect CSI, when we

need to solve a linear MSMSE transceiver optimization problem with imperfect CSI forthe

downlink, we can first formulate a dual uplink problem, find the{Fi ,Gi}K
i=1 for the dual

link using the above method, and then translate the transceiver pairs for application in the

downlink.
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5.5 Alternative Method for Uplink Optimization

In this section, we assume that the number of data streams is equal to the number of trans-

mit antennas for each user, i.e.,l i = Ni , i = 1, . . . ,K. We intend to solve (5.2) by solving

an equivalent problem. Since the KKT-conditions-based algorithm is not guaranteed to

yield the globally optimum solution, here we propose another method for uplink optimiza-

tion. In general, this alternative method is not guaranteed to obtain the global minimum,

either. However, it is still of great importance, not only as an actual way of finding the up-

link transceiver pairs, but also as an effective way to check how the KKT-based algorithm

performs.

The uplink problem (5.2) can be equivalently formulated as

min
{Fi}K

i=1, ∑K
i=1 tr(FiFH

i )≤PS

min
{Gi}K

i=1

mseul,t .

It turns out that the inner minimization is achieved when (5.5) is satisfied for allk. Then it

can be shown that

mseul,t = tr

{
X̆

[
σ2

n IM +
K

∑
j=1

σ2
E j · tr(Q j) ·ΣΣΣ j

]}
+const,

whereconstdenotes a constant that equals
[
∑K

j=1 tr
(
I l j

)− tr(IM)
]
, Q j

def= F jFH
j ,∀ j, and

X̆ def=

[
K

∑
j=1

Ĥ jQ jĤH
j +

K

∑
j=1

σ2
E j · tr(Q j) ·ΣΣΣ j +σ2

n · IM

]−1

. (5.15)

Therefore, instead of solving (5.2) directly, we attempt to solve its equivalent problem, as

shown below:

min
X̆; {Q j}K

j=1

tr

{
X̆

[
K

∑
j=1

σ2
E j · tr(Q j) ·ΣΣΣ j +σ2

n · IM

]}
, (5.16)

subject to
K

∑
j=1

tr(Q j)≤ PS, (5.17)
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X̆ as given in (5.15), (5.18)

Q j º 0, j = 1, . . . ,K. (5.19)

We first present the following theorem for a special case.

Theorem 7 Whenσ2
E j = σ̃2

E andΣΣΣ j =ΣΣΣBS, j = 1, . . . ,K, the problem given by (5.16)-(5.19)

is equivalent to the following semidefinite program (SDP):

min
X̆; {Q j}K

j=1

tr
{

X̆ · [σ2
n · IM + σ̃2

E ·PS·ΣΣΣBS
]}

,

subject to
K

∑
j=1

tr(Q j)≤ PS,




X̆ I M

IM ∑K
j=1 Ĥ jQ jĤH

j + σ̃2
EPS·ΣΣΣBS+σ2

n · IM


º 0,

Q j º 0, j = 1, . . . ,K.

Proof. The proof is an extension of that in [59]. Details are given in Subsection 5.8.6.

A SDP is a convex optimization problem [7] and can be solved using SDP software [97].

A globally optimum solution is guaranteed.

Once the globally optimum solution for the SDP is obtained,{F j}K
j=1 can be obtained

by performing Cholesky factorizations of{Q j}K
j=1 [59], due to the assumption thatl j =

Nj , j = 1, . . . ,K. The corresponding{G j}K
j=1 can be obtained using (5.5).

Note that if{F j}K
j=1 is an optimum set in terms of sum MSE, then{F jU j}K

j=1 is also

an optimum set, where{U j}K
j=1 is any set of unitary matrices of proper size.

Clearly, the result inTheorem 7 itself has very limited application, because of the

conditions required (σ2
E j = σ̃2

E andΣΣΣ j = ΣΣΣBS,∀ j).

In general, the equivalent problem given by (5.16)-(5.19) is not a SDP, because the

objective function in (5.16) is not convex. However,Theorem 7provides a basis to find a
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solution to the equivalent problem. Specifically, we have a SDP-based iterative algorithm

given in Table 5.3.

Table 5.3. The SDP-based iterative algorithm for solving (5.2) [the sequential SDP method]

1) InitializeQ j = [PS/(KNj)] · INj ,∀ j. Calculate the value of the objective function

f old using (5.15) and (5.16), given{Q j}K
j=1.

2) Given{Q j}K
j=1, calculateZ̆ = ∑K

j=1σ2
E j · tr(Q j) ·ΣΣΣ j +σ2

n · IM.

3) Solve the SDP given by (5.20)-(5.23) to obtain a new set of{Q j}K
j=1.

Calculate the value of the objective functionf new, i.e., the value of (5.20).

4) If | f new− f old| ≤ ε, stop; otherwise, setf old := f new, and go back to 2).

During each iteration, the matrix̆Z (see Table 5.3) is fixed and thus the problem given

by (5.20)-(5.23) is a SDP:

min
X̆; {Q j}K

j=1

tr
{

X̆Z̆
}

(5.20)

subject to
K

∑
j=1

tr(Q j)≤ PS, (5.21)




X̆ I M

IM ∑K
j=1 Ĥ jQ jĤH

j + Z̆


º 0, (5.22)

Q j º 0, j = 1, . . . ,K. (5.23)

Essentially, the algorithm in Table 5.3 approaches the solution by solving a sequence of

SDPs which approximate and converge to that given by (5.16)-(5.19). Therefore, it is also

referred to the sequential semidefinite programming method.

After obtaining{Q j}K
j=1, we can obtain{F j ,G j}K

j=1 as mentioned earlier.

5.6 Simulation Results and Discussions

1. Simulation Setup
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As in previous chapters, the exponential model is used to describe the correlation

of the channels arising from the BS antennas:ΣΣΣi,pq = ρ |p−q|
i , where0 ≤ ρi < 1,

p,q ∈ {1, . . . ,M} and i = 1, . . . ,K. When simulating the ABER performance, we

assume that 4-QAM is used in each user’s data streams. Here the SNR is defined

as SNR= PS/σ2
n , which should not be confused with that defined in Chapter 3 or in

Chapter 4. In the following simulations, the number of usersK is assumed to be 3,

and the number of BS antennasM is either 6 or 8. The number of antennas of each

user equals the number of data streams, both equal to 2 (i.e.,Ni = l i = 2,∀i). Unless

otherwise stated, the correlation exponents, training powers and channel estimation

error variances are given in Tables 5.4 and 5.5 (with the only exception in Fig. 5.2).

Table 5.4. Channel correlation exponents and estimation error variances (M = 6)

correlation exponents and error variances

Ptr,i/σ2
n = 30dB,∀i higherρ ′s: ρ1 = 0.8,ρ2 = 0.7,ρ3 = 0.5;

σ2
E1 = 0.0238,σ2

E2 = 0.0156,σ2
E3 = 0.0093

lower ρ ′s: ρ1 = 0.5,ρ2 = 0.3,ρ3 = 0.2;

σ2
E1 = 0.0093,σ2

E2 = 0.0070,σ2
E3 = 0.0064

Ptr,i/σ2
n = 25dB,∀i higherρ ′s: ρ1 = 0.8,ρ2 = 0.7,ρ3 = 0.5;

σ2
E1 = 0.0752,σ2

E2 = 0.0494,σ2
E3 = 0.0295

lower ρ ′s: ρ1 = 0.5,ρ2 = 0.3,ρ3 = 0.2;

σ2
E1 = 0.0295,σ2

E2 = 0.0221,σ2
E3 = 0.0203

2. Comparison of the KKT-based Algorithm and the SDP-based Algorithm for the Up-

link Problem (5.2)
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Table 5.5. Channel correlation exponents and estimation error variances (M = 8)

Ptr,i/σ2
n = 30dB,∀i correlation exponents and error variances

higherρ ′s ρ1 = 0.8,ρ2 = 0.7,ρ3 = 0.5;

σ2
E1 = 0.0329,σ2

E2 = 0.0215,σ2
E3 = 0.0127

lower ρ ′s ρ1 = 0.5,ρ2 = 0.3,ρ3 = 0.2;

σ2
E1 = 0.0127,σ2

E2 = 0.0094,σ2
E3 = 0.0086

Here we provide a concrete example to show the equivalence of average sum MSEs

obtained from the two algorithms in Tables 5.1 and 5.3. LetK = 3, M = 6 and

Ni = l i = 2,∀i. AssumePtr,i/σ2
n = 30 dB,∀i. The channel correlation exponents

are given byρ1 = 0.8,ρ2 = 0.7,ρ3 = 0.5 (the higherρ ′s), and the corresponding

estimation error variances can be found in Table 5.4. We set the SNR (PS/σ2
n ) to be

20 dB.

Using the channel estimation method in Section 5.2, the following channel estimates

are obtained for a specific channel realization:

Ĥ1 =




−0.6707+0.0949i −0.1160−0.1406i

−0.7679+0.4335i −0.0944−0.3061i

−0.5513−0.3191i 0.0039+0.0052i

−0.3205−0.6796i −0.3382−0.0634i

−0.8113−0.2604i −0.2913−0.5147i

−0.9751−0.5906i −0.3598−1.1833i




,
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Table 5.6. A comparison of the two algorithms given in Tables 5.1 and 5.3

SDP-based KKT-based

achieved sum MSE 0.9953 0.9941

average computation time (seconds) 8.0061 0.0771

Ĥ2 =




0.4579−0.0463i −0.9577+0.5081i

0.9834+0.3877i −0.9878−0.1083i

0.5648+0.6865i −0.3627−0.4536i

−0.6043+0.9826i −0.4557+0.3526i

−0.3226−0.4818i −0.2589+1.0222i

−0.5015−0.6484i −0.3455+0.7778i




,

Ĥ3 =




1.5141−0.3107i 0.6366−0.8878i

0.9365−1.3479i −0.4525−1.7763i

1.2987−0.5662i 0.2079−1.0612i

−0.0272+0.1190i −0.3041+0.3201i

−0.6847−0.0002i 0.0914+0.0215i

−0.2971+0.7746i −0.6777+0.2412i




.

The comparison of the two algorithms is given in Table 5.6.

Although neither is guaranteed to achieve the globally optimum solution, the two

algorithms have been found to converge after only several iterations and yield equiv-

alent results as shown in Table 5.6. Note that the complexity of the SDP-based al-

gorithm is much higher than that of the KKT-based algorithm, where complexity is

measured by the computation time required for both algorithms to converge (at the
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same required data precision). Both algorithms are run on the same hardware using

the same version of MATLAB. It is also worth mentioning that if in the KKT-based

algorithm the Lagrange multiplier is updated using the method in [91] , then the aver-

age computation time is 0.6728 seconds, which is 8.7 times that required from using

(5.13).

Similar comparison results (as in Table 5.6) can also be observed for different channel

realizations and with different system parameters. Fig. 5.1 shows more comparisons

of these two algorithms with different values ofPS/σ2
n and with different amounts of

channel correlation. Each point on the curve is obtained by averaging the sum MSE

from 10,000 channel realizations.

When σ2
Ei = σ̃2

E and ρi = ρ,∀i (i.e., ΣΣΣi = ΣΣΣBS,∀i), the KKT-based algorithm also

yields the equivalent average sum MSE as that from solving a single SDP (seeThe-

orem 7). Fig. 5.2 shows an example of the comparisons, wherePtr,i/σ2
n = 29.66dB,

∀i, σ̃2
E = 0.01, ρ = 0.5, K = 3,M = 6,Ni = l i = 2,∀i.

We can see that the results obtained using the KKT-based algorithm are consistent

with those from the SDP-based algorithm as given by Table 5.3, or from solving a

single SDP in the case specified byTheorem 7. Therefore, below we investigate

the effects of channel estimation error and channel correlation in the uplink based on

the{Fi ,Gi}K
i=1 obtained from the KKT-based algorithm in Table 5.1, since it is less

complex.

3. Effects of Channel Estimation Errors and Channel Correlation on the Uplink Perfor-

mance

Fig. 5.3 shows the effect of channel estimation errors as well as that of channel cor-

relation.
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Figure 5.1. A comparison of the average sum MSEs obtained from the two algorithms in

Tables 5.1 and 5.3.K = 3, M = 6, Ni = l i = 2, Ptr,i/σ2
n = 30 dB, ∀i. Channel correlation

exponents and channel estimation error variances are given in Table 5.4.
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Figure 5.2. A comparison between the average sum MSEs obtained from the KKT-based

algorithm and from solving a single SDP as described inTheorem 7. K = 3, M = 6,

Ni = l i = 2; Ptr,i/σ2
n = 29.66dB, ρi = ρ = 0.5, σ2

Ei = σ̃2
E = 0.01, ∀i.
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Figure 5.3. Comparison of the ABERs of User 1 in the uplink with or without channel

estimation errors and with different amounts of channel correlation. With imperfect CSI,

the following parameters are used for this figure:M = 6,K = 3,Ni = l i = 2. Ptr,i/σ2
n = 30

dB,∀i.
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In the case of imperfect CSI, the training power for each user is 30 dB. Different

amounts of channel correlation have been considered. Comparing curves 1 and 3 or

curves 2 and 4, we can see that channel estimation errors cause a large performance

degradation on the ABER of User 1. Comparing curves 1 and 2 or curves 3 and 4,

we can see that channel correlation also has a significant impact on system perfor-

mance. For example, in the case of perfect CSI, from curves 3 and 4, the perfor-

mance degradation is about 3.75 dB when(ρ1,ρ2,ρ3) changes from(0.5,0.3,0.2) to

(0.8,0.7,0.5). In the case of imperfect CSI, the performance degradation caused by

channel correlation is even larger. Similar observations can be made from Fig. 5.4,

where the training power for each user is 25 dB in the case of imperfect channel

estimation.

Fig. 5.5 shows the ABER results of User 1, when the number of BS antennas,M,

increases from 6 to 8. IncreasingM implies introducing more antenna diversity.

Therefore, from curves 1 and 3 or curves 2 and 4 there, we can see that the effect of

channel estimation errors can be compensated by introducing diversity. Note that one

can also introduce diversity by transmitting fewer data streams (i.e., reducingl i ,∀i).

4. Duality in Average MSE with Imperfect Channel Knowledge

In Fig. 5.6, the curve of average sum MSE in the uplink is obtained using Table 5.1.

One of the curves for the downlink is obtained by usingTheorem 6, the other is

directly obtained from Table 5.2. The three curves overlap with both perfect and

imperfect channel estimation. Therefore, the results in Fig. 5.6 agree withTheorem

6. The average sum MSE curves obtained here also agree with those in Fig. 5.1 with

same parameters.

The duality in average sum MSE can also be observed in Fig. 5.7 under different
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Figure 5.4. Comparison of the ABERs of User 1 in the uplink with or without channel

estimation errors and with different amounts of channel correlation. With imperfect CSI,

the following parameters are used for this figure:K = 3, M = 6, Ni = l i = 2, Ptr,i/σ2
n = 25

dB, i = 1, . . . ,K.
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corresponding correlation exponents and estimation error variances are given in Tables 5.4

and 5.5.
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Figure 5.7. Duality in average sum MSE.K = 3, M = 6, Ni = l i = 2, i = 1, . . . ,K. The

higherρ ′s are used:ρ1 = 0.8, ρ2 = 0.7, ρ3 = 0.5. Ptr,i/σ2
n = 25dB, ∀i.

system parameters.

As mentioned in Section 5.4, at the local or global optimum, each user’s average

MSEs in both links are the same. This is shown in Fig. 5.8.

5. Effects of Channel Estimation Errors and Channel Correlation on the Downlink Per-

formance

Figs. 5.9 and 5.10 demonstrate the effects of channel estimation errors and channel

correlation on the downlink system performance, which are similar to those observed
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uplink and the downlink overlap.
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in the uplink.

We also compare the ABERs of User 1 in both links with or without channel esti-

mation errors. See Figs. 5.11 and 5.12. We observe that without channel estimation

errors, the ABERs in both links seem to be the same. However, this is not true with

imperfect CSI. Thus, in case of imperfect CSI, the duality holds in average MSE, but

not in ABER. Similar results have been observed in [21, 114] in the case when the

BS is mounted with multiple antennas and the MSs are each equipped with a single

antenna.

We now provide more insight into the results shown in Figs. 5.8, 5.11 and 5.12.

From previous sections, we can see that the derivations of average individual or sum

MSEs depend largely on the first-order and second-order statistics of the transmitter

signal, channel fades, channel noises and channel estimation errors, which are the

same for the dual links. Thus, it is expected that the duality in average MSE holds.

On the other hand, the BERs depend on the interference-plus-noise distributions,

which vary with the relative strengths of the interferences2. When there are channel

estimation errors, the interference strengths depend onPS in different ways for the

uplink and the downlink [see (5.1) and (5.3)]. Therefore, the BERs in both links

become noticeably unequal whenPS is relatively large (and thus channel estimation

errors become dominant).

While the ABERs in both links are not identical, they are of the same order of mag-

nitude. If we have used the duality to obtain the transceiver pairs for the downlink

from the dual uplink, we should take into account the ABER performance difference

between the dual links at high SNR and use some extra margins based on Figs. 5.11

2Here the interferences include the inter-stream interferences from the same user, the multiuser interfer-

ences, as well as those caused by channel estimation errors.
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Figure 5.9. Comparison of the ABERs of User 1 in the downlink with or without channel

estimation errors and with different amounts of channel correlation.K = 3, M = 6, Ni = l i =

2,∀i. With imperfect CSI,Ptr,i/σ2
n = 30 dB, ∀i. The corresponding correlation exponents

and estimation error variances are given in Table 5.4.
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Figure 5.11. Comparison of the ABERs of User 1 in the uplink and in the downlink with

or without channel estimation errors.K = 3, M = 6, Ni = l i = 2,∀i. With imperfect CSI,

Ptr,i/σ2
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Figure 5.12. Comparison of the ABERs of User 1 in the uplink and in the downlink with

or without channel estimation errors.K = 3, M = 6, Ni = l i = 2,∀i. With imperfect CSI,
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and 5.12. Specific values of these margins can be obtained from simulations.

5.7 Summary

Minimum sum MSE linear transceiver design problems are formulated for multiuser MIMO

uplink and downlink assuming imperfect CSI. A duality in average sum MSE between these

two designs has been proved based on the associated KKT conditions. Furthermore, when

the minimum average sum MSE is achieved, each user’s individual average MSEs in both

links are also the same. Simulation results agree with the analytical duality results. The

KKT-conditions-based algorithms are proposed for both designs. For the uplink, we have

also proposed a sequential SDP method. By simulation, the two algorithms are shown to

obtain consistent sum MSE results.

Based on the optimized transceiver pairs, we have assessed the the effects of channel

estimation errors and channel correlation at the BS. It has been noted that while the individ-

ual users’ average MSEs in both links are the same, their average BERs are not the same,

due to different interference structures.

5.8 Derivation and Proof Details

5.8.1 Detailed Calculations of (5.1)

From Section 5.2,rul, j = G j ·yul = G j(∑K
i=1 Ĥ iFisul,i +∑K

i=1EiFisul,i +nul).

Defineyul,e f f = ∑K
i=1 Ĥ iFisul,i , andeul,ch = ∑K

i=1EiFisul,i . Then,

MSEul, j

= E
[(

rul, j −sul, j
)(

rul, j −sul, j
)H

]
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= E
[(

G jyul,e f f +G jeul,ch+G jnul−sul, j
)(

G jyul,e f f +G jeul,ch+G jnul−sul, j
)H

]
.

(5.24)

Here the expectation is taken over the distributions of data vectors, channel noise and chan-

nel estimation error matrices. Using the assumptions made in Subsection 2.2.3,

E(sul, js
H
ul, j) = I l j , E(sul,is

H
ul, j) = 0,∀i, j, i 6= j, E[G jnuln

H
ulG

H
j ] = σ2

n ·G jGH
j . (5.25)

Furthermore, using the assumptions made in Subsection 2.2.3 as well as in Section 5.2,

E
[
G jyul,e f fy

H
ul,e f fG

H
j

]
= E

[
G j

(
K

∑
i=1

K

∑
k=1

Ĥ iFisul,is
H
ul,kF

H
k ĤH

k

)
GH

j

]

= G j

[
K

∑
i=1

K

∑
k=1

Ĥ iFiE
(
sul,is

H
ul,k

)
FH

k ĤH
k

]
GH

j

= G j

[
K

∑
i=1

Ĥ iFiFH
i ĤH

i

]
GH

j , (5.26)

E
[
G jeul,che

H
ul,chG

H
j

]
= E

[
G j

(
K

∑
i=1

K

∑
k=1

EiFisul,is
H
ul,kF

H
k EH

k

)
GH

j

]

= G j ·E
[

K

∑
i=1

K

∑
k=1

EiFiE
(
sul,is

H
ul,k

)
FH

k EH
k

]
·GH

j

= G j

[
K

∑
i=1

ΣΣΣ
1
2
i E

(
EwiFiFH

i EH
wi

)
ΣΣΣ

1
2
i

]
GH

j

= G j

[
K

∑
i=1

σ2
Ei · tr

(
FiFH

i

) ·ΣΣΣi

]
GH

j , (5.27)

where in the second line of (5.27), the outer expectation is with respect to the distributions

of channel estimation error matrices and the inner one is with respect to those of data

vectors. In addition, using the independence between data vectors from different users, data

vectors and noise vectors, data vectors and channel estimation errors as well as between

noise vectors and channel estimation errors, it is easy to verify that

E
[
G jyul,e f fe

H
ul,chG

H
j

]
= 0, E

[
G jyul,e f fn

H
ulG

H
j

]
= 0,
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E
[
G jeul,chn

H
ulG

H
j

]
= 0, E

[
G jyul,e f fs

H
ul, j

]
= G jĤ jF j ,

E
[
G jeul,chs

H
ul, j

]
= 0, E

[
G jnuls

H
ul, j

]
= 0. (5.28)

Expanding (5.24) and using (5.25)-(5.28), we can then obtain (5.1).

5.8.2 Detailed Calculations of (5.3)

From Section 5.2,

rdl, j = R jydl, j = R j

[
(
ĤH

j +EH
j

)
(

K

∑
i=1

T isdl,i

)
+ndl, j

]
.

Defineydl,e f f, j = ĤH
j

(
∑K

i=1T isdl,i
)
, andedl,ch, j = EH

j

(
∑K

i=1T isdl,i
)
. Then,

MSEdl, j

= E
[(

rdl, j −sdl, j
)(

rdl, j −sdl, j
)H

]

= E
{[

R j
(
ydl,e f f, j +edl,ch, j +ndl, j

)−sdl, j
][

R j
(
ydl,e f f, j +edl,ch, j +ndl, j

)−sdl, j
]H

}
.

(5.29)

Clearly, by assumptions made in Subsection 2.2.3,

E[sdl, js
H
dl, j ] = I l j ,E[sdl,is

H
dl, j ] = 0,∀i, j, i 6= j; and E[R jndl, jn

H
dl, jR

H
j ] = σ2

n ·R jRH
j .

Using the assumptions of independence between data vectors from different users, data

vectors and noise vectors, data vectors and channel estimation errors as well as between

noise vectors and estimation errors, we obtain

E
[
R jydl,e f f, jy

H
dl,e f f, jR

H
j

]
= R jĤH
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[
K

∑
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T iTH
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j , (5.30)

E
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]
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w jΣΣΣ
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j . (5.31)

In addition,

E
[
R jydl,e f f, je

H
dl,ch, jR

H
j

]
= 0, E

[
R jydl,e f f, jn
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dl, jR

H
j

]
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[
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H
j
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j T j ,

E
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]
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[
R jedl,ch, js

H
dl, j

]
= 0. (5.32)

Expanding (5.29) and using (5.30)-(5.32), we obtain (5.3).

5.8.3 Proof of Lemma 4

We will only show (5.13). Post-multiplying both sides of (5.5), fork = 1, . . . ,K, to obtain

FH
k ĤH

k GH
k = Gk

[
K

∑
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Ĥ jF jFH
j ĤH

j +σ2
n · IM +

K

∑
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GH

k , ∀k.

Taking the trace of both sides and summing overk, to get
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j ) ·
[

K

∑
k=1

tr
(
GkΣΣΣ jGH

k

)
]

. (5.33)

Pre-multiplying both sides of (5.6), fork = 1, . . . ,K, to obtain

FH
k ĤH

k GH
k = FH

k

{
ĤH

k

[
K

∑
j=1

GH
j G j

]
Ĥk +

[
µul +σ2

Ek ·
K

∑
j=1

tr(G jΣΣΣkG
H
j )

]
· INk

}
Fk, ∀k.

Therefore,

K

∑
k=1

tr
(
FH

k ĤH
k GH

k

)
= tr

[(
K

∑
k=1

ĤkFkF
H
k ĤH

k

)(
K

∑
j=1

GH
j G j

)]
+ µul ·

K

∑
k=1

tr
(
FkF

H
k

)
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+
K

∑
k=1

σ2
Ek · tr(FkF

H
k ) ·

[
K

∑
j=1

tr
(
G jΣΣΣkG

H
j

)
]

. (5.34)

Simply by comparing (5.33) and (5.34), it is easy to see that

σ2
n ·

K

∑
k=1

tr
(
GkG

H
k

)
= µul ·

K

∑
k=1

tr
(
FkF

H
k

)
.

According to (5.8), ifµul > 0, then∑K
k=1 tr

(
FkFH

k

)
= PS and (5.13) follows immediately. If

µul = 0, using the above equality, one must haveσ2
n ·∑K

k=1 tr
(
GkGH

k

)
= 0 and (5.13) still

holds. The proof for (5.14) is similar, and is omitted for brevity. This concludes the proof

of Lemma 4.

5.8.4 Proof of Existence of Global Minimums for (5.2) and (5.4)

The uplink problem (5.2) can be equivalently formulated as

min
{Fi}K

i=1, ∑K
i=1 tr(FiFH

i )≤PS

min
{Gi}K

i=1

mseul,t .

It is easy to show that the inner minimization is achieved when (5.5) is satisfied for allk.

Define

J2 = σ2
n · IM +

K

∑
j=1

σ2
E j · tr

(
F jFH

j

) ·ΣΣΣ j .

Using (5.5) for allk, the average sum MSE can be expressed as:

mseul,t =
K

∑
j=1

tr
(
I l j

)− tr(IM)+ tr





[
K

∑
j=1

Ĥ jF jFH
j ĤH

j +J2

]−1

J2



 , (5.35)

and (5.2) is equivalent to

min
{Fi}K

i=1

mseul,t [as in (5.35)]

subject to
K

∑
i=1

tr(FiFH
i )≤ PS. (5.36)
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Let F̃ = diag{F1, . . . ,FK}. Then the constraint in (5.36) can be written as tr
(
F̃F̃H

) ≤ PS.

Thus, the feasible set of (5.36) is a subset of the (closed and bounded) Frobenius norm

ball of radius
√

PS. It can be shown that this set itself is closed and bounded. As can be

seen from (5.35),mseul,t as a function of{F j}K
j=1 is continuous at all points of the feasible

set. Invoking Weierstrass’ Theorem [5, p. 654,Proposition A.8], we conclude that a global

minimum exists for (5.36). Since (5.2) and (5.36) are equivalent, the same global minimum

also exists for (5.2) [7, p. 130, Section 4.1.3].

The proof of existence of a global minimum for (5.4) is similar and is omitted for

brevity. ¤

5.8.5 Proof of Theorem 6

We begin with the forward part. Suppose that we are given{Fk,Gk}K
k=1, a set of precoder-

decoder pairs for the uplink that satisfies the KKT conditions (5.5)-(5.8). Then using (5.5)

for k = 1, . . . ,K, we obtain

mseul,t =
K

∑
i=1

tr(I l i)−
K

∑
i=1

tr
(
ĤH

i GH
i FH

i

)
.

Define

JA,i = ĤH
i GH

i GiĤ i , JB,i,k = ĤH
i GH

k GkĤ i , andci,k = tr(GkΣΣΣiGH
k ), i,k = 1, . . . ,K.

Using (5.6), it can be shown that

ĤH
i GH

i FH
i = ĤH

i GH
i GiĤ i

{
ĤH

i

(
K

∑
k=1

GH
k Gk

)
Ĥ i +

[
µul +σ2

Ei ·
K

∑
k=1

tr
(
GkΣΣΣiGH

k

)
]

INi

}−1

,

and thus

mseul,t =
K

∑
i=1

tr(I l i)−
K

∑
i=1

tr(Di) , (5.37)
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where

Di = JA,i

[
K

∑
k=1

JB,i,k +

(
µul +σ2

Ei ·
K

∑
k=1

ci,k

)
· INi

]−1

. (5.38)

In the downlink, let

Tk = αk ·GH
k , (5.39)

whereαk is a scalar whose choice will be discussed later,∀k. Let Rk be related toTk as

given by (5.10),k = 1, . . . ,K, and then

msedl,t =
K

∑
j=1

tr(I l j )−
K

∑
j=1

tr(ĤH
j T jR j).

SinceR j is related toT j through (5.10),

ĤH
j T jR j = ĤH

j T jTH
j Ĥ j

{
ĤH

j

[
K

∑
k=1

TkT
H
k

]
Ĥ j +

[
σ2

n +σ2
E j

K

∑
k=1

tr
(
TH

k ΣΣΣ jTk
)
]

INj

}−1

,

∀ j. Using (5.39), we can expressmsedl,t in terms of{Gk}K
k=1 as follows:

msedl,t =
K

∑
j=1

tr(I l j )−
K

∑
j=1

tr(D̃ j), (5.40)

where

D̃ j = JA, j

[
K

∑
k=1

|αk|2
|α j |2JB, j,k +

(
σ2

n

|α j |2 +σ2
E j ·

K

∑
k=1

|αk|2c j,k

|α j |2
)
· INj

]−1

. (5.41)

Note that the choice of{αk}K
k=1 should satisfy the sum power constraint for the downlink,

i.e.,
K

∑
k=1

tr(TkT
H
k ) =

K

∑
k=1

|αk|2tr(GH
k Gk)≤ PS. (5.42)

On the other hand, from (5.13),

K

∑
k=1

σ2
n

µul
tr(GH

k Gk) = PS.

If we chooseαk =
√

σ2
n/µul, ∀k, from (5.38) and (5.41), the sum MSE for both links will

be identical while (5.42) is satisfied with equality. In the remaining proof, we will use this

choice of{αk}K
k=1.
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To complete the forward part, we need to show that{Tk,Rk}K
k=1 chosen here satisfies

the downlink KKT conditions, i.e., we need to establish (5.9), (5.11) and (5.12). Note that

Rk
(5.10)
= TH

k Ĥk

{
ĤH

k

[
K

∑
j=1

T jTH
j

]
Ĥk +

[
σ2

n +σ2
Ek ·

K

∑
j=1

tr(TH
j ΣΣΣkT j)

]
· INk

}−1

(5.39)
=

√
µul/σ2

n ·GkĤk

{
ĤH

k

[
K

∑
j=1

GH
j G j

]
Ĥk +

[
µul +σ2

Ek

K

∑
j=1

tr(G jΣΣΣkG
H
j )

]
· INk

}−1

=
√

µul/σ2
n ·FH

k ,

Fk =
√

σ2
n/µul ·RH

k , ∀k. (5.43)

Then, from (5.39), (5.5) and (5.43), it can be shown that

Tk
(5.39)
=

√
σ2

n/µul ·GH
k

(5.5)
=

√
σ2

n

µul
·
[

K

∑
j=1

Ĥ jF jFH
j ĤH

j +σ2
n · IM +

K

∑
j=1

σ2
E j · tr(F jFH

j ) ·ΣΣΣ j

]−1

ĤkFk

(5.43)
=

[
K

∑
j=1

Ĥ jRH
j R jĤH

j + µul · IM +
K

∑
j=1

σ2
E j · tr(RH

j R j) ·ΣΣΣ j

]−1

ĤkR
H
k . (5.44)

Let µdl = µul, and then (5.44) is the same as (5.9). Furthermore, (5.11) and (5.12) are also

all satisfied. Therefore, from the set{Fk,Gk}K
k=1 satisfying the uplink KKT conditions, we

have found a set{Tk,Rk}K
k=1 which achieves the same sum MSE and satisfies the downlink

KKT conditions. This concludes the forward part. Using similar arguments, we can prove

the converse part, which is omitted to avoid repetition. This is the end of the proof of

Theorem 6.

5.8.6 Proof of Theorem 7

Assumeσ2
E j = σ̃2

E andΣΣΣ j = ΣΣΣBS, ∀ j. If the inequality sum power constraint in the problem

given by (5.16)-(5.19) is replaced by an equality constraint, then the resultant problem is

130



equivalent to

min
X̆; Q j , j=1,...,K

tr
[
X̆

(
σ2

n · IM + σ̃2
E ·PS·ΣΣΣBS

)]
, (5.45)

subject to
K

∑
j=1

tr(Q j) = PS, (5.46)




X̆ I M

IM ∑K
j=1 Ĥ jQ jĤH

j + σ̃2
E ·PS·ΣΣΣBS+σ2

n · IM


º 0, (5.47)

Q j º 0, j = 1, . . . ,K. (5.48)

Note that (5.45)-(5.48) follow from two steps:

1. According to [7, p. 130, Section 4.1.3], a substitution of the equality power con-

straint into the objective function and other related inequality constraints preserves

the equivalence.

2. After the substitution, (5.18) [i.e., (5.15)] becomes

X̆ =

[
K

∑
j=1

Ĥ jQ jĤH
j + σ̃2

E ·PS·ΣΣΣBS+σ2
n · IM

]−1

,

which can be replaced by

X̆ º
[

K

∑
j=1

Ĥ jQ jĤH
j + σ̃2

E ·PS·ΣΣΣBS+σ2
n · IM

]−1

under a monotonicity argument. Then (5.47) follows using Schur’s complement [7,

Section A.5.5, p. 651] [59].

Now, to showTheorem 7, we only need to show that the minimum value of the objec-

tive function of the problem in [(5.45)-(5.48)] is a non-increasing function ofPS, i.e. (5.46)

can be replaced by an inequality constraint. Letf (PS1) and f (PS2) be the minimum values

of the objective function corresponding to the sum powerPS1 andPS2, respectively, where
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PS1≤ PS2. Let X̆1,{Q1 j}K
j=1 denote the matrices achievingf (PS1), i.e.,

X̆1 =

(
K

∑
j=1

Ĥ jQ1 jĤH
j +σ2

E ·PS1 ·ΣΣΣBS+σ2
n · IM

)−1

,

and∑K
j=1 tr(Q1 j) = PS1. Let Q̃2 j = PS2

PS1
·Q1 j , j = 1, . . . ,K, and then∑K

j=1 tr(Q̃2 j) = PS2. Let

X̃2 =

(
K

∑
j=1

Ĥ jQ̃2 jĤH
j + σ̃2

E ·PS2 ·ΣΣΣBS+σ2
n · IM

)−1

=
PS1

PS2

(
K

∑
j=1

Ĥ jQ1 jĤH
j + σ̃2

E ·PS1 ·ΣΣΣBS+
σ2

nPS1

PS2
· IM

)−1

.

Define

J3 =
K

∑
j=1

Ĥ jQ1 jĤH
j + σ̃2

E ·PS1 ·ΣΣΣBS,

and we get

tr
[
X̃2

(
σ2

n · IM + σ̃2
E ·PS2 ·ΣΣΣBS

)]

= tr(IM)− tr

[(
J3 +

σ2
nPS1

PS2
IM

)−1
(

K

∑
j=1

Ĥ jQ1 jĤH
j

)]

≤ tr(IM)− tr

[
(
J3 +σ2

n IM
)−1

(
K

∑
j=1

Ĥ jQ1 jĤH
j

)]

= f (PS1).

The above inequality is based on the following result. LetA denote a positive semidefinite

matrix. LetB1 andB2 be two positive definite matrices, andB2Â B1, which means(B2−
B1) is positive definite. ThenB−1

1 Â B−1
2 , and tr(B−1

1 A) ≥ tr(B−1
2 A) [64, pp. 585-586].

Since the matrices[X̃2,{Q̃2 j}K
j=1] chosen here with sum powerPS2 are not necessarily the

optimum-achieving ones, we have

f (PS2)≤ tr
{

X̃2
[
σ2

n · IM + σ̃2
E ·PS2 ·ΣΣΣBS

]}≤ f (PS1),

for PS2 ≥ PS1. Therefore, the minimum value of the objective function of the problem

given by (5.45)-(5.48) is a non-increasing function ofPS, and (5.46) can be replaced by an

inequality constraint.Theorem 7follows immediately.¤

132



Chapter 6

Conclusions and Future Work

In this chapter, we summarize the major contributions in this thesis, and suggest possible

future directions based on the research presented.

6.1 Conclusions

In previous chapters, we have studied the optimum linear precoding/decoding designs for

single-user and multiuser spatial multiplexing with imperfect channel knowledge in slow,

flat, Rayleigh fading.

In Chapter 3, a detailed modeling of imperfect channel estimation with correlation at

both ends of a single-user MIMO link is presented. Then the minimum total MSE design

with the same imperfect CSI at both ends is formulated as an optimization problem, subject

to a total power constraint. Based on the general methodology for non-convex optimization,

the optimum structures of the precoder and decoder are derived, which show the coupling

effect of channel estimation error and channel correlation. It turns out that compared to

the perfect CSI case, linear filters are added to the transceiver to balance the suppression

of the channel noise and the additional noise induced from channel estimation error. The

linear precoder and decoder diagonalize an equivalent matrix channel into a set of parallel
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scalar channels. The analysis is further extended to the minimum weighted MSE design.

Based on the optimized precoder/decoder, the significant impacts of channel estimation

error and correlation are quantified by simulation. For example, in a4×4 MIMO system

whereB = 3 data streams are transmitted, atPT/σ2
n = 20 dB, the ABER is7.6× 10−7

when there is perfect CSI at both ends and there is no channel correlation. However, when

there is channel estimation error, withPtr/σ2
n fixed at 26.016 dB, the ABER increases to

1.4× 10−5. When there is transmit correlation withρT = 0.5, the ABER increases to

6.8× 10−5. Furthermore, whenρT increases from 0.5 to 0.9, the ABER increases from

6.8×10−5 to 8.8×10−3. The advantage from using the optimum design over suboptimum

designs is demonstrated. Simulation results also indicate that the effects of the same amount

of transmit and receive correlation might be different, depending on how the knowledge of

channel correlation is exploited.

In Chapter 4, the maximum mutual information design for a single-user MIMO sys-

tem is studied. With the same imperfect CSI as modeled in Chapter 3, the exact capacity

expression is hard to obtain. Alternatively, a capacity lower-bound is used for system de-

sign. For the special case without receive correlation, the closed-form optimum transmit

covariance matrix is derived for determining the lower-bound, whereas in the literature, a

numerical search method has been proposed. For the more general case with both transmit

and receive correlation, the structure of the optimum transmit covariance matrix for the

lower-bound has been obtained, which provides insight on how the imperfect channel es-

timation and channel correlation jointly affect the actual mutual information. The method

employed here to determine the optimum transmit covariance matrix reveals the close rela-

tion between the maximum mutual information design and the minimum total MSE design.

It is found that under the same imperfect CSI, the two designs lead to similar transceiver

structures that are different mainly in transmit power allocation. Simulation results have
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shown the tightness of the lower-bound. The accuracy of using the optimum transmit strat-

egy for the lower-bound is also demonstrated through comparison with the uniform power

allocation. The effects of channel estimation error and channel correlation are investigated

based on capacity bounds. For a4×4 MIMO channel withρT = 0.5,ρR = 0, the ergodic

capacity is about 15.9 bits/channel use atPT/σ2
n = 15 dB. However, with imperfect CSI at

Ptr/σ2
n = 26.016dB, it drops to 14.1 bits/channel use. The capacity further decreases from

14.1 bits/channel use to around 8.75 bits/channel use whenρT increases from 0.5 to 0.9

(with ρR = 0 andPT/σ2
n = 15dB).

Chapter 5 focuses on joint linear precoding/decoding to minimize the average sum MSE

from all users for multiuser MIMO systems. Unlike previous designs, here channel esti-

mation errors and channel correlation at the BS have been considered. Two optimization

problems are formulated, for the uplink and the downlink, respectively. Iterative algorithms

based on the KKT conditions are proposed for solving both problems. A duality in average

sum MSE has been proved based on the KKT conditions. It is also shown that when the

same minimum average sum MSEs are achieved in both links, the individual users’ MSEs

in both links are also equal. For the uplink design, we also propose a method that solves a

sequence of SDPs. The consistency in the average sum MSE results obtained from differ-

ent algorithms confirms the duality and corroborates our analysis. By simulation, we have

assessed the impact of channel estimation errors and channel correlation at the BS on up-

link and downlink system error rate performances. We have found that in multiuser MIMO,

while the duality in each user’s average MSE holds with imperfect CSI, there is no duality

in individual users’ ABERs, due to the differences in the structure of the interference in

both links.
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6.2 Future Directions

In this section, we discuss some issues that remain to be explored, as well as possible future

research topics motivated by the results in this thesis.

• Effect of Erroneous Feedback

In our designs in Chapters 3 and 4, we have assumed that the feedback link is instan-

taneous and error-free. While the assumption of instantaneous feedback has been

partially justified by the insensitivity of system performance to reasonably small de-

lays, the errors in the feedback link need to be modeled and considered. This also

motivates the limited feedback design with imperfect CSIR. For these advanced de-

signs, our results can be used for comparison.

• Probability-constrained Transceiver Optimization

Throughout this thesis, we have used the average performance as the design criterion.

In a nutshell, we have studied only stochastic robust design. While the worst-case

robust design is often pessimistic, a new approach called theprobability-constrained

optimizationis likely to better suit some practical applications [112]. The key idea of

this approach is to account for only those channel estimation errors that occur with

high probability, instead of addressing all possible error patterns. Furthermore, this

approach is applicable to Gaussian channel estimation errors. Therefore, it remains

to be determined if this approach can be applied to MIMO transceiver designs.

• Joint Channel Estimation, Feedback and Transceiver Design

In our thesis, we have taken a modular approach to system design. In fact, we first

obtain channel estimates, and then based on these, we consider the feedback and the

optimization of the transceiver. However, the transceiver design is tightly coupled
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with channel estimation and feedback [65,98]. It might be worth modeling the joint

design and investigating whether a joint design of these three parts will yield per-

formance gain for spatially multiplexed MIMO systems with linear processors. The

results obtained in this thesis may be used for comparison.

• MSE-related Designs for Cooperative Communications

This thesis has focused on designs for systems equipped with co-located multiple

antennas. Recently, cooperative communications through distributed single-antenna

terminals have been extensively studied for improved signal quality and better cov-

erage without using co-located antenna arrays [52,67,90]. Traditionally, in a cooper-

ative network, each node is equipped with one antenna. The source node broadcasts

information to a set of relay nodes. Then the relay nodes transmit to the destina-

tion. The distributed relay nodes (terminals) can be regarded as forming a virtual

antenna array. Two protocols, i.e., the amplify-and-forward and decode-and-forward

protocols, have been proposed for signal processing at the relays. As can be seen

from [67], the designs for distributed and co-located antenna arrays are different, but

also closely related. In [48], a MMSE beamforming has been proposed for cooper-

ative systems using the amplify-and-forward protocol. In [79], deploying multiple

antennas at some nodes (source, relays, destination) has been proposed. It would be

interesting to see whether the MSE-related designs are applicable to this scenario and

to determine the relationship between the maximum mutual information design and

the minimum total MSE design in this case.
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