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ABSTRACT

Employing multiple transmit and receive antennas for wireless transmissions opens up
the opportunity to meet the demand of high-quality high-rate services envisioned for future
wireless systems with minimum possible resources, e.g., spectrum, power and hardware.

Empowered by linear precoding and decoding, a spatially multiplexed multiple-input
multiple-output (MIMO) system becomes a convenient framework to offer high data rate,
diversity and interference management. While most of the current precoding/decoding de-
signs have assumed perfect channel state information (CSI) at the receiver, and sometimes
even at the transmitter, in this thesis we will design the precoder and decoder with imperfect
CSI at both the transmit and the receive sides, and investigate the joint impact of channel
estimation errors and channel correlation on system structure and performance. The mean-
square error (MSE) related performance metrics will be used as the design criteria.

We begin with the minimum total MSE precoding/decoding design for a single-user
MIMO system assuming imperfect CSI at both ends of the link. Here the CSl includes the
channel estimate and channel correlation information. The closed-form optimum precoder
and decoder are determined for the special case with no receive correlation. For the general
case with correlation at both ends, the structures of the precoder and decoder are also
determined. It is found that compared to the perfect CSI case, linear filters are added
to the transceiver structure to balance the channel noise and the additional noise caused

by imperfect channel estimation, which improve system robustness against imperfect CSl.



Furthermore, the effects of channel estimation error and channel correlation are coupled
together, and are quantified by simulations.

With imperfect CSI at both ends, the exact capacity expression for a single-user MIMO
channel is difficult to obtain. Instead, upper- and lower-bounds on capacity have been de-
rived, and the lower-bound has been used for system design. The closed-form transmit co-
variance matrix for the lower-bound has not been found in literature, which is referred to as
the maximum mutual information design problem with imperfect CSI. Here we transform
the transmitter design into a joint precoding/decoding design problem. The closed-form
optimum transmit covariance matrix is then derived for the special case with no receive cor-
relation, whereas for the general case with non-trivial correlation at both ends, the optimum
structure of the transmit covariance matrix is determined. The close relationship between
the maximum mutual information design and the minimum total MSE design is discovered
assuming imperfect CSI. The tightness and accuracy of the capacity lower-bound is eval-
uated by simulation. The impact of imperfect CSI on single-user MIMO ergodic channel
capacity is also assessed.

For robust multiuser MIMO communications, minimum average sum MSE transceiver
(precoder-decoder pairs) design problems are formulated for both the uplink and the down-
link, assuming imperfect channel estimation and channel correlation at the base station
(BS). We propose improved iterative algorithms based on the associated Karush-Kuhn-
Tucker (KKT) conditions. Under the assumption of imperfect CSI, an uplink—downlink
duality in average sum MSE is proved, which is often used to simplify the more involved
downlink design. As an alternative for solving the uplink problem, a sequential semidefi-
nite programming (SDP) method is proposed. Simulations are provided to corroborate the
analysis and assess the impacts of channel estimation errors and channel correlation at the

base station on both the uplink and the downlink system performances.
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Chapter 1

Introduction

1.1 MIMO Systems for Future Wireless Communications

The goal of future wireless communications systems is to provide a wide variety of high-
quality high-rate services with minimum requirements on spectrum, power consumption
and hardware complexity. Toward this end, proper system structures as well as robust sys-
tem designs are required to meet the challenges in wireless transmissions, such as multipath
fading, limited spectrum resource, and interference. Recent research results have unveiled
the multiple-input multiple-output (MIMO) system as a potential candidate to play a key
role in future wireless [74].

A MIMO wireless system is commonly deployed by using multiple transmit and receive
antennas. Early work on multi-antenna systems involves the use of antenna arrays at the
receiver to provide spatial diversity against the random destructive effect of fading [9,42,78,
81]. There is a recent rich literature on employing multiple antennas at the transmitter and
achieving diversity through space-time coding when there is no channel state information
at the transmitter (CSIT) [2,41,99-101, 116], or through transmit beamforming when there

is perfect CSIT [56]. Clearly, a MIMO system can be designed to fully exploit the transmit



and receive spatial diversity provided by the channel. The improvement in reliability of a
MIMO system compared to that of a traditional single-input single-output (SISO) system
is typically quantified by the diversity gain and the coding gain [53].

The use of multiple transmit and receive antennas also opens up the spatial domain
for boosting data rate. While a flat-fading SISO Gaussian channel provides only a sin-
gle narrow data pipe, a coherent MIMO channel can be represented as a set of parallel
Gaussian channels and thus creates multiple data pipes for data transmviision addi-
tional power or spectruni26, 28, 29, 102], an appealing feature to cope with the scarcity
of wireless spectrum and the stringent power constraint on terminals. In particular, the er-
godic (Shannon) capacity of a coherent MIMO channel scales linearly with the minimum
of (nt,nR) [denoted asnin(nt, nR)] in a rich-scattering spatially white environment, where
nt andng are the numbers of the transmit and receive antennas, respectively [29,102]. The
gain in terms of ergodic capacity achieved by a coherent MIMO channel over that of a
SISO channel is termed the spatial multiplexing gain [129], which can be reaped using the
Bell Laboratories Layered Space-Time (BLAST) architecture [26,27,117].

Interestingly, MIMO spatial multiplexing systems harness the randomness of the chan-
nel, whereas MIMO space-time coded systems combat it [104]. Although both spatial
multiplexing and diversity gains can be simultaneously achieved by a MIMO system, there
is a basic tradeoff between them [129].

For applications such as in wireless local area network (LAN) as well as in cellular
communications, MIMO systems will likely be set up in a multiuser environment, where a
multi-antenna base station (BS) simultaneously communicates with several multi-antenna
mobile stations (MSs). There are two basic multiuser channels here. One is the multiple-

access channel (MAC), also known as the uplink or the many-to-one channel [17, 24].



The other is the broadcast channel (BC), also referred to as the downlink or the one-to-
many channel [16, 17]. Recent results from information-theoretic studies have completely
characterized the capacity regions of the coherent Gaussian MIMO MAC [31, 54, 124]
and BC [11, 107, 115, 123]. It has been found that in a multiuser environment, the use
of multiple antennas introduces more flexibility to deal with the multiuser interference
and enables simultaneous high-rate, multiuser communications, besides providing spatial
multiplexing and diversity gains [104]. Similar to the single-user case, there is a tradeoff
among the capabilities of spatial multiplexing, diversity and interference management in
multiuser MIMO systems [105].

Thus, MIMO systems have been established as a promising transmission structure to

achieve the goal of future wireless systems.

1.2 MIMO System Designs and Channel Knowledge

The promise of a high performance return from using MIMO systems largely relies on
the assumption of perfect coherent reception, i.e., perfect channel state information at the
receiver (CSIR), and even perfect CSIT with some designs.

In practice, however, perfect coherent reception (perfect CSIR) is unattainable due to
channel estimation errors. Consequently, it is necessary to design a system robust to im-
perfect CSIR.

Some popular MIMO systems, such as space-time coded systems and the BLAST ar-
chitecture, have considered no CSIT, whereas others, e.g., transmit beamforming [3, 56]
or generalized beamforming systems [85, 87, 120], have assumed perfect CSIT. Practical
situations indicate that some formsdrtial CSIT can be available [68,109]. For exam-

ple, partial CSIT can be acquired by transferring the CSIR to the transmitter via a feedback



link. Feedback is not an uncommon feature and it is present in most wireless systems,
e.g., the power control channel in Code Division Multiple Access (CDMA) systems. If

a system operates in the time-division duplex (TDD) mode, the transmitter can infer the
CSI by measuring its received signal based on the reciprocity of wireless channels. CSIT
obtained this way is usually imperfect due to channel estimation errors, erroneous CSIR,
and/or limitation of the feedback link. However incomplete, CSIT, if efficiently used, can
yield considerable performance gain in both space-time coded [44,130, 131] and spatially-
multiplexed systems [40], as opposed to the case of no CSIT. Therefore, intelligent MIMO
systems designs must exploit the available CSIT.

The uncertainty in CSI can be modeled and dealt with in two different ways. One way
is to model the error in channel knowledge as unknown but deterministic and bounded
in a certain region. Worst-case optimizations are then employed to guarantee a (certain)
minimum reliability level [33, 72, 111] [69, Chapter 7]. However, a worst-case design is
rather conservative, since the worst case usually occurs with low probability [112]. Thus, an
alternative way, which models the uncertainty by its first-order and second-order statistics
[30, 31, 40, 44, 68, 109, 130, 131], is of particular interest and has been widely adopted.
A design based on statistical channel information is called a stochastic robust design [69,
Chapter 7].

As far as statistical uncertainty models are concerned, the channel mean information
(CMI) and channel correlation information (CCl), obtained from channel estimation and
propagation geometry measurement, respectively, are extensively used [31]. The CMI and
CCI can be conveniently exploited using precoding or joint precoding and decoding. In
particular, linear precoding/decoding is often preferred, due to the complexity constraint,

especially for mobile terminals.



To make statistical CSI available at the transmitter, feedback is required, albeit infre-
quent in slow-fading channels. If the feedback link is bandwidth-constrained, it will be
more appropriate to employ limited-feedback designs [6,55,57,58, 65, 118]. Nevertheless,
the general stochastic robust designs usually lead to solutions that clearly describe sys-
tem structures, and thus provide direct information on how impairments such as erroneous
channel estimation and channel correlation affect system performance. The results from
the general designs are also helpful in identifying key channel parameters that should be
guantized and transferred back to the transmitter, as well as in assessing the performance
of limited-feedback designs. Therefore, it is of great importance to study MIMO system

designs with uncertain CSI modeled statistically.

1.3 Motivation and Thesis Overview

With proper linear precoder designs or joint linear precoder-decoder designs, a spatial mul-
tiplexing system becomes a convenient framework to improve data rates, enhance link re-
liability as well as offer a flexible diversity-multiplexing tradeoff for both single-user and
multiuser MIMO communications. The joint precoder-decoder design is also known as
(joint) transceiver optimization.

For single-user MIMO systems, various performance measures have been considered
as the precoder design or joint design criteria, e.g., minimum total mean-square error
(MSE) from all data streams [87, 120], minimum weighted MSE [85], maximum mutual
information (capacity) [85, 87,102], minimum Euclidean distance between received signal
points [14], and minimum bit error rate (BER) [113, 119]. A comprehensive study of joint
precoder-decoder designs under the MSE-based, the signal-to-interference-plus-noise-ratio

(SINR)-based, or the BER-based criteria has been presented in [70].



Among the above performance measures, the MSE-related design criteria are of par-
ticular interest to us. The minimum total MSE criterion aims at minimizing the trace of a
MSE matrix, and balances interference and noise suppression. In addition, minimum sum
MSE linear precoding and decoding designs have been applied to multiuser MIMO sys-
tems [45,91,125]. The maximum mutual information design is also a MSE-related design,
since it is equivalent to minimizing the determinant of the MSE matrix [87]. Although the
minimum total (sum) MSE criterion does not account for the fairness among data streams
(users), it generally leads to tractable analysis and overall good performance.

Most previous work on linear precoder designs or joint linear precoder and decoder de-
signs for single-user MIMO spatial multiplexing systems has assumed perfect CSIR. Only
a few studies have considered imperfect CSI at both ends, but these have not considered
the effect of channel estimation error when coupled with channel transmit and/or receive
correlation. Since these two impairments often coexist, it is important to investigate their
jointimpacts. Similar observations also apply to existing multiuser MIMO system designs.

In this thesis, we will employ the spatial multiplexing framework with joint linear pre-
coding and decoding for both single-user and multiuser communications in slow, Rayleigh
flat-fading MIMO channels. We optimize the transceiver using the MSE-related design
criteria. In the single-user case, the imperfect channel estimate as well as both transmit and
receive correlation is assumed to be known to both ends of the link. In a multiuser scenario,
we consider both channel estimation errors and channel correlation at the BS.

Note that the generic MIMO system model subsumes many other communication chan-
nels, e.g., a bundle of twisted pairs in Digital Subscriber Line (DSL) or a frequency-
selective channel with transmit and receive filterbanks [70, 80, 85, 86]. Therefore, by con-
sidering narrow-band (flat-fading) channels does not necessarily limit our results for other

channel conditions and system applications.



In Chapter 2, we briefly introduce basic MIMO communications in slow flat fading. The
MIMO channel model used in this thesis is described. Single-user and multiuser MIMO
systems with linear precoding and decoding are introduced here.

In Chapter 3, we study the joint linear precoding/decoding design to minimize total
MSE from all data streams in a single-user MIMO system, under the assumption of imper-
fect CSl at both ends. A detailed channel estimation method is introduced, which presents
the specific CSI assumptions used thereafter. The minimum total MSE design is formu-
lated as a non-convex optimization problem subject to a total transmit power constraint.
The closed-form optimum precoder and decoder are derived for the special with no receive
correlation. The optimum transceiver structure for the general case is also determined.
Based on the optimum transceiver pair, we investigate the effects of channel estimation
error and channel correlation on system structure and average BER performance.

In Chapter 4, we consider maximum mutual information design for a single-user MIMO
system under the same CSI assumption as described in Chapter 3. With the assumed CSI,
exact capacity expressions are difficult to determine. Instead, tight upper- and lower-bounds
on the mutual information are employed for system design. While a capacity lower-bound
has been formulated previously, the closed-form optimum transmit covariance matrix re-
mains to be determined, subject to a total transmit power constraint. This is known as the
maximum mutual information design, or the capacity lower-bound problem, in the case
of imperfect CSI. We relate this problem to that of minimizing the log determinant of the
MSE matrix, which is a non-convex problem. We then derive the structure of the opti-
mum transmit covariance matrix by solving this new non-convex problem using the same
methodology as in Chapter 3. Through this approach, the relationship between the mini-
mum total MSE design and the maximum mutual information design is also unveiled under

the assumption of imperfect CSI. Using Monte Carlo simulations, we examine the tightness



of the ergodic capacity bounds and investigate the effects of channel estimation error and
channel correlation.

Chapter 5 focuses on the joint linear precoder/decoder designs to minimize the sum
MSE in multiuser MIMO systems. Both the uplink and the downlink are considered. Under
similar CSI assumptions as in Chapter 3, we formulate the uplink and downlink minimum
average sum MSE transceiver optimization problems. We extend and improve previous
Karush-Kuhn-Tucker(KKT)-conditions-based algorithms so that they can be used in our
case with reduced complexity. A duality in the average sum MSE between the uplink
and the downlink is proved. For the uplink optimization, we also propose a sequential
semidefinite programming (SDP) method. Based on optimized transceiver pairs, the effects
of channel estimation errors and channel correlation at the BS are assessed.

Chapter 6 concludes this thesis and suggests future work.

1.4 Thesis Contributions

The primary contributions of this thesis are briefly summarized below:

e The minimum total MSE design is studied with imperfect CSI at both ends of a
single-user MIMO link. Both channel estimation error and channel correlation are
considered. Optimum structures of the linear precoder and decoder are derived. Our
results gracefully fit those in the literature as channel estimation error diminishes.
Based on analytical and simulation results, the impact of channel estimation error as

well as the effect of transmit and receive correlation is assessed.

e When CSIl is imperfect at both ends of a single-user MIMO link, the maximum mu-
tual information design relies on a tight lower-bound on capacity. Previously, a nu-

merical search method has been employed to find the optimum transmit covariance
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matrix for this lower-bound. Here, the expression for the optimum transmit covari-
ance matrix is determined by using a novel approach which solves an equivalent
problem. The analytic solution clearly describes the transmitter structure. The accu-
racy of using the optimum transmit covariance matrix is shown by comparing it with
the uniform power allocation strategy. The effect of imperfect CSI on the ergodic

capacity is also investigated.

Under the imperfect CSI assumption, the relationship between the minimum total
MSE design and the maximum mutual information design is discovered. Interest-
ingly, analogous to the perfect CSI case, the two share the same transmitter struc-
ture and differ mainly in power allocation with imperfect CSI. Alternatively, the two
designs (under imperfect CSI) are connected through the minimum weighted MSE
design. Therefore, our results provide a new perspective of the connection between
two important quantities in estimation theory and information theory, i.e., the MSE

from data estimation and the mutual information between channel input and output.

Minimum average sum MSE transceiver optimization problems are formulated for
multiuser MIMO uplink and downlink considering channel estimation errors and
channel correlation at the BS. A duality in average sum MSEs for both links is proved
theoretically. Unlike previous methods to prove duality, our method is solely based
on the associated Karush-Kuhn-Tucker (KKT) conditions, and thus provides insight
into the relation between the dual links. Improved KKT-conditions-based iterative
algorithms are proposed for both links. For the uplink optimization, we also pro-
pose a sequential SDP method. Effects of imperfect CSI are evaluated by computer

simulations.



Chapter 2

Background

2.1 Single-user MIMO Communications over Flat-fading

Wireless Channels

2.1.1 MIMO Channel Model and System Model

Consider a wireless communication system withantennas at the transmitter and
antennas at the receiver (see Fig. 2.1) [53]. In a flat-fading channel, each signal path is
represented by a random complex fading coefficient (channel gain) [78, 81], so that the
MIMO channelin Fig. 2.1 is conveniently described by a mattjpwith its ( j,i)-th element

h; j denoting the channel gain from transmit antentoareceive antennpgi=1,...,nt,j =

1....ng

h171 h17n.|.

hnR,l ax hnRanT
The random channel gains are modeled by circularly symmetric complex Gaussian random

variables [78,81], denoted ag; ~ e/I{;(mrj]’i,l), Vi, j. If the mean of the channel gain\k’i)
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transmitter receiver
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Y

Ant. nTY.;;..

Figure 2.1. A single-user (point-to-point) wireless channel with multiple transmit and re-

ceive antennas.

is non-zero, the channel is said to undergo Ricean fadirlg,jq’ilf: 0, the channel undergoes
Rayleigh fading. Note that the settings in this thesis are for Rayleigh fading channels.

A Rayleigh fading MIMO channel is said to be spatially whit&ih; ihj, ) = 0,i,m=
1,....,nt,j,n=1,...,nr,i #m,j # n, and is denoted b#l,,. Here we have usefl(-) to
denote the expectation of a random variable. Note that

def
hW :e Vequ) ~ %(O7IHRXnT)7

wherevecdenotes the vectorization operation, dgddenotes then x m identity matrix.
When there is spatial correlation, the following nonparametric channel model is commonly

used [25, 95]:
1 1
whereRT (nT x n7) andRRg (nr x NR) denote the transmit and receive correlation matrices,

respectively. Thus [53],

def ? o R2 T
h%'veqH) = (R? ®R3) hw ~ 4e(0,RT ©RR), (2.2)

where® denotes Kronecker product, and the identigd ABC) = (CT @ A)vedB) has

been used [10, Table I, T2.13] (Note that this identity holds for complex matrices).
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In practical downlink channels, the mobile is likely to be surrounded by a large number
of local scatterers. The BS antennas, on the other hand, are often situated at high enough
elevation to limit scattering and thus channels arising from the transmit antennas (in the

downlink) are correlated. In this case,
1
H =HyR2. (2.3)

For an urban transmission environment, the exponential model has been proposed for
transmit and receive correlation [12,30]. This means thatjth¢-th element oRT is given
by p'TH‘ fori,j € {1,...,nt}, wherepr represents the real-valued transmit correlation for
signals on adjacent antennas. The receive correlation nRis similarly defined with
pr replaced bypr and with the indices ranging from 1 tr. In subsequent chapters,
the exponential correlation model will be used for Monte Carlo simulations. However, it

should be noted that our analytical results can be applied to any correlation model.

At a specific time slot, the received signal at anteprsagiven by
nr
yJ = Zlhjlxl +nj7j = 17"'7nR7
i=

or, in a vector form,

y =Hx+n, (2.4)

wherey = [y1,...,YnelT, N = [N1,...,Nng] T @ndXx = [xq,..., X |T are the received signal
vector, the noise vector and the transmitter signal vector, respectively. The noisenvector
is assumed to be spatially white and is distributed as.#¢(0, 02 - I ng)-

Further, consider the transmission afax N signal matrix composed df data vec-
tors,X = [x41,...,x], overN consecutive time slots. In a slow-fading channel, it is often

assumed that the channel matrix is constant over a blobktwhe slots, i.e.,

Hi=H2=...=HW=H.

12



Then,

Y = HX +N,

whereY andN denote the received signal matrix and the noise matrix, respectivety,

[y,...,yN] andN = [n'... n'N]. An equivalent vector signal model here is given by [53]

vedY) = (XT @Ing) h+vedN).

2.1.2 Space-Time Coding for MIMO Systems

For slow-fading narrow-band transmissions, space-time coding is an important technique
to extract the spatial diversity provided by the MIMO channel [2,41,99-101]. Block trans-
mission is often assumed, as described in Subsection 2.1.1. XHisreeferred to as the
codeword matrix and is carefully designed with added redundancy. Two basic space-time
codes, the space-time block code (STBC) and space-time trellis code (STTC), have been
extensively studied. The orthogonal STBC (OSTBC) and the quasi-orthogonal STBC are
two popular STBCs. In particular, the OSTBC is capable of providing full diversity gain
(nrnT) of the rich-scattering channel with low decoding complexity. Below is an example

of the OSTBC withnt = N = 2 (also known as the Alamouti code [2]):

X1 —X%

X2 X]
At each time slot, a column of the codeword matrix is transmitted across different antennas.
At the end of a block, the receiver employs maximum-likelihood (ML) decoding to separate
different transmitted symbols contained in a codeword.
In the design of a space-time code, several factors are considered: the diversity gain, the
coding gain, the decoding complexity, the decoding delay (related to the block Ihgth
and the symbol rate (defined as the ratio of the number of different symbols in a codeword

and the block lengtiN; 1 for the Alamouti code).
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2.1.3 Spatial Multiplexing

In contrast to the space-time coded system, a spatially multiplexed system transmits differ-
ent signal vectors across the transmit antennas at different time slots, as described by (2.4).
At the receiver, to minimize the error probability, ML detection should be employed. The
problem with ML detection is its high complexity, which motivates the use of suboptimum
detection schemes. Linear detection methods, such as the zero-forcing (ZF) and minimum
MSE (MMSE), are widely used. The non-linear detectors, such as ZF detection with suc-
cessive interference cancelation (ZF-SIC) and MMSE detection with SIC (MMSE-SIC),

generally provide improved performance at the cost of increased complexity [53, 75].

2.1.4 Capacity of Coherent MIMO Channels in Flat Fading

Consider a Gaussian MIMO channel whose input-output relationship is given by (2.4). In
coherent communications, the chanHeis perfectly known at the receiver. Givéh the
capacity is expressed as [102]

C(H) = r&%xl (x;y) = max Iogzdet{l - ai%HQH H] (bits/channel use

tr{Q}<Pr

wherep(x) denotes the input distributioh(- ; -) denotes the mutual information between
channel input and channel outp#; is the total transmit power, arn@ CI:efIE‘,(xxH) is the
transmit signal covariance matrix) = 0 means tha@ is positive semidefinite. Here the
transmitted signal vector is assumed to be zero-mean.

If the channel is unknown to the transmitter, uniform power allocation is used at the

transmitter, i.e.Q = %I nr, and

dy Pr H
Cuni(H) = |092det{|nR+—nTagHH } )

On the other hand, if the channel is perfectly known at the transmitter, the matrix channel

can be decoupled into a set of parallel scalar Gaussian channels by means of singular value
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decomposition (SVD) [37]. Specifically, I€t=rank’H) and letH be represented by its
SVD:

NI

H=UAZV",

whereU, A andV areng x T, F x F andnt x I matrices, respectivel]\ = diag(5\1, .,;\r)
denotes a diagonal matrix composed of the non-zero eigenvaliid 'dfarranged in de-
creasing order. Then we have

N, i=r+1....n

R

wherey = UMy, X = VHx, andit = UHn. The transmit power is optimally allocated among

the effectiver scalar channels using the well-known water-filling procedure [17, Chapter
10, pp. 250-253]. As a result [102],

Opt (I’l O-n/A)'i" -:17"'7F7

where i is determined bys!_, P°® = Pr, and(a). denotesmax(a,0)

. The capacity-
achieving input distribution is giving by ~ .4¢(0, é), where

Q =V -diagPY™, ... PP .y
— V- (flp— 2R, -V, (2.5)
and the capacity is given by
i 1 —of)+
H)=Y log, |1 .
2% 2

It is important to note that, due to CSITy(H) is usually larger thaiCyni(H), es-

pecially in the low to medium SNR region. For full-rank channélg,i(H) approaches
Cwf(H) whenPr goes to infinity.

15



CSIT  Noise n CSIR
v i i v
S Linear X! MIMO | ! y Linear
—» precoder L channel : #\U > decoder‘—rb
F : H : G
transmitter channel | receiver

Figure 2.2. A single-user (point-to-point) MIMO system with linear precoding/decoding.

The ergodic capacity of a coherent MIMO fading channel is the cap@city averaged
over different channel realizations:
C=Eq { max Iogzdet{l e+ izHQH H] } :
QIr(Q)<Pr Oj
In [26,102], it has been shown thatif= Hy,, then the capacity as expressed in this formula

scales linearly wittmin(nt,nR).

2.1.5 Exploiting CSIT Using Linear Precoding/Decoding in Coherent

Spatial Multiplexing

In traditional space-time coded or spatially multiplexed systems, no CSI is needed at the
transmitter. However, an efficient use of the available CSIT is beneficial to system perfor-
mance. A good example has been seen in Subsection 2.1.4, where CSIT is exploited to
improve capacity. Through proper designs, it can also ameliorate error rate performance.

To account for CSIT, a simple and general framework employs linear precoding and
decoding, as depicted in Fig. 2.2. The information symbols to be sent are denoted by a
B x 1 vectors, where the number of data strearBg,< nr), is properly chosen and fixed.

The input signasis assumed to be zero-mean and whiiésg') = I g], and independent of
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channel realizations. The data vector is then fed into the precoder, dendtedhbich is a

nt x Blinear matrix processor and takes the available CSIT into account. In the litefature,

is sometimes referred to as a generalized beamformer or a prefilter. After the precoder, the
data vector is transmitted across the slow-varying flat-fading MIMO chathn&heng x 1
received signal vector at the receive antennas=sHFs+ n, wheren is the spatially and
temporally white additive Gaussian noise with distributigf(0, 62 - I ;). In the receiver,

a linear decoder described by tBex ng matrix G is employed to recover the original
information. The decoder can be interpreted as an equalizer. At the output of the decoder,

the signal vector is given by
r =Gy = G(HFs+n).

In some system structures, the deco@edoes not appear, or equivalent(y, is rep-
resented by an identity matrix. For example, in Subsection 2.1.4, for the perfect CSIT
case,F = Q% [see (2.5)] and5 is not needed. [Here the inpstis an independent and
identically-distributed (i.i.d.) Gaussian vector, distributecdas.4¢(0,1n;).]

The framework in Fig. 2.2 subsumes both space-time coded systems [44, 84,130, 131]
and spatially multiplexed systems [1,14,40,50,70,85,87]. With linear precoding/decoding,
spatial multiplexing is not only capable of providing high data rate, but also capable of
introducing redundancy (diversity) into the precoded data streams, as well as achieving
a tradeoff between diversity and multiplexing. Therefore, throughout this thesis, we will
concentrate on joint transceiver designs for spatially multiplexed systems.

As mentioned in Section 1.3, various design criteria have been considered, among
which the MSE-related ones are most popular. Most of the existing MSE-related designs
have assumeperfect CSIRwhile the CSIT has been assumed to be perfect or partial. In
Chapter 3 and Chapter 4, we will considewperfect CSIRi.e., non-ideal coherent recep-

tion) and imperfect CSIT in the transceiver designs, and investigate the joint impact of
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channel correlation and erroneous channel estimation on system structure as well as on

error rate or data rate performance.

2.2 Multiuser MIMO Communications over Flat-fading

Wireless Channels

2.2.1 Multiuser MIMO Uplink and Downlink Systems in Flat Fading

Consider a single cell in a cellular communication system. The BS is equippedvwith
antennas. There ake users (mobile stations), each with antennasi = 1,...,K. The

uplink channels are denoted by, i = 1,...,K, whereas the downlink channels are given
byHH,i=1,...,K. (In Subsection 2.2.2, we will explain why the uplink and the downlink

channels are denoted using the same set of symbols.)

2.2.1.1 The Uplink System Model

Let the (N x 1) transmitted signal vector from the antennas of kslee denoted by k,
k=1,...,K. The signal vector received at the BS antennas is a blend of those from different

users contaminated by channel fading and noise, i.e.,

K
Yu =) HiXuik+nu-
=1

2.2.1.2 The Downlink System Model

In the downlink, the BS broadcasts a mixturekof M x 1) signal vectors, each intended
for a different user. Different MSs receive different copies of the mixture which have gone

through individual fading processes. For uger

K
Yar j = HY' [ZXdl,k +ngij, j=1,....K.
K=1
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2.2.2 Multiuser MIMO Channels: Capacity Regions, Sum Capacities

and Duality

In multiuser communications, it is the simultaneously achievable performances for all users
that interest us.

Given perfect knowledge o{fHk}Ezl, the capacity region of a MIMO MAC has been
reported in [31,54,124], which characterizes all the simultaneously achievable data rates of
individual users. In particular, it has been shown that the sum capacity (i.e., the sum of data
rates of all users) of a coherent Gaussian MIMO MAC grows linearly miith(M, z{le Nk)

[102].

In cellular systems, the demand of the downlink data transfer is expected to be several
times greater than that of the uplink [4]. This makes the MIMO downlink transmission
particularly important. On the other hand, it is often harder to find the optimum transmit
strategy for the downlink [17, Chapter 14]. In fact, given perfect channel knowledge, the
capacity region of a coherent Gaussian MIMO BC has only recently been determined in
[115], where it is shown to coincide with the previously found dirty-paper coding (DPC)
achievable rate region [11,15,31,107,123].

Interestingly, it has been proved in [107,115] that the capacity regions of the Gaussian
MIMO MAC and BC are identical under the same sum power constraint. Furthermore, if a
specific set of transmit covariance matrices in MAC/BC achieve a certain set of data rates,
then there exists another set of transmit covariance matrices in the BC/MAC that achieve the
same set of rates. The explicit transformation between the two sets of covariance matrices
is also described in [107]. This relationship between the MAC and the BC is known as
the MAC-BC duality [107]. With duality, the capacity region of the MIMO BC can be
computed more easily.

Note that to apply the duality, we only need to fabricateréual dual channel, find

19



the optimum transmit strategy for the dual channel and then transform it back to the actual
channel under investigation. No channel reciprocity is invoked. This explains the notation

we have used for the MAC and BC channels in Subsection 2.2.1.

2.2.3 Linear Processing for Multiuser MIMO

Along with the discovery of capacity-achieving transmit strategies for multiuser MIMO,
signal processing techniques have been proposed to approach the proposed capacity limits,
e.g., Tomlinson-Harashima precoding and vector perturbation techniques for the downlink
[36,123]. In practice, we attempt to approach the limits using signal processing techniques
that are easy to implement. As for single-user MIMO systems, linear signal processing
plays an important role also for multiuser MIMO.

Various linear processing technigues have been proposed for multiuser MIMO systems,
including those for both the uplink [43,45,91] and the downlink [13,43,47,76,89, 96,103,
125].

The minimum sum MSE (MSMSE) linear precoding/decoding design has been studied
in [91] for the uplink, as well as in [47,89, 103, 125] for the downlink, as a low-complexity
and effective signal processing technigue to manage both inter-stream and multiuser inter-
ferences and to provide high data rate and diversity. A schematic overview of multiuser

MIMO systems with linear precoding/decoding is presented in Fig. 2.3.

2.2.3.1 The Uplink System Model with Linear Precoding/Decoding

Suppose that usehasl; data streams, denoted by the 1 [I; < min(M,N;)] vectorsy, j,
i =1,...,K. These data vectors are assumed to be zero-mean, [tetg; s} ) =1, Vi],
and mutually independent among users. Before the data streams are sent into the air, a

linear precoder is employed for each user, which is denoted biitlkd; matrix Fi, i =
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Figure 2.3. Uplink and downlink MIMO transmissions with linear precoders/decoders

1,...,K. The signal vector received at the BS antennas is given by

K
Yu = » HiFisyi+ny.
2,

The noise vecton is assumed to be zero-mean, white, and complex Gaussian, i.e., dis-
tributed according to4¢(0, aﬁ -Im). The data vectors and the noise vector are assumed to
be statistically independent. At the BS, to recover the data for thejuadmear decoder,
denoted by théj x M matrixGj, is used. An estimate of the data vector for usean thus

be expressed as

K

_ZiHiFiSul,i
=

21

u,j =Gj Yu =G;j +Gjny, j=1,....K.




2.2.3.2 The Downlink System Model with Linear Precoding/Decoding

In the downlink, it is assumed that the data streams of usee denoted by thg x 1
vectorsy i, and the linear precoder for useat the BS is denoted by thd x |; matrix T,

i =1,...,K. Similar to the uplink, the data vectors are assumed to be zero-mean and white
[E(sd1i §Jl,i) =1,,Vi]. All data vectors are assumed to be mutually independent. The signal

received at the antennas of ugas given by:

K
i;TiSdl,i

It is assumed that the noise vectors are mutually independemifnds distributed ac-

yar,j = HY + Ny j, Vj.

cording to.4¢(0, 02 - In;),V]j. Again, the data and the noise are assumed to be statistically
independent. A linear decod®; (I; x Nj) is employed to recovesy j, which gives the

following estimate ofy) j:

K
rd|,j=Rj'yd|,j=RjH'f [.ZlTiSd"i +Rj-naij, j=1....K
i=

2.2.3.3 Duality in Linear Precoding/Decoding designs for Multiuser MIMO Uplink

and Downlink

Not surprisingly, an uplink—downlink duality also exists in the achievable MSE regions or
the signal-to-interference-plus-noise ratio (SINR) regions of both links with linear precod-
ing/decoding [89]. PerfectCSI and the same sum power constraint are assumed. Based
on the duality, the more involved downlink minimum sum MSE linear precoding/decoding
design has been tackled by forming and solving a dual uplink problem [89]. The same idea
has also been adopted in [47].

In Chapter 5, we will further study the minimum sum MSE designs for both links and

establish the duality in sum MSE with imperfect CSI.
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Chapter 3

Minimum Total MSE Design with Imperfect CSI

at Both Ends

3.1 Introduction

Previously, the minimum total MSE transceiver designs for single-user MIMO systems
have been studied with different assumptions of channel state information (CSl). In [70, 85,
87,120], perfect channel state information at the transmitter (CSIT) as well as at the receiver
(CSIR) is assumed. Later there have been more practical designs that consider imperfect
CSIT. In [49], the minimum total MSE design has been studied with outdated CSIT and
perfect CSIR. In [126,127] [128, Section VII], it is assumed that the CSIT is the channel
mean information (CMI) and/or the channel correlation information (CCl), whereas the
receiver has perfect CSI. The more important case with imperfect CSIR has also been
considered. For example, in [69, Chapter 7], the same imperfect CSI is assumed at both
ends, but there the channel correlation has not been accounted for. In [128, Section VI],
closed-form robust designs (including the minimum total MSE design) have been derived
assuming that the same imperfect CSlI, includahgnnel mean and receive correlation

information is available to both ends. The same CSI assumption is also used in [92], where
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the minimum total MSE design has been specifically studied. However, to the best of our
knowledge, little attention has been paid to the joint design where the same imperfect CSl,
including the channel mean atrdnsmit correlationnformation, is available at both ends.

This case is very interesting, since, as we have mentioned in Subsection 2.1.1 [see (2.3)],
in practical downlink systems, the mobile is often surrounded by many local scatterers
and channels from different antennas tend to be uncorrelated, whereas the channels from
different BS antennas are often correlated due to limited scattering. The more general case,
when there is channel estimation error and there is transmit and receive correlation, also
remains as an open problem.

In this chapter, we address the problem of linear precoding/decoding to minimize the
total MSE with imperfect CSI at both ends of a single-user MIMO link [18, 20]. The
CSIR here is composed of the estimated channel (channel mean) as well as transmit (and
more generally, transmit and receive) correlation information. To simplify the analysis,
we assume the feedback is error-free and instantaneous, as in [66, 92,121] [128, Section
V1], which implies that the CSIT is the same as C&IRhe assumption of instantaneous
feedback is partly justified since, as will be shown by our simulations, the system maintains
acceptable performance with a reasonably low feedback delay. The design under the above
assumption is a step forward from that assuming perfect CSI at both ends [70, 85, 86, 120].
It can also serve as a basis for comparison to future system designs which explicitly take
into account the errors and/or delays in the feedback link.

The basic system model used in this chapter has been introduced in Subsection 2.1.5.
We consider a slowing-varying flat-fading MIMO channel, which is modeled as in [95],

1 1
i.e., H = REgHwR?, whereH,, is a spatially white matrix whose entries are independent

L0One can equivalently assume that the system is implemented offline, and the precoding matrix is calcu-

lated at the receiver and then fed back to the transmitter [91].
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and identically distributed (i.i.d.)#¢(0,1) [see Subsection 2.1.1, (2.1)-(2.2)]. The matrices
Rt andRRg represent normalized transmit and receive correlation (i.e., with unit diagonal
entries), respectively. BotRt andRRg are assumed to Hall-rank.

The rest of this chapter is organized as follows. The imperfect channel estimation
is modeled in Section 3.2. Then a mathematical description of the minimum total MSE
design with imperfect CSI at both ends is given in Section 3.3. In Section 3.4 the minimum
total MSE design problem is solved assuming channel mean and transmit correlation at
both ends. In Section 3.5, the analysis is extended to the more general case with both
transmit and receive correlation as well as channel mean information at both ends. For
wider applications, in Section 3.6, we extend the analysis to the minimum weighted MSE
design. Numerical results are presented in Section 3.7. Section 3.8 summarizes this chapter.

Detailed derivations and proofs are presented in Section 3.9.

3.2 Modeling Imperfect Channel Estimation

SinceRt andRp are full-rank and assumed to be known, channel estimation is performed
on Hy using the well-established orthogonal training method [34, 66, 92,122]. At the re-
ceive antennas, the signal matMy = HS;; + Ny, is received imt successive time slots,
whereS; is a knownnt x ny training signal matrix andN;, is the collection of channel
noise vectors. Thus,

1 1
Ytr - RE{HwR%Sr —I— Ntr. (31)

_1
Let R, denote the total training power, i.e.($S}) = Ry. ChooseS; = R;*So, where

1
S is a unitary matrix scaled bV R /tr(RT1). Pre-multiplying both sides of (3.1) i3>

and then post-multiplying the resultant formuIaSngl, we obtain
~ _1 1
Hw = RRZYtrSa
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_1
= Hw+Rg?Niy Syt

_1
= Hw + R 2No. (3.2)

In the above, we have definéth = Ntrsal, whose entries are i.i.d4¢(0, 0%) with 02, =
tr(R;l) -02/R;. To obtain a better channel estimation performance, the minimum MSE
(MMSE) channel estimation dfl, is performed based on (3.2) [66, 92, 106, 121], which

yields
Hw = E[Hw|Hw] = [Ing+ 0% R Ay, (3.3)

FurthermoreH,y is expressed as the sumref, and the estimation error matrix [46, Chapter
12],i.e.,

~ _1
Hw = Fw+Rg2[Ing + 02 ReY 2Ey, (3.4)

where the entries dE,, are i.i.d..#(0,02), and are independent from thoseftf. De-

tailed derivations of (3.3) and (3.4) are provided in Subsection 3.9.1. Let
Rer = [Ing + 0% R+

The CSI model is described by

H=H+E, (3.5)

whereH is the true channel matri¥] = RéI:IWR% is the estimated channel matrix (i.e., the
channel mean), and = RéREWR% is the channel estimation error matrix.

In summary, the CSl is given by (3.3)-(3.5). In subsequent sections, we assurke that
Rr, R, 0% ando? are known to both ends of the link, which is referred tdreschannel
mean as well as both transmit and receive correlation information

We point out that in [66], a different CSI model for the chanHe: Ré/ZHWR%/Z is

employed, which is given bl = A +E, with A = RY A, RY? andE = RY%E,RY?,
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where the entries dfi,, andE,, are assumed to be i.i.d.. However, in [66] it is assumed
that a genie-provided estimate ldf, (i.e. ﬂw) is available at the receiver. In comparison,
this is not required in our channel estimation method or CSI model. Also, in [128, Section
V1], it has been assumed thet = H + Ré/ZEWR%/Z, whereH is the channel mean, and
E, is spatially white (i.e., with i.i.d. entries). It is important to note that the analysis to

be presented in this paper can be applied exactly the same way when using the CSI model

in [66] or [128, Section VI].

3.3 A Mathematical Description

With the CSI modeled in previous section, the received signal vgctan be written as
(refer to Subsection 2.1.5):

y =HFs+ EFs+n. (3.6)
N—_——
total noise
The system MSE matrix is calculated as

MSE(F,G) =E [(r —s)(r —9)"]
=E{[G(H +E)F —Ig]s¢'[G(H+E)F —1g)"} + 02-GG". (3.7)

Using our assumptions on the statistics of the channel (see Subsection 2.1.5), noise and

data, with some manipulations, we can simplify (3.7) as

MSE(F,G) = GHFF"AHGH —GHF —FHAMGH + 1
+ [0%-tr(RTFFM)] . GRerGM + 02 - GGM. (3.8)
In the above, we have used the refU[E,AE!] = 0% tr(A) - 14, if the entries of matrix

Ew are i.i.d..#(0,02,), as well as the identity tA1A2) = tr(AsAy).

Our goal is to find a pair of appropriate and G, such that the sum of MSEs from
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different data streams is minimized subject to a total power consigjnte.,

ming, ¢ tr[MSEF,G)]

subjectto tfFFH) < Pr. (3.9)

This is referred to as the minimum total MSE design with imperfect CSI at both ends. We
are also interested in determining the effects of channel correlation and channel estimation
error on system performance.

Note that whero, = 0, our problem in (3.9) reduces to those treated in [70,85,87,120].
Also, wheno?, # 0andRt = I ., tr(FFH) is replaced byPr as in [69, Chapter 7] [92] [128,
Section VI], and the problem (3.9) becomes mathematically equivalent to the perfect CSI
case. It is wheno?, # 0 andRt # I, that the problem in (3.9) becomes particularly
challenging. No result has been obtained for this case in the literature.

The objective function in (3.9), i.e.,[MSE(F,G)], is non-convex iF,G). Thus, the
methods designed for convex problems are not applicable here. Fortunately, it can be shown
that a global minimum exists for the problem in (3.9) (see Subsection 3.9.2). Furthermore,
the objective and constraint functions of (3.9) aoatinuously differentiabléwith respect
to G and/orF). Since there is only one inequality constraint and no equality constraints
in (3.9), any feasible precoder-decoder pair is regular whether the inequality constraint
is active or inactive [5, pp. 309-313] The global-minimum-achievingF,G) therefore
satisfies the first-order Karush-Kuhn-Tucker (KKT) necessary conditions for optimality [5,

p. 310,Proposition 3.3.1. Therefore, our method is to find all the solutions which satisfy
the KKT conditions and identify the optimufi, G) among them.

Note that if (F,G) minimizes the total MSE, so dod&U, UHG), with U being an

2According to [5, pp. 309-310], a feasible point is said toreégular if either (i) all equality constraint
gradients and active inequality constraint gradients at this point are linearly independent, or (ii) in the case of

no equality constraints, all the inequality constraints are inactive at this point.
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arbitrary B x B unitary matrix. Below we refer to a specific optimum precoder-decoder

pair as the optimum solutiomp to a unitary transfornp37].

3.4 Closed-form Optimum Solution for a Special Case

In this section, we consider the special case wRen# I, andRgr = Ip;. From (3.2)-
(3.4), it can be shown that whé®r = I, Hw = I:|Wo+ Ewo, with bothI:IWo andE,o being
spatially white. The entries dfi,g and Eyo are mutually uncorrelated (independent if
Gaussian), and are i.i.d4¢(0,1— 02) and.#¢(0, 02), respectively, withog = 02,/(1+
02). The CSI model is described by

~ 1 A
H= (Hwo—l—EWo)R-lz- =H+E,

A oA 1 1 -
whereH = HyoR% is the channel mean, arffl= E\,oRf. Here we assume thét, R,
o anda? are known to both ends, which is referred tatlaes channel mean and transmit
correlation information

WhenRgr = I n,, the MSE matrix in (3.8) reduces to
MSE(F,G) = GHFFHANGH — GHF — FTAMGM 11
+[02 + 02 - tr(RTFF™)|GGM. (3.10)

The problem formulation here is the same as (3.9), except that the MSE matrix is given by

(3.10). The associated Lagrangian is
Z1(F,G, pr) = tr[MSE(F, G)] + s - [tr(FF™) — Pr],

wherey; is the Lagrange multiplier. By taking the derivatives®f(F, G, 1) with respect
to F* andG* [60], together with the power constraint and the complementary slackness [7],

the associated KKT conditions can be obtained as follows:
HF = {AFFYAY + [02 + 02 - tr(RTFF™)] -1} GH, (3.11)
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GH =F" [A"GHGH + 02 - tr(GG") R + 1 - 1y |, (3.12)
pp >0, tr(FFH) —Pr <0, (3.13)
pa - [tr(FF) —Pr] = 0. (3.14)
Detailed derivations of the above conditions are presented in Subsection 3.9.3.
Clearly, if F = 0, an obvious solution satisfying the KKT condition i5:=0, G =0

andu; = 0. However, this case is not interesting to us in practice. Therefore, we proceed

to search for those solutions wikh=£ O (referred to as thaon-zeraosolutions).
Lemma 1 For any solution satisfying the KKT conditions (3.11)-(3.14),
p1 = o2 -tr(GGH) /Pr. (3.15)

Proof. See Subsection 3.9.4. [ |

Consider the following eigenvalue decomposition (EVD) [37]:

NI
NI

(02 -Pr-Rr+ 07 In;] 2HMA [0 -Pr-Rr+ 02 lny]

~. [N O .~ H

[V V], (3.16)

Let r denote the rank of the estimated matrxin (3.16), i.e.,r = rank@\), the number

of non-zero channel eigenmodes. Here the entries of the diagonal Madrie the non-

zero eigenvalues and those/ofre all zero. Ther x (nT—r) matrix VV consists of basis
vectors for the null space of (3.16), whereasthex r matrix V is composed of the basis
eigenvectors corresponding to the non-zero eigenvalues. Without loss of generality, the

entries of the diagonal matrix are arranged idecreasingrder.

Lemma 2 Assume that the number of data streah& equal tor. The precoder and

decoder satisfying the KKT conditions (3.11)-(3.14) can be expressed as
_1
F=[0Z Pr-Rr+03In;| 2VAg, (3.17)

30



NI

G=AgV" [0 -Pr-Rr+ 07 In;] 2HY, (3.18)
whereAr andAg are arbitraryr x r matrices, and/ comes from (3.16).

Proof. See Subsection 3.9.5. [ |

Theorem 1 Assume that the number of data streddns equal tor. The optimum precoder

and decoder for (3.9) have the following general expressions, respectively,

_1
FOpt = [O-é : Pl’ ' RT + O-r% - nT} z VAFopt, (319)
1.
Gopt =AcoptV" [08 - Pr Ry + 0210, ] 2H", (3.20)
where diagonaft x r matricesAropt andAgopt are given by
1
1 _1 1 1 2
ArFopt = [rful 2On-N"2—-11-A } , (3.21)
+
1
1 1 2
NGopt = {I—lf 4] 21 NI “—; -/\1} /\7%7 (3.22)
On Of n
and
T % Pr (3.23)

- Proagtagag—ap-as’
_ % 0f(Pragtas-as—ap-a)
(Pr+ag)2-Pr

(3.24)
Scalarsai, ap, azg anday are traces of thdg x kg top-left submatrices of
AL A2, A VP [02PrRT + 0210, ] TV, andA WV [02PrRy + 0210, ] TV,

respectively. The integdg denotes the number of the non-zero entrieAgfp: (ko < r).

The optimum precoder-decoder pair obtained here is unique up to a unitary transform.

Proof. As derived in Subsection 3.9.6, all the non-zero solution$o6, u; ) satisfy-

ing the KKT conditions are given by (3.19)-(3.24) up to a unitary transform. The method
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Figure 3.1. Explicit structures of the optimum precoder and decoder.

to determine the numbdsg is also included in Subsection 3.9.6. Thus, we have obtained
all the solutions satisfying the KKT conditions (3.11)-(3.14), includifg< 0, G = 0,

Y1 = 0), and the non-zero solutions given by (3.19)-(3.24) up to a unitary transform. It
can be readily shown that all the non-zero solutions lead to the same total MSE, which is
lower than the MSE yielded byr(= 0, G =0, u; = 0) (see Subsection 3.9.6 for the com-
parison). Therefore, we conclude that the non-zero solutions [(3.19)-(3.24), up to a unitary

transform] are equivalent global MSE-minimizers. |

The explicit structures of the optimum precoder and decoder are shown in Fig. 3.1. Let
A =diag{A1,...,A; }. The channel diagonalization is illustrated in Fig. 3.2.

Remark 3.1 Whengg = 0 (02, = 0), Theorem 1reduces to the results in [70, 85,
87,120]. Compared with the results obtained under the assumption of perfect CSlI, from
(3.19) and (3.20), a linear filter is added to both the transmitter and receiver here, to bal-
ance the suppression of channel noise and the noise from imperfect channel estimation.
Furthermore, the estimation error variam%is coupled with the transmit correlatidy .

Remark 3.2 From (3.16)-(3.18), wheRt = I, transmission along the eigenmodes

of HMH is optimum, and the channel estimation error simply contributes additional noise
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Figure 3.2. Diagonalization of the equivalent channel (3.16).

(02 - Pr). This result has been mentioned in [69, Chapter 7] and [92]. Wh¢n? — oo,
the filter [oé -Pr-RT+ 0,? . InT]_% becomes a scaled version f%. This implies that
the optimum precoder asymptotically cancels the effe®pand transmits along channel
eigenmodes of the white part of the channel estimidg).

Remark 3.3 As an alternative, one can verify the resultsTiheorem 1 using the
Saddle Point Theorem [5, p. 49Rroposition 5.1.4. Basically, the optimum solution

obtained here satisfies a necessary and sufficient condition for global optimality.

3.5 Optimum transceiver structure for the General Case

Now we consider the general problem formulated in (3B) ¢ In, andRgr # Ing). We

apply the same method as for the special case. The associated Lagrangian is

Zo(F,G, lg) = tr[MSE(F,G)] + g - [tr(FF™) — Pr],
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wherely is the Lagrange multiplier. Correspondingly, the KKT conditions associated with

(3.9) can be derived (using the same method as in Subsection 3.9.3), as given by (3.25)-

(3.28):
|:|F = [l"\”:FHF'H + 0§e~tr(RTFFH) . Re,R+ O-r?' |nR] GH, (3.25)
GH =F" [A"GHGH + 0% tr(GRerG™) -R7 + g - Iny | , (3.26)
Hg >0, tr(FF™) —Pr <0, (3.27)
Ug - [tr(FFY) —Pr] = 0. (3.28)

Similar to the proof fol,emma 1in Subsection 3.9.4, it can be shown that
Hg = 0f - tr(GG") /Pr, (3.29)
for any solution satisfying the KKT conditions (3.25)-(3.28). Define
T = tr(GRerG") and 13 = 02, tr(RTFFM). (3.30)

Consider the following EVD:

NIl

1~ 10 —
[TZ'U(:Ze'RT+“9'InT]_ZHH[TC’v'Re,R'f’O-r?' Ingl lH[TZ'G(:Ze'RT + Hg - Inr]

Ay O

=[Vg Vg Vg Vg, (3.31)

~

0 Ag
where the subscript “g” means the general case. The mjrig a diagonal matrix whose
entries are the non-zero eigenvalues of the matrix in (3.31) arranged in decreasing order.
The entries of the diagonal matwy are all zero. The matricag; andVq are composed of
eigenvectors corresponding to the non-zero eigenvalues and zero eigenvalues, respectively.

Letrg denote the rank of the matrix in (3.31), i.gy,= rank{Ag).
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Theorem 2 Assume that the number of data stredsnis equal torg. The optimum pre-

coder and decoder for (3.9) can be generally expressed as

_1
Fgopt = [T2- Ucze' Rt + Uy Inr] 2VgAF gopts (3.32)

_1~ _
Ggopt:/\agoptvg[rz-oge-RT+ug-|nT] 2AM 13- Rer+ 07 - Ing) 1, (3.33)

whereVg is from (3.31) Ar gopt andAg gopt are rg x rq diagonal matrices, as given below

Nk
AF.gopt = {/\@,2—/\g } : (3.34)

NIk +

_1 _1
AG.gopt = {Ag 2 _Agll A2 (3.35)
+

Inserting (3.32)-(3.35) into the power constraintfF"™ ) = Pr, together with the definitions
of 12 and 13 in (3.30), leads to three equations with, 13 and Lig being the unknowns. By
solving these equations numerically, the valuesx0frs and pig can be determined. The

optimum solution obtained using this method is unique up to a unitary transform.

Proof. See Subsection 3.9.7. [ |

Theorem 2 hence, provides the structures of the optimum precoder and decoder. How-
ever, the scalars, 13 and g need to be determined numerically, which is inconvenient,
because the three unknowns are involved together. Alternatively, (3.9) can be solved using
an iterative algorithm developed from the KKT conditions, which is given in Table 3.1.
This algorithm converges according to [125]. Furthermore, starting from a non-zero feasi-
ble F, this algorithm obtains a non-zero solution satisfying the KKT conditions. Since all
the non-zero solutions satisfying the KKT conditions lead to the same minimum total MSE
(see Subsection 3.9.7), we conclude that the iterative algorithm obtains a solution equiva-
lent to the one obtained froffheorem 2 (up to a unitary transform). Therefore, Table 3.1

presents a convenient method for the general case.
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Table 3.1. An iterative algorithm for solving (3.9) in the general case

1) Initialize F = Fo; the uppeB x B sub-matrix offq is chosen to be a scaled identity
and to satisfy the power constraint with equality, while the remaining entrig of
are set to zero.

2) UpdateG using (3.25);

3) Updateyg using (3.29),

4) UpdateF using (3.26);

5) If the termination condition is met, stop; otherwise, go back to 2).

Remark 3.4 We have assumeB = r in Theorem 1andB = rg in Theorem 2 If
the number of data strearBsis chosen to be strictly smaller than the number of non-zero
channel eigenmodes, i.e., tBestrongest eigenmodes are used, then redundancy is intro-
duced, which can be translated into improved diversity and thus performance improve-
ment [50, 85]. However, the diversity effect is achieved at the cost of a reduced number
of data streams (and thus reduced data rate). Therefore, there is a diversity-multiplexing
tradeoff here [129]. The choice Bfaccording to channel conditions to guarantee a constant
data rate has been studied in [50] assuming perfect CSI at both ends. Also, the optimum
choice ofB to guarantee that the MSE in every data stream is lower than a given target
has been studied in [92] where channel estimation error and receive correlation only are
considered. Itis possible to extend the method in [92] to the more general setting presented

in this section.

3.6 Extension to Minimum Weighted MSE Design

In [85], the minimum weighted MSE transceiver design has been studied with perfect CSI
at both ends. It includes several other designs as special cases, e.g., the quality-of-service

(QoS)-based designs that achieve different SNRs on different sub-channels by adjusting
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the weighting matrix. It is straightforward to extend our analysis in previous sections to the
minimum weighted MSE design under imperfect CSI. The impacts of channel estimation
error and channel correlation on the QoS-based designs can then be investigated.

To give an example, recall the system model in Subsection 2.1.5 and consider the spe-
cial case of imperfect CSl as in Section 3.4. The minimum weighted MSE design is for-

mulated as
. 1 o 2
min E ||| W (r—9) |
subjectto t(FF™) < Pr, (3.36)

whereW is a diagonal positive definite weighting matrix. The weighted MSE matrix is

defined as

MSEx(F.G) %' E|w

NI

(r—s)(r— s)H W%]

— W2.MSE(F,G) W2, (3.37)

whereMSE(F, G) in the second equation is from (3.10). The objective function in (3.36)
is simply given by
tr[IMSEw (F,G)] =tr[W -MSE(F,G)].

The Lagrangian associated with (3.36) is
Lo (F, G, pua) = tr[MSEit (F, G)] + pawe - [tr (FFH) —Pr],

whereu, is the Lagrange multiplier. Using exactly the same method as in previous sec-

tions, we can obtain the following theorem, whose proof is omitted for brevity.

Theorem 3 Assume that the number of data streddis equal tor, wherer is from (3.16).

The optimum precoder and decoder for (3.36) have the following general expressions:

_1
Futopt = [02 - Pr-RT + 02 0y ]~ 2VAEwtopt; (3.38)
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(3.39)

NI

Gut,opt :Ath,optVH [Ué ‘Pr-Rr+ 0}?' InT} - |:|H7

and the diagonat x r matricesArwt,opt andAgut opt are given by

1 1 %
Arutopt = {T\fnl«‘\;nzon'W%A_%—Tm-/\_l} ; (3.40)
J’_
1
1 1 2
Awiopt = {u&nmzi-w‘iA‘%—“—“g W‘lA‘l} Az, (3.41)
On lof. N
whereV andA are from (3.16),
a2 Pr
Twt = — 3.42
M Prodgt A3 dg (3.42)
5 02(Pr - g+ 8y - g — fp- &
_ %P &t d -5 d) (3.43)
(Pr+a1)2-Pr

Scalarsé, ay, 8z andé, are traces of théx,; x kyt top-left submatrices of
AL, WIA~3, WEA VM [62PrRy + 020, ] 'V, andA VM [62PrRy + 020, ] TV,

respectively. The integdt,: denotes the number of the non-zero entrieA@f opt (kwt <

r). The optimum precoder-decoder pair obtained here is unique up to a unitary transform.

Remark 3.5 WhenW = | g, Theorem 3reduces tarheorem 1
Similar to Section 3.5, we can also extend the weighted minimum total MSE design to

the case wheRt # In;, RR # I ng-
3.7 Simulation Results and Discussions

1. Simulation Scenario
Let nt = nr = 4. The exponential model introduced in Subsection 2.1.1 is used for
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transmit and receive channel correlation, i.e.,

1 pr pf P}

1 2
RT—pT prTa

pf pr 1 pr

pi Pt pr 1

andRRis similarly defined withpt replaced byr (0 < p7,pr < 1). 4-QAM is used

for each data stream. The optimum matri€gg: and Gopt Or Fgopt and Ggyopt are
chosen specifically as given by (3.19)-(3.20) or (3.32)-(3.33), respectively. For the
minimum total MSE design, a relevant performance measure is the average bit error

rate (ABER) per data stream [48, 69, 85], defined as
1 B
ABER= - ) BER
5 2, BER:

whereBER,; is the BER of data strearjpy Define SNR a$r/o2. For fair compar-
isons, we fixR, /02 in the training stage and lei2, = tr(R71) - 62/R, vary with
Rt. Inour simulationer/aﬁ is chosen to be 16.016 dB or 26.016 dB, which cor-

responds twZ, = 0.1 or 0.01 ifRt = Ip,.

. Effects of Channel Correlation Aloneg, = 0)

Fig. 3.3 is obtained when there is no channel estimation eoar= 0). High corre-

lation is observed to have a large impact on system performance. For example, when
B =4andpr =0, aspr increases from 0 to 0.5, the loss in SNR is around 1.67 dB.
Whenpr further increases from 0.5 to 0.9, approximately 6.67 dB loss is incurred in
the medium to high SNR range. It is clear that redudiigtroduces diversity and

thus compensates for the loss caused by channel correlation. Therefore, the num-
ber of data stream®, should be chosen carefully according to channel correlation

information.
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Figure 3.3. The ABER from minimum total MSE design with perfect Cl=nr =4, B
= 3 or 4. Different amounts of channel correlation are considepgd= 0.0,0.5,0.9 and

pr = 0.0,0.5.
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3. Effects of Channel Estimation Error and Channel Correlation

Fig. 3.4 shows the ABERs from using the optimum precoder and decoder when the

CSl is imperfect.

Comparing Figs. 3.4 and 3.3, we observe that channel estimation error alone has a
tremendously detrimental effect on system ABER performance. Specifically, with
pr = pr =0 andB = 3, at SNR = 20 dB, the ABER i3.6 x 10~ when g2, = 0

(see Fig. 3.3). It then increases 1@t x 10~° at the same SNR whea?, = 0.01
[corresponding to usinBy /o2 = 26.016dB at the training stage (see Fig. 3.4)]. At
medium to high SNR, the performance degradation caused by channel estimation
error can be compensated by introducing diversity (i.e., reducing the number of data
streams), at the expense of reduced data rate. Also, channel estimation error causes
an irreducible error floor at high SNR. High channel correlation further deteriorates
system performance. For example, from Fig. 3.4, vaigh= 0 andB = 3, at SNR

= 20 dB, whenpr increases from 0 to 0.5, the ABER increases frbthx 10~° to

6.8 x 10~°, and whenpr increases from 0.5 to 0.9, the ABER increases drastically

from 6.8 x 10 °t08.8 x 10°3.

4. Optimum Precoder vs. Two Asymptotically Optimum Precoders

Consider the special case without receive correlation as in Section 3.4. A subopti-
mum transceiver can be obtained by ignoring the channel correlation information at
the transmitter, treatina as if it were the true channel and then applying the results
in [85]. In this way, the precoder is restricted to be of the féigg= V1Agns, Where

the matrixV1 consists of the effective eigenvectors (corresponding to the non-zero
eigenvalues) ofifH andAgnsis a diagonal matrix for power allocation. The de-

coder is obtained from (3.25) or (3.45). BasedRemark 3.1andRemark 3.2, this
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Figure 3.4. The ABER from minimum total MSE design with imperfect C%l= nr = 4,

B = 3 or 4. Different amounts of channel correlation are conside®d.o? = 26.016
dB. The values ob2, are 0.01, 0.015, and 0.0739, fof = 0.0, 0.5, and 0.9, respectively.
Correspondingly, the values OE are 0.0099, 0.0148, and 0.0689, fr = 0.0, 0.5, and

0.9.
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precoder is asymptotically optimum wheg, — 0 (and thus the additive noise is the
dominant source of error), or wh&r — I,. We refer to it as the noise-suppression

precoder.

On the other hand, we obtain another transceiver structure by restricting the pre-
coder adcc = R; %VZAFCC, whereV, is composed of the effective eigenvectors of
I:IG',OI:IWO andArcc is also a diagonal power allocation matrix. Again, the decoder is
determined from (3.45). Based &emark 3.2, this precoder here is asymptotically
optimum whenPr /a2 goes to infinity so that channel estimation error becomes the
dominant source of error, or wheékr — I,,. We refer to this as the correlation-

cancelation precoder.

It is interesting to compare the optimum precodeTreorem 1and the above two
suboptimum ones. The three schemes here have similar computational complexity.
Compared to the other two, the noise-suppression precoder does not require correla-
tion information at the transmitter. The performance comparisons shown in Fig. 3.5
remind us of the relationship between the matched filter (the noise-suppression pre-
coder), the zero-forcing filter (the correlation-cancelation precoder), and the opti-
mum linear MMSE filter in multiuser detection [51]. From Fig. 3.5, we observe

again the tremendous effect of channel estimation error on system performance.

The noise-suppression precoder represents the direct application of previous results
assuming perfect CSI [70, 85, 87] to the case with imperfect CSI. Clearly, this causes
a large performance loss at medium to high SNR. We also notice that the correlation-
cancelation precoder has close-to-optimum performance at medium to high SNR,
since it also utilizes the transmit correlation information. However, inverting the
transmit correlation is not optimum at low SNR, and thus the correlation-cancelation

structure performs worse than the optimum transmitter in a lower SNR region.
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Figure 3.5. Comparison of the optimum and two suboptimum transceivees.ng = 4, B
=3, pr = 0.7, pr = 0.0. Two values of the training power are usd¥:/o? = 26.016dB

(corresponding t@? = 0.0238), and’; /07 = 16.016dB (corresponding ta = 0.1962).
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5. Effect of Transmit Correlation vs. Effect of Receive Correlation

Fig. 3.6 is a comparison of the effects of transmit and receive correlation. It is clear
that the same amount of transmit or receive correlation has exactly the same effect

on system performance when the CSl is perfect.

In the channel estimation described in Section 3.2, the knowledBe &f explicitly

used in the training signal design, but the knowledg®&gfis not. This means the
knowledge ofRt andRR is not exploited the same way. Therefore, when there is
channel estimation error, the same amount of correlation at the transmitter and the

receiver affects system performance differehtly

6. Effect of Feedback Delay

We now simulate the effect of feedback delay on the joint precoder/decoder design.
Both spatial and temporal channel correlation are considered. At any time instant,
the spatial correlation is modeled in the same way as in Subsection 2.1.1. Using the
Jakes’ model [42], the temporal magnitude correlation of two channel realizations

separated seconds apart is given Ip = J3(2rfgA), wherey(+) denotes the zero-

th order Bessel function of the first kind, afglis the maximum Doppler frequency.

As in [132], we consider the system working at a carrier frequencit ef 2 GHz.

The data rat&s on each data stream is set to be 400 kilo-symbols per second (ks/s),

which implies the symbol duratiofis = 1/Rs = 2.5 x 10°® s. The terminal speed

isv =30 m/s. Thenfy is calculated to be 200 Hz. We simulate the fading channel

according to [73].

3As mentioned in Section 3.2, a different CSI model has been used in [66], in which the functieqs of
andRRg are symmetric. It is interesting to note that, after applying our analysis with the CSI model used there,
the effect ofRt andRg is the same whether there is channel estimation error or not. The same comments

also apply to the CSI model used in [128, Section VI].
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Figure 3.6. Effect of transmit correlation vs. effect of receive correlatmn= ng = 4, B
=3 or 4,(pr,pr) = (0.5, 0.0) or (0.0, 0.5), In the case of imperfect 0%/ g2 = 26.016

dB. The values ot are 0.01 and 0.015, fg¥r = 0.0 and 0.5, respectively.
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Figure 3.7. The effect of feedback delay on system performange=nr =4, B = 3,

pr =0.7, pr=0.0, F%r/aﬁ = 26.016dB (corresponding taZ = 0.0238).

At time t, the receiver obtainsi!, an estimate of the true channdl. Here the
superscript denotes the time index, as in Subsection 2.1.1. Due to the feedback delay
A, the transmitter only knows! 2, i.e., the estimate dfit~2. Therefore, at time,

the precodeF can only be calculated accordingtié 2. The decode® is calculated

from (3.25) or (3.45), and is matched to the precoder. The resulting performances for

such a scenario are shown in Fig. 3.7 with different values. of

As shown, as long as the normalized defgyA is smaller than 0.01 (i.e < 20Tg

in the example above), the performance degradation is small. Noté&that 0.01
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is observed as a critical normalized delay in [19, 132], below which the system can
operate satisfactorily. Thus, our system design is robust against reasonably small
delays. Similar results can also be observed using other values of system parameters

(pr,Rr/02.B, etc.).

3.8 Summary

We have formulated and solved a minimum total MSE transceiver design problem for
MIMO systems with channel mean as well as both transmit and receive correlation in-
formation at both ends. The structures of the optimum precoder and decoder are obtained.
Our results gracefully fit those in the existing literature as channel estimation error dimin-
ishes. Simulation results are provided. We have observed that channel estimation error
causes an error floor at high SNR and a large performance degradation across the whole
SNR range. At medium to high SNR, this degradation can be compensated by introducing
diversity. High correlation has a large impact on system performance as well. The same
amounts of transmit and receive correlation impact the system performance equivalently
under the assumption of perfect channel estimation, whereas under imperfect channel esti-
mation, these two might show different effects on the system performance, depending on
the specific channel estimation method employed. The more general minimum weighted
MSE design has also been studied, which can be used to assess the performance of some

QoS-based designs with imperfect CSI.
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3.9 Derivation and Proof Details

3.9.1 Derivations of (3.3) and (3.4)
Perform vectorization operation on (3.2) to obtain
vedFl) = veqHu) + (I © R ?)vedNo).

Then the minimum MSE (MMSE) estimate eBdHy,) is given by [77, p. 156, EQ.
(IV.B.53)]

= {Iny ®[Ing +Re*- 0% ~*}vedFw).

Then (3.3) is obtained by convertin@((ﬂw) back to its matrix version. The resulting

estimation error covariance matrix is [77, p. 156, Eq. (IV.B.54)]

w £ { [vedHy) —vedFh)] [vedH) - vedtiu)]
= |nTnR - [InTnR + G(:ze' (l nr ® ngl)]_l

— Iy @[Ing — (Ing + 0ZRRH ™Y

2 -1 2p—1\-1
= O-ce‘lnT ® [RR (l nr T GceRR ) l
W
1
The estimation error vector can be represente®pyedEy, ), whereE,, stands for ar x
nt matrix whose entries are i.i.d#¢(0, 0%) [equivalently,vedEy) ~ 4¢(0, 0% Inrng)]-
1 _1
The matrix version oWZvedEy) is given byRg ? (Ing + 02 R;l)_%EW, and (3.4) follows.

O
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3.9.2 Proof of Existence of a Global Minimum for (3.9)

The problem in (3.9) can be equivalently formulated as [7, p. 130, Section 4.1.3]

min min tr{MSEF,G(F)]}. 3.44
- i min t{MSEF.G(F)]} (3.44)

The minimizingG for the inner unconstrained minimization is readily shown t& be

G = FHAM [AFFRAM 1 02, tr(RrFFM) -Rop-+ 02 1n] (3.45)

which is the linear MMSE data estimator (Wiener filter) giverandF [46, Chapter 12]

[77]. Substituting (3.45) into (3.44), the problem in (3.9) can be equivalently formulated as

min  trMSEF)], 3.46
min__ wMSE() (3.46)

where
MSE(F) = {Ig+FAM[0Z tr(RTFF) - Reg+ 02 ] 1HF) . (3.47)

The feasible set of (3.46) i§F|tr(FF™) < Pr}, a (closed and bounded) Frobenius norm
ball of radius\/Pr [7]. The objective function of (3.46) is continuous at all points of
the feasible set. Thus, according to Weierstrass’ Theorem [5, p. Fgbposition A.8],

there exists a global minimum for the problem given by (3.46). Since (3.9) and (3.46) are
equivalent, the same global minimum also exists for (3.9) [7, p. 130, Section 4.1.3]. In
addition, the minimizing- is the same for both problems, while the minimizi@dor (3.9)

is calculated according to (3.45)1

3.9.3 Derivations of (3.11)-(3.14)

For partial derivatives of a scalar-valued trace function of complex matrices, one can simply
apply the results in [35, Table Il]. However, in many cases, it is desirable to have a sys-

tematic way of calculating derivatives of more complicated scalar-valued functions with

4In fact, the inner optimization problem is a convex quadratic program [7, p. 152].
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respective to their matrix arguments. Below we introduce preliminary results on complex

matrix differentiation, which are used in this chapter as well as in subsequent chapters.

3.9.3.1 Preliminaries of Complex Matrix Differentials

We first present some complex matrix differential identities, which will be used in subse-
guent derivations. Here= y/—1. Based on derivative operations on real-valued matri-

ces [60] [63, Appendix C, p. 525], we obtain:

atr[AZH] _atr[AzH}_A
ooz vV Tamz M
owBz] _; . ow[BzZ]  _;
ooz 2oz —°B

The following definition of the generalized complex derivative will be used [8]. A et

be a complex-valued scalar variable.

df(2 1[of() . 9f(2
dz _é{o"Dz_l' o"'Dz]'

The conjugate complex derivative is given by

df 1[0f(2 . at(2)
dz :E[o"Dz L 6Dz}'

Furthermore, according to [8] [39;heorem 2], to find a stationary point of the real

scalar functionf (Z,Z*), it suffices to determine it fromaither of the following:

df(z,z%)
dz

df(z,2%)

=0.
dz*

=0, or

Therefore, to derive (3.11)-(3.12) in our case, we only need to consider taking the partial
derivatives of%; (F, G, 11 ) with respect td=* andG*. In fact, taking the partial derivatives

of Z1(F,G, u1) with respect td= andG yields the same equations.
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3.9.3.2 Derivations of (3.11)-(3.14)

Note that (3.13)-(3.14) follow from the power constraint and the complementary slackness,
respectively.

Using the identities presented earlier, we obtain, with respeetodF,

04(F,G, )
=tr [GH(aF) F'AYG" — GH(aF) + GHF (aF") AR GH — (aF™) AHGM]
+ 0 - tr(GGM) -tr [Rr (9F)F™ + RrF(aFH)] + g - tr [(9F)FH + F(aF™)]
=tr {[FPA"GHGH — GH + 62 - tr(GG") - FHRy + iy - F] (9F)}

+ tr{ [HGHGHF — H"G" + 6 - tr((GG") - RrF + 1 -F] (9FH) }.

Therefore,
F N ~ A
i§%ﬁ%?£2::FHHHGHGH_{m*+0§¢WGGH%FHRT+HyFHF
+[FIHGHGHF_F'HGH+O'é'tr(GGH)-RTF_|_u1,|:},
. 0A(F,G . A A
I.%:_[FHHHGHGH—GH—FUé'tf(GGH)'FHRT+U1~FH]T
+[F|HGHG|:|F—F|HGH "‘O-I%'tr(GGH)'RTF—f—IJl.F},
and

04 (F,G, 1)  1[04(F,G 1) . 04(F,G 1)

oF* 2 ouF JoUF

— ARGHGAF —AMGH + 62 - tr(GGM) - RTF + 1 - F.
Similarly, with respect t& andGH,
d,,%]_(F,G,IJ]_)
=tr {[AFF"ARG — AF + [02 + o - tr(RTFF™)]- G] (0G)}
+ tr{[GHFFHA" — F"AY 4 (02 + o - tr(RTFF™)] - G] (9GH)} .
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Thus,

% — [AFFYANGH — AF + (02 + o2 - tr(RrFF™)).GH]"

+ [GAFFTAY —FHAM 1 (02 + o - tr(RTFFM)] - G,

i-%’g’“ﬁ — — [AFFMARGH — AF + [02+ 02 - tr(RrFFH)] . GH]
+ [GAFFTAY —FHAM 1 (02 + o - tr(RTFFT)] - G,
and
04F.G ) 1I10AFGu) . 04FG )
dG* 2 00G 000G
= GHFF"AY — F"AY 4 [02 + o - tr(RTFF™)] - G.
Set
dgl(Fvaﬂl) _ dwg/ﬂl(FvGJJl) _
I =0 and G =0,

and then we obtain (3.11)-(3.12). This finishes the calculations of (3.11)-(8.114).

3.9.4 Proof of Lemma 1
Pre-multiplying both sides of (3.11) &y, we obtain
GHFFPHHGH 4 (62 + 02 - tr(RTFF™)] . GG = GHF. (3.48)
Similarly, post-multiplying both sides of (3.12) Iy to get
FPARGHGAF + 02 - tr(GGM) - F'R1F + 1 - FM'F = GHF. (3.49)
Clearly, GHF must be Hermitian. From (3.48) and (3.49),
(02 + 02 -tr(RTFFM)] -GG = 2 - tr(GGH) - FPR1F + 1 - FHF.

Taking the traces at both sides, we obtafh tr(GG") = py - tr(F™F). Due to (3.14), if

yy > 0, tr(FHF) must be equal tdr, which yieldsy; = o2 - tr(GG")/Pr, the desired
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result. Assumé # 0[i.e., t((FFH) > Q]. Then, if y; = 0, we must have (GG") = 0, and
yy = a2 -tr(GGH) /Py is still valid. Finally, it is easy to see that it holds even wiies 0,

G =0anduq = 0. This concludes the proof dfemma 1. [J

3.9.5 Proof of Lemma 2

AssumedB =r. Let the matrixF be expressed as

_1 ~ ~H
F=[02-Pr-Rr+ 02 In;] 2V VJAE AHTH
_1 ~
= (08 -Pr-Ry+ 0% 10| 2[VAe +VAg], (3.50)
F F

whereV andV come from (3.16), anAr and/~\F are arbitrary x r and(nt —r) x r ma-
trices, respectively. SindeZ - Pr - Rt + 02 - I, is of full rank, [V V] is ant x nt unitary
matrix and/Af i\F']H denotes an arbitranyr x r matrix, (3.50) is a general expression for

F. DefineFH =VAg andF | = \7/~\F. It can be verified that
F'F =0, and Fw F, =0. (3.51)
Furthermore, due to (3.16), we have the following singular value decomposition
A [02-Pr Ry +02- 1] 2 = UABVH,

whereU; is ang x r matrix satisfyingU'fUl =1l andV is the same as in (3.16). Then it
can be easily seen that
1

H[og Pr-Rr+07 In] 2FL=0. (3.52)

By usingLemma 1, (3.12) can be rewritten as

H
tr(GG )_FH[aé.pr.RT+g§.|nT]:GH. (3.53)

FPAAGHGH +
Fll_
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1
Post-multiplying both sides of (3.53) byoZ-Pr-Rr+02-1n;] 2F,, using (3.51) and

(3.52), we geF'F, =0, i.e.,F, = 0. This means
F=[02 Pr-Rr+02 In ]| 2VAg,

and thus (3.17) holds. Now lgi = g2+ o2 - tr(RTFFH). The matrixG satisfying (3.11)
is given by
G =FHAMAFFAAY £ 11t

— [FHAYAF + 11-1,)tFHAH

NI

= FAPHF + 101 ] PAR VR [0 - Pr-Rr+ 07 1o ] 2H"

J1

Y

where the second equation is obtained using the matrix inversion lemma [60], the third
equation is obtained by substituting (3.17), dhdS' [FFHHEF + 11 - 1,]~2AH is an arbi-
traryr x r matrix. LetAg denote an arbitrary x r matrix. The generdb satisfying (3.11)

can thus be expressed as

NI

G=AgV" [0Z Pr-Rr+ 02 1n,| 2AM.

Therefore, (3.18) hold<.]

3.9.6 Deriving (3.19)-(3.24) and Determinindgg in Theorem 1

AssumeF £ 0. We first show how to obtain (3.19)-(3.24). Post-multiplying both sides of

(3.53) [which is from (3.12)] byF, we get

tr(GGH)

FPARGHGAF + F"[02-Pr-R7 + 02 1, JF = GHF. (3.54)
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Let 1y = 02 + 02 - tr(RTFF™) as in Subsection 3.9.5. Peemma 2, substituting (3.17)
and (3.18) into (3.48) and (3.54), usihgmma 1, we obtain the following identities, re-

spectively,

AcANE =AcAANANEAANE +TIAGANY,

AGANE =ANB AN AGANE+ (L1 /T)NE AE.

Based on the above two equations, the optinA\imandAg can be shown to be diagonal
without loss of generality as in [85], and are given/bsppt andAgopt in (3.21) and (3.22),
respectively. Finally, insert (3.19)-(3.22) int¢fF") = Pr andyy = o2 -tr(GGH) /Pr, to
obtain two equations witl; and u; being the variables. Solving these two equations, we
can findt, anduy as given by (3.23) and (3.24), respectively.

An iterative procedure for calculating the numilsgin Theorem 1is described below.
Let A be thel-th entry on the main diagonal &f(1 = 1,...,B =r). Recall that the diagonal

elements of\ are arranged in decreasing order. Initiakze B.

1. Calculater; andpy from (3.23) and (3.24), respectively. iy < Ac?/T1, stop and

setko = k; else: go to step 2.
2. LetApoptk := 0andk:=k—1. Goto step 1.

We now compare the total MSE obtained from the non-zero solutions and the zero
solution satisfying the KKT conditions (3.11)-(3.14). The MSE corresponding to the zero
solution is simply given by

Msgero=tr(Is) = B,
whereas the MSE corresponding to all non-zero solutions is the same and is given by:

1 ~ N —l
mse;, = tr (I Bt Fg'ptHHHFopt> ] .

56



Since it can be verified by direct calculations tthHﬂFopt is positive semidefinite,
we have

1 A
Ig+ = FhH HFopt = 1.
11

Note that if two positive semidefinite matricdsandB satisfyB = A (or A < B), then

B — A is a positive semidefinite matrix. The above inequality implies
1 v g -
lg+ — - FopH HFopt| =1ls.
1
According to [64, pp. 585-586], iR < Ap, then t{A1) < tr(Az). Thereforemseg; <

MS@ero [

3.9.7 Proof of Theorem 2

AssumeB = rq. It is easy to identify the zero solution satisfying the KKT conditions
(3.25)-(3.28):F = 0,G = 0, g = 0. We now focus on finding the non-zero solutions.

First, following the same line in Subsection 3.9.4, based on the KKT conditions (3.25)-
(3.28), it can be shown that

Hg = o -tr (GGH) /Pr.
In general, the matri¥ can be expressed as
2 3.\ H xH M
F=[r2- 0 Rr+HgInr] ?[Vg Vg [AF,g AF,Q] ’

where 1, has been defined in (3.30), ahg and\7g have been defined in (3.31). Here
Ar g andAr g denoterg x rg andrg x (nt — rg) arbitrary matrices, respectively. Same as in

Subsection 3.9.6, we expresas follows:

_1 ~
F - |:T2 ’ O-C2€. RT + ug ’ | nT:| ’ VgAFvg +VgAF7g ) (3'55)
F F
ol gL
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where we have defindgl, | = VgArg andFg | = \79/~\F7g_ Clearly,
FSLFQ,H =0, and Flg-l,HFg,J_ =0. (3.56)

Using similar arguments as for (3.52) in Subsection 3.9.5, we can show that

1 . _1
[TS'Re,R‘i‘Gr%‘lnR} *H [TZ'O(:Ze'RT +IJ9'|“T} ZFQ,J- =0,

whererts has been introduced in (3.30), and then
- 1
H [tz 0% Rt +lg-In;] 2Fg. =0. (3.57)

From (3.26),

FIAAGHGH + F [12- 0ZRT + g - In; | = GH.

1
Post-multiplying both sides of the above equatior{by- 0% R + Hg - | nr} *Fg 1, using
(3.55), (3.56) and (3.57), we obtaﬁgLFg’l =0, i.e.,,Fg, = 0. Therefore, the general

expression of matrif satisfying the KKT condition (3.26) can be written as:
_1
F=[1- 02 R+ lg- Inr] 2VgArg. (3.58)
From (3.25),

G =F"A" [AFFYAM + 13- Rer + 02 'nR]_l

~ 1A -1 ~ 1
—{Irg+FHAM [13-Rer+ 02 1ng]  AF} F"AM 13- Rep-+ 02 Ing)

(a /

Jg

-1

NI

= JAF GV 12 0% Rr+ g In | 2™ [13-Rer+ 07 - Ing]

~ -1
H" [13-Rer+ 0% Ing] (3.59)

NI

= AG,ng [TZ : Uc,?e' Rt + Lg- IHT}

where we have used the matrix inversion lemma [60], (3.58) and have d#iggd-

JgAEg. Due toAfrg, Agg is a corresponding arbitramy x rg matrix. Pre-multiplying
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(3.25) byG, post-multiplying (3.26) by, substituting (3.58) and (3.59) into the resulting
two equations, and using (3.31), we get
AegAgArg =N gAgArgAEGAGAG -+ g g Ag AL,
NogNgArg=NAF G AGAG g Neg AgArg+AE g Arg.
Again, applying the method in [85], to obtalk: gopt andAg gopt as given by (3.34) and
(3.35), respectively. Replacim§rg andAgg in (3.58) and (3.59), respective, we obtain
(3.32) and (3.33).
In the above, we have identified the structures of the non-zero precoder and decoder

satisfying the KKT conditions (3.25)-(3.28). All the non-zero solutions lead to the same

MSE, denoted asse g here. Using (3.25), similar to (3.47), we obtain
MS@zg = tr { [I B+ Fhopt (0%t (RTFgoptFaopy) - Rer+ 04 Ing) - I:IFgopt} 1} .
It remains to comparmse g with the MSE obtained from the zero solution, i.e.,
MSQerqg = tr (Ig) = B.
Using (3.32), (3.34) and (3.31), it is easy to show that
FSOpt':'H [0&-tr (R FQOPthopt) ‘Rer+ 0F I g - HF gopt

is positive semidefinite. As in Subsection 3.9.6, it can be showntisaf,g < MSerqg-
This establishes the global optimality of the non-zero solutions. Therefbexgrem 2is

proved.lJ
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Chapter 4

Maximum Mutual Information Design with

Channel Uncertainty

4.1 Introduction

The mutual information between the input and the output of a channel and the minimum
mean-square error (MMSE) in estimating the input given the output are two basic quan-
tities in information theory and estimation theory. In [32, 71], fundamental relationships
between the mutual information and the minimum mean-square error have been discov-
ered for discrete-time, continuous-time, scalar and vector channels with Gaussian noise.
In particular, it is found in [71] that in vector (MIMO) Gaussian chanhethe gradient

of the mutual information with respect to the channel matrix is equal to the product of the
channel matrix and the error covariance matrix of the best estimate of the input given the
output (i.e., the MMSE matrix).

In [87], it has been shown that with perfect channel state information (CSI) at both ends,

1Here, by vector Gaussian channels, we mean that the channel matrix is fixed and the noise is Gaussian.

The input distribution can be arbitrary [71].
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the maximum mutual information (capacity) design minimizes the (log) deterrdinéite

MSE matrix, whereas the minimum total MSE design minimizes the trace. The optimum
linear transmitters for both designs consist of a diagonal power allocation matrix followed
by a general beamforming matrix composed of the effective channel eigenmodes [see Sub-
section 2.1.4, and Section 3.4 wid@ = 0]. The two differ only in the diagonal power
allocations. In [85], the minimum weighted MSE design is considered. The minimum to-
tal MSE design turns out to be a special case with the weighting matrix being an identity
matrix, whereas the maximum mutual information design corresponds to the case when the
weighting matrix is equal to the diagonal non-zero eigenvalue matrix.

Two natural questions arise here are: how should one design a MIMO system for max-
imum mutual information with imperfect CSI? What is the relationship between these two
designs in this case?

From Subsection 2.1.4, we have seen the enormous potential of a coherent MIMO sys-
tem to provide high data rate in a rich-scattering environment. However, the capacity of a
single-user MIMO channel depends on the CSI available at both ends. Correspondingly,
different transmit strategies should be used with different types of CSI. As we have already
known, the case when the fading channel is perfectly known to both ends has been studied
in [85, 87,102]. More recently, the optimum transmit strategies are obtained for the case
with perfect CSI at the receiver (CSIR) and with the CSI at the transmitter (CSIT) being
the channel mean information (CMI) or channel correlation information (CCI) [38, 40].

In [39, 61], the non-coherent case with no instantaneous CSIT or CSIR has been studied. A
comprehensive overview of the capacity results of MIMO channels can be found in [31].

In the above, either a perfect coherent system (perfect CSIR) or a non-coherent system (no

2Since the log function is monotonically increasing, minimizing the determinant of a matrix (assumed to

be positive) is equivalent to minimizing its log determinant [87].
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instantaneous CSIR at all) has been assumed.

In [121], a different MIMO channel scenario is considered, where the CSIR is obtained
through channel estimation and thus contains estimation errors (nonideal coherent recep-
tion). The CSIT is assumed to be transferred from the receiver via a lossless feedback
link, and is thus the same as the CSIR. Under this assumption of CSI, an exact capacity
expression is hard to obtain. Instead, tight upper- and lower-bounds on capacity have been
proposed for system designs [121], which are generalizations from those for a SISO chan-
nel [62]. The case when the CSI at both ends consists of channel estimates and channel
correlation has been studied in [66, 122]. In particular, the lower-bound on the MIMO
channel ergodic capacity has been formulated and used as the design criterion [66, 122].
A numerical search method has been proposed in [122] to find the optimum transmit co-
variance matrix for the lower-bound. Unfortunately, so far, the optimum structure of the
transmit covariance matrix has not been obtained for the lower-bound. For convenience,
we refer to this problem as the capacity lower-bound problem or the maximum mutual
information design with channel uncertainty (imperfect CSI).

In this chapter, we will show that a globally optimum transmit covariance matrix ex-
ists for the capacity lower-bound with the channel mean (i.e., the channel estimate) and
channel correlation information at both ends. We will also present its explicit structure,
which can be conveniently determined. For the special case with no receive correlation,
the closed-form optimum transmit covariance matrix will be provided. The CSI assumed
in this chapter is the same as in that in Chapter 3. In the end, we will be able to answer the
guestion raised earlier: the relation between the maximum mutual information design and
the minimum total MSE design in Chapter 3 will be elucidated.

This chapter is unfolded as follows. Section 4.2 describes the design problem at hand.

In Section 4.3, the optimum transmit covariance matrix is determined for the capacity

62



lower-bound wherRt # In, and Rr = In;. Results for the more general case when

Rt # In; andRR # I, are presented in Section 4.4. Section 4.5 discusses the relation
between the minimum total MSE design in Chapter 3 and the maximum mutual informa-
tion in this chapter. Simulation results are provided in Section 4.6, which show that it is
appropriate to use the capacity lower-bound as a design criterion with the above assumed
CSl, since the upper- and lower-bounds are close to each other. The advantage of using
the optimum transmitter is demonstrated. The effect of channel estimation error and chan-
nel correlation are also assessed by simulation. A summary of this chapter is given in

Section 4.7. Derivation and proof details are collected in Section 4.8.

4.2 Upper- and Lower-bounds on the Mutual Information

Consider a single-user MIMO communication system, described by
y =Hx-+n.

Herex is thent x 1 zero-mean data vector (channel input) with a covariance matrix given
by Q = E(xx"). Theng x 1 received signal vectgrdenotes the channel output. Titpex 1
channel noise vectar is assumed to be independent of both data and channel fades, spa-
tially and temporally white, zero-mean and circularly symmetric complex Gaussian [i.e.,
distributed according to#¢(0, 62 - 1 n.)].

As mentioned in Subsection 2.1.1, the slow-varying flat-fading channel is modeled as
H= RéHWR%. BothRt andRg are assumed to Wall-rank as in Chapter 3. The imperfect
channel state information is modeled in the same way as in Section 3.2. To facilitate the

presentation in this chapter, we summarize it here:

A~ A~

~ 1 1 1
H=H+E, H=RZHwR%, E = RZ;E4RZ, (4.1)

pelN
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whereH,, is the estimate ofl,,, Rer=[lng + ocze- Rgl]_l, and the entries of the spatially
white matrixEy, are i.i.d..#:(0,0%). FurthermoreH is the estimate ofl, E is the overall
channel estimation error matrix, amfe = tr(R;l) . aﬁ/F{r, whereR; is the power for
training. Similar to [66,92,121], we assume the same channel information is made available
at the transmitter via an error-free and low-delay feedback link, i.e., CSIT is the same as
CSIR. ThereforeH, Rg, Rt, 0% anda? represent the CSI known to both ends. Note that
this implies knowledge oRer.

Under the above channel uncertainty model, the channel output can be written as
y= HX + EX 4 n.

Here the total noise is given by def Ex + n, with zero mean and a covariance matrix
given by
Rntotal =E [(EX+ n)<EX+ n>H}
1 1 1 1 2

=E |R2REWR2 (XXM )RZEHR25 | + 07 - 1ng

_ 42 2

= 0 tr(RTQ) -Rer+ 07 - I ng,
where the expectation is taken over the distributions,af andE,,. Note that heren gy
is not a Gaussian noise vector. Therefore, with the imperfect CSI assumed earlier, an exact
capacity expression is hard to obtain. For the purpose of system design, tight upper- and
lower-bounds on capacity have been proposed. With the above assumed CSI, the mutual

information betweery andx givenH is bounded as [62, 66, 121, 122]
low < |(X,YU:|) < lup,
where

liow = log, det[lne +HQHMR, L T, (4.2)
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lup = liow +10g, det[Rn, .| — E {log, det[ 02 tr(RTxx") ‘Rer+ 07 - Ing] } . (4.3)

Herelow andlyp denote the lower- and upper-bounds on the actual mutual information,
respectively. The expectation in (4.3) is taken over the distribution of

For convenience, below we will use the lower-bound as a design criterion [121], whereas
the upper-bound will be used for comparison. To obtain the highest data rate from using

the lower-bound, we need to solve the following problem [66,122]

low = max log, det[ln, + HQH™R,L 1. (4.4)
tr{Q}<Pr

The lower-bound on the ergodic capacity is then given by [121,122]
Clow =K [llow] ) (4-5)

where the expectation is taken over the fading distribution. Note that the power constraint
is imposed in the spatial domain. No temporal power allocation is considered.

The problem in (4.4) is referred to as theaximum mutual information desigmth
imperfect channel knowledge. This explains the title of this chapter.

In general, (4.4) is a non-convex optimization problem. The special cas&withl .
has been studied in [122], where a numerical search method was proposed to find the
optimum transmit covariance matr@Q. No closed-form result has been obtained. The
general problem (4.4) has been formulated in [66]. Again no closed-form optightias
been reported. Despite the unwieldy looking of the problem in (4.4), the optimum structure
of its transmit covariance matrix can be determined, and the closed-form opfraxists

for the special case with no receive correlation, as will be shown in subsequent sections.
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4.3 A Special Case: R# I, ,Rr= Iy

As in Chapter 3, we begin with the special case iRth= |, and then extend our results
to the general problem (4.4).

In this case, the CSl is the same as in Section 3.4, which is summarized below:
" 1.
H= (Hm/o+Ew0)R-|2- =H+E,

whereH = I:IwoR% is the channel mean, arifl= E\,\,OR%. The entries oI:|W0 andE,g
are mutually uncorrelated, and are i.i.d¢(0,1— 02) and.#¢(0, g2), respectively, with
02 = 0%/(1+ ad2). HereH, Ry, o2 ando? are assumed to be known to both ends, which
has been referred to as the channel mean and transmit correlation information.
The problem in (4.4) becomes
HQHM

o - tr(RTQ)+ 0]’ (4.6)

llow= max log,det|l
low o0 g nr T
tr{Q}<Pr

which is identical to the problem formulation in [122, Section IV-B].

Our approach to obtain the optimu@relies on solving an equivalent problem of (4.6).
Toward this end, we introduce a virtual auxiliary precoder-decoder(paé) in our sys-
tem model (see Fig. 2.2), wheFeandG arent x r andr x ng matrices, respectively, and
r= rank(I:|). The repetitive notation of (see Section 3.4) will soon be justified [after
(4.13)], and the choice of the sizesfohndG will be explained in Subsection 4.8.3. Here
x = Fs, andsis a zero-mean x 1 data vector whose entries are i.i.d. with unit variances.

Thus,Q = E(xx") = FFH. We now have
y = HFs+EFs+n.

The received vector after the decoder is given by Gy. Define

MSE(F,G) &' E{(r—s)(r—9"}
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= E{[GH+E)F—I,]ss'[GH+E)F—I,]"}+02 GG"
= GHFF"A"GM - GAF —FHAMGH 4 1,

+ [02 + o2 - tr(RTFF)] . GGH. (4.7)

In the above, the expectation is taken over the distributiossrodndE,,. It is easy to see

(4.7) is identical to (3.10), except for the difference in the dimension of matrices.
Lemma 3 The problem (4.6) is equivalent to the following optimization problem

rpg IndetMSE(F,G)], (4.8)
tr {FFH ) <Py

whereMSE(F,G) is given by (4.7) andh denotes the natural log function. Let the opti-
mum solution for (4.8) b&F ¢ opt, Geopt). Then the optimum covariance matrix for (4.6) is
related to the optimum solution for (4.8) B36pt = Fc,opth'fopt. A global maximum exists

for (4.6) and a global minimum exists for (4.8).

Proof. See Subsection 4.8.1. [

Therefore, to solve (4.6), we attempt to solve (4.8) instead. Note that (4.8) is also
a non-convex problem. Nevertheless, the objective and constraint functions of (4.8) are
continuously differentiable with respect 6 andG* (or F andG). There is only one in-
equality constraint here, so that any feasible solution is regular. Thus, the global minimum
(which exists according tbemma 3) should satisfy the first-order KKT necessary condi-
tions associated with (4.8) [5]. Our method is the same as in Section 3.3, i.e., itis to find all
the solutions satisfying the KKT conditions and then identify the optiniEgbpt, Ge opt)
among them. Note that {fFc opt, Gcopt) iS Optimum, so is(FC7oth,UHGc7opt), whereU
is an arbitraryr x r unitary matrix. As in Chapter 3, below we refer B¢ opt, Ge opt) as
an optimum solution for (4.8)p to a unitary transform However, the optimum transmit

covariance matriQopt = FcpptFQOpt IS unique.
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We can see that the maximum mutual information design here and the minimum total
MSE design in Subsection 3.4 are related. The former is to minimize the log determinant
of the MSE matrix (4.7), whereas the latter is to minimize its trace. Indeed, the content in
this chapter is parallel to that in Chapter 3. We will reveal more of the relationship between
these two designs later in Section 4.5. For now, we focus on solving (4.8).

With the MSE matrix given by (4.7), the Lagrangian associated with (4.8) is
2(F,G, ko) = IndetMSE(F, G)] + iz - [tr(FFH) — Pr],

whereL is the Lagrange multiplier. By taking the derivative of the Lagrangian with respect

to F* andG*, respectively, we obtain the KKT conditions for (4.8):

HF = [HFFAM 1410, GM, (4.9)

HHYGHIMSE(F,G)]"%(GHF —1,)

+ g -tr{[MSE(F,G)]'GG"} - RrF + oF = 0, (4.10)
H2 > 0, tr(FFM) —Pr <0, (4.11)
pz - [tr(FFH) —Pr] =0, (4.12)

wherety = 07 + o - tr(RTFFH). Detailed derivations are presented in Subsection 4.8.2.
It turns out that, to solve (4.8), we need to consider the following eigenvalue decompo-

sition, which is exactly the same as in (3.16):

Nl

_lAa _1
[0 -Pr-Ry+05-1n;] 2HPA[0Z -Pr-Ry+ 0% Iny| 2

- [N O -
= [VV] v VH. (4.13)

All the variables involved here are defined in the same way as those in (3.16). In particular,

r = rank(H) = rankA) denotes the number of non-zero channel eigenmodes, as before.
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This explains the use afearlier in this section. Without loss of generality, the entries of

the diagonal matriXA are arranged in decreasing order.

Theorem 4 With the MSE matrix given by (4.7), the optimum precoder and decoder for

(4.8) are given by

_1
Feopt = [0F - Pr-RT+ 0% In;] 2 V®rop, (4.14)
1.
Geopt = ‘:')Goptv|_| [Ué ‘Pr-Rr+ O}%' |nT} 2 HH, (4.15)
respectively, where
2\ —3 2 13
®Propt = (H2/07) 2 [Ir — (KaTa/0n) -N 7] 2, (4.16)
2\3 2 113 A-1
Doopt = (H2/07) % [Ir — (K2Ta/07) -A 2N (4.17)
The scalargu, and 14 are given by
O'Zblp]' + O'2b1b3 — mo0'2b2
=T 0 n—= (4.18)
Pr(Pr + bs)
T MoPr (4.19)

~ byPr +bybz — myby’
where the integemy (Mg < r) denotes the non-zero entries of matik,pe. Scalarsby, b,
and bs are traces of themny x mg top-left submatrices 0f" [0Z - Pr - Ry + 02 - I n; | v,
A VH[0g Pr-Rr+02 1y ] ~1v andA -1, respectively. The optimum solution is unique

up to a unitary transform.
Proof. See Subsection 4.8.3. The method to deterrigés also included there. B
Corollary 1 The unique optimum covariance matrix for (4.8) can be written as
Qopt = [0F-Pr Ry +0F I 2VOQUM[GE - Pr Ry + 0F -1 2,

where®q = CDFoptCDEOpt and®r,pt is fromTheorem 4
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Proof. The result follows immediately frohemma 3andTheorem 4. |
Remark 4.1 Whenaé =0, Corollary 1 reduces to the capacity result obtained in [75,
85, 102] (see Subsection 2.1.4). The explicit structure of the optimum transmitter is the

same as the precoder shown in Fig. 3.1, excepthgj: is replaced byPropt.
Remark 4.2 In [122, Theorem 5], it has been pointed out that wiRgrig? goes to
infinity, the optimum transmit strategy is to perform water-filling over the eigenmodes of

Hwo and then invert the effect &t1. This agrees witiCorollary 1.

4.4 The General Case: R # |1 ,Rr # I ng

The same method for the special case is used here. Itis easy to extend the herohtd
3 to the general case. Our method for solving (4.4) is then to solve an equivalent problem

formulated as in (4.8), where, Wit # I n, andRgr # | n,, the MSE matrix is given by
MSE(F,G) = GHFFHAMGY — GHF —FHRAGM +1,
+ [02- tr(RTFF™)] - GRerGH + 02 - GGH. (4.20)

Note that (4.20) is the same as (3.8), except for the difference in the dimension of matrices.

Herergc = rank(H). Define

s = tr{GRer[0% tr(RTFF")-Rer+ 07 Ing] *HF}, (4.21)
2

lge = % tr{G[0Z - tr(RTFFH) - Rep+ 07 - 1] TAF Y}, (4.22)

T = O tr(RTFFH). (4.23)

The Lagrangian here is

Zye(F, G, Uge) = INdet{MSE(F, G)] + g - [tr(FF™) — Pr],
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wherepgc is the Lagrangian multiplier here. Similar to Subsection 4.8.2, the KKT condi-
tions in the general case can be obtained, and are given by
HF = [AFFYAY 4 02, tr(RTFFM) - Rer+ 02 - 10 G, (4.24)

HHYGH [MSE(F.G)] ™ (GHF — 1)

+ O tr { [MSE(F,G)] ' GRerG" } ‘RTF+ pige-F =0, (4.25)
Hge > 0, tr(FF™) —Pr <0, (4.26)
Hgc- [tr(FFH) —Pr] = 0. (4.27)

Consider the following EVD

Nl

N 1~ _
[UczeTS‘RT‘Fch‘lnT} 2 HH [TG'RQR‘{'O}?'II’IR] lH [UczeTS‘RT ‘Hch"nT}

= [Vge \790} Vge vgc]H, (4.28)

whereVge, Vge, Agc andAgc are defined similarly as those in (3.31). Note that=

rank(Agc). The entries of the diagonal matifyy are arranged in decreasing order.

Theorem 5 With the MSE matrix given by (4.20), the optimum precoder and decoder for

(4.8) are given by

_1
Fcgopt = [O'CZe' T5- RT + Hgc- | nT] : Vgc®F gopt, (4.29)

1. -1
Gegopt = q)G,goptvgc [UgeTS ‘R7 + Hgc- InT} 2ZH" [TG ‘Rer+ O'r% - nR] ,(4.30)

1

Prgopt = [Iree—Nge) 2, (4.31)
1

Pogopt = [Iree—Age] 2 Agé (4.32)

Inserting (4.29)-(4.32) into (4.21)-(4.23) yields three equations i 15 and 1 being
the only three variables. By solving these three equations numeriggllyrs and 1 are

determined. The optimum solution is unique up to a unitary transform.
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Proof. See Subsection 4.8.4. [
Theorem 5clearly describes the structure of the optimum precoder and decoder. How-
evelr, lge, Ts and Tg need to be determined numerically, which is inconvenient. As in
Section 3.5, we now provide a KKT-conditions-based iterative algorithm to determine the

optimum solution. From4.52) we obtain
—1~
F=[0& Ts R+ tge- Iny] HPGH. (4.33)

The above formula is used in the iterative algorithm given in Table 4.1. This algorithm
converges, because the value of the objective function is reduced at each iteration and is
bounded from below. Furthermore, as shown in the prooflteéorem 4, any non-zero
solution to the KKT conditions leads to the same value of the objective function. Thus,
starting from a non-zero matrikg, the algorithm in Table 4.1 converges and yields the
optimum ¢ gopt, Ge,gopt) UP t0 @ unitary transform.

The following corollary follows immediately.

Corollary 2 The unique optimum covariance matrix for (4.4) is given by

H
Qgopt = FegoptFe gopt:

whereF¢ gopt is fromTheorem 5

4.5 Relation to Minimum Total MSE Design

By now, we have observed much of the parallelism between Chapter 3 and this chapter. In
this section, we summarize the connection between these two important designs assuming
the same imperfect CSI.

To elucidate their relation, we first delve into how the capacity lower-bound (4.2) is

obtained. As mentioned in Section 4.2, with imperfect CSlI, the total noise is no longer
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Table 4.1. An iterative algorithm for solving (4.8) [with the MSE matrix given by (3.8)]

1) Initialize F = Fo; the upperrgc x rgc sub-matrix offg is chosen be a scaled identity
to and to satisfy the power constraint with equality, while the remaining entries of
Fo are set to zero.

2) UpdateG using (4.48) [i.e., (4.24)];

3) Updatetgc andts using (4.22) and (4.21), respectively,

4) UpdateF using (4.33);

5) If the termination condition is met, stop; otherwise, go back to 2).

Gaussian, and it is hard to find the optimum input distribution to maximize
| (x:y[A) = dn(xH) — dn(xly, H), (4.34)

wheredy(-) denotes the differential entropy [17, Chapter 9, p. 224]. The lower-bound on

the above mutual information is obtained using the following two steps [62,66,121]:

e assuming the channel input is Gaussian (although here the Gaussian input may no
longer be the mutual information maximizer) and thus fixing the first term in the

right-hand side of (4.34);

e upper-bounding the second term in the right-hand side of (4.34) by the differential
entropy of a Gaussian random vector whose covariance matrix is equal to the mean-

square error matrix from the linear MMSE estimatiorxajiveny andH.

Therefore, the derivation of (4.2) is related to the linear MMSE data estimation [46,
Chapter 12] [77]. Interestingly, with the lower-bound derived using the above approach,
the optimum transmitters for both designs still share the same structures with differences

mainly in the power allocation, as can be seen from Chapter 3 and this chapter.
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Analogous to the perfect CSI case, both transmitters can be derived from the minimum
weighted MSE design. In the special case with only transmit correlation, from Sections 3.4,
3.6 and 4.3, it can be seen that the minimum total MSE design is a special ca¥¢ with,

whereas the maximum mutual information design corresponds to the caséNvheN.

4.6 Simulation Results and Discussions

Let nt = ng = 4. The channel correlation model used here is described in Subsection 2.1.1
(see also Section 3.7, Part 1). Below the ergodic capacity or its bounds will be shown
(in bits/channel use), calculated by averaging the instantaneous mutual information (or its

bounds) over the fading distribution [similar to (4.5)]. The SNR here is definé4 A%

1. Comparison of the Ergodic Capacity Bounds

Fig. 4.1 shows a comparison between the ergodic capacity upper- and lower-bounds,
calculated using (4.3) and (4.2), respectively, and then averaged over the fading dis-

tribution.

Note that CLB and CUB in the figures denote the capacity lower-bound and capacity
upper-bound, respectively. The optimum covariance matrix for the lower-bound de-
rived in this chapter is used as the transmit strategy in the calculations of both (4.3)
and (4.2). From Fig. 4.1, we observe that the two bounds are very close to each
other, especially in the low to medium SNR region 20 dB), and thus are both

tight. This justifies the use of the lower-bound as a design criterion to maximize the
mutual information. More asymptotic analysis of the difference between the upper-

and lower-bounds can be found in [66, 121].

2. Optimum Transmit Strategy vs. Uniform Power Allocation
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Ergodic Capacity Bounds

0 Il Il Il Il
0 5 10 15 20 25 30 35

SNR = P_J/a (dB)

Figure 4.1. Comparison of the capacity upper- and lower-bounds. Both bounds are obtained
using the optimum transmit covariance matrix for the lower-bousd= nr = 4, pr = 0.0,
F}r/aﬁ = 26.016dB. The values obé are 0.0099, 0.0148, and 0.0689, mr = 0.0, 0.5,

and 0.9, respectively.
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In the case of imperfect CSI here, the optimum transmit strategy refers to that for
the capacity lower-bound. As mentioned in Subsection 2.1.4, the uniform power
allocation scheme distributes the total transmit power evenly among all antennas

without requiring any CSI.

As expected (see the discussions in Subsection 2.1.4), from Fig. 4.2, with perfect
CSI at both ends, the capacities obtained from using the optimum transmit strategy
and uniform power allocation converge at high SNR for our channel model. The case
with imperfect CSl is shown in Fig. 4.3. Clearly, with imperfect CSI, the uniform
power allocation (used in [66]) performs strictly worse over the entire SNR range
when the channel correlation is high. This, in turn, shows the advantage (in terms of

accuracy) of using the optimum covariance matrix for the lower-bound.

. Effects of Channel Estimation Error and Channel Correlation

Figs. 4.4 and 4.5 give the capacity without channel estimation error, and the capacity

lower-bound with imperfect CSlI, respectively.

It is observed that channel estimation error causes a huge loss in ergodic capac-
ity. For example, from Fig. 4.4, witpr = 0.5 andpr = 0, the ergodic capacity is
about 15.9 bits/channel use at SNR = 15 dB. However, if the CSI is obtained from
channel estimation witl®, /g2 = 26.016 dB, the ergodic capacity shrinks to 14.1
bits/channel use at the same SNR (see Fig. 4.5). From Figs. 4.1 and 4.5, at high
SNR, the capacity is saturated due to channel estimation error. Channel correlation
can also significantly reduce the ergodic capacity. For instance, from Fig. 4.5, with
pr =0, at SNR = 15 dB, the capacity decreases from 14.1 bits/channel use to around
8.75 bits/channel use i increases from 0.5 to 0.9. (At SNR = 15 dB, the capacity

upper- and lower-bounds are fairly close.)
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Figure 4.2. Ergodic capacity of a MIMO channel: optimum vs. unifomq.= ng = 4,

pr = 0.0. Perfect CSI at both ends is assumed for the optimum strategy.

77



30 I I T .
— pT=0.5, perfect CSI

— % pT:0.9, perfect CSI | :
_— pT=0.5, CLB, opt.

25

..... p,=0.5, CLB, uni.
2011 p.=0.9, CLB, opt.

- pT:0.9, CLB, uni.

Ergodic Capacity/Capacity Lower—bound

0 | | | | | | |

0 5 10 15 20 25 30 35
SNR = P_Ja’ (dB)

Figure 4.3. Ergodic capacity lower-bound of a MIMO channel: optimum vs. uniform.
Nt =nr=4, pr= 0.0, Ry /0?7 = 26.016dB. The values ot are 0.0148 and 0.0689, for

pr = 0.5 and 0.9, respectively.
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Figure 4.4. Ergodic capacity of a MIMO channely = nr = 4. The two curves overlap

for (pr,pr) = (0.5,0.0) and(pr, pr) = (0.0,0.5).
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Figure 4.5. Ergodic capacity lower-bound of a MIMO channel using the optimum transmit
covariance matrixnr = nr = 4, By /02 = 26.016dB. The values 06 are 0.0099, 0.0148,

and 0.0689, fopt = 0.0, 0.5, and 0.9, respectively. The two curves do not overlap for

(pr,pr) = (0.5,0.0) and(pr, pr) = (0.0,0.5).
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Based on Figs. 4.4 and 4.5, the two curves marked Ygth pr) = (0.5,0.0) and
(pt,pr) = (0.0,0.5) overlap with perfect CSlI, but they do not overlap with imper-
fect CSI. Again, this is due to the unsymmetrical usé&kgfandRg in our channel

estimation.

. Optimum vs. Two Suboptimum Transmitters with Asymptotic Optimality

We now consider the special case without receive correlation as in Section 4.3 or in

Part 4 of Section 3.7.

Two suboptimum transmission strategies can be obtained:

e by ignoring the channel correlation information at the transmitter, treétiag

if it were the actual channel,

e or by a water-filling type of power allocation to the effective channel eigen-
modes oﬂ:I\';',OI:IWo (see Section 3.4) followed by a cancelation of the effect of

Rr.

We refer to them as the noise-suppression structure and the correlation-cancelation
structure, respectively, as in Part 4 of Section 3.7. Fig. 4.6 shows the comparison of

the optimum and two suboptimum schemes.

It is interesting to note that the relation between these three curves is analogous to

that observed in Fig. 3.5.

4.7 Summary

In this chapter, we have used a tight capacity lower-bound as the design criterion to maxi-

mize the mutual information of a MIMO channel with imperfect channel knowledge at both

ends. The tightness of the lower-bound has been shown by simulation. The closed-form
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Figure 4.6. Ergodic capacity lower-bound of a MIMO channel: optimum vs. suboptimum
transmitters.nt = ngr = 4. pr = 0.7, pr = 0.0. R;/0? = 26.016dB. The value ofg? is
0.0238 forpt = 0.7.
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optimum transmit covariance matrix (or the precoder matrix) for this lower-bound has been
determined for the special case with no receive correlation, and the optimum structure of
the transmitter has been presented for the general case with correlation at both ends. The
optimum transmit covariance matrix is shown to be advantageous over the non-optimum
uniform power allocation scheme. The effects of channel estimation error and channel cor-
relation have been assessed. We have also revealed the relationship between the capacity

lower-bound problem and the minimum total MSE design.

4.8 Derivation and Proof Details

4.8.1 Proofof Lemma3

We first equivalently formulate (4.8) as [7, p. 130, Section 4.1.3]

min min IndetMSHEF. G(F)]].
FM(FFIH)SPT min [MSEF,G(F)]]

The inner minimization is achieved by
G = FHAM {AFFHAR + (02 + 02 tr(RTFFM)] 10} (4.35)

This can be easily shown by taking the derivativdradetMSE(F, G)] with respect taG
(see Subsection 4.8.2). Substituting this formula into (4.7), (4.8) can then be equivalently

formulated as

min Indet|Ins + HFFHHY
F.tr(FFH) <Py " g2+ 02 tr(RTFFH) |

(4.36)

In the above, we have used the resi@fl + AB] = defl +BA|. DefineQ = FFH, and then
it is obvious that (4.36) is equivalent to (4.6).
The problem (4.36) has a closed and bounded feasible set and its objective function

is continuous at all points of the feasible set. Thus, by Weierstrass’ Theorem [5, p. 654,
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Proposition A.8], a global minimum exists for (4.36). By equivalence [7, p. 130, Section
4.1.3], the same global minimum exists for (4.8). Again, by equivalence, a global maximum
exists for (4.6) and the maximizinQop: for (4.6) is related to the minimizingc opt for

(4.36) or (4.8) afopt = Fcyopthopt. This concludes the proof afemma 1. [J

4.8.2 Derivations of (4.9)-(4.12)

Note that (4.11) and (4.12) come from the power constraint and the complementary slack-
ness, respectively. To derive (4.9)-(4.10), the preliminaries presented in Subsection 3.9.3
are needed. As before, we only need to take the partial derivativé$ @, G, L») with
respect td~* andG*, i.e., we need to find.%, /0 F* andd.%»/0 G*.

From [60],d [IndetX] = tr(X~19X). Therefore, with respect 6 andF",

0.%(F,G, o)

- tr{[MSE(F,G)]_l [GF(aF)FHAHGH +GHF(aFH)HHGH}}
—tr{[MSE(F,G)] 1 [GH(9F) + (aF")A"GH] } + o - tr [(9F)F" + F(aF")]
+0g - tr {[MSE(F,G)] " 'GG"} - tr [Rr (dF)F" + RrF(aF™)]

=tr{[[FPA"G" —1,][MSE(F,G)] 'GH + - F'] (9F)}
+tr { [AYGM[MSE(F,G)| " [GHF —I,] + - F] (9F")}

+02-tr {[MSE(F,G)] 'GG} -tr [FHRy(9F) + RrF(9F™)].

Using the identities in Subsection 3.9.3,

0L5(F,G,H2) _ f reHyH =H “1ap0 HT
T_{[F AHGH — 1] MSE(F,G)| *GH + 1, -F }
+AMGHMSE(F,G)] 1 (GHF — I) +- 12 - F
+a,§-tr{[MSE(F,G)]—1GGH}- [(FHRT)T +RTF] ,
0.%(F,G, o) : e T
|-#:—{[FHHHGH—IJ IMSE(F,G)] 1GH+u2-FH}
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+ARGHIMSEF,G)* (GHF —Ir) + 1o - F
+ aé-tr{[MSE(F,G)]‘lc;GH} . [_ (F'Rr)" + RTF} .

Therefore,

032(F7G7“2) _1‘ ng(FaG;HZ) i ng(FaGJlZ)
OF* 2 d0F d0F

= H"GH[MSE(F,G)| {(GHF —I,) + o - F
+0g - tr {[MSE(F,G)] *GG"} - RrF.
Similarly, with respect t& andG",
0.%5(F, G, 112) :tr{ [AFFRARGH —1;) +1,-GH] [MSE(F,G)]—l(aG)}
—I—tr{[MSE(F,G)]’l [(GAF —1,)FHAM 4 1,-G] (0@“)},

wheret, = aﬁ + aé tr(Ry FFH), as defined in Section 4.3, and

025(F,G,H2) {1 eHEH =H H =
==t o2 [AR(FTANGH 1))+ 1, GM] IMSE(F,G)) '
+[MSE(F,G)] M [(GHF — 1) -FHAM + 14 G,
. 0L(F,G, 1) e (eHGHH H =
|-T_—{[HF(F ARGH 1)) + 14- GM] [MSE(F, G)] }
+[MSE(F,G)]  [(GAF —1;)-F'A" + 14 G].
Therefore,

032(F7G7u2) 1— |:a$2(FaG7u2) +i- 022(F7G7u2):|

G 2 A0G A0G

= [MSE(F,G)] * [G(HFFMAM +14-1n) — FTAM]

Set

a$2<F7G7“2) - 09%2“:767“2)
TR —0 and TSR

Using the fact thaMSE(F, G) is full-rank, we obtain (4.9)-(4.10). This finishes the deriva-

=0.

tion of (4.9)-(4.12).]
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4.8.3 Proof of Theorem 4

As outlined in Section 4.3, our method is to find all the solutions satisfying the KKT condi-
tions (4.9)-(4.12) and then identify the optimum solution. An obvious solution that satisfies
the conditions is= = 0,G = 0, u» = 0. Clearly, this solution is of no practical use, except
that it will be used for comparison later. For now, we consider the case Whgre.

From (4.9), we can expreszin terms ofF as in (4.35). Substituting (4.35) into (4.7),

using the matrix inversion lemma [60], we obtain

MSE(F,G) = |, —GHF (4.37)
= 1 [FYARAF 100, (4.38)
G = [FHAMAF+1.-1,] TFHAM. (4.39)

Clearly, hereGHF is a Hermitian matrix, i.e GHF = FPH"GH. Based on (4.37), (4.38)

and (4.39),
tr{[MSE(F,G)]—lc;GH} —tr (FPARGH) /1,
= tr (GHF) /1a. (4.40)
Using (4.37) and (4.40), (4.10) can be simplified as

HAGH = {2 In; +[tr(GHF)/14] - 6 - RT } F. (4.41)

First pre-multiplying both sides of (4.41) /! and then taking the trace of both sides,

using the fact thaGHF is Hermitian, we obtain
141 (GHF) = o4 -tr (FFP) +tr (GHF) - 2 - tr (RTFFH)..
Using the definition ofr4, we obtain

po- T4-tr (FFH) = 02 -tr (GHF)..
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Due to (4.12), ifup > 0, tr(FF™) must be equal t&r, which yields
po = 02 -tr (GHF) /(14-Pr). (4.42)

AssumeF # O[i.e., tr(FF") > 0]. Then if i, = 0, we must have {fGHF) = 0, and (4.42)
is still valid. Furthermore, (4.42) holds even wher-0,G =0, t; = 0.

Using (4.42), (4.41) can be rewritten as

A

(k2/02)FH [0 -Pr-Ry + 0215 ] = GH. (4.43)

In general, the matri¥ can be expressed as

F=[08-Pr-Rr+02-In] 2 [V V] [off &f]
2 2 | 173 G
:[O-E'PF'RT“‘O-n'InT] 2 V¢F+V¢F 3
\Ff-/ \;f/
[A| cL

whereV andV have been defined in (4.13)¢ and®r arer x B and(nt —r) x Barbitrary

matrices, respectively < B < nt). As in Subsection 3.9.5, it can be verified that

~ _1
FlFe1 =0, Fg Fe =0, andH [0 Pr-Rr+ 07 In;] 2Fc1 =0.

cll

1
Post-multiplying (4.43) by{oZ-Pr - Rt + 03I, 2Fc ., using the above identities, we

obtainF¢ | = 0. Thus, theF matrix satisfying the KKT conditions can be expressed as
_1
F=[0f Pr-Rr+05 In] 2V®. (4.44)

Furthermore, based on (4.9), using a method similar to that in Subsection 3.9.5, we can

show that thes matrix satisfying the KKT conditions can be expressed as

_1
2

G=dcV" [0 -Pr-Rr+ 072 1] 2H", (4.45)

where®g is an arbitraryB x r matrix corresponding t®g.
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Up to now,®F and®g are arbitrary x B andB x r matrices, respectively, wheBecan
be any integer satisfying< B < nt. Since our ultimate goal is to determiQe which is
given byQ = FF", the quantity of interest is thex r matrix ®®E. We can then safely
chooseB = r without incurring any loss of generality for our problem. This explains why
we have chosen the size of the precoder métria bent x r in Section 4.3.

AssumeF # 0. Post-multiply both sides of (4.43) byand pre-multiply both sides of

(4.9) byG. Substitute (4.14) and (4.15) into the resulting formulas, to obtain

DA D =D ADE PEADE + 14 D A DY, (4.46)

O A O = (11/07) - PF Dr. (4.47)

Based on the above two formulas, using the method in [85], the optid®ugp: (up to
a unitary transform from the right-hand side) ag,p: (Up to a unitary transform from
the left-hand side) can be shown to be diagonal without loss of generality and are given by
(4.16) and (4.17), respectively. Inserting (4.14), (4.15), (4.16) and (4.17) into the expression
for u, and the power constraint(ﬁcvopthopt) = Pr, we can obtain two equations. By
solving them, we obtaip, andt, as given by (4.18) and (4.19), respectively.

An iterative procedure is used to determine the nunalgein the expressions of (4.18)

and (4.19). Lef| be thel-th element oA (1 <| <r). Initializem=rr.

1. Calculater and p from (4.19) and (4.18). Ifir < AnG?2/14, Stop and setg = m;

else: go to step 2.
2. Let®roptm:= 0andm:=m— 1. Go to step 1).

So far, we have shown that all the solutions satisfying the KKT conditions (4.9)-(4.12)
with F # 0 are given by (4.14)-(4.19), up to a unitary transform. All these solutions differ

only in a unitary transform, and thus lead to the same value of the objective function in
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(4.8), which, based on (4.9), can be shown to be
1 4 AHA
—Indet Ir + —FcoptH "HFcopt| -
g 7

SinceFQoptﬂH I3|Fc7opt is positive semidefinite, it is easy to see that the above is lower than
the value of the objective function fronfr < 0,G = O, L, = 0). Therefore, we conclude

thatTheorem 4holds.d

4.8.4 Proof of Theorem 5

As in Subsection 4.8.3, we start from the KKT conditions (4.24)-(4.27).
The zero solution satisfying these conditions, Fe= 0,G = 0, Ligc = 0, is immediately
identified, and is left aside for now. We go on to find out the non-zero solutions.

From (4.24), using the matrix inversion lemma [60], we obtain

G = FHAM [AFFHAM 4 02 tr (RTFFY) -Rer+ 02 Ing] (4.48)

A 1A -1
= { I+ FHAM (0% tr (RTFFY) -Reg-+ 03 - 1ne]  FF }

1 (4.49)

FHAM [02,tr (RTFF™) - Rer+ 02 - Ing
Based on (4.48) and the matrix inversion lemma, the following holds:

MSE(F,G) = I, — GHF

~ 1~ -1
—{Irge+ FAM [0Z-tr (RTFFY) -Rer+ 03 -1ng] " AF} . (450)
From (4.49) and (4.50),

GRerGM [MSE(F,G)]*
— GRer [0%tr (RTFFM) -Rer+ 02 - 1n,] HF,

tr{[MSE(F,G)]’lGRe’RGH}
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— tr{GRer 0% tr (RTFF") -Rer+ 0% Ing] "AF }. (4.51)

T, as defined in4.21)

From (4.51), (4.25) and the first equation in (4.50), we can show that

HHGH[MSEF,G)] Y [GHF — I, ] + [0&tr{[MSE(F,G)] *GRerG" }RT + Hgcln; | F

— —l:IHGH + |:O-Cze T5‘RT +ugc InT] F

A

GH =F"[0% 15- Rt + tgc I nr | - (4.52)

From (4.51),

Ts = tr{GRer[0% tr(RTFF") Rer-+ 0F - In] *HF}

tr {G[oZdr(RTFF) - Rer+ 021 ng — 07l ng (04T (RTFF) - Rer + 07 n] "HF }
0% tr(RTFFH)

tr (GHF) — 02 -tr {G[0%-tr(RTFF") - Rer + 07 - Ing] *HF }

- 0Z-tr(RyFFH) (4.53)
On the other hand, from (4.52),
tr {FPAMGH) = 15 0% tr(FHRTF) + pge- tr(FF™). (4.54)
From (4.53) and (4.54), using the fact ti@#F is Hermitian, it is clear that
Hge-tr(FF7) = 02 -tr {G[0Z, tr(RTFF") - Rer + 02 - I ng| *HF }. (4.55)

Due to (4.27), iftige > 0, tr(FF™) must be equal t&r, which yields
of 2 H 2 1
ugczﬁtr{G[ace-tr(RTFF ) Rer+ 05 - Ing) "HF },

i.e., (4.22). Assumé& # 0 [i.e., tr(FF") > 0]. Then if pgc = 0, the right-hand side of
(4.55) must be zero and the above identity is still valid. Furthermore, (4.22) holds even

whenF = 0,G =0, igc = 0.
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From (4.52), using the method used for deriving (4.44) and (4.45) in Subsection 4.8.3 as
well as the method used in Subsection 3.9.7, it can be shown that the precoder and decoder

matrix satisfying (4.24)-(4.27) can be expressed as

_1
F= [Ucze‘ T5- RT + Hgc- | nT} *VgPrg, (4.56)

_1 . ~1
G =®ggVe [0% T5-Rr+ tge Inr ] 2H [T6-Rer+ 07 1ng) (4.57)

wherets = 02 -tr(RTFFM), as in (4.23).
Pre-multiply (4.24) byG, and post-multiply (4.52) b¥ to obtain two equations. Sub-

stituting (4.56) and (4.57) into these two equations, we get

H
DG g Age Prg = Pr g Pryg,

D g Age Prg = Pog Age Prg Prg Age PG g+ Pog Age PE g

Once again applying the method in [85], we obtain (4.31) and (4.32). The constants in-
volved here, i.e.Ts, lUgc and g can be determined numerically. Therefore, we have deter-
mined the non-zero solutions to (4.4), as given by (4.29)-(4.32), up to a unitary transform.
Finally, as in Subsection 4.8.3, by comparing the values of the objective function from
using the non-zero solutions and from using the zero solution, it is easy to verify that the

non-zero solutions are all optimum. This concludes the proof fmorem 5. [
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Chapter 5

Minimum Sum MSE Transceiver Optimization
for Multiuser MIMO Systems with Imperfect

Channel Knowledge

5.1 Introduction

In Subsection 2.2.3, minimum sum mean-square error (MSMSE) linear transceiver de-
signs under sum power constraints for multiuser MIMO systems have been introduced as a
low-complexity and effective signal processing technique to manage both inter-stream and
multiuser interferences as well as to offer diversity and high data rate.

The MSMSE linear precoding/decoding design has been studied for the uplink in [91],
and for the downlink in [47,89, 103, 125]. Most of previous work on this design has as-
sumed perfect channel state information (CSlI). In this chapter, the imperfectness of channel
knowledge is taken into account [22,23]. Two sum MSE minimization problems are for-
mulated for the uplink and the downlink, respectively, subject to sum power constraints
and under imperfect CSI. Iterative algorithms based on the Karush-Kuhn-Tucker (KKT)

conditions are proposed for both the uplink and the downlink optimizations. Since the
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KKT-conditions-based algorithm is not guaranteed to achieve the globally optimum solu-
tion, a sequential semidefinite programming (SDP) method is also proposed for the uplink
optimization, which not only represents a feasible method to find the solution, but also
serves a way to check the performance of the KKT-conditions-based algorithm.

As mentioned in Subsection 2.2.2, from the information-theoretic point of view, the
multiple access channel (MAC, uplink) is better understood than the broadcast channel
(BC, downlink), due to their differences in interference and cooperation [17,31]. From
the viewpoint of signal processing, the uplink is also easier to deal with than the down-
link [82, 83, 88, 108]. Thus, the uplink—downlink duality is an important tool to sim-
plify the downlink system design (see Subsections 2.2.2 and 2.2.3). To be specific, in a
multiuser system with multiple antennas at the base station (BS) and with single-antenna
users, under perfect channel knowledge, with the same sum power, the achievable signal-
to-interference-plus-noise ratio (SINR) regions and normalized MSE regions for both links
are the same, when noise variances are identical at all receivers [82,94,110]. Because of
duality, beamforming problems in the downlink can be solved by forming and solving a
dual uplink problem [82,88, 108]. The same idea has been applied to the linear precoder-
decoder designehen both the BS and mobile stations (MSs) are equipped with multiple
antennag47, 89], the scenario considered in this chapter.

Here in the context of joint linear precoder-decoder designs with sum power constraints,
the uplink—downlink duality in average sum MSE is proved with imperfect CSI. Based on
this duality, the minimum sum MSEs in both links are the same. Any uplink MSMSE
design satisfying the associated KKT conditions can be translated for application to the
downlink. Unlike the methods in [21, 89, 93] that show the duality by direct calculations
of the MSEs or SINRs of all users, our proof here is solely based on the associated KKT

conditions and thus provides an interesting new perspective to the relation of the dual links.
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In Section 5.2, we describe the two design problems mathematically. Section 5.3
presents two KKT-conditions-based iterative algorithms for both the uplink and the down-
link. The duality in sum MSE is presented in Section 5.4. The sequential SDP method for
the uplink design is proposed in Section 5.5. Simulation results in Section 5.6 corroborate
our analysis and show the effect of imperfect CSI. We supply all the derivation and proof

details in Section 5.8.

5.2 Uplink and Downlink System Designs with Imperfect
Channel Knowledge

Consider the multiuser MIMO system model with linear precoding/decoding in Fig. 2.3. It
is assumed that the channels arising from the antennas at each MS are spatially uncorrelated
due to the presence of sufficient local scattering. Therefore, the uplink channel model is

given by [95] (see also Subsection 2.1.1):
1
Hi = ziz Hwi,

whereZ; is the normalized channel correlation matrix at the BS (with unit diagonal entries)
seen by user, i = 1,...,K. The entries oH,; are independent and identically-distributed

(i.i.d.) 4¢(0,1), Vi. The dual downlink channel model is given by
1
HYf =HiL Z2i=1,... K.

In practice, CSl is obtained through channel estimation. As mentioned earlier, the
downlink is more likely to become the bottleneck in data transfer than the uplink [4].
Therefore, we put more emphasis on the downlink, and assume that the channel estima-

tion is performed there. A common training signal matrix can be broadcast to all users for
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them to obtain the channel estimates. More generally, to account for different QoS require-
ments of individual users, separate training signal matrices can be employed to obtained
channel estimates for different users. In the latter case, for each user, the channel estima-
tion process is exactly the same as described in Section 3.2 and Section 3.4. Therefore, the

downlink CSI model is given by

1
2

HY =AP e AM =Rl =2, andEP =EY 22, i=1,... K.

5 gy

The entries oA, andE. are i.i.d..#(0,1— 02,) and.#¢(0,0%,), respectively, where
og; is the channel estimation error variance for usér= 1,...,K. It is assumed that the
channel estimation errors are independent of the data and channel noises. Denote the power

of the training signal matrix for usém@sR; , Vi. Then, as explained in Section 3.4,

2 tl‘( ) /P[rl
B 1+[tr( ). 02/Ri]’

The dual uplink CSI model at the BS can be expressed as:

Hi=Hi+E,i=1... K.

In the downlink, to make the transmitter aware of the channel state, the channel esti-
mates are fed back to the BS from the MSs. Thus, we assume that the estimated chan-
nel matrlces{H.}I 1 (or, equwalently{HH} * 1), the channel estimation error variances
{GE,}, 1, the noise variance?, and the channel correlation matrle@} * , are available
atthe BS. Asin [91], it is assumed that the joint optimizations are performed at the BS, and

then the optimum filters (i.e., precoders/decoders) for the users are sent to the MSs.

5.2.1 The Uplink Design
With the above CSI model,
K

ya= S (Hi+E)Fi Sulj + Nyl
u i; | | | | u
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The MSE matrix for usej, j = 1,...,K, is given by

MSEu = E [(rurj —Sui)(Furj —Su "]

o

+ Gj

K ~ ~
ZHiFiFiHHiH
i=

+0§'|M}GJ'H—GJHJFJ_FTH?G?“'J‘

GH. (5.1)

K
i;oéi tr(FiF) -3

The detailed derivation of (5.1) is given in Subsection 5.8.1. The sum MSE from all users
is then given by
K

mseis = > tr(MSEy,j).
=1

The uplink problem is to minimize the sum MSE from all users subject to a sum power

constraintPs, i.e.,

min  mse t
{(F1.GI

K
subjectto ) tr(FjF) <PRs (5.2)
=

5.2.2 The Downlink Design
With imperfect CSI, for each), j =1,...,K,

yai,j = (Hf +E) +Nat,j-

K
i;Ti Sdl,i

Similar to the uplink case, the MSE matrix for ugas calculated as

MSEq j =E [(raij —Sa1j)(farj — Saj)"]
= Rj { Hj TiT;
PR

2 { K TH

+ Og; - tr Zj TT;
IR

Hj+a§-|Nj}R'j* —RjAMT - THA R +1,,

}-RJR';. (5.3)
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Detailed calculations of (5.3) are presented in Subsection 5.8.2. The sum MSE for the

downlink can be expressed as

K
mse; = 3 tr(MSEyj).
=1

The downlink problem is formulated as
min  msey
{(T3RDI,

K
subjectto  tr(T;T}) <Ps. (5.4)
=1

5.3 lIterative Algorithms Based on the KKT Conditions

5.3.1 The KKT Conditions

Consider the uplink problem (5.2). We first formulate the associated Lagrangian:

K
ful [{(F],GJ)}J 1,[1u|] mSQl|7t-|—uu| . { [Z tr(FjF?)] _PS},
j=1

wherepy, is the Lagrange multiplier associated with the uplink sum power constraint. The
associated KKT conditions can be obtained using the same method as in Subsection 3.9.3,

and are given by (5.5)-(5.8).

FHAN = ZH FiFf A + o2 |M+ZoEJ r(FjFS) -2, (5.5)
R R K
AGE = SHE | S GI'G| A+ pur- I + 0By ztr(szkG'j*) Ing ¢ Fk,  (5.6)
j=1 j=1
k=1,...,K,
K
Hui > 0, th(FjF?)SPS, (5.7)
=1
K
Hui - Zt(FJFH) Ps| =0. (5.8)
=1
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Similarly, for the downlink problem (5.4), the Lagrangian is given by

K
Za [{(TJ’RJ)}T:p“dI] = MS& ¢ + Hdi - { [Z tr(Tjle_')] —PS},
=1

whereLl is the Lagrange multiplier. The associated KKT conditions for (5.4) are obtained

similarly as in the uplink case, and are given by (5.9)-(5.12).

K K
HkRE:{ HJ-RJ-F'R,-H';+ud|~|M+Zoéj.tr(RjRJH)-zj}Tk, (5.9)
=1 j=1
~ N K R K
TRHk=Riq HY | S TiTH | Her 0f - In+ 08y S tr(THET ) Ine g (5.10)
=1 =1
k=1,....K,
K
Mg > 0, ZU(TKTE)SF’S, (5.11)
k=1
K
g - ztr(TkT.t')—Ps = 0. (5.12)
k=1

5.3.2 Relation between the Lagrange Multipliers and the Decoders

Lemma 4 [Relation between the Lagrange multipliers and the receive filters (decoders)]

For any solutions satisfying the KKT conditions, the following identities hold:

K
Hul = (07 /Ps) - 5 tr(GKGY), (5.13)

K=1

K
Hai = (05 /Ps)- 3 tr(RgRY). (5.14)

K=1
Proof. See Subsection 5.8.3. [ |

5.3.3 lterative Algorithms Based on KKT Conditions

The problems (5.2) and (5.4) are not convex. However, it can be shown that a global

minimum exists for both (5.2) and (5.4) (see Subsection 5.8.4). The objective and constraint
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functions for both problems ameontinuously differentiable Furthermore, since there is
only one inequality constraint here, any feasible solution is regular. With these properties,
we conclude that the KKT conditions are necessary for local minimums (including the
global minimums) [5]. Therefore, we now propose two algorithms developed from the
KKT conditions [(5.5)-(5.8) and (5.9)-(5.12)], as given in Tables 5.1 and 5.2, for solving
both problems.

Table 5.1. The KKT-based iterative algorithm for solving (5.2)
1) InitializeFy, k=1,...,K, which are non-zero and satisfy the power constraint

with equality.
2) UpdateGg using (5.5)k=1,...,K;
Gi = F R 3K HF FTAY + 02 v + 3K 0 - tr(FjFY) - 2%
3) Updateuy using (5.13);
4) UpdateFy using (5.6)k=1,...,K;
Fie= (A (31 GG+ pur - I + 0B, - 51 r(GZGH) - Iy ) T HE G
5) If the termination condition is met, stop; otherwise, go back to 2).

Table 5.2. The KKT-based iterative algorithm for solving (5.4)

1) Initialize Ty, k=1,...,K, which are non-zero and satisfy the power constraint
with equality.

2) UpdateRy using (5.10)k=1,...,K;
R = TRHWAL (3 TiTH A+ 02 - I+ 02 S tr(THET ) I 75

3) UpdateLy using (5.14);

4) UpdateT using (5.9k=1,...,K;
Tie= ¥ HRIRIAY + gy - v + 35 02 - tr(RjRY) - £ ~HRY;

5) If the termination condition is met, stop; otherwise, go back to 2).

Similar algorithms have been used in [91, 125] with perfect CSI. However, here the
update of the Lagrange multipliers is based on (5.13) and (5.14), which is simpler and more

accurate than the method in [91, 125], as the latter requires eigenvalue decompositions and
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a solution to a non-linear equation for each update of the Lagrange multiplier. This will be
demonstrated by an example in Part 2 of Section 5.6.

Asin [47,91,125], we cannot show that the iterative algorithm in Table 5.1 or Table 5.2
is guaranteed to achieve the globally optimum solution (except wherl [20]), despite
the fact that the global minimum exists, since the objective function in (5.2) or (5.4) are
not convex in{F;,Gi}X ; or {Ti,Ri}K ;1. However, as indicated by the simulations in
Section 5.6, starting from a set of non-zéﬁ)}iK:l, the algorithms yield reasonable results,

consistent with those obtained from alternative algorithms.

5.4 Uplink—=Downlink Duality in Average Sum MSE with
Imperfect Channel Knowledge Via KKT Conditions

Theorem 6 (Uplink—downlink duality in average sum MSE)

Let {Fk,Gk}Ezl denote an admissible set of precoder-decoder pairs for the uplink
average sum MSE performance that satisfies the KKT conditions (5.5)-(5.8)Ik et
v 02/ 1y -G, and letRy satisfy (5.10)k=1,...,K. Then under the same sum power con-
straint, the average sum MSE achieved in the uplink by uSFmgGk}Ezl can be achieved
by {Tk, Rk}Ezl, which satisfies the KKT conditions for the downlink problem. Conversely,
assume tha{Tj,Rj}G(:l is an admissible set for the downlink sum MSE performance that
satisfies the KKT conditions (5.9)-(5.12). lFgt= /03/iqi - R, and letG; satisfy (5.5),
j =1,...,K. Then under the same sum power constraint, the average sum MSE achieved
in the downlink by{T|,R;}%_; can be achieved b{Fj, G}, which satisfies the KKT

conditions for the uplink problem.

INote that in (5.2) and (5.4), the objective function is non-convefFinG; } ; or {Ti,R;}K ; even when

0g, = 0,Vi.
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Proof. See Subsection 5.8.5. u

We have shown that if a solution satisfying the uplink KKT conditions achieves a certain
average sum MSE, this sum MSE can also be achieved by a solution satisfying the downlink
KKT conditions, and vice versa.

As mentioned in Subsection 5.3.3, here the KKT conditions are only necessary for local
minimums in both links. However, bVheorem 6, every possible local minimum (satisfy-
ing the KKT conditions) of the uplink sum MSE corresponds to a same local minimum in
the downlink. We then conclude that the globally minimum sum MSEs for the uplink and
downlink must be the same (under the same sum power constraint and the same imperfect
CSI).

According to the proof offheorem 6in Subsection 5.8.5, at each local optimum (in-
cluding the global optimum), each user’s average MSEs in both links are the same, not just
the average sum MSEs. See (5.37)-(5.38) and (5.40)-(5.41).

Theorem 6matches the duality results in [47,89,93] wlt@ = 0 and generalizes the
sum MSE duality results wheuéj > 0,V]. It reveals the underlying connection between
the uplink and downlink joint MSMSE linear precoder-decoder designs based on the KKT
conditions, whereas previous duality results were obtained by calculating the individual
SINRs or MSEs for each user in both links [21,47,89, 93].

Remark 5.1 According to the uplink—downlink duality with imperfect CSI, when we
need to solve a linear MSMSE transceiver optimization problem with imperfect C8idor
downlink we can first formulate a dual uplink problem, find tfig, G;}K ; for the dual
link using the above method, and then translate the transceiver pairs for application in the

downlink.
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5.5 Alternative Method for Uplink Optimization

In this section, we assume that the number of data streams is equal to the number of trans-
mit antennas for each user, i.g.= N;,i = 1,...,K. We intend to solve (5.2) by solving

an equivalent problem. Since the KKT-conditions-based algorithm is not guaranteed to
yield the globally optimum solution, here we propose another method for uplink optimiza-
tion. In general, this alternative method is not guaranteed to obtain the global minimum,
either. However, it is still of great importance, not only as an actual way of finding the up-
link transceiver pairs, but also as an effective way to check how the KKT-based algorithm
performs.

The uplink problem (5.2) can be equivalently formulated as

mln min mS%H
{F }I 1 Z 1tr(F FH)<PS {G }I =1

It turns out that the inner minimization is achieved when (5.5) is satisfied far ahen it

can be shown that

mse = tr {)2

K
oflm+ Y o) tr(Q)) -
=

} +const

whereconstdenotes a constant that equ%@< 1tr . )—tr(IM)] Qj dEfF FH ,Vj,and

[

Therefore, instead of solving (5.2) directly, we attempt to solve its equivalent problem, as

K -1
z )-Zi+02-1 ] . (5.15)

||Mx

shown below:

K
_ min X Ar(Qi)-Zj+02-Im| ¢, (5.16)
X; {Qj}ﬁ'< 1 { [Z J J "
K
subject to Z tr(Qj) < Ps, (5.17)
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X as given in (5.15) (5.18)

Qj=0,j=1,....K. (5.19)
We first present the following theorem for a special case.

Theorem 7 Whenog; = 6Z andZ; = Zgs, j = 1,..., K, the problem given by (5.16)-(5.19)
is equivalent to the following semidefinite program (SDP):
_ min tl’{)?- [0'2-||\/| —|—5’é-Ps-zBs}},
X Qi "
K
subject to Z tr(Qj) <P,
=1
X I'm
I'm Zllelqujlq'j_' + 62Ps-Zgs+ 07 - Im

Qi=0,j=1,... K.

Proof. The proofis an extension of that in [59]. Details are given in Subsection 5.8.6.

A SDP is a convex optimization problem [7] and can be solved using SDP software [97].
A globally optimum solution is guaranteed.

Once the globally optimum solution for the SDP is obtain@%lj,}ﬁ‘:l can be obtained
by performing Cholesky factorizations QQj}ﬁﬁzl [59], due to the assumption thgt=
Nj,j=1,...,K. The correspondin@Gj}'f:1 can be obtained using (5.5).

Note that if {F;}'_; is an optimum set in terms of sum MSE, thifjU;}X_; is also
an optimum set, Wher{an}’j(:l is any set of unitary matrices of proper size.

Clearly, the result inTheorem 7 itself has very limited application, because of the
conditions requireddZ; = 6Z andZ; = Zgs, Vj).

In general, the equivalent problem given by (5.16)-(5.19) is not a SDP, because the

objective function in (5.16) is not convex. Howev&heorem 7 provides a basis to find a

103



solution to the equivalent problem. Specifically, we have a SDP-based iterative algorithm

given in Table 5.3.

Table 5.3. The SDP-based iterative algorithm for solving (5.2) [the sequential SDP method]
1) Initialize Qj = [Ps/(KN;j)] - In;,Vj. Calculate the value of the objective function
fold using (5.15) and (5.16), givefQ; }X_;.
2) Given{Q;},, calculateZ = $X_; 02, - tr(Q;) - Zj + 02+ I
3) Solve the SDP given by (5.20)-(5.23) to obtain a new se{t:qf}ﬁ‘:l.
Calculate the value of the objective functié?f", i.e., the value of (5.20).
4) If |frew_ fold| < ¢ stop; otherwise, set®!d := "W and go back to 2).

During each iteration, the matrix (see Table 5.3) is fixed and thus the problem given

by (5.20)-(5.23) is a SDP:

_min  tr{Xz} (5.20)
X; {Qj}z‘(zl
K
subject to Z tr(Qj) <P, (5.21)
=1
X I
=0 (5.22)
v Y HjQHY +2Z
Q;>=0,j=1,...,K. (5.23)

Essentially, the algorithm in Table 5.3 approaches the solution by solving a sequence of
SDPs which approximate and converge to that given by (5.16)-(5.19). Therefore, it is also
referred to the sequential semidefinite programming method.

After obtaining{Q); }'j<:1, we can obtair{Fj, Gj}~'j<:1 as mentioned earlier.

5.6 Simulation Results and Discussions

1. Simulation Setup
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As in previous chapters, the exponential model is used to describe the correlation
of the channels arising from the BS antenn@spq = p* 9, where0 < p; < 1,

p,g € {1,...,M} andi =1,...,K. When simulating the ABER performance, we
assume that 4-QAM is used in each user’s data streams. Here the SNR is defined
as SNR= Ps/g?, which should not be confused with that defined in Chapter 3 or in
Chapter 4. In the following simulations, the number of ugérs assumed to be 3,

and the number of BS antenniskis either 6 or 8. The number of antennas of each
user equals the number of data streams, both equal to 2\ji-e.l; = 2,Vi). Unless
otherwise stated, the correlation exponents, training powers and channel estimation

error variances are given in Tables 5.4 and 5.5 (with the only exception in Fig. 5.2).

Table 5.4. Channel correlation exponents and estimation error varidvice )

correlation exponents and error variances

Rri/02 =30dB,Vi | higherp's: p; = 0.8,0, = 0.7,p3 = 0.5;

02, = 0.0238 02, = 0.0156 02, = 0.0093

lower p’s: py = 0.5,0, =0.3,p3=0.2;

02, = 0.0093 02, = 0.007Q 02, = 0.0064

Rri/02 =25dB, Vi | higherp’s: p; = 0.8,0, = 0.7,p3 = 0.5;

02, = 0.0752 02, = 0.0494 02, = 0.0295

lower p’s: py = 0.5, 00 =0.3,p3 = 0.2;

02, = 0.0295 02, = 0.0221 02, = 0.0203

2. Comparison of the KKT-based Algorithm and the SDP-based Algorithm for the Up-
link Problem (5.2)
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Table 5.5. Channel correlation exponents and estimation error varidvice 8{

F{r,i/oﬁ =30dB, Vi | correlation exponents and error variances

higherp’s p1=0.80,=0.7,p3=0.5;

02, = 0.0329 02, = 0.0215 02, = 0.0127

lower p’s p1=05,0,=0.3,p3=0.2

02, = 0.0127,02, = 0.0094 02, = 0.0086

Here we provide a concrete example to show the equivalence of average sum MSEs
obtained from the two algorithms in Tables 5.1 and 5.3. Ket 3, M = 6 and

Ni = I = 2,Vi. AssumePtr,i/oﬁ = 30 dB,Vi. The channel correlation exponents

are given byp; = 0.8,0, = 0.7, p3 = 0.5 (the higherp’s), and the corresponding
estimation error variances can be found in Table 5.4. We set the BYB?) to be

20 dB.

Using the channel estimation method in Section 5.2, the following channel estimates

are obtained for a specific channel realization:

—0.67074+0.0949 -0.1160-0.1404d
—0.7679+0.4335 —0.0944—0.3061

—0.5513—-0.3191  0.0039+ 0.0052

oI
=Y
I

—0.3205-0.6796 —0.3382—0.0634
—0.8113—-0.2604 —0.2913—-0.5147

—0.9751-0.5906 —0.3598—1.1833
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Table 5.6. A comparison of the two algorithms given in Tables 5.1 and 5.3

SDP-based KKT-based

achieved sum MSE 0.9953 0.9941

average computation time (seconds) 8.0061 0.0771

0.4579—-0.0463 —0.9577+0.5081
0.9834+0.3874 —0.9878—0.1083
0.5648+0.6865 —0.3627—0.4534

"= —0.6043+0.9826 —0.4557+ 0.3524 ,
—0.3226—0.4818 —0.2589+1.0224
—0.5015—-0.6484 —0.3455+0.7778

1.5141-0.3104 0.6366—0.8878
0.9365—1.3479 —0.4525—-1.7763

o 1.2987—-0.5664  0.2079—1.0612

3=

—0.0272+0.1190 —-0.3041+ 0.3201

—0.6847—0.0002  0.0914+0.0215

—0.2971+0.7746 —0.6777+0.2414

The comparison of the two algorithms is given in Table 5.6.

Although neither is guaranteed to achieve the globally optimum solution, the two
algorithms have been found to converge after only several iterations and yield equiv-
alent results as shown in Table 5.6. Note that the complexity of the SDP-based al-
gorithm is much higher than that of the KKT-based algorithm, where complexity is

measured by the computation time required for both algorithms to converge (at the
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same required data precision). Both algorithms are run on the same hardware using
the same version of MATLAB. It is also worth mentioning that if in the KKT-based
algorithm the Lagrange multiplier is updated using the method in [91] , then the aver-
age computation time is 0.6728 seconds, which is 8.7 times that required from using

(5.13).

Similar comparison results (as in Table 5.6) can also be observed for different channel
realizations and with different system parameters. Fig. 5.1 shows more comparisons
of these two algorithms with different values®§/ g2 and with different amounts of

channel correlation. Each point on the curve is obtained by averaging the sum MSE

from 10,000 channel realizations.

When oZ; = 62 andp; = p,Vi (i.e., Zj = Zps, Vi), the KKT-based algorithm also
yields the equivalent average sum MSE as that from solving a single SDPl{see
orem 7). Fig. 5.2 shows an example of the comparisons, wﬁgrgéaﬁ = 29.66dB,

Vi, 5,%:0.01,;):0.5, K=3,M=6,N =Ij=2Vi.

We can see that the results obtained using the KKT-based algorithm are consistent
with those from the SDP-based algorithm as given by Table 5.3, or from solving a
single SDP in the case specified Biteorem 7. Therefore, below we investigate

the effects of channel estimation error and channel correlation in the uplink based on
the{Fi,Gi}iK:l obtained from the KKT-based algorithm in Table 5.1, since it is less

complex.

. Effects of Channel Estimation Errors and Channel Correlation on the Uplink Perfor-

mance

Fig. 5.3 shows the effect of channel estimation errors as well as that of channel cor-

relation.
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Figure 5.1. A comparison of the average sum MSEs obtained from the two algorithms in
Tables5.1and 53K =3, M =6,N; =1, =2, Hm/aﬁ = 30dB, Vi. Channel correlation

exponents and channel estimation error variances are given in Table 5.4.
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Figure 5.2. A comparison between the average sum MSEs obtained from the KKT-based
algorithm and from solving a single SDP as describedeorem 7. K =3, M = 6,

Ni =li =2 Rj/02 = 29.66dB, pi = p = 0.5, 02, = G2 = 0.01, Vi.
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ABER of User 1 in the Uplink
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Figure 5.3. Comparison of the ABERs of User 1 in the uplink with or without channel
estimation errors and with different amounts of channel correlation. With imperfect CSlI,
the following parameters are used for this figue=6,K =3 N, =1; = 2. F{r,i/aﬁ =30

dB, Vi.
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In the case of imperfect CSlI, the training power for each user is 30 dB. Different
amounts of channel correlation have been considered. Comparing curves 1 and 3 or
curves 2 and 4, we can see that channel estimation errors cause a large performance
degradation on the ABER of User 1. Comparing curves 1 and 2 or curves 3 and 4,
we can see that channel correlation also has a significant impact on system perfor-
mance. For example, in the case of perfect CSI, from curves 3 and 4, the perfor-
mance degradation is about 3.75 dB whpn p», p3) changes fronf0.5,0.3,0.2) to
(0.8,0.7,0.5). In the case of imperfect CSI, the performance degradation caused by
channel correlation is even larger. Similar observations can be made from Fig. 5.4,
where the training power for each user is 25 dB in the case of imperfect channel

estimation.

Fig. 5.5 shows the ABER results of User 1, when the number of BS antelhas,
increases from 6 to 8. IncreasimMg implies introducing more antenna diversity.
Therefore, from curves 1 and 3 or curves 2 and 4 there, we can see that the effect of
channel estimation errors can be compensated by introducing diversity. Note that one

can also introduce diversity by transmitting fewer data streams (i.e., redyoing

. Duality in Average MSE with Imperfect Channel Knowledge

In Fig. 5.6, the curve of average sum MSE in the uplink is obtained using Table 5.1.
One of the curves for the downlink is obtained by usiffieorem 6 the other is
directly obtained from Table 5.2. The three curves overlap with both perfect and
imperfect channel estimation. Therefore, the results in Fig. 5.6 agredivibrem

6. The average sum MSE curves obtained here also agree with those in Fig. 5.1 with

same parameters.

The duality in average sum MSE can also be observed in Fig. 5.7 under different

112



ABER of User 1 in the Uplink

—Oo— 1-——Higher p s, with est. err.s RS S R R N R R R

—F—2-—-Lowerps,withest.err.s | == 0o N
—— 3———Higher p s, without est. err.g| -~ SRR L
—&— 4———Lower p s, withoutest. errs| ]

10 Il Il Il Il Il
0 5 10 15 20 25 30

_ 2
SNR = P /o (dB)

Figure 5.4. Comparison of the ABERs of User 1 in the uplink with or without channel
estimation errors and with different amounts of channel correlation. With imperfect CSlI,
the following parameters are used for this figuke=3, M =6, N, = |; = 2, F’mi/aﬁ =25
dB,i=1,...,K.
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ABER of User 1 in the Uplink
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Figure 5.5. Comparison of the ABERs of User 1 with channel estimation errors and differ-
ent amounts of antenna diversity.= 3,N, = |; = 2, Pmi/ar% =30dB,Vi. M =6o0r8. The
corresponding correlation exponents and estimation error variances are given in Tables 5.4

and 5.5.
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Figure 5.6. Duality in average sum MSE.=3, M =6, N, =1;=2,i=1,...,K. The

lower p’sare usedp; = 0.5, p, = 0.3, p3 =0.2. Pmi/oﬁ = 30dB, Vi.
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Figure 5.7. Duality in average sum MSE.=3, M =6, Nj=1;=2,i=1,...,K. The

higherp’s are usedp; = 0.8, p, = 0.7, p3 = 0.5. Ptr’i/aﬁ = 25dB, Vi.

system parameters.

As mentioned in Section 5.4, at the local or global optimum, each user’s average

MSEs in both links are the same. This is shown in Fig. 5.8.

5. Effects of Channel Estimation Errors and Channel Correlation on the Downlink Per-

formance

Figs. 5.9 and 5.10 demonstrate the effects of channel estimation errors and channel

correlation on the downlink system performance, which are similar to those observed
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Figure 5.8. Duality in individual users' MSEX =3, M =6, Nj = |; = 2, R;;/0? = 30

dB, Vi. The lowerp’sare usedp; = 0.5, p, = 0.3, p3 = 0.2. For each user, curves for the

uplink and the downlink overlap.
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in the uplink.

We also compare the ABERs of User 1 in both links with or without channel esti-
mation errors. See Figs. 5.11 and 5.12. We observe that without channel estimation
errors, the ABERSs in both links seem to be the same. However, this is not true with
imperfect CSI. Thus, in case of imperfect CSI, the duality holds in average MSE, but
not in ABER. Similar results have been observed in [21, 114] in the case when the
BS is mounted with multiple antennas and the MSs are each equipped with a single

antenna.

We now provide more insight into the results shown in Figs. 5.8, 5.11 and 5.12.
From previous sections, we can see that the derivations of average individual or sum
MSEs depend largely on the first-order and second-order statistics of the transmitter
signal, channel fades, channel noises and channel estimation errors, which are the
same for the dual links. Thus, it is expected that the duality in average MSE holds.
On the other hand, the BERs depend on the interference-plus-noise distributions,
which vary with the relative strengths of the interfererfca&’hen there are channel
estimation errors, the interference strengths depensaon different ways for the

uplink and the downlink [see (5.1) and (5.3)]. Therefore, the BERs in both links
become noticeably unequal whBgis relatively large (and thus channel estimation

errors become dominant).

While the ABERSs in both links are not identical, they are of the same order of mag-
nitude. If we have used the duality to obtain the transceiver pairs for the downlink
from the dual uplink, we should take into account the ABER performance difference

between the dual links at high SNR and use some extra margins based on Figs. 5.11

2Here the interferences include the inter-stream interferences from the same user, the multiuser interfer-

ences, as well as those caused by channel estimation errors.
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Figure 5.9. Comparison of the ABERs of User 1 in the downlink with or without channel
estimation errors and with different amounts of channel correlaon.3, M =6, N, =i =
2,Vi. With imperfect CS',P{M/O}% = 30dB, Vi. The corresponding correlation exponents

and estimation error variances are given in Table 5.4.
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Figure 5.10. Comparison of the ABERs of User 1 in the downlink with or without channel
estimation errors and with different amounts of channel correlatios: 3, M =6, Nj =

li = 2,Vi. With imperfect CSIRy;/02 = 25dB, Vi.
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Figure 5.11. Comparison of the ABERs of User 1 in the uplink and in the downlink with
or without channel estimation errork. = 3, M = 6, N; = |; = 2,Vi. With imperfect CSI,

F{r,i/aﬁ = 30dB, Vi. The highelp’sare usedp; = 0.8, p, = 0.7, p3 = 0.5.
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SNR = P_/o” (dB)

Figure 5.12. Comparison of the ABERs of User 1 in the uplink and in the downlink with
or without channel estimation errork. = 3, M = 6, N; = |; = 2,Vi. With imperfect CSI,

F{r,i/aﬁ = 30dB, Vi. The lowerp’sare usedp; = 0.5, p, = 0.3, p3 = 0.2.

122



and 5.12. Specific values of these margins can be obtained from simulations.

5.7 Summary

Minimum sum MSE linear transceiver design problems are formulated for multiuser MIMO
uplink and downlink assuming imperfect CSI. A duality in average sum MSE between these
two designs has been proved based on the associated KKT conditions. Furthermore, when
the minimum average sum MSE is achieved, each user’s individual average MSEs in both
links are also the same. Simulation results agree with the analytical duality results. The
KKT-conditions-based algorithms are proposed for both designs. For the uplink, we have
also proposed a sequential SDP method. By simulation, the two algorithms are shown to
obtain consistent sum MSE results.

Based on the optimized transceiver pairs, we have assessed the the effects of channel
estimation errors and channel correlation at the BS. It has been noted that while the individ-
ual users’ average MSEs in both links are the same, their average BERs are not the same,

due to different interference structures.

5.8 Derivation and Proof Details

5.8.1 Detailed Calculations of (5.1)

From Section 5.2, ; = Gj - yy = Gj (ziKzllzliFiSuLi + Z,Kzl EiFisu + Nyl)-

Defineyy ett = YK 1 HiFisu i, andey ch = YK 4 EiFisy,. Then,

MSE

=FE [(ruu —Sul./j) (rul,j _SLJ|7J)H]
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=E [(Gijl,eff+Gjeu|,ch+Gjnu| —suj) (GjYuets+Gjeuch+Gjnu —Su|,j)H] :

(5.24)

Here the expectation is taken over the distributions of data vectors, channel noise and chan-

nel estimation error matrices. Using the assumptions made in Subsection 2.2.3,

E(Su,j S0l ) E(Su,isi ;)

:Ilja

=0V, J,i # |,

E[GjnunfiG!] = 07-G;G'.  (5.25)

Furthermore, using the assumptions made in Subsection 2.2.3 as well as in Section 5.2,

E [GjyuLefny'l,effGﬂ -

E [Gjeu chel nCf'] =

_i;GEi-tl’ FiFiH>-Ei

Fisuis, ka )GH

(K| G

iE (suisli ) F

GH

H, (5.26)

K
z EiFisul |SE|| kFK Ek) G|j_|

E (suiSi k) FREK | - GV

cH

1 1
ZZZIE (EwFiFIER) =7 | G!

GH, (5.27)

where in the second line of (5.27), the outer expectation is with respect to the distributions

of channel estimation error matrices and the inner one is with respect to those of data

vectors. In addition, using the independence between data vectors from different users, data

vectors and noise vectors, data vectors and channel estimation errors as well as between

noise vectors and channel estimation errors, it is easy to verify that

E [GjYulefi€h G} ] =0, E[GjyurerinGh]

=0,
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E[GJeULChnE'IGN =0, E[GJYUI,effSTLj] :GjHij,
A [GJeULChSTI,j] =0, E [Gjnuﬁm,j] =0. (5.28)

Expanding (5.24) and using (5.25)-(5.28), we can then obtain (5.1).

5.8.2 Detailed Calculations of (5.3)

From Section 5.2,

Faij = RjYaij =R

K

(R} +E}) (_leiSdl,i> +Nal, |
i=

Defineyqierr,j = HY (311 Tisuii), andegicnj = EY (31<; Tisaii). Then,

MSEy)

=E [(rdu —Sa1j) ("l ‘Sd'J)H}

= E{ [Rj (Yaieft,j+€dichj+Narj) —Sdj] [Rj (Yaiets,j+€dicnj+ Ndtj) — St " } .
(5.29)

Clearly, by assumptions made in Subsection 2.2.3,
Elsar,jsi ] =, Elsaiis ;] = 0¥, ],i # j; and E[Rjngjng) ;R[] = of - RjRf.

Using the assumptions of independence between data vectors from different users, data
vectors and noise vectors, data vectors and channel estimation errors as well as between

noise vectors and estimation errors, we obtain

HR',*

=R;HY (ZTiTiH>F|jRjH, (5.30)
i=
H H < < H H
E [Rjedl,ch,jegl,ch,jRj } =E |RjE] (_ZlkleiSdLiSE'Lka) EiR] ]
1= —
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=K

= Of;-tr _zj ( TiTiH)] ‘RjR. (5.31)
RN
In addition,
E —Rjydl,eff.,jechthH =0, E [Rijl,eff,jng'uRﬂ =0,
E_ ]edlchjndIJ ] =0, E[Rjydl,efnjsgu} ZRjH'ij,

E _Rjndl.,jS'Ju} =0, E [Rjedl,ch,jS'M =0. (5.32)

Expanding (5.29) and using (5.30)-(5.32), we obtain (5.3).

5.8.3 Proof of Lemma 4
We will only show (5.13). Post-multiplying both sides of (5.5), ko 1, ... K, to obtain

FHANGH = Gy G, vk

K K
S HiFiFf AT + 07 lu+ 5 of-tr(FiF}) -
=1 =1

Taking the trace of both sides and summing dydp get

K K K
tr (FR AL GHGk> ( H-F-FHHH>
kgl ( “ (kzl “ Z1 SR

K
+0o7- Y tr(GkGY)
=

K K
+ Y of-tr(FiF).- [Z r(GyZGy) (5.33)
Z 4
Pre-multiplying both sides of (5.6), fér=1,...,K, to obtain
R R K R K
FRHKGE =F SR | S GG | H+ |t + 0B S (GG | - Iy ¢ Fis Yk
j=1 =1
Therefore,
K R K R K
Y tr(FRHLG Z FFRHE ) [ S GG | | + - Ztr (FeFE)
K=1 k=1 =1
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Simply by comparing (5.33) and (5.34), it is easy to see that
K K
O'r%- z tr (GKGE) = Uy - z tr (FkFE) .
k=1 k=1
According to (5.8), ifuy > 0, theny K tr (FFl) = Psand (5.13) follows immediately. If
pur = 0, using the above equality, one must hayge 35, tr (GG} ) = 0 and (5.13) still

holds. The proof for (5.14) is similar, and is omitted for brevity. This concludes the proof

of Lemma 4.

5.8.4 Proof of Existence of Global Minimums for (5.2) and (5.4)

The uplink problem (5.2) can be equivalently formulated as

min min msey ;.
{Fi} ., s tr(RiFH) <Ps {Gi}K,

It is easy to show that the inner minimization is achieved when (5.5) is satisfied for all
Define

K
B=0i-Im+ 5 oj-tr(FiFf)-Z;.
=1

Using (5.5) for allk, the average sum MSE can be expressed as:

-1
K K
mseg ¢ = Ztr(hj) tr(IM)+tr{ 2 H;FjF] H'j*+J2 Jz}, (5.35)
j=1 j=1
and (5.2) is equivalent to
min mseg; [asin (5.35)
{F }| =1
subject tozltr(FiFiH) <Ps. (5.36)
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Let F = diag{F1,...,Fk}. Then the constraint in (5.36) can be written ad&") < Ps,
Thus, the feasible set of (5.36) is a subset of the (closed and bounded) Frobenius norm
ball of radius,/Ps. It can be shown that this set itself is closed and bounded. As can be
seen from (5.35)nsg, ; as a function O{Fj}lj(:]_ is continuous at all points of the feasible
set. Invoking Weierstrass’ Theorem [5, p. 6®&4oposition A.8], we conclude that a global
minimum exists for (5.36). Since (5.2) and (5.36) are equivalent, the same global minimum
also exists for (5.2) [7, p. 130, Section 4.1.3].

The proof of existence of a global minimum for (5.4) is similar and is omitted for

brevity. (J

5.8.5 Proof of Theorem 6

We begin with the forward part. Suppose that we are g{\}é{)Gk}E:l, a set of precoder-
decoder pairs for the uplink that satisfies the KKT conditions (5.5)-(5.8). Then using (5.5)

fork=1,...,K, we obtain

K K
msg =S tr(l;)— S tr(APGHF) .
&t i; (h) i; ( i i |)

Define

Jai = |:|iHGiHGi|:|i, Jgik= |:|iHGEGk|:|i, andchk:tr(GkZiGE),i,k: 1,...,K.

-1
lNi} 3

K K
mse; = .;tr(l ) — .thr(Di) , (5.37)

Using (5.6), it can be shown that

K
HPGIF = RI'GI'GiH; {H,H (Z GEGk> Hi +
&1

K
Mo+ 0F - Y tr (GKEiGY)
=]

and thus

128



where

1
K K

Di = Jai [z JB,jik+ <llu| + 0% > Ci,k) 'INi] - (5.38)
r=1

k=1

In the downlink, let

Tk=ax-GY, (5.39)

whereaqy is a scalar whose choice will be discussed latér, Let Ry be related tory as
given by (5.10)k=1,...,K, and then
K K
mse; = Z tr(ly;) z H TiRj)
=1 =1
SinceRj is related tar j through (5.10),
Hj+-

-1
K K

HY TR = H'j*TJ-T'j*HJ-{H'j* [Z T TR OF+ OF Ztr(TEijk)] IN,} :
=1 k=1

Vj. Using (5.39), we can expressse in terms of {Gy}X_; as follows:

K K
mset = z tr(ly;) — Z tr(Dj), (5.40)
=1 =1
where
-1
S |ax/? On < Jaxl*ci
Dj=Ja, JB,jk+ + 0 ——= | INny| - (5.41)
T [Zﬂanz 3wt Ty O 2 T )
Note that the choice ofay}£_; should satisfy the sum power constraint for the downlink,
i.e.,
K K
> tr(TiT}) = z oy |2tr(GH Gy) < Ps. (5.42)
k=1 K=1
On the other hand, from (5.13),
K g2
S (GG =
=1 Hul

If we chooseay = /02/ Ly, VK, from (5.38) and (5.41), the sum MSE for both links will
be identical while (5.42) is satisfied with equality. In the remaining proof, we will use this

choice of{ay }K ;.
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To complete the forward part, we need to show tigt, Rk}Ezl chosen here satisfies

R, 10

the downlink KKT conditions, i.e., we need to establish (5.9), (5.11) and (5.12). Note that
~ ~ K 1 ~
THK RS TTH | Aier
=1 _
[ K
5.39 ~ |~
29 \/um/cfr%-Gka{Ht' 5 cHe,
=1

-1
.}
-1
.}
- \/ IJU|/O-F%'FE5

K
Hul + OBy > tr(G;ZG")
=1
Fk = 1/02/uy-RY, vk (5.43)

Then, from (5.39), (5.5) and (5.43), it can be shown that

5.39
Tk 539 \/ar%/Uul'GE

(5.5) o | & HYyH | 2 AR H o
= —_ _ZlHijFj Hj +an-IM+_Zlan-tr(Fij )-zj HyFi
= =

K
OF + Oy S tr(T]ZT))
=

|:|k+

-1

(543) AR, (5.44)

K K
[Z HiRTRAYT + pyi-tm+ S o8- tr(RR)) -2
=1 =1

Let tg = My, and then (5.44) is the same as (5.9). Furthermore, (5.11) and (5.12) are also
all satisfied. Therefore, from the sy, Gk}E:1 satisfying the uplink KKT conditions, we

have found a sefTy, Rk}{ﬁzl which achieves the same sum MSE and satisfies the downlink
KKT conditions. This concludes the forward part. Using similar arguments, we can prove
the converse part, which is omitted to avoid repetition. This is the end of the proof of

Theorem 6.

5.8.6 Proof of Theorem 7

Assumeoéj = 5,% andZj = Zgg, V. If the inequality sum power constraint in the problem

given by (5.16)-(5.19) is replaced by an equality constraint, then the resultant problem is
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equivalent to

. min tr[X (02 Im+62-Ps-Zgs)], (5.45)
X; Qj,j=1,...,K
K
subject to Z tr(Qj) =P, (5.46)
=1
X v
>0, (5.47)

Im 2?:1ﬂijH? + 82 Ps-Zgs+ 02 Im

Qj=0,j=1,....K. (5.48)
Note that (5.45)-(5.48) follow from two steps:

1. According to [7, p. 130, Section 4.1.3], a substitution of the equality power con-
straint into the objective function and other related inequality constraints preserves

the equivalence.
2. After the substitution, (5.18) [i.e., (5.15)] becomes
K -1
X = [z HjQ;H" +a§-PS-zBs+o§-|M] :
=1
which can be replaced by
K -1
X = lle,-QjHjH + 62 - Ps-Zps+ onz.lM]
=

under a monotonicity argument. Then (5.47) follows using Schur’s complement [7,

Section A.5.5, p. 651] [59].

Now, to showTheorem 7, we only need to show that the minimum value of the objec-
tive function of the problem in [(5.45)-(5.48)] is a non-increasing functioRgpf.e. (5.46)
can be replaced by an inequality constraint. £6%;) and f (Ps) be the minimum values

of the objective function corresponding to the sum poRgrandPs, respectively, where
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Pg < Py. Let Xy, {Qlj}5-<:1 denote the matrices achievirigPs ), i.e.,

~

1
K

X1:<ZHjQ1jH|j_|—}—Gé-P51 ng—I—O' |M) ,
=]

andy®_;tr(Quj) = Pa. LetQzj = f2-Quj, j =1,...,K, and therp ¥, tr(Qzj) = Pe. Let

-1
K
X2:<Z +O'E Ps - Zss—l—a | )

1
P51 0P
ZHJQ]_]HH—I—O'E Ps1-2ps+ P ||\/|> .
2
Define
AR "HO, 2
= > HjQuHj + ¢ -Pa-Zss
=1

and we get

tr [Xz( v+ UE P - ng)}

[ O'ZPS]_ AL ~ ~H
=tr(ly)—tr (J3+ Po |M) jleJQleJ

K
<tr(ly) —tr (J3+o§|M)‘1 (Z H@,—H'ﬁ)]
j

= f(Pa).

The above inequality is based on the following result. Aetenote a positive semidefinite
matrix. LetB1 andB5 be two positive definite matrices, aBd - B, which meangB, —
B,) is positive definite. TheB; !~ B,?, and t(B;*A) > tr(B,'A) [64, pp. 585-586].
Since the matricefX», {sz}'le] chosen here with sum powBg are not necessarily the

optimum-achieving ones, we have
f(Pe) < tr{)~(2 [O’r%~||\/| —I—5’é-P32-235]} < f(Ps1),

for P > Pg. Therefore, the minimum value of the objective function of the problem
given by (5.45)-(5.48) is a non-increasing functiorPaf and (5.46) can be replaced by an

inequality constraintTheorem 7follows immediately.]
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Chapter 6

Conclusions and Future Work

In this chapter, we summarize the major contributions in this thesis, and suggest possible

future directions based on the research presented.

6.1 Conclusions

In previous chapters, we have studied the optimum linear precoding/decoding designs for
single-user and multiuser spatial multiplexing with imperfect channel knowledge in slow,
flat, Rayleigh fading.

In Chapter 3, a detailed modeling of imperfect channel estimation with correlation at
both ends of a single-user MIMO link is presented. Then the minimum total MSE design
with the same imperfect CSI at both ends is formulated as an optimization problem, subject
to a total power constraint. Based on the general methodology for non-convex optimization,
the optimum structures of the precoder and decoder are derived, which show the coupling
effect of channel estimation error and channel correlation. It turns out that compared to
the perfect CSI case, linear filters are added to the transceiver to balance the suppression
of the channel noise and the additional noise induced from channel estimation error. The

linear precoder and decoder diagonalize an equivalent matrix channel into a set of parallel
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scalar channels. The analysis is further extended to the minimum weighted MSE design.
Based on the optimized precoder/decoder, the significant impacts of channel estimation
error and correlation are quantified by simulation. For example dixd MIMO system
whereB = 3 data streams are transmitted,Rat/ 0> = 20 dB, the ABER is7.6 x 10~/

when there is perfect CSI at both ends and there is no channel correlation. However, when
there is channel estimation error, with /g7 fixed at 26.016 dB, the ABER increases to

1.4 x 107°. When there is transmit correlation wir = 0.5, the ABER increases to

6.8 x 107°. Furthermore, whepr increases from 0.5 to 0.9, the ABER increases from
6.8 x 10"°108.8 x 10~3. The advantage from using the optimum design over suboptimum
designs is demonstrated. Simulation results also indicate that the effects of the same amount
of transmit and receive correlation might be different, depending on how the knowledge of
channel correlation is exploited.

In Chapter 4, the maximum mutual information design for a single-user MIMO sys-
tem is studied. With the same imperfect CSI as modeled in Chapter 3, the exact capacity
expression is hard to obtain. Alternatively, a capacity lower-bound is used for system de-
sign. For the special case without receive correlation, the closed-form optimum transmit
covariance matrix is derived for determining the lower-bound, whereas in the literature, a
numerical search method has been proposed. For the more general case with both transmit
and receive correlation, the structure of the optimum transmit covariance matrix for the
lower-bound has been obtained, which provides insight on how the imperfect channel es-
timation and channel correlation jointly affect the actual mutual information. The method
employed here to determine the optimum transmit covariance matrix reveals the close rela-
tion between the maximum mutual information design and the minimum total MSE design.
It is found that under the same imperfect CSl, the two designs lead to similar transceiver

structures that are different mainly in transmit power allocation. Simulation results have
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shown the tightness of the lower-bound. The accuracy of using the optimum transmit strat-
egy for the lower-bound is also demonstrated through comparison with the uniform power
allocation. The effects of channel estimation error and channel correlation are investigated
based on capacity bounds. Fo# a 4 MIMO channel withpt = 0.5, pr = 0, the ergodic
capacity is about 15.9 bits/channel us@ato? = 15dB. However, with imperfect CSI at
Rr/0? = 26.016dB, it drops to 14.1 bits/channel use. The capacity further decreases from
14.1 bits/channel use to around 8.75 bits/channel use whencreases from 0.5 to 0.9
(with pgr = 0 andPr /g2 = 15dB).

Chapter 5 focuses on joint linear precoding/decoding to minimize the average sum MSE
from all users for multiuser MIMO systems. Unlike previous designs, here channel esti-
mation errors and channel correlation at the BS have been considered. Two optimization
problems are formulated, for the uplink and the downlink, respectively. Iterative algorithms
based on the KKT conditions are proposed for solving both problems. A duality in average
sum MSE has been proved based on the KKT conditions. It is also shown that when the
same minimum average sum MSEs are achieved in both links, the individual users’ MSEs
in both links are also equal. For the uplink design, we also propose a method that solves a
sequence of SDPs. The consistency in the average sum MSE results obtained from differ-
ent algorithms confirms the duality and corroborates our analysis. By simulation, we have
assessed the impact of channel estimation errors and channel correlation at the BS on up-
link and downlink system error rate performances. We have found that in multiuser MIMO,
while the duality in each user’s average MSE holds with imperfect CSl, there is no duality
in individual users’ ABERs, due to the differences in the structure of the interference in

both links.
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6.2 Future Directions

In this section, we discuss some issues that remain to be explored, as well as possible future

research topics motivated by the results in this thesis.

o Effect of Erroneous Feedback

In our designs in Chapters 3 and 4, we have assumed that the feedback link is instan-
taneous and error-free. While the assumption of instantaneous feedback has been
partially justified by the insensitivity of system performance to reasonably small de-
lays, the errors in the feedback link need to be modeled and considered. This also
motivates the limited feedback design with imperfect CSIR. For these advanced de-

signs, our results can be used for comparison.

e Probability-constrained Transceiver Optimization

Throughout this thesis, we have used the average performance as the design criterion.
In a nutshell, we have studied only stochastic robust design. While the worst-case
robust design is often pessimistic, a new approach calleprgt®bility-constrained
optimizationis likely to better suit some practical applications [112]. The key idea of
this approach is to account for only those channel estimation errors that occur with
high probability, instead of addressing all possible error patterns. Furthermore, this
approach is applicable to Gaussian channel estimation errors. Therefore, it remains

to be determined if this approach can be applied to MIMO transceiver designs.

¢ Joint Channel Estimation, Feedback and Transceiver Design

In our thesis, we have taken a modular approach to system design. In fact, we first
obtain channel estimates, and then based on these, we consider the feedback and the

optimization of the transceiver. However, the transceiver design is tightly coupled
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with channel estimation and feedback [65, 98]. It might be worth modeling the joint
design and investigating whether a joint design of these three parts will yield per-
formance gain for spatially multiplexed MIMO systems with linear processors. The

results obtained in this thesis may be used for comparison.

MSE-related Designs for Cooperative Communications

This thesis has focused on designs for systems equipped with co-located multiple
antennas. Recently, cooperative communications through distributed single-antenna
terminals have been extensively studied for improved signal quality and better cov-
erage without using co-located antenna arrays [52,67,90]. Traditionally, in a cooper-
ative network, each node is equipped with one antenna. The source node broadcasts
information to a set of relay nodes. Then the relay nodes transmit to the destina-
tion. The distributed relay nodes (terminals) can be regarded as forming a virtual
antenna array. Two protocols, i.e., the amplify-and-forward and decode-and-forward
protocols, have been proposed for signal processing at the relays. As can be seen
from [67], the designs for distributed and co-located antenna arrays are different, but
also closely related. In [48], a MMSE beamforming has been proposed for cooper-
ative systems using the amplify-and-forward protocol. In [79], deploying multiple
antennas at some nodes (source, relays, destination) has been proposed. It would be
interesting to see whether the MSE-related designs are applicable to this scenario and
to determine the relationship between the maximum mutual information design and

the minimum total MSE design in this case.
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