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Abstract

High data-rate and high reliability are two long-term objectives in digital commu-

nications theory and practice. This thesis discusses new approaches enabling commu-

nications systems to have both high spectral efficiency and high reliability without

the need of having channel state information in the transmitters.

This thesis introduces the concept and structure of linear dispersion codes (LDC).

This thesis proposes and analyzes a class of rectangular information lossless linear

dispersion codes, which is termed uniform linear dispersion codes (U-LDC) and can

be used for 2-dimensional channels with a number of advantages.

This thesis proposes and analyzes linear dispersion coded orthogonal frequency

division multiplexing (LDC-OFDM) and linear dispersion coded single carrier mod-

ulation division multiplexing (LDC-SCM) for jointly exploiting time and frequency

diversity in time varying frequency selective channels. Both LDC-OFDM and LDC-

SCM may be applied to both wireline and wireless communications. Lower complex-

ity approaches, double linear transformation coded OFDM and linear transformation

coded SCM, are also proposed.

This thesis proposes and analyzes high-rate diversity approaches over space, time,

and frequency dimensions for MIMO-OFDM systems. The proposed coded systems
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include linear dispersion space-time-frequency codes (LD-STFC), double linear dis-

persion space-time-frequency codes (DLD-STFC), and multiple-input multiple-output

LDC-OFDM (MIMO-LDC-OFDM). This thesis introduces two diversity concepts for

3-dimensional codes: per dimension diversity order and per dimension symbol-wise

diversity order, and provides a sufficient condition for DLD-STFC to achieve full

symbol-wise diversity order in spite of the order of the two CDC stages. This thesis

also investigates how much gain can be obtained using the combination of CDC and

forward error correction (FEC) for STFC designs.

This thesis proposes coordinate-interleaving as a general principle for high-rate

block-based space-time code design, i.e., space-time coordinate interleaving linear

dispersion codes (ST-CILDC). This thesis shows that ST-CILDC maintains the same

upper bound diversity order as the corresponding conventional ST-LDC, and ST-

CILDC may double the statistical diversity order over the corresponding ST-LDC

with high probability. ST-CILDC systems may show either almost doubled upper

bound average diversity order or extra coding advantage in time varying channels.
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Chapter 1

Introduction

1.1 Critical concerns in future communications sys-

tems

1.1.1 High rate of communications

Since Shannon introduced information theory in 1948 [93], obtaining high data-rate

and approaching capacity have been a long-term goal in communication system de-

signs. In the recent decade, both wireline and wireless broadband communications

have been growing at explosive rates, stimulated by a host of important high-data-

rate demand applications [25, 80]. One solution to improving the spectrum effi-

ciency is through the use of multiple antenna technology, especially multiple trans-

mit and multiple receive antenna based multiple-input multiple-output technology

(MIMO) [31, 35, 103, 120]. The core idea behind MIMO is that signals at both ends

are “combined” in such a way that they create effective multiple parallel spatial data

pipes (increasing therefore the data rate). Another class of spectral efficiency enabling

techniques are multicarrier communications, especially orthogonal frequency division
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multiplexing (OFDM) [5,14,20,48,87,115,134], which may be applied in both wireline

and wireless channels. Another key issue to realize high bandwidth efficiency is to

have the coding rate as high as possible [29,70,118].

1.1.2 High reliability of communications

There exist fundamental barriers of the communications channels, such as propagation

loss, time variation, noise, interference and multi-path fading, which create difficul-

ties in high data-rate communications. These barriers are common to the channels of

either conventional SISO (single transmit and single receive element) [65, 84, 86] and

SIMO (single transmit and multiple receive elements) [9, 24, 119] or newly promis-

ing MISO (multiple transmit and single receive element) [3, 11, 39, 56, 125, 128] and

MIMO (multiple transmit and multiple receive elements) [31,36,81,103,120] commu-

nication systems. Compared with SISO and SIMO, on one hand, MIMO experiences

more challenging channel impairments due to increasing channel dimensions. On the

other hand, MIMO provides more possibilities to handle hostile channel environments.

Quality of service (QoS) is important for reliability of real-time communications, such

as multimedia communications. Two main performance measures of QoS are bit error

probability (BER) and transmission latency (delay) [38, 50,121].

For given signal structures and physical configurations of transmitters and re-

ceivers, such as antenna configurations, developing sophisticated receiver algorithms

or channel estimation, signal estimation and detection algorithms is certainly critical

in improving transmission quality, and this issue will be of consideration in this the-

sis. However, more important and fundamental approaches to improve transmission

quality are to use proper coding and signaling structures and physical configurations

of transmitters and receivers, to reach maximum reliability or diversity. Properly

2



designed diversity may provide desirable system performance with acceptable com-

putational complexity.

1.2 Motivation

Diversity represents a class of techniques that exploit the random nature of indepen-

dent channels to improve communication performance. In past, diversity methods for

SIMO, i.e., receiver diversity methods, have been well established at both theoretical

and practical levels [9, 24]. Conventional receiver diversity, such as maximal ratio

combining, equal gain combining, and selection combining, utilize multiple paths

of multiple receiver antennas [9, 24]. In recent years, the research community has

become increasingly interested in diversity methods for multiple transmit antenna

systems [3, 32,33, 39,102,127]. A thorough discussion and overview on the impact of

spatial diversity in wireless networks can be found in [19].

Although it has been noticed that several research efforts have been related to de-

signing diversity approaches using channel state information (CSI) available at trans-

mitters [45,91,133], this thesis will solely consider communication systems, where CSI

is only available at receivers and not at transmitters. Although physical structures,

such as MIMO and OFDM, provide high capacity potential, the capacity cannot be

achieved without proper error protection methods due to independent parallel fading

channels [6, 31, 68, 72, 103]. Transmit diversity approaches are primarily considered

to achieve high reliability communications in this thesis. There are various types of

diversity used in communication systems over fading channels, such as space diver-

sity [3,39,102], frequency diversity [72], time diversity [63], polarization diversity [67],

and multipath diversity [61]. In this thesis, diversity is generally defined as

3



Definition 1 Diversity is a kind of mechanism by which information data in commu-

nications channels may exploit statistical independent randomness over one or more

physical dimensions to improve communications reliability.

Note that Diggavi et. al. generally defined diversity as the method of conveying

information through multiple independent instantiations of these random attenua-

tions [19]. The difference between Definition 1 and the definition of Diggavi is that

Definition 1 emphasizes the “one or more physical dimensions”, which reflects not

only the effects of statistical nature of one random variable but also the joint effects

of statistical nature of multiple random variables. Note that multiple random di-

mensions may come from not only a single user but also multiple users. Recently,

diversity is discussed in an information theory perspective, and two relations,

1) diversity and multiplexing tradeoff [132],

2) throughput and reliability tradeoff [4],

are discussed.

In [132], the authors in the earlier part of the paper claimed that their definition

of diversity gain is based on actual error probability of the code. However, from their

whole analysis [4, 132], it is clear that their definition of diversity gain is actually

based on outage probability of capacity instead of actual error probability in system

performance. This is the difference between the definition in [4,132] and the definition

in this thesis. The concept of diversity in [4, 132] is in the context of a capacity

limit. However, The concept of diversity in this thesis is in context of actual system

performance under available diversity freedom in physical dimensions. Note that is is

not clear whether or not the slope of outage capacity curve is equal to the available

diversity freedom in physical dimensions over any SNR regions.
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Definition 1 is the basis of new diversity proposals contained this thesis. Conven-

tionally, communications reliability is achieved at transmitters using forward error

correction with the sacrifice of bandwidth efficiency [29,70,118]. The central concern

in this thesis is how to obtain desirable diversity performance with high bandwidth

efficiency. Unlike traditional SIMO diversity, MIMO systems provide many more new

possibilities to utilize physical dimensions, which motivate more profound and effec-

tive approaches to realize communications with both high data rates and desirable

communications quality.

1.3 Thesis overview

This thesis investigates the transmit diversity approaches for SISO and MIMO com-

munications. The following introduces the basic organization of this thesis.

Chapter 2 introduces related background, including fading channels, performance

measures, multicarrier and space-time MIMO communications, and a tight bound

for performance analysis of transmit diversity. Chapter 3 introduces the definition,

matrix formulation and decoding of linear dispersion codes (LDC). Chapter 3 also

provides the definition of symbol coding rate of LDC.

In Chapter 4, a new class of rate-one rectangular LDC dispersion codes of arbitrary

size, uniform linear dispersion codes (U-LDC), are proposed, and their properties

are analyzed. It is shown that U-LDC are capacity-optimal and satisfy sub-optimal

constraints for rapid fading channels, which ensures that U-LDC based systems ap-

proximately minimize an error union bound, as well as meet a traceless minimal

non-orthogonality criterion. The encoding matrix of U-LDC is unitary. Thus, U-

LDC are suitable for multi-stage receiver designs and can be efficiently applied across
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space-time-frequency dimensions. Although U-LDC may not attain full diversity, it

is shown that U-LDC achieve maximal symbolwise diversity order.

In Chapters 5 and 6, the scenarios considered are single input single output (SISO)

communications in frequency selective channels. In Chapter 5, LDC across time and

frequency are proposed to improve the performance of orthogonal frequency division

multiplexing (OFDM), known as LDC-OFDM, while, in Chapter 6, LDC are proposed

to support high-rate joint frequency and time diversity for SISO block transmission,

known as LDC-SCM. To overcome the requirement of constant channel gains over

an entire LDC time interval, a new decoding strategy, called two-step-estimation

(TSE) is proposed. In the TSE procedure, the receiver first estimates the multiple

LDC codewords, and second decodes multiple LDC codewords individually. With the

advantage of layered processing, TSE procedure is applied to both LDC-OFDM and

LDC-SCM. The design criterion of full diversity frequency-time block design for LDC-

OFDM and LDC-SCM are discussed in Chapters 5 and 6, respectively. Chapter 5

shows that rate-one LDC-OFDM outperforms uncoded OFDM without increasing the

peak-to-average power ratio (PAPR). Through simulations, Chapter 5 investigates

two performance related factors: (1) imperfect channel estimation for LDC cyclic-

prefix OFDM (LDC-CP-OFDM), (2) low complexity receiver for LDC zero-padding

OFDM (LDC-ZP-OFDM). Chapter 6 shows that LDC-CP-SCM may outperform CP-

SCM even under carrier frequency offset (CFO) effects. Chapter 6 shows that LDC

zero-padding SCM (LDC-ZP-SCM) can be effectively employed with low-complexity

minimum mean-squared error (MMSE) equalizers.

In Chapters 7 and 8, the scenarios considered are multiple antenna based MIMO-

OFDM communications in frequency selective channels. In Chapter 7, two new
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classes of high-rate space, time, and frequency codes (STFC) are proposed, linear dis-

persion space-time-frequency Codes (LD-STFC) and double linear dispersion space-

time-frequency codes (DLD-STFC). DLD-STFC is compared with an extension of a

recently proposed LDC-OFDM to MIMO systems, called MIMO-LDC-OFDM. Chap-

ters 7 analyzes diversity properties of STF block based designs under arbitrary channel

correlation. Based on error union bound analysis, Chapter 7 discuss new LDC code

design criteria for complex input symbols. Using the general terms of complex diver-

sity coding (CDC) and channel codes, Chapter 8 proposes to generally classify STFC

into seven categories. Chapter 8 investigates two issues related to the performance

improvement of high-rate STFCs. First, Chapter 8 shows that the two CDC stages

of DLD-STFC can be exchanged. Chapter 8 introduces two diversity concepts for

3-dimensional codes: per dimension diversity order and per dimension symbol-wise

diversity order, and provides a sufficient condition for DLD-STFC to achieve full

symbol-wise diversity order in spite of the sequence of the two CDC stages. Second,

Chapter 8 investigates how much gain can be obtained using the combination of

CDC and forward error correction (FEC) for STFC designs.

In Chapter 9, the scenario considered is multiple antenna based MIMO communi-

cations in flat fading channels. The coordinate-interleaving or component interleaving

is originally proposed as an alternative to bit interleaving for SISO communications.

Chapter 9 proposes a general coordinate-interleaving method for block-based space-

time codes or linear dispersion codes, called space-time coordinate interleaving linear

dispersion codes (ST-CILDC), which enables not only symbol-level diversity but also

coordinate-level diversity for high-rate block-based space-time code design. Chap-

ter 9 shows that ST-CILDC maintains the same upper bound diversity order as the
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corresponding conventional ST-LDC, and ST-CILDC may double the statistical di-

versity order over the corresponding ST-LDC with high probability. Compared with

conventional ST-LDC systems, ST-CILDC systems may show either almost doubled

average diversity order or extra coding advantage in time varying channels. With

trivial extra complexity over ST-LDC systems, ST-CILDC systems maintain the di-

versity performance in quasi-static block fading channels, and significantly improve

the diversity performance in rapid fading channels.

1.4 Summary of contributions

The primary contributions of this thesis are summarized as follows.

1) A new class of rate-one rectangular LDC dispersion codes of arbitrary 2-D

matrix sizes, uniform linear dispersion codes (U-LDC), are proposed, and the

properties of these codes are analyzed.

2) LDC-OFDM are proposed to improve the time-frequency diversity performance

of OFDM, while, LDC-SCM are proposed to primarily support time diversity

for single stream SCM block transmission. Both LDC-OFDM and LDC-SCM

allow all arbitrary symbol rates, and highest symbol rates are one, i.e., without

symbol-rate loss. The proposed two-step-estimation (TSE) enables both LDC-

OFDM and LDC-SCM to have a layered structure and allow channel gains to

vary over different channel uses. Design criteria of full joint frequency-time

diversity block design for both LDC-OFDM and LDC-SCM are offered. Double

linear transformation coded OFDM (DLT-OFDM) and linear transformation

coded SCM (LTC-SCM) are proposed as low complexity designs of LDC-OFDM

and LDC-SCM, respectively.
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3) Two new classes of high-rate STFC, LD-STFC and DLD-STFC, are proposed.

DLD-STFC systems, based on flexible three-layer structure with reduced com-

plexity, show superior performance. Diversity properties of STF block based de-

signs are analyzed under arbitrary channel correlation. An error union bound

(EUB) analysis provides more specific LDC code design criteria for complex

input sequences. This thesis introduces two new diversity concepts for 3-

dimensional codes: per dimension diversity order and per dimension symbol-

wise diversity order, and provides a sufficient condition for DLD-STFC to

achieve full symbol-wise diversity order in spite of the sequence of the two

complex diversity coding (CDC) stages. Through simulations, this thesis shows

that STFC based on the combination of CDC and FEC may outperform STFC

purely based on FEC, and STFCs based on the combination of DLD-STFC and

FEC outperform STFC based on the combination of one 2-dimensional CDC and

FEC, especially in spatially correlated channels. Further, the choice of mapping

from FEC to DLD-STFC may significantly impact system performance.

4) This thesis proposes a general coordinate-interleaving method for block-based

space-time codes or linear dispersion codes, called space-time coordinate in-

terleaving linear dispersion codes (ST-CILDC), which enables not only symbol-

level diversity but also coordinate-level diversity for high rate block-based space-

time code design. This thesis introduces two new diversity concepts, statistical

diversity order and average diversity order. Compared with conventional ST-

LDC systems, ST-CILDC systems may show either almost doubled average

diversity order or extra coding advantage in time varying channels.
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Chapter 2

Background

2.1 Fading channels

2.1.1 Fading classification

Fading is a process of random fluctuations of the signal level due to channel environ-

ments between signal transmitter and receiver. Time-variation is the most important

feature of fading. There are two sources of signal attenuation, modeled through the

time-varying channel impulse response [65,84,86].

1) Large scale fading

a. Propagation path loss - This is determined by the distance between the

transmitter and the receiver, whose randomness is only due to the position

of the mobile terminal. The channel changes due to path loss are very

limited for practical systems over time intervals of interest.

b. Shadowing - This incurs due to the presence of obstacles in the signal path

and due to the relative position of the mobile unit with respect to the base

station. The channel changes due to path loss can be expressed as a slow
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process and is commonly modeled using log-normal statistics.

2) Small-scale fading is rapid fluctuation of the amplitude of a signal over a short

period of time or travel distance, caused by constructive and destructive inter-

ference between two or more versions of the same signal. Small-scale fading

may be corrected by adaptive equalizers or by robust modulation and error

correction. The main causes of small-scale fading are the mobile moving with

surrounding scattering and the existence of several propagation paths between

transmitter and receiver. Two manifestations of channel time variations are

delay spread and Doppler-frequency spread. A fading-channel classification can

be based on these two parameters.

a. Delay spread : The multipath signals with different delays combine to

produce a distorted version of the transmitted signal. To describe it by

a single constant, a delay spread is defined as the difference between the

largest and the smallest among these delays. This delay spread could result

in time dispersion and frequency-selective fading.

b. Doppler spread : When the receiver and the transmitter are in the constant

relative speed of the motion, the received signal is subject to a constant

frequency shift (the Doppler shift) proportional to this speed and to the

carrier frequency. This Doppler effect, along with multipath propagation,

causes frequency dispersion and time-selective fading.

2.1.2 Simple time varying model

To simplify the simulations, this thesis uses simple time varying models to approx-

imate time varying fading channels. The channels are assumed to be constant over
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different integer numbers of channel uses, and independent identically-distributed

(i.i.d.) between blocks. We term this integer number of the intervals as the channel

change interval (CCI). The definition of one channel use is different for the different

channel models employed in this thesis.

1) For OFDM block communications, one channel use is referred to as one OFDM

block.

2) For singe carrier modulation (SCM) block communications as discussed in Chap-

ter 6, one channel use is referred to as one SCM block.

3) For space time codes in flat fading channels as discussed in Chapter 9, one

channel use is referred to as one channel symbol over one symbol time slot.

The following lists several remarks for these simple models.

1) These simple models are used only in simulations. In all the diversity analysis,

channel correlation is assumed to be arbitrary across space, time, and frequency

dimensions

2) These simple models, which are suitable for testing performance for code design

in rapid fading channels, are extensively used in the literature.

3) Even if channel initiations over short time periods are not i.i.d, channels sym-

bols within a codeword can be interleaved over a long period, so that channel

coefficients can be approximately considered as i.i.d.

In the majority of this thesis, frequency selective channels are considered. When

the frequency selective channel models choose exponential power delay profile, the

rate of decay is set to 1.
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In digital transmission over frequency-selective Rayleigh fading, the channel may

be simply modeled with a tapped-delay-line [21]. The outputs of the different taps are

generated by a flat Rayleigh fading simulator, are combined by weighted gains. This

information is in the form of the delay and the attenuation associated to each of these

taps. In correlated frequency-selective channels, it is important to recognize that in

a scenario of multi-path delays, the gains for the different delays are independent

from one another [21]. Rather, the dependency among different channel gains comes

from the correlation among corresponding tap-gains on different channels. This way,

the correlation coefficient between each pair of tap-gains could be modeled to be the

same.

Note that, although this thesis assumes multiple taps of the same transmit and

receive path to be uncorrelated, non-zero spatial correlation are considered in the

simulations of quite a few diversity approaches.

2.2 Performance measures

This thesis considers the communications quality. Quality of service (QoS) is critical

concern for real-time communications, such as multimedia communications. Two

main performance measures are error probability and transmission latency (delay).

This section summarizes several important performance measures, which may not

include all the performance measures used in this thesis. However, a majority of

them are introduced here and the rest will be detailed in the later chapters. The

error measure can be in units of bits, symbols (which may embrace multiple bits),

and blocks or framess (which may embrace multiple symbols).
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2.2.1 Exact average error probability

Exact average error probabilities reflect the actual performance of communications

systems in given channels. The average bit [117], symbol [77], and block error prob-

ability at the average SNR γ are, respectively, given by

1)

Ps(γ) =

∫ ∞

0

Ps(γ)p(γ|γ)dγ, (2.1)

2)

Pb(γ) =

∫ ∞

0

Pb(γ)p(γ|γ)dγ, (2.2)

3)

PΩ(γ) =

∫ ∞

0

PΩ(γ)p(γ|γ)dγ, (2.3)

where γ is the instantaneous SNR at the receiver, Pb(γ), Ps(γ), and PΩ(γ) are the

instantaneous bit, symbol, and block error probability, and p(γ|γ) is the probability

density function of γ at the average SNR γ.

2.2.2 Error union bound

The error union bound (EUB), an upper bound on the average error probability, is

an average of the pairwise error probabilities between all pairs of codewords. The

EUB is related to the union of events via

Pr (A1 ∪ ..., AN) 6
N∑

a=1

Pr (Aa).

This thesis mainly considers block based communications. The bit [27], symbol,

and block [88] based EUB for block based communications are respectively given by
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1)

Pb 6 1

N
(b)
X

N∑
a=1

N∑

c 6=a

φb(Xa, Xc) Pr (Xa) Pr (Xa → Xc), (2.4)

2)

Ps 6 1

N
(s)
X

N∑
a=1

N∑

c 6=a

φs(Xa, Xc) Pr (Xa) Pr (Xa → Xc), (2.5)

3)

PΩ 6
N∑

a=1

N∑

c 6=a

Pr (Xa) Pr (Xa → Xc), (2.6)

where Pr (Xa) is the a priori probability that the block Xa was transmitted, Pr (Xa → Xc)

is the probability that receiver decides Xc when Xa is actually transmitted, φb(Xa, Xc)

and φs(Xa, Xc) are the number of bit and symbol errors, respectively, occurring when

Xa is transmitted and Xc is chosen by the decoder, N
(b)
X is the total number of bits

per X block, N
(s)
X is the total number of symbols per X block, and N is the code

book size of the block.

2.2.3 Signal to interference plus noise ratio (SINR)

SINR is an alternative performance measure to signal to noise ratio at communication

receivers under the impact of interference. In this thesis, the SINR is referred to the

decision SINR at receivers.

The instantaneous decision SINR at the instantaneous SNR γ under the average

SNR γ can be defined by

SINR (γ|γ) =
‖cs (γ|γ)‖2

‖ci (γ|γ)‖2 + ‖cn (γ|γ)‖2 , (2.7)
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where cs (γ|γ), ci (γ|γ), and cn (γ|γ) are the elements at the instantaneous SNR γ

under the average SNR γ referred to complex source, interference, and noise signals,

respectively.

The average decision SINR can be defined by

SINR (γ) =

∫ ∞

0

SINR (γ|γ) p (γ|γ) dγ, (2.8)

where p (γ|γ) is the probability density function of the SNR γ under the average SNR

γ.

2.3 Multicarrier and space-time MIMO communi-

cations

2.3.1 Multicarrier (OFDM) communications

2.3.1.1 Introduction

Digital Modulation
(Constellation

Mapping)
S/P IFFT

Add
Guard

Interval
D/A

Up
Conversion

Channel

FFT
Remove
Guard

Interval
A/D

Down
Conversion

Digital
De-Modulation
(Constellation
De-Mapping)

P/S

Input
Data Bits

Output
Data Bits

Figure 2.1. OFDM system model

Multicarrier modulation (MCM) [12], usually realized as orthogonal frequency di-

vision multiplexing (OFDM), is a powerful modulation technique that has two key
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features. In OFDM, as shown in Figure 2.1, the transmitter first converts the input

data from a serial to parallel streams or data sets. Each set of data contains one

symbol for each sub-carrier. Before performing the Inverse Fast Fourier Transform

(IFFT), this example data set is arranged on the horizontal axis in the frequency

domain. An inverse Fourier transform converts the frequency domain data set into

samples of the corresponding time domain representation of this data, and a cyclic-

prefix is added to the transmitted OFDM block. Then, the parallel to serial block

creates the OFDM signal by sequentially outputting the time domain samples. The

receiver performs the inverse of the transmitter. First, the OFDM data are split from

a serial stream into parallel sets, and the a cyclic-prefix is removed from the received

OFDM block. The Fast Fourier Transform (FFT) converts the time domain samples

back into a frequency domain representation. The magnitudes of the frequency com-

ponents correspond to the original data. Finally, the parallel to serial block converts

this parallel data into a serial stream to recover the original input data.

In OFDM, each subchannel can be assumed to be flat and the intersymbol inter-

ference is negligible due to the channel partitioning of the transmission bandwidth

into many narrowband subchannels if the inter-block interferences (IBI) are combated

by using enough long guard interval and channel coefficients are constant over one

OFDM block. In general, MCM methods are especially suitable to data transmission

in the channels with moderate or severe ISI. A key feature of MCM is the possibility

to maximize the mutual information [15] between transmitter and receiver due to the

possibility of adaptive spectral shaping, also called adaptive loading, at the transmit-

ter. Although MCM has been successfully employed in the form of discrete multi-tone

in wireline communications, several performance issues arise in wireless systems. In
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particular, the practical implementation of spectral shaping at the transmitter is dif-

ficult because of the time-varying nature of cellular channels, which makes channel

estimation very inaccurate. Also, wireless channels with Rayleigh fading experience

very-low signal-to-noise ratio (SNR) at least over a fraction of the transmitted time

for some subchannels. This means that the information transmitted in these sub-

bands will be lost. A technique to mitigate this is through the use of error-correcting

codes across all subchannels.

2.3.1.2 PAPR problem

The complex envelope of the OFDM signal, consisting of NC carriers is given [78] by

Stotal(t) =
∞∑

k=−∞

NC−1∑
n=0

an,k.g(t− kT )ejn 2π
T

t, (2.9)

where g(t) is rectangular pulse of duration T and T is OFDM symbol duration. The

peak to average power ratio (PAPR) is defined by

PAPR =

max |S(t)|2
t∈[0,T ]

E
{|S(t)|2} . (2.10)

The PAPR for a discrete-time OFDM signal xn [k] is defined in a time interval [n,

n+N-1] by the following formula:

PAPR =
max

k
|xn [k]|2

E
{|xn [k]|2} . (2.11)

In OFDM, PAPR increases with NC [41], while single-carrier modulations usually

avoids the high PAPR problem associated with multi-carrier schemes, which results

in the requirement of larger linear range of RF amplifiers. Lowering PAPR enables

cheaper and more efficient power amplifiers may be used. The amplitude of a mul-

ticarrier signal has a Rayleigh distribution, while the power distribution becomes a
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central chi-square distribution with two degrees of freedom. The cumulative distrib-

ution function (CDF) of the amplitude, z > 0, of a signal sample is given by [41]

F(z) = 1− exp(−z). (2.12)

Assuming the samples to be mutually uncorrelated, the complementary cumulative

distribution function for the peak power per OFDM symbol or OFDM block is given

by [41]

Pr(PAPR > z) = 1− (1− exp(−z))NC , (2.13)

From (2.13), it is seen that large PAPR is possible but occurs only infrequently.

2.3.2 Space-time MIMO communications

2.3.2.1 Introduction

When multiple antenna elements are also added on both sides of an antenna system

to form a MIMO (NT input antennas, NR output antennas) link, the conventional

diversity benefits of smart antennas may be still retained. However, MIMO links offer

additional advantages that go far beyond those of smart antennas. Multiple antennas

at both the transmitter and the receiver create a matrix channel (of size equal to the

product of the number of receive antennas and the number of transmit antennas).

One of the key advantages of MIMO lies in the ability to transmit different data

over several spatial modes of the matrix channel within the same time-frequency slot.

The benefits that space-time processing and especially MIMO systems can provide

to wireless communications are enormous: improved data-rate throughout the cell,

increased coverage area and improved network capacity.
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2.3.2.2 MIMO capacity

A space time MIMO system with NT transmit antennas and NR transmit antennas

is modeled as

r =

√
SNR

NT

Hs + n, (2.14)

where source signal vector is s ∈ CNT , the received signal vector r ∈ CNR , MIMO flat

fading channel matrix H ∈ CNR×NT , complex Gaussian noise vector n ∈ CNR .

Let Rs denote the covariance matrix of s, then the capacity of the system 2.14 is

given by [103]

C = log2

(
det

(
INR

+ HRsH
H))

. (2.15)

2.3.2.3 Spatial multiplexing

Spatial multiplexing (SM) techniques [30] use MIMO channels to provide parallel

spatial channels, if the path gains between individual transmit-receive antenna pair

fade independently, the channel matrix is well-conditioned with high probability. V-

BLAST [30, 120], one of effective spatial multiplexing algorithms, implements Zero

Forcing (ZF) detection combined with symbol cancelation to improve the performance

[35]. SM combines the signals from all the receive antennas simultaneously, first

extracting the strongest sub-stream from the received signals, then proceeding with

the remaining weaker signals, which are easier to recover once the strongest signals

have been removed as a source of interference. When symbol cancelation is used,

the order in which the sub-streams are detected becomes important for the overall

performance of the system. In fact, the transmitted symbol with the smallest post-

detection SNR will dominate the error performance of the system. Post detection SNR
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is determined by ordering. An optimal ordering is based on choosing the best post-

detection SNR at each stage of the detection process and leads to the maximization

of the worst SNR over all possible orderings.

2.3.2.4 Spatial coding

Spatial coding permits the efficiently use of correlation in space , time, and/or fre-

quency among transmitted signals to improve information protection while the goal

of SM is to increase data rate. One of important advantages of spatial coding is

that channel state information is not required at transmitters. The most well-known

space time coding techniques are space time trellis codes (STTC) [102] and orthog-

onal space time block codes (OSTBC) [3, 101]. STTC transmits one input symbol

at a time, producing a sequence of vector symbols whose length represents antennas.

STTC provides both coding gain and full diversity gain, which will be defined in

Section 2.4.1. The design of STTC is difficult and, and the main disadvantage of it

is to generally require very high complexity encoders and decoders [102].

OSTBC [3,101] operates on a block of input symbols, producing a matrix output

whose columns represent time and rows represent antennas. The main desirable trait

of OSTBC is the provision of full diversity with a very simple decoding scheme. The

disadvantage of OSTBC is that

1) it does not generally provide coding gain, unless concatenated with an outer

code,

2) it cannot reach capacity if min {NT , NR} > 2.

By employing space-time coding concepts in OFDM-based broadband systems,

space-frequency coding was investigated through coding across OFDM tones [7].
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Bolcskei and Paulraj found that space-time codes designed to achieve full spatial

diversity in the narrowband case will in general not achieve full space-frequency di-

versity. In addition these authors point out that the Alamouti scheme across tones

fails to exploit frequency diversity [7].

In recent years, to achieve rate close to capacity, quite a few high-rate (generally

non-orthogonal) space time code designs have appeared [16, 42, 76, 129], where high

complexity maximum likelihood decoding and sphere decoding (SD) are primarily

considered. Maximum likelihood decoding/detection (MLD) of digital messages in

general requires joint detection of an entire block of symbols [57]. MLD can be

implemented efficiently, such as using the Viterbi algorithm, only for the problems

of certain structure. In general, however, when no exploitable structure is at hand,

MLD is very computationally intensive. This kind of hard problem with exponential

complexity also occurs in optimal multiuser detection of code division multiple access

systems [112]. Consequently, there has recently been a growing interest in sphere

decoding for ML detection in digital communications [113]. Sphere decoding, or the

Fincke-Pohst algorithm [17, 113], offers large reductions in average computational

complexity for the class of computationally hard combinatorial problems in MLD.

In [28], it is shown that the complexity of sphere decoding, under certain assumptions,

is polynomial in the problem size, meaning that there is a polynomial function that

bounds the problem size. The assumptions in [28] were, however, made in another

context and are not generally applicable to the ML detection problem encountered in

digital communications [44]. As shown in [44], the expected complexity of the sphere

decoder is dependent both on the size and the signal-to-noise ratio (SNR). On the

other hand, the worst case complexity of SD is exponential.
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2.4 Diversity gain (advantage or order), coding

gain (advantage or order), and multiplexing

gain

2.4.1 PEP based definitions

We model a flat-fading MIMO channel as one when the channel matrix contains i.i.d.

Gaussian elements. Note that the following discussions can be easily generalized for

correlated fading, and other fading distributions.

The MIMO system can be modeled as

y(k) = H(k)x(k) + z(k), (2.16)

where transmit signal vector is x(k) ∈ CNT , MIMO channel matrix is H(k) ∈
CNR×NT , complex Gaussian noise vector is z(k) ∈ CNR , and receive signal vector

is y(k) ∈ CNR .

Consider a codeword sequence x =
[
[x(0)]T , ..., [x(N − 1)]T

]
, where x(k) =

[x1(k), ...,xNT
(k)]T as defined in (2.16). In the case when the receiver has perfect

channel state information, the pairwise error probability (PEP), Pr(c → e), between

two codeword sequences x and e can be bounded as follows [102].:

Pr(x → e) 6
NR∏
a=1

(
NT∏

b=1

1

1 + Es

4N0
λb

exp

(
Ka,b

Es

4N0
λb

1 + Es

4N0
λb

))
, (2.17)

where Ka,b is the Ricean coefficient, P is transmit power constraint, Es = P/NT is

the power per transmitted symbol, λb are the eigenvalues of the matrix A(x, e) =
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[B(x, e)]HB(x, e), and

B(x, e) =




x1(0)− e1(0) · · · xNT
(0)− eNT

(0)

...
. . .

...

x1(N − 1)− e1(N − 1) · · · xNT
(N − 1)− eNT

(N − 1)




.

For the Rayleigh fading channel, PEP can be bounded by [102]

Pr(x → e) 6
(

NT∏

b=1

(
1 +

Es

4N0

λb

))−NR

. (2.18)

If q denotes the rank of A(x, e), ( i.e., the number of nonzero eigenvalues) then

we can bound (2.18) as [102]

Pr(x → e) 6
(

NT∏

b=1

λb

)−NR (
Es

4N0

λb

)−qNR

. (2.19)

The diversity advantage (gain or order) based on PEP is the power of SNR in

the denominator in (2.19) [102]. The coding advantage (gain) based on PEP is an

approximate measure of the gain over an uncoded system operating with the same

advantage [102].

Full diversity can be defined in different contexts throughout this thesis. In the

context of rank based diversity order, full diversity code is achieved if rank of A(x, e)

is full rank over any possible codeword pair x and e.

2.4.2 Definitions based on infinite SNR

The ergodic capacity (b/s/Hz) of the MIMO channel,

C(SNR) = E
{

log det

(
I +

SNR

NT

H [H]H
)}

. (2.20)

Consider a scheme as a family of codes {C(SNR)} of block length l. Let R(SNR)

(b/symbol) be the rate of the code {C(SNR)}, and let the average error probability of
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the code system be Pe(SNR). The following are the definitions of spatial multiplexing

gain and diversity gain based on asymptotically high SNR [4,132].

Definition 2 A coding scheme {C(SNR)} is said to achieve spatial multiplexing

gain r and diversity gain d, respectively, if

lim
SNR→∞

R(SNR)

log SNR
= r (2.21)

and

lim
SNR→∞

log Pe(SNR)

log SNR
= −d. (2.22)

2.5 Design criteria of linear block based space time

codes

This thesis mainly focuses on block based codes. Relevant background on several

design criteria of linear block based space time codes is introduced here. Note that

orthogonality may have to be sacrificed to obtain high rate block based space time

codes. The code matrix can be expanded as

C =
K∑

k=1

Ck(zk), (2.23)

where Ck(zk) are K matrices of dimension T × NT that are linear functions of the

individual symbols zk and their complex conjugates. The Hermitian square of

CHC =
K∑

k=1

CH
k Ck +

∑

i<k

(
CH

i Ck + CH
k Ci

)
. (2.24)

2.5.1 Rank, determinant, and trace

In the literature, design criteria for space-time codes was based on the codeword

difference matrix D(ce) = C(c) − C(e). Minimizing the pairwise error probability of

25



deciding in favor of C(c) when transmitting C(e) leads to the well known rank [39]

and determinant [102] criteria. Ionescu introduces a trace criterion [51], which is less

well-known but important for designing non-orthogonal space-time block codes.

Criterion 1 [51] In Rayleigh fading, C should be optimally designed so that the

eigenvalues of
[
D(ce)

]H
D(ce) are as close as possible to each other and to

Tr
�
[D(ce)]

H
D(ce)

�

NT
,

and for which the row-wise sum of the absolute values of the elements off the main di-

agonal is as small as possible. Moreover, Tr
([

D(ce)
]H

D(ce)
)

plays the role of Euclid-

ean distance between codeword pairs.

In the context of the linearity of the codes, the codeword difference matrix is linear

in the symbol differences ∆k = z
(c)
k − z

(e)
k ,

D(ce) =
K∑

k=1

Ck(∆k) ≡
K∑

k=1

Dk. (2.25)

Thus, D(ce) is a linear combination of the matrices Dk = Ck(∆k) on k. The

distance matrix (the Hermitian square of the codeword difference matrix), is given

by

[
D(ce)

]H
D(ce) = D +N , (2.26)

where

D =
K∑

k=1

(|∆k|2 DH
k Dk

)

and

N =
∑

i<k

(
DH

i Dk + DH
k Di

)
.

2.5.2 Minimal non-orthogonality

The principle of minimal non-orthogonality is introduced in [107,109].
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Criterion 2 [107,109] The average ratio of the norms of N and D in (2.26) should

be minimized, which minimizes the inter-symbol-interference directly caused by the

non-orthogonality of the code.

Minimal non-orthogonality can be explained more clearly as follows. The orthog-

onality situation occurs when
[
D(ce)

]H
D(ce) =

K∑
k=1

(|∆k|2 I
)

and thus N = 0. Note

that N stands for inter-symbol-interference, and it is desirable to minimize inter-

symbol-interference, which leads to minimize non-orthogonality.

2.5.3 Maximal symbolwise diversity

Note that the Euclidean distance squared Tr
([

D(ce)
]H

D(ce)
)

is a real valued posi-

tive semidefinite quadratic function of the symbol differences ∆k (and their complex

conjugates). It is desirable to design codes such that the Euclidean distance is a

monotonically increasing function of the number of bit-errors in a codeword pair.

Preferably, the Euclidean distance squared is proportional to a sum of the symbol-

wise Euclidean distances squared, |∆k|2. Next, from the linearity of the code it is

clear that if the code does not provide full diversity protection against one symbol

error, it cannot provide full diversity protection against multiple-symbol errors.

The requirement of maximal symbolwise diversity (MSD) [108, 109] is that in a

non-orthogonal case, the individual code matrices Ck should be unitary matrices

with CH
k Ck = |zk|2 I. For a maximal symbolwise diversity code, the distance matrix

is
[
D(ce)

]H
D(ce) =

K∑
k=1

(|∆k|2 I
)

+N .

We remark that maximal symbolwise diversity can be defined more generally than

that in [108,109] such that for ∀k, rank(Ck) = min{T, NT}.

27



2.5.4 Traceless non-orthogonality

If maximal symbolwise diversity is satisfied, the Ck should be designed so that the

non-orthogonality matrix N is traceless [108,109], i.e.,

Tr (N ) = 0. (2.27)

2.5.5 Frobenius orthogonality

Frobenius orthogonality is also called traceless self-interference [110].

Theorem 1 [110] For a linear matrix modulation with a Frobenius orthogonal basis,

i.e.,

Tr
(
CH

i Ck + CH
k Ci

)
= 0, (2.28)

the union bound on the pairwise error probabilities increases with increasing self-

interference at any SNR.

Note that Frobenius orthogonality supports minimizing the union bound [110].

2.5.6 Capacity optimality

The space time channel model is

Y =
√

Es

N−1∑
n=0

HMnsn + V, (2.29)

where Mn is of size NT × T , H is a MIMO channel matrix of size NR ×NT , sn, n =

0, ..., N − 1 are data source symbols, V is a NR × T matrix whose columns represent

realizations of an i.i.d. circular complex additive white Gaussian noise (AWGN)

process with distribution CN (0, N0INR
). Note that Ck (sk) = Mksk determines Ck

as a linear code.
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The model (2.30) can also be written as [47]

y =
√

EsHX s + v, (2.30)

where

X = [vec(M0), ..., vec(MN−1)] ,

H = IT ⊗H, y = vec(Y), v = vec(V), and s = [s0, ..., sN−1]
T .

Assume Rs = Es

(
ssH

)
= IN . Then the ergodic capacity of the AWGN system

with Rayleigh fading for capacity-optimum complex LDCs is given by [47]

Cc = max
Tr(XXH)6NT T

1

T
EH

[
log det

(
INT T +HXXHHH)]

(2.31)

Then, the following is a design criterion based on optimal capacity.

Theorem 2 [47] Let N = NT T . Any X such that XXH = 1
NT

INT T is a capacity-

optimal linear dispersion code (LDC).

The concept of LDC will be introduced in Chapter 3.

2.6 A tight bound for performance analysis of trans-

mit diversity

Recently, Siwamogsatham, Fitz, and Grimm have derived a tight bound for perfor-

mance analysis of transmit diversity approaches in in correlated Rayleigh fading [96].

This bound, extensively used in this thesis, is introduced in this section.

2.6.1 System model

The space-time communication system has Lt antennas at the transmitter and Lr

antennas at the receiver. The channel between a transmit and a receive antenna is
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modeled as a frequency nonselective flat Rayleigh-fading process. At a given receive

antenna, a vector of matched filter output is formulated as [96]

Qi =
√

EbDCi + Ni, (2.32)

where i = 1, ..., Lr, Eb defines the bit energy per receive antenna, D is an NC ×NCLt

transmitted codeword matrix formed as

D = [D1, ...,DLt ] ,

where Dk = diag [Dk(1), ..., Dk(NC)] is an NC × NC diagonal matrix of the signals

transmitted from the k-th transmit antenna with Dk(a) being the symbol transmitted

at time a, Ci = diag
[
CT

1i, ...,C
T
Lti

]T
is an NCLt × 1 channel vector in which CT

ki =

diag [Cki(1), ..., Cki(NC)]T is an NC × 1 vector of channel distortions between the i-th

receive antenna and the k-th transmit antenna with Cki(a) being the complex path

gain at time a, and Ni is additive white Gaussian noise (AWGN) with a covariance

matrix N0INC
. The channel distortion coefficients are random variables with variance

2σ2
C , and hence the SNR per receive antenna can be computed as 2σ2

CEb/N0.

The overall system description can be simply generated by sequentially stacking

the NC × 1 matched filter output vector for each receive antenna to form a larger

NCLr×1 observation vector and accordingly defining the corresponding NC×NCLtLr

symbol matrix D and NCLtLr × 1 channel vector Ci [96]. The length of the stacked

matched filter output vector shall be defined as N = NCLr.

2.6.2 Pairwise error probability

The pairwise error probability (PEP) is a common performance measure for digital

communication receivers [96]. In the case of a coherent maximum-likelihood (ML)

receiver to which perfect channel state information (CSI) is available, the optimum
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rule for deciding between two possible transmitted data sequences, D = dα and

D = dβ, when the channel distortion is known to have the value C = c and the

observations Q = q, is [96]

(q− dαc)
H (q− dαc)

dα

< (q− dβc)
H (q− dβc) (2.33)

or

(q− dαc)
H (q− dαc)

dβ

> (q− dβc)
H (q− dβc) . (2.34)

The PEP is [96]

P (α, β) = P
(‖Q− dαC‖2 > ‖Q− dβC‖2 |dαsent

)
. (2.35)

Denote

Cs = (dα − dβ)CC (dα − dβ)H ,

where CC denotes the covariance matrix of C, and λ
(s)
k denotes the k-th eigenvalue of

Cs and ∆H(s) denoting the number of nonzero eigenvalues of the signal matrix Cs or,

equivalently, the rank of Cs. Then an asymptotic upper bound of PEP is provided

in a simple product form. This bound is asymptotically tighter than the standard

Chernoff bound [96]. This asymptotic upper bound is given by [96]

P (α, β) 6




2∆H(s)− 1

∆H(s)− 1


 (N0)

∆H(s)

∆H(s)∏
k=1

λ
(s)
k

. (2.36)
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Chapter 3

Linear dispersion codes

3.1 Introduction

Hassibi and Hochwald have proposed linear dispersion codes (LDC) as a general

framework for arbitrary complex space time codes (STC) for block flat-fading chan-

nels [42]. LDC possess symbol coding rates of up to one (the definition of symbol

coding rate will be discussed in Section 3.3.1), and can support arbitrary configura-

tion of transmit and receive antennas. In LDC design, minimizing average pairwise

error probability (PEP) is shown to be numerically difficult for high rate systems [42].

Rather, LDC design was achieved by formulating a power-constrained optimization

problem based on mutual information [42]. Later, Heath and Paulraj proposed a

frame-theory-based LDC design to optimize both ergodic capacity and error proba-

bility [47]. Although LDC were proposed as STC, we treat LDC in a more general

complex symbol matrix coding framework to allow the application of LDC to different

system models. Note that

1) LDC also embrace conventional block error control coding (BECC), which work

on binary or integer domains, as subclasses, such as product codes;
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2) the design criteria of LDC are different from those of BECC;

3) the coding rate of BECC can never be one.

3.2 Definition of LDC

Assume that an uncorrelated data sequence has been modulated using complex-valued

source data symbols chosen from an arbitrary, e.g. rc-PSK or rc-QAM, constellation.

A T ×M LDC matrix codeword, SLDC , is transmitted from M transmit channels

and occupies T channel uses and encodes Q source data symbols. LDC was origi-

nally proposed as a complex space-time matrix coding framework [42]. The matrix

codeword SLDC is expressed as

SLDC =

Q∑
q=1

αqAq + jβqBq, (3.1)

where SLDC ∈ CT×M , and Aq ∈ CT×M ,Bq ∈ CT×M , q = 1, ..., Q are called dispersion

matrices. The constellation data symbols are defined by

sq = αq + jβq, q = 1, ..., Q. (3.2)

Note that there is another LDC definition with different dispersion matrices, Cq and

Dq, as follows [42],

SLDC =

Q∑
q=1

sqCq + s∗qDq, (3.3)

where Cq = 1
2
(Aq + Bq) and Dq = 1

2
(Aq −Bq), q = 1, ..., Q. In this thesis, Aq and

Bq are chosen as dispersion matrices.

The basic LDC system was originally formulated as follows [42]:

X =

√
ρ

M

Q∑
q=1

(αqAq + jβqBq)H + V (3.4)
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where space time MIMO channel matrix is H ∈ CM×N , received signal matrix X ∈
CT×N and complex white Gaussian noise V ∈ CT×N , the normalizaton

√
ρ
M

ensures

that the signal-to-noise-ratio (SNR) at each receive antenna ρ is independent of M .

A matrix format of (3.4) can be written as

x =

√
ρ

M
Hθ + v, (3.5)

where

θ = [α1, β1, ..., αQ, βQ]T ,

x =
[
Re

(
[X]:,1

)
, Im

(
[X]:,1

)
, ..., Re

(
[X]:,N

)
, Im

(
[X]:,N

)]T
,

v =
[
Re

(
[V]:,1

)
, Im

(
[V]:,1

)
, ..., Re

(
[V]:,N

)
, Im

(
[V]:,N

)]T
,

and

H =




A1h1 B1h1 · · · AQhN BQhN

...
...

. . .
...

...

A1hN B1hN · · · AQhN BQhN




, (3.6)

where

Aq =




Re (Aq) − Im (Aq)

Im (Aq) Re (Aq)


 ,

Bq =



− Im (Bq) −Re (Bq)

Re (Bq) − Im (Bq)


 ,

and

hn =




Re
(
[H]:,n

)

Im
(
[H]:,n

)


 .

The following remarks are in order:

1) The above LDC system model (3.4) requires (M × N) MIMO block fading

channels that are valid only when the channel is constant for at least T channel

uses.
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2) The matrix model (3.5) is the same as Eq. (23) in [42] except for different

notation. It can be observed that (3.4) and (3.5) leads to LDC decoding that

requires block fading channel knowledge.

3.3 Coding rate of LDC

3.3.1 Coding rate of LDC defined by Hassibi and Hochwald

Hassibi and Hochwald have defined the coding rate with the unit of bits of LDC as

R =
Q

T
log2 r, (3.7)

where r is the size of constellation [42]. This definition may be proper for multiple

antenna based MIMO wireless channels. However, this definition may not be proper

if LDC are applied into other communications channels, such as frequency-time (FT)

channels. In FT channels, the calculated rate is using (3.7) is less than the actual

data rate, since a FT channels is a SISO channel. In addition, from only the rate

calculated using (3.7), one cannot clearly determine the symbol rate that the LDC

achieves, and finally (3.7) does not agree with the conventional definition of error

control coding rate.

3.3.2 Symbol coding rate of LDC

This thesis uses the term data symbol coding rate in the units of symbols of LDC,

which is defined as

Rsym
LDC =

Q

MT
(3.8)

When Q = MT , we therefore refer to the coding rate of LDC as “rate-one”.
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In this thesis, we avoid using the term “full rate”, which may be confused with

terminology from the block-based space-time coding literature. For example, while

“full rate” commonly refers to a data symbol coding rate of Q
T
, such “full rate” codes,

however, are not information lossless codes if the minimum of the number of transmit

and receive antennas, denoted by NT and NR, respectively, is larger than one [46,98].

Another use of the term “full rate” refers to information lossless codes if NT is not

larger than NR [76,129]. We remark that in space-time channels, if min {NT , NR} > 1,

the symbol coding rate may be alternatively be defined as

Rsym
LDC =

Q

T min {NT , NR} , (3.9)

which may be appropriate for linear estimation and detection.

The definition (3.8) is also general enough to denote symbol coding rates of

complex-valued matrix codes in frequency-time channels [122]. In the rest of this

thesis, we employ the definition (3.8) for LDC, using M rather than NT , to apply to

both space-time and frequency-time channels.

3.3.3 Symbol coding rate one of LDC

The most interested case using (3.8) or (3.9) of symbol coding rate one of LDC is

rate-one. This can be explained using the concept of asymptotic-information-lossless

(AILL) codes [94]. AILL is a necessary and sufficient condition of achieving the

optimal diversity-multiplexing tradeoff, and rate-one based on (3.9) is the necessary

condition to be AILL [94].
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3.4 Matrix form LDC encoding

3.4.1 A special subclass of LDC

In this thesis, we primarily consider a special subclass of dispersion matrices with the

constraints

Aq = Bq, q = 1, ..., Q. (3.10)

Substituting (3.2) and (3.10) into (3.1),

SLDC =

Q∑
q=1

sqAq. (3.11)

Using of the vec operation, we transform (3.11) into matrix form. Reordering

SLDC and each matrix Aq into a TM × 1 column vector, respectively, by vec(SLDC)

and vec(Aq), we obtain

vec(SLDC) =

[
vec(A1) ... vec(AQ)

]



s1

...

sQ




. (3.12)

An example of that special class of LDC codes is shown as follows. The group of

square dispersion matrices of this code, which we call HH Square LDC, satisfies the

constraint of (3.10) [42], which is

AM(k−1)+l = BM(k−1)+l =
1√
M

Dk−1Πl−1, (3.13)

where k = 1, ..., M , l = 1, ..., M ,

D =




1 0 ... 0

0 ej 2π
M ... 0

...
...

. . .
...

0 0 ... ej
2π(M−1)

M




,
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and

Π =




0 0 · · · 0 0 1

1 0 · · · 0 0 0

0 1 · · · 0 0 0

0 0 · · · 0 0 0

...
...

. . .
...

...
...

0 0 · · · 0 1 0




.

Using the above matrices, the data symbol coding rate of LDC is one.

A possible zero-forcing method to estimate the data symbol vector in (3.12) is to

calculate the Moore-Penrose pseudo-inverse of LDC encoding matrix

GLDC = [vec(A1), ..., vec(AQ)] (3.14)

offline and store the result.

3.4.2 General matrix form

Denote

Avec =

[
vec(AT

1 ) vec(AT
2 ) ... vec(AT

Q)

]
, (3.15)

Bvec =

[
vec(BT

1 ) vec(BT
2 ) ... vec(BT

Q)

]
, (3.16)

αvec =

[
α1 α2 ... αQ

]T
, (3.17)

βvec =

[
β1 β2 ... βQ

]T
, (3.18)

θvec =

[
αTvec βTvec

]T
, (3.19)
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Gvec =

[
Avec jBvec

]
, (3.20)

svec =

[
s1 · · · sQ

]T
. (3.21)

In this general case, we have

vec
(
STLD

)
= Gvecθvec. (3.22)

With the constraint in (3.10), we have

vec(STLD) = Avecsvec. (3.23)

In this special case, the length of the estimated signal vector is only half that of the

general case.

Note that (3.12) and (3.23) are used primarily in Chapter 9. There is a slight

difference between Avec in (3.15) and GLDC in (3.14), i.e., the transpose operations,

and both Avec and GLDC can encode LDC in different contexts, respectively. In this

thesis, we only call GLDC LDC encoding matrix under the constraint (3.10).

3.5 LDC decoding

3.5.1 MLD and MLD-like decoding

Conventionally, high complexity decoding, maximum likelihood decoding (MLD) [83,

92] and MLD-like decoding, such as sphere decoding (SD) [17,43,53,113], are primarily

considered in literature. Note that the worst case of complexity of both MLD and

SD is exponential, which may be prohibitively expensive for practical applications.
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3.5.2 Low complexity decoding

Without loss of generality, low complexity linear decoding is employed for performance

comparisons via simulations in this thesis. However, the gains offered by the new

LDC approaches proposed in this thesis are also applicable to more complex optimal

decoders.

3.5.2.1 One step decoding

Based on the equivalent channels, such as (3.6), LDC can be decoded in one-step

low-complexity non-linear decoding, such as decision feedback decoding, or linear

decoding methods, such as zero-forcing (ZF) and linear minimum mean-square error.

One step decoding is a class of decoding approaches, which do not perform the step

of channel symbol (LDC coded symbol) estimation but perform data source symbol

estimation in one step. One example of this will be shown in Section 5.4. A concurrent

approach in one step decoding is also described in [34].

3.5.2.2 Multiple step decoding

In multiple step decoding approaches proposed in this thesis, the first step is channel

symbol (LDC coded symbol) estimation, which can be done non-linearly, such as using

decision feedback estimation, or linearly, such as using ZF and linear MMSE. The

following step is to decode LDC, which may also be done linearly or non-linearly, to

estimate source data symbols. After the channel symbol estimation, To estimate the

source signal vector, we may use pre-computed zero-forcing (ZF) or Moore-Penrose

pseudo-inverse of GLDC , Gvec, or Avec as the decoding matrix. Linear ZF LDC

decoding may work well if

1) the designed decoding matrix has full column rank, which depends on proper
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code design,

2) the channel symbols (LDC coded symbols) are estimated in good quality.

Note that the above LDC decoding requires channel symbols (LDC coded symbols) to

first be estimated. After the channel symbol estimation, linear MMSE LDC decoding

may also be used with the added complexity in calculating the variance of residual

noise of channel symbols. Moreover, if the first step estimation is biased, the residual

noise is non-Gaussian, the degraded MMSE approach may not be worth the increased

complexity.

3.5.3 Complexity level

Assume that the LDC is of size T × M , and one LDC codeword encodes Q source

data symbols, and the constellation size of each data symbol is rc. Assume that this

LDC is a full diversity code, then the codebook size of this LDC is rc
Q. The complex

level is discussed as follows.

1) Assume that the worst case complexity of MLD or MLD-like LDC decoding is

KM , and then ln (KM) has complexity of in the level O(rc
Q).

2) Let y = max{T, M}. The channel symbols (LDC coded symbols) are estimated

using linear MMSE, and LDC is linearly decoded using the multiplication of an

matrix, pre-computed ZF decoding matrix and an estimated signal vector. The

complexity of this linear LDC decoding is O
(
(max{T, M})3) + O (Q).
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Chapter 4

Rectangular asymptotic information

lossless linear dispersion codes

4.1 Introduction

Recently, Shashidhar, Rajan, Sundar, and Kumar introduces the concept of asymptotic-

information-lossless(AILL) [94]. A key problem is to design asymptotic information

lossless LDC with arbitrary dimensions algebraically. In the literature, there are the

only two known classes of LDCs based on algebraically designed LDC that accommo-

date variable matrix sizes. Hassibi and Hochwald have proposed a class of rate-one

square LDC matrices of size M ×M as in Eq. (31) of [42], which we denote as HH

square LDC as shown in (3.10). However, in some applications, rectangular rate-one

LDC are desirable, e.g., to new approaches that employ LDC across combinations of

space, time and frequency dimensions, such as double linear dispersion space-time-

frequency-coding (DLD-STFC) [123, 124]. Zhang et. al. propose a class of rate-one

rectangular LDC of size T ×M [129]. However, their design requires T = KM , where

K is a positive integer [129].

As an extension of HH square LDC [42], this chapter proposes a new class of
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algebraically designed rate-one rectangular linear dispersion codes of arbitrary size

T × M , called uniform linear dispersion codes (U-LDC). When used with double

linear dispersion space-time-frequency-coding (DLD-STFC), which will be described

later, these systems significantly outperform uncoded MIMO-OFDM systems [123,

124]. Note that, although HH square LDC have been proposed in [42] and shown to

have superior performance even in frequency-time channels [122], several important

analyses for HH square LDC have not appeared in literature. This chapter provides an

analysis of U-LDC (including HH square LDC). This chapter shows that U-LDC (1)

meet sub-optimal constraints for both block fading and rapid fading channels, which

enables U-LDC to approximately minimize the error union bound [88,89,108–110], (2)

are capacity optimal and suitable for multistage receiver design, (3) reach maximal

symbolwise diversity [108,109].

The chapter is organized as follows. The design of rectangular rate-one U-LDC

is proposed in Section 4.2. The properties of U-LDC are analyzed in Section 4.3.

Detailed proofs are provided in appendices.
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4.2 Proposed construction of uniform linear dis-

persion codes

4.2.1 The case of T ≤ M

Denote

D =




1 0 · · · 0

0 ej 2π
T · · · 0

...
...

. . .
...

0 0
. . . ej

2π(T−1)
T




,Π =




0 0 · · · 0 1

1 0 · · · 0 0

0 1
. . . · · · 0

...
...

. . . . . .
...

0 0 · · · 1 0




,

Γ =




1 0 · · · · · · 0 · · · 0

0 1
. . . · · · 0 · · · 0

...
. . . . . . . . . · · · ...

...

0 0
. . . 1 0 · · · 0

0 0 · · · 0 1 · · · 0




,

where D is of size T × T , Π is of size M ×M , and Γ is of size T ×M .

The T ×M LDC dispersion matrices are:

AM(k−1)+l = BM(k−1)+l =
1√
T

Dk−1ΓΠl−1, (4.1)

where k = 1, ..., T and l = 1, ..., M .
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4.2.2 The case of T > M

Denote

D =




1 0 · · · 0

0 ej 2π
M · · · 0

...
...

. . .
...

0 0
. . . ej

2π(M−1)
M




,Γ =




1 0 · · · 0 0

0 1
. . . 0 0

...
. . . . . . . . .

...

0 0
. . . 1 0

0 0 · · · 0 1

...
...

...
...

...

0 0 · · · 0 0




,

where D is of size M ×M , Π, defined earlier, is of size T ×T , and Γ is of size T ×M .

The T ×M LDC dispersion matrices are:

AM(k−1)+l = BM(k−1)+l =
1√
M

Πk−1ΓDl−1, (4.2)

where k = 1, ..., T and l = 1, ..., M .

4.3 Properties of uniform linear dispersion codes

4.3.1 Entries of U-LDC dispersion matrices

To derive and prove the following properties of U-LDC, it is useful to obtain expres-

sions for the entries of U-LDC dispersion matrices, which are provided in Appendix

A.1.

4.3.2 Encoding matrix of U-LDC is unitary

Property 1 For uniform linear dispersion codes with arbitrary size T×M dispersion

matrices Aq, q = 1, ..., TM , the encoding matrix GLDC = [vec(A1), ..., vec(ATM)] is
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unitary.

Proof: See Appendix A.2.

With regard to Property 1, we have the following remarks.

1) According to Theorem 1 of [47], as shown in Section 2.5.6, the unitary property,

GLDC [GLDC ]H = ITM , ensures that U-LDC is capacity optimal in block-fading

space-time channels.

2) According to the condition shown in [94], the unitary property of GLDC ensures

U-LDC AILL.

3) The unitary matrix GLDC ensures the uncorrelatedness of U-LDC coded sym-

bols for uncorrelated data source symbols. This enables computationally sim-

pler multi-stage receivers to perform without significant loss in comparison to

single-stage receivers as shown in Chapter 7 and 8.

4.3.3 U-LDC optimality

In the proofs of our results of this subsection, we need to derive expressions for

Aq1 [Aq2 ]
H and

[
[Aq1 ]

HAq2

]
, where q1 = M(k1 − 1) + l1, q2 = M(k2 − 1) + l2,

k1, k2 = 1, ..., T, l1, l2 = 1, ...,M , A(k1,l1) = Aq1 , and A(k2,l2) = Aq2 , which are provided

in Appendix A.3.

Property 2 Uniform linear dispersion codes of arbitrary size T ×M dispersion ma-

trices Aq, q = 1, ..., TM meet the optimal energy constraint under capacity optimiza-

tion [42], i.e.,

Tr
[
[Aq]

HAq

]
=

TM

Q
= 1, (4.3)
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where Q = TM . If T ≥ M , U-LDC meets the more restrictive constraint

[Aq]
HAq =

1

M
IM (4.4)

Proof: See Appendix A.4.

Property 3 For uniform linear dispersion codes with arbitrary size T×M dispersion

matrices Aq, q = 1, ..., TM , the following constraint minimizes the error union bound

in the absence of correlation among rapid fading transmit channels:

Tr
[
vec(Ap) [vec(Aq)]

H
]

= 0. (4.5)

In the presence of correlation, however, the above constraint is suboptimum and is only

able to minimize the component of the EUB arising from inter-symbol-interference

(see Section 7.5 and Appendix D.2).

Proof: See Appendix A.5.

Property 4 Uniform linear dispersion codes with arbitrary size T × M dispersion

matrices Aq, q = 1, ..., TM meet the traceless minimal non-orthogonality criterion for

block quasi-static fading channels [108,109],

Tr
[
[Aq1 ]

HAq2

]
= Tr

[
Aq1 [Aq2 ]

H
]

= 0 (4.6)

for any 1 ≤ q1 6= q2 ≤ TM .

Proof: See Appendix A.6.

We remark that

1) Error union bound (EUB) is an upper bound on the average error probability,

and as such is an average of the pairwise error probabilities between all pairs of
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codewords. The system performance in terms of average bit error rate (BER) is

not only related to pairwise error probabilities but also to the EUB, an indicator

of average system performance.

2) Property 3 states that U-LDC approximately minimize EUB in 2-D (e.g. space-

time) time-varying channels. In Section 7.5 and Appendix D.2, it is proven that

(4.5) is a criterion for minimizing the dominant inter-symbol-interferences for

rapid fading channels, if the auto-correlation of channel elements in the 2-D

channel dominates the cross-correlation of any two different channel elements

in 2-D channels.

3) Property 4 is called the traceless minimal non-orthogonality criterion in [108,

109], which is related to the error union bound (EUB) [88, 89, 110]. In [110],

Tirkkonen and Kokkonen have more recently proven that (4.6) minimizes the

dominant self-interference related to EUB, referred to as the Frobenius orthog-

onality criterion or traceless self-interference.

Thus, U-LDC based systems may achieve low average bit error rate (BER) in both

rapid and block fading channels.

4.3.4 Symbolwise diversity order of U-LDC

Symbolwise diversity, first defined in [108], is a special case of full diversity in that

protection against single-symbol errors is a necessary condition for full diversity pro-

tection against multiple-symbol errors. In a well-designed code, the number of bit-

errors in a codeword is a monotonically increasing with the reduction of the squared

Euclidean distance. Specifically, the squared Euclidean distance is proportional to a
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sum of the squared symbolwise Euclidean distances, which is essentially the signifi-

cance of symbolwise diversity [108,109].

Although U-LDC may not be full diversity codes, U-LDC achieves maximal sym-

bolwise diversity in space-time block fading channels.

Property 5 Uniform linear dispersion codes of arbitrary size T ×M dispersion ma-

trices Aq, q = 1, ..., TM achieve symbolwise diversity order r = min{M,T}

Proof: See Appendix A.7.

4.4 Conclusion

In summary, this chapter proposes and analyzes a new class of rate-one AILL rectan-

gular linear dispersion codes of arbitrary size, termed uniform linear dispersion codes

(U-LDC), which support high performance and lower complexity though multiple

stage decoding when applied to space-time-frequency coding design [123]. Although

it has not been proven that U-LDC are full diversity codes, U-LDC has been shown

to achieve maximal symbolwise diversity order in space time block fading channels.

This chapter also shows that U-LDC of arbitrary size possess several important and

attractive properties, including

1) the satisfaction of error union bound constraints for both rapid and block fading

channels which ensures low average bit error rates;

2) suitability for low complexity multi-stage receiver designs;

3) capacity optimality for space-time channels.
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Chapter 5

Linear dispersion over time and frequency

5.1 Introduction

In recent years, multicarrier communications systems, especially those employing

orthogonal frequency division multiplexing (OFDM) [5], have received increasing

attention for high-data-rate communications in frequency selective fading environ-

ments [48]. In fact, OFDM has been accepted as a component of multiple industrial

standards for high-data-rate communications [23, 48, 87, 106]. By serial-to-parallel

(S/P) conversion, OFDM transforms a single wideband multipath channel into mul-

tiple parallel narrowband flat fading channels, enabling simple equalization.

In practical OFDM system design, it is important to notice that uncoded OFDM

cannot provide the same order of diversity as uncoded single-carrier systems in se-

vere frequency-selective fading environments, since the frequency responses of channel

space branches differ from one another. One technique to mitigate the above prob-

lem is the combination of interleaving and forward error correction across all sub-

channels at the price of reduced bandwidth efficiency, i.e., coded OFDM (COFDM)

[49,60,64,69,95,134].
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A critical issue related to bandwidth efficiency for high-data-rate transmission is

the coding rate. In conventional COFDM, the coding rate usually is less than one,

and thus achieving appropriate trade-offs between coding rate and error probability

are critical design criteria. Recently, as an alternative to error control coding , linear

precoding has been combined with OFDM to exploit or maximally exploit frequency

diversity [71, 114]. To further improve performance, linear constellation precoding

[126] was more recently proposed to combine with OFDM, known as LCP-OFDM,

to maximize not only frequency diversity gain but also coding gain [72]. However,

LCP-OFDM is not able to exploit time diversity over different OFDM blocks in the

channels.

The contributions and organization of this chapter is discussed as follows.

1) This chapter proposes a high-rate (rate up to unity) linear dispersion coded

OFDM (LDC-OFDM) system that improves BER performance and exploits di-

versity across both multiple subcarrier channels and multiple OFDM blocks.

By considering guard intervals, cyclic prefix (CP) and zero-padding (ZP), we

propose LDC-CP-OFDM and LDC-ZP-OFDM, respectively. We show that

LDC-OFDM outperforms LCP-OFDM in dynamic frequency-selective fading

channels.

2) One LDC-OFDM block consists of T OFDM blocks. The basic signal detection

strategy of LDC-OFDM proposed in this chapter involves a layered, complexity-

reduced, backward- compatible two-step-estimation (TSE) procedure: first, the

receiver estimates channel symbols per OFDM block; second, the receiver esti-

mates complex data symbols from the whole LDC-OFDM block. Data bits are

then detected.
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3) For comparison purposes, this chapter also formulates a one-step-estimation

(OSE) system procedure and system equations for LDC-OFDM, which treats

LDC-OFDM as a single linear system acting over multiple OFDM blocks and

which also may facilitate LDC-OFDM system analysis.

4) This chapter analytically shows that a properly designed LDC-OFDM may fully

utilize available time and frequency diversity, and provides a design criterion

for full-diversity frequency-time block codes.

5) Through simulations, this chapter investigates two performance related factors:

a. imperfect channel estimation for LDC-CP-OFDM,

b. low complexity receivers for LDC-ZP-OFDM.

This chapter is organized as follows. In Section 5.2, the construction of an LDC-

OFDM block is proposed. The proposed TSE based LDC-OFDM system is discussed

in Section 5.3, and the proposed receiver structure is illustrated. In Section 5.4, the

system equations of OSE based LDC-OFDM are established. An analytical discussion

of diversity properties of LDC-OFDM is given in Section 5.5. Performance analysis

and comparison of LDC-OFDM is presented in Section 5.6.

5.2 Proposed LDC-OFDM block construction

Let there be NC subcarriers in one OFDM block. One LDC-OFDM block, illustrated

in Figure 5.1, consists of T adjacent OFDM blocks. An LDC-OFDM system includes

D LDC codewords, each with LDC matrices occupying NF (i) subcarriers and T OFDM

blocks ∈ CT×NF (i) , i = 1, ..., D, with
D∑

i=1

NF (i) = NC . In OFDM systems, since the
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Figure 5.1. LDC-OFDM blocks in the time-frequency plane

number of subcarriers is typically much higher than the number of antennas in space-

time MIMO systems, LDC has more freedom to choose larger dispersion matrices. In

addition, the low correlation across subcarriers in OFDM serves as an advantage for

LDC-OFDM.

One LDC-OFDM block is organized into the T ×NC matrix:

SLDC−OFDM−block =




(
s
(1)
OFDM

)T

...
(
s
(T )
OFDM

)T




(5.1)

where SLDC−OFDM−block ∈ CT×NC and s
(k)
OFDM is the k-th OFDM block symbol vector

of size 1×NC , and represents the transmitted complex symbol vector before the inverse

Fourier tranformation in the transmitter for the kth OFDM transmitted block. s
(k)
OFDM

consists of all the D row vectors S
(i)
LDC(k,.), i = 1, ..., D, where S

(i)
LDC(k,.) ∈ C1×NF (i) is
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the k-th row of the i-th LDC matrix codeword S
(i)
LDC in a single LDC-OFDM block.

S
(i)
LDC(k,.) occupies NF (i) subcarriers, and it is not necessary that the NF (i) subcarriers

are spectrally adjacent.

5.3 TSE based LDC-OFDM

5.3.1 Two step estimation and its necessary condition for

LDC decoding

Maximum-likelihood (ML) or MLD-like sphere decoding (SD) for LDC decoding

methods have been studied extensively [42, 47], and both are with high computa-

tional complexity. Further, channel symbol estimation and LDC decoding is not

separated, which results in channel knowledge dependency for LDC decoding and the

large symbol size decoding block [42]. To remove direct channel knowledge depen-

dency and reduce complexity, we propose the concept of two step estimation (TSE).

The basic idea of layered decoding has also been discussed in Section 3.5.2.

The TSE procedure may be applied to LDC-OFDM to permit the channel coeffi-

cients to change per each OFDM block instead of per T OFDM blocks. This enables

an LDC decoding layer to be independent of the specific equalizers used and enables

wide applicability for enhancing different standards. A possible zero-forcing method

to estimate the data symbol vector in (3.12) is to calculate the Moore-Penrose pseudo-

inverse of LDC encoding matrix GLDC offline and store the result. If GLDC has full

column rank, we obtain the least squares solution

[
G

(i)
LDC

]†
=

[[
G

(i)
LDC

]H
G

(i)
LDC

]−1 [
G

(i)
LDC

]H
. (5.2)

To remove the direct dependency of LDC decoding on channel symbol estimation,
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LDC designs need to meet the following:

Correlation criterion: Denote the correlation matrix of vec
(
[SLDC ]T

)
as Rvec([SLDC ]T ).

For the case that channel symbols per channel use or per row of SLDC are block-wise

estimated, SLDC needs to be row-wise uncorrelated. In other words, Rvec([SLDC ]T ) has

block diagonal form,

Rvec([SLDC ]T ) =




RSLDC(1,.)
· · · 0

...
. . .

...

0 · · · RSLDC(T,.)




(5.3)

where RSLDC(k,.)
∈ CM×M , k = 1..., T is the correlation matrix of the k-th row vector

of SLDC , and 0s are M ×M zero matrices. For the case that channel symbols are

estimated per channel symbol or per element of SLDC , SLDC needs to be element-

wise uncorrelated. In other words, Rvec([SLDC ]T ), needs to be diagonal, and more

restrictive constraints are applied.

The two steps are:

1) Signal estimation per channel use:

Signals in each of T channel uses are estimated. No immediate signal detection

is performed (In different channel uses, channel matrices may be different);

2) Data symbol estimation and detection per LDC block:

The data symbols corresponding to one LDC codeword are estimated (In this

step, channel knowledge is not required). Bit detection is then performed.

Note that unlike conventional iterative estimation methods, each TSE step op-

erates on different physical dimensions of signals, which could have different sized

symbol blocks. LDC encoding and decoding only requires matrix-vector multipli-

cation. The per-data-symbol complexity of encoding and decoding is constant and
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proportional to the data symbol coding rate of LDC.

5.3.2 TSE based LDC-OFDM system

5.3.2.1 Wideband OFDM model

The OFDM system has been introduced in Section 2.3.1. During transmission, for the

k-th block of NC IFFT transformed complex symbols, a block of P symbols (a OFDM

block and its guard interval) undergoes order L frequency selective, time flat Rayleigh

fading channel with coefficients h(k) =
[
h

(k)
0 , ..., h

(k)
L

]T
. Choosing P ≥ NC + L, the

inter-block interference due to the previous transmitted block is eliminated by a guard

interval of size (P −NC).

Denote s
(k)
OFDM(p), p = 1..., NC as the channel symbol transmitted on the p-th

subcarrier during the k-th OFDM block. The receiver experiences additive complex

Gaussian noise. Before transmission, a guard interval (cyclic prefix (CP)) is added

to each OFDM block. After FFT processing, the received symbol is

x(k)
p =

√
ρH(k)

p s
(k)
OFDM(p) + v(k)

p , p = 1, ..., Nc (5.4)

where H
(k)
p is the p-th subcarrier channel gain during the k-th OFDM block, and

H(k)
p =

L∑

l=o

h
(k)
l e−j(2π/Nc)l(p−1),

or

H(k)
p = [wp]

T h(k), (5.5)

where

wp =
[
1, ωp−1, ω2(p−1), · · · , ωL(p−1)

]T

and

ω = e−j(2π/Nc).
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The additive noise is circularly symmetric, zero-mean, complex Gaussian with vari-

ance N0. Assume additive noise is statistically independent for different k, and ρ is

the normalized signal to noise ratio (SNR).

The CP-OFDM system may also be written in block matrix form,

x(k) =
√

ρD
(k)
H s

(k)
OFDM + v(k) (5.6)

where x(k) and v(k) are the frequency domain received signal and noise vector, respec-

tively, D
(k)
H = FNC

H(k) [FNC
]H = diag(H

(k)
1 , ..., H

(k)
NC

),

[FNC
]m,n =

1√
NC

e−j2π(m−1)(n−1)/NC (5.7)

and

[
H(k)

]
m,n

= h
(k)
((m−n) mod NC

. (5.8)

When zero-padding (ZP) is consider as the OFDM guard interval, orthogonality

is destroyed, and the system model does not have n simple frequency domain element

form as shown in (5.4). However, the ZP-OFDM system model can be written as

block matrix form in the time domain,

x
(k)
ZP OFDM =

√
ρH

(k)
0 [FNC

]H s
(k)
OFDM + v

(k)
ZP OFDM

, (5.9)

with the k-th received ZP-OFDM block x
(k)
ZP OFDM ∈ CP×1, and the frequency se-

lective channel matrix H
(k)
0 ∈ CP×NC corresponding to the k-th OFDM block. The

Toeplitz channel matrix H
(k)
0 is always guaranteed to be invertible, regardless of the

channel zero locations [66]. Zero-mean white additive complex Gaussian noise vector

is represented by v
(k)
ZP OFDM .
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5.3.2.2 TSE based LDC-OFDM system

The proposed TSE LDC decoding procedure in Section 5.3.1 is applied to the wide-

band OFDM channel described above.

Digital Modulation
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S/P
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Guard

Interval
D/A
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Conversion

Channel

FFT
Remove
Guard

Interval
A/D

Down
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Digital De-Modulation
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P/S

Input
Data Bits

Output
Data Bits

LDC
Block

Encoding

LDC
Block

Decoding

matrix
symbols

matrix
symbols

×T Nc

×T Nc

Figure 5.2. Proposed TSE based LDC-OFDM system ( the dashed lines indicate the

enhancement parts over conventional OFDM system)

The differences between conventional OFDM and the proposed TSE based LDC-

OFDM are indicated by the dashed lines in Figure 5.2. Note that the block size used

in the proposed system differs from that of the conventional OFDM system.

5.3.2.3 LDC-OFDM receiver

The receiver for LDC-OFDM, illustrated in Figure 5.4, first estimates the signals

in T OFDM blocks. Second, the estimated SLDC−OFDM−block is reorganized into

D LDC blocks. The D LDC demodulators operate in parallel, followed by data

bit detection. Denote the LDC encoding matrix of the i-th LDC matrix codeword

S
(i)
LDC ∈ CT×NF (i) as G

(i)
LDC , which encodes source data symbol vector with zero

mean, unit variance, s(i) =
[
s
(i)
1 , ..., s

(i)
Qi

]
, Qi is the number of source data symbols

in s(i). If G
(i)
LDC = GLDC , i = 1, ..., D are unitary matrices, the correlation matrices

of s
(k)
OFDM , k = 1, ..., T are identity matrices. Note that, in general, unitariness is not
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Figure 5.4. Proposed TSE based LDC-OFDM receiver structure.
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a necessary condition for G
(i)
LDC .

Due to the independence of the two estimation steps, TSE LDC-OFDM systems

possess the layered structure shown in Figure 5.3, which provides flexible choices for

system design and communications error control.

5.3.2.3.1 First estimation step - OFDM Demodulation In the proposed

TSE based LDC decoding strategy, LDC decoding is independent of OFDM sig-

nal estimation. Thus the proposed TSE based LDC-OFDM system could be made

backwards-compatible with conventional OFDM systems.

In Section 5.6, minimum-mean-squared-error MMSE equalizers are chosen to in-

vestigate error performance. Assuming that OFDM symbols are normalized with unit

variance, the respective equalizers are given by [66]

1) case of CP-OFDM

G
(k)
OFDM CP MMSE =

√
ρC

s
(k)
OFDM

(
D

(k)
H

)H
·

(
INC

+ ρD
(k)
H C

s
(k)
OFDM

(
D

(k)
H

)H)−1 (5.10)

and

ŝ
(k)
OFDM = G

(k)
OFDM CP MMSEx(k), (5.11)

2) case of ZP-OFDM

G
(k)
OFDM ZP MMSE =

√
ρFNC

C
s
(k)
OFDM

(
H

(k)
0

)H
·

(
IP + ρH

(k)
0 [FNC

]HC
s
(k)
OFDM

FNC

(
H

(k)
0

)H)−1 (5.12)

and

ŝ
(k)
OFDM = G

(k)
OFDM ZP MMSEx

(k)
ZP OFDM , (5.13)
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where k = 1, ..., T , C
s
(k)
OFDM

is the covariance matrix of the k-th OFDM block symbols,

C
s
(k)
OFDM

can be derived using G
(i)
LDC , i = 1, ..., D.

When G
(i)
LDC , i = 1, ..., D is unitary, the equalizers could be written as

1) case of CP-OFDM

G
(k)
OFDM CP MMSE =

√
ρ

(
D

(k)
H

)H (
INC

+ ρD
(k)
H

(
D

(k)
H

)H)−1

(5.14)

2) case of ZP-OFDM

G
(k)
OFDM ZP MMSE =

√
ρFNC

(
H

(k)
0

)H (
IP + ρH

(k)
0

(
H

(k)
0

)H)−1

. (5.15)

It is easy to show that if G
(i)
LDC , i = 1, ..., D is unitary, (5.15) is much more complex

than (5.14) when matrix dimensions are high, since D
(k)
H is diagonal, and the matrix

inversion operation (5.10) may be simplified to element-wise inversion operations.

Based on the layer-independent design principle of TSE based LDC-OFDM, a lower

complexity solution for ZP-OFDM may be found. A possible solution is via a ZP-

OFDM-FAST-MMSE approach [66]: Denote

FZP =

[
FNC

0(P−NC)×NC

]H

U = [FPFZP ]† ,

D
H

(k)
P

= FP C
(h(k))
P [FP ]H ,

where C
(h(k))
P is a P × P circulant matrix, and C

(h(k))
P = Circ(h

(k)
0 , 0, ..., h

(k)
L , ..., h

(k)
1 ).

Then the low complexity MMSE ZP-OFDM equalizer corresponding to (5.15) is given

as

G
(k)
OFDM ZP FAST MMSE = U

[
D

H
(k)
P

]H [
P

NC

IP + ρD
H

(k)
P

[
D

H
(k)
P

]H]−1

(5.16)

Note that U could be precomputed; D
H

(k)
P

is diagonal, simplifying the matrix inversion

operation.
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5.3.2.3.2 Second estimation step - LDC-OFDM Block Demodulation Re-

organizing the estimation results of the first estimation step into D estimated LDC

matrix codewords, Ŝ
(i)
LDC , i = 1, ..., D, the estimated data symbol vectors correspond-

ing to D LDC blocks are

ŝ(i) =
[
G

(i)
LDC

]†
vec

(
Ŝ

(i)
LDC

)
. (5.17)

5.4 OSE based LDC-OFDM

This section discusses one-step-estimation (OSE) system strategy of LDC-OFDM.

Basically, OSE LDC decoding strategy is to integrate LDC decoding and channel

symbol estimation, that is to say this procedure processes one LDC codeword together

with channel knowledge, thus OSE strategy with high complexity, especially in the

case of using maximum-likelihood or MLD-like sphere decoding. Although we start

to use the term OSE, actually OSE strategy has been applied to LDC decoding in

space time channels and chosen by primary LDC research community [42, 47], in

addition, existing work assume channel coefficients constant over time during one

LDC codeword. This section proposes to use an OSE strategy for LDC in frequency

time channels, and assumes channel coefficients may vary over time during one LDC

codeword.

5.4.1 LDC coding matrix for OSE system

Recall GLDC and Avec have been defined in (3.14) and (3.15), where

GLDC = [vec(A1), ..., vec(AQ)]
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and

Avec =

[
vec(AT

1 ) vec(AT
2 ) ... vec(AT

Q)

]
.

There is a permutation relation between Avec and GLDC ,

Avec = PGLDC , (5.18)

where P is a permutation matrix,

P =




IM ⊗ aT (1)

IM ⊗ aT (2)

...

IM ⊗ aT (T )




(5.19)

where aT (k), k = 1, ..., T is a row vector with size 1 × T , and with a one in the k-th

entry and with zero in all the other entries

We choose Avec for LDC encoding to facilitate establishing one-step system equa-

tions.

5.4.2 OSE LDC-OFDM system model

5.4.2.1 Component matrices

The receiver signal vector of OSE LDC-OFDM is

1) case of LDC-CP-OFDM

xLDC CP OFDM =
[[

x(1)
]T

, ...,
[
x(T )

]T ]T
, (5.20)

2) case of LDC-ZP-OFDM

xLDC ZP OFDM =

[[
x

(1)
ZP OFDM

]T
, ...,

[
x

(T )
ZP OFDM

]T ]T
, (5.21)
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where frequency domain x(k) ∈ CNC×1 and time domain x
(k)
ZP OFDM ∈ CP×1, k =

1..., T are the receiving vectors corresponding to the k-th OFDM block in a single

LDC-CP-OFDM or LDC-ZP-OFDM block respectively.

The system channel matrix is

1) case of LDC-CP-OFDM

HCP =




H(1) · · · 0NC×NC

...
. . .

...

0NC×NC
· · · H(T )




, (5.22)

2) case of LDC-ZP-OFDM

HZP =




H
(1)
0 · · · 0P×NC

...
. . .

...

0P×NC
· · · H

(T )
0




, (5.23)

where H(k) ∈ CNC×NC and H
(k)
0 ∈ CP×NC , k = 1, ..., T are frequency selective channel

matrix corresponding to the k-th OFDM block in a single LDC-CP-OFDM and LDC-

ZP-OFDM block respectively.

The block-diagonal discrete Fourier transform system matrix for T blocks is

F =




FNC
· · · 0NC×NC

...
. . .

...

0NC×NC
· · · FNC




, (5.24)

where FNC
∈ CNC×NC , defined in (5.7), is an NC-point FFT matrix.

The complex Gaussian noise vector is

1) case of LDC-CP-OFDM

vLDC CP OFDM =
[[

v(1)
]T

, ...,
[
v(T )

]T ]T
, (5.25)
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2) case of LDC-ZP-OFDM

vLDC ZP OFDM =

[[
v

(1)
ZP OFDM

]T
, ...,

[
v

(T )
ZP OFDM

]T ]T
, (5.26)

where frequency domain v(k) ∈ CNC×1 and time domain v
(k)
ZP OFDM ∈ CP×1, k =

1..., T are the additive noise vectors corresponding to the k-th OFDM block in a

single LDC-CP-OFDM or LDC-ZP-OFDM block respectively.

The system complex symbol vector before inverse FFT processing at transmitter

is

sOFDM =

[[
s
(1)
OFDM

]T
, ...,

[
s
(T )
OFDM

]T ]T
(5.27)

where s
(k)
OFDM ∈ CNC×1, k = 1..., T are the complex valued symbol vectors to be

operated upon with inverse fast Fourier transform FN
H corresponding to each of T

OFDM blocks in a single LDC-OFDM block.

5.4.2.2 LDC-OFDM block system model

The OSE LDC-OFDM system of equations over T OFDM blocks could be written as

1) case of LDC-CP-OFDM

xLDC CP OFDM =
√

ρFHCPFHsOFDM + vLDC CP OFDM (5.28)

2) case of LDC-ZP-OFDM

xLDC ZP OFDM =
√

ρHZPFHsOFDM + vLDC ZP OFDM (5.29)
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Let D = FHCPFH, the OSE system equation of LDC-CP-OFDM, (5.28), can be

rewritten as

xLDC CP OFDM =
√

ρDsOFDM + vLDC CP OFDM (5.30)

5.4.2.3 Construction of LDC-OFDM codeword vector

The system channel complex symbol vector of OSE based LDC-OFDM actually is

a permutation of D LDC codeword symbols. We could write sOFDM = Ts, where

s =
[[

s(1)
]T

, ...,
[
s(D)

]T ]T
, and s(i) =

[
s
(i)
1 , ..., s

(i)
Qi

]T
is the data source symbol vector

for the i-th LDC codeword within one LDC-OFDM block. The transformation matrix

T could be written as

T =




Ω · · · 0NC×NC

...
. . .

...

0NC×NC
· · · Ω




Ψ




P(1)G
(1)
LDC · · · 0TNF (1)×QD

...
. . .

...

0TNF (D)×Q1 · · · P(D)G
(D)
LDC




(5.31)

where Ψ initially maps the k-th rows D LDC codewords to a vector, say s̃
(k)
OFDM ,

which just connects all the k-th rows for the k-th OFDM block. Ω of size NC ×NC is

the permutation matrix of determining the mappings from s̃
(k)
OFDM to actual OFDM

subcarriers s
(k)
OFDM in the k-th OFDM block, and Ω is the same for all OFDM blocks.

P(i), i = 1, ..., D has been defined in (5.19).

Without loss of generality, for simplicity, we consider the case NF (i) = NF , i =

1, .., D and Qi = Q, i = 1, ..., D, all the LDC codewords use the same encoding matrix

U = PGLDC ∈ CTNF×Q, and for all T OFDM blocks, the rows of LDC codewords
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follow the same rules of mapping to OFDM subcarriers, the we could write

Ψ =




ID ⊗Θ(1)

ID ⊗Θ(2)

...

ID ⊗Θ(T )




,

where Θ(k) is a permutation matrix of size NF ×NF T , Θ(k) = cT (k) ⊗ INF
, and cT (k)

is a row vector of size 1× T , and with 1 in the k-th entry and with 0 in all the other

entries.

5.4.3 Full system model for OSE based LDC-OFDM system

and its receiver

The full form of proposed linear system equations of OSE based LDC-OFDM (5.30)

and (5.29) can be written as

1) case of LDC-CP-OFDM

xLDC CP OFDM =
√

ρDTs + vLDC CP OFDM (5.32)

2) case of LDC-ZP-OFDM

xLDC ZP OFDM =
√

ρHZPFHTs + vLDC ZP OFDM (5.33)

Letting ZCP = DT and ZZP = HZPFHT, we rewrite Eq. (5.32) and (5.33) as

1) case of LDC-CP-OFDM

xLDC CP OFDM =
√

ρZCP s + vLDC CP OFDM (5.34)
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2) case of LDC-ZP-OFDM

xLDC ZP OFDM =
√

ρZZP s + vLDC ZP OFDM . (5.35)

Note that the estimation operation unit of OSE based LDC-OFDM is a LDC-

OFDM block instead of a OFDM block. Thus the estimation matrix is much larger

than that of TSE case. From the above equation, different receiver designs are pos-

sible. Minimum mean-squared error (MMSE) equalizers will be used for OSE LDC-

OFDM systems in simulations.

In this section, assume the covariance matrices of s and v hold Cs = ITNC
and

Cv = ITNC
respectively.

The MMSE equalizer is

1) case of LDC-CP-OFDM

GLDC−CP−OFDM MMSE =
√

ρ [ZCP ]H
(
ITNC

+ ρZCP [ZCP ]H
)−1

, (5.36)

2) case of LDC-ZP-OFDM

GLDC−ZP−OFDM MMSE =
√

ρ [ZZP ]H
(
ITP + ρZZP [ZZP ]H

)−1

. (5.37)

Unlike the TSE system, for OSE systems, it is convenient to obtain the corre-

sponding decision signal-to-interference-plus-noise ratio or SINR as [2]

SINRi =
1[

Cs|x
]

ii

− 1, (5.38)

where Cs|x is calculated as

1) case of LDC-CP-OFDM

Cs|x = ITNC
− ρ [ZCP ]H

(
ITNC

+ ρZCP [ZCP ]H
)−1

ZCP , (5.39)
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2) case of LDC-ZP-OFDM

Cs|x = ITNC
− ρ [ZZP ]H

(
ITNC

+ ρZZP [ZZP ]H
)−1

ZZP . (5.40)

Note that in SINR, the signal is referred to the source data symbol (after LDC

decoding) instead of channel symbol (before LDC decoding).

5.5 Diversity analysis of LDC-OFDM

The orthogonality property of CP-OFDM makes analysis of LDC-CP-OFDM conve-

nient. In this section, LDC-OFDM is referred to as LDC-CP-OFDM.

Since LDC-OFDM includes all LDC coding properties within the time-frequency

(TF) T×NF (i) block in a LDC-OFDM codeword, in the following analysis, we consider

a single T ×NF (i) block C(i), i = 1, ..., D in a LDC-OFDM codeword. The block C(i)

is created after encoding all the i-th LDC codewords within a LDC-OFDM codeword.

Denote subcarrier indexes chosen for TF block C(i), i = 1, ..., D as {p(k)
nF (i) , nF (i) =

1, ..., NF (i), i = 1, ..., D, k = 1, ..., T}. Denote the block C(i) as the matrix form

C(i) =




c
(1)
p1(i)

c
(1)
p2(i)

· · · c
(1)
p

NF (i)

c
(2)
p1(i)

c
(2)
p2(i)

· · · c
(2)
p

NF (i)

...
...

. . .
...

c
(T )
p1(i)

c
(T )
p2(i)

· · · c
(T )
p

NF (i)




.

We may express the system equation for block C(i) as

R(i) =
√

ρM(i)H(i) + V(i), (5.41)

where received signal vector R(i) and noise vector V(i) are of size NF (i)T × 1, the

i-th LDC coded channel symbol matrix is of size NF (i)T × NF (i)T , M(i) is of size
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NF (i)T ×NF (i)T , c
(k)
pnF (i)

, nF (i) = 1, ..., NF (i), is the channel symbol of the k-th OFDM

block, the pnF (i)
-th subcarrier in the i-th LDC codeword, and

M(i) = diag(c
(1)
p1(i)

, ..., c
(1)
p

NF (i)
, ..., c

(T )
p1(i)

, ..., c
(T )
p

NF (i)
), (5.42)

where i = 1, ..., D.

The channel H(i) is of size NF (i)T × 1, and

H(i) =

[
H

(1)
p1(i) , H

(1)
p2(i) , ..., H

(1)
pNF (i)

, ..., H
(T )
p1(i) , H

(T )
p2(i) , ..., H

(T )
pNF (i)

]T
(5.43)

and H
(k)
pnF (i)

is the path gain of of k-th OFDM block , the pnF (i)
-th subcarrier for block

C(i). Thus

H(k)
pnF (i)

=
[
wpnF (i)

]T
h(k), (5.44)

where wp and h(k) have been defined in Section 5.3.2.1.

Consider a pair of matrices M(i) and M̃(i) corresponding to two different time-

frequency (TF) blocks C(i) and C̃(i). Then the upper bound pairwise error probability

[96] between M(i) and M̃(i) is

Pr
(
M(i) → M̃(i)

)
≤




2r − 1

r




(
r∏

a=1

γa

)−1

(ρ)−r (5.45)

where r is the rank of

(
M(i) − M̃(i)

)
RH(i)

(
M(i) − M̃(i)

)H
,

and RH(i) = E
{
H(i)

[
H(i)

]H}
is the correlation matrix of vector H(i), γa, a = 1, ..., r

are the non-zero eigenvalues of

(
M(i) − M̃(i)

)
RH(i)

(
M(i) − M̃(i)

)H
.

Then the corresponding rank and product criteria are
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1) Rank criterion: the minimum rank of

(
M(i) − M̃(i)

)
RH(i)

(
M(i) − M̃(i)

)H

over all pairs of different matrices M(i) and M̃(i) and should be as large as

possible.

2) Product criterion: the minimum value of the product
r∏

a=1

γa over all pairs of

different M(i) and M̃(i) should be maximized.

For simplicity, denote

Λ(i) =
(
M(i) − M̃(i)

)
RH(i)

(
M(i) − M̃(i)

)H
.

Now we need to derive the matrix form of RH(i) . Denote

W(i) =
[
wp1(i)

, · · · ,wpNF (i)

]T
(5.46)

and

h =
[[

h(1)
]T

, · · · ,
[
h(T )

]T ]
. (5.47)

Thus

H(i) =
(
IT ⊗W(i)

)
h. (5.48)

Then, we have

RH(i) = E
{(

IT ⊗W(i)
)
h

[(
IT ⊗W(i)

)
h
]H}

=
[
IT ⊗W(i)

]
E

{
h [h]H

}[
IT ⊗

[
W(i)

]H]

=
[
IT ⊗W(i)

]
Φ

[
IT ⊗

[
W(i)

]H]
, (5.49)

where Φ = E
{
h [h]H

}
.
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Using the well-known property,

rank (AB) ≤ min {rank (A) , rank (B)} , (5.50)

rank
(
Λ(i)

) ≤ min
{

rank
(
M(i) − M̃(i)

)
, rank (RH(i))

}
. (5.51)

It is desired to maximize

min
{

rank
(
M(i) − M̃(i)

)
, rank (RH(i))

}
.

We know the maximum of rank of Φ is T (L + 1). To maximize the rank of RH(i) ,

we need to maximize the rank of matrix W(i) of size NF (i) × (L + 1) . Thus we need

to choose NF (i) ≥ L+1. When p
(i)
nF = p

(i)
1 + b(nF −1), nF = 1, ..., NF (i), NF (i) ≥ L+1,

where p
(i)
nF ≤ NC and b is a positive integer, W(i) could achieve maximum rank

L+1. Then RH(i) has the potential to achieve the maximum rank of T (L+1), only if

Rank(Φ) = T (L+1). That is to say, channels need to be full rank jointly in frequency

and time domains. The choice of interval b depends on the type of power delay profile

of the frequency selective channel, and a detailed discussion can be found in [72] and

[98].

Since M(i) − M̃(i) is of size NF (i)T ×NF (i)T ,

rank
(
M(i) − M̃(i)

)
≤ NF (i)T, (5.52)

and NF (i) ≥ L + 1.

Note that M(i) − M̃(i) is a diagonal matrix. Thus, the necessary and sufficient

condition for maximizing the rank of M(i)−M̃(i) is that all the diagonal elements are

non-zero, which can be summarized as

Theorem 3 1) If the correlation matrix RH(i) of channel vector H(i) is full rank

T (L + 1), the necessary condition that the frequency-time (FT) block C(i) of
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LDC-OFDM achieves full joint frequency-time diversity order, i.e. rank(Λ(i)) =

T (L + 1), is that the frequency dimension size of the FT block C(i) satisfies

NF (i) ≥ L + 1. (5.53)

2) The sufficient condition that the frequency-time (FT) block C(i) of LDC-OFDM

achieves available joint frequency-time diversity order, rank(RH(i)), is that any

two elements c
(k)
pnF (i)

and c̃
(k)
pnF (i)

, of any two different blocks, C(i) and C̃(i) are

different. Mathematically, the sufficient condition is

c(k)
pnF (i)

− c̃
(k)
pnF (i)

6= 0, (5.54)

where nF (i) = 1, ..., NF (i), k = 1, ..., T ;

3) If both NF (i) = L + 1 and rank(RH(i)) = T (L + 1) are satisfied, the con-

dition (5.54) is the necessary and sufficient condition that the frequency-time

(FT) block C(i) of LDC-OFDM achieves joint full frequency-time diversity or-

der, rank(Λ(i)) = T (L + 1);

4) The related product criterion of design is that the minimum of products

T∏

k=1

NF (i)∏
a=1

∣∣∣∣c(k)
p

a(i)
− c̃

(k)
p

a(i)

∣∣∣∣
2

taken over distinct FT block C(i) and C̃(i) must be maximized.

A detailed proof is provided in Appendix B.

The result of Theorem 3 is somewhat surprising. The criterion provided in Theo-

rem 3 is different from the design criterion for space-time rapid fading channels [102].

If c
(k)
pnF (i)

, nF (i) = 1, ..., NF (i) were space-time code signals, nF (i) would refer to the

indices of transmit antennas, then the design criterion (distance criterion) would be

c(k)
p
1(i)

c(k)
p
2(i)

...c(k)
pNF (i)

6= c̃
(k)
p
1(i)

c̃
(k)
p
2(i)

...c̃
(k)
pNF (i)

.
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Denote
∣∣∣ck

(i) − c̃k
(i)

∣∣∣
2

=

NF (i)∑
a=1

[
c(k)
p

a(i)
− c̃

(k)
p

a(i)

]2

and the corresponding product criterion for the space-time codes would be that the

minimum of products
T∏

k=1

∣∣∣ck
(i) − c̃k

(i)

∣∣∣
2

taken over distinct codewords C(i) and C̃(i) be maximized.

Clearly there are differences between the design criteria of frequency-time code and

space-time code for 2-D rapid fading channels. The reason for the differences is that

the received signals at each receive antenna of space-time channel communications

are superpositions of parallel signals from multiple transmit antennas, while there

is no additive operation of parallel channel signals at the receivers of frequency-

time communications. The differences between design criteria could lead to different

designs of matrix codewords between frequency-time and space-time channels, which

implies that the best code design for 2-D space-time rapid fading channels is not

necessarily to the best code design for 2-D frequency-time rapid fading channels.

This above analysis has revealed that instead of using all available subcarriers, a

proper frequency-time (FT) block design usually uses a much smaller block, and could

achieve diversity order up to T (L+1). The necessary condition that FT block design

achieves a certain diversity order is that the rank of the channel correlation matrix

is equal to the diversity order of the FT block. However, in practice, the diversity

order achieved is based on the specific LDC design chosen. Originally, Hassibi and

Hochwald did not consider diversity order as a design criterion [42]. Heath and Paulraj

considered both capacity and error probability as criteria [47], but they only consider

channel coefficients that are constant over time within an entire LDC codeword. This

chapter provides a more general analysis that considers correlation across parallel
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frequency channels (OFDM subcarriers) as well as across time channel uses (OFDM

blocks).

An important special case for FT-block design is T = 1, and the corresponding

upper bound diversity order L + 1, which is known as LCP-OFDM [72]. Hence, the

diversity order of LCP-OFDM is always equal to or less than that of full frequency-

time diversity LDC-OFDM (of order T (L + 1) with T > 1) in dynamic frequency-

selective fading channels.

5.6 Performance Analysis and Comparison

5.6.1 Simulation setup

Perfect channel state information (CSI), including amplitude and phase, is assumed

to be known at the receiver but not at the transmitter. In the simulations, Eq.

(31) of [42] defines the dispersion matrices in all LDC codewords. Note that the

corresponding LDC encoding matrices GLDC , defined in (3.14), of the above codes

are unitary, as proven in Appendix A. Thus this code meets the correlation criterion

in Section 5.3.1. The D LDC demodulators each decode T ×NF (i) LDC matrices. In

particular, we set

NF (i) = NF = T, i = 1, ..., D. (5.55)

In all simulations, the mapping used from LDC to OFDM subcarriers is an evenly

spaced LDC subcarrier mapping (ES-LDC-SM), in which the subcarriers used within

one LDC codeword are evenly and maximally spaced with respect to the subcarrier

indices. Using this mapping, W(i) defined in (5.46) is guaranteed full rank, which is

a necessary condition to achieve full diversity.
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To assess performance as a function of LDC matrix size, NC is fixed while D is

varied. Data symbols use QPSK modulation. The frequency selective Rayleigh fad-

ing channel has (L + 1) paths with exponential power delay profile. The channel is

assumed to be constant over different integer numbers of OFDM blocks, and inde-

pendent identically-distributed (i.i.d.) between blocks. We term this integer number

of the intervals as the channel change interval (CCI).

5.6.2 Performance Analysis and Comparison for TSE based

LDC-OFDM

In this performance analysis of TSE LDC-OFDM systems, the number of subcarriers

of OFDM, NC , is set to 64.

5.6.2.1 Comparison of LDC-OFDM and OFDM

Figures 5.5 shows the Bit Error Rate (BER) performance vs. receiver input average

symbol SNR of the LDC-ZP-OFDM and LDC-CP-OFDM system respectively. Vari-

ous combinations of NF with MMSE equalizers are used, and compared to uncoded

ZP-OFDM and CP-OFDM systems, respectively. The channel order used in this case

was set to L = 12.

It can be seen that both LDC-ZP-OFDM and LDC-CP-OFDM are very effective in

frequency selective Rayleigh fading channels. With MMSE equalizers, both LDC-ZP-

OFDM and LDC-CP-OFDM systems significantly outperform ZP-OFDM and CP-

OFDM systems. The larger the dispersion matrices used, the greater the performance

improvement achieved, at a cost of increased decoding delay. Despite LDC’s increased

delay in decoding, we note that a symbol coding rate of one is used, resulting in no

bandwidth expansion. The higher SNR, the more diversity gains are achieved for
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Figure 5.5. BER Performance of OFDM vs. LDC-OFDM, channel order 12, CCI = 1

OFDM block, NC = 64, T = NF
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both LDC-ZP-OFDM and LDC-CP-OFDM.

5.6.2.2 LDC-OFDM under different channel dynamics

Figure 5.7 shows a performance comparison of BER vs. SNR of LDC-ZP-OFDM and

LDC-CP-OFDM under various different CCIs. The channel order used in this case

was set L = 7. Note that different CCIs arise from for different degrees of channel

correlation over time. As discussed in Section 5.5, the diversity order of LDC-OFDM

is achievable only if the channel provides corresponding diversity.

As shown, the performance of both LDC-ZP-OFDM and LDC-CP-OFDM is no-

tably influenced by channel dynamics or time correlation, which are represented by

different CCIs. At high SNRs, the faster the channel changes, the better the per-

formance. This indicates that both LDC-ZP-OFDM and LDC-CP-OFDM effectively

exploit available temporal diversity across multiple OFDM blocks. In the future,

testing on a more accurate model of channel dynamics is needed to obtain a more

accurate assessment.

Note that, although the time diversity advantage is notable in Figure 5.7, the

time diversity gain is small. The reason for the above observation is not the usage of

linear decoding but the usage of a code that does not possess full temporal diversity.

However, in Section 6.5.5, LDC-OFDM shows a significant time diversity gain in time

varying channels, when the code that possesses full temporal diversity is chosen.

5.6.2.3 Comparison of LDC-OFDM and LCP-OFDM

Recently, linear constellation precoded OFDM (LCP-OFDM) with subcarrier group-

ing was proposed as a non-redundancy approach to improve BER performance [72].

However, although LCP-OFDM achieves both maximum frequency selective diversity
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gain and coding gain, LCP-OFDM cannot exploit time diversity over OFDM blocks.

We have compared LCP-OFDM with our proposed LDC-OFDM under both cyclic

prefix and zero-padding cases. In the simulations, the OFDM block length was also

set to NC = 64, and the channel order L was set to 7. The LCP uses the construction

LCP-A shown in Table I of [72], thus LCP-OFDM may approach both maximum

frequency selective diversity and coding gains. For a fair comparison, all the settings

of LCP-OFDM were the same as those of LDC-OFDM. Thus the diversity available

is the same for both LDC-OFDM and LCP-OFDM.

Note that, to date, linear constellation precoded ZP-OFDM has not been studied

previously to our knowledge, while LCP with CP-OFDM has been analyzed in [72].

It is not surprising that in Figures 5.7(a) and 5.7(b), both LCP-ZP-OFDM and

LCP-CP-OFDM systems perform similarly under CCI = 1 and CCI = 8. LDC-

ZP-OFDM and LDC-CP-OFDM systems perform similarly to LCP-ZP-OFDM and

LCP-CP-OFDM under CCI = 8, respectively. That is to say, when channels have full

correlation over time (OFDM blocks), properly designed LDC-OFDM could poten-

tially achieve both maximum frequency selective diversity gain and coding gain. Fur-

ther, LDC-ZP-OFDM and LDC-CP-OFDM outperform LCP-ZP-OFDM and LCP-

CP-OFDM under CCI = 1, respectively. That is to say, when channels have no cor-

relation over time (OFDM blocks), properly designed LDC-OFDM can exploit time

independence or diversity, while LCP-OFDM cannot, which agrees to the analysis

in Section 5.5. Thus, LDC-OFDM systems show noticeable advantages over LCP-

OFDM systems in channel environments that vary over OFDM blocks.
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5.6.2.4 Comparison of LDC-CP-OFDM under perfect CSI vs. estimated

channel information

To consider a more realistic scenario in terms of effects of imperfect channel state

information (CSI) at receiver, Figure 5.8 shows a performance comparison of BER

performance of LDC-CP-OFDM under perfect CSI vs. estimated channel information.

The estimated channel information is obtained through pilot-based standard MMSE

channel estimation [22].

It can be observed that the performance of both LDC-CP-OFDM and uncoded

CP-OFDM degrades under estimated channel information. For instance, at a BER of

10−2, compared with the case of perfect CSI, the performances of LDC-CP-OFDM and

uncoded CP-OFDM degrade by 0.31dB and 0.22dB, respectively. LDC-CP-OFDM is

more sensitive to channel estimation errors than CP-OFDM. However, although the

performance loss of LDC-CP-OFDM under estimated channel information is higher

that of CP-OFDM, LDC-CP-OFDM under MMSE channel estimation outperforms

CP-OFDM under MMSE channel estimation, since the high diversity gain of LDC-

OFDM compensate for performance loss due to channel estimation errors.

5.6.2.5 Comparison of LDC-ZP-OFDM under MMSE vs. low complexity

MMSE receivers

In Section 5.3, a layered structure of TSE LDC-OFDM has been discussed. This is

demonstrated by the comparison of LDC-ZP-OFDM under MMSE vs. low complexity

MMSE equalizers in Figure 5.9. The low complexity MMSE equalizer is given in

(5.16) in Section 5.3.2.3. The ZP-OFDM-FAST-MMSE approach was designed by

approximation [66], which may degrade performance compared with that of standard

MMSE equalizer.
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From Figure 5.9, it can be seen that in the range of low to medium SNR, the

performance of LDC-ZP-OFDM under MMSE vs. low complexity MMSE equalizers

is quite close. At BER of 10−3, compared with the case of under MMSE equalizer,

the performance of LDC-ZP-OFDM under low complexity MMSE equalizer degrades

by only 0.4dB. In other words, almost the same high diversity gain is maintained for

both equalizers. With an increase of SNR, the performance loss due to using a low

complexity approach becomes more significant. At a BER of 10−4, the performance

loss of LDC-ZP-OFDM under low complexity MMSE equalizer is 0.8dB.

This comparison represents just one example of the flexibility of layered structure

flexibility using different equalizers. OFDM systems have been developed about 40

years, and extensive research work have been conducted for OFDM signal estimation,

which may be applied in TSE LDC-OFDM systems.

5.6.3 Performance Analysis and Comparison of OSE based

LDC-OFDM

In this performance analysis of OSE LDC-OFDM systems, two performance measures

used are bit error probability (BER) and decision-point SINR. To evaluate SINR

performance, we propose to determine the probability that the instantaneous SINR is

larger than a threshold, i.e. Pr(SINR > SINR0), which we call SINR distribution.

This method is inspired by investigation of OFDM Peak-to-Average Power Ratio

(PAPR).

The BER and SINR performance results were obtained through Monte Carlo sim-

ulation and calculation respectively, with channel order L = 7 and exponential power

delay profile, and random channel coefficients with Rayleigh fading. Uncorrelated
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QPSK modulated source data symbols were used throughout. The number of sub-

carriers in an OFDM block was set to NC = 32. Channel change interval was set to

CCI = 1

5.6.3.1 BER Comparison

Fig. 5.10 shows BER performance vs. receiver input average symbol SNR of OFDM

and OSE/TSE LDC-OFDM.
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Figure 5.10. BER Performance of OFDM vs. LDC-OFDM (OSE) vs. LDC-OFDM

(TSE),NC = 32, (LDC-OFDM NF = 8, T = 8), channel order 7, CCI = 1 OFDM

block

It can be seen that the performance of the OSE and TSE cases for both LDC-ZP-

OFDM and LDC-CP-OFDM are quite close. We reiterate that the LDC encoding
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matrices chosen G
(k)
LDC , k = 1, ..., T corresponding to the LDC code (Eq. (31) of [42])

are unitary matrices, which result in uncorrelated LDC-coded symbols. It appears

that TSE actually consists of two decoupled estimation stages. In other words, it is

possible that by using special LDC coding matrices, two-step-estimation with much

lower complexity could produce performance close to that of one-step-estimation.

Further, it appears that the two estimation stages are not completely uncorrelated

for LDC-ZP-OFDM case. The two estimation stage of LDC-CP-OFDM shows better

decorrelation, possibly because of the maintenance of orthogonality of CP-OFDM.

5.6.3.2 SINR Comparison

The SINR results shown in this part were generated through Monte Carlo calcula-

tion, using (5.38), where frequency selective Rayleigh fading channel coefficients were

randomly produced .

From Fig. 5.11, it is found the average SINR of OFDM is at least 5 dB higher

than that of LDC-ZP-OFDM for each SNR. This point is somewhat surprising, which

tells us that LDC-ZP-OFDM systems do not provide an average SINR gain. On the

contrary, a large average SINR loss results. Average SINR, however, does not provide

insights of LDC-OFDM.

To explain the above performance improvement, we investigate instantaneous

SINR performance of the one-step system. In multipath fading channels, signals may

experience deep fading. In OFDM systems, wideband channels are transformed into

parallel narrowband channels. This reduces deep fading effects generally, but there

usually exist some subcarriers that experience deep fading, which is a main source

of bit errors. The probability distribution of being in a low SINR region, say from

0 to 5dB, determines overall performance. Thus Figure 5.12(b) for SNR = 8dB,
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Figure 5.13. SINR Distribution at SNR = 16dB, NC = 32, NF = T = 8,
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Figure 5.13(b) for SNR = 16dB, and Figure 5.14(b) for SNR = 24dB are more

important than Figure 5.12(a) for SNR = 8dB, Figure 5.13(a) for SNR = 16dB,

and Figure 5.14(a) for SNR = 24dB, respectively, in terms of depicting the critical

low SINR region for investigating error performance. From Figures 5.12(a), 5.13(a),

and 5.14(a), the reason why OFDM has much better average SINR than LDC-OFDM

becomes clear. In high SNR = 16dB and SNR = 24dB and low SINR regions, the

added diversity offered by LDC results in clear improvement. At an SNR = 8dB,

the MMSE receivers of LDC-ZP-OFDM and LDC-CP-OFDM have better SINRs than

those of ZP-OFDM only when the SINR is less than 3.5dB, where bit errors are highly

likely, which is the reason that the performance improvement of LDC-OFDM over

OFDM is not that significant, as is shown in Figure 5.10. Observing Figures 5.12(b),

5.13(b), and 5.14(b), the more SNR increases, the more the gap in SINR perfor-

mance between LDC-ZP-OFDM and LDC-CP-OFDM, which leads to an increase in

corresponding BER performance gap, as is shown in Figure 5.10.

5.6.4 Peak-to-average power ratio comparison

The concept of PAPR has been introduced in Section 2.3.1.2. Here, the number of

subcarriers of OFDM, NC , is set to 64. Simulation results in Figure 5.15 show the

PAPRs of LDC-OFDM systems and OFDM systems are similar. Thus, LDC-OFDM

systems may improve BER without increasing PAPR. We remark that, the unitary

GLDC chosen is a possible reason for the results of simulations. We conjecture that

properly chosen linear dispersion matrices could reduce the PAPR of LDC-OFDM

further over that of OFDM.
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5.7 Conclusion

Inspired by a technique proposed for space-time processing, we have applied linear

dispersion codes to improve OFDM performance in multipath fading channels. The

attractive LD codes can be advantageously combined with OFDM transmission to

enable simple decoding. Recently, we note that an concurrent work with this topic

is published recently [82], and unlike their work, we provide a thorough diversity

analysis for this topic. A novel LDC decoding strategy, two step estimation (TSE),

is proposed for a special subclass of LDC matrices with the constraint (3.10), which

eliminates the direct dependency between LDC decoding and channel knowledge. At

a cost of increased decoding delay, the proposed LDC decoder can support channels

that change across OFDM blocks. Exploiting both frequency and time diversity avail-

able in frequency selective wideband OFDM channels, the performance of the pro-

posed LDC-OFDM has high transmission bandwidth efficiency and improved BER.

For instance, as shown in Figure 5.5, LDC-ZP-OFDM across 8 subcarriers per LDC

codeword obtains 3.5 dB and 7.3 dB gains over ZP-OFDM observed at BERs of 10−2

and 10−3, respectively. With lower complexity, the performance of TSE LDC-OFDM

systems is close to that of OSE LDC-OFDM systems.

Motivated by the significant performance gain of LDC-OFDM as observed in Sec-

tion 5.3, we analyze performance by formulating a single linear system of equations.

Although higher complexity, the single-step receiver is mathematically tractable. This

chapter also introduces a new performance analysis method for diversity systems in-

volving the instantaneous SINR probability distribution.

This chapter analytically provides the upper bound diversity order that LDC-

OFDM can achieve, which gives insights of linear dispersion over time and frequency.

A properly designed LDC-OFDM could potentially utilize full available time and

94



frequency diversity in a given communication channel. This chapter also provides

a design criterion of full diversity frequency-time block for LDC-OFDM, which may

direct new LDC-OFDM design in the future.

Through simulations, this chapter shows that LDC-OFDM systems have the po-

tential to maintain good performance even with imperfect channel estimation and

low complexity receivers.
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Chapter 6

Linear dispersion for single-carrier

communications in frequency selective

channels

6.1 Introduction

With the increases in data rate, broadband communication signals often experience

frequency selective fading, increasing the problem of inter-symbol interference (ISI).

Recently, cyclic-prefix single-carrier modulation (CP-SCM) with frequency-domain

equalization (FDE) has attracted a lot of attention. Similar to orthogonal frequency-

division multiplexing (OFDM) [48], CP-SCM FDE provides much lower computa-

tional complexity than conventional time-domain equalization techniques, especially

for long impulse response tail channels [26]. Unlike OFDM, CP-SCM does not suf-

fer high peak-to-average power ratio (PAPR) as well as sensitivity to frequency and

phase offsets (carrier-frequency offsets, or CFO) [48], and nonlinear distortions [10].

CP-SCM FDE has been recommended for fixed wireless broadband standard IEEE

802.16 [1]. The complexity of CP-SCM-FDE transmitter is simpler than that of
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OFDM, due to lack of Fast Fourier Transform (FFT) components, and [26] encour-

ages the use of CP-SCM in the uplink and OFDM in the downlink in order to reduce

the processing complexity at the terminal.

In Chapter 5, high-rate linear dispersion codes have been employed to obtain joint

frequency and time diversity in OFDM, known as LDC-OFDM. Although LDC has

been applied to multicarrier communications, it has not been investigated for appli-

cation in single stream single carrier communications. This chapter investigates the

application of LDC to achieve joint frequency-time diversity in CP-SCM for frequency

selective channels.

This chapter proposes to apply linear dispersion codes to single-carrier block com-

munications (SCBC). Two types of SCBC are considered: cyclic-prefix single-carrier

modulation (CP-SCM) and zero-padded single-carrier modulation (ZP-SCM). CP-

SCM utilizes frequency-domain equalization (FDE) with lower complexity, due to

its use of the computationally-efficient fast Fourier transform (FFT). Note that the

complexity of time-domain equalization using Viterbi algorithms (TDE) grows expo-

nentially with channel memory and spectral efficiency (trellis-based schemes) or re-

quires very long FIR filters to achieve satisfactory performance (e.g., decision feedback

equalizers) [26]. This chapter shows that ZP-SCM may perform with lower complexity

using approximate frequency-domain equalization (AFDE). Both CP-SCM and ZP-

SCM enjoy lower PAPR and are more robust to CFO [26,116]. Unlike LDC-OFDM,

in which LDC significantly exploits both frequency and time diversity available in

the channels, simulations reveal that LDC primarily improves time diversity in LDC-

SCM.
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6.2 Single-carrier communications model

Assume the communications channel experiences frequency-selective fading, and the

channel for the k-th SCM block is modeled as an L th-order FIR filter with impulse

response h(k) =
[
h

(k)
0 , ..., h

(k)
L

]T
. Channel coefficients are constant within one SCM

block but change statistically independently across different SCM blocks. Each SCM

block is of size P = NC + Ng, including a data symbol block of size NC and a guard

interval of size Ng ≥ L to avoid inter-block interference.

Denote x
(k)
SC as the channel data symbol vector transmitted during the k-th SCM

block of size NC × 1 , and x
(k)
SC =

[
x

(k)
SC(1), ..., x

(k)
SC(NC)

]T
, where x

(k)
SC(p), p = 1, ..., NC

is the p-th data symbol of the k-th SCM block in sequence. Each receive antenna

experiences additive white complex Gaussian noise. The system signal-to-noise-ratio

(SNR) is denoted by ρ.

6.2.1 CP-SCM case

Before transmission, a cyclic prefix (CP) guard interval is appended to each CP-SCM

block. The CP is then removed at the receiver. The effective channel of the k-th

SCM block is a circulant matrix H
(k)
CP SC with elements

[
H

(k)
CP SC

]
a,b

= h
(k)
((a−b) mod NC).

Hence, the CP-SCM block system can be modeled as

r
(k)
CP SC =

√
ρH

(k)
CP SCx

(k)
SC + v

(k)
CP SC (6.1)

where r
(k)
CP SC is the received block after CP removal, and v

(k)
CP SC is the corresponding

noise vector.

At the receiver, the received block r
(k)
CP SC is first processed by an FFT to generate

block y
(k)
CP SC = FNC

r
(k)
CP SC .
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Due to the circulant property of H
(k)
CP SC , can be decomposed as

H
(k)
CP SC = [FNC

]HD
(k)
CP SCFNC

,

where D
(k)
CP SC is diagonal with

[
D

(k)
CP SC

]
pp

=
L∑

l=0

h
(k)
l exp (−j2πl(p− 1)/NC) .

Thus, the frequency domain system equation is

y
(k)
CP SC =

√
ρD

(k)
CP SCFNC

x
(k)
SC + FNC

v
(k)
CP SC . (6.2)

6.2.2 ZP-SCM case

Due to zero padding, the ZP-SC system model does not have a simple frequency

domain format shown in (6.2). However, the ZP-SCM system model can be written

in block matrix form in the time domain as,

r
(k)
ZP SC =

√
ρH

(k)
ZP SCx

(k)
SC + v

(k)
ZP SC , (6.3)

where H
(k)
ZP SC represents a Toeplitz convolution matrix with

[
H

(k)
ZP SC

]
a,b

= h
(k)
(a−b),

where r
(k)
ZP SC is the received block of size P ×1, and is the corresponding noise vector

of size v
(k)
ZP SC . Due to the Toeplitz structure of H

(k)
ZP SC , H

(k)
ZP SC is guaranteed to be

invertible, regardless of the channel zero locations in reality [66].

6.3 Proposed LDC based single-carrier block com-

munications

6.3.1 Proposed system structure

Similar to LDC-OFDM, we adopt a layered approach, shown in Figure 6.1, that

utilizes a two-step-estimation (TSE) procedure as discussed in Section 5.3.
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Figure 6.1. Layered structure of linear dispersion coded single-carrier modulation

block communications (SCM-BC)
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One LDC-CP-SCM block, as shown in Figure 6.2, consists of T adjacent SCM

blocks. In addition, one LDC-SCM block includes D LDC codewords, each of size

T ×NF(i), i = 1, ..., D, where NF(i) is the number of channel symbols within one

SCM block, which the i-th LDC codeword is across. Thus, the maximal size of one

LDC-SCM block is T ×NC .

One LDC-SCM block is transmitted during the period of T SCM blocks, a guard

interval (CP or ZP) is added to each SCM block before transmission. After the

transmitted channel symbols are corrupted in the channels, the receiver removes the

guard interval and performs equalization.

For the LDC-CP-SCM receiver, frequency-domain equalization (FDE) can be ap-

plied as shown in Figure 6.3. The received SCM data block arrived is first FFT-

processed. Then, the influence of the frequency-selective channel impulse response is
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Figure 6.3. Proposed LDC-CP-SCM system model

eliminated by the FDE. The inverse FFT operation returns the equalized signals to

the time domain prior to LDC decoding.

6.3.2 LDC-SCM receiver

Denote the LDC encoding matrix of the i-th LDC matrix codeword S
(i)
LDC ∈ C

T×NF(i)

as G
(i)
LDC , which encodes source data symbol vector with zero mean, unit variance,

s(i) =

[
s
(i)
1 s

(i)
1 · · · s

(i)
Qi

]T
into vec(S

(i)
LDC), where Qi is the number of source data

symbols in s(i), i = 1, ..., D.

6.3.2.1 First estimation step - SCM demodulation

In the proposed LDC decoding algorithm, LDC decoding is independent of SCM

signal estimation. Thus, the proposed LDC-SCM system is backwards-compatible to

conventional SCM systems.

In Section 8.5, performance is investigated using minimum-mean-squared-error

(MMSE) equalization. Assuming that single carrier symbols are normalized to unit

variance, the respective frequency and time domain equalizers are given by [83]
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1) CP-SCM MMSE-FDE

G
(k)
CP SC =

√
ρC

x
(k)
SC

(
D

(k)
CP−SC

)H
·
(
INC

+ ρD
(k)
CP−SCC

x
(k)
SC

(
D

(k)
CP−SC

)H)−1

(6.4)

x̂
(k)
SC = [FNC

]HG
(k)
CP SCy

(k)
CP SC (6.5)

2) ZP-SCM MMSE-TDE

G
(k)
ZP SC =

√
ρC

x
(k)
SC

(
H

(k)
ZP−SC

)H
·
(
IP + ρH

(k)
ZP−SCC

x
(k)
SC

(
H

(k)
ZP−SC

)H)−1

(6.6)

x̂
(k)
SC = G

(k)
ZP SCr

(k)
ZP SC (6.7)

where k = 1, ..., T , C
x

(k)
SC

is the covariance matrix of the k-th SCM block within one

LDC-SCM block, which can be calculated using LDC encoding matrices.

In ZP-SCM system, the carrier frequency offset (CFO) acts as multiplicative noise

that reduces the useful signal amplitude but does not cause ISI, thus ZP-SCM is more

robust against CFO. Although ZP-SCM system does not perform explicit accurate

frequency domain equalization (FDE), ZP-SCM could be formulated as an approxi-

mate frequency domain equalizer (AFDE).

Denote

D
H

(k)
P

= FPH
(k)
P [FP ]H

where H
(k)
P is a is a circulant matrix with

[
H

(k)
P

]
a,b

= h
(k)
((a−b) mod NC). Denote

TZP =

[
INC

0(P−NC)×NC

]T

and

U = FPTZP .
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Thus, we have

H
(k)
ZP SC = [FP ]HD

H
(k)
P

FPTZP

Consequently, we could rewrite (6.3) in the AFDE form,

y
(k)
ZP SC =

√
ρD

H
(k)
P

Ux
(k)
SC + FPv

(k)
ZP SC (6.8)

where

y
(k)
ZP SC = FP r

(k)
ZP SC .

The corresponding MMSE-AFDE equalizer

G
(k)
ZP SC =

√
ρUC

x
(k)
SC

UH
(
D

H
(k)
P

)H
·
(
IP + ρD

H
(k)
P

UC
x

(k)
SC

UH
(
D

H
(k)
P

)H)−1

. (6.9)

Note that the matrix inversion of the CP-SCM MMSE-FDE equalizer (6.4) may be

performed element-wise if channel data symbols are uncorrelated. However, the ma-

trix inversion of ZP-SCM MMSE time domain equalization (MMSE-TDE) equalizer

(6.9) cannot be accurately element-wise performed due to the non-diagonal matrix

U. However, if C
x

(k)
SC

= INC
, (6.9) can be approximated as

G
(k)
ZP SC =

√
ρ

(
D

H
(k)
P

)H (
P

NC
IP + ρD

H
(k)
P

(
D

H
(k)
P

)H)−1

, (6.10)

which we call MMSE low complexity approximate FDE (MMSE-LC-AFDE). In (6.10),

we extend the low complexity MMSE equalizer structure for ZP-OFDM in [66] to ZP-

SCM systems.

6.3.2.2 Second estimation step - LDC-SCM block decoding

Reorganizing the results of the first estimation step into D estimated LDC matrix

codewords, Ŝ
(i)
LDC , i = 1, ..., D, the estimated data symbol vectors corresponding to D

LDC blocks are

ŝ(i) =
[
G

(i)
LDC

]†
vec(Ŝ

(i)
LDC). (6.11)
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6.3.3 Low complexity approaches - LTC-SCM

Unlike the general class of LDC of codeword size T ×M , where M > 1, we consider a

special class of LDC of codeword size T×1, which we term linear transformation codes

(LTC). Since single-carrier block communications themselves may achieve a certain

degree of frequency diversity order, we proposes to apply LTC across multiple SCM

blocks, which we call LTC-SCM. LTC-SCM is a class of low complexity approaches

to achieve joint frequency and time diversity. Note that frequency diversity is not

obtained from this transformation but from inherent properties of single-carrier block

communications.

6.3.4 Peak-to-average power ratio (PAPR)

Single-carrier complex matrix codes (SCCMC) are currently proposed as space time

block codes in the literature, and usually possess lower PAPR than OFDM. However,

the PAPR of SCCMC is often higher than that of conventional constellation-based

SCM. Fortunately, designing lower PAPR SCCMC is easier than designing lower

PAPR OFDM based systems. Some initial efforts in addressing this issue can be

found in [16,18].

6.3.5 Carrier frequency offsets

Conventional constellation-based SCM have fewer problems with regard to carrier

frequency offsets (CFO). We are interested in investigating performance of LDC-

CP-SCM under CFO effects. With minor modification, we extend CP-OFDM CFO
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system model in [111] to CP-SCM as follows:

y
(k)
CP SC =

√
ρφ(a)UCFOD

(k)
CP SCFNC

x
(k)
SC

+FNC
v

(k)
CP SC

(6.12)

where

1) ε = ∆fTsNC is normalized CFO, ∆f is CFO and Ts is the channel symbol

period;

2)

φ(a) = exp(j2πε((a− 1)P + Ng)/NC)

and

a =





k(modNFS) if k(modNFS) 6= 0;

NFS if k(modNFS) = 0;

where NFS stands for frequency synchronization rate (FSR) per SCM block. In

other words, (a− 1) is set to zero every NFS SCM blocks;

3) UCFO = FNC
DCFO [FNC

]H , where

DCFO = diag(exp(j2πε(1/NC)), ..., exp(j2πε(NC/NC))).

For comparison purposes, we also consider CP-OFDM under CFO effects, i.e.,

y
(k)
CP OFDM =

√
ρφ(a)UCFOD

(k)
CP OFDMx

(k)
OFDM + FNC

v
(k)
CP OFDM

(6.13)

Based on models (6.12) and (6.13), a CFO effect comparison through simulations is

provided in Section 6.5.4.
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6.4 Diversity properties

For simplicity, we only analyze the diversity properties of LDC-CP-SCM. Since it

is easier to consider frequency-domain signals in order to study both temporal and

frequency diversity, the chosen object to be analyzed is z
(k)
CP−SC = FNcx

(k)
SC , k =

1, ..., T . Thus the whole LDC-CP-SCM block with FFT outer processing in each

SCM block can expressed as matrix C

C =




c
(1)
1 c

(1)
2 · · · c

(1)
NC

c
(2)
2 c

(2)
2 · · · c

(2)
NC

...
...

. . .
...

c
(T )
1 c

(T )
2 · · · c

(T )
NC




,

where c
(k)
p =

[
z

(k)
CP−SC

]
p,1

, p = 1, ..., NC , k = 1, ...T.

We write the system equation for the block C as

R =
√

ρMH + V, (6.14)

where receive signal vector R and noise vector V are of size NCT × 1. The chosen

frequency symbol diagonal matrix M is of size NCT ×NCT , and

M = diag(c
(1)
1 , ..., c

(1)
NC

, ..., c
(T )
1 , ..., c

(T )
NC

) .

The channel vector H is of size NCT × 1, and

H =

[
H

(1)
1 , H

(1)
2 , ..., H

(1)
NC

, ..., H
(T )
2 , H

(T )
2 , ..., H

(T )
NC

]T
,

where H
(k)
p is the p-th subchannel gain of k-th SCM block in C in the frequency

domain. Thus H
(k)
p = [wp]

T h(k), where

wp =
[
1, ωp−1, ω2(p−1), · · · , ωL(p−1)

]T
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and

ω = e−j(2π/Nc).

With the above frequency domain formulation, the strategy of diversity analysis

for LDC-CP-SCM is quite close to that for LDC-CP-OFDM as shown in Section 5.5.

Consider a pair of matrices M and M̃ corresponding to two different blocks C

and C̃. Then the upper bound pairwise error probability between M and M̃ is [96]

P
(
M → M̃

)
≤




2r − 1

r




(
r∏

a=1

γa

)−1

(ρ)−r , (6.15)

where r is the rank of Λ =
(
M− M̃

)
RH

(
M− M̃

)H
and RH = E

{
H [H]H

}
is the

correlation matrix of H, γa, a = 1, · · · , r are the non-zero eigenvalues of Λ.

Then the corresponding rank and product criteria are as follows:

1) Rank criterion: The minimum rank of Λ over all pairs of different frequency

domain symbol matrices M and M̃ should be as large as possible.

2) Product criterion: The minimum value of the product
r∏

a=1

γa over all pairs of

different frequency domain symbol matrices M and M̃ should be maximized.

We remark that we can obtain a sufficient condition for LDC-CP-SCM to achieve

full available joint frequency and time diversity in the channels, which is provided in

Theorem 4 1) The necessary and sufficient condition to ensure rank
(
M− M̃

)
=

NCT is
[
FNc

(
x

(k)
SC − x̃

(k)
SC

)]
p,1
6= 0, k = 1, ..., T, p = 1, ..., NC

2) In a LDC-CP-SCM system, the rank of
(
M− M̃

)
satisfies

rank
(
M− M̃

)
= NCT.
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a. The LDC-CP-SCM system achieves full available diversity order in the

frequency selective channels, i.e. rank (Λ) = rank (RH)

b. The corresponding product design criterion for LDC-CP-SCM block is that

the minimum of products

∆ =
T∏

k=1

NC∏
p=1

∣∣∣∣
[
FNcx

(k)
SC

]
p,1
−

[
FNcx̃

(k)
SC

]
p,1

∣∣∣∣
2

(6.16)

taken over all pairs of distinct frequency domain symbol matrices M and

M̃ must be maximized.

3) Assume that the frequency selective channel order L is constant over time. A

condition for LDC-SCM to achieve available full joint frequency and time diver-

sity order rd = rank(RH) is that there always exist (L+1) indices, 1 6 p(k) =

p
(k)
1 , ..., p

(k)
L+1 6 NC, for each k = 1, ..., T such that

[
FNc

(
x

(k)
SC − x̃

(k)
SC

)]
p(k),1

6= 0.

Note that this condition is a sufficient and necessary condition for frequency

diversity and a sufficient condition for time diversity.

The proof is provided in Appendix C. Note that single-carrier systems are inher-

ently able to achieve some frequency diversity order. However, full frequency diversity

order is not guaranteed in conventional uncoded single-carrier communications sys-

tems, especially in uncoded CP-SCM systems, and the frequency coding gain may

be further improved through careful design [73, 131]. A LDC-SCM block is across

multiple SCM blocks in block time varying channels, and the LDC-SCM system has

potential to achieve joint frequency-time diversity order up to T (L + 1). Although

the design strategy of LDC-SCM systems to support a certain order of frequency

diversity is different from that of LDC-OFDM, observing both Theorem 3 and 4, we
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can obtain the following Corollary on the relation between full joint frequency and

time diversity LDC-CP-SCM and LDC-CP-OFDM.

Corollary 1 Assume that a LDC-CP-OFDM block, CLDC OFDM , with NC subcarri-

ers and T OFDM blocks achieves full joint frequency and time diversity order. Before

IFFT, the k-th OFDM block within the LDC-CP-OFDM block CLDC OFDM is ex-

pressed as x
(k)
OFDM , where k = 1, ..., T and x

(k)
OFDM =

[
x

(k)
OFDM(1), ..., x

(k)
OFDM(NC)

]T
.

Then the k-th SCM block within a LDC-CP-SCM, CLDC SCM , can be designed as

x
(k)
SC = [FNc]

H x
(k)
OFDM , (6.17)

where k = 1, ..., T and x
(k)
SC =

[
x

(k)
SC , ..., x

(k)
SC

]T
. The consequence is that this LDC-

CP-SCM achieves full joint frequency and time diversity order in the time varying

frequency selective channel.

Actually Corollary 1 provides a method on constructing full joint frequency and time

diversity LDC-CP-SCM. However, since the IFFT is involved, this LDC-CP-SCM

construction is the same as LDC-CP-OFDM with IFFT processing, thus one may be

concerned with the related problems, such as high PAPR.

6.5 Performance

6.5.1 Simulation setup

Perfect channel knowledge is assumed at the receiver but not at the transmitter. The

number of data symbols per SCM block, NC , is 32. Two LDC constructions are

considered in the simulations

1) HH-LDC - HH square code as shown in (3.10),
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2) LCP-LDC - details provided in Appendix G.

One LTC considered in the simulations is linear constellation precoding (LCP) design

A [72,126], termed LCPA.

The LDC or LTC symbol coding rates of the proposed systems used in simulations

are all unity. Compared with uncoded CP-SCM systems, no bandwidth is lost unless

forward error control is used. The sizes of all LDC codewords are identically T ×NF .

An evenly spaced mapping either from LDC to channel data symbol index for LDC-

CP-SCM or from LDC to subcarrier index for LDC-CP-OFDM is used in simulations.

The frequency selective channel has (L+1) paths exhibiting an exponential power

delay profile, and the guard interval size of each SCM block is set to Ng = L. Source

data symbols use QPSK modulation in all simulations.

6.5.2 Comparison between LDC-SCM and SCM systems

Figures 6.4 and 6.5 show the diversity performance comparison of bit error rate (BER)

vs. SNR between LDC-SCM (LDC-CP-SCM and LDC-ZP-SCM) and uncoded SCM

(CP-SCM and ZP-SCM).

When CCI is a multiple of T , i.e. CCI = 16, the effects of time diversity in the

channels are removed, and it can be observed that the performances of LDC-SCM and

SCM are quite similar, which suggests that the LDC-SCM systems using the chosen

LDC do not provide notable frequency coding improvement over SCM systems. Note

that the chosen LDC is designed for space time block fading channels, which may not

be optimal for SCM in frequency selective time varying channels. To obtain frequency

diversity improvement, new LDC designs are needed. It is not an easy task to design

LDC meeting the design criterion in Theorem 4 as well as maintain desired lower

PAPR as in conventional SCM systems, since the new design should consider the
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Figure 6.4. BER Performance of LDC-CP-SCM (using HH-LDC) vs. CP-SCM
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LDC−ZP−SCM, CCR = 16 SCM Blocks

Figure 6.5. BER Performance of LDC-ZP-SCM vs. ZP-SCM
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pairwise differences of Fourier transformed coded data symbols instead of coded data

symbols themselves, which differ from current existing single-carrier complex matrix

code designs.

When CCI is not a multiple of T , i.e. CCI < 16, clearly, BER performance of

LDC-SCM is remarkably better than that of both uncoded SCM, which is primarily

attributed to time diversity. Time diversity order is maximized only if the channel

provides block-wise temporal independence. As shown in Figure 6.4, the performance

of LDC-SCM systems is significantly influenced by channel dynamics, i.e., time cor-

relation. At high SNRs, the faster the channel changes, the better the performance.

This indicates that LDC-SCM effectively exploits available temporal diversity. In the

future, testing on a more accurate model of channel dynamics is needed to obtain a

more accurate assessment.

6.5.3 Comparison between LDC-CP-SCM and CP-SCM sys-

tems using forward error correction

Figure 6.6 shows a diversity performance comparison of BER vs. SNR between LDC-

CP-SCM and CP-SCM using forward error correction (FEC). For low latency, Reed

Solomon (RS) codes are chosen. In Figure 6.6, RS(a, b, c) denotes RS codes with a

coded RS symbols, b information RS symbols, and c bits per symbol. In simulations,

shortened RS codes are chosen. For fairness of comparison, in CP-SCM systems, we

apply RS codes across the same number of CP-SCM blocks as that in LDC-CP-SCM

systems, and each RS symbol is distributed within one CP-SCM block. In this way,

RS codes are able to improve time and frequency diversity in CP-SCM systems. In

LDC-CP-SCM systems, we partition RS(a,b,c) codewords into NC

NF
groups, and each

group of RS symbols are encoded in one LDC codeword within one LDC-CP-SCM
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Figure 6.6. BER Performance of LDC-CP-SCM with inter-LDC FEC (using HH-

LDC) vs. CP-SCM with inter-block FEC, channel order 7, NC = 32, NF = 16,

T = 16
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block.

It is clear that when using the same RS codes in medium to high SNRs, LDC-

CP-SCM with FEC notably outperforms CP-SCM with FEC. For instance, at BER

of 10−3, using RS(16, 12, 8), the LDC-CP-OFDM with FEC outperform CP-OFDM

with FEC by 2.4 dB. Also note that while CP-SCM with FEC may outperform LDC-

CP-SCM without FEC, the data rate of the corresponding CP-SCM with FEC is

lower than that of the LDC-CP-SCM without FEC.

6.5.4 Comparison of LDC-ZP-SCM and ZP-SCM under MMSE

vs. low complexity MMSE receivers

Figure 6.7 shows the comparison of LDC-ZP-SCM and ZP-SCM using MMSE-TDE

and MMSE-LC-ADFE. Due to the layered TSE structure discussed in Section 6.3, it

can been seen that, even at low complexity, LDC-ZP-SCM using MMSE-LC-ADFE

performs close to that using MMSE TDE over the entire SNR range. At a BER

of 10−3, LDC-ZP-SCM using low complexity MMSE equalizer results in only 0.4dB

performance degradation.

6.5.5 Comparison between LDC-CP-SCM and LDC-CP-OFDM

systems

Figure 6.8 shows a diversity performance comparison of BER vs. SNR between

LDC-CP-SCM and LDC-CP-OFDM. In the low range of SNRs, the performances

of LDC-CP-SCM and LDC-CP-OFDM are close. However, in medium to high SNRs,

especially when CCI is not a multiple of T, i.e. CCI < 8, LDC-CP-SCM (using HH-

LDC) and LDC-CP-OFDM (using LCPA) significantly outperforms LDC-CP-OFDM
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Figure 6.7. BER Performance of LDC-ZP-SCM (using HH-LDC) using MMSE-FDE

vs. MMSE-LC-AFDE, channel order= 3, CCI = 1 SCM block, NC = 32, NF = 8,

T = 8
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Figure 6.8. BER Performance of LDC-CP-SCM (using HH-LDC, LCP-LDC) vs.

LDC-CP-OFDM (using LCP-LDC), channel order 7, NC = 32, NF = 8, T = 8
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(using HH-LDC), the reason of which is that LDC-CP-OFDM (using HH-LDC) is

not full joint frequency-time diversity design. Under CCI = 8, LDC-CP-SCM (using

HH-LDC) perform similar to LDC-CP-OFDM (using LCPA), which suggests that

LDC-CP-SCM (using HH-LDC) is close full joint frequency-time diversity design. In

the high SNR region of the cases of under CCI = 4 and CCI = 1, LDC-CP-SCM

(using HH-LDC) perform better than LDC-CP-OFDM (using LCPA), which suggests

that LDC-CP-OFDM (using LCPA) do not have uniform diversity properties over the

covered channel symbols.

6.5.6 Comparison of cyclic-prefix (CP) based systems under

CFO effects
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CP−OFDM with normalized CFO 0.02
CP−OFDM without CFO
LDC−CP−OFDM with normalized CFO 0.02
LDC−CP−OFDM without CFO
CP−SCM with normalized CFO 0.02
CP−SCM without CFO
LDC−CP−SCM with normalized CFO 0.02
LDC−CP−SCM without CFO

Figure 6.9. BER Performance of CP based systems under CFO effects (using HH-

LDC),channel order 3, NC = 32, NF = 16, T = 16, FSR = 2, CCI = 2(OFDM or

SCM blocks)
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In Figure 6.9, the detrimental effects of CFO are observed. Under the normalized

CFO setting of ε = 0.02, CP based systems without CFO outperform those with

CFO, especially at higher SNRs. In higher SNRs, the performance loss of LDC-CP

based systems due to CFO effects is higher than that of uncoded CP based systems.

Although having the highest performance loss under CFO effects, LDC-CP-SCM has

the best performance in time varying frequency selective channels.

6.5.7 Comparison between LDC-CP-SCM and LTC-CP-SCM

systems
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LTC−CP−SCM (LCPA), CCI = 4 SCM Blocks
LTC−CP−SCM (LCPA, CCI = 8 SCM Blocks

Figure 6.10. BER Performance of LDC-CP-SCM (using HH-LDC) vs. LTC-CP-SCM

(using LCPA),channel order 7, NC = 32, NF = 8, T = 8

Figure 6.10 shows a diversity performance comparison of BER vs. SNR between
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LDC-CP-SCM and LTC-CP-SCM. In all curves shown, LDC-CP-SCM (using HH-

LDC) perform similar to LTC-CP-SCM (using LCPA), which suggests that LTC-CP-

SCM (using LCPA) is close full joint frequency-time diversity design.

It is deserved to remark that compared to general LDC-SCM, LTC-SCM is only

with much small complexity, which agrees with the design principle of SCM-FDE for

mobile terminal or uplink transmission.

Further, this result motivates us to propose a new type of LDC-OFDM, which we

call double linear transformation coded OFDM (DLT-OFDM).

1) DLT-OFDM may also include multiple frequency-time (FT) blocks, each of

which is of size T ×NF (i) , i = 1, ..., K, where NC =
K∑

i=1

NF (i).

2) each T×NF (i) FT block is constructed by two stages of LTC procedure, frequency-

LTC (F-LTC) of size 1×NF (i) and time-LTC (T-LTC) of size T × 1 in order or

T-LTC and F-LTC in order.

3) the LTC chosen of the two stages are not necessary the same.

6.6 Conclusions

This chapter proposes the use of high-rate LDC in single-carrier block communica-

tions systems with either cyclic-prefix or zero-padding guard intervals in time-varying

frequency selective channels. While performance improvement has been previously

obtained for multicarrier systems [122], performance of single-carrier systems may

also be improved using high-rate LDC, as is shown in this chapter. In the LDC-SCM

design tested, an increase in time diversity resulted in a performance improvement.

However, it may be possible for LDC to improve joint frequency and time diversity,
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which is a subject of future investigation. This chapter also provides a sufficient con-

dition for LDC-CP-SCM to maximize all available joint frequency and time diversity

gain and coding gain. This chapter provides the relation of full joint frequency-

time diversity designs between LDC-OFDM and LDC-SCM. Simulations reveal that

LDC-SCM may outperform both uncoded SCM in time-varying frequency selective

channels, even under CFO effects. Under the normalized CFO setting of ε = 0.02

and CCI = 2 OFDM or SCM blocks in Figure 6.9, LDC-CP-SCM with CFO effects

outperforms LDC-CP-SCM with CFO effects by 3.8dB at BER = 10−2.

Simulations also show that full joint frequency-time diversity designs of both LDC-

OFDM and LDC-SCM perform similarly. This chapter also shows that LDC-CP-SCM

with forward error correction may outperform CP-SCM with forward error correction

over time. LDC-ZP-SCM may be implemented using low complexity MMSE equaliz-

ers without significant performance degradation. Finally, this chapter also propose a

low complexity LDC-SCM design, LTC-SCM, which is able to perform close to joint

frequency-time diversity. Further, as a byproduct of analysis, this chapter proposes

a class of low complexity LDC-OFDM designs, DLT-OFDM.

122



Chapter 7

Linear dispersion over space, time and

frequency

7.1 Introduction

Recently, multiple transmit and receive antennas (MIMO) have attracted consider-

able attention to accommodate broadband wireless communications services. In fre-

quency non-selective fading channels, diversity is available only in space and time do-

mains. The related coding approaches are termed space-time codes (STC) [102]. How-

ever, high-data-rate wireless communications often experience wideband frequency-

selective fading. In frequency-selective channels, there is additional frequency di-

versity available due to multipath fading. A challenging problem is to develop new

coding and modulation methods to exploit all available diversity across space, time

and frequency within reasonable computation complexity limits as well as maintain

high bandwidth efficiency.

Multicarrier modulation, especially orthogonal frequency division multiplexing
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(OFDM), mitigates frequency selectivity by transforming a wideband multipath chan-

nel into multiple parallel narrowband flat fading channels, enabling simple equaliza-

tion. To obtain frequency diversity in OFDM transmission, space frequency coding

(SFC) [7] may be employed, which encodes a source data stream over multiple trans-

mit antennas and OFDM tones. In SFC, codewords lie within one OFDM block period

and cannot exploit time diversity over multiple OFDM blocks. Recent coding over

three dimensions - space, time and frequency, or STFC, being investigated is sum-

marized as follows. Most existing block-based STFC designs assume constant MIMO

channel coefficients over one STFC codeword (comprising multiple OFDM blocks),

but may vary over different STFC codewords. In general, existing STFCs are not

high-rate codes. For example, in [74], Liu and Giannakis propose a STFC based on

a combination of orthogonal space time block codes [3, 101] and linear constellation

precoding [126]; Gong and Letaief introduce the use of trellis-based STFC [37], Luo

and Wu consider the design of bit-interleaved space-time-frequency block coding (BI-

STFBC) [75], and Su and Liu proposes a symbol coding rate 1/ min {NT , NR} STFC

using Vandermonde matrix as encoding matrix, where NT is the number of transmit

antennas [99]. We remark that our definition of symbol coding rate is different from

that implicitly used in [99]. Symbol coding rate will be formally defined and discussed

in Section 7.3.4.

In this chapter, we consider a STFC design with the following features: (1) sup-

port of arbitrary numbers of transmit antennas, (2) requirement of constant channel

coefficients over only a single OFDM block instead of over a whole STFC codeword,

(3) provision of up to rate-one coding, (4) compatibility with non-LDC-coded MIMO-

OFDM systems and (5) moderate computation complexity.

The key idea for the proposed STFC designs in this chapter is to employ linear
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dispersion codes (LDC), which were pioneered in [42] for use as space time codes

for block flat-fading channels. In this chapter, we propose and compare two block-

based high-rate STFCs coding procedures with rates up to one - one termed double

linear dispersion space-time-frequency-coding (DLD-STFC), and the other termed

linear dispersion space-time-frequency-coding (LD-STFC). In these approaches, an

STF block is formed only across a subset of subcarrier indices instead of across all

subcarriers.

A challenging issue in DLD-STFC design is to apply 2-D LDC in a 3-D code de-

sign. In DLD-STFC, two complete LDC stages of encoding are used, which process

all complex symbols within one DLD-STFC codeword space. The diversity order for

DLD-STFC is determined by the choices of LDC for the two stages. In LD-STFC,

only a single LDC procedure is used for one STF block, and to achieve performance

comparable to DLD-STFC, LD-STFC uses larger LDC sizes, and may be of higher

complexity. This chapter also compares these to a system using a single LDC proce-

dure applied only across frequency and time for MIMO-OFDM, termed MIMO-LDC-

OFDM. This chapter analyzes the diversity properties of DLD-STFC and LD-STFC.

The error union bound based analysis provides new code design criteria for complex

input sequences. Spatial correlation effects for DLD-STFC are considered through

simulations.

The chapter is organized as follows: after the MIMO-OFDM system model is

described in Section 7.2, the DLD-STFC, LD-STFC and MIMO-LDC-OFDM systems

are proposed in Section 7.3. Diversity properties of STF block based designs, related

to DLD-STFC and LD-STFC, are discussed in Section 7.4. The LDC design criteria

based on error union bound is analyzed in Section 7.5. System performance of DLD-

STFC, LD-STFC and MIMO-LDC-OFDM are compared in Section 7.6.
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7.2 MIMO-OFDM system model

7.2.1 System model

Consider a MIMO-OFDM system with NT transmit antennas, NR receive antennas

and a OFDM block of NC subcarriers per antenna. The channel between the m-

th transmit antenna and n-th receive antenna in the k-th OFDM block experiences

frequency-selective, temporally flat Rayleigh fading with channel coefficients h
(k)
m,n =

[
h

(k)
m,n(0), ..., h

(k)
m,n(L)

]T
,m = 1, ..., NT , n = 1, ..., NR, where

L = max{Lm,n,m = 1, ..., NT , n = 1, ..., NR},

Lm,n is the frequency-selective channel order of the path between the m-th transmit

antenna and n-th receive antenna. Note that the above model is based on the fact

frequency selective channel between pairs of transmitter and receiver antennas would

be different, since different transmitter-receiver channel often experience different

physical environments, especially for outdoor communications. We assume channel

coefficients that are constant within one OFDM block but statistically independent

among different OFDM blocks.

Denote x
(k)
m,p as the channel symbol transmitted on the p-th subcarrier from the

m-th transmit antenna during the k-th OFDM block. The channel symbols x
(k)
m,p,

m = 1, ...NT and p = 1, ..., NC are transmitted on NC subcarriers in parallel by NT

transmit antennas.

Each receive antenna signal experiences additive complex Gaussian noise. At the

transmitter, a cyclic prefix (CP) guard interval is appended to each OFDM block.

After CP is removed, FFT is applied to transform received signals to frequency do-

main. The received frequency domain channel symbol sample y
(k)
n,p at the n-th receive
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antenna, is

y(k)
n,p =

√
ρ

NT

NT∑
m=1

H(k)
m,n,px

(k)
m,p + v(k)

n,p, n = 1, ..., NR, p = 1, ..., Nc (7.1)

where H
(k)
m,n,p is the p-th subcarrier channel gain from the m-th transmit antenna and

n-th receive antenna during the k-th OFDM block,

H(k)
m,n,p =

L∑

l=o

h
(k)
m,n(l)e

−j(2π/Nc)l(p−1) (7.2)

or equivalently

H(k)
m,n,p = [wp]

T h(k)
m,n, (7.3)

where

wp =
[
1, ωp−1, ω2(p−1), · · · , ωL(p−1)

]T
, (7.4)

ω = e−j(2π/Nc), and the additive noise is circularly symmetric, zero-mean, complex

Gaussian with variance N0. We assume the additive noise to be statistically inde-

pendent for different n, p, and k. The normalizaton
√

ρ
NT

ensures that the signal-to-

noise-ratio (SNR) at each receive antenna ρ is independent of NT .

7.2.2 Matrix form

Denote the transmitted channel symbol vector of the p-th subcarrier during the k-th

OFDM block as

x(k)
p =

[
x

(k)
1,p · · · x

(k)
NT ,p

]T
∈ CNT×1, (7.5)

the corresponding channel gain matrix of the p-th subcarrier during the k-th OFDM

block as

H(k)
p =




H
(k)
1,1,p · · · H

(k)
NT ,1,p

...
. . .

...

H
(k)
1,NR,p · · · H

(k)
NT ,NR,p




, (7.6)
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the corresponding noise vector as

v(k)
p =

[
v

(k)
1,p · · · v

(k)
NR,p

]T
∈ CNR×1, (7.7)

and received channel symbol vector of the p-th subcarrier during the k-th OFDM

block as

y(k)
p =

[
y

(k)
1,p · · · y

(k)
NR,p

]T
∈ CNR×1. (7.8)

Then, we express the system equation for the p-th subcarrier during the k-th

OFDM block as

y(k)
p =

√
ρ

NT

H(k)
p x(k)

p + v(k)
p , p = 1, ..., Nc. (7.9)

7.3 Proposed systems

This section proposes two new constructions of STFC based on linear dispersion codes,

referred to as DLD-STFC and LD-STFC, established over the MIMO OFDM model

described in Section 7.2. Codeword construction of both DLD-STFC and LD-STFC

will be discussed. DLD-STFC is the main focus of this section.

7.3.1 DLD-STFC codeword construction

7.3.1.1 Codeword construction procedure

This is performed in two stages. Each stage is a complete LDC coding procedure itself

and processes all complex symbols within the range of one DLD-STFC codeword. The

first encoding stage is the frequency-time LDC stage (FT-LDC), in which LDC is

performed across frequency (OFDM subcarriers) and time (OFDM blocks), enabling

frequency and time diversity. The second encoding stage is the space-time LDC stage
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(ST-LDC), in which LDC is performed across space (NT transmit antennas) and time

(T OFDM blocks), enabling space and time diversity.

In the FT-LDC stage, there are D LDC matrix codewords. The d-th matrix code-

word is of size T × N
(d)
F , d = 1, ..., D, where D is a multiple of NT . The D LDC

matrix codewords are grouped into NT sub-groups. The m-th subgroup, which is

allocated to the m-th antenna, has D =
NT∑

m=1

Dm,m = 1, ..., NT LDC matrix code-

words. The i-th LDC codeword of the m-th subgroup in the FT-LDC stage is of size

T ×NF (m,i), i = 1, ..., Dm,m = 1, ..., NT , where i = d(mod Dm). We use NF (i), which

differs from N
(d)
F in subscript i = 1, ..., Dm, as the local index of FT-LDC for each

transmit antenna, and superscript d = 1, ..., D which stands for the global index for

all D LDC codewords. LDC codewords in the FT-LDC stage are chosen with size

constraints

NF (m,i) = NF (i), (7.10)

Dm∑
i=1

NF (m,i) = NC , (7.11)

where i = 1, ..., Dm,m = 1, ..., NT . The size of an DLD-STFC codeword is NT NCT

symbols. When Dm = D/NT , m = 1, ..., NT are satisfied, one DLD-STFC codeword

consists of Dm STF blocks, each of which is of size NT NF (i)T, i = 1, ..., Dm and are

also constructed through the DLD operation. Constraint (7.10) implies that the i-th

LDC codewords of subgroups m = 1, ..., NT , are of the same matrix size. Further, we

propose that the i-th LDC codewords of all the m-th subgroups, where m = 1, ..., NT ,

use the same LDC dispersion matrices and share the same subcarrier mappings, i.e.,

the same subcarrier indices of OFDM. Thus the FT-LDC coded symbols with the

same subcarrier index among different transmit antennas share similar frequency-

time diversity properties. The D LDC encoders of FT-LDC encode Qd, d = 1, ..., D
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data symbols in parallel. Each codeword is mapped to NT transmit antennas and

T OFDM blocks. Consequently, a three-dimensional array, Uk,m,p, k = 1, ..., T, m =

1, ..., NT , p = 1, ...Nc,, is created. In the FT-LDC stage, LDC symbol coding rate

could be less than or equal to one. The FT-LDC blocks are illustrated in Figure 7.1.
fr
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NF (m,2)

Figure 7.1. FT-LDC blcok in DLD-STFC

In the ST-LDC stage, the signals from the FT-LDC stage are encoded per sub-

carrier. Thus there are NC LDC encoders in this stage. Notationally, define the

space time symbol matrix having been encoded in FT-LDC stage for the p-th OFDM

subcarrier as Up, and [Up]k,m = Uk,m,p, k = 1, ..., T, m = 1, ..., NT , p = 1, ...NC . The

ST-LDC blocks are illustrated in Figure 7.2.

Denote uvec
p = vec(Up), which is the source signal sequence of the p-th LDC

codeword to be encoded in the ST-LDC stage, where p = 1, ...NC . This stage further
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establishes the basis of space and time diversity. In this stage, LDC symbol coding

rate is required to be one.

7.3.2 LD-STFC codeword construction

This chapter also propose an alternative LDC system with a single combined STFC

stage, termed LD-STFC. This comprises only one complete LD coding procedure, and

one LDC codeword is applied across multiple OFDM blocks and multiple antennas.

In one LD-STFC codeword, there are D LDC matrix codewords. The i-th matrix

codeword is of size T×N
(i)
LD, i = 1, ..., D, and N

(i)
LD is a multiple of NT . One constraint

is

NC =
1

NT

D∑
i=1

N
(i)
LD (7.12)

We partition the i-th LDC codeword into NT matrix blocks, each of which is of size

T ×Nant
LD(i)

, and

Nant
LD(i)

=
1

NT

N
(i)
LD. (7.13)

We map each T × Nant
LD(i)

block into each transmit antenna, where T denotes the

number of OFDM blocks. Each LDC codeword therefore includes multiple antennas

(space), OFDM blocks (time) and OFDM subcarriers (frequency). The size of an

LD-STFC codeword is NT NCT symbols, and one LD-STFC codeword consists of D

STF blocks, each with size NT ×Nant
LD(i)

× T, i = 1, ..., D.

7.3.3 DLD-STFC system receiver

In a DLD-STFC receiver, signal reception involves three steps. The first step esti-

mates MIMO-OFDM signals for an entire DLD-STFC block, i.e., T OFDM blocks

132



transmitted from NT antennas. The second and third steps estimate source symbols

of the ST-LDC and FT-LDC encoding stages, respectively. Following this, data bit

detection is performed.

Denote the d-th data source symbol vector with zero-mean, unit variance for

the d-th LDC codeword of the FT-LDC stage as s(d) =

[
s
(d)
1 s

(d)
2 · · · s

(d)
Qd

]
,

where d = 1, ..., D, and Qd denote the number of data source symbols encoded in

the d-th LDC codeword S
(d)
FT LDC of the FT-LDC stage and ŝ(d) is the corresponding

estimated data source symbol vector. In addition, denote the estimate of S
(d)
FT LDC as

̂
S

(d)
FT LDC . Further, denote the estimated version of uvec

p as ûvec
p . Also denote estimated

S
(p)
ST LDC as

̂
S

(p)
ST LDC . Denote the LDC encoding matrices needed to obtain S

(d)
FT LDC

and S
(p)
ST LDC as G

(d)
FT LDC and G

(p)
ST LDC , respectively.

For simplicity of discussion, we consider the case that G
(d)
FT LDC = GFT LDC ,

G
(p)
ST LDC = GST LDC , d = 1, ..., D, p = 1, ..., NC are all unitary matrices and

Qd = Q, d = 1, ..., D. The covariance matrices of MIMO-OFDM channel symbols

are then identity matrices. This can also be generalized to the case of non-identically

distributed uncorrelated symbols.

7.3.3.1 Step 1 - MIMO-OFDM signal estimation

In the proposed DLD-STFC decoding algorithm, LDC decoding is independent of

MIMO-OFDM signal estimation. Thus the proposed DLD-STFC system could be

backwards-compatible with non-LDC-coded MIMO-OFDM systems. An advantage

of DLD-STFC decoding is that channel coefficients may vary over multiple OFDM

blocks.

Assuming that MIMO-OFDM symbols are normalized to unit variance, based on

system equation (7.9), the minimum-mean-squared-error (MMSE) equalizer is given
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by

GMMSE
p,(k) =

√
ρ

NT

C
x

(k)
p

(
H(k)

p

)H [
INT

+
ρ

NT

H(k)
p C

x
(k)
p

(
H(k)

p

)H]−1

(7.14)

x̂
(k)
p = GMMSE

p,(k) y(k)
p (7.15)

where p = 1, ..., NC , k = 1, ..., T , C
x

(k)
p

is the covariance matrix of x
(k)
p , which could

be calculated using knowledge of G
(d)
FT LDC and G

(p)
ST LDC = GST LDC .

7.3.3.2 Step 2 - ST-LDC block signal estimation

Reorganizing the results of the MIMO OFDM estimation into NC estimated LDC

matrix codewords
̂

S
(p)
ST LDC , the estimates are

ûvec
p =

[
G

(p)
ST LDC

]†
vec

(
̂

S
(p)
ST LDC

)
, (7.16)

where p = 1, ..., NC .

7.3.3.3 Step 3 - FT-LDC block signal estimation

Reorganizing the results of step 2 into D estimated LDC matrix codewords
̂

S
(d)
FT LDC , d =

1, ..., D of the FT-LDC stage, we obtain

ŝ(d) =
[
G

(d)
FT LDC

]†
vec

(
̂

S
(d)
FT LDC

)
, (7.17)

where d = 1, ..., D.
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7.3.4 Symbol coding rate for DLD-STFC, LD-STFC and MIMO-

LDC-OFDM systems

For DLD-STFC, assume that the d-th LDC matrix codeword of the FT-LDC stage is

encoded using Qd complex source symbols. For LD-STFC, assume that the d-th LDC

matrix codeword is also encoded using Qd complex source symbols. We also consider

a third system with only a FT-LDC stage (each LDC codeword is not across multiple

transmit antennas but transmitted on one antenna), termed MIMO-LDC-OFDM,

i.e., straightforwardly applying LDC-OFDM as proposed in [122] to each antenna of

a MIMO system.

We define the symbol coding rate of the three systems as

Rsym =

D∑
d=1

Qd

min {NT , NR}TNC

. (7.18)

7.3.5 Layered system structure and complexity issues

Both DLD-STFC and LD-STFC require coding matrices with the property that STFC

codeword symbols are uncorrelated. Hence, the proposed STFC systems could be

viewed as having the layered structure as shown in Figure 7.3, which enable the de-

signed STFC systems to be compatible to non-LDC-coded MIMO-OFDM systems.

There are at least two advantages of the layered system structure: (1) many existing

signal estimation algorithms developed for non-LDC-coded MIMO-OFDM systems

are also applicable to DLD-STFC and LD-STFC systems, and (2) reduced com-

plexity. In principle, it is possible to utilize a single STF block across all transmit

antennas, subcarriers and OFDM blocks, and a rate-one STFC design would need

coding matrices of size NT NCT × NT NCT , which leads to extremely high computa-

tion complexity, since the codebook size for rate-one codes in this case is [rc]
NT NCT ,
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where rc is the constellation size of source data symbols. Both DLD-STFC and LD-

STFC receivers may advantageously employ the lower complexity multiple successive

estimation stages instead of single-stage joint signal estimation (maximum likelihood

or sphere decoding detectors) and LDC decoding. Due to layered structure, it is

clear that the extra complexity of DLD-STFC and LD-STFC beyond MIMO-OFDM

signal estimation is the encoding and decoding procedure, and per-data-symbol extra

complexity is proportional to the corresponding symbol coding rate.

7.4 Diversity aspects

Both DLD-STFC and LD-STFC are STF block-based designs. Based on the analysis

of pairwise error probability, we determine the achievable diversity of these systems.

Since both DLD-STFC and LD-STFC include all LDC coding properties within

either a T × NF (i)NT block or a T × Nant
LD(i)

NT block, in the following analysis, we

consider a single block C(i). The block C(i) is created after encoding all the i-th FT-

LDC codewords on all the transmit antennas and encoding the corresponding ST-LDC

codewords in the case of DLD-STFC; or, after encoding all of the i-th LDC codewords

across all transmit antennas and OFDM blocks in the case of the LD-STFC.

We use the unified notation Nfreq(i) to represent both NF (i) of DLD-STFC and

NLD(m,i) of LD-STFC and unified notation DSTFB (the number of STF block) to

represent both Dm of DLD-STFC and D of LD-STFC. Thus the block C(i), i =

1, ..., DSTFB is of size T × Nfreq(i)NT . For simplicity, in block C(i), consider the

case that the subcarrier indices chosen from all the OFDM blocks are the same, and

denote subcarrier indexes chosen {p(m)
nF (i) , nF (i) = 1(i), ..., Nfreq(i), i = 1, ..., DSTFB,m =
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1, ..., NT}. Denote the STF block C(i) in matrix form as

C(i) =

[ [
C(1,i)

]T [
C(2,i)

]T · · · [
C(T,i)

]T
]T

,

where

C(k,i) =




c
(k)

p
(1)
1(i)

c
(k)

p
(2)
1(i)

· · · c
(k)

p
(NT )

1(i)

c
(k)

p
(1)
2(i)

c
(k)

p
(2)
2(i)

· · · c
(k)

p
(NT )

2(i)

...
...

. . .
...

c
(k)

p
(1)
Nfreq(i)

c
(k)

p
(2)
Nfreq(i)

· · · c
(k)

p
(NT )

Nfreq(i)




, (7.19)

and c
(k)

p
(m)
nF (i)

, nF (i) = 1(i), ..., Nfreq(i),m = 1, ..., NT is the channel symbol of k-th OFDM

block in STF block C(i), the p
(m)
nF (i)-th subcarrier from m-th transmit antenna.

Su and Liu [97] recently analyzed the diversity of STFC based on a STF block

of size T × NCNT . Unlike [97], our analysis deals with only a single STF block of

size of T × Nfreq(i)NT , where Nfreq(i) is usually much less than NC (note that [97]

employs a different notation N instead of NC to express the number of subcarriers

in a OFDM block); in addition, the analysis in [97] is based on the assumption that

the channel orders of all paths between transmit and receive antennas are the same.

However, we assume frequency selective channel with orders that could be different

among paths between transmit and receive antennas. Furthermore, the diversity

analysis in [97] assumes no spatial correlation among transmit and receive antennas,

while our analysis allows for arbitrary channel correlation among space (antennas),

time (OFDM blocks) and frequency. In the following, we show that the upper bound

diversity order for STF blocks of size T×Nfreq(i)NT could be equal to the upper bound

diversity order for STF blocks of size T ×NCNT . Thus, even with lower complexity,

a smaller size STF block-based design is possible to achieve full diversity.
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We write the system equation for block C(i) as

R(i) =

√
ρ

NT

M(i)H(i) + V(i), (7.20)

where receive signal vector R(i) and noise vector V(i) are of size Nfreq(i)NRT ×1. The

coded STF block channel symbol matrix M(i) is of size Nfreq(i)NRT ×Nfreq(i)NT NRT ,

and M(i) = INR
⊗

[
M

(i)
1 , · · · ,M

(i)
NT

]
, where

M(i)
m = diag

(
c
(1)

m,p
(m)
1(i)

, · · · , c
(1)

m,p
(m)
Nfreq(i)

, · · · c(T )

m,p
(m)
1(i)

, · · · , c
(T )

m,p
(m)
Nfreq(i)

)
,

i = 1, ..., DSTFB,m = 1, ..., NT . The channel vector H(i) is of size Nfreq(i)NT NRT ×1,

and

H(i) =




[
H

(i)
1,1

]T
, ...,

[
H

(i)
NT ,1

]T
, ...,

[
H

(i)
1,2

]T
, ...,

[
H

(i)
NT ,2

]T
,

...,
[
H

(i)
1,NR

]T
, ...,

[
H

(i)
NT ,NR

]T




T

where H
(i)
m,n is of size Nfreq(i)T × 1,

H(i)
m,n =




H
(1)

m,n,p
(m)
1(i)

, H
(1)

m,n,p
(m)
2(i)

, ..., H
(1)

m,n,p
(m)
Nfreq(i)

, ...,

H
(T )

m,n,p
(m)
1(i)

, H
(T )

m,n,p
(m)
2(i)

, ..., H
(T )

m,n,p
(m)
Nfreq(i)




T

and H
(k)

m,n,p
(m)
nF (i)

is the path gain of k-th OFDM block , the p
(m)
nF (i)-th subcarrier for

block C(i) between the m-th transmit antenna and the n-th receive antenna. Thus,

according to (7.3), we get

H
(k)

m,n,p
(m)
nF (i)

=

[
w

p
(m)
nF (i)

]T
h(k)

m,n. (7.21)

Consider the pair of matrices M(i) and M̃(i) corresponding to two different STF

blocks C(i) and C̃(i). The upper bound pairwise error probability [96] is

P
(
M(i) → M̃(i)

)
≤




2r − 1

r




(
r∏

a=1

γa

)−1 (
ρ

Mt

)−r

, (7.22)
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where r is the rank of
(
M(i) − M̃(i)

)
RH(i)

(
M(i) − M̃(i)

)H
, and RH(i) = E

{
H(i)

[
H(i)

]H}

is the correlation matrix of vector H(i), RH(i) is of size Nfreq(i)NT NRT×Nfreq(i)NT NRT ,

γa, a = 1, ..., r are the non-zero eigenvalues of

Λ(i) =
(
M(i) − M̃(i)

)
RH(i)

(
M(i) − M̃(i)

)H
.

Then the corresponding rank and product criteria are

1) Rank criterion: The minimum rank of Λ(i) over all pairs of different matrices

M(i) and M̃(i) should be as large as possible.

2) Product criterion: the minimum value of the product
r∏

a=1

γa over all pairs of

different M(i) and M̃(i) should be maximized.

To further analyze diversity properties of coded STF blocks, it is helpful to com-

pute RH(i) = E
{
H(i)

[
H(i)

]H}
, the correlation matrix of vector H(i).

The frequency domain channel vector for each transmit and receive antenna path

in matrix form is,

H(i)
m,n =

(
IT ⊗W(m,i)

)
hm,n, (7.23)

where

m = 1, ..., NT , n = 1, ..., NR,

W(m,i) =

[
w

p
(m)
1(i)

, · · · ,w
p
(m)
NF (i)

]T

and

hm,n =
[[

h(1)
m,n

]T
, · · · ,

[
h(T )

m,n

]T ]
.

The frequency domain channel vector for the whole coded STF block is written

as,

H(i) = W(i)h, (7.24)
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where

W(m,i) =

[
w

p
(m)
1(i)

, · · · ,w
p
(m)
Nfreq(i)

]T
(7.25)

and

h =
[
[h1,1]

T , ..., [hNT ,1]
T , ..., [h1,NR

]T , ..., [hNT ,NR
]T

]T
.

Thus,

RH(i) = E
{
W(i)h

[
W(i)h

]H}

= W(i)E
{
h [h]H

} [
W(i)

]H

= W(i)Φ
[
W(i)

]H
, (7.26)

where

Φ = E
{
h [h]H

}
.

Note that arbitrary channel correlation among space, time and frequency may occur

in Φ.

In general, for matrices A and B, we know

rank (AB) ≤ min {rank (A) , rank (B)} . (7.27)

Thus,

rank
(
Λ(i)

) ≤
min

{
rank

(
M(i) − M̃(i)

)
, rank (RH(i))

} . (7.28)

To maximize the rank of RH(i) , it is sufficient to maximize the rank of W(i) and

the rank Φ.

To maximize the rank of W(i), it is sufficient to maximize the ranks of Nfreq(i) ×
(L + 1) matrices W(m,i) respectively, where m = 1, ..., NT . Thus we need to choose

Nfreq(i) ≥ L + 1 ≥ Lm,n + 1. (7.29)
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When p
(m)
nF (i) = p

(m)
1(i)

+b(nF−1), nF(i)
= 1(i), ..., Nfreq(i), Nfreq(i) ≥ L+1, where p

(i)
nF ≤ NC

and b is a positive integer, W(m,i) could achieve maximum rank L+1 (From (7.4) and

(7.25), W(m,i) is a square partition within a FFT matrix. For arbitrary subcarrier

indices chosen, W(m,i) is not generally full rank. For the given subcarrier indices

chosen, the square partition is always full rank), then the rank of W(i) could be

maximized to TNT NR(L + 1). The choice of interval b is discussed in [72] and

[98]. It can be shown that the maximal achievable rank of Φ is T
NT∑

m=1

NR∑
n=1

(Lm,n + 1).

Hence, the maximal achievable rank of RH(i) is T
NT∑

m=1

NR∑
n=1

(Lm,n + 1). If Lm,n = L

holds for all m = 1, ..., NT,n = 1, ..., NR, RH(i) can have a maximal achievable rank

NT NRT (L+1). We know M(i)−M̃(i) is of a size Nfreq(i)NRT ×Nfreq(i)NT NRT . Thus

rank
(
M(i) − M̃(i)

)
≤ Nfreq(i)NRT .

Consequently, the achievable diversity order of the coded STF block satisfies

rank
(
Λ(i)

) ≤ min

{
Nfreq(i)NRT, T

NT∑
m=1

NR∑
n=1

(Lm,n + 1)

}
. (7.30)

According to [79], when no correlation exists across space, time, and frequency,

the STF correlation function can be expressed as

ρSTF (∆f, v) = E [hl,m,n(t, f1) [hl′,m′,n′(t + v, f2)]
∗]

= Rs((m,n), (m′, n′))Rt(v)Rf (∆f),
(7.31)

where {l, m, n} and {l′,m′, n′} are a pair of indices of frequency selective channel

taps, transmit and receive antennas, t and f are time and frequency parameters,

respectively. As a straightforward extension, if the time correlation is independent of

the space and frequency correlation,

ρSTF (∆f, v) = Rsf ((m,n, f1), (m
′, n′, f2))Rt(v), (7.32)

In this case, we have

rank(RH(i)) = rank(R
(i)
t )rank(R

(i)
sf ), (7.33)
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and the upper bound diversity order in (7.30) becomes

min

{
Nfreq(i)NRT, rank(R

(i)
t )

NT∑
m=1

NR∑
n=1

(Lm,n + 1)

}
, (7.34)

where R
(i)
t is a T × T time correlation matrix, and Nfreq(i) > L + 1.

The above analysis has revealed that it is possible for a properly chosen STF block

design of size T ×Nfreq(i)NT to achieve a diversity order up to T
NT∑

m=1

NR∑
n=1

(Lm,n + 1),

which is more general than the upper bound diversity order NRNT T (L + 1) provided

in [97], since we consider the varying frequency selective channel orders of differ-

ent transmit-receive antenna paths. The necessary condition that STF block design

achieves a certain diversity order is that the rank of the channel correlation matrix

be equal to the diversity order of the STF block.

The STF blocks C(i), i = 1, ..., DSTFB of both DLD-STFC and LD-STFC de-

signs are across multiple time-varying OFDM blocks, multiple transmit antennas and

multiple subcarriers, and thus have the potential to achieve full diversity order. The

smaller block-size STFC design may in fact achieve high performance with lower com-

plexity. However, the actual diversity order achieved is based on the specific LDC

design chosen. In [42], diversity order is not optimized. In [47], both capacity and

error probability are used as criteria but the diversity analysis is based on quasi-static

flat fading space-time channels. The proposed LD-STFC has diversity determined by

the a single LDC procedure operating in 3-D STF space. In contrast, DLD-STFC

includes two complete LDC procedures, operating over FT and ST 2-D planes. If

the FT-LDC and ST-LDC procedures achieve full diversity order, then DLD-STFC

can achieve diversity order up to T
NT∑

m=1

NR∑
n=1

(Lm,n + 1), where NR is independent of

specific STFC design. In addition, in DLD-STFC, source symbols for ST-LDC are

coded FT-LDC symbols. Thus time dependency is already included, and therefore the

upper bound additional maximal diversity order for ST-LDC is NT instead of NT T .
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DLD-STFC operates on much smaller 2-D FT-LDC and ST-LDC blocks instead of

the larger 3-D STF blocks.

7.5 Design criteria based on union bound

The error union bound (EUB) has been defined in Section 2.2.2, and the EUB used

in this chapter is block based EUB. Based on EUB, we analyze an LDC coding stage

across multiple transmit antennas, i.e., the ST-LDC stage of DLD-STFC and the

STF stage of LD-STFC. In [88], space time codes are analyzed based on EUB, where

channel gains are assumed constant over time during the entire space time codewords.

We provide an EUB analysis for MIMO OFDM channels whose gains may vary over

the time duration of an LDC codeword, e.g., over different OFDM blocks. The EUB

can be expressed as

PU =

NB∑
a=1

pa

NB∑

b6=a

PEPab ≤ (NB − 1) max
ab

PEPab, (7.35)

where pa is the probability that LDC codeword X(a) was transmitted, PEPab is the

probability that receiver decides X(b) when X(a) is actually transmitted, and NB is

the LDC code book size.

We write a unified system equation for one STF block as

RU =
√

ρ
NT

HU

Q∑
q=1

vec(Aq)sq + VU , (7.36)

where RU and VU are the received signal and additive noise vectors, respectively,

Aq, q = 1, ..., Q are linear dispersion matrices, sq, q = 1, ..., Q are source symbols for

this LDC coding procedure, and HU denotes the channel matrix corresponding to

different code mappings.

In the following, the subcarrier indices are the same as that in Section 7.4.
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For LD-STFC, HU = H
(i)
LD STFC , and

H
(i)
LD STFC =




H
(i)
LD STFC(1,1) · · · H

(i)
LD STFC(NT ,1)

...
. . .

...

H
(i)
LD STFC(1,NR) · · · H

(i)
LD STFC(NT ,NR)




,

where

H
(i)
LD STFC(m,n) = diag(H

(1)

m,n,p
(m)
1(m,i)

, ...,

H
(T )

m,n,p
(m)
1(m,i)

, ..., H
(1)

m,n,p
(m)

Nant
LD(i)

, ..., H
(T )

m,n,p
(m)

Nant
LD(i)

)

and p
(m)
nF (i) , nF (i) = 1(i), ..., N

ant
LD(i)

. are the subcarrier indices of the partition of the

i-th LDC on the m-th transmit antenna. For the ST-LDC stage of DLD-STFC,

HU = H
(pnF (i)

)

DLD STFC ST , with

H
(pnF (i)

)

DLD STFC ST =




H
(pnF (i)

)

DLD STFC ST (1,1) · · · H
(pnF (i)

)

DLD STFC ST (NT ,1)

...
. . .

...

H
(pnF (i)

)

DLD STFC ST (1,NR) · · · H
(pnF (i)

)

DLD STFC ST (NT ,NR)




,

where

H
(pnF (i)

)

DLD STFC ST (m,n) = diag(H
(1)

m,n,p
(m)
nF (i)

, · · · , H
(T )

m,n,p
(m)
nF (i)

),

and p
(m)
nF (i) , nF (i) = 1(i), · · · , NF (i) are the subcarrier indices of the partition of the i-th

LDC on the m-th transmit antenna.

Denote the channel-weighted inner product between two dispersion matrices as

Ωp,q = 〈vec (Ap) , vec (Aq)〉Hu

=
1

2




Tr
[
[vec(Ap)]

H [HU ]HHUvec(Aq)
]
+

Tr
[
[vec(Aq)]

H [HU ]HHUvec(Ap)
]




= Tr
(
[vec(Ap)]

H [HU ]HHUvec(Aq)
)

= Tr
(
HUvec(Ap) [vec(Aq)]

H [HU ]H
)

(7.37)
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and

Ωq,q = ‖HUvec (Aq)‖2
F ≥ 0, (7.38)

where p,q = 1, ..., Q. Denote squared pairwise Euclidean distance between two re-

ceived codewords X(a) and X(b) and for the given channel HU as

Da,b =
∥∥HU

(
X(a) −X(b)

)∥∥2

F

=

∥∥∥∥∥
Q∑

q=1

[
[HUvec (Aq)]

(
s(a)

q − s(b)
q

)]
∥∥∥∥∥

2

F

=

Q∑
q=1

[
Ωq,q

∣∣e(a,b)
q

∣∣2
]

+ 2 Re

{
Q∑

q=1

Q∑
p<q

[
Ωp,q

[
e(a,b)

p

]∗
e(a,b)

q

]}
,

(7.39)

where

e(a,b)
q = s(a)

q − s(b)
q

denotes the difference between source symbol sequences (a) and (b) at the q-th posi-

tion. Eq. (7.39) is obtained via

Tr [vec(Ap)]
H [HU ]H HUvec(Aq)

[
e(a,b)

p

]∗
e(a,b)

q +

Tr [vec(Aq)]
H [HU ]H HUvec(Ap)

[
e(a,b)

q

]∗
e(a,b)

p

= 2 Re Tr
([

vec(Ape
(a,b)
p )

]H
[HU ]H HUvec(Aqe

(a,b)
q )

)

= 2 Re
{

Ωp,q

[
e(a,b)

p

]∗
e(a,b)

q

}
.

The pairwise error probability conditioned on channel HU is [84]

PEPab|HU
= Q

(√
η

2
Dab

)
, (7.40)

where the SNR component is η = ρ
NT

. The EUB conditioned on channel HU is [88]

PU |HU
=

NB∑
a=1

pa

NB∑

b6=a

Q

(√
η

2
Dab

)
. (7.41)
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As in [88,90], denote

∆
(a,b)
1 =

η

2

Q∑
q=1

[
Ωq,q

∣∣e(a,b)
q

∣∣2
]

(7.42)

and

∆
(a,b)
2 =

η

2
2

Q∑
q=1

Q∑
p<q

[
Ωp,q

[
e(a,b)

p

]∗
e(a,b)

q

]
. (7.43)

Using (7.37), (7.38), (7.39), (7.41), (7.42) and (7.43), we obtain [88,90]

PU |HU
=

NB∑
a=1

pa

NB∑

b 6=a

Q

(√
∆

(a,b)
1 + ∆

(a,b)
2

)
. (7.44)

We have the following remarks.

1) The uncorrelated input source symbol sequences above are complex while those

in [88,90], are real-valued. Thus, for QAM constellations for the case of [88,90],

real and imaginary coordinates use different dispersion matrices and the mini-

mum error event is one real output error, i.e., one coordinate in error. However,

in the new approach, the minimum error would be one complex symbol.

2) Although (7.41), (7.42), (7.43), (7.44) are similar to expressions in [88, 90], we

have redefined Da,b, Ωp,q, ∆
(a,b)
1 , and ∆

(a,b)
2 based on a channel whose coefficients

may vary over time within one STFC codeword. The corresponding quantities

defined in [88, 90] are only suitable for block-fading channels, i.e., those with

constant coefficients over time within one space time matrix codeword.

If all source symbols are equally likely, i.e. pa = 1
N

for all a, the following two

lemmas apply. Lemma 1 extends Lemma 2 in [90] to complex input sequences. Lemma

2 appears in [90] and applies to both real or complex inputs.
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Lemma 1 For uncorrelated complex input sequences, by carefully selecting terms in

(7.44), one can always pair up terms in (7.39) such that their EUB contribution is

written as

θ =
g

NB

[
Q

(√
∆1 + ∆2

)
+ Q

(√
∆1 −∆2

)]
, (7.45)

where g is an integer denoting the number of such pairs.

Except the consideration of complex input sequences, the proof of Lemma 1 is

similar to that of Lemma 2 in [90]. The outline of the proof of Lemma 1 is provided

in Appendix D.1.

Lemma 2 [88] For a given ∆1, θ in (7.45) is minimized if and only if ∆2 = 0.

For linear dispersion codes in 2-D rapid fading channels with realization HU , we

have the following EUB-based optimal design criterion:

Proposition 1 For uncorrelated complex source input symbol sequences, consider

LDC with T × M dispersion matrices Aq, q = 1, ..., Q used for real and imaginary

parts of source symbols,

Aq [Aq]
H = IT , if T ≤ M

[Aq]
HAq = IM , if T ≥ M

.

Union bound PU |HU
achieves a minimum in 2-D rapid fading channels iff the

matrices satisfy

Ωp,q = Tr
(
[vec(Ap)]

H [HU ]HHUvec(Aq)
)

= 0 (7.46)

for any 1 ≤ p 6= q ≤ Q.
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Proposition 1 is equivalent to requiring vec(Ap) and vec(Ap) to be pairwise or-

thogonal for any weighting matrix Θ = [HU ]HHU . For quasi-static channels, the

above result takes the form

Ωp,q = Tr
(
[Ap]

H [H]HHAq

)
= 0, (7.47)

which is based on real input sequences [88]. The proof of the above Lemma 2 is

similar to the proof of Lemma 4 of [90] except for the strategy to deal with complex

input sequences shown in Appendix D.1. A further implication of this new result is

that (7.47) also ensures that union bound PU |HU
achieves a minimum in block fading

channels.

Based on averaging the channel realizations HU , we have the following suboptimal

criterion for unknown channels at the transmitter.

Theorem 5 For uncorrelated complex source input symbol sequences, consider LDC

with T ×M dispersion matrices and Aq, q = 1, ..., Q corresponding to real and imag-

inary parts of source symbols satisfying

Aq [Aq]
H = IT , if T ≤ M

[Aq]
HAq = IM , if T ≥ M

.

Assume that

1) the auto-correlation of 2-D channel gains dominates the cross-correlation of any

two different channel gains in 2-D channels,

2) the auto-correlation of channel gains for each element in the channel matrix are

the same.

The part of the union bound PU related to the auto-correlation of channel gains in the

2-D channel based on averaged channel realizations is minimized if

Tr
[
vec(Ap) [vec(Aq)]

H
]

= 0 (7.48)
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for any 1 ≤ p 6= q ≤ Q.

A proof is provided in Appendix D.2.

The correlation between different subcarriers with one OFDM block can be cal-

culated as R(a) = E {Hp [Hp+a]
∗} =

L∑
l=0

αl exp
(
j2π la

NC

)
, and R(0) = E {Hp [Hp]

∗} =

L∑
l=0

αl, where αl is the variance of the l-th channel tap. Note that the auto-correlation

of the subcarriers usually dominates the cross-correlation among different subcarri-

ers, and that the auto-correlation of two channel gains in space-time MIMO channels

usually dominates the cross-correlation of two channel gains. Otherwise, the channels

would be highly correlated over space and time, and ill-suited for spatial multiplexing.

In the above conditions, Theorem 5 may be applied to code design in MIMO-OFDM

systems.

Theorem 5 provides a new EUB design criterion for LDC for communications in

correlated parallel channels. A class of recently proposed rectangular LDC, termed

uniform LDC (U-LDC), meets this union bound criterion, which is shown in Appendix

A.

Finally, we conjecture that in a block fading channel, provided that uncorrelated

complex source input symbol sequences are used, the part of the union bound PU

related to the auto-correlation of channel gains in the block fading channel based on

averaged channel realizations is minimized if

Tr
[
Ap [Aq]

H
]

= 0, (7.49)

for any 1 ≤ p 6= q ≤ Q.

Note that union bound based analysis is most applicable to the system with max-

imum likelihood decoding or near optimal decoding. However, this analysis may be

approximately or asymptotically applied for low complexity decoding, including used
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in the later simulation performance study.

7.6 Performance

7.6.1 Simulation setup

Perfect channel knowledge (amplitude and phase) is assumed at the receiver but not at

the transmitter. The number of subcarriers per OFDM block, NC , is 32. In all DLD-

STFC, LD-STFC and MIMO-LDC-OFDM system simulations, all LDC codewords

are encoded either using HH square code as shown in (3.10) or U-LDC described in

Section 4.2.

The symbol coding rates of all systems are unity, so compared with non-LDC-

coded MIMO-OFDM systems, no bandwidth is lost. The sizes of all LDC codewords

in the FT-LDC stage of DLD-STFC and MIMO-LDC-OFDM are identically T ×NF ,

as are the sizes of LDC codewords in the ST-LDC stage of DLD-STFC, T×NT , as are

the sizes of LDC codewords in LD-STFC, T ×NLD, where NLD = Nant
LD NT , and Nant

LD

is the size of the subcarrier partition on each transmit antenna for an LDC codeword.

An evenly spaced LDC subcarrier mapping (ES-LDC-SM) for the FT-LDC of

DLD-STFC and MIMO-LDC-OFDM, as well as LD-STFC, is used in simulations un-

less indicated otherwise. In ES-LDC-SM, subcarriers chosen within one LDC code-

word are evenly spaced by maximum available intervals for all different LDC code-

words. We note that ES-LDC-SM ensures W(m,i), defined in Section 7.4, to be of full

rank, to achieve maximum diversity order. For comparison purposes, another subcar-

rier mapping, called connected LDC subcarrier mapping (C-LDC-SM), is tested for

the FT-LDC of DLD-STFC. In C-LDC-SM, subcarriers within one LDC codeword

are chosen to be adjacent.
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Since the aim of reaching maximal achievable diversity may require non-square

FT-LDC or ST-LDC, U-LDC is utilized for DLD-STFC.

The frequency selective channel has (L+1) paths exhibiting an exponential power

delay profile, and a channel order of L = 3 is chosen. Data symbols use QPSK

modulation in all simulations. The number of antennas are set to NR = NT . Except

for Section 7.6.6, no spatial correlation is assumed in simulations. The signal-to-noise-

ratio (SNR) reported in all figures is the average symbol SNR per receive antenna.

7.6.2 Performance comparison among DLD-STFC with two

different LDC subcarrier mappings and non-LDC-coded

MIMO-OFDM

Figure 7.4 shows the performance comparison of Bit Error Rate (BER) vs. SNR

among DLD-STFC with two different LDC subcarrier mappings, ES-LDC-SM and

C-LDC-SM, and C-LDC-SM, and non-LDC-coded MIMO-OFDM for various combi-

nations of T in two transmit and two receive (2× 2) MIMO antennas systems.

Clearly, in frequency-selective Rayleigh fading channels, BER performance of

DLD-STFC is notably better than that of non-LDC-coded MIMO-OFDM. The larger

the dispersion matrices used, the greater the performance improvement, at a cost of

increased decoding delay. The simulations use U-LDC based DLD-STFC. Though we

do not claim that U-LDC are full diversity codes, we conjecture that U-LDC based

STFC can achieve close to full diversity performance for PSK constellations. This

superior performance is also due to U-LDC satisfying the EUB criterion in Section

7.5.

It is clearly observed that the performance of DLD-STFC with ES-LDC-SM is
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Figure 7.4. BER Performance of MIMO-OFDM vs DLD-STFC with different sizes

of dispersion matrices and two different LDC-subcarrier mappings. L = 3, CCI = 1

OFDM block, NT = NR = 2, NC = 32.
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notably better than that of DLD-STFC with C-LDC-SM. Thus, LDC subcarrier map-

pings influence the performance of DLD-STFC.

7.6.3 Effect of channel dynamics in DLD-STFC

10 12 14 16 18 20 22 24 26 28 30
10

−5

10
−4

10
−3

10
−2

10
−1

SNR (dB)

B
E

R

DLD−STFC, CCI = 1 OFDM Block
DLD−STFC, CCI = 2 OFDM Blocks
DLD−STFC, CCI = 4 OFDM Blocks
DLD−STFC, CCI = 8 OFDM Blocks

Figure 7.5. BER Performance of DLD-STFC (ES-LDC-SM) under different CCIs,

L = 3, NT = NR = 2, NC = 32, NF = 8, T = 8.

Figure 7.5 depicts performance of DLD-STFC with ES-LDC-SM under various

different rates of channel parameter change in a 2 × 2 MIMO system. Note that

different CCIs roughly correspond to different degrees of temporal channel correlation

over OFDM blocks. Two extreme cases were tested: when CCI = 1, i.e., channel

correlation over time is zero, full time diversity is available in the channel. When

CCI = T , i.e., channel correlation over time is unity, no time diversity is available in

the channel. As discussed in Section 7.4, STFC diversity order is maximized only if

the channel provides block-wise temporal independence.
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As shown in Figure 7.5, the performance of DLD-STFC is significantly influenced

by channel dynamics, i.e., time correlation. At high SNRs, the faster the chan-

nel changes, the better the performance. This indicates that DLD-STFC effectively

exploits available temporal diversity across multiple OFDM blocks. In the future,

testing on a more accurate model of temporal channel dynamics is needed to obtain

a more accurate assessment.

7.6.4 Performance comparison between DLD-STFC and MIMO-

LDC-OFDM
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MIMO−LDC−OFDM(ES−LDC−SM)
DLD−STFC(ES−LDC−SM)

Figure 7.6. BER Performance of MIMO-LDC-OFDM(ES-LDC-SM) vs. DLD-

STFC(ES-LDC-SM) with the same size of NF , L = 3, CCI = 1 OFDM block,

NT = NR = 4, NC = 32, NF = 8, T = 8.

Figure 7.6 compares DLD-STFC to MIMO-LDC-OFDM with same sized FT-

LDC codewords in a 4 × 4 MIMO system. While at low SNRs, the performance

155



difference between DLD-STFC and MIMO-LDC-OFDM is small, at high SNRs, DLD-

STF noticeably outperforms MIMO-LDC-OFDM. The performance gain arises from

the increased spatial diversity due to the ST-LDC coding stage of DLD-STFC.

7.6.5 Performance comparison between DLD-STFC and LD-

STFC

We compare space and frequency diversity of DLD-STFC with ES-LDC-SM and LD-

STFC with ES-LDC-SM in a 2 × 2 MIMO system, and remove the effects of time

diversity in the channels through setting CCI to be a multiple of T .

7.6.5.1 Effects of size of subcarrier group of DLD-STFC and LD-STFC
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Figure 7.7. BER Performance of LD-STFC(ES-LDC-SM) vs. DLD-STFC(ES-LDC-

SM) with different sizes of Nfreq blocks, L = 3, CCI = 32 OFDM blocks, NT = NR =

2, NC = 32, T = 32.
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The coded STF block design with NF = L+1 could achieve full frequency selective

diversity, which we term a compact frequency diversity design. We investigate whether

the performance of U-LDC based DLD-STFC and LD-STFC is close to compact

design through comparison under different sized Nfreq in a 2 × 2 MIMO system, as

shown in Figure 7.7. In Figure 7.7, the performance of DLD-STFC and LD-STFC

with Nfreq = 4 = (L+1) is worse than that of DLD-STFC and LD-STFC with Nfreq =

8 = 2(L+1) or Nfreq = 16 = 4(L+1), which implies Nfreq = 4 = (L+1) is not enough

to efficiently exploit full frequency diversity in the channels. Further the performance

of DLD-STFC and LD-STFC with Nfreq = 8 = 2(L + 1) is quite close to that of

DLD-STFC and LD-STFC with setting Nfreq = 16 = 2NT (L + 1), which implies

Nfreq = 16 = 4(L + 1) is a saturated or over-length. The results in Figure 7.7 imply

that U-LDC based DLD-STFC and LD-STFC designs are not compact frequency

diversity designs. Actually, according to our simulation experiences, no matter how

the system configurations are set, for example L = 7 and NT = NR = 2, to achieve

maximal or saturated frequency selective diversity performance, it is necessary to set

Nfreq to at least 2(L + 1).

7.6.5.2 Effects of STF block sizes of DLD-STFC and LD-STFC

Figure 7.8 compares DLD-STFC to LD-STFC with different sized NT × T × Nfreq

STF blocks. In Figure 7.8, DLD-STFC with STF block size 2×8×8 has performance

similar to that of LD-STFC with STF block size 2 × 16 × 8, while DLD-STFC with

STF block size 2×8×8 performs better than LD-STFC with STF block size 2×8×8.

The reason is that the diversity order of T ×M U-LDC is no larger than min {T, M}
for each matrix dimension. Thus LD-STFC with STF block size 2 × 16 × 8 has the

potential to achieve the same space and frequency diversity order as LD-STFC with
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Figure 7.8. BER Performance of LD-STFC(ES-LDC-SM) vs DLD-STFC(ES-LDC-

SM) with different sizes of STF blocks, L = 3, CCI = 16 OFDM blocks, NT = NR =

2, NC = 32.
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STF block size 2× 8× 8.

For similar sized STF blocks, DLD-STFC utilizes smaller sized LDC codewords,

thus reducing complexity.

7.6.6 Performance of DLD-STFC under spatial transmit chan-

nel correlation
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Figure 7.9. BER Performance of DLD-STFC(ES-LDC-SM) under spatial transmit

channel correlation coefficients ρt, L = 3, CCI = 1 OFDM block, NT = NR = 2,

NC = 32, NF = 8, T = 8.

In previous parts of this section, we considered spatially uncorrelated channels.

In multiple antenna systems, spatial correlation must be considered. In order to

have spatially correlated frequency-selective channels, it is important to recognize
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that in a scenario of multi-ray delays, the gains for different delays of a channel are

independent of one another [21]. Thus, the dependency between different channels

comes from the correlation between tap-gains corresponding to the taps with the

same delay on different spatial channels. Figure 7.9 shows the performance of DLD-

STFC with ES-LDC-SM under different spatial transmit channel correlation in a two

transmit and two receive antenna system. In the simulations spatial correlation is

assumed between transmit antennas (correlation coefficient is denoted by ρ) and not

between receive antennas.

As observed in Figure 7.9, spatial transmit correlation indeed degrades DLD-

STFC performance. When the correlation is small, e.g., ρt = 0.1, compared with

the spatially uncorrelated case, the performance loss is small. At a BER of 10−3,

the performance degrades only 0.2 dB. However, when the correlation is larger, e.g.

ρt = 0.5 and ρ = 0.8 cases, compared with the spatially uncorrelated case, the

performance loss is significant. At a BER of 10−3, the performance degrades by 1.3

dB and 4.0 dB, respectively. Thus spatial correlation, as expected, may notably affect

diversity gain behavior of DLD-STFC when correlation is high.

7.7 Conclusion

High-rate (up to symbol coding rate one) linear dispersion codes significantly improve

MIMO-OFDM performance in time varying frequency selective fading channels at

the expense of delay. For instance, in Figure 7.4, for a 2× 2 MIMO system, NF = 8

and T = 8, DLD-STFC with an evenly spaced LDC subcarrier mapping obtains a

9.8 dB gain over non-LDC-coded MIMO-OFDM at a BER of 10−3. At high SNRs,

the performance of DLD-STFC is notably better than that of MIMO-LDC-OFDM,
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achieving 2.4 dB gain at a BER of 10−4 in a 4 × 4 MIMO system. We reiterate

that, due to rate-one codes used, no bandwidth is lost! Both DLD-STFC and LD-

STFC systems simultaneously exploit the diversity of space, time, and frequency

available in wideband space time multicarrier communications channels. Pairwise

error probability based analysis, which allows for arbitrary channel correlation among

space (antennas), time (OFDM blocks) and frequency selective channel taps, provides

insight into diversity properties of STF block-based STFC systems. From an error

union bound analysis, more restrictive LDC code design criteria for complex source

symbols are developed. Simulations show that the type of mapping used from LDC

to OFDM subcarriers for both LD-STFC and DLD-STFC as well as high spatial

transmit channel correlation significantly influences the diversity performance of the

proposed STFC systems. In conclusion, the three-stage DLD-STFC technique has a

relatively flexible performance/complexity tradeoff.
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Chapter 8

Improved high-rate space-time-frequency

block codes

8.1 Introduction

Space-time coding (STC) is employed to achieve space and time diversity gains in

multiple transmit multiple receive antenna (MIMO) flat-fading channels [100, 101].

However, in frequency-selective channels, STC cannot explore available frequency

dimension diversity in MIMO orthogonal frequency division multiplexing (OFDM)

systems. Coding over space, time, and frequency, STFC, is therefore needed to exploit

all available diversity across three physical dimensions.

Basically, there are two categories of coding approaches which can exploit diver-

sity. Complex coding may be utilized to exploit diversity over physical dimensions,

which we refer to as complex diversity coding (CDC). The second category includes

conventional channel coding, including block-based or convolutional forward error

correction (FEC).

We are interested in high-rate STFC designs. To distinguish among different

existing and newly proposed STFCs discussed in this chapter, in terms of different
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combinations of CDC and FEC, we may categorize high-rate STFCs into the following

seven categories:

1) concatenation of inner 2-dimensional (2-D) channel codes (e.g. SF FEC or ST

FEC) and outer 2-D channel codes (e.g. ST FEC or TF FEC) [52],

2) 3-D channel codes,

3) concatenation of inner channel codes and outer 2-D CDC (e.g. over SF or

ST) [40],

4) concatenation of inner 2-D CDC and outer 2-D CDC [40,123] ,

5) 3-D CDC [123,130],

6) concatenation of first-inner channel codes, second-inner 2-D CDC, and outer

2-D CDC,

7) concatenation of inner channel codes and outer 3-D CDC.

Previously STFCs of Categories 1, 3, 4, and 5 have been proposed. However, there

have been no proposals for STFCs of Categories 2, 6, and 7 to date. Note that STFCs

of Category 6 and 7 are corresponding to STFCs of Category 4 and 5, respectively,

with added channel coding. By extending the concept of linear dispersion coding

(LDC) [42], high rate STFCs, known as double linear dispersion space-time-frequency-

coding (DLD-STFC) are proposed in [123, 124], which may be classified as Category

4.

This chapter investigates performance improvement of STFCs in Categories 4 and

6, referred to DLD-STFC based approaches. Two issues are discussed in this chapter,

1) investigating the relation of two 2-D CDC for STFC Category 4,
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2) investigating STFCs of Category 6.

8.2 MIMO-OFDM system model

The MIMO-OFDM system model used is the same as that in Section 7.2.

8.3 Two stage complex diversity coding of DLD-

STFC

Double linear dispersion space-time-frequency-coding (DLD-STFC) [123, 124] is a

class of two-stage STFBCs across NT transmit antennas, NC subcarriers, and T

OFDM blocks. DLD-STFC systems are based on a layered communications struc-

ture, which is compatible to non-LDC coded MIMO-OFDM systems. An advantage

of DLD-STFC is that the system may obtain 3-D diversity performance for the source

data symbols that are only encoded and decoded through 2-D coding, and the com-

plexity advantage may be significant if non-linear decoding methods, e.g. sphere

decoding, are involved. Note that [130] claims to have a full diversity STF design.

However, the 3-D CDC based STFC design in [130] may have high computational

complexity. In this section, we try to improve diversity properties of DLD-STFC

through investigating the relationship of the two stages of 2-D CDC of DLD-STFC.

We term the originally proposed DLD-STFC as DLD-STFC Type A, which firstly

encodes frequency-time LDC (FT-LDC) and secondly encodes space-time LDC (ST-

LDC) [123,124]. By exchanging the sequence of the two stages, we propose a modified

version of DLD-STFC, termed as DLD-STFC Type B, as follows. The first CDC en-

coding stage is the ST-LDC, performed across space (transmit antennas) and time
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(OFDM blocks), enabling space and time diversity. The second CDC encoding stage

is the FT-LDC, performed across frequency (subcarriers) and time (OFDM blocks),

enabling frequency and time diversity. The corresponding encoding procedure for the

i-th STF block of size T ×NF (i) ×NT within one DLD-STFC Type B block is that

1) Firstly, the source data signals are encoded through per subcarrier ST-LDC.

The p-th ST matrix codeword is of size T × NT , where p = p1(i), ..., pNF (i)
are

subcarrier indices.

2) Secondly, all the m-th space index columns of NF (i) ST-LDC codewords are

concatenated in sequence to a vector of size TNF (i)×1, which is further encoded

into the m-th FT-LDC codeword of the i-th STF block. The m-th FT-LDC

matrix codeword is of size T ×NF (i). After NT FT-LDC matrix codewords are

created, the i-th STF block is created.

If all subcarriers are used for DLD-STFC and there are in total NM STF blocks within

one DLD-STFC Type B block, the frequency block size relation is
NM∑
i=1

NF (i) = NC .

The decoding sequence of DLD-STFC Type B is in the reverse order of the encoding

procedure.

Note that it is inconvenient to analyze the diversity order of DLD-STFC in

general due to the two stages involved. For further analysis, we employ Tirkko-

nen and Hottinen’ concept of symbol-wise diversity order for 2-D codes with di-

mensions X and Y , rsd(XY ) [108, 109]. We extend this concept by introducing a

new term, K-symbol-wise diversity order for 2-D codes, r
(K)
d , for the case that

the pair of matrix codewords contain at most K symbol differences, and r
(K)
d(XY ) =

min





rank (Φq1,...,qK
) , 1 6 qi 6 Q,

qi 6= qk, 1 6 {i, k} 6 K





, where Aq, q = 1, ..., Q are dispersion matrices,
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Φq1,...,qK
= Aq1 (sq1 − s̃q1) + ... + AqK

(sqK
− s̃qK

), and {sq1 , ..., sqK
} and {s̃q1 , ..., s̃qK

}
are a pair of different source symbol sequences with at least one symbol difference.

Note that rsd(XY ) = r
(1)
d(XY ). Further, we introduce two new concepts of 3-D codes: per

dimension diversity order and per dimension symbol-wise diversity order. Symbol-

wise diversity order is a subset of full diversity order. The importance of symbol-wise

diversity for 2-D codes has been explained in [108,109], and based on similar reason-

ing, full symbol-wise diversity for 3-D codes is also important, especially in high SNR

regions.

Definition 3 A pair of 3-D coded blocks M and M̃ in dimensions X, Y , and Z are

of size NX ×NY ×NZ. All possible M and M̃ comprise the set M. Denote M
(XZ)
(a)

and M̃
(XZ)
(a) as a pair of X-Z blocks corresponding to the a-th Y dimension of size

NX ×NZ within M and M̃, respectively. All possible M
(XZ)
(a) and M̃

(XZ)
(a) comprise the

set M(XZ)
(a) . Similarly, the sets M(Y Z)

(a) and M(XY )
(a) are defined.

Denote per dimension diversity order of Y as rd(Y ), which is defined as

rd(Y ) = max
{
rd(XY ), rd(ZY ),

}
, (8.1)

where

rd(XY ) = min





rank(M
(XY )
(a) − M̃

(XY )
(a) ),

a = 1, ..., NZ ,

M
(XY )
(a) ∈M(XY )

(a) ,

M̃
(XY )
(a) ∈M(XY )

(a) ,

M
(XY )
(a) 6= M̃

(XY )
(a) ,

M
(XY )
(a) within M

M̃
(XY )
(a) within M̃

M ∈M, M̃ ∈M,

M 6= M̃





,
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rd(ZY ) is defined similarly to rd(XY )

Definition 4 For a 3-D code, the definition of the per dimension symbol-wise diver-

sity order of Y is the same as that of the per dimension diversity order of Y except that

it is required that the pair of M and M̃ is different only due to a single source sym-

bol difference, which is denoted as
[
M 6= M̃

]
sw

. Denote per dimension symbol-wise

diversity order of Y as rsd(Y ), which is defined as

rsd(Y ) = max
{
rsd(XY ), rsd(ZY )

}
, (8.2)

where rsd(XY ) and rsd(ZY ) are as in Definition 3, except that
[
M 6= M̃

]
sw

instead of
[
M 6= M̃

]
.

The above two concepts quantify the fact that in the case of NX < NY ≤ NZ , the

dimension Y may reach full per dimension (symbol-wise) diversity order NY in the

Y -Z plane, although Y cannot reach full per dimension (symbol-wise) diversity order

in the X-Y plane.

Definition 5 A 3-D code is called full symbol-wise diversity code if the per dimension

symbol-wise diversity orders of X,Y , and Z satisfy

rsd(X) = NX ,

rsd(Y ) = NY ,

and

rsd(Z) = NZ .

Note that a full symbol-wise diversity code is achievable only if at least the two

largest of NX , NY , and NZ are equal.
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We can show that a properly designed DLD-STFC may achieve full symbol-wise

diversity. Let the time dimension be of size T , and space and frequency dimensions

be of size either NX and NY , respectively, or, NY and NX , respectively. Without loss

of generality, say that dimension X is of size NX , and dimension Y is of size NY . One

STF block of size NX × NY × T is constructed through a double linear dispersion

(DLD) encoding procedure such that the first LDC encoding stage constructs LDCs

of size T ×NX in the X-time planes, and the second LDC encoding stage constructs

LDCs of size T ×NY in the Y -time planes.

Proposition 2 Assume that a DLD procedure is with the above notations. Assume

that the second LDC encoding stage produces information lossless or rate-one code-

words. Assume that all-zero data source elements are allowed for DLD encoding.

1) In the case of NX < NY = T , if each of the two stage LDC encoding procedure

enables full diversity in their 2-dimensions, the per dimension diversity orders

of Y and time dimensions satisfy

rd(T ime) = rd(Y ) = T = NY .

2) Assume that the following conditions are satisfied:

a. Each block of Q source data symbols are encoded into each first stage LDC

codeword. The first stage LDC encoding procedure enables full symbol-wise

diversity in its 2-dimensions, and the second stage LDC encoding procedure

enables full K-symbol-wise diversity in its 2-dimensions, where K is the

maximum number of non-zero symbols of all the nX-th time dimensions

after the first stage LDC encoding procedure, where nX = 1, ..., NX .
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b. All the encoding matrices of the second stage LDCs are the same. Denote

the dispersion matrices of the second stage LDC as A
(2)
q , where q = 1, ..., NY T .

Denote

J(a,b) =

[[
A

(2)
(a−1)T+1

]
:,b

, ...,
[
A

(2)
aT

]
:,b

]
, (8.3)

where a = 1, ..., NY and b = 1, ..., NY . Square matrix J(a,b) is full rank, i.e.

invertible, for any a = 1, ..., NY and b = 1, ..., NY .

In the cases of both NX < NY = T and NX = T > NY , the STF block,

constructed using DLD procedure, achieves full symbol-wise diversity order.

The proof of Proposition 2 is provided in Appendix E. We remark that

1) Proposition 2 provides a sufficient condition for full symbol-wise diversity. We

call the condition (b) the DLD cooperation criterion (DLDCC). When failing

to meeting DLDCC, full symbol-wise diversity cannot be guaranteed. Due to

the support of DLDCC, the complex diversity coding design in the second LDC

stage is more restrictive than that in the first LDC stage. Note that in [123,124],

we have not considered DLDCC as a design criterion,

2) According to Proposition 2, the sequence of ST-LDC and FT-LDC stages can

be inter-changed. Properly designed, both DLD-STFC Type A and DLD-STFC

Type B are able to achieve full symbol-wise diversity.

8.4 Complex diversity coding based STFC with

FEC

The fundamental differences between complex diversity coding (CDC) and FEC is

that
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1) CDC improves performance through obtaining better effective communication

channels for source data signals while channel codes improve performance through

correcting errors;

2) CDC operates in the continuous-valued domain, while FEC operates in the

discrete-valued domain;

We claim that that CDC and FEC are not mutually exclusive techniques. On

the contrary, FEC may cooperate with complex diversity coding to achieve better

performance. The practical issue is the amount of gain that can be obtained by

combining CDC based STFC and FEC. Recalling our STFC classification, DLD-

STFC type A (which satisfies DLDCC) with FEC belongs to Category 6.

FT-LDC #1
Na RS symbols

FT-LDC #2
Na RS symbols

DLD-STFC  block NK

FT-LDC #NG

Na RS symbols

...


FT-LDC #1
Na RS symbols

FT-LDC #2
Na RS symbols

DLD-STFC  block 2

FT-LDC #NG

Na RS symbols

...


FT-LDC #1
Na RS symbols

FT-LDC #2
Na RS symbols

DLD-STFC  block 1

FT-LDC #NG

Na RS symbols

...


...

Figure 8.1. FEC mapping to DLD-STFC blocks

Due to the multidimensional structure, there are many possible mappings from

FEC to STFC, which might influence system performance. For low latency, Reed

Solomon (RS) codes are chosen FEC. The reasons to consider RS codes are listed as
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follows.

1) Certainly, other FEC, such as turbo codes, also may be applied. The usage of

RS codes is a proof of concept.

2) RS codes are block codes with strong burst error correction ability. If the RS

symbols are distributed over different CDC codewords, the burst error correction

ability may be efficiently used, since the burst errors may take place within one

CDC codeword.

3) RS codes are block based and CDC are also block based, thus the mapping from

RS codes to CDCs are convenient.

4) Block codes usually have lower latency than convolutional codes.

In the next section, RS(a, b, c) denotes RS codes with a coded RS symbols, b infor-

mation RS symbols, and c bits per symbol. As shown in Figure 8.1, we proposes

to map one RS(a, b, c) codeword to NK DLD-STFC blocks, and Na RS symbols are

mapped into each of NG FT-LDC codewords within each DLD-STFC block, where

a = NaNGNK . In the case of NK > 1, we call the method inter-CDC-STFC FEC,

while in the case of NK = 1, we call the method intra-CDC-STFC FEC. Performance

comparison of the combination of DLD-STFC with FEC will be given in Section

8.5.2.

8.5 Performance

Perfect channel knowledge (amplitude and phase) is assumed at the receiver but not

at the transmitter. The symbol coding rates of all systems are unity. The sizes of all

LDC codewords in the ST-LDC and FT-LDC stage of DLD-STFC are T × NT and
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T ×NF , respectively. An evenly spaced LDC subcarrier mapping for the FT-LDC of

DLD-STFC is used in simulations.

The frequency selective channel has (L+1) paths exhibiting an exponential power

delay profile, and a channel order of L = 3 is chosen. Data symbols use QPSK

modulation in all simulations. Denote the transmit spatial correlation coefficient for

2× 2 MIMO systems by ρt. The signal-to-noise-ratio (SNR) reported in all figures is

the average symbol SNR per receive antenna.

8.5.1 Satisfaction of DLDCC influences the performance of

DLD-STFC Type A and Type B

In the previous design of DLD-STFC Type A, FT-LDC and ST-LDC chose HH square

code as shown in (3.10) and uniform linear dispersion codes, respectively, as dispersion

matrices, both of which support full symbol-wise diversity in 2-dimensions. Note that

original U-LDC design in Section 4.2 does not support DLDCC, while the square

design Eq. (31) of [42] supports DLDCC. Thus the previous design [123,124] of DLD-

STFC Type A does not satisfy DLDCC, and thus does not support full symbol-wise

diversity in 3-dimensions. However, our recent results show that by changing index of

dispersion matrices such that the sequence of the dispersion matrices {A1, ...,AQ} is

modified as
{
Aσ(1), ...,Aσ(Q)

}
, where σ is a special permutation operation, a modified

U-LDC is able to support DLDCC, thus DLD-STFC Type A based on the modified

U-LDC may achieve full symbol-wise diversity in 3-dimensions. Note that the only

situation which the code design should consider is the case of T > M . Note that if

T > M , U-LDC in Section 4.2 is defined as

Aq = Bq = AM(k−1)+l =
1√
M

Πk−1ΓDl−1,
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where k = 1, ..., T and l = 1, ..., M . If T > M , the modified U-LDC, which supports

DLDCC, is with dispersion matrices as follows,

Aq = Bq = AT (l−1)+k =
1√
M

Πk−1ΓDl−1, (8.4)

where k = 1, ..., T and l = 1, ..., M .

We conjecture that the modified DLD-STFC Type A may achieve full K-symbol-

wise diversity in 3-dimensions for some K > 1, and the performance is close to full

diversity performance in 3-dimensions.

10 12 14 16 18 20 22 24 26 28 30
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DLD−STFC Type A, which does not satisfy DLDCC
DLD−STFC Type A, which satisfies DLDCC
DLD−STFC Type B, which does not satisfy DLDCC
DLD−STFC Type B, which satisfies DLDCC

Figure 8.2. BER Performance of DLD-STFC are influenced by the satisfaction of

DLDCC, transmit space correlation coefficients (ρt = 0.0), channel order 3, CCI = 1

OFDM block,NT = 2,NR = 2,NC = 32,NF = 8,T = 8

Figure 8.2 shows that the performance comparison of Bit Error Rate (BER) vs.
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SNR between DLD-STFC Type A and DLD-STFC Type B with and without sat-

isfaction of DLDCC. It is clear that both DLD-STFC Type A and Type B with

satisfaction of DLDCC notably outperform both DLD-STFC Type A and Type B

without satisfaction of DLDCC. Note that the sensitivity to DLDCC of DLD-STFC

Type A is more than that of DLD-STFC Type B, which might be due to the fact that

the size of frequency dimension of the codes is larger than that of space dimension of

the codes. The performance of DLD-STFC Type A with satisfaction of DLDCC is

quite close to that of DLD-STFC Type A with satisfaction of DLDCC. Thus DLD-

STFC Type A can achieve similar high diversity performance to DLD-STFC Type B.

In the rest of this section, DLD-STFC Type A with satisfaction of DLDCC is chosen.

8.5.2 Performance comparison of RS codes based STFCs

We would like to compare the performance of Category 2 and 3. We compare five

RS(8, 6, 4) codes based STFCs:

(1): the combination of DLD-STFC with RS codes with parameters Na = 2, NG = 4,

and NK = 1;

(2): the combination of DLD-STFC with RS codes with Na = 1, NG = 2, and

NK = 4;

(3): the combination of DLD-STFC with RS codes with Na = 1, NG = 1, and

NK = 8;

(4): the combination of linear constellation precoding (LCP) [72, 126] based space-

frequency codes with RS codes over T = 8 OFDM blocks (Category 2);

(5): using single RS codes across space-time-frequency (Category 3).
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Figure 8.3. BER Performance of FEC based STFCs under transmit correlation ρt = 0,

channel order 3, CCI = 1 OFDM block, NC = 16, NT = 2, NR = 2, FEC used is

RS(8, 6, 4)
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Figure 8.4. BER Performance of FEC based STFCs under transmit correlation ρt =

0.3, channel order 3, CCI = 1 OFDM block, NC = 16, NT = 2, NR = 2, FEC used

is RS(8, 6, 4)
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Figures 8.3 and 8.4 show the performance comparison of FEC based STFCs. Note

that LCP used in STFC (4) supports maximal diversity gain and coding gains in

supported dimensions. It can observed that using the same FEC, STFCs (1), (2),

and (3) significantly outperform STFCs (4) and (5) under transmit spatial correlation

ρt = 0 and ρt = 0.3, respectively. Thus, STFCs of Category 6 may be the best choices

in terms of BER performance. Note that the performance advantage of STFCs (1),

(2), and (3) over STFCs (4) and (5) appears more significant with an increase of

transmit spatial correlation. According to Figures 8.3 and 8.4, different mappings

from FEC to STFC may lead to different BER performance of FEC based DLD-

STFCs. Using the same block based FEC, it seems that the larger the number of

STFCs that one RS codeword is across, the better the system performance of the

STFCs of Category 6, and inter-CDC-STFC FEC systems outperform intra-CDC-

STFC FEC ones.

8.6 Conclusion

This chapter introduces two concepts of diversity order for 3-dimensions, per dimen-

sion diversity order and per dimension symbol-wise diversity order. These diversity

concepts are used to analyze the relation of two stages of complex diversity coding of

DLD-STFC. This chapter shows that the two stages of DLD-STFC can be exchanged,

and provides a sufficient condition to realize 3-dimensional diversity order for DLD-

STFC. This results in notable performance improvement over the originally proposed

DLD-STFC codes as shown in simulation results. This chapter also investigates the

impact of FEC on performance of DLD-STFC, and shows that the mappings from

FEC to DLD-STFC need to be properly designed. Finally, this chapter shows that
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STFC based on the combination of DLD-STFC and FEC may significantly outper-

form STFC based on the combination of LCP SFC and FEC. As in Figure 8.4, at

moderate transmit correlation of ρt = 0.3, DLD-STFC Type A (meeting DLDCC)

with FEC outperforms STFC using the combination of LCP and FEC by 2.8dB at

the BER of 10−3.
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Chapter 9

Coordinate interleaving for space-time

linear dispersion

9.1 Introduction

In Chapter 2 and other previous chapters, there are extensive discussions on block

based space time code designs. A problem in most existing design criteria of block-

based space-time codes, including LDC (which allow different dispersion matrices for

real and image parts of coordinates), is that they do not efficiently exploit additional

diversity potential in the real and image parts of coordinates of source data constel-

lation symbols. A technique to utilize the diversity potential of real and image parts

of coordinates is called coordinate interleaving or component interleaving (CI), which

was first proposed for single transmission stream system [8, 54, 55]. Recently, CI has

been applied to multiple antennas systems [58,59,62]. Kim and Kaveh have combined

CI-OSTBC and constellation rotation [62]. Khan, Rajan, and Lee used CI concepts

to design coordinate space-time orthogonal block codes [58, 59]. However, current

existing approaches to using CI in block-based space-time codes are low-rate designs

using orthogonal space-time block codes or their variation [58,59,62].
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This chapter proposes coordinate-interleaving as a general principle for high-rate

block-based space-time code design, i.e., space-time coordinate interleaving linear

dispersion codes (ST-CILDC). This chapter determines the upper bound diversity

order, statistical diversity order and average diversity order of ST-CILDC. ST-CILDC

maintains the same diversity order as conventional ST-LDC. However, ST-CILDC

may show either almost doubled average diversity order or extra coding advantage

over conventional ST-LDC in time varying channels. Compared with conventional

ST-LDC, ST-CILDC maintains the diversity performance in quasi-static block fading

channels, and notably improves the diversity performance in rapid fading channels.

The chapter is organized as follows. In Section 9.2, the channel model and newly

proposed space-time inter-LDC coordinate interleaving strategy are presented. Di-

versity aspects are analyzed in Section 9.3. Performance analysis is discussed in

Section 9.4.

9.2 Proposed systems

9.2.1 MIMO system model for LDC in time varying channels

In frequency-flat, time non-selective Rayleigh fading channels whose coefficients may

vary per channel symbol time slot or channel use, a multi-antenna communication

system is assumed with NT transmit and NR receive antennas. Assume that an

uncorrelated data sequence has been modulated using complex-valued source data

symbols chosen from an arbitrary, e.g. D-PSK or D-QAM, constellation. Each LDC

codeword of size T × NT is transmitted during every T time channel uses from NT

transmit antennas..

180



9.2.1.1 Component matrices in system equations

We now introduce several component matrices during the k-th space-time LDC code-

word transmission.

The received signal vector x
(k)
LDC =

[[
x

(k,1)
LDC

]T
, ...,

[
x

(k,T )
LDC

]T ]T
, where x

(k,t)
LDC ∈

CNR×1, t = 1..., T is the received vector corresponding to the t-th row of the k-th

LDC codeword, S
(k)
LDC .

The system channel matrix is

H
(k)
LDC =




H
(k,1)
LDC · · · 0

...
. . .

...

0 · · · H
(k,T )
LDC




where H
(k,t)
LDC ∈ CNR×NT , t = 1..., T with entries

[
H

(k,t)
LDC

]
n,m

= h
(k,t)
n,m , m = 1, ..., NT ,

n = 1, ..., NR, is a complex Gaussian MIMO channel matrix with zero-mean, unit

variance entries corresponding to the t-th row of the k-th LDC codeword, S
(k)
LDC , and

0 denotes a zero matrix of size NR ×NT .

The complex Gaussian noise vector is v
(k)
LDC =

[[
v

(k,1)
LDC

]T
, ...,

[
v

(k,T )
LDC

]T ]T
, where

v
(k,t)
LDC ∈ CNR×1, t = 1..., T is a complex Gaussian noise vector with zero mean, unit

variance entries corresponding to the t-th row of the k-th LDC codeword, S
(k)
LDC .

The LDC encoded complex symbol vector s
(k)
LDC corresponds to the k-th LDC

codeword, S
(k)
LDC , where

s
(k)
LDC = vec(

[
S

(k)
LDC

]T
). (9.1)
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9.2.1.2 System model equation

The general system equation for the transmission of the k-th LDC matrix codeword

is expressed as

x
(k)
LDC=

√
ρ

NT

H
(k)
LDCs

(k)
LDC+v

(k)
LDC (9.2)

where ρ is the signal-to-noise ratio (SNR) at each receive antenna, and independent

of NT .

9.2.2 Procedure of space-time inter-LDC coordinate inter-

leaving

We propose a new space-time LDC encoding procedure using inter-LDC CI (ILDC-

CI), called space-time coordinate interleaving linear dispersion codes (ST-CILDC)

as follows: Consider a pair of source data symbol vectors s(1) =
[
s
(1)
1 , ..., s

(1)
Q

]T

and s(2) =
[
s
(2)
1 , ..., s

(2)
Q

]T
with the same number, Q of source data symbol sym-

bols, where s
(i)
q = Re

(
s
(i)
q

)
+ jIm

(
s
(i)
q

)
, i = 1, 2, and q = 1, ..., Q. The trans-

mitter first coordinate-interleaves s(1) and s(2) into sCI(1) =
[
s

CI(1)
1 , ..., s

CI(1)
Q

]T
and

sCI(2) =
[
s

CI(2)
1 , ..., s

CI(2)
Q

]T
, where

sCI(1)
q = Re

(
s(1)

q

)
+ jIm

(
s(2)

q

)
(9.3)

and

sCI(2)
q = Re

(
s(2)

q

)
+ jIm

(
s(1)

q

)
. (9.4)

Then, using (3.22) or (3.23), sCI(1) and sCI(2) are encoded into two LDC codewords of

size T ×NT , S
CI(1)
LDC and S

CI(2)
LDC , respectively. Then the transmitter successively sends

S
CI(1)
LDC and S

CI(2)
LDC during two interleaved periods such that channels are less correlated.

We remark that
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1) using different permutations, other methods of space-time inter-LDC CI than

(9.3) and (9.4) are also possible;

2) The LDC encoding matrices for S
CI(1)
LDC and S

CI(2)
LDC may not necessarily be the

same.

9.2.3 ST-CILDC system structure

Digital
Modulation

(Constellation
Mapping)

Multiple
transmit
antennas

Channel

Multiple
receive

antennas

Input
Data Bits

Output
Data Bits

ST-LDC
Encoding

ST-Inter- LDC
coordinate
interleaving

2Q symbols

Q symbols

ST-LDC
Encoding

Q symbols

Transmitted first

Transmitted second

ST-LDC
Decoding

Q symbols

ST-LDC
Decoding

Q symbols

Received first

Digital
De-Modulation
(Constellation
De-Mapping)

ST-Inter- LDC
coordinate

deinterleaving

2Q symbols

Received second

Figure 9.1. Space-time inter-LDC coordinate interleaving system structure

The proposed ST-CILDC system structure is shown in Figure 9.1. The system

structure basically consists of three layers : (1) mapping from data bits to constel-

lation points, (2) inter-LDC coordinate interleaving, and (3) LDC coding. Using the
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proposed layered structure, the only additional complexity compared with a conven-

tional ST-LDC system is the coordinate interleaving operation. Thus, the ST-CILDC

system is computationally efficient. The motivation of ST-CILDC is to render the

fading more independent of each coordinate of the source data signals. Note that

due to the superposition effects of signals from multiple transmit antennas at the

space-time MIMO receivers, existing ST-LDC designs cannot guarantee fading in-

dependency of each coordinate of the source data signals. Compared with ST-LDC

systems, the result of using ST-CILDC is to introduce coordinate fading diversity at

the cost of more decoding delay using a pair of LDC codewords of the same size.

9.3 Diversity analysis

Su and Liu [100] recently analyzed the diversity of space-time modulation over time-

correlated Rayleigh fading channels. A modified strategy can be used to investigate

the diversity of the proposed ST-CILDC system.

Consider a ST-CILDC block which consists of two ST-LDC codewords of size

T ×NT , S
CI(1)
LDC and S

CI(2)
LDC .

The communication model for ST-CILDC can be rewritten in block form

Y =

√
ρ

NT

MH + W. (9.5)

where

1) the noise vector is W,

2) the received signal vector Y =
[[

Y(1)
]T

,
[
Y(2)

]T ]T
, where Y(k) =

[
Y

(k)
1 , ...,Y

(k)

NR

]T
,

Y
(k)
n =

[[
x

(k,1)
LDC

]
n,1

, ...,
[
x

(k,T )
LDC

]
n,1

]T
, k = 1, 2 and n = 1, ..., NR.
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3) M is the channel symbol matrix corresponding to the block C, M = diag
(
M(1),M(2)

)
,

where M(1) and M(2) are the matrices corresponding to the LDC codewords,

S
CI(1)
LDC and S

CI(2)
LDC , respectively, M(k) = INR

⊗ diag
[
M

(k)
1 , ...,M

(k)
NT

]
, M

(k)
m =

diag

([
S

CI(k)
LDC

]
1,m

, ...,
[
S

CI(k)
LDC

]
T,m

)
, k = 1, 2, and m = 1, ..., NT ,

4) the channel vector H =
[[

H(1)
]T

,
[
H(2)

]T ]T
, where

H(k) =
[
hT(k)1,1, ...,h

T
(k)1,NT

, ...,hT(k)NR,1, ...,h
T
(k)NR,NT

]T

and h(k)n,m =
[
h

(k,1)
n,m , ..., h

(k,T )
n,m

]T
.

Consider the directional pair of matrices M and M̃ corresponding to two different

ST-LDC blocks C and C̃. Assume that all possible M and M̃ are contained in a set

M. The upper bound pairwise error probability [96] is

Pr
(
M → M̃

∣∣∣ ρ
)

6




2r − 1

r




(
r∏

a=1

γa

)−1 (
ρ

NT

)−r

(9.6)

where r is the rank of

Λ =
(
M− M̃

)
RH

(
M− M̃

)H
, (9.7)

and RH = E
{
H [H]H

}
is the correlation matrix of vector H, RH is of size 2NT NRT×

2NT NRT , γa, a = 1, ..., r are the non-zero eigenvalues of Λ.

Then the corresponding rank and product criteria are

1) Rank criterion: The minimum rank of Λ over all directional pairs of different

matrices M and M̃, i.e., the diversity order, should be as large as possible.

2) Product criterion: the minimum value of the product
r∏

a=1

γa over all directional

pairs of different M and M̃ should be maximized.
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Using commonly accepted definition [100], the diversity order of the ST-CILDC,

rd, is mathematically written as

rd = min
{

rank (Λ) ,M ∈M, M̃ ∈M,M 6= M̃
}

. (9.8)

To maximize the rank of Λ, we need to maximize the ranks of both RH and
(
M− M̃

)
. Denote

Ω(k) = M(k) − M̃(k),

where k = 1, 2.

By the definition of M and M̃,

rank
(
M− M̃

)
=

rank
(
Ω(1)

)
+ rank

(
Ω(2)

) (9.9)

Since Ω(k), k = 1, 2 are of size NRT ×NT NRT , we have

rank
(
M(k) − M̃(k)

)
≤ NRT. (9.10)

From (9.7), (9.9), and (9.10), we have

r = rank(Λ) ≤ min {2NRT, rank (RH)} . (9.11)

Assume that all the possible M(k) and M̃(k) are contained in a set M(k), i.e.,
{
M(k), M̃(k)

}
∈M(k), where k = 1, 2.

When M 6= M̃, there are three distinct categories of situations,

1) M(1) 6= M̃(1) and M(2) = M̃(2),

2) M(1) = M̃(1) and M(2) 6= M̃(2),

3) M(1) 6= M̃(1) and M(2) 6= M̃(2).
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For convenience of the rest of the discussion, denote the situations (1), (2) and (3) as

sets Υ(1), Υ(2) and Υ(3), respectively.

Then, we have

rd = min





rank (Ψ1) ,rank (Ψ2) ,rank (Ψ3) ,

where Ω(1) 6= 0,Ω(2) 6= 0,

{
M(1), M̃(1)

}
∈M(1),

{
M(2), M̃(2)

}
∈M(2)





, (9.12)

where

Ψ1 =




Ω(1) Z

Z Z


RH




Ω(1) Z

Z Z




H

,

Ψ2 =




Z Z

Z Ω(2)


RH




Z Z

Z Ω(2)




H

,

Ψ3 =




Ω(1) Z

Z Ω(2)


RH




Ω(1) Z

Z Ω(2)




H

,

and Z = 0NRT×NT NRT .

It is clear that rank (Ψ1) 6 NRT , rank (Ψ2) 6 NRT , and rank (Ψ3) 6 2NRT .

Hence, we have

rd 6 NRT. (9.13)

Thus ST-CILDC does not further increase the diversity order over ST-LDC in

terms of the conventional definition (9.12). From the above analysis, it is clear that

there are situations where coordinate-interleaving may not double the diversity order

of OSTBC with constellation rotation. This does not seem to be noted in [62].

However, in partial agreement with [62], ST-CILDC does increase r for the situation

(3), which may significantly impact system performance. It is necessary to introduce

a new concept to quantify this effect:
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Definition 6 The statistical diversity order, rstd, is the rank of Λ achieved with

probability α, i.e.,

Pr





rank (Λ) > rstd,

M 6= M̃,

{
M, M̃

}
∈M,





= α. (9.14)

The above definition may better quantify diversity properties of systems with low

diversity order but with high statistical diversity order with high probability.

The diversity order and statistical diversity order of ST-CILDC are quantified as

follows.

Theorem 6 Suppose that a ST-CILDC is constructed through coordinate interleaving

across a pair of component LDC codewords. Both component LDC encoders are able

to generate different codewords for different input sequences. The diversity orders of

the component LDCs are r
(1)
d and r

(2)
d , respectively. Suppose that RH is of full rank.

Also assume that the codebook sizes (the total number of different codewords) of the

two component LDCs are of the same value, Na.

1) The diversity order of this ST-CILDC, rd, is min
{

r
(1)
d , r

(2)
d

}
.

2) Assuming that all directional pairs M and M̃ are equally probable, the statistical

diversity order of this ST-CILDC, rstd, is r
(1)
d + r

(2)
d with probability

α =




Na

2







Na

2







Na

2







Na

2


 + Na




Na

2




. (9.15)

The proof of Theorem 6 is provided in Appendix F.1.
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A problem of the above analysis is that it is purely based on pairwise error prob-

ability, while system performance is normally expressed in terms of average error

probability (AEP). We thus introduce a diversity concept based on AEP.

Definition 7 Denote AEP of a communications system with the codeword block

set {M} at average receive SNR ρ as AEP {M, ρ}. The AEP may be expressed

with respect to different units, e.g., bit, symbol, or block (or frame). Assume that

AEP {M, ρ} is differentiable at ρ.

Denote

f(ρ) = log10 (AEP {M, ρ})

and

g(ρ) = log10 ρ.

The average diversity order, rad, at the average SNR of each receive antenna, ρ, is

defined as the differential

rad = −∂f(ρ)

∂g(ρ)
. (9.16)

Note that

1) unlike conventional definition of diversity order, which is obtained as SNR goes

to infinity, the average diversity order, rad, is a function of the finite average

signal-to-noise ratio (SNR). Average diversity order enables diversity analysis

at lower SNRs.

2) the average diversity order rad, which is defined using AEP, represents the slope

of error probability versus SNR on a logarithm - logarithm scale and is related

to actual error performance.
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In general, AEP cannot be easily computed. Thus we instead propose an analysis

of the diversity performance of CI-STLDC based on the error union bound (EUB),

an upper bound on the average error probability. The EUB is in fact an average of

the pairwise error probabilities between all directional pairs of codewords introduced

earlier. The EUB at average signal-to-noise ratio (SNR) of each receive antenna, ρ,

is expressed

1) for bit errors as

Pr
U(bit)

{M|ρ} =

1

N
(bit)
M

NB∑
a=1

φbit(M(a),M(b)) Pr
{
M(a)

} NB∑

b6=a

Pr
{
M(a) → M(b)|ρ

}
,

(9.17)

2) for symbol errors as

Pr
U(sym)

{M|ρ} =

1

N
(sym)
M

NB∑
a=1

φsym(M(a),M(b)) Pr
{
M(a)

} NB∑

b6=a

Pr
{
M(a) → M(b)|ρ

}
,

(9.18)

3) for block (or frame) errors as

Pr
U(blk)

{M|ρ} =

NB∑
a=1

Pr
{
M(a)

} NB∑

b6=a

Pr
{
M(a) → M(b)|ρ

}
, (9.19)

where Pr
{
M(a)

}
is the a priori probability that codeword M(a) was transmitted,

Pr
{
M(a) → M(b)|ρ

}
is the probability that receiver decides M(b) when M(a) is ac-

tually transmitted at average signal-to-noise ratio (SNR) per receive antenna, ρ,

φbit(M(a),M(b)) and φsym(M(a),M(b)) are the number of bit and symbol errors, re-

spectively, occurring when M(a) is transmitted and M(b) is chosen by the decoder,

N
(bit)
M is the total number of bits per M block, N

(sym)
M is the total number of symbols

per M block, and NB is the code book size.
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Note that we may analyze the logarithm domain slope of EUB polynomials in

order to analyze of average diversity order. As an important basis of analysis, we

introduce the following Theorem.

Theorem 7 Assume that

1) pi(x), where i = 1, ..., L and L > 2, represent L differentiable positive real

functions with single positive real variable x > 1,

2) ∂pi(x)
∂x

∣∣∣
x=x0

< 0, and denote qi(x) = −∂(loga pi(x))
∂(loga x)

> 0, where 0 < q1(x) 6 ... 6

qL(x) < +∞.

Denote w(x) = −
∂

"
loga

"
LP

i=1
pi(x)

##

∂(loga(x))
, where a > 1.

Then, the following statements hold.

1) If q1(x) 6= qL(x),

q1(x) < w(x) < qL(x). (9.20)

The closeness between q1(x) and w(x) is quantified by

∣∣∣∣
w(x)− q1(x)

q1(x)

∣∣∣∣ =

∣∣∣∣∣∣∣∣

L∑

k=2




1− qk(x)
q1(x)

1
pk(x)

L∑
i=1

pi(x)




∣∣∣∣∣∣∣∣
,

and the closeness between qL(x) and w(x) is quantified by

∣∣∣∣
w(x)− qL(x)

qL(x)

∣∣∣∣ =

∣∣∣∣∣∣∣∣

L−1∑

k=1




1− qk(x)
qL(x)

1
pk(x)

L∑
i=1

pi(x)




∣∣∣∣∣∣∣∣
.

2) If q1(x) = qL(x), q1(x) = w(x) = qL(x).

3) If
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a. lim
x→+∞

pi(x) = 0, where i = 1, ..., L, and lim
x→+∞

(
pk(x)
p1(x)

)
= 0, where k =

2, ..., L,

b. ∃k, 1 < lim
x→+∞

qk(x)
q1(x)

< +∞, where k = 2, ..., L,

lim
x→+∞

∣∣∣∣
w(x)− q1(x)

q1(x)

∣∣∣∣ = 0.

The proof of Theorem 7 is provided in Appendix F.2.

Since EUB is the summation of the pairwise error probabilities for all the direc-

tional pairs of M and M̃ in Υ(1), Υ(2), and Υ(3), as a unified form, the EUB at average

receive SNR ρ can be written as follows,

Pr
U(unit)

{M|ρ}

=
1

N
(unit)
M

NB∑
a=1

φunit(M(a),M(b)) Pr
{
M(a)

} NB∑

b6=a

Pr
{
M(a) → M(b)|ρ

}

=
1

N
(unit)
M

3∑
i=1

ζ(i),

(9.21)

where unit = bit, sym, blk and φblk(M(a),M(b)) = 1, the EUB component related to

Υ(i) is

ζ(i)
ρ =

1

N
(unit)
M

NB∑
a=1,

{M(a),M(b)}∈Υ(i)





φunit(M(a),M(b)) Pr
{
M(a)

} ·
NB∑
b 6=a,

{M(a),M(b)}∈Υ(i)

Pr
{
M(a) → M(b)|ρ

}





. (9.22)

Denote f1(ρ) = log10 Pr
U(unit)

{M|ρ} and g(ρ) = log10 ρ,. Using (9.16) and (9.21),

rad can be approximated by

rad = −∂f(ρ)

∂g(ρ)
≈ −∂f1(ρ)

∂g(ρ)
, (9.23)

where the ≈ is based on the fact that EUB normally is considered as a good approx-

imation of AEP.
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Denote r(i) = rank
(
Λ,

{
M → M̃

}
∈ Υ(i)

)
and r

(i)
min = min

{
r(i)

}
and r

(i)
max =

max
{
r(i)

}
, where i = 1, 2, 3. Note that r

(1)
min = r

(1)
d and r

(2)
min = r

(2)
d and r

(3)
min =

r
(1)
d + r

(2)
d . Clearly, r

(i)
min 6 r(i) 6 r

(i)
max. According to Theorem 7, using (9.6) and

(9.22), we have

1)

r
(i)
min 6 −∂ log10 ζ

(i)
ρ

∂ log10 ρ
6 r(i)

max, (9.24)

2)

min
{

r
(1)
d , r

(2)
d

}
6 −

∂

[
log10 Pr

U(unit)
{M|ρ}

]

∂ log10 ρ
6 max

{
r(i)
max, i = 1, 2, 3

}
. (9.25)

From (9.25), the advantage of ST-CILDC can not be clearly illustrated. Now, we

consider the following assumptions

1) r
(i)
d = r

(i)
max, where i = 1, 2, which we call uniform rank in the set Υ(i),

2) r
(1)
d = r

(2)
d (thus r

(3)
min = r

(1)
d + r

(2)
d = r

(3)
max),

and then

r
(1)
d = r

(2)
d < −

∂

[
log10 Pr

U(unit)
{M|ρ}

]

∂ log10 ρ
< r

(1)
d + r

(2)
d , (9.26)

where the two < are due to r
(1)
d = r

(2)
d < r

(1)
d + r

(2)
d . This case shows a sufficient

(not necessary) condition of average diversity order improvement in ST-CILDC sys-

tems. According to Theorem 7, we can approximately quantify this closeness between

average diversity order and r
(1)
d = r

(2)
d as

∣∣∣∣∣∣∣

−
∂ log10 Pr

U(unit)
{M|ρ}

∂ log10 ρ
− r

(1)
d

r
(1)
d

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

ζ
(3)
ρ (1− 2r

(1)
d

r
(1)
d

)

Pr
U(unit)

{M|ρ}

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

ζ
(3)
ρ

3∑
i=1

ζ
(i)
ρ

∣∣∣∣∣∣∣∣
. (9.27)
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Similarly, we can approximately quantify this closeness between average diversity

order and r
(1)
d + r

(2)
d as

∣∣∣∣∣∣
−

∂ log10 Pr
U(unit)

{M|ρ}

∂ log10 ρ
−
�
r
(1)
d +r

(2)
d

�

r
(1)
d +r

(2)
d

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

�
ζ
(1)
ρ +ζ

(2)
ρ

�
(1− r

(1)
d

2r
(1)
d

)

Pr
U(unit)

{M|ρ}

∣∣∣∣∣∣∣

=

∣∣∣∣∣∣

�
ζ
(1)
ρ +ζ

(2)
ρ

�

2
3P

i=1
ζ
(i)
ρ

∣∣∣∣∣∣
.

(9.28)

Note that according to Theorem 7, the range of average diversity order is deter-

mined by the dominance of ζ
(i)
ρ , in other words, approximately by the the dominance

of the relative number of elements and pairwise probabilities in the sets Υ(i), where

i = 1, 2, 3. To show this approximation, assume that

1) the pairwise probability of all directional pairs M and M̃ within the set Υ(i)

are equally probable, which is denoted as

p(a,b,i)
ρ = Pr

{
M(a) → M(b)|ρ,

{
M(a),M(b)

} ∈ Υ(i)
}

= p(i)
ρ ,

2) all the M are equally probable with probability 1
NB

,

for block (frame) based EUB, the closeness expressions (9.27) and (9.28) are rewritten

as ∣∣∣∣∣∣∣

−
∂ log10 Pr

U(unit)
{M|ρ}

∂ log10 ρ
− r

(1)
d

r
(1)
d

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣

1
NB

N2p
(3)
ρ

1
NB

(
N1

(
p

(1)
ρ + p

(2)
ρ

)
+ N2p

(3)
ρ

)
∣∣∣∣∣∣

=

∣∣∣∣∣∣
p

(3)
ρ

β
(
p

(1)
ρ + p

(2)
ρ

)
+ p

(3)
ρ

∣∣∣∣∣∣

(9.29)

and ∣∣∣∣∣∣∣

−
∂ log10 Pr

U(unit)
{M|ρ}

∂ log10 ρ
−

(
r
(1)
d + r

(2)
d

)

r
(1)
d + r

(2)
d

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣

1
NB

N1

(
p

(1)
ρ + p

(2)
ρ

)

1
NB

(
N1

(
p

(1)
ρ + p

(2)
ρ

)
+ N2p

(3)
ρ

)
∣∣∣∣∣∣

=

∣∣∣∣∣∣
β

(
p

(1)
ρ + p

(2)
ρ

)

β
(
p

(1)
ρ + p

(2)
ρ

)
+ p

(3)
ρ

∣∣∣∣∣∣
,

(9.30)
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respectively, where N1 and N2 are defined in Appendix F.1, and β = N1

N2
.

The block (frame) based EUB can be written as

Pr
U(blk)

{M|ρ} = 1
NB

{
N1

(
p

(1)
ρ + p

(2)
ρ

)
+ N2p

(3)
ρ

}

= N2

NB

{
β

(
p

(1)
ρ + p

(2)
ρ

)
+ p

(3)
ρ

}

= α
{

β
(
p

(1)
ρ + p

(2)
ρ

)
+ p

(3)
ρ

}
,

(9.31)

where α is defined as in (9.15), and NB = 2N1 + N2.

According to (9.29), in enough high SNR, the average diversity order approaches

r
(1)
d = r

(2)
d , while, if p

(1)
ρ = p

(2)
ρ , the merit of CI is still approximately maintained as

extra coding advantage 2αβ = 2N1

2N1+N2
, which is clear through observing (9.31).

Observing (9.6), p
(a,b,i)
ρ can be written in the following form

p
(a,b,i)
ρ = Pr

{
M(a) → M(b)|ρ,

{
M(a),M(b)

} ∈ Υ(i)
}

= u(r(a,b,i))
(

1
NT

)−r(a,b,i)

(ρ)−r(a,b,i)

,
(9.32)

where i = 1, 2, 3, u(r(a,b,i)), independent of ρ, is a function of r(a,b,i), where r(a,b,i) is the

exponent corresponding to p
(a,b,i)
ρ . Using the third statement of Theorem 7, it is clear

that, when ρ approaches infinity, the average diversity order reaches min
{

r
(1)
d , r

(2)
d

}
=

min
{
r(a,b,i), ∀ (a, b, i)

}
.

(Q,D, NT , NR, T ) Na

(2,4,2,2,2) 16

(12,4,4,2,4) 16777216

(16,4,4,2,4) 4.295× 109

Table 9.1. System configurations and corresponding codebook size of component

LDCs

An illustration of the relation among α, 1 − α, β, and 2β versus the codebook

size of component LDCs Na, which determines diversity properties of the ST-CILDC
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Figure 9.2. α, 1 − α, β, and 2β versus component LDC codebook size Na, (a) for

small Na and (b) for large Na
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systems, is shown in Figure 9.2. When Na becomes large in Figure 9.2(b), the curves

of 1− α and 2β are quite close and are approximately an exponential relation to Na.

When Na is small in Figure 9.2(a), the curve of 1−α and 2β is notably different, and

1 − α and 2β can be large. From Table 9.1, where D denotes the constellation size

of source data symbols, one may observe the relation among system configurations

versus Na for several examples. The above discussion will be partly verified through

simulation in Section 9.4.2.

Note that except for the trivial extra computational load of coordinate interleav-

ing, for the same size of LDC encoding matrices, the complexity per LDC codeword

of the ST-CILDC system is almost the same as that of conventional LDC systems.

However, the upper bound achievable average diversity order of a ST-CILDC system

may be almost twice that of conventional block-based space-time code (BSTC) sys-

tems if the component LDC in the ST-CILDC are of similar diversity features. It

is worth mentioning that using nonlinear sphere or ML decoding, the conventional

BSTC systems need much higher complexity to reach an average diversity order com-

parable to ST-CILDC, since the size of the BSTC block would be double the size of

the component LDC used in ST-CILDC and the worst case complexity is exponential

in relation to the codebook size of the BSTC.

We remark the scope of this approach is not limited to LDC. Other block-based

space-time code designs also may be improved using the proposed space-time inter-

LDC coordinate interleaving approach. Further, the pair of LDC codewords used

in ST-CILDC could be viewed as a single specially designed LDC codeword of size

2T ×NT . ST-CILDC systems could thus be viewed as an extension of LDC systems

using different design criteria.
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9.4 Performance

9.4.1 Simulation setup

Perfect channel knowledge (amplitude and phase) is assumed at the receiver but not at

the transmitter. Assume the number of receive antennas is not less than the number

of transmit antennas. Channel symbols are estimated using MMSE estimation. Data

symbols use QPSK modulation in all simulations. The signal-to-noise-ratio (SNR)

reported in all figures is the average symbol SNR per receive antenna.

Three space-time block codes, Code HH1, Code MG, and Code HH2, are used

as component LDC coding matrices of ST-CILDC systems in the simulations. Code

HH1 chosen is a class of rate-one square shown in (3.10). Code MG, proposed by

Hassibi and Hochwald, is chosen from Design A of full diversity full rate (FDFR) codes

proposed by Ma and Giannakis [76]. Code HH2 is a non-rate-one high rate codes for

the configuration of NT = 4,T = 6,Q = 12, proposed by Hassibi and Hochwald [42].

9.4.2 Performance comparison

The performance comparison of Code HH1 is shown in Figures 9.3, 9.4, and 9.5.

The performance comparison of Code MG is shown in Figure 9.6. The performance

comparison of Code HH2 is shown in Figure 9.7.

In block fading channels, i.e., when the 4 × 4 MIMO channels are constant over

the pair of ST-LDC codewords and Code HH1 is used, ST-CILDC obtains the same

performance as that of ST-LDC as shown in Figure 9.4.

However, as shown in Figures 9.3, 9.5 9.6, , and 9.7, which are results in rapid fad-

ing channels, ST-CILDC significantly outperforms ST-LDC at high SNRs. Thus, the

ST-CILDC procedure may be applied to both rate-one and slightly lower rate codes.
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Figure 9.3. BER performance comparison of ST-CILDC vs. LDC using Code HH1,

CCR = 1, NT = 4, NR = 4, T = 4, Q = 16
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Figure 9.4. BER performance comparison of ST-CILDC vs. LDC using Code HH1,

CCR = 8, NT = 4, NR = 4, T = 4, Q = 16
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Figure 9.5. BER performance comparison of ST-CILDC vs. LDC using Code HH1,

CCR = 1, NT = 2, NR = 2, T = 2, Q = 4
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Figure 9.6. BER performance comparison of ST-CILDC vs. LDC using Code MG,

CCR = 1, NT = 4, NR = 4, T = 4, Q = 16
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Figure 9.7. BER performance comparison of ST-CILDC vs. LDC using Code HH2,

CCR = 1, NT = 4, NR = 4, T = 6, Q = 12
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Observing Figures 9.3 and 9.6, the performances of Code HH1 and Code MG are

similar in rapid fading channels. Thus, even though Code HH1 is not designed under

a diversity criterion, Code HH1 appears to possess desirable diversity properties.

Note that Figure 9.5 shows the ST-CILDC performance in a 2×2 MIMO systems,

and the codebook size of the corresponding component LDCs, Na, is much smaller

than those in Figures 9.3, 9.6, and 9.7. In the SNR region from 10 to 25 dB in

Figure 9.5, the slopes of performance curves of ST-CILDC and ST-LDC are notably

different, while in the SNR region higher than 25 dB, the slope of performance curves

of ST-CILDC and ST-LDC are almost the same. This observation agrees with the

discussion of average diversity order in Section 9.3, since ST-CILDC shows either

much higher average diversity order or extra coding advantage over ST-LDC, the

choice of which depends on the value of SNR ρ and the codebook size Na.

9.5 Conclusion

This chapter has proposed a general space-time inter-LDC coordinate interleaving

procedure, ST-CILDC, which may be applied to either rate-one (information loss-

less) or slightly lower rate block-based space-time coding systems. This enables not

only symbol-level diversity but also coordinate-level diversity. The upper bound di-

versity order and statistical diversity order of ST-CILDC are analyzed. Although a

ST-CILDC system does not obtain an increased diversity order over the correspond-

ing conventional ST-LDC system, the ST-CILDC system show either much higher

average diversity order or extra coding advantage compared with the corresponding

conventional ST-LDC system in time varying channels. Compared with conventional

block-based STC, ST-CILDC systems maintain diversity performance in quasi-static

204



block fading channels, and significantly improve the diversity performance in the high

SNR regions of rapid fading channels.
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Chapter 10

Summary and Future Directions

10.1 Summary

Newly proposed fundamental high-rate diversity approaches are the central concerns

of this thesis, which are motivated by the requirements of high spectral efficiency

and high reliability in new generation SISO and MIMO digital communications sys-

tems. In Chapter 4, a new class of rate-one rectangular LDC dispersion codes of

arbitrary size are proposed and analyzed. In Chapters 5 and 6, LDC are proposed

for application in multicarrier and single carrier SISO communications, respectively,

and their diversity features are analyzed. In Chapters 7 and 8, LDC based high-rate

space-time-frequency codes are proposed and analyzed. In Chapter 9, coordinate-

interleaving or component interleaving are applied to space time LDC to achieve high

performance in rapid fading channels.

This thesis primarily consider linear LDC decoding in the simulation studies,

which can be justified as follows.

1) The proposed diversity systems, such as LDC-OFDM, are quite new, in other

words, other comparable designs do not exist. Although linear decoding is
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used and the system possibly does not fully exploit available diversity, such as

time diversity, in the channels, the performance improvement demonstrates the

diversity advantages of the new systems.

2) Clearly, maximum likelihood decoding (MLD) and MLD-like approaches may

be needed to reach maximal achievable diversity and coding gains. However,

it is shown that properly designed linear decoding for complex diversity cod-

ing system is able to realize a significant amount of the maximally achievable

diversity order of the codes [13,85,104,105].

3) Although pairwise error probability (PEP) based diversity analysis is best suit-

able for MLD and MLD-like approaches, existing research investigations have

utilized PEP diversity analysis for linear decoding based diversity approaches

[104, 105]. Even if linear decoding based diversity approaches cannot exploit

maximal available diversity of the codes, PEP-based analysis captures, at least

asymptotically, the significant diversity features of properly designed linear de-

coding based systems. PEP based analysis provides the upper bound diversity

order of the proposed systems. The most important performance metric this

thesis concerns is diversity order, which is related to the slope of the logarithm

of the error probability or pairwise error probability. Even if linear decoding is

used, the general trends of of the slopes of the error performance curves due to

diversity effects introduced can be clearly observed in this thesis.

4) Linear decoding leads to much lower complexity, which makes proposed designs

more practical.

As proof of concepts, linear dispersion codes under constraints (3.10) are primar-

ily considered in simulations throughout this thesis, although more general linear
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dispersion codes which do not satisfy constraints (3.10) are used in the simulations of

Chapter 9. Actually, general linear dispersion codes which do not satisfy constraints

(3.10) can be also applied in all the proposed diversity approaches in this thesis.

Instead of analyzing exact error probability, this thesis has analyzed the funda-

mental diversity properties, the upper bound diversity orders of proposed approaches.

The main diversity dimensions discussed in this thesis are space, time, and frequency,

which arise from the statistical nature of the environment in the real world. This

thesis studies diversity approaches over not only spatial domain MIMO but also fre-

quency domain MIMO. In general, statistical fading channels may have detrimental

effects in communication systems. However, this thesis describes how to take advan-

tage of the statistical fluctuation through efficiently exploiting diversity over physical

dimensions.

10.2 Future Directions

10.2.1 Design of slightly-lower-rate codes

Although linear dispersion codes allow an arbitrary coding rate, this thesis primarily

designs and utilizes rate-one codes. However, slightly lower-rate codes, which may

have higher diversity order per data source symbols, have not been sufficiently ad-

dressed in the literature. We refer to the term slightly lower-rate codes to denote

those as having rates higher than 1/ min {NT , NR} in space-time or frequency-time

channels. The rate of those codes is generally higher than the rate of OSTBC.
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10.2.2 Exact error performance of proposed diversity ap-

proaches

This thesis analyzes the proposed diversity approaches primarily through diversity

order. However, exact error performance of proposed diversity approaches has not

been analyzed. Instead using simulations, the analysis of exact error probability may

help further confirm and quantify the performance of diversity systems.

10.2.3 New receiver designs of proposed diversity approaches

Although this thesis has proposed several receiver designs arising from diversity con-

siderations, new receiver designs may be needed to obtain higher performance at lower

complexity for different applications.

10.2.4 Proposed diversity approaches in more realistic chan-

nels

Although this thesis has utilized channel models with considerations to several real-

istic factors in the channels, more realistic channel models may be needed to apply

proposed diversity approaches to actual physical channels.
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Appendix A

Derivations and proofs of U-LDC

properties

A.1 Element expression of U-LDC dispersion ma-

trices

Denote the (m, p) element of A(k,l) as
[
A(k,l)

]
m,p

, where A(k,l) stands for dispersion

matrix Aq, where q = M(k − 1) + l, i.e. A(k,l) = AM(k−1)+l.

The elements of U-LDC matrices could be calculated as follows.

a) The case of T ≤ M :

[Πa]v,p = δ ([v − p− a] (modM)) , (A.1)

[
Db

]
m,u

= δ (m− u) exp

(
j
2π

T
b(m− 1)

)
, (A.2)

[Γ]u,v = δ (u− v) , (A.3)
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[
A(k,l)

]
m,p

=
[
AM(k−1)+l

]
m,p

=
[

1√
T
Dk−1ΓΠl−1

]
m,p

= 1√
T

T∑
u=1

M∑
v=1




δ (m− u)×
exp

(
j 2π

T
(k − 1)(m− 1)

)×
δ (u− v)×
δ ([v − p− (l − 1)] (modM))




=





1√
T
δ ([m− p− (l − 1)] mod M)×

exp
(
j 2π

T
(k − 1)(m− 1)

)
,

if m = u = v and

[m− p− (l − 1)] mod M = 0;

0, otherwise.

(A.4)

b) The case of T > M :

Through a similar derivation to that in (A.4),

[
A(k,l)

]
m,p

=

=





if u = v = p and

[m− p− (k − 1)] (modT ) = 0,

1√
M

δ ([m− p− (k − 1)] (modT )) exp
(
j 2π

M
(l − 1)(p− 1)

)
,

otherwise, 0

(A.5)

A.2 Proof of Property 1

Proof: Denote [GLDC ]r,q as the (r, q) element of GLDC , where r, q = 1, · · · , TM .

Further, r can be determined by the pair (m, p) , and q is determined by the pair (k, l).

Thus we also denote [GLDC ](m,p),(k,l) = [GLDC ]r,q. We know GLDC = [vec(A1), ..., vec(AQ)].

Note that q is also the index of Aq.
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We have the following relations,

r = T (m− 1) + p, q = M(k − 1) + l,

l = [[q − 1] (modM)] + 1,

k = [[q − [[q − 1] (modM)]− 1] (modM)] + 1,

p = [[r − 1] (modT )] + 1,

m = [[r − [[r − 1] (modT )]− 1] (modT )] + 1.

Now we are ready to calculate
[
GLDC [GLDC ]H

]
r,q

. In the calculation, the ele-

ments of GLDC have index pair (m1, p1), (k, l), and the elements of [GLDC ]H have

index pair (m2, p2), (k, l).

a) the case of T ≤ M : From (A.4),

[
GLDC [GLDC ]H

]
r,q

=

1
T

∑
(m1,p1),
(m2,p2),
(k,l)




δ ([m1 − p1 − (l − 1)] (modM))×
exp

(
j 2π

T
(k − 1)(m1 − 1)

)×
δ ([m2 − p2 − (l − 1)] (modM))×
exp

(−j 2π
T

(k − 1)(m2 − 1)
)




=





1
T
δ ([m1 − p1 − (l − 1)] (modM))×

δ ([m2 − p2 − (l − 1)] (modM))×
T∑

k=1

[
exp

(
j 2π

T
(m1 −m2) [k − 1]

)]
,

if [m1 − p1 − (l − 1)] (modM) = 0

and

[m2 − p2 − (l − 1)] (modM) = 0;

0, otherwise.

(A.6)

The above expression (A.6) tells us that
[
GLDC [GLDC ]H

]
r,q
6= 0, more clearly
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[
GLDC [GLDC ]H

]
r,q

= 1, if and only if (m1, p1) = (m2, p2), in other words, r = q.

Thus GLDC [GLDC ]H = ITM . Similarly, we could obtain [GLDC ]HGLDC = ITM .

b) The proof of the case of T > M is similar, and details are omitted.

Thus, GLDC is unitary for arbitrary T and M .

A.3 Derivation of Aq1 [Aq2]
H and

[
[Aq1]

HAq2

]

To derive Aq1 [Aq2 ]
H, denote the (m, p) element of Aq1 as [Aq1 ]m,p, and denote the

(p, r) element of [Aq2 ]
H as

[
[Aq2 ]

H
]

p,r
,

a) the case of T ≤ M :

[
Aq1 [Aq2 ]

H
]

m,r
=

[
A(k1,l1)

[
A(k2,l2)

]H]
m,r

=

1
T

M∑
p=1




δ ([m− p− (l1 − 1)] (modM))×
exp

(
j 2π

T
(k1 − 1)(m− 1)

)×
δ ([r − p− (l2 − 1)] (modM))×
exp

(−j 2π
T

(k2 − 1)(r − 1)
)




=





1
T
δ ([m− p− (l1 − 1)] (modM))×

δ ([r − p− (l2 − 1)] (modM))×
exp

(
j 2π

T
[(k1 − 1)(m− 1)− (k2 − 1)(r − 1)]

)
,

if [m− p− (l1 − 1)] (modM) = 0

and

[r − p− (l2 − 1)] (modM) = 0;

0, otherwise.

(A.7)

b) the case of T > M :
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The derivation of of the case of T > M is similar to that of the case of T ≤ M ,

thus details are omitted.

To calculate
[
[Aq1 ]

HAq2

]
, denote the (s,m) element of Aq1 as

[
[Aq1 ]

H
]

s,m
, and

denote the (m, t) element of [Aq2 ]
H as [Aq2 ]m,t.

a) the case of T ≤ M :

[
[Aq1 ]

HAq2

]
s,t

=
[[

A(k1,l1)
]H

A(k2,l2)
]

s,t
=

1
T

T∑
m=1




δ ([m− s− (l1 − 1)] (modM))×
exp

(−j 2π
T

(k1 − 1)(m− 1)
)×

δ ([m− t− (l2 − 1)] (modM))×
exp

(
j 2π

T
(k2 − 1)(m− 1)

)




=





1
T
δ ([m− s− (l1 − 1)] (modM))×

δ ([m− t− (l2 − 1)] (modM))×
exp

(
j 2π

T
[(k2 − k1)(m− 1)]

)
,

if [m− s− (l1 − 1)] (modM) = 0

and

[m− t− (l2 − 1)] (modM) = 0;

0, otherwise.

(A.8)

b) the case of T > M :

The derivation of of the case of T > M is similar, and details are omitted.

A.4 Proof of Property 2

Proof: We know if q1 = q2 = q, then k1 = k2, l1 = l2. From (A.8), we know

that, if T ≤ M , the diagonal elements of [Aq]
HAq consist of T entries of 1

T
and
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M − T entries of zero. Thus, if T ≤ M , Tr
[
[Aq]

HAq

]
= TM

Q
= 1 holds. If T = M ,

[Aq]
HAq = 1

M
IM .

Similarly, we can prove the case of T > M . Thus both (4.3) and (4.4) hold.

A.5 Proof of Property 3

Proof: We know

Tr
[
vec(Ap) [vec(Aq)]

H
]

= [vec(Aq)]
H vec(Ap). (A.9)

In Property 1, we have already proven that GLDC = [vec(A1), ..., vec(ATM)] is uni-

tary. Thus the different columns of GLDC are orthogonal, thus [vec(Aq)]
H vec(Ap) = 0

for any 1 ≤ p 6= q ≤ TM .

Then we have Tr
[
vec(Ap) [vec(Aq)]

H
]

= 0 for any 1 ≤ p 6= q ≤ TM .

A.6 Proof of Property 4

Proof: We know q1 6= q2, then (k1, l1) 6= (k1, l1). Now we derive Tr
[
[Aq1 ]

HAq2

]
=

M∑
s=1

[
[Aq1 ]

HAq2

]
s,s

.

a) the case of T ≤ M : From (A.8), we get

[
[Aq1 ]

HAq2

]
s,s

=

1
T

T∑
m=1




δ ([m− s− (l1 − 1)] (modM))×
δ ([m− s− (l2 − 1)] (modM))×
exp

(
j 2π

T
[(k2 − k1)(m− 1)]

)




.
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a. If l1 6= l2, obviously

δ ([m− s− (l1 − 1)] (modM))×
δ ([m− s− (l2 − 1)] (modM)) = 0

then
[
[Aq1 ]

HAq2

]
s,s

= 0.

Thus

Tr
[
[Aq1 ]

HAq2

]
= 0.

b. If l1 = l2, then k1 6= k2, only T terms of
[
[Aq1 ]

HAq2

]
s,s

are non-zero.

Tr
[
[Aq1 ]

HAq2

]
could be written as

Tr
[
[Aq1 ]

HAq2

]
= 1

T

a+T−1∑
u=a

exp
(
j 2π

T
[(k2 − k1)u]

)
= 0

where a is a positive integer.

b) the case of T > M :

The proof of the case of T > M is similar, and details are omitted.

Similarly, Tr
(
Aq1 [Aq2 ]

H
)

= 0.

A.7 Proof of Property 5

Proof:

Assume two different U-LDC codewords SLDC and S̃LDC encode the same (Q−1)

data source symbols and one different data source symbol sg and s̃g respectively,

where sg − s̃g 6= 0 and g = 1, ..., Q
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Thus, the difference of SLDC and S̃LDC is

∆g = SLDC − S̃LDC =

{[
Q∑

q=1,q 6=g

sqAq

]
+ sgAg

}
−

{[
Q∑

q=1,q 6=g

sqAq

]
+ s̃gAg

}

= (sg − s̃g)Ag.

The symbolwise diversity order is

r = min {rank(∆g), g = 1, ..., Q} = min {rank(Ag), g = 1, ..., Q} .

Thus, the proof is completed if all the rank(Ag) are computed for g = 1, ..., Q.

a) the case of T ≤ M : From the proof of Property 2, we know that the diagonal

elements of [Ag]
HAg consist of T entries of 1

T
and M −T entries of zero. From

(A.8), it is easy to determine that all non-diagonal elements of [Ag]
HAg are

zero. Thus,

rank([Ag]
HAg) = T.

Hence,

rank(Ag) = rank([Ag]
HAg) = T,

where g = 1, ..., Q.

b) the case of T > M :

Similarly to the case of T ≤ M , we can prove

rank(Ag) = rank([Ag]
HAg) = M,

where g = 1, ..., Q.

Finally, The symbolwise diversity order is obtained as

r = min {rank(Ag), g = 1, ..., Q} = min {T,M} .
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Appendix B

Proof of Theorem 3

Proof:

(1) of Theorem 3 has been discussed in previous parts of Section 5.5. (4) of

Theorem 3 is a straightforward result if (2) or (3) is given. Hence, only the proofs of

(2) and (3) of Theorem 3 are given.

Note that
(
M(i) − M̃(i)

)
is of size TNF (i)×TNF (i). Therefore the condition (5.54)

ensures

rank
([(

M(i) − M̃(i)
)])

= TNF (i).

Accordingly,

rank(Λ(i)) = rank

((
M(i) − M̃(i)

)
RH(i)

(
M(i) − M̃(i)

)H)

= rank

(
RH(i)

(
M(i) − M̃(i)

)H)

= rank (RH(i)) .

(B.1)

So (2) of Theorem is proved.

If both NF (i) = L + 1 and rank(RH(i)) = T (L + 1) hold, to achieve rank(Λ(i)) =

T (L + 1), it is necessary to have

T (L + 1) = rank

((
M(i) − M̃(i)

)
RH(i)

(
M(i) − M̃(i)

)H)

≤ rank
((

M(i) − M̃(i)
))

.
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However,
(
M(i) − M̃(i)

)
is of size T (L + 1)× T (L + 1) in this case. Hence, (5.54) is

a necessary condition. Conversely, using the result of (2) of Theorem 3, rank(Λ(i)) =

rank (RH(i)) = T (L + 1). So (3) of Theorem 3 is proven.
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Appendix C

Proof of Theorem 4

Proof:

1) Note that M−M̃ is a diagonal matrix. Thus, to maximize rank of M−M̃, the

necessary and sufficient condition is that all the diagonal elements are non-zero.

Thus, to ensure rank
(
M− M̃

)
= NCT , it is necessary and sufficient to have

c
(k)
p − c̃

(k)
p 6= 0, p = 1, ..., NC , k = 1, ..., T .

Recall c
(k)
p =

[
z

(k)
CP−SC

]
p,1

and z
(k)
CP−SC = FNcx

(k)
SC , where p = 1, ..., NC and

k = 1, ...T .

Hence, the necessary and sufficient condition is

[
z

(k)
CP−SC − z̃

(k)
CP−SC

]
p,1

=
[
FNc

(
x

(k)
SC − x̃

(k)
SC

)]
p,1
6= 0,

where p = 1, ..., NC and k = 1, ...T .

2) Note that the condition is that the rank of frequency domain matrix satisfies

rank
(
M− M̃

)
= NCT .
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Using the same strategy in the derivation of (B.1) and (5.49), we get

rank(Λ) = rank

((
M− M̃

)
RH

(
M− M̃

)H)

= rank

(
RH

(
M− M̃

)H)

= rank (RH)

(C.1)

where

RH = E
{

(IT ⊗W)h [(IT ⊗W)h]H
}

= [IT ⊗W]Φ
[
IT ⊗ [W]H

]
,

(C.2)

where Φ = E
{
h [h]H

}
, W = [w1, · · · ,wNC

]T , and h =
[[

h(1)
]T

, · · · ,
[
h(T )

]T ]T
.

Note that (B.1) and (5.49) have similar forms as (C.1) and (C.2). However,

their matrix sizes are different. The frequency domain symbols in LDC-SCM

are the results of size NC Fourier transformation of source symbols, and thus

the size of M must be NCT ×NCT . Note that the size of frequency-time block

M(i) of LDC-OFDM is TNF (i) × TNF (i), where NF (i) is usually much less than

NC .

Further, the product design criterion for CP-SCCB is that the minimum of

products,

∆ =
T∏

k=1

NC∏
p=1

(∣∣∣∣c(k)
p − c̃

(k)
p

∣∣∣∣
2
)

=
T∏

k=1

NC∏
p=1

∣∣∣∣
[
FNcx

(k)
SC

]
p,1
−

[
FNcx̃

(k)
SC

]
p,1

∣∣∣∣
2

,

taken over distinct codewords must be maximized.
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Appendix D

Proofs of results related to error union

bound

D.1 Outline of the proof of Lemma 1

When two complex source symbol sequences differ in positions {q1, ..., qK+1}, the

squared pairwise Euclidean distance is

D(K+1)
a,b =

K+1∑
u=1

[
Ωqu,qu

∣∣e(a,b)
qu

∣∣2
]

+ 2 Re

{
K+1∑
u=1

K+1∑
u<v

[
Ωqu,qv

[
e(a,b)

qu

]∗
e(a,b)

qv

]}

= D(K)
a,b + ΩqK+1,qK+1

∣∣∣e(a,b)
qK+1

∣∣∣
2

+ 2 Re

{
e(a,b)

qK+1

K∑
u=1

(
Ωqu,qK+1

[
e(a,b)

qu

]∗)
}

.

(D.1)

There are two possible e
(a,b)
qK+1 , either e

(a,b)
qK+1 = xK+1 + jyK+1 or e

(a,b)
qK+1 = −xK+1 −

jyK+1. Note that if there is a pair of complex source symbols, s
(a)
qK+1 = α

(a)
qK+1 +

jβ
(a)
qK+1 and s

(b)
qK+1 = α

(b)
qK+1 + jβ

b)
qK+1 , the differences e

(a,b)
qK+1 and e

(b,a)
qK+1 are e

(a,b)
qK+1 =

(
α

(a)
qK+1 − α

(b)
qK+1

)
+j

(
β

(a)
qK+1 − β

(b)
qK+1

)
and e

(b,a)
qK+1 = −

(
α

(a)
qK+1 − α

(b)
qK+1

)
−j

(
β

(a)
qK+1 − β

(b)
qK+1

)
,

respectively. By symmetry, the number of different sequences with e
(a,b)
qK+1 = xK+1 +

jyK+1 is the same as the number of different sequences with e
(a,b)
qK+1 = −xK+1− jyK+1.

Denote this number as nK+1.
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Let
K∑

u=1

(
Ωqu,qK+1

[
e
(a,b)
qu

]∗)
= x1↔K + jy1↔K . Note that

τK+1|e(a,b)
qK+1

=xK+1+jyK+1
=

[
e(a,b)

qK+1

K∑
u=1

(
Ωqu,qK+1

[
e(a,b)

qu

]∗)
]∣∣∣∣∣

e
(a,b)
qK+1

=xK+1+jyK+1

= (xK+1 + jyK+1)(x1↔K + jy1↔K)

= xK+1x1↔K − yK+1y1↔K + j(x1↔KyK+1 + xK+1y1↔K)

and

∆2 =

[
ρ

2
Re

{
e(a,b)

qK+1

K∑
u=1

(
Ωqu,qK+1

[
e(a,b)

qu

]∗)
}]∣∣∣∣∣

e
(a,b)
qK+1

=xK+1+jyK+1

.

Denote ∆1 = ρ
2

[
D(K)

a,b + ΩqK+1,qK+1

∣∣∣e(a,b)
qK+1

∣∣∣
2
]

and

∆2 =

[
ρ

2
Re

{
e(a,b)

qK+1

K∑
u=1

(
Ωqu,qK+1

[
e(a,b)

qu

]∗)
}]∣∣∣∣∣

e
(a,b)
qu =xK+1+jyK+1

.

Thus,

[
2

ρ
D(K+1)

a,b

]∣∣∣∣
e
(a,b)
qK+1

=xK+1+jyK+1

= ∆1 + ∆2 (D.2)

and

[
2

ρ
D(K+1)

a,b

]∣∣∣∣
e
(a,b)
qK+1

=−xK+1−jyK+1

= ∆1 −∆2. (D.3)

The contribution to the error union bound from the 2nK+1 sequences with

e
(a,b)
qu = ± (xK+1 + jyK+1) at the position qK+1 can be written as

g =
nK+1

NB

[Q (∆1 + ∆2) + Q (∆1 −∆2)] . (D.4)

Since this holds for any e
(a,b)
qu , qu, 1 6 u 6 K and K, Lemma 1 holds.
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D.2 Proof of Theorem 5

Proof: From Proposition 1, to minimize the union bound conditioned on HU ,

the optimality condition is Ωp,q = 0 for any 1 ≤ p 6= q ≤ Q. We calculate the

expectation of Ωp,q over HU . The suboptimal condition is to try to make EHU
[Ωp,q]

as small as possible, although it may not be zero.

Denote ψ(p,q) = vec(Ap) [vec(Aq)]
H, and

[
ψ(p,q)

]
u,v

, u, v = 1, · · · , TM , is the

(u, v)-th element of ψ(p,q). Note that, observing the structure of HU , we know that

the number of rows of HU is a multiple of T . Denote [HU ](u,v) , u, = 1, ..., KT, v =

1, ..., TM as the (u, v) element of HU , where K is a positive integer.

Now we calculate channel average Ωp,q as

EHU
{Ωp,q} = EHU

{[
Tr

(
HUvec(Ap) [vec(Aq)]

H [HU ]H
)]}

= EHU

{[
Tr

(
HUψ(p,q) [HU ]H

)]}

= EHU

{[
Tr

(
K∑

r=1

TM∑
u=1

TM∑
v=1

[
[HU ]r,v

]∗
[HU ]r,u

[
ψ(p,q)

]
u,v

)]}

= Λuu + Λuv,

(D.5)

where

Λuu =
KT∑
r=1

TM∑
u=1

[
E[HU ]r,u

{[
[HU ]r,u

]∗
[HU ]r,u

} [
ψ(p,q)

]
u,u

]

and

Λuv =
KT∑
r=1

TM∑
u=1

TM∑

v 6=u

[
E[HU ]r,u

{[
[HU ]r,v

]∗
[HU ]r,u

} [
ψ(p,q)

]
u,v

]
.

Since the term Λuu with self-correlation or variance of subcarriers dominates the

summation, Λuu dominates Λuv. We try to make Λuu = 0. Assume the auto correla-

tion of any channel element [HU ]r,u are the same. Assume E[HU ]r,u

{[
[HU ]r,u

]∗
[HU ]r,u

}
=

σ if E[HU ]r,u

{[
[HU ]r,u

]∗
[HU ]r,u

}
6= 0, We expect Λuu = 0. Denote J = EHU

{[HU ]∗HU},
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and [J]r,u is the (r, u) element of J , then

[J]r,u =





σ, if u = r(modT ) + mT ;

0, if u 6= r(modT ) + mT.

We obtain

Λuu =
KT∑
r=1

∑
u=r( mod T )+mT
m=1,...,M

[J]r,u
[
ψ(p,q)

]
u,u

= σ
KT∑
r=1

∑
u=r( mod T )+(m−1)T
m=1,...,M

[
ψ(p,q)

]
u,u

= K
[
Tr

(
ψ(p,q)

)]
= 0.

Thus we have the condition for minimizing the part of the union bound PU related

to the auto-correlation of the parallel channels based on averaged channel realizations

Tr
[
vec(Ap) [vec(Aq)]

H
]

= 0.
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Appendix E

Proof of Proposition 2

Proof:

1) Since

a. all-zero data source vectors are allowed for the first stage LDC encoding,

b. the first LDC encoding procedure enables full diversity in their 2-dimensions,

c. NX < NY = T ,

except for the all-zero first stage LDC codewords, each column of first stage LDC

codewords of size T×NX must have at least one non-zero element. Note that the

source symbols of the corresponding a-th second LDC codeword consists of all

nY -th X dimension columns of NY first LDC codewords, where 1 6 nY 6 NY .

Thus the number of non-zero source symbols of each second LDC codeword

is not less than NY unless all-zero first stage LDC codewords are involved as

source symbols for the second stage LDC encoding.

Using the condition that the first LDC encoding procedure enables full diver-

sity in their 2-dimensions, the per dimension diversity orders of Y and time
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dimensions satisfy

rd(T ime) = rd(Y ) = T = NY .

2) In this case, there is only one source symbol difference between a pair of 3-

D codewords. Note that the whole DLD procedure can be considered as a

single linear transformation, i.e., a multiplication between a matrix GSTF of

size NXNY T × QNY and a source symbol vector of size 1 × QNY . Assume

that the pair of source symbol vectors of size 1 × QNY with only one symbol

difference are sSTF and s̃STF . The pairwise difference of two DLD codewords

can be calculated by

Ψ = GSTF sSTF −GSTF s̃STF

= GSTF

(
sSTF − s̃STF

)

= GSTF θsw,

(E.1)

where θsw is the same as an all-zero vector except in the a single b-th position,

where 1 6 b 6 QNY . Since full symbol-wise diversity is determined by rank

properties of difference of pairwise codewords, the rest of the discussion will

only consider the coded STF block which is encoded using an all-zero source

vector except a single non-zero source element, and the rank properties of this

coded STF block is similar to the rank properties of the difference of a pair of

STF blocks with only a single source element difference.

Without loss of generality, assume that all the source symbols for the NY first

stage LDC codewords except the only non-zero element at the q-th position of

source symbol vector snY (NZ)
of size 1 × Q for the nY (NZ)-th first stage LDC

codeword are zero elements, where 1 6 q 6 Q and 1 6 nY (NZ) 6 NY .

Note that
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a. The case considered is either NX < NY = T or NX = T > NY ,

b. All the encoding matrices of the second stage LDCs are the same. The

dispersion matrices of the second stage LDC is A
(2)
q , where q = 1, ..., NY T .

The LDC encoding matrices is denoted as

G
(2)
LDC =

[
vec(A

(2)
1 ), ..., vec(A

(2)
NY T )

]
, (E.2)

which is also can be expressed as

G
(2)
LDC =




J(1,1) · · · J(1,NY )

...
. . .

...

J(NY ,1) · · · J(NY ,NY )




, (E.3)

where J(a,b) is defined in (8.3).

Denote the nX-th time dimension vector of size 1×T in the nY -th X-time

plane after the i-th stage LDC encoding as s
(i,nX)
(nY ) , where i = 1, 2.

Denote the coded symbol vector in the nX-th Y -time plane after the i-th

stage LDC encoding in the case that

i. s
(1,nX)
(nY (NZ))

is with at least one non-zero entry,

ii. the vectors s
(1,nX)
(nY (Z)) of size 1× T , where nY (Z) = 1, ..., NY and nY (Z) 6=

nY (NZ), are all-zero vectors,

as

SY (i,nY (NZ))
nX =

[[
s
(i,nX)
(1)

]T
, ...,

[
s
(i,nX)
(nY (NZ))

]T
, ...,

[
s
(i,nX)
(NY )

]T ]T
,

where i = 1, 2, and

SY (2,nY (NZ))
nX = G

(2)
LDCS

Y (1,nY (NZ))
nX . (E.4)
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SY (2,nY (NZ))
nX can be further derived as

SY (2,nY (NZ))
nX = G

(2)
LDCS

Y (1,nY (NZ))
nX

=




[
J(1,nY (NZ))s

(1,nX)
(nY (NZ))

]T
, ...,

[
J(g,nY (NZ))s

(1,nX)
(nY (NZ))

]T
, ...,

[
J(NY ,nY (NZ))s

(1,nX)
(nY (NZ))

]T




T

.

(E.5)

Thus,

s
(2,nX)
(nY ) = J(nY ,nY (NZ))s

(1,nX)
(nY (NZ))

, (E.6)

where nY = 1, ..., NY and 1 6 nY (NZ) 6 NY .

Denote the coded symbol vector in the nY -th X-time plane after the senond

stage LDC encoding in the case that

i. s
(1,nX)
(nY (NZ))

is with at least one non-zero entry,

ii. the vectors s
(1,nX)
(nY (Z)) of size 1× T , where nY (Z) = 1, ..., NY and nY (Z) 6=

nY (NZ), are all-zero vectors,

as

KX(2,nY (NZ))
nY =

[
s
(2,1)
(nY ), ..., s

(2,NX)
(nY )

]
.

Using (E.6), SX(2,nY (NZ))
nY can be derived as

KX(2,nY (NZ))
nY =

[
s
(2,1)
(nY ), ..., s

(2,NX)
(nY )

]

= J(nY ,nY (NZ))

[
s
(1,1)
(nY (NZ))

, ..., s
(1,NX)
(nY (NZ))

]
,

(E.7)

According to (E.7), if both
[
s
(1,1)
(nY (NZ))

, ..., s
(1,NX)
(nY (NZ))

]
and J(nY ,nY (NZ)) are full rank,

[
s
(2,1)
(nY ), ..., s

(2,NX)
(nY )

]
is full rank. Since the first stage LDC encoding procedure

enables full symbol-wise diversity in its 2-dimensions,
[
s
(1,1)
(nY (NZ))

, ..., s
(1,NX)
(nY (NZ))

]
is

guaranteed to be full rank. Thus, in both cases of NX < NY = T and NX =
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T > NY , rank
([

s
(1,1)
(nY (NZ))

, ..., s
(1,NX)
(nY (NZ))

])
= NX holds. Since J(a,b) is assumed to

be full rank for a = 1, ..., NY and b = 1, ..., NY , and rank
([

s
(2,1)
(nY ), ..., s

(2,NX)
(nY )

])
=

NX holds. Hence,

a. rsd(X) = NX holds for both cases of NX < NY = T and NX = T > NY ,

b. rsd(Time) = NX holds for the case of NX = T > NY .

Each X dimension column of the nY (NZ)-th first stage LDC codewords of size

T × NX must have at least one non-zero element, where 1 6 nY (NZ) 6 NY .

Note that the source symbols for the corresponding nX-th second stage LDC

codeword consists of all nY -th time dimension columns of NY first stage LDC

codewords, where 1 6 nX 6 NX and nY = 1, ..., NY . Further, due to the all-

zero source elements used, all the NX time dimension columns of the nY (Z)-th

first stage LDC codeword of size T × NX are zero columns, where nY (Z) 6=
nY (NZ), 1 6 nY (Z) 6 NY . Thus the number of non-zero source symbols of

each second LDC codeword, NNZ , is in the range of 1 6 NNZ 6 K for the

nY (NZ)-th first stage LDC codeword, unless all-zero first stage LDC codewords

are involved as source symbols for the second stage LDC encoding. Note that

the second stage LDC encoding procedure enables full K-symbol-wise diversity

in its 2-dimensions, where K is the maximum number of non-zero symbols of all

the nX-th time dimensions after the first stage LDC encoding procedure, where

nX = 1, ..., NX . Thus,

a. rsd(Y ) = NY holds for both cases of NX < NY = T and NX = T > NY ,

b. rsd(Time) = T holds for the case of NX < NY = T .

Finally, the conclusion is that in the cases of both NX < NY = T and NX = T >
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NY , the STF block, constructed using DLD procedure, achieves full symbol-wise

diversity order.
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Appendix F

Proof of theorem and lemma related to

ST-CILDC

F.1 Proof of Theorem 6

Proof:

1) This is a straightforward result of the previous discussion in Section 6.4.

2) The number of all possible directional pairs of M and M̃ in Υ(1) and Υ(2) are

the same value N1 = 2Na




Na

2


. The number of all possible directional pairs

of M and M̃ in Υ(3) is N2 = 4




Na

2







Na

2


.

The number of all possible pairs of M and M̃ is 2N1 + N2.
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Providing that that all different directional pairs of M and M̃ are equally prob-

able, the probability of Υ(3) is given by

α =




Na

2







Na

2







Na

2







Na

2


 + Na




Na

2




.

Note that RH is of full rank. Thus,

rank




Λ,

{(
M, M̃

)}
∈ Υ(3)


 = rank (Ψ3)

6 r
(1)
d + r

(2)
d .

F.2 Proof of Theorem 7

Proof: qi(x), where i = 1, ..., L, can be derived as

qi(x) = −∂ (loga pi(x))

∂ (loga x)

= − x

pi(x)

∂ (pi(x))

∂x
,

Thus, ∂(pi(x))
∂x

= −pi(x)qi(x)
x

.

w(x) can be derived as

w(x) = −
∂

(
loga

(
L∑

i=1

pi(x)

))

∂ (loga(x))

= − x
L∑

i=1

pi(x)

L∑
i=1

∂ (pi(x))

∂x
= − x

L∑
i=1

pi(x)

L∑

k=1

(
pk(x)qk(x)

x

)
.
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Now we derive

τ1(x) = w(x)− q1(x)

=




x
L∑

i=1

pi(x)

L∑

k=1

(
pk(x)qk(x)

x

)

− q1(x)

=

L∑
k=2

(pk(x) (qk(x)− q1(x)))

L∑
i=1

pi(x)

.

Note that pi(x) > 0, where i = 1, ..., L, and 0 < q1(x) 6 ... 6 qL(x) < +∞.

1) If q1(x) 6= qL(x), τ1(x) = w(x)− q1(x) > 0, and thus w(x) > q1(x).

2) If q1(x) = qL(x), τ1(x) = w(x)− q1(x) = 0, and thus w(x) = q1(x).

Similarly, we may also derive τL(x) = w(x)− qL(x).

1) If q1(x) 6= qL(x), τ1(x) = w(x)− qL(x) < 0, and thus w(x) < qL(x).

2) If q1(x) = qL(x), τ1(x) = w(x)− q1(x) = 0, and thus w(x) = qL(x).

Hence,

1) If q1(x) 6= qL(x),

q1(x) < w(x) < qL(x). (F.1)

2) If q1(x) = qL(x), q1(x) = w(x) = qL(x).

It is the time to determine the closeness of w(x) to q1(x) and q2(x) in the case of
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q1(x) 6= q2(x). The closeness between q1(x) and w(x) is quantified by

∣∣∣∣
τ1(x)

q1(x)

∣∣∣∣ =

∣∣∣∣
w(x)− q1(x)

q1(x)

∣∣∣∣

=

∣∣∣∣∣∣∣∣∣

L∑
k=2

(pk(x) (qk(x)− q1(x)))

q1(x)

(
L∑

i=1

pi(x)

)

∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣

L∑

k=2




1− qk(x)
q1(x)

1
pk(x)

L∑
i=1

pi(x)




∣∣∣∣∣∣∣∣
.

(F.2)

Similarly, the closeness between qL(x) and w(x) is quantified by

∣∣∣∣
τL(x)

qL(x)

∣∣∣∣ =

∣∣∣∣
w(x)− qL(x)

qL(x)

∣∣∣∣ =

∣∣∣∣∣∣∣∣

L−1∑

k=1




1− qk(x)
qL(x)

1
pk(x)

L∑
i=1

pi(x)




∣∣∣∣∣∣∣∣
.

Now, we can examine the closeness between q1(x) and w(x) in the case of x → +∞.

Note that lim
x→+∞

(
pk(x)
p1(x)

)
= 0, thus lim

x→+∞

(
p1(x)
pk(x)

)
= +∞, where k = 2, ..., L. We obtain

lim
x→+∞

(
1

pk(x)

L∑
i=1

pi(x)

)

= 1 + lim
x→+∞

(
1

pk(x)

L∑

i=2,i 6=k

pi(x)

)
+ lim

x→+∞

(
p1(x)

pk(x)

)

= +∞,

where k = 2, ..., L. Also note that ∃k, 1 < lim
x→+∞

qk(x)
q1(x)

< +∞, where k = 2, ..., L.

Hence,

lim
x→+∞

∣∣∣∣
w(x)− q1(x)

q1(x)

∣∣∣∣ = lim
x→+∞

∣∣∣∣∣∣∣∣

L∑

k=2




1− qk(x)
q1(x)

1
pk(x)

L∑
i=1

pi(x)




∣∣∣∣∣∣∣∣
= 0.
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Appendix G

A construction of rate-one joint full

frequency-time diversity LDC-OFDM

In this section, a joint full frequency-time diversity OFDM design is proposed as the

following proposition,

Proposition 3 The frequency selective channel order is L. Consider a vector with

Q = NF T source symbols of QAM (or PAM, or BPSK, or QPSK) constellation,

where NF > L+1. Assume that the frequency-time LDC codeword is of size T ×NF ,

where time dimension is of size T , frequency dimension is of size NF . Assume that

there exists a LCP (either LCP-A or LCP-B) encoding matrix Θ of size Q×Q,

Θ =




1 α1 · · · αQ−1
1

1 α2 · · · αQ−1
1

...
...

. . .
...

1 αQ · · · αQ−1
Q




,

where αq, q = 1, ..., Q, is defined in [72, 126]. Define LDC encoding matrix as

GLDC = Θ. Then this FT-LDC design achieves full joint frequency-time diversity

under arbitrary frequency-time correlation. The maximal achievable diversity order
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is T (L + 1).

Proof:

Denote the set with all the possible symbol vectors of QAM (or PAM, or BPSK,

or QPSK) constellation as C.

Denote

Θ =
[
θT1 , ..., θTQ

]T
,

where θq is the q-th row of Θ.

Since LCP encoding matrix Θ is able to support that

[GLDC (s− s̃)]q,1 6= 0,

where q = 1, ..., Q, (s− s̃) 6= 0, {s, s̃} ∈ C
Thus, for any (s− s̃) 6= 0, {s, s̃} ∈ C, the following holds

[GLDC(s− s̃)]q,1 6= 0

for any q = 1, ..., Q.

According to Theorem 3, this LDC-OFDM achieves full joint frequency-time di-

versity under arbitrary frequency-time correlation. If the joint frequency-time channel

is full rank, this LDC-OFDM achieves diversity order T (L + 1).
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