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Abstract

(This thesis is submitted with restriction from public disclosure

Wireless communications employing multiple transmit and receive antennas can bring
promising improvements to link quality as well as system capacity. The potential gain
in performance for a multiple-input multiple-output (MIMO) system is mitigated by the
increased cost of the number of expensive radio-frequency (RF) hardware components.
To reduce cost of deploying MIMO technology, a complexity reduction technique known
as antenna selection can be applied. In antenna selection, only a subset of the full array
of transmit and receive antennas is chosen based on a selection criterion. The antennas
are connected to a limited number of RF chains by a low-cost RF switch. The resulting
system enjoys many benefits offered by the full complexity MIMO system but with fewer
RF resources.

This thesis proposes a novel and efficient iterative antenna selection algorithm based on
a minimum bit error rate (BER) selection criterion for a zero-forcing (ZF) MIMO receiver.
The proposed algorithm finds an efficient joint transmit and receive antenna selection so-
lution that is close to the globally optimal antenna configuration with reduced complexity.
The complexity and performance of the algorithm can be traded off. The proposed algo-
rithm can also be used for transmit or receive only antenna selection as special cases.

The proposed algorithm introduces the concepts of random antenna selection (RAS)



and antenna swapping (AS). The startup processing involves the training and estimation of
the MIMO channel for the subset of antennas connected to the available RF chains. The
thesis also develops a fast method for antenna swapping based a2 maatkix modifica-
tion, and the computational complexity of the algorithm is analyzed. The behavior of the
RAS-AS algorithm with a random swapping sequence is modelled as a finite-state Markov
chain, and the expected number of iterations is computed analytically.

The BER performance of the algorithm is simulated, and results show promising BER
performance gains after only small numbers of RAS-AS iterations. The algorithm is ap-
plicable to both spatially uncorrelated or correlated MIMO channels, and similar BER per-

formance improvements are observed for the case where transmit antennas are correlated.
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Chapter 1

Introduction

In order to realize the goals of next-generation wireless communication systems, employing
multiple antennas on both sides of the communication link is seen as a promising solution.
These multiple-input multiple-output (MIMO) wireless systems have the potential to in-
crease the capacity of the system [1] or improve the quality of the communication link [2].
The tradeoff is an increase in hardware cost and signal processing complexity. For each
antenna, there would have to be an associated radio-frequency (RF) chain of expensive
hardware, and these include modulators, analog-to-digital (A/D) convertors, mixers, and
amplifiers. The system hardware complexity increases quickly with every antenna and RF
chain added. On the other hand, antennas alone are relatively inexpensive compared to the
components in the RF chain. A MIMO system can have a large number of antennas, while
only requiring a small amount of RF chain hardware. It is found that by carefully selecting

a subset of antennas and connecting through a low cost RF switch, many benefits of the full
complexity MIMO system can be retained [3] [4]. This leads to the study of antenna se-
lection, which is a complexity reduction scheme that can reduce the hardware requirement
of MIMO systems by choosing a subset of antennas based on some required performance

criterion.



1.1 Motivation

In order to reduce the complexity and hardware requirements for deploying MIMO sys-
tems, antenna selection is proposed as a complexity reduction scheme. Numerous antenna
selection algorithms are proposed and studied in the literature. These algorithms can be
categorized into transmit-side antenna selection, receive-side antenna selection, and joint
transmit and receive antenna selection. It is noted in [5] that the problem of jointly find-
ing a subset of transmit and receive antennas efficiently is still an open problem. Many
of the algorithms proposed in the literature focus on antenna selection on one side of the
communication link, and the study of joint transmit and receive antenna selection has been
limited. It is also noted that many existing antenna selection algorithms require the full
complexity MIMO channel to be estimated, and it would be beneficial if this requirement
can be reduced. Motivated by these factors, the thesis proposes an iterative algorithm for

joint transmit and receive antenna selection that has low computational complexity.

1.2 Thesis Outline

The following is an outline and organization of the thesis. In Chapter 2, existing literature
on antenna selection is presented and reviewed. The MIMO channel model and bit error
rate (BER) expressions used in the rest of the thesis is also introduced.

Chapter 3 presents an antenna selection algorithm based on the concept of random
antenna selection (RAS), together with an antenna selection criterion. The potential of
random antenna subset selection is also justified through analyzing the approximate bit
error rate (ABER) outage probability, as well as the expected number of iterations required
to obtain an certain ABER threshold. The pseudocode of the RAS algorithm is presented

at the end of the chapter.



In Chapter 4, the concept of antenna swapping (AS) is introduced. The relationship
between antenna swapping and ré&kkmatrix modification is established, whéteepre-
sents the number of pairs of antennas to be swapped. Two antenna swapping sequences are
then introduced: deterministic and random. At the end of the chapter, a realization of the
RAS algorithm from Chapter 3 is proposed with the concept of antenna swapping, and the
two are related through a matrix inversion update expression. The resulting algorithm is
the RAS-AS algorithm, and pseudocode is presented at the end of the chapter.

In Chapter 5, a fast and complexity reduced RAS-AS algorithm is presented through a
simplification made possible by performing raBknatrix modifications. The complexity
of the reduced algorithm is analyzed in terms of the initialization overhead and the number
of multiplications and additions in each iteration. The expected number of iterations and
average BER performance of the RAS-AS algorithm under uncorrelated and correlated
channel conditions using both deterministic or random swapping sequences is also analyzed
and simulated.

Chapter 6 summarizes and concludes the work in the thesis, and provides suggestions

for future research.

1.3 Thesis Contributions

In this thesis, a novel joint transmit and receive antenna selection algorithm is proposed
that uses the idea of random antenna selection and antenna swapping. The following sum-

marizes the contributions of this thesis:

e The proposed random antenna selection with antenna swapping (RAS-AS) algorithm
is a novel, efficient, joint transmit and receive antenna subset selection algorithm

that reduces the computation of exhaustive search based on a minimum bit error



rate (BER) selection criterion for a zero-forcing (ZF) multiple-input multiple-output

(MIMO) receiver.

The novel concept of random antenna swapping is introduced. The thesis establishes
the relationship between antenna swapping with r2nkaatrix modification fork

pairs of antennas to be swapped.

At the startup of the algorithm, instead of requiring the full complexity MIMO chan-

nel to be estimated, which involves all the antennas on both sides of the link, the
proposed algorithm requires an amount of channel estimation and initial training cor-
responding to that of the number of available radio-frequency (RF) chains on both
sides of the link. Additional channel estimation is spread over time and is performed

only as the algorithm swaps in new antennas.

The thesis models the behavior of the RAS-AS algorithm with a Markov chain model,
and the expected number of iterations as well as the variance are analyzed. The com-
putational requirements of the RAS-AS algorithm with a r@ngmplification are

determined, and the BER performance of the RAS-AS algorithm is also simulated.

The proposed Fast RAS-AS algorithm significantly lowers complexity from exhaus-
tive search while finding near optimal antenna configurations. Simulation results
show that after the expected number of iterations for finding a near optimal set of

antennas, close to optimal BER performance can be achieved most of the time.

The proposed RAS-AS algorithm is suitable for systems with large numbers of an-
tennas, and the algorithm is applicable to both spatially uncorrelated and correlated
MIMO channels. The RAS-AS algorithm can also be used for transmit antenna se-

lection only or receive antenna selection only as special cases.



Chapter 2

Background

This chapter first presents the background on MIMO systems and establishes the role of
antenna selection in MIMO wireless communication. Following this, an overview of the
existing antenna selection algorithms in the literature is presented. The MIMO channel

model used in this thesis is presented in the last part of the chapter.

2.1 Multiple-Input Multiple-Output System

From the early work of Telatar [1] and Foschini [6], it is shown that employing multiple
transmit and receive antennas has the potential to greatly increase the capacity in wireless
communication systems. By exploiting the spatial dimension, capacity increases linearly
with the minimum number of antennas on both sides of the link. This enables a system to
achieve high spectral efficiency, and provide high data rate services that are envisioned in
future generations of wireless communication systems.

The potential benefits of using MIMO systems is offset by the increase in hardware
requirements and signal processing complexity. Each antenna is associated with a chain of
expensive RF resources, and this includes modulators, mixers, analog-to-digital convertors,

and power amplifiers, which dominate the cost of the system. With multiple antennas

5



on both sides of the communication link, the amount of channel training and estimation
increases significantly relative to a single-input single-output (SISO) system. This in turn
increases the dimensionality of the signal processing problem, and increases the complexity
of the algorithms required to capture the benefits of MIMO systems.

It is therefore desirable to reduce the amount of expensive RF chain hardware, while
harvesting the many advantages of MIMO systems. Therefore, antenna selection is pro-
posed as a complexity reduction technique to enable practical deployment of MIMO sys-

tems.

2.2 Antenna Selection

The idea of antenna selection stems from the fact that antennas are relatively inexpensive
when compared with the rest of the RF chain hardware. Therefore, a system can deploy a
large number of antennas while having only a small number of RF chains, and the two can
be connected through a low-cost RF switch. This results in the formulation of the antenna
selection problem, which tries to find the best subset of antennas to connect to the limited
RF resources, based on some selection criterion. It is found that with the proper subset of
antennas selected, many benefits of the full complexity MIMO system can be retained [3],
such as the diversity order of the system. A system diagram of an antenna selection system
is shown in Figure 2.1.

The goal is to find and connect the bést transmit RF chains to thbky transmit
antennas, and the bdsi receive RF chains to the, receive antennas. The best antennas
will also vary with time and the selection process needs to be repeated periodically. The
antenna selection, channel estimation, and MIMO signal detection are performed in the

signal processing unit on the receiver side.
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Figure 2.1: System with antenna selection.

Numerous antenna selection algorithms are proposed in the literature, varying in com-
plexity, selection criteria, and optimality criteria. Antenna selection can also be broadly
classified into transmit antenna selection, receive antenna selection, and joint transmit and
receive antenna selection. MIMO systems can improve the link quality of the system
through diversity methods, and/or improve data rate through spatial multiplexing. There-
fore, the two antenna selection criteria typically considered in the literature are based on
maximizing either diversity or system capacity [5].

The following sections first present antenna selection algorithms from the capacity
point of view. Then, antenna selection based on a diversity point of view will be presented.
Antenna section algorithms with a focus on capacity are suitable for spatial multiplexing
systems that require high data rates. Antenna selection algorithms with a focus on diversity
are suitable for systems that require robust link quality, which is also related to achieving

high received signal-to-noise ratio (SNR), and low bit error rate (BER).



2.3 Antenna Selection based on System Capacity

For antenna selection algorithms that focus on capacity, the goal is to select a subset of

antennas that maximize the following MIMO capacity expression [1]:

C(H) =log; [det(INtx + %HHH” =logy {det(lmrX + %H HH” (2.1)
(6] 0

wherely, is the Nty x Niy identity matrix, In,, is the Nix x Nry identity matrix, H is the

Nix X Nix MIMO channel matrix,Es is the average symbol energy, aNd is the noise
energy. The following subsections review the algorithms proposed in the literature for
receive antenna selection, transmit antenna selection, and joint transmit and receive antenna

selection that maximize the system capacity.

2.3.1 Receive Antenna Selection

For receive antenna selection with a capacity maximization criterion, the objective of the
algorithm is to select a subset of receive antennas so that the capacity expression is max-
imized. It is noted from [5] that there is no exact solution for finding the optimal receive
antenna set without exhaustively searching through all the possible configurations. Subop-
timal or complexity reduced algorithms have been proposed in [7] [8] [9] [10] [11].

In [7], an initial antenna configuration with all the receive antennas are used. The
receive antenna that has the least impact on the capacity, or the antenna that results in
minimum capacity loss is removed from the antenna set iteratively, until the desired number
of receive antennas remains. In [8], an initial empty set of antennas is used, and the receive
antennas that result in the largest capacity gain are added iteratively to the antenna set, until
the desired number of receive antennas are chosen.

Two other iterative receive antenna selection algorithms are proposed in [9] and [10].



These algorithms maximize channel capacity by selecting antennas with minimal correla-
tion.
Low computational complexity algorithms in [11] are norm-based, i.e., the antenna se-

lection is based on maximizing the Forbenius norm or column norm of the channel matrix.

2.3.2 Transmit Antenna Selection

For transmit antenna selection with a focus on capacity maximization, the objective is
the same as that of the receive antenna selection algorithms in the previous section, and
both norm-based or iterative type selection algorithms can be applied [5] [12]. Algorithms
using properties of determinants for positive definite Hermitian matrices are proposed in
[13]. Transmit antenna selection also requires a feedback link. With full channel state
information (CSI), the transmitter can achieve the maximum capacity of the channel via
the water-filling strategy [5] [14]. Transmit antenna selection for low-rank channels has

also been studied in [15].

2.3.3 Joint Transmit and Receive Antenna Selection

The authors in [16] propose a suboptimal algorithm for joint transmit and receive antenna
selection based on a capacity maximization criterion, by performing separate transmit and
receive antenna selections. The algorithm first performs antenna selection on one side of
the link, while keeping the antennas at the other end of the link fixed. After the antennas
for one side of the communication channel are selected, antenna selection is performed
for the other side, while keeping the set of selected antennas fixed. Similar algorithms are
proposed in [17] and [18]. However, optimal joint transmit and receive antenna selection

is still an open problem [5], and can only be optimized using exhaustive search (ES).



2.4 Antenna Selection based on Diversity Selection

Antenna selection with a diversity maximization criterion focuses on improving communi-
cation link quality. Diversity combining can be achieved via three classical ways: selection

combining (SC), maximal ratio combining (MRC), and equal gain combining (EGC) [19].

2.4.1 Receive Antenna Selection

For Single-Input Multiple-Output (SIMO) systems wibl = 1 transmit antennd,ix = 1

transmit RF chainlNyx > 1 receive antennas, amdly > L,x > 1 receive RF chains, a subset

of these receive antennas can be selected, and their signals combined. This method is called
generalized selection diversity [5] [20]. When MRC is used, this method is also known as
hybrid selection/maximal ratio combining [4]. The combining process can also employ
EGC. The optimal antenna subset for generalized selection diversity is one that contains
theLx branches with the largest SNR, for both MRC or EGC [5]. For MIMO systems with

Nix = Ltx > 1, space-time block codes with receive antenna selection is studied in [21] [22]

[23].

2.4.2 Transmit Antenna Selection

On the transmitter side, for Multiple-Input Single-Output (MISO) systems Wigtrans-

mit antennas ant\ > Lix > 1 transmit RF chains, anNx = Lx = 1 receive antenna

and receive RF chain, respectively, the equivalent antenna selection scheme to hybrid se-
lection/maximal ratio combining on the receiver side, is known as hybrid maximal ratio
transmission [5]. This scheme selects transmit antennas such that the superposition of the
received signal gives maximum SNR, and it is found that the optimal set of transmit an-

tennas are those with the largest channel gain [5]. Hybrid maximal ratio transmission for

10



Nix = Lyx > 1 with receiver-side diversity combining is also studied in [24]. It is noted
that maximal ratio transmission requires the feedback of estimated channel gains from the
set of transmit antennas to the set of receive antennas. Another transmit antenna selection
algorithm for MISO systems using space-time code is proposed in [23]. In [25], an op-
timal transmit antenna selection algorithm is proposed which minimizes the error rate by

exhaustively searching through all antenna configurations.

2.4.3 Joint Transmit and Receive Antenna Selection

In this case the system hblg transmit antennas;y transmit RF chaingd\x receive anten-

nas, and. ¢ receive RF chains, witNx > Lix > 1 andN;x > L;x > 1. In order to maximize
diversity, space-time coding is used in [26], and the optimal antenna subset that minimizes
the probability of error can be found by jointly selecting transmit and receive antennas
with channel gains such that the Frobenius norm of the selected MIMO channel matrix is
maximized through exhaustive search.

Another joint transmit and receive antenna selection algorithm based on the second or-
der statistics of the channel is proposed in [27]. It is found that the optimal joint selection
of the transmit and receive antennas can be decoupled and selected independently of each
other [27]. For linear receivers, the selection criterion involves maximizing the singular val-
ues of the transmit covariance matrix and receive covariance matrix, by searching through
all the transmit antenna configurations and receive antenna configurations independently
[27].

It is noted in [5] that other than through exhaustive search, there are no existing fast,
efficient, or systematic methods for finding the optimal joint transmit and receive antenna

set that are not based on channel statistics.

11



The joint selection algorithm proposed in this thesis is based on random antenna selec-
tion with antenna swapping (RAS-AS). The RAS-AS algorithm is an iterative joint transmit
and receive antenna subset selection algorithm. The RAS-AS algorithm provides an effi-
cient way that can find a near optimal subset of transmit and receive antennas. The RAS-AS
algorithm can also be used for transmit antenna selection or receive antenna selection as

special cases.

2.5 MIMO Signal Model

For a communication system with multiple antennas at both enddJetix, Nix, and

Lix represent the number of transmit antennas, available transmit RF chains, receive an-
tennas, and available receive RF chains, respectively. The received signalrveaitobe
represented as

r=Hs+n (2.2)

wheresis the temporally and spatially white input signal vector of dimens&igrx 1 with

E[s_s“] = Edl.,, andEs is the average symbol energy; is anLy x Lty antenna selected
MIMO channel with independent identically distributed (i.i.d.) complex Gaussian chan-
nel gains and flat Rayleigh quasi-static fading, where the channel is constant over a time
frame and the channel realizations over different time frames are uncorrelated;isnd

the temporally and spatially white additive Gaussian noise vector of dimehgion 1l

with E[nn"] = NolL,, andN, is the noise energy. The input signal-to-noise ratio (SNR) is
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2.6 MIMO Channel Model

The proposed algorithm is also applicable to antenna correlated MIMO channels, and the

channel matrix can be modeled as follows [28] [29]
1 1
H = R?H,R? (2.3)

whereHy, is the L,y x Lix MIMO channel matrix with i.i.d. complex Gaussian channel
gains,R; is theLix x Lix covariance matrix of the rows ¢, andR; is theLx x L;x co-
variance matrix of the columns &f. The(.)% represents the square root of a matrix. The
following assumes a MIMO channel with only transmit antenna correlation or only receive
antenna correlation, respectively:

H = HyRE | 2.4)

or

H = REHy, . (2.5)

This thesis will focus on MIMO channels with correlation at only one side of the link. This
models the scenario where the base station (BS) is positioned on top of a tall building with
few surrounding scatterers, and the mobile station (MS) is located in an environment with
many surrounding scatterers. Therefore, the signal received at the BS antenna array would
experience some degree of correlation. The signal arriving at the MS would be uncorrelated
due to the rich scattering environment.

Assuming the BS to be the transmitter and the MS to be the receiver, the channel model
in (2.4) can be used. The uplink situation where the BS is the receiver and the MS is the
transmitter can be handled similarly.

In [30], it is found that a Power Azimuth Spectrum (PAS) with a truncated Laplacian

distribution best fits measurement results in urban and rural environments. Therefore, the
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truncated Laplacian PAS model in [30] is used to generate the coefficients in the correlation
matrix in (2.4).

The following defines the parameters for the model in [30].Ngtepresent the number
of scattering clustersp « represent the angle of incident from cluskeioy represent the
angle spread of the signal from clusterandA¢ represent the truncation range in the
PAS, fork = 1,...,N.. Let the normalized distance be definedSasndD = 21, whered
is the physical spacing between antenna elements, and detiniee the wavelength of the
signal.

Let x be the real part of the complex baseband signal,yabé the imaginary part of
the complex baseband signal. The cross correlation between the real parts and the cross
correlation between the real and imaginary parts of the complex baseband signal at two
antenna elements that are a distadi@gart is given in [30], and are given as follows:

Nc & Jom(D)
2 ool a R s

{\/_E + exp(— Agev'2 [2msin(2mA(n<) _v2 cos(ZmA(Lk)] ) } (2.6)
fo] Ok Ok

k

Rx(D) = Jo(D)+

N° Jomi1(D)

DX P N
{[2 —exp <_ "g{ [(2m+ 1) sin((2m+1)Aq,)

Ok
)} , @)

V2
whereJn(.) is them™ order Bessel function of the first kind. From [30], the complex

Ry(D) =

sin((2m+1) @)

+—cog(2m+ 1)Aq)
Ok

correlation coefficient is
R(D) = Rex(D) + jRyy(D) . (2.8)
Let a MIMO antenna selection system be denoted with the notall@riNgx,Lix:Lx) =

(4:8,2:4), representingl transmit and receive antennas, artransmit and} receive RF
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chains, respectively. For antenna elements that are positioned a di%talpmt from one
another, and geometry whekg =2, o1 = —7, 2= 5,01 =02 =5, A =A@ = T,

and with the signal coming from the second cluster having half the power as the signal from
the first cluster, the correlation matrix for 4 8,2:4) system that hag transmit antennas is

found to be

RD)la=o R(D)lg_y RD)la-a RD)lg_a

H
R = RD)"lg_y RD)la=o RD)lg_y RD)a=2 2.9)
RD)"g=x R(MD)7|4_s  R(D)|d=0 R(D)lg_1

RD)"g_s RO)Mja—a RD)|g_y  R(D)la=0

2

1.000 ~0.924—-0.065 0.767+0.083 —0.647—0.097
—0.924+0.065 1.000 ~0.924-0.065 0.767-+0.083
" 0.767—0.083 —0.924+ 0.065 1.000 —0.924— 0.065
—0.647+0.097 0.767—0.083 —0.924-+0.065 1.000
(2.10)

Figure 2.2 plots the magnitude of the correlation coefficients as a function of normalized
distanced, with No =2, @1 = —J, oo =2, 01 = 0o = &, Ay = Ay = §. The plot in

Figure 2.2 matches that obtained in [30].

2.7 Zero Forcing Receiver

Due to its relative simplicity, a zero forcing (ZF) MIMO receiver will be used in the devel-
opment of the antenna selection algorithm in this thesis. The sufficient conditions for the
existence of a ZF solution is when the number of antennas and RF chains on the transmit
side is less than or equal to the number of antennas and RF chains on the receive side (i.e.

Nix < Nix, Lix < Lix, Lix < Nex, @andLyx < Nix). A practical scenario under these conditions
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Figure 2.2: Magnitude of correlation vs normalized distance.

includes fixed wireless applications where the mobile stations can have the same number
or more antennas than the base station. The estimate of the transmitted signal at the output
of the ZF receiver is

§=Hr=s+H™ (2.11)

where(.)T denotes the pseudoinverse of a matrix. The post-processingySidRthe ki

data stream is given by [31]

W:ﬁ:%g%;gﬁ: [(HHH)_l]K: (2.12)
k,k

Wheregﬁ can be defined as the power gain.
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2.8 BER Expressions

The following presents the closed form BER expression for an antenna selected MIMO sys-
tem with a zero-forcing receiver and, without loss of generality, binary phase shift keying
(BPSK) modulation. The instantaneous average BER across the data streams for a certain

antenna configuration conditioned on the channel realization is given by [31]

1 Lix
BERwg= o klem/ZVOgﬁ) (2.13)

wherey, = Es/No, with Es equal to the average symbol energy, &lydequal to the noise

2
energyg? = (R, .., Hipocto) ik andQ() = &= e~ Zdy.

It is assumed that the receiver estimates the channel, while the transmitter has no chan-
nel knowledge. Therefore, the antenna selection algorithm will be implemented at the
receiver side. During antenna selection, the indices of the selected transmit antennas will
be fed back to the transmitter.

From (2.13), itis noted that calculatitﬁ involves matrix inversion, which is one of the
most expensive operations when evaluating the BER for different antenna selected MIMO
channels. Therefore, the subsequent chapters in the thesis will present methods that can

speed up this operation and facilitate the swapping of antennas in the selection algorithm.
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Chapter 3

Random Antenna Selection

This chapter presents an algorithm based on the concept of random antenna selection (RAS)
and its selection criterion. The outage probability for RAS is also analyzed to justify the

potential of using RAS as a method for antenna selection.

3.1 Concept

This section describes the concept of random antenna selection, and how it can be used
as a means for antenna selection. With random selection, a subset of transmit and receive
antennas are selected randomly and connected to the available RF resources. The antenna
selection criterion based on the performance of the system is evaluated, and the process of
randomly choosing an independent subset of antennas can be repeated until the globally
optimal or a good enough antenna configuration is found.

The introduction of randomness into an antenna selection algorithm is novel and the
randomness can prevent the algorithm from finding a local rather than global minimum
cost solution. On the other hand, if the algorithm was deterministic and greedy, locally

optimum solutions would result, though likely at a lower computational complexity.
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3.2 Selection Criterion

Antenna selection algorithms that use a capacity maximization criterion can find a subset of
antennas that has the potential to support the highest data rate possible in a communication
link. However, system capacity is an information-theoretic measure and this data rate may
not be realizable with limited resources and finite processing delay. Therefore, a capacity
measure may not reflect actual system performance. A more realistic measure of the system
performance is based on average BER of the system. Antenna selection algorithms that use
the average BER minimization criterion can find a subset of antennas that give low error
rate and good link quality. Therefore, in this thesis, minimizing the average BER expression
of the system in (2.13) is chosen as the antenna selection criterion.

For different types of modulations, similar average BER expressions can be used as the
selection criterion. The selection criterion can also be adapted to other types of receivers
with different definitions of the power gaigﬁ.

Uniform transmit power allocation is assumed in this work. However, transmit power
allocation can also be jointly optimized with antenna selection by using an approximate
average BER expression [31] as the selection criterion. The approximate minimum bit
error rate (AMBER) power allocation scheme [31] can be applied to the selected antenna
subset in each iteration of the algorithm to jointly optimize the transmit power with the

selected antennas.

3.3 Random Antenna Selection Algorithm

At the startup of the algorithm, a subselgf transmit and_x receive antennas are selected
at random and connected to the available RF chains, and channel estimation is performed

for the MIMO system using these antennas. The average BER performance of the antenna
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Table 3.1: RAS algorithm pseudocode.

Initialization:
1 | Randomly selecty transmit,Lx receive antennas to forkd,

2 | Calculate(Hf! HO)_1 andg? for k= 1,..., Lix using (2.12)

__’]_ .
best ™

3 | Initialize (H"H) (HE' HO)‘1 and AvgBER,.;= AVgBER, using (2.13)
Main Loop (" Step){

4 | Randomly select an independent subset of transmit and receive antennas k), form
5 Calculate the inversgH/H,) -

6 Calculateg? for k= 1,..., L using (2.12)

7 Calculate AvgBER using (2.13)

8 if (AvgBER,, < AvgBER,.¢) then
9 Current antenna configuration is the best : @e‘t'H)gelstz (HHH,)
10 AVGBER, .= AVgBER,
end if
}

selected system is then evaluated. In each subsequent iteration of the algorithm, an inde-
pendent subset of transmit and receive antennas is chosen, additional channel estimation
is performed for the new antennas, and the average BER performance of the system us-
ing these independent subsets of antennas is evaluated. The algorithm keeps track of the
antenna configuration that results in the best performance, and terminates when either all
antenna configurations are tested or when a desired average BER performance is obtained.
As the algorithm cycles through the possible antenna configurations, the algorithm con-
verges to the globally optimal antenna configuration that provides the best average BER

performance. The pseudocode of the RAS algorithm is presented in detail in Table 3.1.
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From Table 3.1, it is noted that each iteration requires computationally expensive matrix
inversion in steb, when a different random subset of antennas is chosen. The following
chapters address this issue and present an iterative method to reduce computational com-
plexity. The rest of this chapter investigates the merits of performing RAS by examining
the outage probability of the system and the expected number of iterations. The statistics
of the received SNR is first presented in the following section, and from this distribution,

the statistics of the error rate for the different data streams can be determined.

3.4 Statistics of the Received SNR

This section presents the statistics of the received SR, yogﬁ in the average BER
expression in (2.13) . Using the statistics of the received SNR, the outage probability of the
system is then determined.

From [28], the SNR on the!h data streamy, for aL,x > Lix MIMO channel with a
zero forcing receiver is weighted Chi-square distributed, ®{thx — Lix + 1) degrees of
freedom (DOF) and has a weight%f?. The probability density function (PDF) of tHhé"
stream fory, > O is [28]

O'kze—M(Ukz/Vo

fry () = (

B Vo(l—rx - th)! 3-1)

2 Lrx—Lix
YOy )
Yo

Wherecrk2 represents thi" diagonal entry in the inverse channel correlation maffixt.
For uncorrelated channelS= I, «1,,, and for transmit antenna correlated chanbe} R:.
The notationy, ~ x2(n,w) is used to indicate thak is weighted Chi-square distrib-
uted, with weightw, andn DOF. The PDF, cumulative distribution function (CDF) and the
moment generating function (MGF) of the Chi-square angeighted Chi-square random

variable withn DOF are provided in Appendices A and B, respectively.

21



3.4.1 Approximate BER Expression

In order to find a closed form expression for the outage probability of the antenna selected
system, an approximation to the average BER of the system is used. The BER expression in
(2.13) can be approximated p§y) ~ %exp{—cy} [31], wherec is a constant depending on

the signal constellation. The average approximate BER (ABER) of the system is therefore

th

2
ABERyg = i le*"Vo@Jk . (3.2)

For BPSK, the constamt= 1 [31]. Higher order modulations can be analyzed using dif-

ferent values o€. From (3.2) , the ABER for th&" data stream can be defined to be
1 _ .2
ABERstream= ge vodic . (3.3)

The average ABER expression can also be used as a selection criterion, and it provides an

uniform framework for different types of modulations by using different constants.

3.4.2 Distribution of the ABER of the ki data stream

The following derives the PDF of the ABER of th&' data stream using the PDF of the
K" received SNR from the previous section. This can provide an approximation to the
distribution of the average BER of thé&" data stream at high SNR. The ABER of tki8

data stream is given by (3.3), where

1

Solving for y results in
1
Yk solution = IN (5_bk) : (3.5)
Taking the derivative of (3.4) results in
/ -1 — Wk
g (W) = e (3.6)



Therefore, together with (3.1), (3.5), and (3.6), the PDF of the ABER ok'thstream can

be found to be

fr (Vi solution)
|9 (Vk solution) |

_ Ysolution %71
e yk7so|ution 1

(ZW)Er (r_z]) |%1e—)4<,solution‘

fABER rean(Pk) =

N=2(Lrx—Lix+1),w=-2,

20k
e 'ngbk)[_m(sbk)]z—l 1
B 2w)2r (0 —Lg(~In(5by))
(2w)2r (3) s ‘nz<er—th+1),W2£2
"
 (Bb2(~1)3 Yin(5bY)Et 1
(2w)2T (3) by n=2(Lc—Loct1) W=
Ok
_ (5)7i(b)m (1) 2 in(5b))3
(2w)zl (g) n:2(LrXthx+1),W:2ﬂ2
O
02
1 er—th5Wif g2 Lrx—Lix+1 2
fapER, D) = D) (—k) () % ~{in(S) Lo (3.7)
(er—l-tx)- Yo

For0 < y < o, the PDF of the ABER of th&" stream is valid forg > by > 0.

3.5 ABER Outage Probability

The merits of random selection are shown for the simple case in which all antennas are
randomly selected independently in each iteration. The probability of an outage is defined
as the probability when all receivedBER;, k = 1, ..., Lix, in the different data streams

go above a certain threshold. The setABER; are functions of the power gaigf for
k=1,...,Lix, which are correlated random variables due to the inversion operationin (2.12).
To enable traceable mathematical analysis, independent coding and decoding across the
data streams is assumed. Therefore, the sAB&R, for k =1,...,Lix would be modeled

as independent random variables, and their joint PDF is the product of their individual
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marginal PDFs. The outage probability for a given antenna configuration is therefore

Proutage - Pr(ABER_ > Tl, ...7ABER_tX > TI—tX)
Lix
= []Pr(ABER>Ty).
k=1

Through integration of (3.7Rr(ABER > Ty) can be found as

1
Pr(ABER >Ty) = /T * ABER srean( D)0
k

1 2

2
% Lrx—Lix+1
s (—1) Tt (5)m (GI<2> e % _q Lie—L
— bx) Yo “[In(Sby) |~ *dby .
L (5 (B %~ In(So] Ll

Apply the following change of variables

yk=In(5by) ; bx=iek ; Zekdy=dby - (3.8)

, (3.9)

the integration becomes

2
o 9k

I e LA R (FAL W
Pr(ABER >Ty) = / % _eyk) Lot L i
( R( k) In(5Tk) (er — th)! Vo 5 (yk) 5 Yk

— Lrx—Lix+1 o
/O (_1)er Lix (U_kz) t eYkWI? (yk)er—thdyk
In(5Ty) (Lex —Ltx)! \ Yo

0
= O (e ("
|I"I(5Tk)

~nN

where

2 m
Mm=Ln— Ly ac=% Go=53(ag™" - (3.10)

The above integral can be evaluated as
0

0 ey (DY m
oo, €2 = 5 e

> A m ) (3.11)

In(5Tk)
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Therefore,

m (-1) mI
Pr(ABER > Ty) = ek (= r+1 ym I (3.12)
= In(5Ty)
The outage probability can be found to be
0
Lo [ m eadk(— 1)y |
Prowage= [ G| 2. ( >.y%”+1 (3.13)
k=1 = (Mm=r)ia Yie=In(5Ti)

The probability of still being in outage aftét iterations is specified b¥rajure and is

calculated agProutagd, and

_ log(Prtailure)
log(Proutage

is the expected number of RAS iterations for finding a non-outage set of antennas given a

(3.14)

maximumPr ¢ ilure-

3.5.1 Numerical Results

This section presents the ABER outage probability for a MIMO system WghNx,Lix:Lix)
= (4:8,2:4). The expression in (3.13) is evaluated to obtain the ABER outage probability
for an uncorrelated MIMO channel, Wit:brk2 =1fork=1, ..., L Figure 3.1 shows the
ABER outage probability of the4(8,2:4) uncorrelated antenna selected system for differ-
ent required ABER thresholds. Together with the ABER outage probability, the expected
number of RAS iterations calculated using (3.14) are tabulated in Table 3.2 for a given
Praiure 0f 0.01and SNR fromDdB to 10dB.

From Figure 3.1 it can be seen that the outage probability for an ABER threshold of
102 is smaller than the outage probability for lower ABER threshold$®f*, 10>, or
10 over all SNRs. This makes sense intuitively, as there is a smaller chance of finding a
set of antennas that all fail to meet a high ABER threshold than when a low ABER threshold

is to be met.
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ABER Outage Probability

Probability of ABER Outage for (4:8, 2:4) MIMO System
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Figure 3.1: ABER outage probability of 4:8,2:4) system.

Table 3.2: Expected number of RAS iterations versus SNR.

ABERrhreshold| 0dB | 2dB | 4dB | 6dB | 8dB | 10dB
103 4.17 | 1.88 | 1.08|0.72| 0.53| 0.41
10~4 21.48 | 5.33 | 2.21|1.21| 0.79| 0.56
1075 121.69| 14.93| 4.26| 1.91| 1.09| 0.73
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From Table 3.2, the expected number of iterations in order to find a non-outage set of
antennas decreases rapidly for high SNR. At a low SNRI&f, the RAS algorithm requires
only 1.08, 2.21, and4.26 iterations to find a non-outage set of antennas for ABER thresh-
olds of 1073, 104, and10° respectively. Therefore, after a small number of expected
RAS iterations, the system would not be in outage. These numerical results illustrate the

merits of performing random antenna subset selection.

3.6 Summary

This chapter presented the concept of RAS based on a minimum average BER selection
criterion. From the statistics of the received SNR, the ABER outage probability using the
RAS is determined. Numerical results suggest that after a small number of RAS iterations

the system would not be in outage, and this shows the potential merit of RAS.
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Chapter 4

Random Antenna Selection with Antenna

Swapping

In the previous chapter, the use of RAS for antenna selection is presented. It is noted that
in each RAS iteration, the evaluation of the computationally expensive matrix inversion
operation in the selection criterion is required when a different random subset of antennas
is chosen. This motivates the search for a method to reduce the computational complexity
of the RAS algorithm.

This chapter presents the concept of antenna swapping (AS) to address this problem,
and shows that antenna swapping is equivalent to performing matrix modification. Receive
antenna swapping is first presented, followed by transmit antenna swapping. A determin-
istic swapping sequence and random swapping sequence is then introduced. Near the end
of the chapter, a method to update the inverse of a modified matrix is presented, and this
enables the combination of RAS with AS to form an efficient joint transmit and receive

antenna selection algorithm.

28



4.1 Antenna Swapping

The antenna swapping technique can be applied to facilitate an efficient implementation of
the RAS algorithm. In each iteration, the algorithm can swap a pair of transmit or receive
antennas. An antenna from the selected set of antennas is swapped out, and is replaced by
an antenna that does not belong to the set of selected antennas during that iteration. The
combination of the RAS algorithm with antenna swapping is referred to as the RAS-AS
algorithm.

The computational requirements of the RAS-AS algorithm are dominated by the com-
putational complexity of the transmit and receive antenna swapping operations. These

operations will be further investigated in the later sections of the chapter.

4.1.1 Matrix Modification for Receive Antenna Swapping

This section considers the case of swapping a pair of receive antennas. Each receive antenna
is represented by a row of channel gains in the MIMO channel matrix-},. ee the MIMO

channel matrix of dimensiobyy X Lix, and it is represented below

hf!
hf
H, = . (4.1)
DEr><
Therefore,
ht!
hj
HfH = | h, h, .. h, = hyh{' +hoht + ..+ h h (4.2)
hil,
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From the above, it can be seen that each row’s contributidffthl, is of the formbjth.
Therefore, if thejt" row is swapped out and th# row is swapped in, then the contribution
from the jt" row can be subtracted and the contribution fromitAeow can be added to

H'H,, to obtainH' H,,, ; as follows

HittHher = HEH,+hib —hyhf

= H{'H,+uvH
where
U= lbi h; } (4.3)
V= [ni —h; ] (4.4)
so that
" iy
UVH:{Di bj}{hi _bjl :[Di Dj] = hyhf' —hyhi'.
—pH

Therefore, swapping a pair of receive antennas has the effect of introducing 2 mawk-
ification to HH,, in the n'" step of the algorithm. The modification matrix is formed by
multiplying two Ltk x 2 rectangular matrices given in (4.3) and (4.4) above. The modifi-
cation matrix has at most rark and this occurs when the rows and columns ofulhg
matrix are linearly independent. Ratiknodification can occur when the channel gains to
be swapped out and the channel gains to be swapped in are highly correlated. In general,
by modeling the channel gains as independent random variables, the modification matrix is
of rank 2.

The above result can be extended to swapping more than one pair of receive antennas

at a time. The general form &f andV would be as follows

U = | (setof antennas to swapliris) (set of antennas to swap dyts) (4.5)
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V = (set of antennas to swapliis) —(set of antennas to swap dyts) (4.6)

This would result in a ranik modification to theH H,, matrix, wherek is the number of

receive antenna pairs to be swapped.

4.1.2 Matrix Modification for Transmit Antenna Swapping

This section considers the case of swapping a pair of transmit antennas. Each transmit
antenna is represented by a column of channel gains in the MIMO channel matrix. The
effect of swapping a pair of transmit antennas is equivalent to modifying a column in the

H,, matrix. LetH, represent the MIMO channel matrix of dimensiog x Lx, and

Hn = [Dl hy .. DLIX} ' (4.7)

Therefore,

H
I'|r|1_|Hn = [Dl h, .. Dth} lbl h, .. bth]

hf!
ht
= [ hl bz bl-tx :|
hf\,
hi'h; hih, .. hih,
B bgbl Dghz bl2_|r—1th (4.8)
| hihy hih, ohRh

When theith column inH,, is changed, it will affect thé" row andi" column inH: H,..
Therefore, changing th&' column inH,, requires simultaneous changes toitheow and

it" column of HHH,,. From above, it is noted that i€ row andit" column inH'H,, are
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symmetric with respect to each other. Therefore, a result on the simultaneous change of a
symmetric column and row in [32] can be applied, and is presented below.
In order to simultaneously change the symmeitficow andit" column inH'H,, a

modification matrixC would be of the form

o 0 ¢ O 0
0 0O O
0 0O .. O 0
co Ci1 Gii Ci, Ly
0 o .. O 0
0 0 O
0 0 O
0 .. 0 cy O .. .. O

where only tha!" row andit" column have non-zero values. Comparing to (4.8) above, in
order to remove th2" transmit antenna and insert tj{& transmit antenna, the modification

matrix would have to be

i 0 .. 0 hi'hj—hhy 0 .. .. 0 ]

0 0 0

0 0 0 0

o hf'hy —hi'hy ht'h; —hi'h, hi'hy, —hi'h, 4.9)

0 0 0 0
0 0 0
0 0 0

0 .. 0 hih—hlh 0 .. .. 0

The modification matriXxC has at most ranR and can be represented by the product of

two rectangular matrices of dimensibg x 2 and2 x Li respectively [32]. Let these two
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rectangular matrices k¢ andV, and they are defined as follows

(4.10)

(4.11)

whereu contains the adjustment values3'H,,, ande is a vector with al in the ith

position and zeros everywhere else. Then

coo=[u e o u]"<[w ][4 |-

Expanding the above results in

_ o JH o _H
U11 011 011 Ug1
C = Ui 1 11 +1 11 Ui 1
| ULt | [ Ot | | Ot | [ ULl |
U1 0171

= Ui 1 011 -« L1 .. OthJ}_'_ li, {Uil UiHl

L uLtXal i L OLtX71 N
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-O 0 uwys O O- - 0 O 0 O 0 -
0 0 O 0 0 O
0 0 0 0 0 0 0 0
[0 0 g 0 0 . ufyodh
0 0 0 0 0 0 0 0
0 0 O 0 0 O
0 0 O 0 . 0 O
0 0O uy,1 O 0 0 O 0 O 0
[ o 0 uwy O 0 |
0 0 O
0 0 0 0
B uEl U1+ ui'fl ufml
- 0 0 0 0
0 0 O
0 0 O
0O .. 0 uw O .... O

Comparing to (4.9) above, the values tocan be determined as follows
Uk1 = DED] - hEbi (4.13)
fork=1,...,(i—1),(i+1),...,Lix. From
U1+ Uy = hi'h; —hi'h (4.14)
theith element inu can be determined as

(',

J —DiHDi) _ (4.15)

NI =

Ui1=
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Therefore, using (4.13) and (4.15), the matricesandV from (4.10) and (4.11) above
can be determined. With the modification matBixiefined, the updatedf' ;H,, ; can be
computed as

HH H = HIH, +-C = HiH, +uVvH . (4.16)

From the above, it can be seen that swapping a pair of transmit antennas has the effect of
performing a rank2 modification on theH!! ;H, ., matrix. Similar to the case of receive
antenna swapping, the modification matrix has at most ankn general, by modeling

the channel gains as independent random variables, the modification matrix is & rank

To swapk pairs of transmit antennas, a modification matrix of r@kkand appropriate

adjustments to the valuesinvould be required.

4.2 Antenna Swapping Sequence

The antenna swapping sequence is defined as the set of antenna configurations that the
algorithm iterates through to calculate the average BER performance of the system. The
following presents two types of swapping sequences. The first type is a deterministic swap-

ping sequence, and the second type is a random swapping sequence.

4.2.1 Deterministic Swapping Sequence

A deterministic swapping sequence of antenna configurations is a sequence where each
neighboring configuration differs by one transmit or receive antenna. The swapping se-
guence can be decoupled into a transmit antenna swapping sequence and a receive antenna
swapping sequence. The two sequences can then be combined to form a single transmit and
receive antenna swapping sequence with all the combinations. In order to keep the number

of swapping operations to a minimum, the antenna sequence with antenna configurations
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Table 4.1: Receive antenna swapping sequence.
1234/1478/1567{2346/1458/3458/3568

123515781467 2347|1457|3457|2568
1236/1678{1367{2348|1357/3456|2468
123726781267 2358/1358/2356(2458
123836781257 2368/1568/2357|2457
124846781247 2378/1468/2367|2456
12585678/ 1246|2478/1368/2467(1256
126845671245/ 2578/1348/3467|1456
1278/ 3567{1345|3578/1347/3468|1356

1378/2567,2345/4578/3478/4568|1346

that differ from the neighboring configurations by one transmit or one receive antenna will
be used.

The swapping sequence is cyclic. A possible transmit and receive antenna sequence
is presented below for &8,2:4) system. Table 4.1 presents a receiver antenna swapping
sequence that cycles through all the subset antenna configurations dfisizereceive
antenna array witl8 antennas. The sequence goes from top to bottom, left to right. Each
element in the sequence differs from its neighbor by one antenna element. The last antenna
configuration, [1 3 4 6], wraps around to the first antenna configuration, [1 2 3 4], in the
table, and the two differ by one antenna element. Table 4.2 presents a transmit antenna
swapping sequence that cycles through all the 2igabset antenna configurations for a
transmit antenna array withantennas.

The above sequences are not unique and there exist other cyclic swapping sequences.

The combination of the transmit and receive antenna swapping sequences represents all the
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Table 4.2: Transmit antenna swapping sequence.

12/1314/243423

possible antenna configurations of the system.

4.2.2 Random Swapping Sequence

A random swapping sequence is one that randomly selects a antenna, and exchanges it
with another antenna that is not selected in that iteration. In each iteration, a random pair
of transmit or receive antenna is swapped, and each side is equally likely to have its antenna
swapped. This is discussed further in Section 4.4. In a random swapping sequence, it is

possible for the same antenna configurations to be tested more than once.

4.3 Inversion Update for Modified Matrix

From previous sections, it is shown that antenna swapping is equivalent to performing
matrix modification. Therefore, this section will present the Sherman-Morrison formula

and Woodbury formula that can be used to update the inverse of a modified matrix.

4.3.1 Sherman-Morrison Formula

The Sherman-Morrison formula allows the inverse of a modified matrix to be computed
from the inverse of the unmodified matrix. The following presents the details of this matrix
inversion update.

Let Abe aN x N invertible square matrix, withh andv representing twiN x 1 dimen-
sion vectors, ang@ is any arbitrary scalar. Then, lat= A+ Bu be the rankt modified

version of the original matrix A, where the quantBuv" represents a rankmodification.
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Then the inverse of the modified matrix can be related to the inverse of the original matrix
as follows

(A= (A+Bu) t=A""- gA_leA_l (4.17)

whereA = 1+ BvHA~1u[32]. WhenB =1, (4.17) becomes the Sherman-Morrison formula

[32].

4.3.2 The Woodbury Formula

A generalization of the Sherman-Morrison formula is the Woodbury formula and it is pre-
sented below. LeD be aN x N invertible square matrix, witf® andQ representing two

N x k dimensional matricegk < N, and€ is any arbitrary scalar. Then, IBt= D+ £PQH

be the rankk modified version of the original matri®, where the quantitf PQ" repre-
sents a rank modification. Then the inverse of the modified matrix can be related to the

inverse of the original matrix as follows
(D) '=(D+éPQ) 1=D'-¢D Pz IQ"D? (4.18)

whereX = I+ EQMD 1P, andly is thek x k identity matrix [32]. Wherk = 1, the expres-

sion in (4.18) simplifies to (4.17), with = A.

4.4 Random Antenna Selection with Antenna Swapping
Algorithm

With the matrix inversion update expressions from the previous section, the inverse of the
modified matrix after swapping a pair of antennas can be computed. This can facilitate an
efficient method to compute the power gain required in the evaluation of the selection cri-

terion. The realization of the RAS algorithm with AS is referred as the RAS-AS algorithm.
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The RAS-AS algorithm starts off by randomly selecting transmit antennas arigy
receive antennas. The algorithm swaps a pair of transmit or receive antennas in each it-
eration, and keeps track of the antenna configuration that provides the best average BER
performance. In each iteration, there is a probabilitpgfapthat a pair of transmit anten-
nas is swapped, or a pair of receive antennas is swapped with prob&b#itgswap). The
Pswapparameter will be further discussed in subsequent chapters. The algorithm terminates
when either all antenna configurations are tested or when a desired average BER perfor-
mance is achieved. While most existing algorithms require the full complexity MIMO
channel to be estimated, the RAS-AS algorithm only requisgs< Lix complex channel
gains to be estimated at startup. Channel estimation is performed when new antennas are
swapped. This reduces the amount of initial training and spreads the overall channel train-
ing and estimation over time, making the RAS-AS algorithm practical for systems with
large numbers of antennas. This thesis considers temporally uncorrelated channels, and for
channels with temporal correlation, the RAS-AS algorithm can provide the flexibility to fa-
cilitate small updates to maintain or improve performance over time, starting with the best
antenna configuration found from the previous time slot. The pseudocode of the RAS-AS
algorithm is presented in Table 4.3.

In the next chapter, further simplifications will be introduced to the transmit and receive
antenna swapping operations, and these computational complexity reductions can be used

to perform the matrix inversion update in st@pf the pseudocode in Table 4.3.

4.5 Summary

This chapter presents the concept of antenna swapping, and relates it to performing a rank-

2k matrix modification wherk pairs of antennas are swapped. From this relationship,
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Table 4.3: RAS-AS algorithm pseudocode.

© 00 ~N o

11

Initialization:
Randomly seledty transmit,Lx receive antennas to fork,

Calculate(HY HO)_1 andg? for k= 1,..., Lix using (2.12)
-1

Initialize (H"H) .= (HY HO)‘1 and AvgBER.;= AVgBER, using (2.13)

best

Main Loop:
lterate through the antenna configurationt§ Gtep){
Swap a pair of transmit antennas with probabifityapor
swap a pair of receive antennas with probabi{ity- pswap) to form Hp

Update(HHH,) ™ with (4.18)

Calculateg? for k= 1,..., Ly using (2.12)
Calculate AvgBER using (2.13)
if (AvgBER,, < AvgBER, ¢ then
Current antenna configuration is the best : @¢* H);elst: (HitH,) ™

AvgBER,.st= AVgBER,
end if }

1
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the Woodbury formula for matrix inversion update is applied to the modified matrix to
compute the power gains required for the evaluation of the selection criterion. This chapter
also presents a deterministic and random swapping sequence and the pseudocode for the

RAS-AS algorithm is presented at the end of the chapter.
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Chapter 5

Fast Random Antenna Selection with Antenna

Swapping

This chapter presents further complexity simplification of the RAS-AS algorithm based on
rank2 matrix modification from the swapping of a pair of transmit or receive antennas.
The simplified algorithm is analyzed in terms of the required number of multiplications
and additions. The order of computational complexity is also derived. The behavior of the
RAS-AS algorithm is also analyzed in terms of the expected number of iterations using
either a deterministic or random swapping sequence. A greedy version of the algorithm is
also introduced for comparison purposes. Simulations of the average BER performance for

the RAS-AS algorithm conclude this chapter.

5.1 Rank-2 Complexity Reduction

In Sections 4.1.1 and 4.1.2, it is noted that the swapping of a pair of receive antennas or
transmit antennas is equivalent to introducing a rankedification to theH"H matrix.
The inverse of the perturbed'H matrix can be updated using the Woodbury formula in

4.18) for calculatingy®. As a result of the ranR-modification matrix, the expressions for
k
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the swapping of a pair of transmit antennas and the swapping of a pair of receive antennas
can be simplified. The following applies a complexity reduction scheme based on [32]
for evaluating the matrix inverse after the transmit antenna swapping and receive antenna

swapping operations.

5.1.1 Reduced Complexity Transmit Antenna Swapping

When a pair of transmit antennas is swapped, a row and column k'tkematrix has to
be modified. The ranR-nature of the modification matrix and the structure of the modifica-
tion matrix allows for a more efficient computation of the matrix inversion update equation.

From the previous chapter, the update equation is
HH H 1 = HH, +C = HHH, +uVvH (5.1)

whereU andVvH are two rectangular matrices of dimenslapx 2 and2 x Ly, respectively,

and they are defined in (4.10) and (4.11) as
U= lg 2 1 (5.2)

V= [ e u } (5.3)
whereu contains the adjustment valuesk'H,,, ande is a vector with al in theith
position and zeros everywhere else. Applying the Woodbury formula (4.18) to (5.1) above
results in

— _ _ _ -1 _
(Hat1Hnp1) 7" = (H'Hy) ™ = (HHY) 71U (12 VP (HE'HG) 7'U) VR (HRTH) ™

wherels is the2 x 2 identity matrix. Substitutingy andV from (4.10) and (4.11) into the

above expression, and lettily = H{'H,, By.1 = Hf\ {H,,.;, results in

H -1 I
By = Bnl—Bnl[u 9}('2+{9 g} Bnl{g QD [9 u} B, *
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- g Bfl Bfl
= By'—| B;lu Byle | | l2+ SR {u q} &
n n Hp-1 - - Hp-1
B - u Bn u Bn
- —1
i 1] 1+€'B;'u  €'Brls e'Byt
= B_l— B—lu B—l
A n n'& Hp-1 Hp-1 Hp-1
- - u"Byu  1+U"B,-g u'B,

(5.4)

Because of the, vector, the elements in the above expression can be simplified. It can be

seen thaB; g is theit" column of B, &'B; 1 is theit" row of B;1, ande'B;,%g is the

(i,i) element irB; ™. Let these be denoteg; , B}

Irow’

middle matrix in the second term of (5.4), therefore

andf, ; respectively. LeY be the

| t+e'Bi'u é'Bi'e | | 1+B U By R
u'B ity 1+uMB e By 1+uMB Y3 Va
where
o= 148y,
Y2 = Bij
ys = u'B;lu
y4 = 1+HHE;J];:0|
From aboveY is a2 x 2 matrix, and its inverse can be found to be
v-1_ 1 Yo Y2 1 Yo Y2
Y1Ya —Y2Y3 Vs v Vs v1
Therefore, (5.4) becomes
1 -1
_ _ — =N, lrow
- uiB;t
b 1 1_|_HH__1 _B . __.1
— Br?l_ BrT:]_g _rTi];:OI a N,lcol 1,1 N,lrow (55)
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with
d=yaya—yays = (1+B;1,u) (1+ 0B, E ) - (By) (W'B7N) . (5.6)

To further simplify the above, the following relationship in matrix multiplication is used:

letW andZ ben x 2 matrices, and leT be a2 x 2 matrix. Then

2
=3 5wz (5.7)

Tor T2 z I=1j=1

Ti1 T z! 2
W W,

WTZ*:[W

Therefore, letting

=N,icol
Hp—1
T _ 1+g 5naiC| BI7I

—u"Bylu 1+B.! u

L sIrow
-1

ZH _ 5n7irow
i uiB;t

expanding the second term in (5.5) using (5.7) results in

1

-1 -1
B,L, = B, —aWTZ*

- Bl—}<2 iW'Ti'il>
n d iZij_l_l J_j

_ 1
= Byl— S (W Tz +wiTooZ) +WoTorZl +w, T2y )

d
(Bitu) (1+u'Bil,) (BoL,) +
_ g1 (B ') <_Bi,i> (u"Byh) +
DY (B (e (BL)

(Bnk,) (148, u) (wB7Y)
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Collecting similar terms results in

(Bx1u) <1+QHEE%:01> (‘”iﬁw) " +
n Y
Bt _ gt_1t (‘ﬁ.,i) (u"By) . (5.8
n+1 "od <B*-1 ) (_QH B_lg) (B;ﬂlrow) *
—N,lcol

(1+B,1,u) (WB3Y)
In (5.8), variables similar to those in [32] are defined to reduce the amount of redundant

calculations, with

n=B,'u (5.9)
m=u"Byic, = Bnil (5.10)
kp=1+m (5.11)
ko= —u"n (5.12)
ks=—B; (5.13)
d = |ke|? — koka . (5.14)
Therefore, (5.8) can be simplified to
B =Byt o Bk, (kar +heBy L, ) o (ke kBt )] (8.19)

The expression in (5.15) is the resulting simplified r&katrix inversion update formula
that can be used when a pair of transmit antennas are swapped.

Another rank2 simplification is given in [32] based on a different definition of the
matrix. Instead of dividing by to correct theg; j = 2u; 1 term in the modification matri€
in (5.1), another method is to pre-subtract the extra contributian pWith the following

modification to théJ) matrix [32]

0o ] 516
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The definition forV is unchanged. In this case, the modification ma@rixecomes
C=UVH =ue' 4+ gu —uj1e€.

With the new definition folJ, the simplified rank2 matrix inversion update expression has

the same form as (5.15) wity defined differently as
ko= — (U"n+ui1) (5.17)

and the other variables from (5.9) to (5.11), (5.13), and (5.14) are the same. The compu-
tational difference is an extra addition in tkgterm, but a multiplication b)% is avoided

when modifying theg; j term as noted in [32].

5.1.2 Reduced Complexity Receive Antenna Swapping
When a pair of receive antennas are swappedHthid matrix is corrected as follows
Hr|1_|+lHn+1 = Hr|1_| Hn +binbi|;|1 _boutbgut = Hr|1_|Hn +S (5.18)

whereh,, are the channel gains associated with the receive antenna that is to be swapped
in, andh,; are the channel gains associated with the receive antenna to be swapped out.
This can be accomplished with the following raRkrodification matrixS= QE", where

Q andE arel x 2 matrices, and are defined as
Q= { hin - hout } (5.19)

E= [Din —hgyt } . (5.20)
Due to the rank2 nature of the modification matrix, an efficient implementation and sim-
plification of the matrix inverse update equation can be obtained. Starting with the update
equation from (5.18) and applying the Woodbury formula (4.18), results in
_ _ _ -1 _
(Hf 1Hn) ™ = (HE'H) ™ = (H'HY) 71Q (12 + EM (Hi'HY) ~1Q) "EM (HiTH,)
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wherel; is the2 x 2 identity matrix. Substituting andE from (5.19) and (5.20) into the

above expression, and lettiflg = H{'H,, Fny1 = HfL 1H, . 4, results in the following

-1

hix hi
I:n_—i-ll = Fn_l o Fn_l { bin hout } |2 + Fn_l { bin hout } Fn_l
hout hout
-1
i 7 hhiF, 1 hiFn
1 -1 B B UinFn Uintn
I:n+1_ Fo ™ — F 1bin F 1bout 2+ A [ hi, bout } A
- B out out
- -1
- 1| 1+hFth,  hiRTh hinFa *
1 -1 B B Uintn  Hin Uintn  Hout Uintn
I:n+1_ Fn ™ — F lhin F lhout 1
B B i houtF hm 1- houtF hout hout

(5.21)

Let X be the middle matrix in the second term of (5.21), therefore

X — 1‘|‘bi|;|1|:n_lbin hm 1hout B X1 X2
houtF 1h|n 1- houtF hout X3 X4

where
X1 = 1+ bm l:n_lbin
X2 = hm 1hout
_ 1
X3 = houtF hln

X = 1- houtF 1hout

From aboveX is a2 x 2 matrix, and its inverse can be found to be

x—lz; Xa —X2 :E Xa —X2
X1X4 — X2X3 Xa X P Y
Therefore, (5.21) becomes
hiiF
-1 1 -1 =intn
Fisi = Fn n_lbin Fa "hout X
hOUt



1 1 1 1- bgutFn_ 1bout hm 1hout bm l:n_1
Foii=Fa " —— | Fythy, Foth
n+1 n P n Lin 'n Zout 1 He—1 H -1
houtF hln 1+ bin I:n bin _houtFn
(5.22)

with

p:<1+bi|_r|‘|:n_1bin) (1 houtF 1hout) (han_lhout)( houtF 1hm)

To reduce the number of redundant calculations, the following vectors are defined
r1=F, 'hy, (5.23)

Iy = I:n_lhout . (5-24)

Using (5.23) and (5.24), (5.22) becomes

PR | 1-hourz  —hiir rf
Fl=FRt- 5 { ot ] ) o '”H (5.25)
bouth 1+ IJin£1 _Lg
andp becomes
p= (1"" hlnrl) (1_ng|ut£2) - (DHLZ) (_bgutll) . (5-26)
Further expanding (5.25) with the matrix relationship in (5.7) results in
(r)(1—huro) () +
| (r)(Mar2)(r8)  +
nel — M ’ ’
(r2) (hou 1) (r1') +
| ()(-DA+H))
1 . . . .
= Ft- ol (Jard + jord) +1p (jarf + jar)] (5.27)
wherej1, jo2, |3, andja are constants defined as
j1="1-houl, (5.28)
j2=hiira (5.29)
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ja=hH,ry (5.30)
ja=—(1+hfry) . (5.31)

The determinanp can be expressed in terms of the variables as
P=J2j3—Jjaia. (5.32)

The expression (5.27) is the resulting simplified r&nkaatrix inversion update formula
that can be used when a pair of receive antennas are swapped.

The amount of simplification is less than that for the case of swapping transmit an-
tennas, because the structure of the modification matrix in the transmit antenna swapping

contains theg vector, that allows the final expression (5.15) to be further simplified.

5.2 Fast Random Antenna Selection with Antenna Swap-
ping Algorithm

In the previous sections, simplified expressions for the transmit and receiving operations
are presented. These expressions can be used to update the matrix inversesinfstep

the RAS-AS algorithm in the previous chapter, and this version is called the Fast RAS-AS
algorithm. The pseudocode of the Fast RAS-AS algorithm is presented in Table 5.1. The
Fast RAS-AS algorithm achieves the same average BER performance and expected number
of iterations as the RAS-AS algorithm, and these will be examined in the later sections of

the chapter.
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Table 5.1: Fast RAS-AS algorithm pseudocode.

10
11

Initialization:
Randomly seledty transmit,Lx receive antennas to fork,

Calculate(HY HO)_1 andg? for k= 1,..., Lix using (2.12)

,1 -
best

Initialize (H"H) (H5H,) " and AVBER o= AVgBER, using (2.13)
Main Loop:
lterate through the antenna configurationt§ Gtep){
Swap a pair of transmit antennas with probabifty,apor
swap a pair of receive antennas with probabi{ity- pswap) to form Hp
Update(Hr'ﬁ Hn)_1 with (5.15) or (5.27) for transmit antenna swapping
or receive antenna swapping, respectively.
Calculateg? for k= 1,..., Lix using (2.12)
Calculate AvgBER using (2.13)

if (AvgBER,, < AvgBER, .5 then

-1 .
best ™

Current antenna configuration is the best : §¢tH) (HEH,)
AVgBER,.st= AVgBER,

end if }
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5.3 Greedy Fast Random Antenna Selection with Antenna
Swapping Algorithm

A greedy version of the Fast RAS-AS algorithm is presented in this section, and it is intro-
duced as a generic greedy algorithm mainly for comparison purposes to the Fast RAS-AS
algorithm. The greedy algorithm first selects a random subset of antennas, and alternates
between swapping transmit and receive antennas. The algorithm swaps through all the dif-
ferent pairs of antennas on one side and the antenna selection criterion is evaluated. If the
average BER performance of the system improves after swapping a pair of antennas, the
algorithm keeps track of this configuration and sets it as the best antenna configuration.
The new antenna is swapped back, resulting in the original antenna configuration, and an-
other antenna is swapped in. After swapping through all the different pairs of antennas, the
algorithm uses the best antenna configuration, and the same process is repeated for the an-
tennas on the other side of the communication link. The greedy algorithm terminates when
both sides cannot find an antenna that would improve the average BER performance of the
system after swapping through all pairs of transmit and receive antennas. The pseudocode
of the Greedy Fast RAS-AS algorithm is presented in Table 5.2.

Similar to the Fast RAS-AS algorithm, the computational complexity of the greedy
algorithm is dominated by the number of matrix inversion update operations after fast an-
tenna swapping. The computation required for the fast antenna swapping operations are
presented in the following sections, and the expected number of iterations of the greedy
algorithm is determined through simulations. The average BER performance of the greedy

algorithm will be presented in the later sections of the chapter.
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Table 5.2: Greedy Fast RAS-AS algorithm pseudocode.

10

11

12

13

14

15

16

Initialization:
Randomly seledt transmit,Lx receive antennas to forki,

Calculate(HY HO)*1 andg? fork =1, ..., Lix using (2.12)

-1 .
best

Initialize (HHH) (H'H,) ™ and AVgBER .= AVgBER, using (2.13)
Main Loop: (Alternate between transmit and receive antenfias)
Transmitoundgetter= 0, ReCeivV@oundgetter= 0.
Loop: Swap through all pairs of antennas for each sitfeStep){

Swap a pair of antennas.

Update(H}ﬁ Hn) ~L with (5.15) or (5.27) for transmit antenna swapping

Calculateg? for k= 1,..., Lix using (2.12)

Calculate AvgBER using (2.13)

if (AvgBER,, < AvgBER, ) then

-1 .
best

Current antenna configuration is the best : ¢t'H) (HEH,)
AVOBER,.st= AVgBER,
Transmikgungsetter= 1 fOr transmit antenna swapping, or
Receiveyundsetter= 1 fOr receive antenna swapping.
end if
Swap back to original configuration in tm¥' step of the algorithm.
h
if (Transmitgundgetter== 0 andReceiveyungetter== 0) then
Cannot find better antenna to swap in, terminate algorithm.

end if

53




5.4 Computational Complexity

This section analyzes the computational complexity of the Fast RAS-AS algorithm in terms
of the number of additions and multiplications. Let a complex(real) multiplication and
complex(real) addition be denoté&f(Zm) and ¢a(#a), respectively. The analysis will

first identify the initial overhead required at the start up of the algorithm, and then the
required computation of performing the transmit or receive antenna swapping operation

will be analyzed.

5.4.1 Initialization Overhead

At the startup of the Fast RAS-AS algorithm, a random sét,ofransmit antennas, arhgly
receive antennas are chosen to formlthex Lix MIMO channel matrixH. The dominant
initialization overhead is the computation of the inverse of kigH matrix. Once the
initial inverse is computed, the simplified update equations in (5.15) or (5.27) can be used

to update the matrix inverse as antennas are swapped.

5.4.2 Transmit Antenna Swapping Computation

This section will examine the required number of computation for the transmit antenna
swapping with the rank-simplification. Starting with the expression in (5.15), the update

equation for the inverse after swapping a pair of transmit antennas is

N,Irow

Bl =B, ~ B

Nl = d [Pnico (leH + kzgr;i];ow> +n (k3DH By )]

with variablesn, m, ki, ko, k3, andd defined in (5.9) to (5.14). The amount of computation
for the variables are tabulated in Table 5.3. The variables are computed in the order given.

The number of multiplications and additions foris zero because its components can
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Table 5.3: Transmit antenna swap - variable computation.

Variable

Dimension

Multiplications

Additions

ufrom (4.13), (4.15)

(Lixx 1) u

K

(th - 1)%a + %a

n=B,u (Lix X L) Bp? | (L& — 2Lix+1)%m | (L —Lix—1)%a
(Lixxu +(4Lix — 3)%m +%Ra
m=uB} (1 Lex) U 0 0
=Byl (Lxx 1) By,
ki=1+m Ax1)m 0 Ha
ko= —u"n (1 x Lgy) uH (2Ltx — 1) %m 2(Lix — 1) %a
(Lixx1n
ks=—B; (I1x1) B 0 0
d=|ki?—koks | (1x 1)Ky, ko, ks 3%m 2%y
Total (LA —2Lix +1)%m | (Li—2)%a
+6Ltx%m +(2Lix + 3)Za
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be obtained aften has been computed. The last row of Table 5.3 shows the total com-
putation required for the variables. Using the above computational requirements of the
variables, Table 5.4 shows the total amount of computation required for updating the in-
verse expression for transmit antenna swapping. g'knenstant in expression (5.15) is

expanded into the brackets as follows in order to reduce the number of multiplications

_ _ _ Ky Koo k3 Ki_
anl = Bn 1_ |:Bn7i];0| (HDH + EBI’]J];OW) +n (HDH + EEnai];OW>:| .

The computational requirement for the different components in (5.15) are broken up and
computed in the order in Table 5.4.
From previous sectiorB, = H/'H, and is a Hermitian matrix. Therefore, its inverse,

B, ! is also Hermitian. Taking this into account, only the diagonal and upper triangular

-1

nr1- 1he computational complexity

elements have to be computed for variajlds |, andB
analysis also takes into account the real elements when multiplying and adding vectors and
matrices.

The total number of multiplications and additions required to update the matrix inverse
is given in the last row of Table 5.4, which a(et2X+ Lix — 1)%m + (8Lix + 5)%m and
(LE + Lix — 2)Ga + (4Lix + 2)%a, respectively.

The Q-function in the average BER expression can be implemented efficiently in the
form of a look-up table. An additiondlix — 1 additions andl more multiplication are
required to calculate the average BER from lthedata streams using expression (2.13).

Table 5.5 summarizes the computational complexity for the cases of calculating the

variables and updating the matrix inverse. In each case, the computational complexity is of

orderO(L3).
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Table 5.4: Transmit antenna swap - inverse update computation.

Variable Dimension Multiplications Additions
a="4 (1x1)d, k 2% 0
b="% (1x1)d, ko 7 0
c=19 (1x1)d, ks 7 0
d=an" (1x1)a, (1x L) n" Lix@m 0
e=bB, I | (I1x1)b, (IxLy)B,i (2Ltx — 1)%m 0
f=cnf (1x1)c, (1x L) n" 2Lx%m 0
g=aBl | IxDa@xLly)Byl | (Lx—1)%m+2%m 0
h=d+e (IxLx)d e 0 (Lix—1)6a+Za
i=f+g (IxLlw) f, g 0 (Lix—1)Ca+Za
i=Byih | LxDBL L (IxLe) h | =GN 4+ 2Ly LoxZa
k= ni LcxDn, AxLy)i | Bt o1, % LixZa
| = j+k (Lox < L) i, K 0 o + Lo
By =Byl—1|  (LuxLu) Byl 0 Llbo )iz, + L
Total (L +Lix — 1)%m (L& +Lix—2)%a
+(8Ltx +5)%m +(4Lix + 2) %4
Table 5.5: Transmit antenna swap - computation summary.
Calculation Multiplications Additions

Variables (5.9) to (5.14
Matrix Inverse (5.15)

Total

(L& — 2Lix + 1)%m + 6Ltx%m
(L34 Lix — 1)%m+ (8Lix +5)%m

(2L — Lix)€m+ (14Ltx + 5)%m

(Ltzx +Lix—

(2L2 + Lix —

(L — 2)%a+ (2Lix +3)%a
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Table 5.6: Receive antenna swap - variable computation.

Variable Dimension Multiplications Additions
r, =F;thy, (Lix X L) Pt Lix(Lix — 1)Gm+ 2LtxZm | Lix(Lix — 1)%a
(th X 1) bin
ro=Fithoy (Lix x Lix) Ryt Lix(Lix — 1)%m+2Ltx%Zm | Lix(Lix — 1)%a

(Lix x 1) hoyt

j1=1—hblrs | (1x Led) bl (Lix x 1) 1 2L x%m 2Lx%a
j2=hiir, (1x Ly b, (Lixx D) 1y Ltx@m (Lix—1)%a
ja=hburs | (IxLed i Lixx 1)1y 0 0
ja=hir =1 | (I1xLed i}, (Lkx ) 1 2Lt 2P
P=j2j3—jaja | (Ax1) j1, j2s ]z ja 3%m 2K~
Total (2L2 — Lix)6m (2L2 — Lix— 1)%a
+(8Lix + 3)%m +(4lix+ 2)Za

5.4.3 Receive Antenna Swapping Computation

This section examines the required amount of computation for receive antenna swapping
with rank-22 simplification. Starting with the expression in (5.27), the update equation for

the inverse after swapping a pair of transmit antennas is
F=F = [rq (jarf 4 jary ) + 12 (jarf + jard)]

with variables 4, r», J1, j2, J3, j4, andp defined in (5.23), (5.24), and (5.28) to (5.32). The
amount of computation for the variables are tabulated in the Table 5.6. The variables are
computed in the order given.

The number of multiplications and additions faris zero becausg; is the conjugate of

j2. The last row of Table 5.6 shows the total computation required for the variables. Using
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the above computational requirements, Table 5.7 shows the total amount of computation
required for updating the inverse expression for receive antenna swappiné.cﬁnstant

in expression (5.27) is expanded into the brackets as follows in order to reduce the number
of multiplications

Foa=Fn - l[l (J—SLT + J—SLE) +ry (J—S’L? + %LE')] :

The computational requirement for the different components in (5.27) are broken up and
computed in the order in Table 5.7.

From previous sectiork, = H'H,, and is a Hermitian matrix. Therefore, its inverse,
F. ! is also Hermitian. Taking this into account, only the diagonal and upper triangular
elements have to be computed for the variatides, m, andF, }. The computational
complexity analysis also takes into account the real elements when multiplying and adding
vectors and matrices.

The total number of multiplications and additions required to update the matrix inverse
is given in the last row of Table 5.7, which af? + Lix)m + (8Lix + 4)%m and (L& +
Lix)%a + 4LixZa, respectively. After updating the matrix inverse, the segﬁ)for k=
1,...,Lix can be obtained by inverting ttik, k) elements in the updated inverse.

The Q-function in the average BER expression can be implemented efficiently in the
form of a look-up table. An additiondlix — 1 additions andl more multiplication are
required to calculate the average BER from lthedata streams using expression (2.13).

Table 5.8 summarizes the computational complexity for the cases of calculating the

variables and updating the matrix inverse. In each case, the computational complexity is of

orderO(L3).
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Table 5.7: Receive antenna swap -

inverse update computation.

Variable Dimension Multiplications Additions
a=1 (1x1)p, i1 R 0
b= 1 (1x1)p, j2 2%m 0
c=1 (1x1)p, js 0 0
d=1 (Ix1)p, ja P 0
e=art! (1x1)a (IxLyrt 2Lix%m 0
f=hr} (Lx1)b, (1x Ly ry L% 0
g=crf (Ix1)c, (1xLy)rh Lex%m 0
h=dr} (1x1)d, (Lx L) rY 2LtxPm 0
i=e+f (IxLw)e f 0 Lix@a
j=g+h (IxLx)gh 0 Lixa
k=t | (Lxx D1y, (Wx Lod i | 2G04 2L o Loxa
I=rp) | (Lxx D1 (xbed j | =G0+ 2L Loxa
m=k+| (Lix % L) K, | 0 Lolboc L g, 1 Lix%a
Frl=Fyt (Lix X L) Fr, m 0 Lulboc Dz + Lix%a
Total (LZ + Lix)€m (LZ +Lix)%a
+(8Lix + 4)%m +ALixZa
Table 5.8: Receive antenna swap - computation summary.
Calculation Multiplications Additions
Variables (5.23) to (5.24), (2L, — Lix)ém+ (8Lix+3)Zm | (2LE — Lix— 1)Ga+ (ALix+ 2)%a
(5.28) to (5.32)
Matrix Inverse (5.27) | (L& +Lix)Gm+ (8Lix+4)%m (L Lix) Ga+ 4exZa
Total (3LZ)Gm+ (16Lix + 7)%m (3LZ — 1)%a+ (8Lix +2)%a
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Table 5.9: Gauss-Jordan elimination computational complexity.

Multiplications Additions

(Lﬁx)(gm (Lt3x - 2I-t2x + th)%a

5.5 Matrix Inversion by Gauss-Jordan Elimination

In the case that the inverse of the matrix required to find the power gf;lins(Z.lZ) is not
updated via antenna swapping, the matrix inversion can be found using Gauss-Jordan elim-
ination. Table 5.9 presents the computational complexity of the Gauss-Jordan elimination
method required for calculating the inverse dfiax Lix matrix [33]. It can be seen from
Table 5.9 that finding the inverse of a matrix using the Gauss-Jordan elimination method is
of O(L3,) complexity [33].

In order to compare the computational complexity of the Fast RAS-AS algorithm to
the computation required in performing a full complexity ES using the Gauss-Jordan elim-
ination method for finding matrix inverses, the complex multiplication and addition ex-
pressions in Table 5.5, 5.8, and 5.9 are expressed in terms of real multiplications and ad-
ditions. Each complex multiplication involvesz,, and2%,, and each complex addition
involves2%,. Table 5.10 presents the computational complexity of the transmit antenna
swapping operation, receive antenna swapping operation, and the matrix inversion using
Gauss-Jordan elimination in terms of real multiplications and additions.

After expressing the computational complexity in terms of real multiplications and ad-
ditions, Table 5.11, 5.12, and 5.13 present the computation required to perform transmit
antenna swapping, receive antenna swapping, and Gauss-Jordan elimination in one Fast
RAS-AS or full complexity ES iteration for different values lof.

In subsequent sections, the expected number of iterations of the RAS-AS algorithm will

be analyzed. Using the expected number of iterations and the computational complexity in
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Table 5.10: Computation summary of transmit antenna swapping, receive antenna swap-

ping, and Gauss-Jordan elimination.

Multiplications

Addi

tions

Transmit Antenna Swappin
Receive Antenna Swappin

Gauss-Jordan Elimination

g (8L3 + 10Ltx +5)%m
g (122 + 16Lty + 7)%m

(43

(1213 +

)%m

(8LZ + 6Lix — 3)Za

(BL3, — 4LZ + 2Lix) Za

8th)e@a

Table 5.11: Transmit antenna swapping computation for diffdrgnt

D

Lix | Transmit Antenna Swap Transmit Antenna Swa
Multiplications Additions
2 57 41
3 107 87
4 173 149
5 255 227
6 353 321

Table 5.12: Receive antenna swapping computation for différgnt

P

Lix | Receive Antenna SwapReceive Antenna Swa
Multiplications Additions
2 87 64
3 163 132
4 263 224
5 387 340
6 535 480
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Table 5.13: Gauss-Jordan elimination computation for diffelgnt

Lix | Gauss-Jordan Gauss-Jordan
Multiplications | Additions
2 32 28
3 108 105
4 256 264
5 500 535
6 864 948

Table 5.11, 5.12, and 5.13, the computational savings of the Fast RAS-AS algorithm over

a full complexity ES will be examined.

5.6 Performance of a Deterministic Swapping Sequence

In a deterministic swapping sequence, a pair of transmit or receive antennas are swapped
according to a predefined swapping pattern in each iteration. Let a MIMO system with
Nix number of transmit antennas;, number of receive antenndsy number of transmit

RF chains, and.,x number of receive RF chains be denotdgk:(Nix,Lix:Lix). A possible
transmit and receive antenna swapping sequence 48&:4) system was presented in
Tables 4.2 and 4.1, respectively. In the following, the expected number of iterations for the
RAS-AS algorithm using a deterministic swapping sequence to find the optimal antenna
configuration is first analyzed, and the average BER performance is simulated for the cases
of a MIMO channel with uncorrelated antennas and a MIMO channel with correlation

between the transmit antennas.
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5.6.1 Expected Number of Iterations

For a given channel realization, one of the antenna configurations in the deterministic swap-
ping sequence has the lowest average BER, which we term the optimal configuration. For
RAS-AS, a random configuration is selected initially. The expected distance between the
starting and optimal configurations refers to the expected number of iterations.

LetN = ( )(N'X) represent the total number of possible antenna configurations. As-
sume each antenna configuration is equally likely to be selected as the starting configura-
tion, and therefore, each configuration hak/A probability of being selected. Assuming
the configurations are labeled by indices, the probability of selecting the antenna config-
urationn is Peonfig(n) = 1/N, wheren = 1,...N. The possible distances from the optimal
configuration to any starting antenna configuration would be in the ran@ae®N — 1.
Therefore, on average, the expected distance to the optimal configuration from any antenna
configuration, or the expected number of iterations is

N—1 1 N—1 N_1
E[iteration) = z KRonfig(K) z k_ —= N DH((N=-1)+1) = - (5.33)
Therefore, the expected number of iterations for the RAS-AS algorithm with a determin-
istic swapping sequence (bl — 1) /2, whereN = (,_ )(N“X) is the total number of antenna

configurations. This result is expected and it makes sense intuitively.

5.6.2 Simulation Results

For a @:8,2:4) MIMO system, the average BER performance of the RAS-AS algorithm is
simulated usindgl000 channel realizations. Figure 5.1 presents the average BER perfor-
mance of the RAS-AS algorithm when a deterministic swapping sequence is used. It is
observed in Figure 5.1 that after perform®b@o of the exhaustive search iterations, which

is the expected number of iterations for a deterministic swapping sequence, the RAS-AS
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Average BER of (4:8,2:4) MIMO System with Deterministic Swapping Sequence
[y T T T T T

o 20dB | T = - _

Average BER

(2:4) fixed ZF Rx N ~

Exhaustive Search (ES) X N Sk
(4:8,2:4) ZF Rx 1% of ES w Deterministic Seq S 4
(4:8,2:4) ZF Rx 5% of ES w Deterministic Seq N N ]
(4:8,2:4) ZF Rx 10% of ES w Deterministic Seq N\
(4:8,2:4) ZF Rx 20% of ES w Deterministic Seq \ ~
(4:8,2:4) ZF Rx 50% of ES w Deterministic Seq N\ ~
(4:8,2:4) ZF Rx 90% of ES w Deterministic Seq | N\ >

0 1 2 3 4 5 6
SNR (dB)

sox+uo |k

Figure 5.1: Average BER 0f4(8,2:4) MIMO system with deterministic swapping se-

quences.

algorithm is able to find an antenna configuration that can achieve an average BER perfor-
mance that is abot4dB, 0.5dB, and0.6dB away from the optimal performance achieved
with exhaustive search for average BER46f3, 10~4, and10~°, respectively. Therefore,
after performing the expected number of iterations found from the analysis, it is possible
for the RAS-AS algorithm to find a set of antennas that can achieve close to optimal per-
formance. It is also observed thaR®dB to 2.8dB gain in average BER performance is
achieved over using a fixed subset of antennas, by performing only a small percentage of
possible RAS-AS iterationd %), at average BERs df0—2 and10~3, respectively.

The correlation matrix in (2.10) is used in the simulation of the performance of the
RAS-AS algorithm under correlated transmit antenna channel conditions. Figure 5.2 presents
the RAS-AS average BER performance foda8(2:4) system using a deterministic swap-

ping sequence with different percentages of exhaustive search iterations.
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Average BER of (4:8,2:4) MIMO System with Deterministic Swapping Sequence under Correlated Channel
=" T T T T T T T T T T

?:;J
e~

Average BER

(2:4) fixed ZF Rx < B
Exhaustive Search (ES) N N * ]
(4:8,2:4) ZF Rx 1% of ES w Deterministic Seq AN N
(4:8,2:4) ZF Rx 5% of ES w Deterministic Seq N\ EN
(4:8,2:4) ZF Rx 10% of ES w Deterministic Seq N
(4:8,2:4) ZF Rx 20% of ES w Deterministic Seq
(4:8,2:4) ZF Rx 50% of ES w Deterministic Seq et A
(4:8,2:4) ZF Rx 90% of ES w Deterministic Seq ‘ ‘ N ; ]

0 1 2 3 4 5 6 7
SNR (dB)

@m*+m®‘%

©
©
=
S

Figure 5.2: Average BER o#(8,2:4) MIMO system with deterministic swapping sequence

under spatially correlated channels.

From Figure 5.2, it can be seen that under a correlated transmit antenna condition, the
system exhibits a higher average BER across all SNRs when compared with the perfor-
mance under an uncorrelated channel in Figure 5.1. The slopes of the average BER curves
are less steep, as the diversity order is reduced due to correlation between antennas. It is
observed that thB0% average BER curve for a deterministic swapping sequence is about
0.8dB, 1.2dB, 1.2dB, andl1.3dB away from the exhaustive search performance under trans-
mit antenna correlation for average BER<6f2, 10-3, 104, and10~° respectively. This
suggests that the RAS-AS algorithm behaves similarly in terms of computation versus per-
formance under uncorrelated and correlated channel conditions. Similar to the uncorrelated
case, a large average BER performance gain is observed from performingomythe
ES iterations when compared with the average BER achieved using a fixed subset of an-

tennas. The observed gain for the correlated cad®@B at an average BER di0~! and
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3.50B at an average BER d02.

5.7 Performance of a Random Swapping Sequence

For a random swapping sequence, a single pair of transmit or receive antennas are ran-
domly swapped in each iteration. The behavior of the RAS-AS algorithm using random
swapping can be modelled as a random walk on a homogeneous stationary Markov chain.
The following sections will develop this model, and the expected number of iterations of
the RAS-AS algorithm using a random swapping sequence to the different states in the
Markov chain model is found. The average BER performance of the RAS-AS algorithm
using a random swapping sequence is also simulated at the end of the chapter for both

uncorrelated and correlated transmit antenna MIMO channels.

5.7.1 Markov Chain Model for Analysis

The combinatorial problem of random antenna selection at either the transmit or receive
side can be classically described as one of selecting balls from an urn, where an initial set
of Lix or L;x balls are randomly selected, respectively. For random antenna swapping, each
iteration would randomly replace one of the selected balls with another randomly selected
ball from the urn. Assume the optimal set of balls is colored red and all the other balls are
colored white. Therefore, there would be two urns, one for the transmit side and one for
the receive side, each havihg red balls andNix — Lix white balls, and_x red balls and
Nix — Lrx White balls, respectively.

The following discussion will develop the model for the urn on the transmit side. A
similar development can be used for the receive side. For an ur\witalls, withL¢y of

them being red, there can hg + 1 different states, each having different numbers of red
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Li-1 Red
1 White

\6—/ 0o oo
State 0 Pio State 1 \@/

(9> Fl’-lxl-tx FLX»1 th-1(é>
P

. Lo LT

State LIX Fl)‘tx_1 Lix State th'1

th -k Red
K White

Lix-1 White
1 Red

Figure 5.3: Transmit side RAS-AS Markov chain model.

and white balls. The states are connected by edges with different transition probabilities,
pij, and is illustrated in Figure 5.3.

With random selection, the algorithm can start in any of the states with different starting
probabilities. Each edge indicates an allowed state transition. Each state has a probability
to remain in the same state after each swapping iteration. The stategwitdd balls and
0 white ball is the state with the optimal configuration (Stdle Statek is the state with
k white balls and_ix — k red balls. The system in Figure 5.3 is a discrete-time finite state
Markov chain with transition probabilities that depend only on the current time instant,
regardless of the behavior of the algorithm in previous time instances. The Markov chain is
also homogeneous in time with stationary transition probabilities, and is also irreducible as

any state is reachable from any other state with different numbers of state transitions. The
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transition matrix of the above Markov chain has the following form.

O pox O 0
P10 P11 P12 0 0
Rx=1 0 -+ 0 pc1 Prk Prkrl 0 0
O PP oo oo oo O thx_lth—z thx—lth—l thX—lLtX
0 . . . . O O ththxfl ththx

(5.34)
Each state can move to its neighboring states with some nonzero transition probability.
Other than the optimal state (State 0), all the other states have a probability of remaining in

the same state after a swapping operation. The elements of the transition matrix are given

([ Lix—i Nex — Lix — | |_
IO""(th>( m) <MXLW><W) (5-35)
Lix—1 Nex — Lix — 1
1= 5.36
P (ux)(mxux) (60)

W*:(m)( m) (5.37)

with i representing the number of white balls, ardo, ..., Lix. For any row of the transition

as follows

matrix, the sum of the transition probabilitieslis The above expressions are derived in
the following paragraphs.

The transition probabilityp; ; represents the probability of remaining in the same state
with i white balls after a swapping operation. This event can happen when a white ball is
swapped out and another white ball is swapped in, or when a red ball is swapped out and
another red ball is swapped in. The first term in (5.35) is the probability of selecting a red

ball to swap out and selecting another red ball to swap in, when therendmée balls in
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the urn. The probability of selecting a red ball to swap m(t&%;—i) and the probability

of selecting another red ball to swap in <m> The second term in (5.35) is the
probability of selecting a while ball to swap out and selecting another while ball to swap in,
when there arewhite balls in the urn. The probability of selecting a white ball to swap out
is < ) and the probability of selecting another white ball to swap |6§3L§¢'> The

two events are mutually exclusive, therefore, the transition probapijlitis the summation

of the probabilities of the two events.

The transition probability; ;1 represents the probability of gaining a white ball after a
swapping operation. This event can happen when a red ball is swapped out and a white ball
is swapped in. The term in (5.36) is the probability of selecting a red ball to swap out and
selecting a white ball to swap in, when there arehite balls in the urn. The probability
of selecting a red ball to swap out(é}_xt—;i> and the probability of selecting a white ball to
swap in |s<'\'t,\§[X L}_th').

The transition probability; j 1 represents the probability of losing a white ball after a
swapping operation. This event can happen when a white ball is swapped out and a red ball
is swapped in. The term in (5.37) is the probability of selecting a white ball to swap out
and selecting a red ball to swap in, when therei aviite balls in the urn. The probability
of selecting a white ball to swap out (SLITX> and the probability of selecting a red ball to
swap in is(Ntxith>.

The probability of randomly choosing a configuration that belongs to one of the states,

or the initial state distribution of the Markov chain can be found as follows: rigppresent

the number of white balls. The probability of starting in a state withite balls is
(L) (M)
(t3)

fori =0,..., L The term([‘::) represents all the possible combinations of choosing

A = (5.38)

balls from a urn withNix balls. The term(Ll'Xtii) represents all the possible combinations
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of choosingLix — i red balls from a total oty red balls in the urn. The terrﬁ\ltx
represents all the possible combinations of choosingite balls from a total ofNix — Lix
white balls in the urn. Therefore, the total number of combinations of choagjdmalls of
whichi of them are white antl, — i of them are red is the product Qﬂ;‘ii) and (Mot
The probability of this event is equal to the ratio of all its combinations over all the possible
combinations from choosinigy balls fromN balls.

Collecting all theA; into a column vecton forms the initial state distribution for the
system. The steady state distribution vector of the sydsteman be found whehl = I1P,
and the summation of the elementdofs 1.

For random swapping of both transmit and receive antennas, the algorithm can be an-
alyzed with a Markov chain witliLix + 1) (Lx + 1) states. The state diagram is presented
in Figure 5.4. As seen from Figure 5.4, each neighboring state differs by one red or white
ball in the transmit side or receive side. A horizontal transition represents transmit antenna
swapping, and a vertical transition represents receive antenna swapping. The probability
of swapping an antenna on the transmit side or receive side is determined by the parameter
Pswapin step5 of the pseudocode in Table 4.3 and Table 5.1. For each iteration, there is
a probability ofpswapto swap a pair of transmit antennas, or a probabilityIof pswap)
to swap a pair of receive antennas. Without further informatmpapis set to% in this
thesis, so that there is an equal probability of swapping an antenna on the transmit side or
receive side in each iteration. This represents the case of equally likely random swapping
of transmit and receive antennas.

The transition probability matrix for transmit and receive antenna swapping is a com-
bination of the individual transmit swapping and receive swapping transition matrices. Let

Ryx represent the transmit swapping transition matrix in (5.34), and similarl.Jetp-

resent receive transition matrix. The transition matrix for combined transmit and receive
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Figure 5.4: Transmit and receive side RAS-AS Markov chain model.
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antenna swapping is found to be

Ryxrx = ILy+1 ® PswagPx + (L — Pswap Prx @ L1 (5.39)

where® represents the Kronecker product. The above transition matrix has a structure,
where theRy matrix is copied on the diagonals of the identity matrix, 1. This represents
the swapping of transmit antennas, while keeping the receive antennas fixed. The latter
Kronecker product provides transition probabilities into the diffef@pbon the diagonal
when a receive antenna is swapped while keeping the transmit antennas fixed. Because the
swapping of transmit or receive antennas are equally likely, transitioRg amdPx occur
with probability pswapand (1 — pswap), respectively. For any row of the transition matrix,
the sum of the transition probabilitiesis

The probability of randomly choosing a configuration that belongs to one of the states
or the initial distribution of the states can be found as follows:i l@hd k represent the
numbers of white balls in the transmit urn and receive urn, respectively. The probability of
starting in a state withtransmit white balls antl receive white balls is
() (P79 (L) (75™)

() ()

fori =0,...,Lix, kK=0,...,Lx. The expression in (5.40) is a straightforward extension of

Aik=

(5.40)

expression (5.38). The initial state distribution of the system can be formed by collecting
all the A; i into a column vectorA\. Similarly, the steady state distribution vector of the

system/[1, can be found whefl = MP, and the summation of the elementJdfs 1.

5.7.2 First Passage Probability

The first passage probability from one state to another statesiaps is presented in this

section, and is used to find the expected number of iterations required to reach the different
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states in the Markov chain model. Starting from siatbe probability of reaching state

in n steps for the first time can be defined as [34]
iV = Prisy=j,sm# ], foro<m<nlso =] (5.41)

where s, represents the state of the system in stepA relationship between the first

passage probability,-(j”), and then-step transition probabilitypi(j”), is given by [34]

o =g fipy ¥ n>1 (5.42)
where then-step transition probabilitypi(j”), is theit" and jt" element in thet" power of

the transition matri, i.e.,

pi(jn) = [Pn]i,j . (5.43)
Fori # j, the following holds:

(0 = 0 (5.44)

py =1 (5.45)

py =0 (5.46)

iV o= p. (5.47)

Fori = j, the following holds:

fii(”) =1 forn=0

(5.48)
V=0 forn+£0.

The moment generating function (MGF) of the sequer{cp%@} and{ fi(jn)} can be defined
as [34]:

Ri@= > o7 (5:49)
n=0

Fi(2) = i £z (5.50)



Substituting the MGFs in (5.49) and (5.50) to the transition probabilities in (5.42), the
relationship between the first passage probability andhibiep transition probability can

be expressed as [34]

o=
0, © 0.9 N
1] gZO 1) r;) JJ

Ri@ = P +Fi(@P;2. (5.51)

To find the sequence of first passage probabilities, the expression in (5.51) can be re-

arranged as

Ri (2 —plf
Pij (2)

S on 2~ pl))

- pﬁ?)zn

00 (n)
Sne1 b 2"
>n-oPjj 2"

The coefficients ofyj(z) are the first passage probabilities of reaching sidte the first
time inn=0,1,...,c0 numbers of steps, when starting in stateThe coefficients of the
polynomialsP;j(z) and Pjj(z) can be found from the" power of the transition matrix
in (5.43) numerically. The coefficients &j(z) can then be calculated numerically by
long division of the polynomial®;(z) andPjj(z). The length of the polynomialg;(z)
andPjj(z) are chosen such that all the significant first passage probabilities>*dd are

captured.
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5.7.3 Expected Number of Iterations

This section will present the expected number of iterations for the algorithm with a ran-
dom swapping sequence to reach the different states in the Markov chain model using the
first passage probabilities from the previous section. As noted in [34], the first passage

probability is a proper probability distribution, where
fij = Zo iV =1. (5.53)
n=

For transmit-antenna-only or receive-antenna-only swapping,beta discrete non-negative
integer-valued random variable representing the number of steps in order to reagh state
for the first time starting from staie The associated PDF for the random variabples the

first passage probabilitid#)n) forn=0,...,. Therefore, the expected number of iterations

to reach stat@ for the first time starting from staids
Elni] = ifig‘)n. (5.54)
Nn=

wherekE]|.] is the expectation operator.

Similarly, for transmit and receive antenna swappingniebe a discreet non-negative
integer-valued random variable representing the number of steps in order to reaghcptate
for the first time starting from statek. The associated PDF for the random variafyie
is the first passage probabilitieﬁé’%q forn=0,...,0. Therefore, the expected number of

iterations to reach state g for the first time starting from staiek is

Enl =S " n. (5.55)

The algorithm can start in each of the states with initial state distribution probabilities
defined in (5.38) or (5.40). Therefore, using the initial state distribution the average number

of iterations required to reach stater statep, g starting from any state can be found. Let
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N represent this quantity and it is defined as

N = _i/\ini (5.56)

whereSis the last state which is equal kg or Ly, for transmit-antenna-only or receive-
antenna-only swapping, respectively. From (5.56), it can be seeh tised sum of the set
of random variables; weighted by the initial state distribution probabilities. For transmit
and receive antenna swappimgis defined as

Lix Lix

N=Y Z}Ai’kni,k (5.57)

k=0i=

whereA, i is the initial state distribution in (5.40).
The following presents the expected number of iterations required for the algorithm to

reach state or statep,q on average starting from any state, as well as the variance of the
average number of iterations. For transmit-antenna-only or receive-antenna-only swapping,

the expected value & in (5.56) is
S
N = AE[Nni] (5.58)
mean i;) | |

whereSis equal toLx or L for transmit-antenna-only or receive-antenna-only swapping,
respectively. Similarly, for transmit and receive antenna swapping, the expected vilue of
in (5.57) is

er th

Nmean = Z %Ai,kE[ni,k] . (5.59)

K=0i=
The expressions in (5.58) and (5.59) are the expected number of iterations required for the
RAS-AS algorithm, using a random swapping sequence, to find an antenna configuration

belonging to stat or statep, q on average.
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To find the variance in the number of iterations, the variance of the set of random vari-
ablesn; are averaged and weighted by the initial state distribution. Therefore, for transmit-

antenna-only or receive-antenna-only swapping, the variance on average is
S
Nyar = Z})\iVar[ni] (5.60)
i=

whereVar].] is the variance operator, ar®lis equal toLix or Lyx for transmit-antenna-
only or receive-antenna-only swapping, respectively. Similarly, the variance on average for

transmit and receive antenna swapping is
er I—tX
Nvar = z Z}Ai,k\/ar[ni,k] . (5.61)
K=0i=
The following section will apply the above analysis to a MIMO system to predict its ex-

pected number of iterations.

5.7.4 Analysis Example

As an example, the following applies the analysis from the previous sectiong#®214)
system. Consider the case of performing receive-antenna-only swapping. The case of
performing transmit-antenna-only swapping can be analyzed similarly. The system can be

modeled as in Figure 5.3 and the transition matrix is as follows.

0 1 0 0 0
0.0625 03750 05625 O 0
Px = 0 02500 05000 02500 O (5.62)
0 0 05625 03750 00625
0 0 0 1 0

The initial state distribution vector of the system can be calculated according to (5.38), and

is presented in Table 5.14. The system reaches steady state with a state distribution vector
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State 0 1 2 3 4

Probability | 0.0143| 0.2286| 0.5143| 0.2286| 0.0143

Table 5.14: Receive antenna swapping initial distribution.

State 0 1 2 3 4

Probability | 0.1137| 0.3033| 0.3412| 0.2275| 0.0142

Table 5.15: Receive antenna swapping steady state distribution.

presented in Table 5.15. It can be seen that during steady state, théxd ispaobability
that the system will be in the optimal state (Sta}e

For both transmit and receive antenna swapping, the system can be modelled as in
Figure 5.4. The receive transition matfx for a (4:8,2:4) system is presented in (5.62)

and the 4:8,2:4) By transmit transition matrix is presented below.

0 1 0
Rx=1] 0.25 050 025 | - (5.63)
0 1 0

The combined state transition probability matrix for both transmit and receive antenna
swapping can be found according to equation (5.39) and is presented in Appendix C.

The initial state distribution vector of the system can be calculated according to (5.40),
and is presented in Table 5.16 for the82:4) system. The system reaches steady state
with a state distribution vector presented in Table 5.17. It can be seen that during steady
state, there is 8.0325probability that the system will be in the optimal state (St@.

Using the expression in (5.59), the expected number of iterations to reach the different
states for the first time for a1(8,2:4) system using the RAS-AS algorithm with a random
swapping sequence is presented in Table 5.18. The first passage probability is used to find

the expected number of iterations in order to reach the different states in the system, and

79



State 0 1 2

0 |0.0024| 0.0095| 0.0024

1 |0.0381| 0.1524| 0.0381

2 | 0.0857| 0.3429| 0.0857

3 ]0.0381| 0.1524| 0.0381

4 | 0.0024| 0.0095| 0.0024

Table 5.16: Transmit and receive antenna swapping initial distribution.

State 0 1 2

0 | 0.0325| 0.0650| 0.0162

1 |0.0867| 0.1733| 0.0433

2 | 0.0975| 0.1950| 0.0487

3 | 0.0650| 0.1300| 0.0325

4 |0.0041| 0.0081| 0.0020

Table 5.17: Transmit and receive antenna swapping steady state distribution.
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State 2 TXAngpt | L TXANgp: | O TXANpt
4 RXANppt 473.53 174.23 473.53
(445.99) | (174.94) | (475.20)
3 RXxAnppt 36.09 12.05 36.09
(36.96) | (13.13) | (37.29)
2 RXAngpt 14.87 2.93 14.87
(15.40) (4.20) (15.87)
1 RXANppt 36.09 12.05 36.09
(36.75) | (12.25) | (36.79)
0 RxANgpt 473.53 174.23 473.53
(491.50) | (178.03) | (474.58)

Table 5.18: Expected number of iterations for each state o#ti82(4) system. The total
number of iterations for exhaustive search is 420. The simulated number of iterations are

presented in brackets.

the full range of the first passage probability function that has significant probabilities is
used.

The set of optimal transmit antennas and optimal receive antennas is dendteriy;
andRxAngpt, respectively. Each entry in Table 5.18 shows the expected number of itera-
tions to reach a particular state, which is indicated by the number of optimal antennas in
the top row and leftmost column of the table. The expected number of iterations obtained
from the analysis is presented above the simulated number of iterations, which is presented
in brackets for each entry in Table 5.18. The optimal state is located at the upper left hand
corner, and the three surrounding states are the boundary states. FbBjPd)(system,

the total number of iterations by exhaustive search (E§$(1™) = (3) (;) = 420. From
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Table 5.18, it can be seen that a random swapping sequence wouli7%a iterations,

more than ES number of iterations, to reach the optimal state on average. This is expected
as the random swapping sequence may revisit the same antenna configurations in the course
of finding the optimal state. As a result, the calculated entries in the table represent an av-
erage upper bound on the computation of the swapping operations, as no computation is
required for antenna configurations that are revisited.

It is observed that the expected number of iterations required to reach the boundary
states with near optimal transmit and receive antennas are significantly lower than per-
forming ES. For example, for the:@,2:4) system, only36.09 iterations 0r8.59% of the
ES iterations are required to find a configuration that has all the optimal transmit antennas
and three of the four optimal receive antennas. This is equivalent to a computational saving
of 91.41%when compared to the full complexity ES.

The expected number of iterations for tHe8(2:4) system are further verified through
Monte Carlo simulations, and the results are presented in brackets under the expected num-
ber of iterations for each state in Table 5.18. The number of iterations to find the first
antenna configuration that belongs to the different states are recorded for each channel
realization. This process is repeated I®0channel realizations, and the number of iter-
ations to reach each state are averaged. The results are presented for a &IBRaofd
similar simulated number of iterations are observed for other SNRs. From Table 5.18, it
can be seen that the simulation results match closely with the results from the analysis.

Other system configurations are also considered in this thesis, and these include the
(6:6,3:3), (5:7,2:3), (5:9,2:4), (8:8,4:4), and 0:9,4:4) systems. These systems vary in the
number of antennas and RF chains on both the transmit and receive side. This leads to
different numbers of exhaustive search iterations and RAS-AS computational complexity.

Tables 5.19 to 5.23 presents the expected number of iterations to reach the different states

82



State 3TXAnbpt | 2 TXANbpt | 1 TXANgp: | O TXANpt
3 RXAngpt 431.39 64.90 64.90 431.39
(435.69) | (65.10) | (67.40) | (434.19)
2 RXAnppt 64.90 6.96 6.96 64.90
(66.59) (7.16) (6.82) (64.75)
1 RXANppt 64.90 6.96 6.96 64.90
(62.86) (6.74) (6.82) (64.42)
0 RXAngpt 431.39 64.90 64.90 431.39
(420.70) | (63.41) | (64.51) | (444.22)

Table 5.19: Expected number of iterations for each state of&lee3(3) system. The total
number of iterations for exhaustive search is 400. The simulated number of iterations are

presented in brackets.

for the first time for the different systems.

Similarly, the expected number of iterations for the different systems are further veri-
fied through Monte Carlo simulations, and the results are presented in brackets under the
expected number of iterations for each state in Tables 5.19 to 5.23. From the tables, it can
be seen that the simulated number of iterations match closely with the number of iterations
found using the analysis.

From Tables 5.19 to 5.23, it can be seen that for all the systems the expected number
of iterations to reach the optimal configuration is larger than the ES number of iterations
on average, and this is attributed to the possibility of revisiting the same antenna config-
uration during the search for the optimal configuration. Similar to th&Z:4) system,
the expected number of iterations to reach the boundary states for all the system is signifi-

cantly lower than performing ES. Table 5.24 summarizes the expected number of iterations
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State 2 TXAngpt | L TXANgp: | O TXANpt
3 RXAngpt 382.29 92.37 158.34
(385.97) | (94.43) (154.63)
2 RXANg pt 40.14 7.31 15.16
(39.17) (7.06) (15.64)
1 RXANppt 27.24 3.64 9.36
(25.93) (3.67) (9.58)
0 RXANngpt 110.76 26.12 45.82
(107.37) | (25.87) | (45.51)

Table 5.20: Expected number of iterations for each state of&fieg2(3) system. The total
number of iterations for exhaustive search is 350. The simulated number of iterations are

presented in brackets.

required to arrive at the state containing configurations that have all optimal transmit an-
tennas and one non-optimal receive antenna for the different systems.

Table 5.24 shows that a near optimal set of antennas can be found using random swap-
ping after much fewer iterations than exhaustive search. The average BER performance
of the RAS-AS algorithm after performing the expected number of iterations required to
reach the boundary state in Table 5.24 is examined in the next section.

The following presents the average number of computation per iteration required for
calculating the matrix inverse via the fast antenna swapping and the Gauss-Jordan elimina-
tion method. The computation information from Table 5.11, 5.12, and 5.13,fex 3,4,5
is used.

For each of the Fast RAS-AS iteration withwap= 1/2, a transmit or receive antenna

swap is equally likely to take place. Therefore, the average computation per iteration is
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State 2 TxAntpt | L TXANp: | O TXANG
4 RxAngpt | 1328.60 340.71 570.60
(1470.17) | (347.26) | (592.38)
3 RXANgpt 86.85 21.21 36.67
(90.15) | (20.96) | (36.11)
2 RXAngpt 29.46 4.26 10.35
(30.90) (4.17) (9.67)
1 RXANppt 44.83 9.03 17.59
(48.97) (9.04) (16.83)
0 RXANngpt 313.46 81.45 134.94
(316.70) | (84.13) | (136.82)

Table 5.21: Expected number of iterations for each state ofXl92(4) system. The total
number of iterations for exhaustive search is 1260. The simulated number of iterations are

presented in brackets.

85



State 4 TxAnbpt | 3TXANLp | 2 TXANbp | 1 TXANLp | O TXANGpt

4 RxAngpe | 5035.58 425.12 212.97 425.12 5035.58
(5273.15) | (428.14) | (211.90) | (435.90) | (5153.34)

3 RXANgpt 425.12 35.21 15.40 35.21 425.12
(418.33) | (35.98) | (15.95) | (34.77) | (447.73)

2 RXAngpt 212.97 15.40 4.66 15.40 212.97
(217.27) | (15.96) (5.25) (16.18) | (215.99)

1 RXANgpt 425.12 35.21 15.40 35.21 425.12
(420.46) | (34.31) | (14.18) | (33.30) | (429.23)

O RXAngp: | 5035.58 425.12 212.97 425.12 5035.58
(5292.31) | (410.03) | (205.94) | (409.74) | (5035.74)

Table 5.22: Expected number of iterations for each state of@Bgl(4) system. The total
number of iterations for exhaustive search is 4900. The simulated number of iterations are

presented in brackets.
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State 4TxANbp: | 3TXANbpt | 2 TXANbpt | 1 TXANbp | O TXANGpt

4 RXAnppt | 16052.85 | 1064.30 411.23 583.55 3584.88
(16034.36)| (1128.10)| (406.72) | (546.53) | (3670.36)

3 RxAngp: | 1064.30 73.07 26.13 38.90 252.31
(1030.38) | (69.73) | (23.95) | (39.63) | (231.90)

2 RXAngpt 411.23 26.13 6.28 11.82 97.94

(430.05) | (25.77) (7.22) (12.62) | (97.73)

1 RXANnppt 583.55 38.90 11.82 19.30 139.14
(591.10) | (40.24) (11.51) (19.94) | (150.69)

O RxAngp: | 3584.88 252.31 97.94 139.14 850.16
(3794.92) | (215.47) | (93.52) | (149.30) | (872.29)

Table 5.23: Expected number of iterations for each state ofx8el(4) system. The total

number of iterations for exhaustive search is 15876. The simulated number of iterations

are presented in brackets.

(Nex:Nex,Lix:Lrx) | Expected Number of Total Number of ES
System Iterations (Analysis) ES () (1) | Percentage
(5:7, 2:3) 40.14 350 11.47%
(6:6, 3:3) 64.90 400 16.23%
(4:8, 2:4) 36.09 420 8.59%
(5:9, 2:4) 86.85 1260 6.89%
(8:8, 4:4) 425.12 4900 8.68%
(9:9, 4:4) 1064.30 15876 6.70%

Table 5.24: Summary of the expected number of iterations to a boundary state for the

different systems.
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Lix | Transmit Receive | Average Computation
Swap(Zm) | Swap(Zm) per Iteration

3 107 163 (107+163)/2 = 135

4 173 263 (173+263)/2 = 218

5 255 387 (255+387) /2 =321

Table 5.25: Average number of multiplications per iteration for the Fast RAS-AS algorithm.

Lix | Transmit Receive | Average Computation
Swap(Za) | Swap(#a) per Iteration

3 87 132 (87+132)/2=1095

4 149 224 (149+224)/2 = 1865

5 227 340 (227+340)/2 = 2835

Table 5.26: Average number of additions per iteration for the Fast RAS-AS algorithm.

the average of the computation for the complexity reduced transmit antenna swapping and
receive antenna swapping. The computation per iteration using the Gauss-Jordan method
is the same for both transmit and receive antenna swapping. The average number of com-
putations per iteration for the Fast RAS-AS algorithm are summarized in Table 5.25 and
5.26 in terms of multiplications and additions, respectively.

From Table 5.25 and 5.26, it can be seen thatf{ge= 3, performing the matrix inver-
sion via the fast antenna swapping is almost as efficient as0Bmultiplications andL05
additions required for Gauss-Jordan elimination from Table 5.13.

From Table 5.25 and 5.26, it can be seen thaLfpe 4, updating the matrix inverse via
the fast antenna swapping is more efficient than2b@multiplications and264 additions
required when performing direct matrix inversion using the Gauss-Jordan method from

Table 5.13. Similarly folix = 5, the fast antenna swapping is more efficient tharbb@
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Lix Average Multiplication Average Addition

Reduction per Iteration Reduction per Iteration

4 | (256—218)/256=0.1484(14.84%) | (264— 1865)/264= 0.2936(29.36%)

5 | (500—321)/500= 0.3580(35.80%) | (535—2835)/535=0.4701(47.01%)

Table 5.27: Average reduction in the number of multiplications and additions per iteration.

multiplications andb35 additions required for the Gauss-Jordan method from Table 5.13.
The computational reduction compared to the Gauss-Jordan elimination for these two cases
are presented in Table 5.27.

From Table 5.27, it can be seen that fgg = 4, the fast antenna swapping provides
a 14.84% and 29.36% reduction in the number of multiplications and additions over the
Gauss-Jordan method per iteration on average.LkGEe 5, the amount of computational
reduction is35.80% and47.01% for the number of multiplications and additions, respec-
tively.

Therefore, for systems withyx > 4 number of RF chains, the antenna swapping of the
Fast RAS-AS algorithm would provide computational savings in each iteration on average
over performing direct matrix inversion using the Gauss-Jordan method.fFer3, the
antenna swapping of the Fast RAS-AS algorithm has slightly more multiplications and
additions than the Gauss-Jordan method in each iteration on average.

Using the expected number of iterations from the analysis in Table 5.24, which shows
the expected number of iterations to reach the boundary state with all optimal transmit
antennas and near optimal receive antennas, the computational savings compared to the full
complexity ES is examined. The overall computational savings for the different systems

are presented in Table 5.28.
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(Nix:Nix,Lix:Lrx) | Overall Savings | Overall Savings
System of Multiplications | of Additions
(5:7, 2:3) 88.53% 88.53%
(6:6, 3:3) 83.77% 83.77%
(4:8, 2:4) 91.41% 91.41%
(5:9, 2:4) 93.11% 93.11%
(8:8, 4:4) 92.61% 93.87%
(9:9, 4:4) 94.29% 95.27%

Table 5.28: Summary of the overall computational savings of the different systems.

For the case ofix = 2 andLx = 3, it is more efficient to use the Gauss-Jordan elim-
ination method for matrix inversion. For these two cases, the computational savings only
comes from the reduced number of iterations, which ranges &88%0to 16.23% of the
ES iterations for the first four systems in Table 5.24. Therefore, the computational savings
is about83.77%t0 93.11%for these systems, and the results are summarized in Table 5.28.
For the 8:8,4:4) and ©:9,4:4) systems with_ix > 4, other than the computational savings
from the performing much fewer iterations than the ES, the matrix inversion via the fast
antenna swapping also provides computational savings in each iteration. From Table 5.27,
for the case oLix = 4, each iteration using the fast antenna swapping provide&4%
saving in the amount of multiplications a@8.36% saving in the amount of additions on
average. Therefore, for th&:8,4:4) system, there would b8.68% x 14.84% = 1.29%
and8.68%x 29.36%= 2.55%reduction in the amount of multiplications and additions for
the expecte®.68% of ES iterations performed. The overall computational savings would
come from performing fewer iterations and from the reduction of multiplication and ad-

dition operations per iteration using fast antenna swapping. The expected overall amount
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of multiplication and addition computational savings for ti88{4:4) system would be
91.32%+ 1.29% = 92.61% and91.32%+ 2.55% = 93.87% respectively from using the

Fast RAS-AS algorithm over the full complexity ES. The results for systemslwith: 4

are summarized in Table 5.28. The effect on the average BER performance from the over-
all computational savings is small for all of the systems, as simulation results in the next
section show that close to optimal average BER performance can be achieved for all of the

systems.

5.7.5 Simulation Results

This section presents the simulation results for the RAS-AS algorithm with a random swap-
ping sequence. The pseudocode of the algorithm in Table 4.3 is implemented and its av-
erage BER performance is evaluated using Monte Carlo simulation. The performances of
the RAS-AS and Fast RAS-AS algorithm are identical, as both are computationally equiv-
alent. The Fast RAS-AS algorithm has a lower computational complexity than that of the
RAS-AS algorithm making it suitable for implementation purposes. All the simulations
are performed withpswap= % and the results are averaged o¥800channel realizations.
The simulation results for the greedy version of the RAS-AS algorithm in Table 5.2 are
also presented. The results forda8(2:4) system are first presented, followed by the results
for other system configurations at the end of the chapter. Fé18&2(4) system, the sim-
ulation results for different percentages of the total number of exhaustive search iterations
are presented in Figure 5.5.

The number of ES iterations for 4:8,2:4) system is420, and from the analysis, the
expected number of iterations from the previous section to reach a near optimal set of
antennas i86.09 or 8.59% of the ES iterations. It is observed from Figure 5.5 that after

performing8.59% of the ES iterations, the algorithm can find a set of antennas that can
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Average BER

Figure 5.5: Average BER 0#(8,2:4) MIMO system with random swapping sequences.

achieve close to optimal average BER performance that is &b@dB, 1.0dB, and1.2dB

away from the ES performance, at average BER§®f, 10~4, and10° respectively.

This shows that the computational savings in Table 5.28 for 4t&24) system can be
realized with only little average BER performance loss. Itis observed that the average BER
performance achieved by the greedy version of the algorithm is better than the performance
achieved by the algorithm after the expected number of iterations, and it is idBirof

the optimal performance for average BERsLO6f3 to 10~°. This can be attributed to the

higher average number of iterations for tHe8(2:4) system using the greedy algorithm,

10
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Average BER of (4:8,2:4) MIMO System with Random Swapping Sequence
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which is56.93 or 13.55%o0f ES iterations found from simulation.

Similar to the deterministic swapping sequence case, a large average BER improvement
over the case of using a fixed subset of antennas is observed by performirig@afythe
RAS-AS iterations. The performance gain at an average BER®of and10-2 is 2.8dB

and3.5dB respectively. This illustrates the benefit of performing a few RAS-AS iterations
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Average BER of (4:8,2:4) MIMO System with Random Swapping Sequence under Correlated Channel
e — T T T T T T T T T B

10°E 5.0dB TATILILD =
DR s TS
P~ -~ o= - T
T - T
Timiima T
) S 5.2dB "=
107¢ S + %
S 3
i -
a .
310 7k ~ iy B
g < o 3
9] = > ]
N <
2 < g
N !
N ~ 1
» i 1.0dB N
10 "g | —x- (2:4) fixed ZF Rx N » N0
f'| — Exhaustive Search (ES) * %
[[| © (4:8,2:4) ZF Rx 1% of ES w Random Seq S D ]
% (4:8,2:4) ZF Rx 2% of ES w Random Seq N SRR
+- (4:8,2:4) ZF Rx 5% of ES w Random Seq N < <
s * - (4:8,2:4) ZF Rx 8.59% of ES w Random Seq N A y1.1dB
10 "F | B (4:8,2:4) ZF Rx 10% of ES w Random Seq : : N N S e
£ € (4:8,2:4) ZF Rx 20% of ES w Random Seq ® N N N
[.| ¥ (4:8,2:4) ZF Rx 50% of ES w Random Seq : N N N N
| A (4:8,2:4) ZF Rx 90% of ES w Random Seq o o B
i 1 L I | 1 1 L | N NS
0 1 2 3 4 5 6 7 8 9 10
SNR (dB)

Figure 5.6: Average BER 0f4(8,2:4) MIMO system with random swapping sequence

under spatially correlated channels.

over using a fixed subset of antennas without antenna selection.

The correlation matrix in (2.10) is used in the simulation of the performance of the
RAS-AS algorithm under transmit antenna correlated channel condition. Figure 5.6 presents
the RAS-AS average BER performance fod&8(2:4) system using a random swapping se-
guence with different percentages of ES iterations.

From Figure 5.6, it can be seen that under spatial transmit antenna correlation, the sys-
tem exhibits a higher average BER across all SNRs when compared to the performance
under an uncorrelated channel in Figure 5.5. Similar to the deterministic swapping se-
guence case, the slopes of the average BER curves are less steep, as the diversity order is
reduced due to correlation among the antennas. It is observed from Figure 5.6 that after

performing8.59% of the ES iterations, the algorithm can find a set of antennas that can
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achieve an average BER performance that is abhdalB, 1.1dB, 1.0dB, and1.1dB away

from the ES performance, at average BER40f2, 10~3, 10~*, and10~° respectively.
Similar average BER performance gaps from the optimal performance curve are observed
under uncorrelated channel condition.

Similar to the uncorrelated case, a large average BER performance gain over using a
fixed subset of antennas is observed after performing d¥\of the RAS-AS iterations.

The observed gain in the correlated cas&.@&IB around an average BER @0~! and
5.2dB around an average BER b0 2.

Other system configurations are also simulated, and these include23), (6:6,3:3),
(5:9,2:4), (8:8,4:4), and 0:9,4:4) systems. The expected number of iterations for finding
a near optimal set of antennas using the RAS-AS algorithm with a random swapping se-
guence is analyzed for these systems, and the results are summarized in Table 5.29. Monte
Carlo simulations ovet000uncorrelated MIMO channel realizations are used to evaluate
the average BER performance of these systems with the RAS-AS algorithm, and these are
presented in Figures 5.7 to 5.11.

After performing the expected number of iterations to reach the boundary state with a
near optimal set of receive antennas and all optimal transmit antennas, the resulting average
BER performance curve is compared with the average BER performance curve obtained
using ES. Table 5.29 summarizes the performance results for the different systems. The
performance gaps marked on the graphs are tabulated in the last column of Table 5.29. The
performance gap refers to the SNR distance between the average BER performance curve
achieved using the expected number of iterations to the boundary state, and the average
BER performance curve achieved using the globally optimal configuration. The second
column of Table 5.29 shows the expected number of iterations to the boundary state found

using the analysis from the earlier sections. The number of exhaustive search iterations and
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Average BER of (5:7,2:3) MIMO System with Random Swapping Sequence
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Figure 5.7: Average BER of5(7,2:3) MIMO system with random swapping sequence

under an uncorrelated channel.

Average BER of (6:6,3:3) MIMO System with Random Swapping Sequence
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95



Average BER of (5:9,2:4) MIMO System with Random Swapping Sequence
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Figure 5.9: Average BER 0f5(9,2:4) MIMO system with random swapping sequence

under an uncorrelated channel.

Average BER of (8:8,4:4) MIMO System with Random Swapping Sequence
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Figure 5.10: Average BER 08(8,4:4) MIMO system with random swapping sequence

under an uncorrelated channel.
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Average BER of (9:9,4:4) MIMO System with Random Swapping Sequence
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Figure 5.11: Average BER 00B(9,4:4) MIMO system with random swapping sequence

under an uncorrelated channel.

(Nex:Nex,Lix:Lrx) | Expected Number of Total Number of ES Average BER
System Iterations (Analysis) ES ('t‘::) ('t':z) Percentage Performance Gaj
(5:7,2:3) 40.14 350 11.47% 1.2dB to 1.6dB
(6:6 , 3:3) 64.90 400 16.23% | 1.2dB to 1.8dB
(4:8, 2:4) 36.09 420 8.59% 0.9dB to 1.2dB
(5:9, 2:4) 86.85 1260 6.89% 0.7dB to 0.9dB
(8:8, 4:4) 425.12 4900 8.68% 1.0dB to 1.2dB
(9:9, 4:4) 1064.30 15876 6.70% 0.8dB to 1.1dB

Table 5.29: Summary of the average BER performance of the different systems after ex-

pected number of iterations required to obtain a near optimal set of antennas.
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(Nix:Nix,Lix:Lrx) | Average Number of | Total Number of ES
System | Iterations (Simulation) ES (1) () | Percentage
(5:7,2:3) 47.74 350 13.64%
(6:6, 3:3) 48.51 400 12.13%
(4:8, 2:4) 56.93 420 13.55%
(5:9,2:4) 78.87 1260 6.26%
(8:8, 4:4) 101.16 4900 2.06%
(9:9, 4:4) 132.72 15876 0.84%

Table 5.30: Summary of the average number of iterations of the different systems using the

greedy algorithm.

the percentage of ES iterations are shown in the next two columns in Table 5.29. For all
of the systems listed, it can be seen that after performing the expected number of iterations
to the boundary state, the RAS-AS algorithm is able to find an antenna configuration that
comes within2dB of the ES performance, for average BERs arol@d to 10~° and for

SNRs greater or equal @B. The result is significant as this shows that 8386to 95%
computational savings in Table 5.28 for all of the systems can be realized with only little
average BER performance loss.

The complexity of the greedy algorithm can be characterized by the average number of
iterations, and these are found from simulations and are summarized in Table 5.30 for the
different systems. Using the average number of iterations from Table 5.30, it can be seen
from Figures 5.5, 5.7 to 5.11 that the performances achieved using the greedy algorithm
are better than the performances achieved with the Fast RAS-AS algorithm using a random
swapping sequence after similar percentage of ES iterations. The performance gain is

within 1dB for the different systems. For example, from Figure 5.11, the performance
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achieved for theq;9,4:4) system using the greedy algorithm afde84%of ES iterations is
slightly better than the performance achieved using the Fast RAS-AS algorithm.afer

of the ES iterations. The two performance curves are witdia of each other. In general,

the greedy algorithm can achieve better average BER performance than the Fast RAS-
AS algorithm after the same number of iterations for the different systems. However, the
Fast RAS-AS algorithm permits a large range of controllable performance and complexity
tradeoffs and the greedy algorithm does not offer this flexibility. The performance and
computational complexity tradeoff can be observed from the different percentage curves
in Figures 5.7 to 5.11. The figures can provide useful information when deciding on the
number of RAS-AS iterations to use in order to meet a target performance level, or when
given a computational constraint the expected performance level can be predicted.

Itis also observed in Figures 5.7 to 5.11 that there is a diminishing return in the average
BER performance gain as the number of RAS-AS iterations increases. The diminishing
return is also observed for thd:8,2:4) system. Therefore, Figures 5.7 to 5.11 can help
identify the point of diminishing return in the average BER performance, and help decide
on the number of RAS-AS iterations to use.

Simulations are performed to confirm the variance obtained from the analysis of the
state with near optimal numbers of antennas derived in equations 5.60 and 5.61. During
the simulations, the RAS-AS algorithm is executed over a fixed channel realization and
SNR. The empirical number of iterations used to find the best antenna configuration is
recorded ovet000different RAS-AS executions. The variance of the number of iterations
from the simulation is presented in Table 5.31 for the different systems. It can be seen
from Table 5.31 that the simulated variances match up with the variances found from the

analysis.
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(Nix:Nrx,Lix:Lix) | Simulated Expected

System Variance | Variance (Analysis
(5:7,2:3) 1645.86 1639.33
(6:6, 3:3) 4506.60 4264.19
(4:8 , 2:4) 1507.65 1334.44
(5:9, 2:4) 8191.20 7612.13

(8:8,4:4) 182212.28 180841.18

(9:9,4:4) |1094990.18  1135183.44

Table 5.31: Summary of the simulated and expected variance of the different systems.
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Chapter 6

Conclusions and Future Work

This chapter summarizes the conclusions and contributions in this thesis. Suggestions for

future work are provided at the end of the chapter.

6.1 Conclusions

This thesis proposes a novel joint transmit and receive antenna selection algorithm based
on the concept of random antenna selection (RAS). The proposed algorithm has the ad-
vantage of requiring reduced channel training and estimation at startup corresponding to
the RF resources, and additional training and estimation is spread over time and performed
when new antennas are swapped in. The proposed algorithm can converge to the globally
optimal antenna configuration, i.e., the subset of transmit and receive antennas with mini-
mum BER as number of iterations increase. The main computation in the RAS algorithm
is the computation of the matrix inverse for the power gain. The merits of RAS is justified
through the ABER outage probability analysis in Chapter 3. It is found that the RAS algo-
rithm can find a non-outage set of antennas with small number of iterations. At an SNR of
0dB and for an ABER outage threshold 13, it is found that after only RAS iterations

a non-outage set of antennas can be found.
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A computationally efficient realization of the RAS algorithm is possible through the
concept of swapping antennas in each iteration. The development of this work started by
establishing a relationship between swapping a pair of antennas and performing a rank-
2 matrix modification in Chapter 4. Through this relationship, the Woodbury formula for
matrix inversion update of a modified matrix is applied to update the matrix inverse required
in the power gain calculation. This results in the RAS-AS algorithm described by the
pseudocode at the end of Chapter 4. We note that the BER performance of the RAS-AS
algorithm can be further improved by applying the AMBER power allocation scheme [31].

A fast implementation of the RAS-AS algorithm is introduced in Chapter 5, which is
made possible by the rarfkmatrix modification from swapping a pair of antennas. Sim-
plifications of the algorithm are presented and computational complexity is analyzed in
Chapter 5. Each iteration of the Fast RAS-AS algorithm performs a transmit or receive
antenna swapping operation, and each iteration is found to hawg) @mplex multipli-
cations and additions for performing the swapping operation and evaluating the average
BER selection criterion. This chapter also presents a greedy version of the Fast RAS-AS
algorithm.

The average number of multiplications and additions per iteration for the Fast RAS-AS
algorithm for matrix inversion update is also computed and compared to the computation
required when the Gauss-Jordan elimination method is used for the matrix inversion in each
iteration. It is found that foLix = 3, the inversion update using the fast antenna swapping
is almost as efficient as using the Gauss-Jordan elimination method in each iteration. For
Lix > 4, the matrix inversion update via the fast antenna swapping provides computational
savings over using the Gauss-Jordan method in each iteration on average. The computa-
tional reduction per iteration on average using the Fast RAS-AS algorithm groiyg as

increases.
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The expected number of iterations of the RAS-AS algorithm is analyzed for both de-
terministic and random swapping sequences. For deterministic swapping sequences, it is
found that on average, half of the number of exhaustive search iterations would be required
in order to find the optimal antenna configuration.

A (4:8,2:4) MIMO system is simulated and it is observed that a significant BER per-
formance gain over using a fixed subset of antennas is possible after using the RAS-AS
algorithm with only1% of the ES iterations. This shows the benefit of using a few RAS-AS
iterations over performing no antenna selection. Simulation results show that for a deter-
ministic swapping sequence, after performing the expected number of iterations found by
analysis, the RAS-AS algorithm can achieve an average BER performance that is about
0.6dB and1.3dB away from the optimal performance found using exhaustive search, for
uncorrelated channels and channels with transmit antenna correlation, respectively.

For a random swapping sequence, the behavior of the RAS-AS algorithm can be mod-
eled by a random walk on a finite state Markov chain. The first passage probability into
the different states in the Markov chain model is used to find the expected number of iter-
ations for the RAS-AS algorithm using a random swapping sequence. It is found that the
expected number of iterations to reach the optimal state using a random swapping sequence
is on average larger than the number of ES iterations, and this is expected as the random
swapping sequence has the possibility of revisiting the same configuration. On the other
hand, the boundary states surrounding the optimal state with near optimal set of transmit
and receive antennas require significantly fewer iterations to reach on average.

For the @:8,2:4) system, it is found by analysis that when a random swapping sequence
is used, on averad#6.09 RAS-AS iterations would be required to find an antenna config-

uration in a boundary state with all optimal transmit antennas and one non-optimal receive
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antenna. This represents ab@59% of the total number of possible antenna configu-
rations. After performing the expected number of iterations to reach the boundary state,
it is found through simulation that the RAS-AS algorithm can achieve an average BER
performance that is abo0t9dB to 1.2dB from the optimal performance, for uncorrelated
channels and channels with transmit antenna correlation. The RAS-AS algorithm behaves
similarly under transmit antenna correlated channel, with worse average BER performance
than the uncorrelated channel case due to reduced diversity in the system. The computa-
tional savings from the expected number of iterations amouf il % reduction in the
number of multiplications and additions for theg,2:4) system when compared to the full
complexity ES. The computational saving is realized with little average BER performance
loss which further highlights the significance of the result.

At the conclusion of Chapter 5, systems with different numbers of antennas on the
transmit and receive sides are analyzed to determine their expected number of iterations to
reach the boundary state in the Markov chain model, and their average BER performances
are simulated for uncorrelated channels. Simulation results show that after performing the
expected number of iterations for the different systems, the RAS-AS algorithm is able to
find a set of antennas that are abO6utdB to 1.8dB away from the optimal performance
on average for the different systems. This shows that the computational savings from the
reduced number of iterations and the reduction in the number of multiplications and ad-
ditions per iteration from fast antenna swapping is realizable with little average BER per-
formance loss. For example, the Fast RAS-AS algorithm allows 8t&4(4) system to
reduce the number of multiplications and additionsd2y61% and93.87% respectively,
while achieving close to optimal average BER performance thaOdB to 1.2dB away
from the ES performance. The computational savings for the other systems are similarly

realized while achieving close to optimal performance.
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By comparing the performance achieved by the greedy algorithm and the Fast RAS-
AS algorithm after the same number of iterations, it is found that the greedy algorithm
performs better, and the performance is withdB of the performance achieved using the
Fast RAS-AS algorithm with a random swapping sequence. However, the greedy algorithm
does not offer the same performance and complexity tradeoff flexibility as the Fast RAS-AS
algorithm.

The performance and computational complexity tradeoffs can be observed from the
simulation graphs. This allows a system designer to determine the number of iterations
to use given an average BER performance constraint, or the average BER performance
can be predicted given a computational constraint. The expected number of iterations and
variances obtained from the analysis are also verified through simulation, and the results
from the analysis match closely with the results from the simulation.

The algorithms proposed in [16] [26] [27] are not comparable to the RAS-AS algo-
rithm as they make selections based on different criteria or information. In [16] a capacity
maximization selection criterion is used, and the algorithm assumes that the full complex-
ity MIMO channel is estimated, which uses more channel information and have different
training periods than the proposed algorithm. In [26], the antenna selection algorithm is
developed for space-time coded system, and in [27], only second-order channel statistics
are used.

From the results presented in this thesis, it is shown that the proposed Fast RAS-AS
algorithm provides efficient joint transmit and receive antenna selection. The algorithm
requires a minimal amount of channel estimation at startup. Further channel estimation is
performed as needed, making the Fast RAS-AS algorithm suitable for systems with large
numbers of antennas. The concept of incremental estimation and training of the MIMO

channel can also be applied to other existing antenna selection algorithms. The algorithm
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can be used for transmit antenna only or receive antenna only selection as special cases, and
it is also applicable to both uncorrelated and correlated MIMO channels. The application

of the Fast RAS-AS algorithm in temporally correlated channels is an interesting area for
future work, as the Fast RAS-AS algorithm can provide the flexibility of performing small
updates to maintain or improve performance over time, using the best antenna configura-
tion found in the previous time slot as the starting point. With the many advantages and
low computational complexity, the Fast RAS-AS algorithm is a candidate for solving the

problem of finding an efficient joint transmit and receive antenna selection algorithm.
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6.2 Future Work

The following are suggestions for future research:

e The proposed RAS-AS algorithm is developed for MIMO ZF receivers. It is of in-
terest to investigate and adapt the RAS-AS algorithm for other types of MIMO re-

ceivers.

¢ In this thesis, deterministic and completely random swapping sequences are pro-
posed. It would be interesting to investigate the performance of the algorithm using
other types of swapping sequences. A possible sequence is one that changes or adapts

based on determining the worst antenna to swap out in each iteration.

e The parametepswap is arbitrary chosen to bé in this thesis, resulting in a com-
pletely random choice between performing a transmit or receive antenna swapping
operation in each iteration of the algorithm. It would be interesting to investigate the
impact of this parameter on the performance and expected number of iterations of
the algorithm. There may exist an optimal value pafapdepending on the number
of transmit and receive antennas. The parameter may be adaptively adjusted based

on the past performance gain from performing transmit or receive antenna swapping.

e In this thesis, a temporally uncorrelated MIMO channel is considered, and the RAS-
AS algorithm chooses a completely uninformed starting configuration by randomly
selecting a set of antennas at the beginning of the algorithm. The case of temporally
correlated MIMO channels is an interesting area for future work, where the RAS-AS
algorithm can use the best antenna configuration found in the previous time slot as the
starting configuration and perform small updates to maintain or improve performance

over time.
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Appendix A

Chi-Square Statistics

The following presents the PDF and CDF of a Chi-Square random varatli n DOF.

The PDF of a Chi-Square random variable witDOF is as follows

X n_q

e, forx>0
fx)={ 2°7(3) . (A.1)
0 , otherwise

Integrating (A.1) results in the Chi-square CDF, and it is given as

F(x) = Y(5.2) forx>0 (A.2)

whereY(. ,.) is the lower incomplete Gamma function given as
X
Y(a,x) = / 9 le tdt (A.3)
0
andr (.) is the complete Gamma function given below

rg) = /0 * B-lexdx (A.4)

I(.) can also be expressed4s. , ), in terms of the lower incomplete Gamma function.

The moment generating function of a Chi-square random variaislas follows
mt)=E[]=(1-2t)"2 —o<t<-3 (A.5)
wherekE]|.] is the expectation operator.

108



Appendix B

Weighted-Chi-Square Statistics

Let x be Chi-square distributed, and et wx be a weighted Chi-square random variable.

Using the following transformation on the Chi-square PDF

fly) = ifx (5> (B.1)

W

the PDF ofy for w > 0 can be found to be

_Y n_
% , fory>0
fy)=4{ @u2r(3) _ (B.2)
0 , otherwise

Integrating (B.2) results in the weighted-Chi-square CDF, and it is found to be

Fiy) = 182

whereY{. ,.) andl (.) are defined in (A.3) and (A.4), respectively. Fovaveighted Chi-

U<

) fory>0 (B.3)

NIS

square random variable with n DOF, the MGF is

my(t) =E[&Y] =E[e"] = (1-2w) 3 —w<t< - (B.4)

wherekE].] is the expectation operator.
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Appendix C

(4:8,2:4) Transition Probability Matrix
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