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Abstract

(This thesis is submitted with restriction from public disclosure.)

Wireless communications employing multiple transmit and receive antennas can bring

promising improvements to link quality as well as system capacity. The potential gain

in performance for a multiple-input multiple-output (MIMO) system is mitigated by the

increased cost of the number of expensive radio-frequency (RF) hardware components.

To reduce cost of deploying MIMO technology, a complexity reduction technique known

as antenna selection can be applied. In antenna selection, only a subset of the full array

of transmit and receive antennas is chosen based on a selection criterion. The antennas

are connected to a limited number of RF chains by a low-cost RF switch. The resulting

system enjoys many benefits offered by the full complexity MIMO system but with fewer

RF resources.

This thesis proposes a novel and efficient iterative antenna selection algorithm based on

a minimum bit error rate (BER) selection criterion for a zero-forcing (ZF) MIMO receiver.

The proposed algorithm finds an efficient joint transmit and receive antenna selection so-

lution that is close to the globally optimal antenna configuration with reduced complexity.

The complexity and performance of the algorithm can be traded off. The proposed algo-

rithm can also be used for transmit or receive only antenna selection as special cases.

The proposed algorithm introduces the concepts of random antenna selection (RAS)
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and antenna swapping (AS). The startup processing involves the training and estimation of

the MIMO channel for the subset of antennas connected to the available RF chains. The

thesis also develops a fast method for antenna swapping based on rank-2 matrix modifica-

tion, and the computational complexity of the algorithm is analyzed. The behavior of the

RAS-AS algorithm with a random swapping sequence is modelled as a finite-state Markov

chain, and the expected number of iterations is computed analytically.

The BER performance of the algorithm is simulated, and results show promising BER

performance gains after only small numbers of RAS-AS iterations. The algorithm is ap-

plicable to both spatially uncorrelated or correlated MIMO channels, and similar BER per-

formance improvements are observed for the case where transmit antennas are correlated.
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Chapter 1

Introduction

In order to realize the goals of next-generation wireless communication systems, employing

multiple antennas on both sides of the communication link is seen as a promising solution.

These multiple-input multiple-output (MIMO) wireless systems have the potential to in-

crease the capacity of the system [1] or improve the quality of the communication link [2].

The tradeoff is an increase in hardware cost and signal processing complexity. For each

antenna, there would have to be an associated radio-frequency (RF) chain of expensive

hardware, and these include modulators, analog-to-digital (A/D) convertors, mixers, and

amplifiers. The system hardware complexity increases quickly with every antenna and RF

chain added. On the other hand, antennas alone are relatively inexpensive compared to the

components in the RF chain. A MIMO system can have a large number of antennas, while

only requiring a small amount of RF chain hardware. It is found that by carefully selecting

a subset of antennas and connecting through a low cost RF switch, many benefits of the full

complexity MIMO system can be retained [3] [4]. This leads to the study of antenna se-

lection, which is a complexity reduction scheme that can reduce the hardware requirement

of MIMO systems by choosing a subset of antennas based on some required performance

criterion.
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1.1 Motivation

In order to reduce the complexity and hardware requirements for deploying MIMO sys-

tems, antenna selection is proposed as a complexity reduction scheme. Numerous antenna

selection algorithms are proposed and studied in the literature. These algorithms can be

categorized into transmit-side antenna selection, receive-side antenna selection, and joint

transmit and receive antenna selection. It is noted in [5] that the problem of jointly find-

ing a subset of transmit and receive antennas efficiently is still an open problem. Many

of the algorithms proposed in the literature focus on antenna selection on one side of the

communication link, and the study of joint transmit and receive antenna selection has been

limited. It is also noted that many existing antenna selection algorithms require the full

complexity MIMO channel to be estimated, and it would be beneficial if this requirement

can be reduced. Motivated by these factors, the thesis proposes an iterative algorithm for

joint transmit and receive antenna selection that has low computational complexity.

1.2 Thesis Outline

The following is an outline and organization of the thesis. In Chapter 2, existing literature

on antenna selection is presented and reviewed. The MIMO channel model and bit error

rate (BER) expressions used in the rest of the thesis is also introduced.

Chapter 3 presents an antenna selection algorithm based on the concept of random

antenna selection (RAS), together with an antenna selection criterion. The potential of

random antenna subset selection is also justified through analyzing the approximate bit

error rate (ABER) outage probability, as well as the expected number of iterations required

to obtain an certain ABER threshold. The pseudocode of the RAS algorithm is presented

at the end of the chapter.
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In Chapter 4, the concept of antenna swapping (AS) is introduced. The relationship

between antenna swapping and rank-2k matrix modification is established, wherek repre-

sents the number of pairs of antennas to be swapped. Two antenna swapping sequences are

then introduced: deterministic and random. At the end of the chapter, a realization of the

RAS algorithm from Chapter 3 is proposed with the concept of antenna swapping, and the

two are related through a matrix inversion update expression. The resulting algorithm is

the RAS-AS algorithm, and pseudocode is presented at the end of the chapter.

In Chapter 5, a fast and complexity reduced RAS-AS algorithm is presented through a

simplification made possible by performing rank-2 matrix modifications. The complexity

of the reduced algorithm is analyzed in terms of the initialization overhead and the number

of multiplications and additions in each iteration. The expected number of iterations and

average BER performance of the RAS-AS algorithm under uncorrelated and correlated

channel conditions using both deterministic or random swapping sequences is also analyzed

and simulated.

Chapter 6 summarizes and concludes the work in the thesis, and provides suggestions

for future research.

1.3 Thesis Contributions

In this thesis, a novel joint transmit and receive antenna selection algorithm is proposed

that uses the idea of random antenna selection and antenna swapping. The following sum-

marizes the contributions of this thesis:

• The proposed random antenna selection with antenna swapping (RAS-AS) algorithm

is a novel, efficient, joint transmit and receive antenna subset selection algorithm

that reduces the computation of exhaustive search based on a minimum bit error
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rate (BER) selection criterion for a zero-forcing (ZF) multiple-input multiple-output

(MIMO) receiver.

• The novel concept of random antenna swapping is introduced. The thesis establishes

the relationship between antenna swapping with rank-2k matrix modification fork

pairs of antennas to be swapped.

• At the startup of the algorithm, instead of requiring the full complexity MIMO chan-

nel to be estimated, which involves all the antennas on both sides of the link, the

proposed algorithm requires an amount of channel estimation and initial training cor-

responding to that of the number of available radio-frequency (RF) chains on both

sides of the link. Additional channel estimation is spread over time and is performed

only as the algorithm swaps in new antennas.

• The thesis models the behavior of the RAS-AS algorithm with a Markov chain model,

and the expected number of iterations as well as the variance are analyzed. The com-

putational requirements of the RAS-AS algorithm with a rank-2 simplification are

determined, and the BER performance of the RAS-AS algorithm is also simulated.

• The proposed Fast RAS-AS algorithm significantly lowers complexity from exhaus-

tive search while finding near optimal antenna configurations. Simulation results

show that after the expected number of iterations for finding a near optimal set of

antennas, close to optimal BER performance can be achieved most of the time.

• The proposed RAS-AS algorithm is suitable for systems with large numbers of an-

tennas, and the algorithm is applicable to both spatially uncorrelated and correlated

MIMO channels. The RAS-AS algorithm can also be used for transmit antenna se-

lection only or receive antenna selection only as special cases.
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Chapter 2

Background

This chapter first presents the background on MIMO systems and establishes the role of

antenna selection in MIMO wireless communication. Following this, an overview of the

existing antenna selection algorithms in the literature is presented. The MIMO channel

model used in this thesis is presented in the last part of the chapter.

2.1 Multiple-Input Multiple-Output System

From the early work of Telatar [1] and Foschini [6], it is shown that employing multiple

transmit and receive antennas has the potential to greatly increase the capacity in wireless

communication systems. By exploiting the spatial dimension, capacity increases linearly

with the minimum number of antennas on both sides of the link. This enables a system to

achieve high spectral efficiency, and provide high data rate services that are envisioned in

future generations of wireless communication systems.

The potential benefits of using MIMO systems is offset by the increase in hardware

requirements and signal processing complexity. Each antenna is associated with a chain of

expensive RF resources, and this includes modulators, mixers, analog-to-digital convertors,

and power amplifiers, which dominate the cost of the system. With multiple antennas
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on both sides of the communication link, the amount of channel training and estimation

increases significantly relative to a single-input single-output (SISO) system. This in turn

increases the dimensionality of the signal processing problem, and increases the complexity

of the algorithms required to capture the benefits of MIMO systems.

It is therefore desirable to reduce the amount of expensive RF chain hardware, while

harvesting the many advantages of MIMO systems. Therefore, antenna selection is pro-

posed as a complexity reduction technique to enable practical deployment of MIMO sys-

tems.

2.2 Antenna Selection

The idea of antenna selection stems from the fact that antennas are relatively inexpensive

when compared with the rest of the RF chain hardware. Therefore, a system can deploy a

large number of antennas while having only a small number of RF chains, and the two can

be connected through a low-cost RF switch. This results in the formulation of the antenna

selection problem, which tries to find the best subset of antennas to connect to the limited

RF resources, based on some selection criterion. It is found that with the proper subset of

antennas selected, many benefits of the full complexity MIMO system can be retained [3],

such as the diversity order of the system. A system diagram of an antenna selection system

is shown in Figure 2.1.

The goal is to find and connect the bestLtx transmit RF chains to theNtx transmit

antennas, and the bestLrx receive RF chains to theNrx receive antennas. The best antennas

will also vary with time and the selection process needs to be repeated periodically. The

antenna selection, channel estimation, and MIMO signal detection are performed in the

signal processing unit on the receiver side.
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Figure 2.1: System with antenna selection.

Numerous antenna selection algorithms are proposed in the literature, varying in com-

plexity, selection criteria, and optimality criteria. Antenna selection can also be broadly

classified into transmit antenna selection, receive antenna selection, and joint transmit and

receive antenna selection. MIMO systems can improve the link quality of the system

through diversity methods, and/or improve data rate through spatial multiplexing. There-

fore, the two antenna selection criteria typically considered in the literature are based on

maximizing either diversity or system capacity [5].

The following sections first present antenna selection algorithms from the capacity

point of view. Then, antenna selection based on a diversity point of view will be presented.

Antenna section algorithms with a focus on capacity are suitable for spatial multiplexing

systems that require high data rates. Antenna selection algorithms with a focus on diversity

are suitable for systems that require robust link quality, which is also related to achieving

high received signal-to-noise ratio (SNR), and low bit error rate (BER).
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2.3 Antenna Selection based on System Capacity

For antenna selection algorithms that focus on capacity, the goal is to select a subset of

antennas that maximize the following MIMO capacity expression [1]:

C(H) = log2

[
det

(
INtx +

Es

No
HHH

)]
= log2

[
det

(
INrx +

Es

No
HHH

)]
(2.1)

whereINtx is theNtx×Ntx identity matrix, INrx is theNrx×Nrx identity matrix,H is the

Nrx ×Ntx MIMO channel matrix,Es is the average symbol energy, andNo is the noise

energy. The following subsections review the algorithms proposed in the literature for

receive antenna selection, transmit antenna selection, and joint transmit and receive antenna

selection that maximize the system capacity.

2.3.1 Receive Antenna Selection

For receive antenna selection with a capacity maximization criterion, the objective of the

algorithm is to select a subset of receive antennas so that the capacity expression is max-

imized. It is noted from [5] that there is no exact solution for finding the optimal receive

antenna set without exhaustively searching through all the possible configurations. Subop-

timal or complexity reduced algorithms have been proposed in [7] [8] [9] [10] [11].

In [7], an initial antenna configuration with all the receive antennas are used. The

receive antenna that has the least impact on the capacity, or the antenna that results in

minimum capacity loss is removed from the antenna set iteratively, until the desired number

of receive antennas remains. In [8], an initial empty set of antennas is used, and the receive

antennas that result in the largest capacity gain are added iteratively to the antenna set, until

the desired number of receive antennas are chosen.

Two other iterative receive antenna selection algorithms are proposed in [9] and [10].
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These algorithms maximize channel capacity by selecting antennas with minimal correla-

tion.

Low computational complexity algorithms in [11] are norm-based, i.e., the antenna se-

lection is based on maximizing the Forbenius norm or column norm of the channel matrix.

2.3.2 Transmit Antenna Selection

For transmit antenna selection with a focus on capacity maximization, the objective is

the same as that of the receive antenna selection algorithms in the previous section, and

both norm-based or iterative type selection algorithms can be applied [5] [12]. Algorithms

using properties of determinants for positive definite Hermitian matrices are proposed in

[13]. Transmit antenna selection also requires a feedback link. With full channel state

information (CSI), the transmitter can achieve the maximum capacity of the channel via

the water-filling strategy [5] [14]. Transmit antenna selection for low-rank channels has

also been studied in [15].

2.3.3 Joint Transmit and Receive Antenna Selection

The authors in [16] propose a suboptimal algorithm for joint transmit and receive antenna

selection based on a capacity maximization criterion, by performing separate transmit and

receive antenna selections. The algorithm first performs antenna selection on one side of

the link, while keeping the antennas at the other end of the link fixed. After the antennas

for one side of the communication channel are selected, antenna selection is performed

for the other side, while keeping the set of selected antennas fixed. Similar algorithms are

proposed in [17] and [18]. However, optimal joint transmit and receive antenna selection

is still an open problem [5], and can only be optimized using exhaustive search (ES).
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2.4 Antenna Selection based on Diversity Selection

Antenna selection with a diversity maximization criterion focuses on improving communi-

cation link quality. Diversity combining can be achieved via three classical ways: selection

combining (SC), maximal ratio combining (MRC), and equal gain combining (EGC) [19].

2.4.1 Receive Antenna Selection

For Single-Input Multiple-Output (SIMO) systems withNtx = 1 transmit antenna,Ltx = 1

transmit RF chain,Nrx > 1 receive antennas, andNtx > Lrx ≥ 1 receive RF chains, a subset

of these receive antennas can be selected, and their signals combined. This method is called

generalized selection diversity [5] [20]. When MRC is used, this method is also known as

hybrid selection/maximal ratio combining [4]. The combining process can also employ

EGC. The optimal antenna subset for generalized selection diversity is one that contains

theLrx branches with the largest SNR, for both MRC or EGC [5]. For MIMO systems with

Ntx = Ltx > 1, space-time block codes with receive antenna selection is studied in [21] [22]

[23].

2.4.2 Transmit Antenna Selection

On the transmitter side, for Multiple-Input Single-Output (MISO) systems withNtx trans-

mit antennas andNtx > Ltx ≥ 1 transmit RF chains, andNrx = Lrx = 1 receive antenna

and receive RF chain, respectively, the equivalent antenna selection scheme to hybrid se-

lection/maximal ratio combining on the receiver side, is known as hybrid maximal ratio

transmission [5]. This scheme selects transmit antennas such that the superposition of the

received signal gives maximum SNR, and it is found that the optimal set of transmit an-

tennas are those with the largest channel gain [5]. Hybrid maximal ratio transmission for
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Nrx = Lrx > 1 with receiver-side diversity combining is also studied in [24]. It is noted

that maximal ratio transmission requires the feedback of estimated channel gains from the

set of transmit antennas to the set of receive antennas. Another transmit antenna selection

algorithm for MISO systems using space-time code is proposed in [23]. In [25], an op-

timal transmit antenna selection algorithm is proposed which minimizes the error rate by

exhaustively searching through all antenna configurations.

2.4.3 Joint Transmit and Receive Antenna Selection

In this case the system hasNtx transmit antennas,Ltx transmit RF chains,Nrx receive anten-

nas, andLrx receive RF chains, withNtx > Ltx > 1 andNrx > Lrx > 1. In order to maximize

diversity, space-time coding is used in [26], and the optimal antenna subset that minimizes

the probability of error can be found by jointly selecting transmit and receive antennas

with channel gains such that the Frobenius norm of the selected MIMO channel matrix is

maximized through exhaustive search.

Another joint transmit and receive antenna selection algorithm based on the second or-

der statistics of the channel is proposed in [27]. It is found that the optimal joint selection

of the transmit and receive antennas can be decoupled and selected independently of each

other [27]. For linear receivers, the selection criterion involves maximizing the singular val-

ues of the transmit covariance matrix and receive covariance matrix, by searching through

all the transmit antenna configurations and receive antenna configurations independently

[27].

It is noted in [5] that other than through exhaustive search, there are no existing fast,

efficient, or systematic methods for finding the optimal joint transmit and receive antenna

set that are not based on channel statistics.
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The joint selection algorithm proposed in this thesis is based on random antenna selec-

tion with antenna swapping (RAS-AS). The RAS-AS algorithm is an iterative joint transmit

and receive antenna subset selection algorithm. The RAS-AS algorithm provides an effi-

cient way that can find a near optimal subset of transmit and receive antennas. The RAS-AS

algorithm can also be used for transmit antenna selection or receive antenna selection as

special cases.

2.5 MIMO Signal Model

For a communication system with multiple antennas at both ends, letNtx, Ltx, Nrx, and

Lrx represent the number of transmit antennas, available transmit RF chains, receive an-

tennas, and available receive RF chains, respectively. The received signal vectorr can be

represented as

r = Hs+n (2.2)

wheres is the temporally and spatially white input signal vector of dimensionLtx×1 with

E[ssH ] = EsILtx andEs is the average symbol energy ;H is anLrx×Ltx antenna selected

MIMO channel with independent identically distributed (i.i.d.) complex Gaussian chan-

nel gains and flat Rayleigh quasi-static fading, where the channel is constant over a time

frame and the channel realizations over different time frames are uncorrelated; andn is

the temporally and spatially white additive Gaussian noise vector of dimensionLrx × 1

with E[nnH ] = NoILrx andNo is the noise energy. The input signal-to-noise ratio (SNR) is

defined asγo = Es/No.
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2.6 MIMO Channel Model

The proposed algorithm is also applicable to antenna correlated MIMO channels, and the

channel matrix can be modeled as follows [28] [29]

H = R
1
2
r HwR

1
2
t (2.3)

whereHw is the Lrx× Ltx MIMO channel matrix with i.i.d. complex Gaussian channel

gains,Rt is theLtx× Ltx covariance matrix of the rows ofH, andRr is theLrx× Lrx co-

variance matrix of the columns ofH. The(.)
1
2 represents the square root of a matrix. The

following assumes a MIMO channel with only transmit antenna correlation or only receive

antenna correlation, respectively:

H = HwR
1
2
t , (2.4)

or

H = R
1
2
r Hw . (2.5)

This thesis will focus on MIMO channels with correlation at only one side of the link. This

models the scenario where the base station (BS) is positioned on top of a tall building with

few surrounding scatterers, and the mobile station (MS) is located in an environment with

many surrounding scatterers. Therefore, the signal received at the BS antenna array would

experience some degree of correlation. The signal arriving at the MS would be uncorrelated

due to the rich scattering environment.

Assuming the BS to be the transmitter and the MS to be the receiver, the channel model

in (2.4) can be used. The uplink situation where the BS is the receiver and the MS is the

transmitter can be handled similarly.

In [30], it is found that a Power Azimuth Spectrum (PAS) with a truncated Laplacian

distribution best fits measurement results in urban and rural environments. Therefore, the
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truncated Laplacian PAS model in [30] is used to generate the coefficients in the correlation

matrix in (2.4).

The following defines the parameters for the model in [30]. LetNc represent the number

of scattering clusters,φ0,k represent the angle of incident from clusterk, σk represent the

angle spread of the signal from clusterk, and∆φk represent the truncation range in the

PAS, fork = 1, ...,Nc. Let the normalized distance be defined asd
λ andD = 2π d

λ , whered

is the physical spacing between antenna elements, and defineλ to be the wavelength of the

signal.

Let x be the real part of the complex baseband signal, andy be the imaginary part of

the complex baseband signal. The cross correlation between the real parts and the cross

correlation between the real and imaginary parts of the complex baseband signal at two

antenna elements that are a distanced apart is given in [30], and are given as follows:

Rxx(D) = J0(D)+4
Nc

∑
k=1

Qk

σk
√

2

∞

∑
m=1

J2m(D)
(
√

2/σk)2 +(2m)2
cos(2mφ0,k)

{√
2

σk
+exp

(
−∆φk

√
2

σk

[
2msin(2m∆φk)−

√
2

σk
cos(2m∆φk)

])}
(2.6)

Rxy(D) = 4
Nc

∑
k=1

Qk

σk
√

2

∞

∑
m=0

J2m+1(D)
(
√

2/σk)2 +(2m+1)2
sin((2m+1)φ0,k)

{√
2

σk
−exp

(
−∆φk

√
2

σk
[(2m+1)sin((2m+1)∆φk)

+
√

2
σk

cos((2m+1)∆φk)

])}
, (2.7)

whereJm(.) is the mth order Bessel function of the first kind. From [30], the complex

correlation coefficient is

R(D) = Rxx(D)+ jRxy(D) . (2.8)

Let a MIMO antenna selection system be denoted with the notation (Ntx:Nrx,Ltx:Lrx) =

(4:8,2:4), representing4 transmit and8 receive antennas, and2 transmit and4 receive RF
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chains, respectively. For antenna elements that are positioned a distanceλ
2 apart from one

another, and geometry whereNc = 2, φ0,1 =−π
2 , φ0,2 = π

2 , σ1 = σ2 = π
6 , ∆φ1 = ∆φ2 = π

3 ,

and with the signal coming from the second cluster having half the power as the signal from

the first cluster, the correlation matrix for a (4:8,2:4) system that has4 transmit antennas is

found to be

Rt =




R(D)|d=0 R(D)|d= λ
2

R(D)|d=λ R(D)|d= 3λ
2

R(D)H |d= λ
2

R(D)|d=0 R(D)|d= λ
2

R(D)|d=λ

R(D)H |d=λ R(D)H |d= λ
2

R(D)|d=0 R(D)|d= λ
2

R(D)H |d= 3λ
2

R(D)H |d=λ R(D)H |d= λ
2

R(D)|d=0




(2.9)

Rt =




1.000 −0.924−0.065i 0.767+0.083i −0.647−0.097i

−0.924+0.065i 1.000 −0.924−0.065i 0.767+0.083i

0.767−0.083i −0.924+0.065i 1.000 −0.924−0.065i

−0.647+0.097i 0.767−0.083i −0.924+0.065i 1.000




(2.10)

Figure 2.2 plots the magnitude of the correlation coefficients as a function of normalized

distanced
λ , with Nc = 2, φ0,1 = −π

2 , φ0,2 = π
2 , σ1 = σ2 = π

6 , ∆φ1 = ∆φ2 = π
3 . The plot in

Figure 2.2 matches that obtained in [30].

2.7 Zero Forcing Receiver

Due to its relative simplicity, a zero forcing (ZF) MIMO receiver will be used in the devel-

opment of the antenna selection algorithm in this thesis. The sufficient conditions for the

existence of a ZF solution is when the number of antennas and RF chains on the transmit

side is less than or equal to the number of antennas and RF chains on the receive side (i.e.

Ntx≤Nrx, Ltx≤ Lrx, Ltx≤ Ntx, andLrx ≤Nrx). A practical scenario under these conditions
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Figure 2.2: Magnitude of correlation vs normalized distance.

includes fixed wireless applications where the mobile stations can have the same number

or more antennas than the base station. The estimate of the transmitted signal at the output

of the ZF receiver is

s̃= H†r = s+H†n (2.11)

where(.)† denotes the pseudoinverse of a matrix. The post-processing SNRγk for thekth

data stream is given by [31]

γk =
γo[

(HHH)−1
]

k,k

= γog2
k ; g2

k =
[(

HHH
)−1

]−1

k,k
(2.12)

whereg2
k can be defined as the power gain.
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2.8 BER Expressions

The following presents the closed form BER expression for an antenna selected MIMO sys-

tem with a zero-forcing receiver and, without loss of generality, binary phase shift keying

(BPSK) modulation. The instantaneous average BER across the data streams for a certain

antenna configuration conditioned on the channel realization is given by [31]

BERavg =
1

Ltx

Ltx

∑
k=1

Q(
√

2γog2
k) (2.13)

whereγo = Es/No, with Es equal to the average symbol energy, andNo equal to the noise

energy,g2
k = [(HH

Lrx×Ltx
HLrx×Ltx)

−1]−1
k,k, andQ(x) = 1√

2π

∫ ∞
x e−

y2

2 dy.

It is assumed that the receiver estimates the channel, while the transmitter has no chan-

nel knowledge. Therefore, the antenna selection algorithm will be implemented at the

receiver side. During antenna selection, the indices of the selected transmit antennas will

be fed back to the transmitter.

From (2.13), it is noted that calculatingg2
k involves matrix inversion, which is one of the

most expensive operations when evaluating the BER for different antenna selected MIMO

channels. Therefore, the subsequent chapters in the thesis will present methods that can

speed up this operation and facilitate the swapping of antennas in the selection algorithm.
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Chapter 3

Random Antenna Selection

This chapter presents an algorithm based on the concept of random antenna selection (RAS)

and its selection criterion. The outage probability for RAS is also analyzed to justify the

potential of using RAS as a method for antenna selection.

3.1 Concept

This section describes the concept of random antenna selection, and how it can be used

as a means for antenna selection. With random selection, a subset of transmit and receive

antennas are selected randomly and connected to the available RF resources. The antenna

selection criterion based on the performance of the system is evaluated, and the process of

randomly choosing an independent subset of antennas can be repeated until the globally

optimal or a good enough antenna configuration is found.

The introduction of randomness into an antenna selection algorithm is novel and the

randomness can prevent the algorithm from finding a local rather than global minimum

cost solution. On the other hand, if the algorithm was deterministic and greedy, locally

optimum solutions would result, though likely at a lower computational complexity.
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3.2 Selection Criterion

Antenna selection algorithms that use a capacity maximization criterion can find a subset of

antennas that has the potential to support the highest data rate possible in a communication

link. However, system capacity is an information-theoretic measure and this data rate may

not be realizable with limited resources and finite processing delay. Therefore, a capacity

measure may not reflect actual system performance. A more realistic measure of the system

performance is based on average BER of the system. Antenna selection algorithms that use

the average BER minimization criterion can find a subset of antennas that give low error

rate and good link quality. Therefore, in this thesis, minimizing the average BER expression

of the system in (2.13) is chosen as the antenna selection criterion.

For different types of modulations, similar average BER expressions can be used as the

selection criterion. The selection criterion can also be adapted to other types of receivers

with different definitions of the power gain,g2
k.

Uniform transmit power allocation is assumed in this work. However, transmit power

allocation can also be jointly optimized with antenna selection by using an approximate

average BER expression [31] as the selection criterion. The approximate minimum bit

error rate (AMBER) power allocation scheme [31] can be applied to the selected antenna

subset in each iteration of the algorithm to jointly optimize the transmit power with the

selected antennas.

3.3 Random Antenna Selection Algorithm

At the startup of the algorithm, a subset ofLtx transmit andLrx receive antennas are selected

at random and connected to the available RF chains, and channel estimation is performed

for the MIMO system using these antennas. The average BER performance of the antenna
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Table 3.1: RAS algorithm pseudocode.

Initialization:

1 Randomly selectLtx transmit,Lrx receive antennas to formH0

2 Calculate
(
HH

0 H0

)−1
andg2

k for k = 1, ...,Ltx using (2.12)

3 Initialize
(
HHH

)−1
best=

(
HH

0 H0

)−1
and AvgBERbest= AvgBER0 using (2.13)

Main Loop (nth Step){
4 Randomly select an independent subset of transmit and receive antennas to formHn

5 Calculate the inverse
(
HH

n Hn

)−1

6 Calculateg2
k for k = 1, ...,Ltx using (2.12)

7 Calculate AvgBERn using (2.13)

8 if (AvgBERn < AvgBERbest) then

9 Current antenna configuration is the best : Set
(
HHH

)−1
best=

(
HH

n Hn

)−1

10 AvgBERbest= AvgBERn

end if

}

selected system is then evaluated. In each subsequent iteration of the algorithm, an inde-

pendent subset of transmit and receive antennas is chosen, additional channel estimation

is performed for the new antennas, and the average BER performance of the system us-

ing these independent subsets of antennas is evaluated. The algorithm keeps track of the

antenna configuration that results in the best performance, and terminates when either all

antenna configurations are tested or when a desired average BER performance is obtained.

As the algorithm cycles through the possible antenna configurations, the algorithm con-

verges to the globally optimal antenna configuration that provides the best average BER

performance. The pseudocode of the RAS algorithm is presented in detail in Table 3.1.
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From Table 3.1, it is noted that each iteration requires computationally expensive matrix

inversion in step5, when a different random subset of antennas is chosen. The following

chapters address this issue and present an iterative method to reduce computational com-

plexity. The rest of this chapter investigates the merits of performing RAS by examining

the outage probability of the system and the expected number of iterations. The statistics

of the received SNR is first presented in the following section, and from this distribution,

the statistics of the error rate for the different data streams can be determined.

3.4 Statistics of the Received SNR

This section presents the statistics of the received SNR,γk = γog2
k in the average BER

expression in (2.13) . Using the statistics of the received SNR, the outage probability of the

system is then determined.

From [28], the SNR on thekth data stream,γk, for a Lrx ≥ Ltx MIMO channel with a

zero forcing receiver is weighted Chi-square distributed, with2(Lrx−Ltx + 1) degrees of

freedom (DOF) and has a weight ofγo

2σ2
k
. The probability density function (PDF) of thekth

stream forγk ≥ 0 is [28]

fΓk(γk) =
σ2

k e−γkσ2
k /γo

γo(Lrx−Ltx)!

(
γkσ2

k

γo

)Lrx−Ltx

(3.1)

whereσ2
k represents thekth diagonal entry in the inverse channel correlation matrix,Σ−1.

For uncorrelated channels,Σ = ILtx×Ltx, and for transmit antenna correlated channel,Σ = Rt .

The notationγk ∼ χ2(n,w) is used to indicate thatγk is weighted Chi-square distrib-

uted, with weightw, andn DOF. The PDF, cumulative distribution function (CDF) and the

moment generating function (MGF) of the Chi-square andw-weighted Chi-square random

variable withn DOF are provided in Appendices A and B, respectively.
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3.4.1 Approximate BER Expression

In order to find a closed form expression for the outage probability of the antenna selected

system, an approximation to the average BER of the system is used. The BER expression in

(2.13) can be approximated asp(γ)≈ 1
5exp{−cγ} [31], wherec is a constant depending on

the signal constellation. The average approximate BER (ABER) of the system is therefore

ABERavg =
1

5Ltx

Ltx

∑
k=1

e−cγog2
k . (3.2)

For BPSK, the constantc = 1 [31]. Higher order modulations can be analyzed using dif-

ferent values ofc. From (3.2) , the ABER for thekth data stream can be defined to be

ABERk−stream=
1
5

e−γog2
k . (3.3)

The average ABER expression can also be used as a selection criterion, and it provides an

uniform framework for different types of modulations by using different constants.

3.4.2 Distribution of the ABER of the kth data stream

The following derives the PDF of the ABER of thekth data stream using the PDF of the

kth received SNR from the previous section. This can provide an approximation to the

distribution of the average BER of thekth data stream at high SNR. The ABER of thekth

data stream is given by (3.3), where

ABERk−stream= bk =
1
5

e−γk = g(γk) . (3.4)

Solving forγk results in

γk,solution= ln

(
1

5bk

)
. (3.5)

Taking the derivative of (3.4) results in

g′(γk) =
−1
5

e−γk . (3.6)
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Therefore, together with (3.1), (3.5), and (3.6), the PDF of the ABER of thekth stream can

be found to be

fABERk−stream(bk) =
fΓk(γk,solution)
|g′(γk,solution)|

=
e−

γk,solution
2w γ

n
2−1
k,solution

(2w)
n
2 Γ

(
n
2

) 1

|−1
5 e−γk,solution|

∣∣∣∣∣∣
n=2(Lrx−Ltx+1),w= γo

2σ2
k

=
e−

−ln(5bk)
2w [−ln(5bk)]

n
2−1

(2w)
n
2 Γ

(
n
2

) 1

|−1
5 e−(−ln(5bk))|

∣∣∣∣∣∣
n=2(Lrx−Ltx+1),w= γo

2σ2
k

=
(5bk)

1
2w(−1)

n
2−1[ln(5bk)]

n
2−1

(2w)
n
2 Γ

(
n
2

) 1
bk

∣∣∣∣∣
n=2(Lrx−Ltx+1),w= γo

2σ2
k

=
(5)

1
2w(bk)

1
2w−1(−1)

n
2−1[ln(5bk)]

n
2−1

(2w)
n
2 Γ

(
n
2

)
∣∣∣∣∣
n=2(Lrx−Ltx+1),w= γo

2σ2
k

fABERk−stream(bk) =
(−1)Lrx−Ltx(5)

σ2
k

γo

(Lrx−Ltx)!

(
σ2

k

γo

)Lrx−Ltx+1

(bk)
σ2

k
γo
−1[ln(5bk)]Lrx−Ltx . (3.7)

For0 < γk < ∞, the PDF of the ABER of thekth stream is valid for15 > bk > 0.

3.5 ABER Outage Probability

The merits of random selection are shown for the simple case in which all antennas are

randomly selected independently in each iteration. The probability of an outage is defined

as the probability when all receivedABERk, k = 1, ...,Ltx, in the different data streams

go above a certain threshold. The set ofABERk are functions of the power gaing2
k for

k= 1, ...,Ltx, which are correlated random variables due to the inversion operation in (2.12).

To enable traceable mathematical analysis, independent coding and decoding across the

data streams is assumed. Therefore, the set ofABERk for k = 1, ...,Ltx would be modeled

as independent random variables, and their joint PDF is the product of their individual
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marginal PDFs. The outage probability for a given antenna configuration is therefore

Proutage = Pr(ABER1 > T1, ...,ABERLtx > TLtx)

=
Ltx

∏
k=1

Pr(ABERk > Tk) .

Through integration of (3.7),Pr(ABERk > Tk) can be found as

Pr(ABERk > Tk) =
∫ 1

5

Tk

fABERk−stream(bk)dbk

=
∫ 1

5

Tk

(−1)Lrx−Ltx(5)
σ2

k
γo

(Lrx−Ltx)!

(
σ2

k

γo

)Lrx−Ltx+1

(bk)
σ2

k
γo
−1[ln(5bk)]Lrx−Ltxdbk .

Apply the following change of variables

yk = ln(5bk) ; bk = 1
5eyk ; 1

5eykdyk = dbk , (3.8)

together with the new integration limits

bk = Tk ⇒ yk = ln(5Tk)

bk = 1
5 ⇒ yk = ln(5(1

5)) = ln(1) = 0
, (3.9)

the integration becomes

Pr(ABERk > Tk) =
∫ 0

ln(5Tk)

(−1)Lrx−Ltx(5)
σ2

k
γo

(Lrx−Ltx)!

(
σ2

k

γo

)Lrx−Ltx+1(
1
5

eyk

)σ2
k

γo
−1

(yk)Lrx−Ltx
1
5

eykdyk

=
∫ 0

ln(5Tk)

(−1)Lrx−Ltx

(Lrx−Ltx)!

(
σ2

k

γo

)Lrx−Ltx+1
(

eyk
σ2

k
γo

)
(yk)Lrx−Ltxdyk

= Ck

∫ 0

ln(5Tk)
(eakyk)(yk)mdyk ,

where

m= Lrx−Ltx ak = σ2
k

γo
Ck = (−1)m

m! (ak)
m+1 . (3.10)

The above integral can be evaluated as

∫ 0

ln(5Tk)
(eakyk)(yk)mdyk = eakyk

m

∑
r=0

(−1)rym−r
k m!

ar+1
k (m− r)!

∣∣∣∣∣
0

ln(5Tk)

. (3.11)
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Therefore,

Pr(ABERk > Tk) = Ck


eakyk

m

∑
r=0

(−1)rym−r
k m!

ar+1
k (m− r)!

∣∣∣∣∣
0

ln(5Tk)


 . (3.12)

The outage probability can be found to be

Proutage=
Ltx

∏
k=1

Ck




m

∑
r=0

eakyk(−1)rym−r
k m!

(m− r)!ar+1
k

∣∣∣∣∣
yk=0

yk=ln(5Tk)


 . (3.13)

The probability of still being in outage afterK iterations is specified byPr f ailure and is

calculated as(Proutage)K, and

K =
log(Pr f ailure)
log(Proutage)

(3.14)

is the expected number of RAS iterations for finding a non-outage set of antennas given a

maximumPr f ailure.

3.5.1 Numerical Results

This section presents the ABER outage probability for a MIMO system with (Ntx:Nrx,Ltx:Lrx)

= (4:8,2:4). The expression in (3.13) is evaluated to obtain the ABER outage probability

for an uncorrelated MIMO channel, withσ2
k = 1 for k = 1, ...,Ltx. Figure 3.1 shows the

ABER outage probability of the (4:8,2:4) uncorrelated antenna selected system for differ-

ent required ABER thresholds. Together with the ABER outage probability, the expected

number of RAS iterations calculated using (3.14) are tabulated in Table 3.2 for a given

Pr f ailure of 0.01and SNR from0dB to 10dB.

From Figure 3.1 it can be seen that the outage probability for an ABER threshold of

10−3 is smaller than the outage probability for lower ABER thresholds of10−4, 10−5, or

10−6 over all SNRs. This makes sense intuitively, as there is a smaller chance of finding a

set of antennas that all fail to meet a high ABER threshold than when a low ABER threshold

is to be met.
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Figure 3.1: ABER outage probability of a (4:8,2:4) system.

Table 3.2: Expected number of RAS iterations versus SNR.

ABERThreshold 0dB 2dB 4dB 6dB 8dB 10dB

10−3 4.17 1.88 1.08 0.72 0.53 0.41

10−4 21.48 5.33 2.21 1.21 0.79 0.56

10−5 121.69 14.93 4.26 1.91 1.09 0.73
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From Table 3.2, the expected number of iterations in order to find a non-outage set of

antennas decreases rapidly for high SNR. At a low SNR of4dB, the RAS algorithm requires

only 1.08, 2.21, and4.26 iterations to find a non-outage set of antennas for ABER thresh-

olds of 10−3, 10−4, and10−5 respectively. Therefore, after a small number of expected

RAS iterations, the system would not be in outage. These numerical results illustrate the

merits of performing random antenna subset selection.

3.6 Summary

This chapter presented the concept of RAS based on a minimum average BER selection

criterion. From the statistics of the received SNR, the ABER outage probability using the

RAS is determined. Numerical results suggest that after a small number of RAS iterations

the system would not be in outage, and this shows the potential merit of RAS.
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Chapter 4

Random Antenna Selection with Antenna

Swapping

In the previous chapter, the use of RAS for antenna selection is presented. It is noted that

in each RAS iteration, the evaluation of the computationally expensive matrix inversion

operation in the selection criterion is required when a different random subset of antennas

is chosen. This motivates the search for a method to reduce the computational complexity

of the RAS algorithm.

This chapter presents the concept of antenna swapping (AS) to address this problem,

and shows that antenna swapping is equivalent to performing matrix modification. Receive

antenna swapping is first presented, followed by transmit antenna swapping. A determin-

istic swapping sequence and random swapping sequence is then introduced. Near the end

of the chapter, a method to update the inverse of a modified matrix is presented, and this

enables the combination of RAS with AS to form an efficient joint transmit and receive

antenna selection algorithm.

28



4.1 Antenna Swapping

The antenna swapping technique can be applied to facilitate an efficient implementation of

the RAS algorithm. In each iteration, the algorithm can swap a pair of transmit or receive

antennas. An antenna from the selected set of antennas is swapped out, and is replaced by

an antenna that does not belong to the set of selected antennas during that iteration. The

combination of the RAS algorithm with antenna swapping is referred to as the RAS-AS

algorithm.

The computational requirements of the RAS-AS algorithm are dominated by the com-

putational complexity of the transmit and receive antenna swapping operations. These

operations will be further investigated in the later sections of the chapter.

4.1.1 Matrix Modification for Receive Antenna Swapping

This section considers the case of swapping a pair of receive antennas. Each receive antenna

is represented by a row of channel gains in the MIMO channel matrix. LetHn be the MIMO

channel matrix of dimensionLrx×Ltx, and it is represented below

Hn =




hH
1

hH
2

...

hH
Lrx




. (4.1)

Therefore,

HH
n Hn =

[
h1 h2 ... hLrx

]




hH
1

hH
2

...

hH
Lrx




= h1hH
1 +h2hH

2 + ...+hLrx
hH

Lrx
. (4.2)
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From the above, it can be seen that each row’s contribution toHH
n Hn is of the formh jh

H
j .

Therefore, if thejth row is swapped out and theith row is swapped in, then the contribution

from the jth row can be subtracted and the contribution from theith row can be added to

HH
n Hn to obtainHH

n+1Hn+1 as follows

HH
n+1Hn+1 = HH

n Hn +hih
H
i −h jh

H
j

= HH
n Hn +UVH

where

U =
[

hi h j

]
(4.3)

V =
[

hi −h j

]
(4.4)

so that

UVH =
[

hi h j

][
hi −h j

]H

=
[

hi h j

]



hH
i

−hH
j


 = hih

H
i −h jh

H
j .

Therefore, swapping a pair of receive antennas has the effect of introducing a rank-2 mod-

ification to HH
n Hn in the nth step of the algorithm. The modification matrix is formed by

multiplying two Ltx×2 rectangular matrices given in (4.3) and (4.4) above. The modifi-

cation matrix has at most rank2, and this occurs when the rows and columns of theUVH

matrix are linearly independent. Rank1 modification can occur when the channel gains to

be swapped out and the channel gains to be swapped in are highly correlated. In general,

by modeling the channel gains as independent random variables, the modification matrix is

of rank2.

The above result can be extended to swapping more than one pair of receive antennas

at a time. The general form ofU andV would be as follows

U =
[

(set of antennas to swap inhi ’s) (set of antennas to swap outh j ’s)

]
(4.5)
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V =
[

(set of antennas to swap inhi ’s) −(set of antennas to swap outh j ’s)

]
(4.6)

This would result in a rank-2k modification to theHH
n Hn matrix, wherek is the number of

receive antenna pairs to be swapped.

4.1.2 Matrix Modification for Transmit Antenna Swapping

This section considers the case of swapping a pair of transmit antennas. Each transmit

antenna is represented by a column of channel gains in the MIMO channel matrix. The

effect of swapping a pair of transmit antennas is equivalent to modifying a column in the

Hn matrix. LetHn represent the MIMO channel matrix of dimensionLrx×Ltx, and

Hn =
[

h1 h2 ... hLtx

]
. (4.7)

Therefore,

HH
n Hn =

[
h1 h2 ... hLtx

]H [
h1 h2 ... hLtx

]

=




hH
1

hH
2

...

hH
Ltx




[
h1 h2 ... hLtx

]

=




hH
1 h1 hH

1 h2 ... hH
1 hLtx

hH
2 h1 hH

2 h2 ... hH
2 hLtx

... ... ... ...

hH
Ltx

h1 hH
Ltx

h2 ... hH
Ltx

hLtx




. (4.8)

When theith column inHn is changed, it will affect theith row andith column inHH
n Hn.

Therefore, changing theith column inHn, requires simultaneous changes to theith row and

ith column ofHH
n Hn. From above, it is noted that theith row andith column inHH

n Hn are
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symmetric with respect to each other. Therefore, a result on the simultaneous change of a

symmetric column and row in [32] can be applied, and is presented below.

In order to simultaneously change the symmetricith row andith column inHH
n Hn, a

modification matrixC would be of the form

C =




0 ... 0 c1,i 0 ... ... 0

... 0 ... ... ... 0 0 ...

0 ... 0 ... 0 ... ... 0

ci,1 ... ... ci,i ... ... ... ci,Ltx

0 ... 0 ... 0 ... ... 0

... 0 ... ... ... 0 0 ...

... 0 ... ... ... 0 0 ...

0 ... 0 cLtx,i 0 ... ... 0




where only theith row andith column have non-zero values. Comparing to (4.8) above, in

order to remove theith transmit antenna and insert thejth transmit antenna, the modification

matrix would have to be

C =




0 ... 0 hH
1 h j −hH

1 hi 0 ... ... 0

... 0 ... ... ... 0 0 ...

0 ... 0 ... 0 ... ... 0

hH
j h1−hH

i h1 ... ... hH
j h j −hH

i hi ... ... ... hH
j hLtx

−hH
i hLtx

0 ... 0 ... 0 ... ... 0

... 0 ... ... ... 0 0 ...

... 0 ... ... ... 0 0 ...

0 ... 0 hH
Ltx

h j −hH
Ltx

hi 0 ... ... 0




. (4.9)

The modification matrixC has at most rank2 and can be represented by the product of

two rectangular matrices of dimensionLtx×2 and2×Ltx respectively [32]. Let these two
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rectangular matrices beU andV, and they are defined as follows

U =
[

u ei

]
(4.10)

V =
[

ei u

]
(4.11)

whereu contains the adjustment values toHH
n Hn, andei is a vector with a1 in the ith

position and zeros everywhere else. Then

C = UVH =
[

u ei

][
ei u

]H

=
[

u ei

]



eH
i

uH


 = ueH

i +eiu
H . (4.12)

Expanding the above results in

C =




u1,1

...

ui,1

...

uLtx,1







01,1

...

1i,1

...

0Ltx,1




H

+




01,1

...

1i,1

...

0Ltx,1







u1,1

...

ui,1

...

uLtx,1




H

=




u1,1

...

ui,1

...

uLtx,1




[
01,1 ... 1i,1 ... 0Ltx,1

]
+




01,1

...

1i,1

...

0Ltx,1




[
uH

1,1 ... uH
i,1 ... uH

Ltx,1

]
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=




0 ... 0 u1,1 0 ... ... 0

... 0 ... ... ... 0 0 ...

0 ... 0 ... 0 ... ... 0

0 ... 0 ui,1 0 ... ... 0

0 ... 0 ... 0 ... ... 0

... 0 ... ... ... 0 0 ...

... 0 ... ... ... 0 0 ...

0 ... 0 uLtx,1 0 ... ... 0




+




0 ... 0 0 0 ... ... 0

... 0 ... ... ... 0 0 ...

0 ... 0 ... 0 ... ... 0

uH
1,1 ... ... uH

i,1 ... ... ... uH
Ltx,1

0 ... 0 ... 0 ... ... 0

... 0 ... ... ... 0 0 ...

... 0 ... ... ... 0 0 ...

0 ... 0 0 0 ... ... 0




=




0 ... 0 u1,1 0 ... ... 0

... 0 ... ... ... 0 0 ...

0 ... 0 ... 0 ... ... 0

uH
1,1 ... ... ui,1 +uH

i,1 ... ... ... uH
Ltx,1

0 ... 0 ... 0 ... ... 0

... 0 ... ... ... 0 0 ...

... 0 ... ... ... 0 0 ...

0 ... 0 uLtx,1 0 ... ... 0




.

Comparing to (4.9) above, the values foru can be determined as follows

uk,1 = hH
k h j −hH

k hi (4.13)

for k = 1, ...,(i−1),(i +1), ...,Ltx. From

ui,1 +uH
i,1 = hH

j h j −hH
i hi (4.14)

the ith element inu can be determined as

ui,1 =
1
2

(
hH

j h j −hH
i hi

)
. (4.15)
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Therefore, using (4.13) and (4.15), the matricesU andV from (4.10) and (4.11) above

can be determined. With the modification matrixC defined, the updatedHH
n+1Hn+1 can be

computed as

HH
n+1Hn+1 = HH

n Hn +C = HH
n Hn +UVH . (4.16)

From the above, it can be seen that swapping a pair of transmit antennas has the effect of

performing a rank-2 modification on theHH
n+1Hn+1 matrix. Similar to the case of receive

antenna swapping, the modification matrix has at most rank2. In general, by modeling

the channel gains as independent random variables, the modification matrix is of rank2.

To swapk pairs of transmit antennas, a modification matrix of rank-2k and appropriate

adjustments to the values inu would be required.

4.2 Antenna Swapping Sequence

The antenna swapping sequence is defined as the set of antenna configurations that the

algorithm iterates through to calculate the average BER performance of the system. The

following presents two types of swapping sequences. The first type is a deterministic swap-

ping sequence, and the second type is a random swapping sequence.

4.2.1 Deterministic Swapping Sequence

A deterministic swapping sequence of antenna configurations is a sequence where each

neighboring configuration differs by one transmit or receive antenna. The swapping se-

quence can be decoupled into a transmit antenna swapping sequence and a receive antenna

swapping sequence. The two sequences can then be combined to form a single transmit and

receive antenna swapping sequence with all the combinations. In order to keep the number

of swapping operations to a minimum, the antenna sequence with antenna configurations
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Table 4.1: Receive antenna swapping sequence.

1 2 3 4 1 4 7 8 1 5 6 7 2 3 4 6 1 4 5 8 3 4 5 8 3 5 6 8

1 2 3 5 1 5 7 8 1 4 6 7 2 3 4 7 1 4 5 7 3 4 5 7 2 5 6 8

1 2 3 6 1 6 7 8 1 3 6 7 2 3 4 8 1 3 5 7 3 4 5 6 2 4 6 8

1 2 3 7 2 6 7 8 1 2 6 7 2 3 5 8 1 3 5 8 2 3 5 6 2 4 5 8

1 2 3 8 3 6 7 8 1 2 5 7 2 3 6 8 1 5 6 8 2 3 5 7 2 4 5 7

1 2 4 8 4 6 7 8 1 2 4 7 2 3 7 8 1 4 6 8 2 3 6 7 2 4 5 6

1 2 5 8 5 6 7 8 1 2 4 6 2 4 7 8 1 3 6 8 2 4 6 7 1 2 5 6

1 2 6 8 4 5 6 7 1 2 4 5 2 5 7 8 1 3 4 8 3 4 6 7 1 4 5 6

1 2 7 8 3 5 6 7 1 3 4 5 3 5 7 8 1 3 4 7 3 4 6 8 1 3 5 6

1 3 7 8 2 5 6 7 2 3 4 5 4 5 7 8 3 4 7 8 4 5 6 8 1 3 4 6

that differ from the neighboring configurations by one transmit or one receive antenna will

be used.

The swapping sequence is cyclic. A possible transmit and receive antenna sequence

is presented below for a (4:8,2:4) system. Table 4.1 presents a receiver antenna swapping

sequence that cycles through all the subset antenna configurations of size4 in a receive

antenna array with8 antennas. The sequence goes from top to bottom, left to right. Each

element in the sequence differs from its neighbor by one antenna element. The last antenna

configuration, [1 3 4 6], wraps around to the first antenna configuration, [1 2 3 4], in the

table, and the two differ by one antenna element. Table 4.2 presents a transmit antenna

swapping sequence that cycles through all the size2 subset antenna configurations for a

transmit antenna array with4 antennas.

The above sequences are not unique and there exist other cyclic swapping sequences.

The combination of the transmit and receive antenna swapping sequences represents all the
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Table 4.2: Transmit antenna swapping sequence.

1 2 1 3 1 4 2 4 3 4 2 3

possible antenna configurations of the system.

4.2.2 Random Swapping Sequence

A random swapping sequence is one that randomly selects a antenna, and exchanges it

with another antenna that is not selected in that iteration. In each iteration, a random pair

of transmit or receive antenna is swapped, and each side is equally likely to have its antenna

swapped. This is discussed further in Section 4.4. In a random swapping sequence, it is

possible for the same antenna configurations to be tested more than once.

4.3 Inversion Update for Modified Matrix

From previous sections, it is shown that antenna swapping is equivalent to performing

matrix modification. Therefore, this section will present the Sherman-Morrison formula

and Woodbury formula that can be used to update the inverse of a modified matrix.

4.3.1 Sherman-Morrison Formula

The Sherman-Morrison formula allows the inverse of a modified matrix to be computed

from the inverse of the unmodified matrix. The following presents the details of this matrix

inversion update.

Let A be aN×N invertible square matrix, withu andv representing twoN×1 dimen-

sion vectors, andβ is any arbitrary scalar. Then, let̃A = A+βuvH be the rank-1 modified

version of the original matrix A, where the quantityβuvH represents a rank-1 modification.
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Then the inverse of the modified matrix can be related to the inverse of the original matrix

as follows

(Ã)−1 = (A+βuv)−1 = A−1− β
λ

A−1uvHA−1 (4.17)

whereλ = 1+βvHA−1u [32]. Whenβ = 1, (4.17) becomes the Sherman-Morrison formula

[32].

4.3.2 The Woodbury Formula

A generalization of the Sherman-Morrison formula is the Woodbury formula and it is pre-

sented below. LetD be aN×N invertible square matrix, withP andQ representing two

N×k dimensional matrices(k< N), andξ is any arbitrary scalar. Then, let̃D = D+ξPQH

be the rank-k modified version of the original matrixD, where the quantityξPQH repre-

sents a rank-k modification. Then the inverse of the modified matrix can be related to the

inverse of the original matrix as follows

(D̃)−1 = (D+ξPQH)−1 = D−1−ξD−1PΣ−1QHD−1 (4.18)

whereΣ = Ik +ξQHD−1P, andIk is thek×k identity matrix [32]. Whenk = 1, the expres-

sion in (4.18) simplifies to (4.17), withΣ = λ .

4.4 Random Antenna Selection with Antenna Swapping

Algorithm

With the matrix inversion update expressions from the previous section, the inverse of the

modified matrix after swapping a pair of antennas can be computed. This can facilitate an

efficient method to compute the power gain required in the evaluation of the selection cri-

terion. The realization of the RAS algorithm with AS is referred as the RAS-AS algorithm.
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The RAS-AS algorithm starts off by randomly selectingLtx transmit antennas andLrx

receive antennas. The algorithm swaps a pair of transmit or receive antennas in each it-

eration, and keeps track of the antenna configuration that provides the best average BER

performance. In each iteration, there is a probability ofpswap that a pair of transmit anten-

nas is swapped, or a pair of receive antennas is swapped with probability(1− pswap). The

pswapparameter will be further discussed in subsequent chapters. The algorithm terminates

when either all antenna configurations are tested or when a desired average BER perfor-

mance is achieved. While most existing algorithms require the full complexity MIMO

channel to be estimated, the RAS-AS algorithm only requiresLrx×Ltx complex channel

gains to be estimated at startup. Channel estimation is performed when new antennas are

swapped. This reduces the amount of initial training and spreads the overall channel train-

ing and estimation over time, making the RAS-AS algorithm practical for systems with

large numbers of antennas. This thesis considers temporally uncorrelated channels, and for

channels with temporal correlation, the RAS-AS algorithm can provide the flexibility to fa-

cilitate small updates to maintain or improve performance over time, starting with the best

antenna configuration found from the previous time slot. The pseudocode of the RAS-AS

algorithm is presented in Table 4.3.

In the next chapter, further simplifications will be introduced to the transmit and receive

antenna swapping operations, and these computational complexity reductions can be used

to perform the matrix inversion update in step6 of the pseudocode in Table 4.3.

4.5 Summary

This chapter presents the concept of antenna swapping, and relates it to performing a rank-

2k matrix modification whenk pairs of antennas are swapped. From this relationship,
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Table 4.3: RAS-AS algorithm pseudocode.

Initialization:

1 Randomly selectLtx transmit,Lrx receive antennas to formH0

2 Calculate
(
HH

0 H0

)−1
andg2

k for k = 1, ...,Ltx using (2.12)

3 Initialize
(
HHH

)−1
best=

(
HH

0 H0

)−1
and AvgBERbest= AvgBER0 using (2.13)

Main Loop:

4 Iterate through the antenna configurations (nth Step){
5 Swap a pair of transmit antennas with probabilitypswapor

swap a pair of receive antennas with probability(1− pswap) to form Hn

6 Update
(
HH

n Hn

)−1
with (4.18)

7 Calculateg2
k for k = 1, ...,Ltx using (2.12)

8 Calculate AvgBERn using (2.13)

9 if (AvgBERn < AvgBERbest) then

10 Current antenna configuration is the best : Set
(
HHH

)−1
best=

(
HH

n Hn

)−1

11 AvgBERbest= AvgBERn

end if}
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the Woodbury formula for matrix inversion update is applied to the modified matrix to

compute the power gains required for the evaluation of the selection criterion. This chapter

also presents a deterministic and random swapping sequence and the pseudocode for the

RAS-AS algorithm is presented at the end of the chapter.
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Chapter 5

Fast Random Antenna Selection with Antenna

Swapping

This chapter presents further complexity simplification of the RAS-AS algorithm based on

rank-2 matrix modification from the swapping of a pair of transmit or receive antennas.

The simplified algorithm is analyzed in terms of the required number of multiplications

and additions. The order of computational complexity is also derived. The behavior of the

RAS-AS algorithm is also analyzed in terms of the expected number of iterations using

either a deterministic or random swapping sequence. A greedy version of the algorithm is

also introduced for comparison purposes. Simulations of the average BER performance for

the RAS-AS algorithm conclude this chapter.

5.1 Rank-2 Complexity Reduction

In Sections 4.1.1 and 4.1.2, it is noted that the swapping of a pair of receive antennas or

transmit antennas is equivalent to introducing a rank-2 modification to theHHH matrix.

The inverse of the perturbedHHH matrix can be updated using the Woodbury formula in

(4.18) for calculatingg2
k. As a result of the rank-2 modification matrix, the expressions for
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the swapping of a pair of transmit antennas and the swapping of a pair of receive antennas

can be simplified. The following applies a complexity reduction scheme based on [32]

for evaluating the matrix inverse after the transmit antenna swapping and receive antenna

swapping operations.

5.1.1 Reduced Complexity Transmit Antenna Swapping

When a pair of transmit antennas is swapped, a row and column in theHHH matrix has to

be modified. The rank-2 nature of the modification matrix and the structure of the modifica-

tion matrix allows for a more efficient computation of the matrix inversion update equation.

From the previous chapter, the update equation is

HH
n+1Hn+1 = HH

n Hn +C = HH
n Hn +UVH (5.1)

whereU andVH are two rectangular matrices of dimensionLtx×2 and2×Ltx, respectively,

and they are defined in (4.10) and (4.11) as

U =
[

u ei

]
(5.2)

V =
[

ei u

]
(5.3)

whereu contains the adjustment values toHH
n Hn, andei is a vector with a1 in the ith

position and zeros everywhere else. Applying the Woodbury formula (4.18) to (5.1) above

results in

(HH
n+1Hn+1)

−1 = (HH
n Hn)

−1− (HH
n Hn)

−1U
(
I2 +VH(HH

n Hn)
−1U

)−1
VH(HH

n Hn)
−1

whereI2 is the2×2 identity matrix. SubstitutingU andV from (4.10) and (4.11) into the

above expression, and lettingBn = HH
n Hn, Bn+1 = HH

n+1Hn+1, results in

B−1
n+1 = B−1

n −B−1
n

[
u ei

](
I2 +

[
ei u

]H

B−1
n

[
u ei

])−1[
ei u

]H

B−1
n
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= B−1
n −

[
B−1

n u B−1
n ei

]

I2 +




eH
i B−1

n

uHB−1
n




[
u ei

]



−1


eH
i B−1

n

uHB−1
n




= B−1
n −

[
B−1

n u B−1
n ei

]



1+eH
i B−1

n u eH
i B−1

n ei

uHB−1
n u 1+uHB−1

n ei




−1


eH
i B−1

n

uHB−1
n


 .(5.4)

Because of theei vector, the elements in the above expression can be simplified. It can be

seen thatB−1
n ei is the ith column ofB−1

n , eH
i B−1

n is the ith row of B−1
n , andeH

i B−1
n ei is the

(i, i) element inB−1
n . Let these be denotedB−1

n,icol
, B−1

n,irow
, andβi,i respectively. LetY be the

middle matrix in the second term of (5.4), therefore

Y =




1+eH
i B−1

n u eH
i B−1

n ei

uHB−1
n u 1+uHB−1

n ei


 =




1+B−1
n,irow

u βi,i

uHB−1
n u 1+uHB−1

n,icol


 =




y1 y2

y3 y4




where

y1 = 1+B−1
n,irow

u

y2 = βi,i

y3 = uHB−1
n u

y4 = 1+uHB−1
n,icol

From above,Y is a2×2 matrix, and its inverse can be found to be

Y−1 =
1

y1y4−y2y3




y4 −y2

−y3 y1


 =

1
d




y4 −y2

−y3 y1


 .

Therefore, (5.4) becomes

B−1
n+1 = B−1

n −
[

B−1
n u B−1

n,icol

]
Y−1




B−1
n,irow

uHB−1
n




= B−1
n −

[
B−1

n u B−1
n,icol

]
1
d




1+uHB−1
n,icol

−βi,i

−uHB−1
n u 1+B−1

n,irow
u







B−1
n,irow

uHB−1
n


(5.5)
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with

d = y1y4−y2y3 =
(

1+B−1
n,irow

u
)(

1+uHB−1
n,icol

)
− (

βi,i

)(
uHB−1

n u
)

. (5.6)

To further simplify the above, the following relationship in matrix multiplication is used:

let W andZ ben×2 matrices, and letT be a2×2 matrix. Then

WTZH =
[

w1 w2

]



T11 T12

T21 T22







zH
1

zH
2


 =

2

∑
i=1

2

∑
j=1

wiTi j z
H
j . (5.7)

Therefore, letting

W =
[

B−1
n u B−1

n,icol

]

T =




1+uHB−1
n,icol

−βi,i

−uHB−1
n u 1+B−1

n,irow
u




ZH =




B−1
n,irow

uHB−1
n


 ,

expanding the second term in (5.5) using (5.7) results in

B−1
n+1 = B−1

n − 1
d

WTZH

= B−1
n − 1

d

(
2

∑
i=1

2

∑
j=1

wiTi j z
H
j

)

= B−1
n − 1

d

(
w1T11z

H
1 +w1T12z

H
2 +w2T21z

H
1 +w2T22z

H
2

)

= B−1
n − 1

d




(
B−1

n u
)(

1+uHB−1
n,icol

)(
B−1

n,irow

)
+

(
B−1

n u
)(
−βi,i

)(
uHB−1

n

)
+

(
B−1

n,icol

)(−uHB−1
n u

)(
B−1

n,irow

)
+

(
B−1

n,icol

)(
1+B−1

n,irow
u
)(

uHB−1
n

)




.
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Collecting similar terms results in

B−1
n+1 = B−1

n − 1
d




(
B−1

n u
)



(
1+uHB−1

n,icol

)(
B−1

n,irow

)
+

(
−βi,i

)(
uHB−1

n

)


 +

(
B−1

n,icol

)



(−uHB−1
n u

)(
B−1

n,irow

)
+

(
1+B−1

n,irow
u
)(

uHB−1
n

)







. (5.8)

In (5.8), variables similar to those in [32] are defined to reduce the amount of redundant

calculations, with

n = B−1
n u (5.9)

m= uHB−1
n,icol

= B−1
n,irow

u (5.10)

k1 = 1+m (5.11)

k2 =−uHn (5.12)

k3 =−βi,i (5.13)

d = |k1|2−k2k3 . (5.14)

Therefore, (5.8) can be simplified to

B−1
n+1 = B−1

n − 1
d

[
B−1

n,icol

(
k1nH +k2B−1

n,irow

)
+n

(
k3nH +k1B−1

n,irow

)]
. (5.15)

The expression in (5.15) is the resulting simplified rank-2 matrix inversion update formula

that can be used when a pair of transmit antennas are swapped.

Another rank-2 simplification is given in [32] based on a different definition of theU

matrix. Instead of dividing by2 to correct theci,i = 2ui,1 term in the modification matrixC

in (5.1), another method is to pre-subtract the extra contribution ofui,1 with the following

modification to theU matrix [32]

U =
[

u−ui,1ei ei

]
. (5.16)
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The definition forV is unchanged. In this case, the modification matrixC becomes

C = UVH = ueH
i +eiu

H −ui,1eie
H
i .

With the new definition forU , the simplified rank-2 matrix inversion update expression has

the same form as (5.15) withk2 defined differently as

k2 =−(
uHn+ui,1

)
(5.17)

and the other variables from (5.9) to (5.11), (5.13), and (5.14) are the same. The compu-

tational difference is an extra addition in thek2 term, but a multiplication by12 is avoided

when modifying theci,i term as noted in [32].

5.1.2 Reduced Complexity Receive Antenna Swapping

When a pair of receive antennas are swapped, theHHH matrix is corrected as follows

HH
n+1Hn+1 = HH

n Hn +hinhH
in−houth

H
out = HH

n Hn +S (5.18)

wherehin are the channel gains associated with the receive antenna that is to be swapped

in, andhout are the channel gains associated with the receive antenna to be swapped out.

This can be accomplished with the following rank-2 modification matrixS= QEH , where

Q andE areLtx×2 matrices, and are defined as

Q =
[

hin hout

]
(5.19)

E =
[

hin −hout

]
. (5.20)

Due to the rank-2 nature of the modification matrix, an efficient implementation and sim-

plification of the matrix inverse update equation can be obtained. Starting with the update

equation from (5.18) and applying the Woodbury formula (4.18), results in

(HH
n+1Hn+1)

−1 = (HH
n Hn)

−1− (HH
n Hn)

−1Q
(
I2 +EH(HH

n Hn)
−1Q

)−1
EH(HH

n Hn)
−1
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whereI2 is the2×2 identity matrix. SubstitutingQ andE from (5.19) and (5.20) into the

above expression, and lettingFn = HH
n Hn, Fn+1 = HH

n+1Hn+1, results in the following

F−1
n+1 = F−1

n −F−1
n

[
hin hout

]

I2 +




hH
in

−hH
out


F−1

n

[
hin hout

]



−1


hH
in

−hH
out


F−1

n

F−1
n+1 = F−1

n −
[

F−1
n hin F−1

n hout

]

I2 +




hH
inF−1

n

−hH
outF

−1
n




[
hin hout

]



−1


hH
inF−1

n

−hH
outF

−1
n




F−1
n+1 = F−1

n −
[

F−1
n hin F−1

n hout

]



1+hH
inF−1

n hin hH
inF−1

n hout

−hH
outF

−1
n hin 1−hH

outF
−1
n hout




−1


hH
inF−1

n

−hH
outF

−1
n


 .

(5.21)

Let X be the middle matrix in the second term of (5.21), therefore

X =




1+hH
inF−1

n hin hH
inF−1

n hout

−hH
outF

−1
n hin 1−hH

outF
−1
n hout


 =




x1 x2

x3 x4




where

x1 = 1+hH
inF−1

n hin

x2 = hH
inF−1

n hout

x3 = −hH
outF

−1
n hin

x4 = 1−hH
outF

−1
n hout .

From above,X is a2×2 matrix, and its inverse can be found to be

X−1 =
1

x1x4−x2x3




x4 −x2

−x3 x1


 =

1
p




x4 −x2

−x3 x1




Therefore, (5.21) becomes

F−1
n+1 = F−1

n −
[

F−1
n hin F−1

n hout

]
X−1




hH
inF−1

n

−hH
outF

−1
n



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F−1
n+1 = F−1

n − 1
p

[
F−1

n hin F−1
n hout

]



1−hH
outF

−1
n hout −hH

inF−1
n hout

hH
outF

−1
n hin 1+hH

inF−1
n hin







hH
inF−1

n

−hH
outF

−1
n




(5.22)

with

p =
(
1+hH

inF−1
n hin

)(
1−hH

outF
−1
n hout

)− (
hH

inF−1
n hout

)(−hH
outF

−1
n hin

)

To reduce the number of redundant calculations, the following vectors are defined

r1 = F−1
n hin (5.23)

r2 = F−1
n hout . (5.24)

Using (5.23) and (5.24), (5.22) becomes

F−1
n+1 = F−1

n − 1
p

[
r1 r2

]



1−hH
outr2 −hH

inr2

hH
outr1 1+hH

inr1







rH
1

−rH
2


 (5.25)

andp becomes

p =
(
1+hH

inr1

)(
1−hH

outr2

)− (
hH

inr2

)(−hH
outr1

)
. (5.26)

Further expanding (5.25) with the matrix relationship in (5.7) results in

F−1
n+1 = F−1

n − 1
p




(r1)(1−hH
outr2)(rH

1 ) +

(r1)(h
H
inr2)(rH

2 ) +

(r2)(h
H
outr1)(rH

1 ) +

(r2)(−1)(1+hH
inr1)(rH

2 )




= F−1
n − 1

p

[
r1

(
j1rH

1 + j2rH
2

)
+ r2

(
j3rH

1 + j4rH
2

)]
(5.27)

where j1, j2, j3, and j4 are constants defined as

j1 = 1−hH
outr2 (5.28)

j2 = hH
inr2 (5.29)

49



j3 = hH
outr1 (5.30)

j4 =−(1+hH
inr1) . (5.31)

The determinantp can be expressed in terms of the variables as

p = j2 j3− j1 j4 . (5.32)

The expression (5.27) is the resulting simplified rank-2 matrix inversion update formula

that can be used when a pair of receive antennas are swapped.

The amount of simplification is less than that for the case of swapping transmit an-

tennas, because the structure of the modification matrix in the transmit antenna swapping

contains theei vector, that allows the final expression (5.15) to be further simplified.

5.2 Fast Random Antenna Selection with Antenna Swap-

ping Algorithm

In the previous sections, simplified expressions for the transmit and receiving operations

are presented. These expressions can be used to update the matrix inverse in step6 of

the RAS-AS algorithm in the previous chapter, and this version is called the Fast RAS-AS

algorithm. The pseudocode of the Fast RAS-AS algorithm is presented in Table 5.1. The

Fast RAS-AS algorithm achieves the same average BER performance and expected number

of iterations as the RAS-AS algorithm, and these will be examined in the later sections of

the chapter.
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Table 5.1: Fast RAS-AS algorithm pseudocode.

Initialization:

1 Randomly selectLtx transmit,Lrx receive antennas to formH0

2 Calculate
(
HH

0 H0

)−1
andg2

k for k = 1, ...,Ltx using (2.12)

3 Initialize
(
HHH

)−1
best=

(
HH

0 H0

)−1
and AvgBERbest= AvgBER0 using (2.13)

Main Loop:

4 Iterate through the antenna configurations (nth Step){
5 Swap a pair of transmit antennas with probabilitypswapor

swap a pair of receive antennas with probability(1− pswap) to form Hn

6 Update
(
HH

n Hn

)−1
with (5.15) or (5.27) for transmit antenna swapping

or receive antenna swapping, respectively.

7 Calculateg2
k for k = 1, ...,Ltx using (2.12)

8 Calculate AvgBERn using (2.13)

9 if (AvgBERn < AvgBERbest) then

10 Current antenna configuration is the best : Set
(
HHH

)−1
best=

(
HH

n Hn

)−1

11 AvgBERbest= AvgBERn

end if}
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5.3 Greedy Fast Random Antenna Selection with Antenna

Swapping Algorithm

A greedy version of the Fast RAS-AS algorithm is presented in this section, and it is intro-

duced as a generic greedy algorithm mainly for comparison purposes to the Fast RAS-AS

algorithm. The greedy algorithm first selects a random subset of antennas, and alternates

between swapping transmit and receive antennas. The algorithm swaps through all the dif-

ferent pairs of antennas on one side and the antenna selection criterion is evaluated. If the

average BER performance of the system improves after swapping a pair of antennas, the

algorithm keeps track of this configuration and sets it as the best antenna configuration.

The new antenna is swapped back, resulting in the original antenna configuration, and an-

other antenna is swapped in. After swapping through all the different pairs of antennas, the

algorithm uses the best antenna configuration, and the same process is repeated for the an-

tennas on the other side of the communication link. The greedy algorithm terminates when

both sides cannot find an antenna that would improve the average BER performance of the

system after swapping through all pairs of transmit and receive antennas. The pseudocode

of the Greedy Fast RAS-AS algorithm is presented in Table 5.2.

Similar to the Fast RAS-AS algorithm, the computational complexity of the greedy

algorithm is dominated by the number of matrix inversion update operations after fast an-

tenna swapping. The computation required for the fast antenna swapping operations are

presented in the following sections, and the expected number of iterations of the greedy

algorithm is determined through simulations. The average BER performance of the greedy

algorithm will be presented in the later sections of the chapter.
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Table 5.2: Greedy Fast RAS-AS algorithm pseudocode.

Initialization:

1 Randomly selectLtx transmit,Lrx receive antennas to formH0

2 Calculate
(
HH

0 H0

)−1
andg2

k for k = 1, ...,Ltx using (2.12)

3 Initialize
(
HHH

)−1
best=

(
HH

0 H0

)−1
and AvgBERbest= AvgBER0 using (2.13)

Main Loop: (Alternate between transmit and receive antennas){
4 Transmitf oundBetter= 0, Receivef oundBetter= 0.

5 Loop: Swap through all pairs of antennas for each side (nth Step){
6 Swap a pair of antennas.

7 Update
(
HH

n Hn

)−1
with (5.15) or (5.27) for transmit antenna swapping

8 Calculateg2
k for k = 1, ...,Ltx using (2.12)

9 Calculate AvgBERn using (2.13)

10 if (AvgBERn < AvgBERbest) then

11 Current antenna configuration is the best : Set
(
HHH

)−1
best=

(
HH

n Hn

)−1

12 AvgBERbest= AvgBERn

13 Transmitf oundBetter= 1 for transmit antenna swapping, or

Receivef oundBetter= 1 for receive antenna swapping.

end if

14 Swap back to original configuration in thenth step of the algorithm.

}
15 if (Transmitf oundBetter== 0 andReceivef oundBetter== 0) then

16 Cannot find better antenna to swap in, terminate algorithm.

end if

}
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5.4 Computational Complexity

This section analyzes the computational complexity of the Fast RAS-AS algorithm in terms

of the number of additions and multiplications. Let a complex(real) multiplication and

complex(real) addition be denotedCm(Rm) andCa(Ra), respectively. The analysis will

first identify the initial overhead required at the start up of the algorithm, and then the

required computation of performing the transmit or receive antenna swapping operation

will be analyzed.

5.4.1 Initialization Overhead

At the startup of the Fast RAS-AS algorithm, a random set ofLtx transmit antennas, andLrx

receive antennas are chosen to form theLrx×Ltx MIMO channel matrix,H. The dominant

initialization overhead is the computation of the inverse of theHHH matrix. Once the

initial inverse is computed, the simplified update equations in (5.15) or (5.27) can be used

to update the matrix inverse as antennas are swapped.

5.4.2 Transmit Antenna Swapping Computation

This section will examine the required number of computation for the transmit antenna

swapping with the rank-2 simplification. Starting with the expression in (5.15), the update

equation for the inverse after swapping a pair of transmit antennas is

B−1
n+1 = B−1

n − 1
d

[
B−1

n,icol

(
k1nH +k2B−1

n,irow

)
+n

(
k3nH +k1B−1

n,irow

)]

with variablesn, m, k1, k2, k3, andd defined in (5.9) to (5.14). The amount of computation

for the variables are tabulated in Table 5.3. The variables are computed in the order given.

The number of multiplications and additions form is zero because its components can
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Table 5.3: Transmit antenna swap - variable computation.

Variable Dimension Multiplications Additions

u from (4.13) , (4.15) (Ltx×1) u Rm (Ltx−1)Ca +Ra

n = B−1
n u (Ltx×Ltx) B−1

n (L2
tx−2Ltx +1)Cm (L2

tx−Ltx−1)Ca

(Ltx×1) u +(4Ltx−3)Rm +Ra

m= uHB−1
n,icol

(1×Ltx) uH 0 0

= B−1
n,irow

u (Ltx×1) B−1
n,icol

k1 = 1+m (1×1) m 0 Ra

k2 =−uHn (1×Ltx) uH (2Ltx−1)Rm 2(Ltx−1)Ra

(Ltx×1) n

k3 =−βi,i (1×1) βi,i 0 0

d = |k1|2−k2k3 (1×1) k1, k2, k3 3Rm 2Ra

Total (L2
tx−2Ltx +1)Cm (L2

tx−2)Ca

+6LtxRm +(2Ltx +3)Ra
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be obtained aftern has been computed. The last row of Table 5.3 shows the total com-

putation required for the variables. Using the above computational requirements of the

variables, Table 5.4 shows the total amount of computation required for updating the in-

verse expression for transmit antenna swapping. The1
d constant in expression (5.15) is

expanded into the brackets as follows in order to reduce the number of multiplications

B−1
n+1 = B−1

n −
[
B−1

n,icol

(
k1

d
nH +

k2

d
B−1

n,irow

)
+n

(
k3

d
nH +

k1

d
B−1

n,irow

)]
.

The computational requirement for the different components in (5.15) are broken up and

computed in the order in Table 5.4.

From previous section,Bn = HH
n Hn and is a Hermitian matrix. Therefore, its inverse,

B−1
n is also Hermitian. Taking this into account, only the diagonal and upper triangular

elements have to be computed for variablesj, k, l , andB−1
n+1. The computational complexity

analysis also takes into account the real elements when multiplying and adding vectors and

matrices.

The total number of multiplications and additions required to update the matrix inverse

is given in the last row of Table 5.4, which are(L2
tx + Ltx− 1)Cm + (8Ltx + 5)Rm and

(L2
tx +Ltx−2)Ca +(4Ltx +2)Ra, respectively.

The Q-function in the average BER expression can be implemented efficiently in the

form of a look-up table. An additionalLtx− 1 additions and1 more multiplication are

required to calculate the average BER from theLtx data streams using expression (2.13).

Table 5.5 summarizes the computational complexity for the cases of calculating the

variables and updating the matrix inverse. In each case, the computational complexity is of

orderO(L2
tx).

56



Table 5.4: Transmit antenna swap - inverse update computation.

Variable Dimension Multiplications Additions

a = k1
d (1×1) d, k1 2Rm 0

b = k2
d (1×1) d, k2 Rm 0

c = k3
d (1×1) d, k3 Rm 0

d = anH (1×1) a, (1×Ltx) nH LtxCm 0

e= bB−1
n,irow

(1×1) b, (1×Ltx) B−1
n,irow

(2Ltx−1)Rm 0

f = cnH (1×1) c, (1×Ltx) nH 2LtxRm 0

g = aB−1
n,irow

(1×1) a, (1×Ltx) B−1
n,irow

(Ltx−1)Cm+2Rm 0

h = d+e (1×Ltx) d, e 0 (Ltx−1)Ca +Ra

i = f +g (1×Ltx) f , g 0 (Ltx−1)Ca +Ra

j = B−1
n,icol

h (Ltx×1) B−1
n,icol

, (1×Ltx) h Ltx(Ltx−1)
2 Cm+2LtxRm LtxRa

k = ni (Ltx×1) n, (1×Ltx) i Ltx(Ltx−1)
2 Cm+2LtxRm LtxRa

l = j +k (Ltx×Ltx) j, k 0 Ltx(Ltx−1)
2 Ca +LtxRa

B−1
n+1 = B−1

n − l (Ltx×Ltx) B−1
n , l 0 Ltx(Ltx−1)

2 Ca +LtxRa

Total (L2
tx +Ltx−1)Cm (L2

tx +Ltx−2)Ca

+(8Ltx +5)Rm +(4Ltx +2)Ra

Table 5.5: Transmit antenna swap - computation summary.

Calculation Multiplications Additions

Variables (5.9) to (5.14) (L2
tx−2Ltx +1)Cm+6LtxRm (L2

tx−2)Ca +(2Ltx +3)Ra

Matrix Inverse (5.15) (L2
tx +Ltx−1)Cm+(8Ltx +5)Rm (L2

tx +Ltx−2)Ca +(4Ltx +2)Ra

Total (2L2
tx−Ltx)Cm+(14Ltx +5)Rm (2L2

tx +Ltx−4)Ca +(6Ltx +5)Ra
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Table 5.6: Receive antenna swap - variable computation.

Variable Dimension Multiplications Additions

r1 = F−1
n hin (Ltx×Ltx) F−1

n Ltx(Ltx−1)Cm+2LtxRm Ltx(Ltx−1)Ca

(Ltx×1) hin

r2 = F−1
n hout (Ltx×Ltx) F−1

n Ltx(Ltx−1)Cm+2LtxRm Ltx(Ltx−1)Ca

(Ltx×1) hout

j1 = 1−hH
outr2 (1×Ltx) hH

out, (Ltx×1) r2 2LtxRm 2LtxRa

j2 = hH
inr2 (1×Ltx) hH

in, (Ltx×1) r2 LtxCm (Ltx−1)Ca

j3 = hH
outr1 (1×Ltx) hH

out, (Ltx×1) r1 0 0

j4 = hH
inr1−1 (1×Ltx) hH

in, (Ltx×1) r1 2LtxRm 2LtxRa

p = j2 j3− j1 j4 (1×1) j1, j2, j3, j4 3Rm 2Ra

Total (2L2
tx−Ltx)Cm (2L2

tx−Ltx−1)Ca

+(8Ltx +3)Rm +(4Ltx +2)Ra

5.4.3 Receive Antenna Swapping Computation

This section examines the required amount of computation for receive antenna swapping

with rank-2 simplification. Starting with the expression in (5.27), the update equation for

the inverse after swapping a pair of transmit antennas is

F−1
n+1 = F−1

n − 1
p

[
r1

(
j1rH

1 + j2rH
2

)
+ r2

(
j3rH

1 + j4rH
2

)]

with variablesr1, r2, j1, j2, j3, j4, andp defined in (5.23), (5.24), and (5.28) to (5.32). The

amount of computation for the variables are tabulated in the Table 5.6. The variables are

computed in the order given.

The number of multiplications and additions forj3 is zero becausej3 is the conjugate of

j2. The last row of Table 5.6 shows the total computation required for the variables. Using
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the above computational requirements, Table 5.7 shows the total amount of computation

required for updating the inverse expression for receive antenna swapping. The1
p constant

in expression (5.27) is expanded into the brackets as follows in order to reduce the number

of multiplications

F−1
n+1 = F−1

n −
[
r1

(
j1
p

rH
1 +

j2
p

rH
2

)
+ r2

(
j3
p

rH
1 +

j4
p

rH
2

)]
.

The computational requirement for the different components in (5.27) are broken up and

computed in the order in Table 5.7.

From previous section,Fn = HH
n Hn and is a Hermitian matrix. Therefore, its inverse,

F−1
n is also Hermitian. Taking this into account, only the diagonal and upper triangular

elements have to be computed for the variablesk, l , m, and F−1
n+1. The computational

complexity analysis also takes into account the real elements when multiplying and adding

vectors and matrices.

The total number of multiplications and additions required to update the matrix inverse

is given in the last row of Table 5.7, which are(L2
tx + Ltx)Cm+(8Ltx + 4)Rm and(L2

tx +

Ltx)Ca + 4LtxRa, respectively. After updating the matrix inverse, the set ofg2
k for k =

1, ...,Ltx can be obtained by inverting the(k,k) elements in the updated inverse.

The Q-function in the average BER expression can be implemented efficiently in the

form of a look-up table. An additionalLtx− 1 additions and1 more multiplication are

required to calculate the average BER from theLtx data streams using expression (2.13).

Table 5.8 summarizes the computational complexity for the cases of calculating the

variables and updating the matrix inverse. In each case, the computational complexity is of

orderO(L2
tx).
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Table 5.7: Receive antenna swap - inverse update computation.

Variable Dimension Multiplications Additions

a = j1
p (1×1) p, j1 Rm 0

b = j2
p (1×1) p, j2 2Rm 0

c = j3
p (1×1) p, j3 0 0

d = j4
p (1×1) p, j4 Rm 0

e= arH
1 (1×1) a, (1×Ltx) rH

1 2LtxRm 0

f = brH
2 (1×1) b, (1×Ltx) rH

2 LtxCm 0

g = crH
1 (1×1) c, (1×Ltx) rH

1 LtxCm 0

h = drH
2 (1×1) d, (1×Ltx) rH

2 2LtxRm 0

i = e+ f (1×Ltx) e, f 0 LtxCa

j = g + h (1×Ltx) g, h 0 LtxCa

k = r1i (Ltx×1) r1, (1×Ltx) i Ltx(Ltx−1)
2 Cm+2LtxRm LtxRa

l = r2 j (Ltx×1) r2, (1×Ltx) j Ltx(Ltx−1)
2 Cm+2LtxRm LtxRa

m= k+ l (Ltx×Ltx) k, l 0 Ltx(Ltx−1)
2 Ca +LtxRa

F−1
n+1 = F−1

n −m (Ltx×Ltx) F−1
n , m 0 Ltx(Ltx−1)

2 Ca +LtxRa

Total (L2
tx +Ltx)Cm (L2

tx +Ltx)Ca

+(8Ltx +4)Rm +4LtxRa

Table 5.8: Receive antenna swap - computation summary.

Calculation Multiplications Additions

Variables (5.23) to (5.24), (2L2
tx−Ltx)Cm+(8Ltx +3)Rm (2L2

tx−Ltx−1)Ca +(4Ltx +2)Ra

(5.28) to (5.32)

Matrix Inverse (5.27) (L2
tx +Ltx)Cm+(8Ltx +4)Rm (L2

tx +Ltx)Ca +4LtxRa

Total (3L2
tx)Cm+(16Ltx +7)Rm (3L2

tx−1)Ca +(8Ltx +2)Ra
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Table 5.9: Gauss-Jordan elimination computational complexity.

Multiplications Additions

(L3
tx)Cm (L3

tx−2L2
tx +Ltx)Ca

5.5 Matrix Inversion by Gauss-Jordan Elimination

In the case that the inverse of the matrix required to find the power gainsg2
k in (2.12) is not

updated via antenna swapping, the matrix inversion can be found using Gauss-Jordan elim-

ination. Table 5.9 presents the computational complexity of the Gauss-Jordan elimination

method required for calculating the inverse of aLtx×Ltx matrix [33]. It can be seen from

Table 5.9 that finding the inverse of a matrix using the Gauss-Jordan elimination method is

of O(L3
tx) complexity [33].

In order to compare the computational complexity of the Fast RAS-AS algorithm to

the computation required in performing a full complexity ES using the Gauss-Jordan elim-

ination method for finding matrix inverses, the complex multiplication and addition ex-

pressions in Table 5.5, 5.8, and 5.9 are expressed in terms of real multiplications and ad-

ditions. Each complex multiplication involves4Rm and2Ra, and each complex addition

involves2Ra. Table 5.10 presents the computational complexity of the transmit antenna

swapping operation, receive antenna swapping operation, and the matrix inversion using

Gauss-Jordan elimination in terms of real multiplications and additions.

After expressing the computational complexity in terms of real multiplications and ad-

ditions, Table 5.11, 5.12, and 5.13 present the computation required to perform transmit

antenna swapping, receive antenna swapping, and Gauss-Jordan elimination in one Fast

RAS-AS or full complexity ES iteration for different values ofLtx.

In subsequent sections, the expected number of iterations of the RAS-AS algorithm will

be analyzed. Using the expected number of iterations and the computational complexity in
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Table 5.10: Computation summary of transmit antenna swapping, receive antenna swap-

ping, and Gauss-Jordan elimination.

Multiplications Additions

Transmit Antenna Swapping (8L2
tx +10Ltx +5)Rm (8L2

tx +6Ltx−3)Ra

Receive Antenna Swapping(12L2
tx +16Ltx +7)Rm (12L2

tx +8Ltx)Ra

Gauss-Jordan Elimination (4L3
tx)Rm (5L3

tx−4L2
tx +2Ltx)Ra

Table 5.11: Transmit antenna swapping computation for differentLtx.

Ltx Transmit Antenna SwapTransmit Antenna Swap

Multiplications Additions

2 57 41

3 107 87

4 173 149

5 255 227

6 353 321

Table 5.12: Receive antenna swapping computation for differentLtx.

Ltx Receive Antenna SwapReceive Antenna Swap

Multiplications Additions

2 87 64

3 163 132

4 263 224

5 387 340

6 535 480
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Table 5.13: Gauss-Jordan elimination computation for differentLtx.

Ltx Gauss-Jordan Gauss-Jordan

Multiplications Additions

2 32 28

3 108 105

4 256 264

5 500 535

6 864 948

Table 5.11, 5.12, and 5.13, the computational savings of the Fast RAS-AS algorithm over

a full complexity ES will be examined.

5.6 Performance of a Deterministic Swapping Sequence

In a deterministic swapping sequence, a pair of transmit or receive antennas are swapped

according to a predefined swapping pattern in each iteration. Let a MIMO system with

Ntx number of transmit antennas,Nrx number of receive antennas,Ltx number of transmit

RF chains, andLrx number of receive RF chains be denoted (Ntx:Nrx,Ltx:Lrx). A possible

transmit and receive antenna swapping sequence for a (4:8,2:4) system was presented in

Tables 4.2 and 4.1, respectively. In the following, the expected number of iterations for the

RAS-AS algorithm using a deterministic swapping sequence to find the optimal antenna

configuration is first analyzed, and the average BER performance is simulated for the cases

of a MIMO channel with uncorrelated antennas and a MIMO channel with correlation

between the transmit antennas.
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5.6.1 Expected Number of Iterations

For a given channel realization, one of the antenna configurations in the deterministic swap-

ping sequence has the lowest average BER, which we term the optimal configuration. For

RAS-AS, a random configuration is selected initially. The expected distance between the

starting and optimal configurations refers to the expected number of iterations.

Let N =
(Ntx

Ltx

)(Nrx
Lrx

)
represent the total number of possible antenna configurations. As-

sume each antenna configuration is equally likely to be selected as the starting configura-

tion, and therefore, each configuration has a1/N probability of being selected. Assuming

the configurations are labeled by indices, the probability of selecting the antenna config-

urationn is Pcon f ig(n) = 1/N, wheren = 1,...,N. The possible distances from the optimal

configuration to any starting antenna configuration would be in the range of0 to N− 1.

Therefore, on average, the expected distance to the optimal configuration from any antenna

configuration, or the expected number of iterations is

E[iteration] =
N−1

∑
k=0

kPcon f ig(k) =
1
N

N−1

∑
k=0

k =
1
N

1
2
(N−1)((N−1)+1) =

N−1
2

. (5.33)

Therefore, the expected number of iterations for the RAS-AS algorithm with a determin-

istic swapping sequence is(N−1)/2, whereN =
(Ntx

Ltx

)(Nrx
Lrx

)
is the total number of antenna

configurations. This result is expected and it makes sense intuitively.

5.6.2 Simulation Results

For a (4:8,2:4) MIMO system, the average BER performance of the RAS-AS algorithm is

simulated using1000channel realizations. Figure 5.1 presents the average BER perfor-

mance of the RAS-AS algorithm when a deterministic swapping sequence is used. It is

observed in Figure 5.1 that after performing50%of the exhaustive search iterations, which

is the expected number of iterations for a deterministic swapping sequence, the RAS-AS
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Figure 5.1: Average BER of (4:8,2:4) MIMO system with deterministic swapping se-

quences.

algorithm is able to find an antenna configuration that can achieve an average BER perfor-

mance that is about0.4dB, 0.5dB, and0.6dB away from the optimal performance achieved

with exhaustive search for average BERs of10−3, 10−4, and10−5, respectively. Therefore,

after performing the expected number of iterations found from the analysis, it is possible

for the RAS-AS algorithm to find a set of antennas that can achieve close to optimal per-

formance. It is also observed that a2.0dB to 2.8dB gain in average BER performance is

achieved over using a fixed subset of antennas, by performing only a small percentage of

possible RAS-AS iterations (1%), at average BERs of10−2 and10−3, respectively.

The correlation matrix in (2.10) is used in the simulation of the performance of the

RAS-AS algorithm under correlated transmit antenna channel conditions. Figure 5.2 presents

the RAS-AS average BER performance for a (4:8,2:4) system using a deterministic swap-

ping sequence with different percentages of exhaustive search iterations.
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Figure 5.2: Average BER of (4:8,2:4) MIMO system with deterministic swapping sequence

under spatially correlated channels.

From Figure 5.2, it can be seen that under a correlated transmit antenna condition, the

system exhibits a higher average BER across all SNRs when compared with the perfor-

mance under an uncorrelated channel in Figure 5.1. The slopes of the average BER curves

are less steep, as the diversity order is reduced due to correlation between antennas. It is

observed that the50%average BER curve for a deterministic swapping sequence is about

0.8dB,1.2dB,1.2dB, and1.3dB away from the exhaustive search performance under trans-

mit antenna correlation for average BERs of10−2, 10−3, 10−4, and10−5 respectively. This

suggests that the RAS-AS algorithm behaves similarly in terms of computation versus per-

formance under uncorrelated and correlated channel conditions. Similar to the uncorrelated

case, a large average BER performance gain is observed from performing only1% of the

ES iterations when compared with the average BER achieved using a fixed subset of an-

tennas. The observed gain for the correlated case is4.0dB at an average BER of10−1 and
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3.5dB at an average BER of10−2.

5.7 Performance of a Random Swapping Sequence

For a random swapping sequence, a single pair of transmit or receive antennas are ran-

domly swapped in each iteration. The behavior of the RAS-AS algorithm using random

swapping can be modelled as a random walk on a homogeneous stationary Markov chain.

The following sections will develop this model, and the expected number of iterations of

the RAS-AS algorithm using a random swapping sequence to the different states in the

Markov chain model is found. The average BER performance of the RAS-AS algorithm

using a random swapping sequence is also simulated at the end of the chapter for both

uncorrelated and correlated transmit antenna MIMO channels.

5.7.1 Markov Chain Model for Analysis

The combinatorial problem of random antenna selection at either the transmit or receive

side can be classically described as one of selecting balls from an urn, where an initial set

of Ltx or Lrx balls are randomly selected, respectively. For random antenna swapping, each

iteration would randomly replace one of the selected balls with another randomly selected

ball from the urn. Assume the optimal set of balls is colored red and all the other balls are

colored white. Therefore, there would be two urns, one for the transmit side and one for

the receive side, each havingLtx red balls andNtx−Ltx white balls, andLrx red balls and

Nrx−Lrx white balls, respectively.

The following discussion will develop the model for the urn on the transmit side. A

similar development can be used for the receive side. For an urn withNtx balls, withLtx of

them being red, there can beLtx +1 different states, each having different numbers of red
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Figure 5.3: Transmit side RAS-AS Markov chain model.

and white balls. The states are connected by edges with different transition probabilities,

pi j , and is illustrated in Figure 5.3.

With random selection, the algorithm can start in any of the states with different starting

probabilities. Each edge indicates an allowed state transition. Each state has a probability

to remain in the same state after each swapping iteration. The state withLtx red balls and

0 white ball is the state with the optimal configuration (State0). Statek is the state with

k white balls andLtx− k red balls. The system in Figure 5.3 is a discrete-time finite state

Markov chain with transition probabilities that depend only on the current time instant,

regardless of the behavior of the algorithm in previous time instances. The Markov chain is

also homogeneous in time with stationary transition probabilities, and is also irreducible as

any state is reachable from any other state with different numbers of state transitions. The
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transition matrix of the above Markov chain has the following form.

Ptx =




0 p01 0 · · · · · · · · · · · · · · · 0

p10 p11 p12 0 · · · ... ... ... 0

...
...

0 · · · 0 pkk−1 pkk pkk+1 0 ... 0

...
...

0 · · · · · · · · · · · · 0 pLtx−1Ltx−2 pLtx−1Ltx−1 pLtx−1Ltx

0 · · · · · · · · · · · · 0 0 pLtxLtx−1 pLtxLtx




.

(5.34)

Each state can move to its neighboring states with some nonzero transition probability.

Other than the optimal state (State 0), all the other states have a probability of remaining in

the same state after a swapping operation. The elements of the transition matrix are given

as follows

pi,i =
(

Ltx− i
Ltx

)(
i

Ntx−Ltx

)
+

(
Ntx−Ltx− i

Ntx−Ltx

)(
i

Ltx

)
(5.35)

pi,i+1 =
(

Ltx− i
Ltx

)(
Ntx−Ltx− i

Ntx−Ltx

)
(5.36)

pi,i−1 =
(

i
Ltx

)(
i

Ntx−Ltx

)
(5.37)

with i representing the number of white balls, andi = 0, ...,Ltx. For any row of the transition

matrix, the sum of the transition probabilities is1. The above expressions are derived in

the following paragraphs.

The transition probabilitypi,i represents the probability of remaining in the same state

with i white balls after a swapping operation. This event can happen when a white ball is

swapped out and another white ball is swapped in, or when a red ball is swapped out and

another red ball is swapped in. The first term in (5.35) is the probability of selecting a red

ball to swap out and selecting another red ball to swap in, when there arei white balls in
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the urn. The probability of selecting a red ball to swap out is
(

Ltx−i
Ltx

)
and the probability

of selecting another red ball to swap in is
(

i
Ntx−Ltx

)
. The second term in (5.35) is the

probability of selecting a while ball to swap out and selecting another while ball to swap in,

when there arei white balls in the urn. The probability of selecting a white ball to swap out

is
(

i
Ltx

)
and the probability of selecting another white ball to swap in is

(
Ntx−Ltx−i
Ntx−Ltx

)
. The

two events are mutually exclusive, therefore, the transition probabilitypi,i is the summation

of the probabilities of the two events.

The transition probabilitypi,i+1 represents the probability of gaining a white ball after a

swapping operation. This event can happen when a red ball is swapped out and a white ball

is swapped in. The term in (5.36) is the probability of selecting a red ball to swap out and

selecting a white ball to swap in, when there arei white balls in the urn. The probability

of selecting a red ball to swap out is
(

Ltx−i
Ltx

)
and the probability of selecting a white ball to

swap in is
(

Ntx−Ltx−i
Ntx−Ltx

)
.

The transition probabilitypi,i−1 represents the probability of losing a white ball after a

swapping operation. This event can happen when a white ball is swapped out and a red ball

is swapped in. The term in (5.37) is the probability of selecting a white ball to swap out

and selecting a red ball to swap in, when there arei white balls in the urn. The probability

of selecting a white ball to swap out is
(

i
Ltx

)
and the probability of selecting a red ball to

swap in is
(

i
Ntx−Ltx

)
.

The probability of randomly choosing a configuration that belongs to one of the states,

or the initial state distribution of the Markov chain can be found as follows: leti represent

the number of white balls. The probability of starting in a state withi white balls is

λi =

( Ltx
Ltx−i

)(Ntx−Ltx
i

)
(Ntx

Ltx

) (5.38)

for i = 0, ...,Ltx. The term
(Ntx

Ltx

)
represents all the possible combinations of choosingLtx

balls from a urn withNtx balls. The term
( Ltx

Ltx−i

)
represents all the possible combinations
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of choosingLtx− i red balls from a total ofLtx red balls in the urn. The term
(Ntx−Ltx

i

)

represents all the possible combinations of choosingi white balls from a total ofNtx−Ltx

white balls in the urn. Therefore, the total number of combinations of choosingLtx balls of

which i of them are white andLtx− i of them are red is the product of
( Ltx

Ltx−i

)
and

(Ntx−Ltx
i

)
.

The probability of this event is equal to the ratio of all its combinations over all the possible

combinations from choosingLtx balls fromNtx balls.

Collecting all theλi into a column vectorΛ forms the initial state distribution for the

system. The steady state distribution vector of the system,Π, can be found whenΠ = ΠP,

and the summation of the elements ofΠ is 1.

For random swapping of both transmit and receive antennas, the algorithm can be an-

alyzed with a Markov chain with(Ltx +1)(Lrx +1) states. The state diagram is presented

in Figure 5.4. As seen from Figure 5.4, each neighboring state differs by one red or white

ball in the transmit side or receive side. A horizontal transition represents transmit antenna

swapping, and a vertical transition represents receive antenna swapping. The probability

of swapping an antenna on the transmit side or receive side is determined by the parameter

pswap in step5 of the pseudocode in Table 4.3 and Table 5.1. For each iteration, there is

a probability ofpswap to swap a pair of transmit antennas, or a probability of(1− pswap)

to swap a pair of receive antennas. Without further information,pswap is set to1
2 in this

thesis, so that there is an equal probability of swapping an antenna on the transmit side or

receive side in each iteration. This represents the case of equally likely random swapping

of transmit and receive antennas.

The transition probability matrix for transmit and receive antenna swapping is a com-

bination of the individual transmit swapping and receive swapping transition matrices. Let

Ptx represent the transmit swapping transition matrix in (5.34), and similarly, letPrx rep-

resent receive transition matrix. The transition matrix for combined transmit and receive
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Figure 5.4: Transmit and receive side RAS-AS Markov chain model.
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antenna swapping is found to be

Ptx,rx = ILrx+1⊗ pswapPtx +(1− pswap)Prx⊗ ILtx+1 (5.39)

where⊗ represents the Kronecker product. The above transition matrix has a structure,

where thePtx matrix is copied on the diagonals of the identity matrixILrx+1. This represents

the swapping of transmit antennas, while keeping the receive antennas fixed. The latter

Kronecker product provides transition probabilities into the differentPtx on the diagonal

when a receive antenna is swapped while keeping the transmit antennas fixed. Because the

swapping of transmit or receive antennas are equally likely, transitions inPtx andPrx occur

with probability pswapand(1− pswap), respectively. For any row of the transition matrix,

the sum of the transition probabilities is1.

The probability of randomly choosing a configuration that belongs to one of the states

or the initial distribution of the states can be found as follows: leti andk represent the

numbers of white balls in the transmit urn and receive urn, respectively. The probability of

starting in a state withi transmit white balls andk receive white balls is

λi,k =

( Ltx
Ltx−i

)(Ntx−Ltx
i

)( Lrx
Lrx−k

)(Nrx−Lrx
k

)
(Ntx

Ltx

)(Nrx
Lrx

) (5.40)

for i = 0, ...,Ltx, k = 0, ...,Lrx. The expression in (5.40) is a straightforward extension of

expression (5.38). The initial state distribution of the system can be formed by collecting

all the λi,k into a column vector,̃Λ. Similarly, the steady state distribution vector of the

system,̃Π, can be found wheñΠ = Π̃P, and the summation of the elements ofΠ̃ is 1.

5.7.2 First Passage Probability

The first passage probability from one state to another state inn steps is presented in this

section, and is used to find the expected number of iterations required to reach the different
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states in the Markov chain model. Starting from statei, the probability of reaching statej

in n steps for the first time can be defined as [34]

f (n)
i j = Pr[sn = j,sm 6= j, for 0 < m< n|s0 = i] (5.41)

wheresn represents the state of the system in stepn. A relationship between the first

passage probability,f (n)
i j , and then-step transition probability,p(n)

i j , is given by [34]

p(n)
i j = ∑n

g=1 f (g)
i j p(n−g)

j j n≥ 1 (5.42)

where then-step transition probability,p(n)
i j , is theith and jth element in thenth power of

the transition matrixP, i.e.,

p(n)
i j = [Pn]i, j . (5.43)

For i 6= j, the following holds:

f (0)
i j = 0 (5.44)

p(0)
j j = 1 (5.45)

p(0)
i j = 0 (5.46)

f (1)
i j = p(1)

i j . (5.47)

For i = j, the following holds:

f (n)
ii = 1 for n = 0

f (n)
ii = 0 for n 6= 0 .

(5.48)

The moment generating function (MGF) of the sequences{p(n)
i j } and{ f (n)

i j } can be defined

as [34]:

Pi j (z) =
∞

∑
n=0

p(n)
i j zn (5.49)

Fi j (z) =
∞

∑
n=0

f (n)
i j zn . (5.50)
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Substituting the MGFs in (5.49) and (5.50) to the transition probabilities in (5.42), the

relationship between the first passage probability and then-step transition probability can

be expressed as [34]

Pi j (z) =
∞

∑
n=0

p(n)
i j zn

= p(0)
i j +

∞

∑
n=1

n

∑
g=1

f (g)
i j p(n−g)

j j zn

= p(0)
i j +

∞

∑
g=1

f (g)
i j zg

∞

∑
r=0

p(r)
j j zr

= p(0)
i j +

∞

∑
g=0

f (g)
i j zg

∞

∑
r=0

p(r)
j j zr

Pi j (z) = p(0)
i j +Fi j (z)Pj j (z) . (5.51)

To find the sequence of first passage probabilities, the expression in (5.51) can be re-

arranged as

Fi j (z) =
Pi j (z)− p(0)

i j

Pj j (z)

=
∑∞

n=0 p(n)
i j zn− p(0)

i j

∑∞
n=0 p(n)

j j zn

Fi j (z) =
∑∞

n=1 p(n)
i j zn

∑∞
n=0 p(n)

j j zn
. (5.52)

The coefficients ofFi j (z) are the first passage probabilities of reaching statej for the first

time in n = 0,1, ...,∞ numbers of steps, when starting in statei. The coefficients of the

polynomialsPi j (z) and Pj j (z) can be found from thenth power of the transition matrix

in (5.43) numerically. The coefficients ofFi j (z) can then be calculated numerically by

long division of the polynomialsPi j (z) andPj j (z). The length of the polynomialsPi j (z)

andPj j (z) are chosen such that all the significant first passage probabilities forn≥ 0 are

captured.
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5.7.3 Expected Number of Iterations

This section will present the expected number of iterations for the algorithm with a ran-

dom swapping sequence to reach the different states in the Markov chain model using the

first passage probabilities from the previous section. As noted in [34], the first passage

probability is a proper probability distribution, where

fi j =
∞

∑
n=0

f (n)
i j = 1 . (5.53)

For transmit-antenna-only or receive-antenna-only swapping, letni be a discrete non-negative

integer-valued random variable representing the number of steps in order to reach statep

for the first time starting from statei. The associated PDF for the random variableni is the

first passage probabilitiesf (n)
ip for n= 0, ...,∞. Therefore, the expected number of iterations

to reach statep for the first time starting from statei is

E[ni ] =
∞

∑
n=0

f (n)
ip n . (5.54)

whereE[.] is the expectation operator.

Similarly, for transmit and receive antenna swapping, letnik be a discreet non-negative

integer-valued random variable representing the number of steps in order to reach statep,q

for the first time starting from statei,k. The associated PDF for the random variablenik

is the first passage probabilitiesf (n)
ik,pq for n = 0, ...,∞. Therefore, the expected number of

iterations to reach statep,q for the first time starting from statei,k is

E[nik] =
∞

∑
n=0

f (n)
ik,pqn . (5.55)

The algorithm can start in each of the states with initial state distribution probabilities

defined in (5.38) or (5.40). Therefore, using the initial state distribution the average number

of iterations required to reach statep or statep,q starting from any state can be found. Let
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N represent this quantity and it is defined as

N =
S

∑
i=0

λini (5.56)

whereS is the last state which is equal toLtx or Lrx, for transmit-antenna-only or receive-

antenna-only swapping, respectively. From (5.56), it can be seen thatN is a sum of the set

of random variablesni weighted by the initial state distribution probabilities. For transmit

and receive antenna swapping,N is defined as

N =
Lrx

∑
k=0

Ltx

∑
i=0

λi,kni,k (5.57)

whereλi,k is the initial state distribution in (5.40).

The following presents the expected number of iterations required for the algorithm to

reach statep or statep,q on average starting from any state, as well as the variance of the

average number of iterations. For transmit-antenna-only or receive-antenna-only swapping,

the expected value ofN in (5.56) is

Nmean =
S

∑
i=0

λiE[ni ] (5.58)

whereS is equal toLtx or Lrx for transmit-antenna-only or receive-antenna-only swapping,

respectively. Similarly, for transmit and receive antenna swapping, the expected value ofN

in (5.57) is

Nmean =
Lrx

∑
k=0

Ltx

∑
i=0

λi,kE[ni,k] . (5.59)

The expressions in (5.58) and (5.59) are the expected number of iterations required for the

RAS-AS algorithm, using a random swapping sequence, to find an antenna configuration

belonging to statep or statep,q on average.
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To find the variance in the number of iterations, the variance of the set of random vari-

ablesni are averaged and weighted by the initial state distribution. Therefore, for transmit-

antenna-only or receive-antenna-only swapping, the variance on average is

Nvar =
S

∑
i=0

λiVar[ni ] (5.60)

whereVar[.] is the variance operator, andS is equal toLtx or Lrx for transmit-antenna-

only or receive-antenna-only swapping, respectively. Similarly, the variance on average for

transmit and receive antenna swapping is

Nvar =
Lrx

∑
k=0

Ltx

∑
i=0

λi,kVar[ni,k] . (5.61)

The following section will apply the above analysis to a MIMO system to predict its ex-

pected number of iterations.

5.7.4 Analysis Example

As an example, the following applies the analysis from the previous sections to a (4:8,2:4)

system. Consider the case of performing receive-antenna-only swapping. The case of

performing transmit-antenna-only swapping can be analyzed similarly. The system can be

modeled as in Figure 5.3 and the transition matrix is as follows.

Prx =




0 1 0 0 0

0.0625 0.3750 0.5625 0 0

0 0.2500 0.5000 0.2500 0

0 0 0.5625 0.3750 0.0625

0 0 0 1 0




. (5.62)

The initial state distribution vector of the system can be calculated according to (5.38), and

is presented in Table 5.14. The system reaches steady state with a state distribution vector
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State 0 1 2 3 4

Probability 0.0143 0.2286 0.5143 0.2286 0.0143

Table 5.14: Receive antenna swapping initial distribution.

State 0 1 2 3 4

Probability 0.1137 0.3033 0.3412 0.2275 0.0142

Table 5.15: Receive antenna swapping steady state distribution.

presented in Table 5.15. It can be seen that during steady state, there is a0.11 probability

that the system will be in the optimal state (State0).

For both transmit and receive antenna swapping, the system can be modelled as in

Figure 5.4. The receive transition matrixPrx for a (4:8,2:4) system is presented in (5.62)

and the (4:8,2:4) Ptx transmit transition matrix is presented below.

Ptx =




0 1 0

0.25 0.50 0.25

0 1 0




. (5.63)

The combined state transition probability matrix for both transmit and receive antenna

swapping can be found according to equation (5.39) and is presented in Appendix C.

The initial state distribution vector of the system can be calculated according to (5.40),

and is presented in Table 5.16 for the (4:8,2:4) system. The system reaches steady state

with a state distribution vector presented in Table 5.17. It can be seen that during steady

state, there is a0.0325probability that the system will be in the optimal state (State0,0).

Using the expression in (5.59), the expected number of iterations to reach the different

states for the first time for a (4:8,2:4) system using the RAS-AS algorithm with a random

swapping sequence is presented in Table 5.18. The first passage probability is used to find

the expected number of iterations in order to reach the different states in the system, and
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State 0 1 2

0 0.0024 0.0095 0.0024

1 0.0381 0.1524 0.0381

2 0.0857 0.3429 0.0857

3 0.0381 0.1524 0.0381

4 0.0024 0.0095 0.0024

Table 5.16: Transmit and receive antenna swapping initial distribution.

State 0 1 2

0 0.0325 0.0650 0.0162

1 0.0867 0.1733 0.0433

2 0.0975 0.1950 0.0487

3 0.0650 0.1300 0.0325

4 0.0041 0.0081 0.0020

Table 5.17: Transmit and receive antenna swapping steady state distribution.

80



State 2 TxAntopt 1 TxAntopt 0 TxAntopt

4 RxAntopt 473.53 174.23 473.53

(445.99) (174.94) (475.20)

3 RxAntopt 36.09 12.05 36.09

(36.96) (13.13) (37.29)

2 RxAntopt 14.87 2.93 14.87

(15.40) (4.20) (15.87)

1 RxAntopt 36.09 12.05 36.09

(36.75) (12.25) (36.79)

0 RxAntopt 473.53 174.23 473.53

(491.50) (178.03) (474.58)

Table 5.18: Expected number of iterations for each state of the (4:8,2:4) system. The total

number of iterations for exhaustive search is 420. The simulated number of iterations are

presented in brackets.

the full range of the first passage probability function that has significant probabilities is

used.

The set of optimal transmit antennas and optimal receive antennas is denoted byTxAntopt

andRxAntopt, respectively. Each entry in Table 5.18 shows the expected number of itera-

tions to reach a particular state, which is indicated by the number of optimal antennas in

the top row and leftmost column of the table. The expected number of iterations obtained

from the analysis is presented above the simulated number of iterations, which is presented

in brackets for each entry in Table 5.18. The optimal state is located at the upper left hand

corner, and the three surrounding states are the boundary states. For the (4:8,2:4) system,

the total number of iterations by exhaustive search (ES) is
(Ntx

Ltx

)(Nrx
Lrx

)
=

(4
2

)(8
4

)
= 420. From
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Table 5.18, it can be seen that a random swapping sequence would take473.53 iterations,

more than ES number of iterations, to reach the optimal state on average. This is expected

as the random swapping sequence may revisit the same antenna configurations in the course

of finding the optimal state. As a result, the calculated entries in the table represent an av-

erage upper bound on the computation of the swapping operations, as no computation is

required for antenna configurations that are revisited.

It is observed that the expected number of iterations required to reach the boundary

states with near optimal transmit and receive antennas are significantly lower than per-

forming ES. For example, for the (4:8,2:4) system, only36.09 iterations or8.59% of the

ES iterations are required to find a configuration that has all the optimal transmit antennas

and three of the four optimal receive antennas. This is equivalent to a computational saving

of 91.41%when compared to the full complexity ES.

The expected number of iterations for the (4:8,2:4) system are further verified through

Monte Carlo simulations, and the results are presented in brackets under the expected num-

ber of iterations for each state in Table 5.18. The number of iterations to find the first

antenna configuration that belongs to the different states are recorded for each channel

realization. This process is repeated for1000channel realizations, and the number of iter-

ations to reach each state are averaged. The results are presented for a SNR of4dB, and

similar simulated number of iterations are observed for other SNRs. From Table 5.18, it

can be seen that the simulation results match closely with the results from the analysis.

Other system configurations are also considered in this thesis, and these include the

(6:6,3:3), (5:7,2:3), (5:9,2:4), (8:8,4:4), and (9:9,4:4) systems. These systems vary in the

number of antennas and RF chains on both the transmit and receive side. This leads to

different numbers of exhaustive search iterations and RAS-AS computational complexity.

Tables 5.19 to 5.23 presents the expected number of iterations to reach the different states
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State 3 TxAntopt 2 TxAntopt 1 TxAntopt 0 TxAntopt

3 RxAntopt 431.39 64.90 64.90 431.39

(435.69) (65.10) (67.40) (434.19)

2 RxAntopt 64.90 6.96 6.96 64.90

(66.59) (7.16) (6.82) (64.75)

1 RxAntopt 64.90 6.96 6.96 64.90

(62.86) (6.74) (6.82) (64.42)

0 RxAntopt 431.39 64.90 64.90 431.39

(420.70) (63.41) (64.51) (444.22)

Table 5.19: Expected number of iterations for each state of the (6:6,3:3) system. The total

number of iterations for exhaustive search is 400. The simulated number of iterations are

presented in brackets.

for the first time for the different systems.

Similarly, the expected number of iterations for the different systems are further veri-

fied through Monte Carlo simulations, and the results are presented in brackets under the

expected number of iterations for each state in Tables 5.19 to 5.23. From the tables, it can

be seen that the simulated number of iterations match closely with the number of iterations

found using the analysis.

From Tables 5.19 to 5.23, it can be seen that for all the systems the expected number

of iterations to reach the optimal configuration is larger than the ES number of iterations

on average, and this is attributed to the possibility of revisiting the same antenna config-

uration during the search for the optimal configuration. Similar to the (4:8,2:4) system,

the expected number of iterations to reach the boundary states for all the system is signifi-

cantly lower than performing ES. Table 5.24 summarizes the expected number of iterations

83



State 2 TxAntopt 1 TxAntopt 0 TxAntopt

3 RxAntopt 382.29 92.37 158.34

(385.97) (94.43) (154.63)

2 RxAntopt 40.14 7.31 15.16

(39.17) (7.06) (15.64)

1 RxAntopt 27.24 3.64 9.36

(25.93) (3.67) (9.58)

0 RxAntopt 110.76 26.12 45.82

(107.37) (25.87) (45.51)

Table 5.20: Expected number of iterations for each state of the (5:7,2:3) system. The total

number of iterations for exhaustive search is 350. The simulated number of iterations are

presented in brackets.

required to arrive at the state containing configurations that have all optimal transmit an-

tennas and one non-optimal receive antenna for the different systems.

Table 5.24 shows that a near optimal set of antennas can be found using random swap-

ping after much fewer iterations than exhaustive search. The average BER performance

of the RAS-AS algorithm after performing the expected number of iterations required to

reach the boundary state in Table 5.24 is examined in the next section.

The following presents the average number of computation per iteration required for

calculating the matrix inverse via the fast antenna swapping and the Gauss-Jordan elimina-

tion method. The computation information from Table 5.11, 5.12, and 5.13 forLtx = 3,4,5

is used.

For each of the Fast RAS-AS iteration withpswap= 1/2, a transmit or receive antenna

swap is equally likely to take place. Therefore, the average computation per iteration is
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State 2 TxAntopt 1 TxAntopt 0 TxAntopt

4 RxAntopt 1328.60 340.71 570.60

(1470.17) (347.26) (592.38)

3 RxAntopt 86.85 21.21 36.67

(90.15) (20.96) (36.11)

2 RxAntopt 29.46 4.26 10.35

(30.90) (4.17) (9.67)

1 RxAntopt 44.83 9.03 17.59

(48.97) (9.04) (16.83)

0 RxAntopt 313.46 81.45 134.94

(316.70) (84.13) (136.82)

Table 5.21: Expected number of iterations for each state of the (5:9,2:4) system. The total

number of iterations for exhaustive search is 1260. The simulated number of iterations are

presented in brackets.
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State 4 TxAntopt 3 TxAntopt 2 TxAntopt 1 TxAntopt 0 TxAntopt

4 RxAntopt 5035.58 425.12 212.97 425.12 5035.58

(5273.15) (428.14) (211.90) (435.90) (5153.34)

3 RxAntopt 425.12 35.21 15.40 35.21 425.12

(418.33) (35.98) (15.95) (34.77) (447.73)

2 RxAntopt 212.97 15.40 4.66 15.40 212.97

(217.27) (15.96) (5.25) (16.18) (215.99)

1 RxAntopt 425.12 35.21 15.40 35.21 425.12

(420.46) (34.31) (14.18) (33.30) (429.23)

0 RxAntopt 5035.58 425.12 212.97 425.12 5035.58

(5292.31) (410.03) (205.94) (409.74) (5035.74)

Table 5.22: Expected number of iterations for each state of the (8:8,4:4) system. The total

number of iterations for exhaustive search is 4900. The simulated number of iterations are

presented in brackets.
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State 4 TxAntopt 3 TxAntopt 2 TxAntopt 1 TxAntopt 0 TxAntopt

4 RxAntopt 16052.85 1064.30 411.23 583.55 3584.88

(16034.36) (1128.10) (406.72) (546.53) (3670.36)

3 RxAntopt 1064.30 73.07 26.13 38.90 252.31

(1030.38) (69.73) (23.95) (39.63) (231.90)

2 RxAntopt 411.23 26.13 6.28 11.82 97.94

(430.05) (25.77) (7.22) (12.62) (97.73)

1 RxAntopt 583.55 38.90 11.82 19.30 139.14

(591.10) (40.24) (11.51) (19.94) (150.69)

0 RxAntopt 3584.88 252.31 97.94 139.14 850.16

(3794.92) (215.47) (93.52) (149.30) (872.29)

Table 5.23: Expected number of iterations for each state of the (9:9,4:4) system. The total

number of iterations for exhaustive search is 15876. The simulated number of iterations

are presented in brackets.

(Ntx:Nrx,Ltx:Lrx) Expected Number of Total Number of ES

System Iterations (Analysis) ES
(Ntx

Ltx

)(Nrx
Lrx

)
Percentage

(5:7, 2:3) 40.14 350 11.47%

(6:6, 3:3) 64.90 400 16.23%

(4:8, 2:4) 36.09 420 8.59%

(5:9, 2:4) 86.85 1260 6.89%

(8:8, 4:4) 425.12 4900 8.68%

(9:9, 4:4) 1064.30 15876 6.70%

Table 5.24: Summary of the expected number of iterations to a boundary state for the

different systems.

87



Ltx Transmit Receive Average Computation

Swap(Rm) Swap(Rm) per Iteration

3 107 163 (107+163)/2 = 135

4 173 263 (173+263)/2 = 218

5 255 387 (255+387)/2 = 321

Table 5.25: Average number of multiplications per iteration for the Fast RAS-AS algorithm.

Ltx Transmit Receive Average Computation

Swap(Ra) Swap(Ra) per Iteration

3 87 132 (87+132)/2 = 109.5

4 149 224 (149+224)/2 = 186.5

5 227 340 (227+340)/2 = 283.5

Table 5.26: Average number of additions per iteration for the Fast RAS-AS algorithm.

the average of the computation for the complexity reduced transmit antenna swapping and

receive antenna swapping. The computation per iteration using the Gauss-Jordan method

is the same for both transmit and receive antenna swapping. The average number of com-

putations per iteration for the Fast RAS-AS algorithm are summarized in Table 5.25 and

5.26 in terms of multiplications and additions, respectively.

From Table 5.25 and 5.26, it can be seen that forLtx = 3, performing the matrix inver-

sion via the fast antenna swapping is almost as efficient as the108multiplications and105

additions required for Gauss-Jordan elimination from Table 5.13.

From Table 5.25 and 5.26, it can be seen that forLtx = 4, updating the matrix inverse via

the fast antenna swapping is more efficient than the256multiplications and264additions

required when performing direct matrix inversion using the Gauss-Jordan method from

Table 5.13. Similarly forLtx = 5, the fast antenna swapping is more efficient than the500
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Ltx Average Multiplication Average Addition

Reduction per Iteration Reduction per Iteration

4 (256−218)/256= 0.1484(14.84%) (264−186.5)/264= 0.2936(29.36%)

5 (500−321)/500= 0.3580(35.80%) (535−283.5)/535= 0.4701(47.01%)

Table 5.27: Average reduction in the number of multiplications and additions per iteration.

multiplications and535additions required for the Gauss-Jordan method from Table 5.13.

The computational reduction compared to the Gauss-Jordan elimination for these two cases

are presented in Table 5.27.

From Table 5.27, it can be seen that forLtx = 4, the fast antenna swapping provides

a 14.84% and29.36% reduction in the number of multiplications and additions over the

Gauss-Jordan method per iteration on average. ForLtx = 5, the amount of computational

reduction is35.80%and47.01%for the number of multiplications and additions, respec-

tively.

Therefore, for systems withLtx ≥ 4 number of RF chains, the antenna swapping of the

Fast RAS-AS algorithm would provide computational savings in each iteration on average

over performing direct matrix inversion using the Gauss-Jordan method. ForLtx = 3, the

antenna swapping of the Fast RAS-AS algorithm has slightly more multiplications and

additions than the Gauss-Jordan method in each iteration on average.

Using the expected number of iterations from the analysis in Table 5.24, which shows

the expected number of iterations to reach the boundary state with all optimal transmit

antennas and near optimal receive antennas, the computational savings compared to the full

complexity ES is examined. The overall computational savings for the different systems

are presented in Table 5.28.
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(Ntx:Nrx,Ltx:Lrx) Overall Savings Overall Savings

System of Multiplications of Additions

(5:7, 2:3) 88.53% 88.53%

(6:6, 3:3) 83.77% 83.77%

(4:8, 2:4) 91.41% 91.41%

(5:9, 2:4) 93.11% 93.11%

(8:8, 4:4) 92.61% 93.87%

(9:9, 4:4) 94.29% 95.27%

Table 5.28: Summary of the overall computational savings of the different systems.

For the case ofLtx = 2 andLtx = 3, it is more efficient to use the Gauss-Jordan elim-

ination method for matrix inversion. For these two cases, the computational savings only

comes from the reduced number of iterations, which ranges from6.89%to 16.23%of the

ES iterations for the first four systems in Table 5.24. Therefore, the computational savings

is about83.77%to 93.11%for these systems, and the results are summarized in Table 5.28.

For the (8:8,4:4) and (9:9,4:4) systems withLtx ≥ 4, other than the computational savings

from the performing much fewer iterations than the ES, the matrix inversion via the fast

antenna swapping also provides computational savings in each iteration. From Table 5.27,

for the case ofLtx = 4, each iteration using the fast antenna swapping provides14.84%

saving in the amount of multiplications and29.36%saving in the amount of additions on

average. Therefore, for the (8:8,4:4) system, there would be8.68%× 14.84%= 1.29%

and8.68%×29.36%= 2.55%reduction in the amount of multiplications and additions for

the expected8.68%of ES iterations performed. The overall computational savings would

come from performing fewer iterations and from the reduction of multiplication and ad-

dition operations per iteration using fast antenna swapping. The expected overall amount
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of multiplication and addition computational savings for the (8:8,4:4) system would be

91.32%+ 1.29%= 92.61% and91.32%+ 2.55%= 93.87%, respectively from using the

Fast RAS-AS algorithm over the full complexity ES. The results for systems withLtx = 4

are summarized in Table 5.28. The effect on the average BER performance from the over-

all computational savings is small for all of the systems, as simulation results in the next

section show that close to optimal average BER performance can be achieved for all of the

systems.

5.7.5 Simulation Results

This section presents the simulation results for the RAS-AS algorithm with a random swap-

ping sequence. The pseudocode of the algorithm in Table 4.3 is implemented and its av-

erage BER performance is evaluated using Monte Carlo simulation. The performances of

the RAS-AS and Fast RAS-AS algorithm are identical, as both are computationally equiv-

alent. The Fast RAS-AS algorithm has a lower computational complexity than that of the

RAS-AS algorithm making it suitable for implementation purposes. All the simulations

are performed withpswap= 1
2, and the results are averaged over1000channel realizations.

The simulation results for the greedy version of the RAS-AS algorithm in Table 5.2 are

also presented. The results for a (4:8,2:4) system are first presented, followed by the results

for other system configurations at the end of the chapter. For a (4:8,2:4) system, the sim-

ulation results for different percentages of the total number of exhaustive search iterations

are presented in Figure 5.5.

The number of ES iterations for a (4:8,2:4) system is420, and from the analysis, the

expected number of iterations from the previous section to reach a near optimal set of

antennas is36.09 or 8.59%of the ES iterations. It is observed from Figure 5.5 that after

performing8.59% of the ES iterations, the algorithm can find a set of antennas that can
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Figure 5.5: Average BER of (4:8,2:4) MIMO system with random swapping sequences.

achieve close to optimal average BER performance that is about0.9dB, 1.0dB, and1.2dB

away from the ES performance, at average BERs of10−3, 10−4, and10−5 respectively.

This shows that the computational savings in Table 5.28 for the (4:8,2:4) system can be

realized with only little average BER performance loss. It is observed that the average BER

performance achieved by the greedy version of the algorithm is better than the performance

achieved by the algorithm after the expected number of iterations, and it is within1dB of

the optimal performance for average BERs of10−3 to 10−5. This can be attributed to the

higher average number of iterations for the (4:8,2:4) system using the greedy algorithm,

which is56.93or 13.55%of ES iterations found from simulation.

Similar to the deterministic swapping sequence case, a large average BER improvement

over the case of using a fixed subset of antennas is observed by performing only1%of the

RAS-AS iterations. The performance gain at an average BER of10−2 and10−3 is 2.8dB

and3.5dB respectively. This illustrates the benefit of performing a few RAS-AS iterations
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Figure 5.6: Average BER of (4:8,2:4) MIMO system with random swapping sequence

under spatially correlated channels.

over using a fixed subset of antennas without antenna selection.

The correlation matrix in (2.10) is used in the simulation of the performance of the

RAS-AS algorithm under transmit antenna correlated channel condition. Figure 5.6 presents

the RAS-AS average BER performance for a (4:8,2:4) system using a random swapping se-

quence with different percentages of ES iterations.

From Figure 5.6, it can be seen that under spatial transmit antenna correlation, the sys-

tem exhibits a higher average BER across all SNRs when compared to the performance

under an uncorrelated channel in Figure 5.5. Similar to the deterministic swapping se-

quence case, the slopes of the average BER curves are less steep, as the diversity order is

reduced due to correlation among the antennas. It is observed from Figure 5.6 that after

performing8.59% of the ES iterations, the algorithm can find a set of antennas that can
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achieve an average BER performance that is about1.0dB, 1.1dB, 1.0dB, and1.1dB away

from the ES performance, at average BERs of10−2, 10−3, 10−4, and10−5 respectively.

Similar average BER performance gaps from the optimal performance curve are observed

under uncorrelated channel condition.

Similar to the uncorrelated case, a large average BER performance gain over using a

fixed subset of antennas is observed after performing only1% of the RAS-AS iterations.

The observed gain in the correlated case is5.0dB around an average BER of10−1 and

5.2dB around an average BER of10−2.

Other system configurations are also simulated, and these include the (5:7,2:3), (6:6,3:3),

(5:9,2:4), (8:8,4:4), and (9:9,4:4) systems. The expected number of iterations for finding

a near optimal set of antennas using the RAS-AS algorithm with a random swapping se-

quence is analyzed for these systems, and the results are summarized in Table 5.29. Monte

Carlo simulations over1000uncorrelated MIMO channel realizations are used to evaluate

the average BER performance of these systems with the RAS-AS algorithm, and these are

presented in Figures 5.7 to 5.11.

After performing the expected number of iterations to reach the boundary state with a

near optimal set of receive antennas and all optimal transmit antennas, the resulting average

BER performance curve is compared with the average BER performance curve obtained

using ES. Table 5.29 summarizes the performance results for the different systems. The

performance gaps marked on the graphs are tabulated in the last column of Table 5.29. The

performance gap refers to the SNR distance between the average BER performance curve

achieved using the expected number of iterations to the boundary state, and the average

BER performance curve achieved using the globally optimal configuration. The second

column of Table 5.29 shows the expected number of iterations to the boundary state found

using the analysis from the earlier sections. The number of exhaustive search iterations and
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Figure 5.7: Average BER of (5:7,2:3) MIMO system with random swapping sequence

under an uncorrelated channel.
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Figure 5.8: Average BER of (6:6,3:3) MIMO system with random swapping sequence

under an uncorrelated channel.
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Figure 5.9: Average BER of (5:9,2:4) MIMO system with random swapping sequence

under an uncorrelated channel.
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Figure 5.10: Average BER of (8:8,4:4) MIMO system with random swapping sequence

under an uncorrelated channel.
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Figure 5.11: Average BER of (9:9,4:4) MIMO system with random swapping sequence

under an uncorrelated channel.

(Ntx:Nrx,Ltx:Lrx) Expected Number of Total Number of ES Average BER

System Iterations (Analysis) ES
(Ntx

Ltx

)(Nrx
Lrx

)
Percentage Performance Gap

(5:7 , 2:3) 40.14 350 11.47% 1.2dB to 1.6dB

(6:6 , 3:3) 64.90 400 16.23% 1.2dB to 1.8dB

(4:8 , 2:4) 36.09 420 8.59% 0.9dB to 1.2dB

(5:9 , 2:4) 86.85 1260 6.89% 0.7dB to 0.9dB

(8:8 , 4:4) 425.12 4900 8.68% 1.0dB to 1.2dB

(9:9 , 4:4) 1064.30 15876 6.70% 0.8dB to 1.1dB

Table 5.29: Summary of the average BER performance of the different systems after ex-

pected number of iterations required to obtain a near optimal set of antennas.
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(Ntx:Nrx,Ltx:Lrx) Average Number of Total Number of ES

System Iterations (Simulation) ES
(Ntx

Ltx

)(Nrx
Lrx

)
Percentage

(5:7 , 2:3) 47.74 350 13.64%

(6:6 , 3:3) 48.51 400 12.13%

(4:8 , 2:4) 56.93 420 13.55%

(5:9 , 2:4) 78.87 1260 6.26%

(8:8 , 4:4) 101.16 4900 2.06%

(9:9 , 4:4) 132.72 15876 0.84%

Table 5.30: Summary of the average number of iterations of the different systems using the

greedy algorithm.

the percentage of ES iterations are shown in the next two columns in Table 5.29. For all

of the systems listed, it can be seen that after performing the expected number of iterations

to the boundary state, the RAS-AS algorithm is able to find an antenna configuration that

comes within2dB of the ES performance, for average BERs around10−2 to 10−5 and for

SNRs greater or equal to0dB. The result is significant as this shows that the83%to 95%

computational savings in Table 5.28 for all of the systems can be realized with only little

average BER performance loss.

The complexity of the greedy algorithm can be characterized by the average number of

iterations, and these are found from simulations and are summarized in Table 5.30 for the

different systems. Using the average number of iterations from Table 5.30, it can be seen

from Figures 5.5, 5.7 to 5.11 that the performances achieved using the greedy algorithm

are better than the performances achieved with the Fast RAS-AS algorithm using a random

swapping sequence after similar percentage of ES iterations. The performance gain is

within 1dB for the different systems. For example, from Figure 5.11, the performance
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achieved for the (9:9,4:4) system using the greedy algorithm after0.84%of ES iterations is

slightly better than the performance achieved using the Fast RAS-AS algorithm after1.0%

of the ES iterations. The two performance curves are within1dB of each other. In general,

the greedy algorithm can achieve better average BER performance than the Fast RAS-

AS algorithm after the same number of iterations for the different systems. However, the

Fast RAS-AS algorithm permits a large range of controllable performance and complexity

tradeoffs and the greedy algorithm does not offer this flexibility. The performance and

computational complexity tradeoff can be observed from the different percentage curves

in Figures 5.7 to 5.11. The figures can provide useful information when deciding on the

number of RAS-AS iterations to use in order to meet a target performance level, or when

given a computational constraint the expected performance level can be predicted.

It is also observed in Figures 5.7 to 5.11 that there is a diminishing return in the average

BER performance gain as the number of RAS-AS iterations increases. The diminishing

return is also observed for the (4:8,2:4) system. Therefore, Figures 5.7 to 5.11 can help

identify the point of diminishing return in the average BER performance, and help decide

on the number of RAS-AS iterations to use.

Simulations are performed to confirm the variance obtained from the analysis of the

state with near optimal numbers of antennas derived in equations 5.60 and 5.61. During

the simulations, the RAS-AS algorithm is executed over a fixed channel realization and

SNR. The empirical number of iterations used to find the best antenna configuration is

recorded over1000different RAS-AS executions. The variance of the number of iterations

from the simulation is presented in Table 5.31 for the different systems. It can be seen

from Table 5.31 that the simulated variances match up with the variances found from the

analysis.
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(Ntx:Nrx,Ltx:Lrx) Simulated Expected

System Variance Variance (Analysis)

(5:7 , 2:3) 1645.86 1639.33

(6:6 , 3:3) 4506.60 4264.19

(4:8 , 2:4) 1507.65 1334.44

(5:9 , 2:4) 8191.20 7612.13

(8:8 , 4:4) 182212.28 180841.18

(9:9 , 4:4) 1094990.18 1135183.44

Table 5.31: Summary of the simulated and expected variance of the different systems.
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Chapter 6

Conclusions and Future Work

This chapter summarizes the conclusions and contributions in this thesis. Suggestions for

future work are provided at the end of the chapter.

6.1 Conclusions

This thesis proposes a novel joint transmit and receive antenna selection algorithm based

on the concept of random antenna selection (RAS). The proposed algorithm has the ad-

vantage of requiring reduced channel training and estimation at startup corresponding to

the RF resources, and additional training and estimation is spread over time and performed

when new antennas are swapped in. The proposed algorithm can converge to the globally

optimal antenna configuration, i.e., the subset of transmit and receive antennas with mini-

mum BER as number of iterations increase. The main computation in the RAS algorithm

is the computation of the matrix inverse for the power gain. The merits of RAS is justified

through the ABER outage probability analysis in Chapter 3. It is found that the RAS algo-

rithm can find a non-outage set of antennas with small number of iterations. At an SNR of

0dB and for an ABER outage threshold of10−3, it is found that after only5 RAS iterations

a non-outage set of antennas can be found.
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A computationally efficient realization of the RAS algorithm is possible through the

concept of swapping antennas in each iteration. The development of this work started by

establishing a relationship between swapping a pair of antennas and performing a rank-

2 matrix modification in Chapter 4. Through this relationship, the Woodbury formula for

matrix inversion update of a modified matrix is applied to update the matrix inverse required

in the power gain calculation. This results in the RAS-AS algorithm described by the

pseudocode at the end of Chapter 4. We note that the BER performance of the RAS-AS

algorithm can be further improved by applying the AMBER power allocation scheme [31].

A fast implementation of the RAS-AS algorithm is introduced in Chapter 5, which is

made possible by the rank-2 matrix modification from swapping a pair of antennas. Sim-

plifications of the algorithm are presented and computational complexity is analyzed in

Chapter 5. Each iteration of the Fast RAS-AS algorithm performs a transmit or receive

antenna swapping operation, and each iteration is found to have O(L2
tx) complex multipli-

cations and additions for performing the swapping operation and evaluating the average

BER selection criterion. This chapter also presents a greedy version of the Fast RAS-AS

algorithm.

The average number of multiplications and additions per iteration for the Fast RAS-AS

algorithm for matrix inversion update is also computed and compared to the computation

required when the Gauss-Jordan elimination method is used for the matrix inversion in each

iteration. It is found that forLtx = 3, the inversion update using the fast antenna swapping

is almost as efficient as using the Gauss-Jordan elimination method in each iteration. For

Ltx ≥ 4, the matrix inversion update via the fast antenna swapping provides computational

savings over using the Gauss-Jordan method in each iteration on average. The computa-

tional reduction per iteration on average using the Fast RAS-AS algorithm grows asLtx

increases.
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The expected number of iterations of the RAS-AS algorithm is analyzed for both de-

terministic and random swapping sequences. For deterministic swapping sequences, it is

found that on average, half of the number of exhaustive search iterations would be required

in order to find the optimal antenna configuration.

A (4:8,2:4) MIMO system is simulated and it is observed that a significant BER per-

formance gain over using a fixed subset of antennas is possible after using the RAS-AS

algorithm with only1%of the ES iterations. This shows the benefit of using a few RAS-AS

iterations over performing no antenna selection. Simulation results show that for a deter-

ministic swapping sequence, after performing the expected number of iterations found by

analysis, the RAS-AS algorithm can achieve an average BER performance that is about

0.6dB and1.3dB away from the optimal performance found using exhaustive search, for

uncorrelated channels and channels with transmit antenna correlation, respectively.

For a random swapping sequence, the behavior of the RAS-AS algorithm can be mod-

eled by a random walk on a finite state Markov chain. The first passage probability into

the different states in the Markov chain model is used to find the expected number of iter-

ations for the RAS-AS algorithm using a random swapping sequence. It is found that the

expected number of iterations to reach the optimal state using a random swapping sequence

is on average larger than the number of ES iterations, and this is expected as the random

swapping sequence has the possibility of revisiting the same configuration. On the other

hand, the boundary states surrounding the optimal state with near optimal set of transmit

and receive antennas require significantly fewer iterations to reach on average.

For the (4:8,2:4) system, it is found by analysis that when a random swapping sequence

is used, on average36.09 RAS-AS iterations would be required to find an antenna config-

uration in a boundary state with all optimal transmit antennas and one non-optimal receive
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antenna. This represents about8.59% of the total number of possible antenna configu-

rations. After performing the expected number of iterations to reach the boundary state,

it is found through simulation that the RAS-AS algorithm can achieve an average BER

performance that is about0.9dB to 1.2dB from the optimal performance, for uncorrelated

channels and channels with transmit antenna correlation. The RAS-AS algorithm behaves

similarly under transmit antenna correlated channel, with worse average BER performance

than the uncorrelated channel case due to reduced diversity in the system. The computa-

tional savings from the expected number of iterations amount to91.41%reduction in the

number of multiplications and additions for the (4:8,2:4) system when compared to the full

complexity ES. The computational saving is realized with little average BER performance

loss which further highlights the significance of the result.

At the conclusion of Chapter 5, systems with different numbers of antennas on the

transmit and receive sides are analyzed to determine their expected number of iterations to

reach the boundary state in the Markov chain model, and their average BER performances

are simulated for uncorrelated channels. Simulation results show that after performing the

expected number of iterations for the different systems, the RAS-AS algorithm is able to

find a set of antennas that are about0.7dB to 1.8dB away from the optimal performance

on average for the different systems. This shows that the computational savings from the

reduced number of iterations and the reduction in the number of multiplications and ad-

ditions per iteration from fast antenna swapping is realizable with little average BER per-

formance loss. For example, the Fast RAS-AS algorithm allows the (8:8,4:4) system to

reduce the number of multiplications and additions by92.61%and93.87%, respectively,

while achieving close to optimal average BER performance that is1.0dB to 1.2dB away

from the ES performance. The computational savings for the other systems are similarly

realized while achieving close to optimal performance.
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By comparing the performance achieved by the greedy algorithm and the Fast RAS-

AS algorithm after the same number of iterations, it is found that the greedy algorithm

performs better, and the performance is within1dB of the performance achieved using the

Fast RAS-AS algorithm with a random swapping sequence. However, the greedy algorithm

does not offer the same performance and complexity tradeoff flexibility as the Fast RAS-AS

algorithm.

The performance and computational complexity tradeoffs can be observed from the

simulation graphs. This allows a system designer to determine the number of iterations

to use given an average BER performance constraint, or the average BER performance

can be predicted given a computational constraint. The expected number of iterations and

variances obtained from the analysis are also verified through simulation, and the results

from the analysis match closely with the results from the simulation.

The algorithms proposed in [16] [26] [27] are not comparable to the RAS-AS algo-

rithm as they make selections based on different criteria or information. In [16] a capacity

maximization selection criterion is used, and the algorithm assumes that the full complex-

ity MIMO channel is estimated, which uses more channel information and have different

training periods than the proposed algorithm. In [26], the antenna selection algorithm is

developed for space-time coded system, and in [27], only second-order channel statistics

are used.

From the results presented in this thesis, it is shown that the proposed Fast RAS-AS

algorithm provides efficient joint transmit and receive antenna selection. The algorithm

requires a minimal amount of channel estimation at startup. Further channel estimation is

performed as needed, making the Fast RAS-AS algorithm suitable for systems with large

numbers of antennas. The concept of incremental estimation and training of the MIMO

channel can also be applied to other existing antenna selection algorithms. The algorithm
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can be used for transmit antenna only or receive antenna only selection as special cases, and

it is also applicable to both uncorrelated and correlated MIMO channels. The application

of the Fast RAS-AS algorithm in temporally correlated channels is an interesting area for

future work, as the Fast RAS-AS algorithm can provide the flexibility of performing small

updates to maintain or improve performance over time, using the best antenna configura-

tion found in the previous time slot as the starting point. With the many advantages and

low computational complexity, the Fast RAS-AS algorithm is a candidate for solving the

problem of finding an efficient joint transmit and receive antenna selection algorithm.
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6.2 Future Work

The following are suggestions for future research:

• The proposed RAS-AS algorithm is developed for MIMO ZF receivers. It is of in-

terest to investigate and adapt the RAS-AS algorithm for other types of MIMO re-

ceivers.

• In this thesis, deterministic and completely random swapping sequences are pro-

posed. It would be interesting to investigate the performance of the algorithm using

other types of swapping sequences. A possible sequence is one that changes or adapts

based on determining the worst antenna to swap out in each iteration.

• The parameterpswap is arbitrary chosen to be12 in this thesis, resulting in a com-

pletely random choice between performing a transmit or receive antenna swapping

operation in each iteration of the algorithm. It would be interesting to investigate the

impact of this parameter on the performance and expected number of iterations of

the algorithm. There may exist an optimal value forpswapdepending on the number

of transmit and receive antennas. The parameter may be adaptively adjusted based

on the past performance gain from performing transmit or receive antenna swapping.

• In this thesis, a temporally uncorrelated MIMO channel is considered, and the RAS-

AS algorithm chooses a completely uninformed starting configuration by randomly

selecting a set of antennas at the beginning of the algorithm. The case of temporally

correlated MIMO channels is an interesting area for future work, where the RAS-AS

algorithm can use the best antenna configuration found in the previous time slot as the

starting configuration and perform small updates to maintain or improve performance

over time.
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Appendix A

Chi-Square Statistics

The following presents the PDF and CDF of a Chi-Square random variablex with n DOF.

The PDF of a Chi-Square random variable withn DOF is as follows

f (x) =





e
x
2 x

n
2−1

2
n
2 Γ( n

2)
, for x≥ 0

0 , otherwise

. (A.1)

Integrating (A.1) results in the Chi-square CDF, and it is given as

F(x) =
ϒ( n

2 , x
2)

Γ( n
2)

for x≥ 0 (A.2)

whereϒ(. , .) is the lower incomplete Gamma function given as

ϒ(α,x) =
∫ x

0
tα−1e−tdt (A.3)

andΓ(.) is the complete Gamma function given below

Γ(β ) =
∫ ∞

0
xβ−1e−xdx (A.4)

Γ(.) can also be expressed asϒ(. ,∞), in terms of the lower incomplete Gamma function.

The moment generating function of a Chi-square random variablex is as follows

m(t) = E [etx] = (1−2t)−
n
2 −∞ < t <−1

2
(A.5)

whereE[.] is the expectation operator.
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Appendix B

Weighted-Chi-Square Statistics

Let x be Chi-square distributed, and lety = wx be a weighted Chi-square random variable.

Using the following transformation on the Chi-square PDF

f (y) =
1
|w| fX

( x
w

)
(B.1)

the PDF ofy for w > 0 can be found to be

f (y) =





e−
y

2w y
n
2−1

(2w)
n
2 Γ( n

2)
, for y≥ 0

0 , otherwise

. (B.2)

Integrating (B.2) results in the weighted-Chi-square CDF, and it is found to be

F(y) =
ϒ( n

2 , y
2w)

Γ( n
2)

for y≥ 0 (B.3)

whereϒ(. , .) andΓ(.) are defined in (A.3) and (A.4), respectively. For aw-weighted Chi-

square random variable with n DOF, the MGF is

mw(t) = E [ety] = E [etwx] = (1−2tw)−
n
2 −∞ < t <− 1

2w
(B.4)

whereE[.] is the expectation operator.
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Appendix C

(4:8,2:4) Transition Probability Matrix




0 0.5000 0 0.5000 0 0 0 0 0

0.1250 0.2500 0.1250 0 0.5000 0 0 0 0

0 0.5000 0 0 0 0.5000 0 0 0

0.0313 0 0 0.1875 0.5000 0 0.2813 0 0

0 0.0313 0 0.1250 0.4375 0.1250 0 0.2813 0

0 0 0.0313 0 0.5000 0.1875 0 0 0.2813

0 0 0 0.1250 0 0 0.2500 0.5000 0

0 0 0 0 0.1250 0 0.1250 0.5000 0.1250 ...

0 0 0 0 0 0.1250 0 0.5000 0.2500

0 0 0 0 0 0 0.2813 0 0

0 0 0 0 0 0 0 0.2813 0

0 0 0 0 0 0 0 0 0.2813

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
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0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0.1250 0 0 0 0 0

... 0 0.1250 0 0 0 0

0 0 0.1250 0 0 0

0.1875 0.5000 0 0.0313 0 0

0.1250 0.4375 0.1250 0 0.0313 0

0 0.5000 0.1875 0 0 0.0313

0.5000 0 0 0 0.5000 0

0 0.5000 0 0.1250 0.2500 0.1250

0 0 0.5000 0 0.5000 0



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