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AbstractWireless cellular technology is one of the �elds in communications that is currentlyundergoing phenomenally rapid growth. As the demand for wireless connectivityincreases, it is necessary to develop next-generation cellular systems to handle theincreased number of users. CDMA (Code Division Multiple Access) is one tech-nique that promises enhanced e�ciency of radio spectrum use since it is strictlyinterference-limited, unlike FDMA (Frequency Division Multiple Access) or TDMA(Time Division Multiple Access).Total system capacity can be improved by increasing the number of base stationswhile simultaneously decreasing the size of each cell. However, this is a potentiallyexpensive solution in terms of the equipment required and would also require morefrequent hand-o�s between adjacent cells. In a CDMA system, an alternative is toreduce multi-user interference, thereby permitting more mobiles to operate withineach cell. One method for accomplishing this is through the use of beamforming. Byusing an array of antenna elements, it is possible to select a suitable set of weightingvalues so that when the antenna array outputs are summed, the interference fromother users is suppressed relative to the desired signal. As a result, it is then possibleto accommodate additional mobiles within the same cell.The IS-95 cellular CDMA standard has been established by Qualcommand is usedwithin the context of this thesis. Only the reverse link (mobile to base) has currentlybeen investigated due to the fact that beamforming can only be e�ectively performedat the base station. This communication link is presented and analyzed in detail atthe beginning of the thesis. Power control, which has been shown to be necessary fora CDMA cellular system, is then examined. The coding scheme for the IS-95 reverselink is such that a conventional Viterbi decoder produces suboptimal results. Aii



combined deinterleaver/decoder o�ering a gain of at least 1 dB over standard Viterbidecoding is presented here.One of the main areas of beamforming research has been in estimating suitablecoe�cient weights from the received data. The code-�ltering correlation method de-veloped at Stanford [64] [67] [73] [74] has demonstrated promising results, although itcannot be applied directly to IS-95 due to the coding techniques used on the reverselink. This thesis has developed an additional feedback correlation algorithm whichprovides su�cient gain to estimate accurate beamforming weights. An accompany-ing error analysis derives the probability distributions of the various estimators anddetermines the e�ects of noise and interference on the measurements. This includesan eigenvector perturbation analysis for complex Hermitian matrices. A followinganalysis into the statistical parameters of various reverse link correlation quantitiesis used to validate the simulation program.An investigation into cell capacity improvement through the use of antenna arraysand beamforming is then performed. Simulations are performed with both a PN chip-level method and a more computationally e�cient power-level technique which isused to obtain capacity estimates for higher numbers of antenna elements. Predictedcapacity values from the system analysis show good agreement with the observedresults. Finally, an investigation into multi-service (e.g. voice and data) cell capacityis performed, with both simulated and analytical results.
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Chapter 1Introduction1.1 MotivationThere is a growing trend in the communicationsmarket towards wireless systems. Theremoval of the physical link between a user and the remainder of the communicationsystem permits greater user mobility and requires less physical infrastructure, whichthereby reduces the overall system cost. Next-generation cellular phone systems willbe of a digital form for an improved quality of service. Since there is a �nite amountof the radio spectrum available for cellular purposes, it is desirable to accommodateas many users as possible within that bandwidth, while not compromising the levelof performance.CDMA (Code Division Multiple Access) is one technique by which a given portionof the radio spectrum can be shared among multiple users. TDMA and FDMA aretwo other multiple access techniques which provide separate time slots or frequencybands, respectively, for di�erent users. The major disadvantage of both TDMA andFDMA is that they are both limited to a speci�c maximum number of users by thenumber of available time slots or frequency channels. In addition, adjacent cellscannot share the same channel allocations due to mutual interference. Conversely, inCDMA, all of the users share the same bandwidth with each mobile's signal beingspread by a unique individual PN (pseudo-noise) chip sequence. By correlating thereceived signal at the base station with each user's known sequence, the original datacan be recovered. Unlike the other two methods, CDMA is limited only by interference1



(which arises mainly from other users). Thus, instead of having a sharp cut-o� pointin cell capacity, it is possible to continue adding users to the system by graduallyreducing everyone's level of performance. Lee [48] provides a good introduction tothe concept of cellular CDMA and illustrates how this multiple-access scheme ismore suitable for the cellular environment than are TDMA and FDMA, in terms ofproviding greater system capacity. Pickholtz, Milstein, and Schilling [80] [81] providetutorial introductions to spread-spectrum communications which describe the basicnature of spread-spectrum CDMA and investigate how it can share the same frequencyband with narrow-band users. A basic introduction to spread-spectrum techniqueshas also recently been given by Flikkema [24]. Finally, Qualcomm [85] provides anin-depth introduction to the use of CDMA in digital cellular communication systems,including many of the necessary implementation details.Since CDMA provides the prospect of signi�cantly increased capacity for a givenamount of bandwidth, a substantial amount of research has gone into �nding methodsby which the multiple access interference (MAI) can be reduced. If it is possible todo this, individual cell capacity can be further increased. By increasing capacity,the same area can be covered with fewer base stations, thereby reducing the overallcost of the cellular communications system. In addition, by avoiding the need forsubdividing cells, the logistical problems of performing hand-o�s between adjacentcells as users move around are reduced.One popular method for reducing interference from other users is termed beam-forming. In this situation, an array of antenna elements is used at the base station toreceive signals. Each element will receive a phase-shifted version of the same signals.By determining a suitable set of complex coe�cients for a desired mobile, it is possi-ble to obtain a weighted sum of the antenna outputs in which the desired signal addsconstructively (due to phase alignment) and, on average, the interfering signals tendto add destructively (due to random relative phases). That is, unless an interferingsignal's direction of arrival is the same as for the mobile of interest, beamforming willtend to suppress the interfering signal relative to the desired signal. In this way, itis possible to reduce the interference seen by a given user with the only requirement2



being for some additional processing power at the base station. Also, incorporat-ing beamforming into an existing CDMA standard such as Qualcomm's IS-95 canbe performed quite simply since the beamforming layer is essentially transparent tothe remainder of the coding/decoding system so it is not necessary to modify thecurrently-de�ned protocol.To this point in time, beamforming has mainly been analyzed via theoreticalanalyses and computer simulations, although some physical experiments have alsobeen performed. Of course, it is usually more practical and less expensive to predictexpected system performance via analytical and simulation-based methods beforeactually constructing an actual prototype for testing. To aid in the investigationsperformed in this thesis, a comprehensive PN chip-level simulation program adheringto the IS-95 standard has been developed [15]. The chip-level data was requiredfor performing beamforming simulations and verifying any simplifying assumptionswhich might be made. To the best of the author's knowledge, simulations with thislevel of detail have not yet been used by other researchers.There are a number of important aspects of beamforming which require investi-gation in order to aid in accessing the physical feasibility of this technique. In reallife, it will not be possible to estimate the optimum beamforming weights exactly, sothe e�ects of estimation error should be determined. It is also necessary to evaluateboth the quality of the estimates obtained and the corresponding e�ect on systemperformance.1.2 Summary of ContributionsThis section brie
y summarizes the primary contributions of this thesis. A moredetailed summary may be found at the end of the thesis in Section 8.2.� A comprehensive simulation platform for the IS-95 reverse link and capableof operating at the PN chip level was developed for conducting most of thesimulations contained in this document. This level of detail signi�cantly reducesthe number of simplifying assumptions which must be made.3



� A combined deinterleaver/decoder for the IS-95 reverse link which providessuperior performance as compared to Viterbi decoding with deinterleaved soft-decision bit metrics has been proposed.� Using feedback correlation of the decoded data to increase the gain factor ofthe beamforming coe�cient estimator signi�cantly improved the accuracy ofthese weighting estimates. A detailed error analysis of this estimation methodallows the statistical parameters of the various estimators to be predicted quiteaccurately.� An error analysis of the IS-95 reverse link also allowed the operation of thesimulation program to be validated.� Various methods are used for estimating cell capacity, including the actual trans-mission of PN chip values through the system, and a more computationally-e�cient power-level capacity estimation method was also developed.� In addition, it is also possible to predict cell capacity values from the equationsderived in this thesis.� Finally, an investigation into multi-service operation (i.e. data and voice) ismade through the use of simulations and predictions.1.3 Thesis OutlineThe following chapters examine various aspects of a CDMA reverse link (mobileto base), all of which ultimately cohere together to permit accurate estimation ofcell capacity and the improvements that can be attained through beamforming insuch a communication system. As a consequence, relevant background material andliterature reviews of previous research are primarily covered at the beginning of eachindividual chapter, as this structuring is more appropriate for the format of this thesis.Chapter 2 examines the reverse link of the IS-95 cellular CDMA system and cov-ers such aspects as data encoding, transmission channel parameters, and the e�ectivemodelling of such a communication system for simulation purposes. Power control is4



an important component of a CDMA system in order to maintain multi-user interfer-ence at an acceptable level, and this topic is covered in Chapter 3. Due to IS-95's dataencoding format, a standard Viterbi decoder must be modi�ed in order to functione�ciently. Chapter 4 examines existing techniques for decoding reverse link data inIS-95 and then presents a combined deinterleaver/decoder which o�ers an enhancedlevel of performance due to improved path metrics. User capacity in a CDMA sys-tem can be improved by reducing interference. One method of accomplishing thisis through beamforming as examined in Chapter 5 which presents a suitable beam-forming technique for IS-95 and includes a complete error analysis of the estimationprocess for beamforming weights. On a related note, the following chapter containsan error analysis of the simulated IS-95 system which is useful for system validationpurposes. Chapter 7 presents techniques for predicting and estimating cell capacityvia analysis and simulation, and shows the improvements that can be attained whenbeamforming at the base station is used. Finally, Chapter 8 summarizes the contri-butions and �ndings of this thesis and presents a number of areas in which furtherresearch work could be performed.
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Chapter 2The IS-95 Reverse Link2.1 IntroductionQualcomm [86] has developed the IS-95 cellular CDMA standard which de�nes thecomplete implementation protocol for such a communication system. A number ofresearchers [6] [37] [69] [71] have adopted this standard for their research. In addition,considering an existing CDMA system design is more appropriate than de�ning a newcoding and transmission protocol.Within the context of this thesis, only the reverse link (mobile to base) of theIS-95 communication system has been studied. It is not realistically practical toimplement beamforming at the mobiles due to the necessary antenna arrays andprocessing requirements. Therefore, beamforming is used only at the base station,and the reverse link situation is more suited to this task since the received signaldata can be directly processed to obtain the required beamforming information. Inaddition, cell capacity is usually limited by the reverse link. However, beamforming atthe base transmitters can also be implemented on the forward link by using feedbackinformation from the mobiles [27].In order to aid in conducting detailed investigations of system performance, acomprehensive PN chip-level simulator of the IS-95 reverse link has been developed[15]. This program includes such features as complete reverse link modelling, multipleindependent mobiles, and possible multi-cell situations. However, it is �rst necessaryto examine the actual communication system and how it may be modelled e�ectively6



and e�ciently.This chapter examines the reverse link of IS-95 and includes the issues of dataencoding for transmission, transmission channel parameters, and processing of thereceived data. Two aspects of the IS-95 reverse link, power control and data decoding,are examined in greater detail in the two following chapters. The contents of thischapter are based on the IS-95 standard which may be found in [86], although muchof the actual analysis within this chapter is original work.2.2 Encoding Reverse Link DataThe source data is assumed to consist of sequences of random bits representing com-pressed voice signals which are generated as required. In order to provide protectionagainst errors, the data bits are sent through a multi-level encoding process as shownin Figure 2.1.It is assumed that acceptable voice quality data can be transmitted at a bit rateRB = 9600 bps which includes overhead. The IS-95 standard [86] also includesde�ned protocols for fractional data transmission rates such as 4800, 2400, and 1200bps, although these particular rates have not been addressed in this thesis.The bits to be transmitted are divided into frames with 50 frames per second and192 total bits per frame. The �rst 184 bits represent actual data (including a CRC(cyclical redundancy check) value), and the remainder are tail bits which are all zero.The frame bits are initially passed through a rate 1/3 convolutional encoder witha constraint length of 9. This produces 576 encoded bits per frame.The next stage involves block interleaving the encoded bits using a 32� 18 inter-leaver matrix. Bits are written into successive columns of this array and then read outrow by row. Although the interleaving step is part of the IS-95 speci�cation and isessential for dealing with correlated fading, it is an optional process in the simulatorso that its e�ects on system performance can be studied.The resulting bits are then grouped into sets of 6 to form binary numbers whichselect one of 26 = 64 di�erent Walsh functions. This yields a total of 96 Walshfunctions per frame. 7
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Each Walsh function has a sequence of 64 chips associated with it which resultsin a total of 6144 Walsh chips per frame. These sequences are constructed so that agiven sequence is orthogonal to each of the other 63 Walsh chip sequences.Finally, pseudo-noise (PN) sequences are used to spread the signal by a factorof 4. A long code with a period of 242 � 1 is �rst used to spread the Walsh chips.The resulting signal is then split into in-phase and quadrature components with eachcomponent being further encoded by a di�erent short code sequence, each with aperiod of 215 chips. The long and short code chips are of the same length.The in-phase and quadrature components are modulated using BPSK (BinaryPhase Shift Keying) with a carrier frequency of fc Hz. A typical value for fc ina terrestrial cellular environment might be 2 GHz. Giannetti [28] also investigatedthe capacity improvements resulting from using a higher carrier frequency in the63-64 GHz band. In this situation, intercell interference is signi�cantly reduced tosignal absorption by atmospheric oxygen and thus cell capacity increases. However,increased transmitter power is also necessary due to the absorption phenomenon.2.3 Transmission Channel ParametersThis section details how the reverse link transmission channel between the mobiles andbase station is modelled. This mainly involves quantities specifying signal attenuationover the transmission channel such as path loss, shadowing, and Rayleigh fading.2.3.1 Path LossThe amount of power in a signal falls o� as a function of the distance from thetransmitter. A generally accepted model of this path loss is:�k = d��k (2.1)where dk is the distance between the kth transmitter and the receiver, and � is thepath loss exponent. Typical values for � range between 2 and 5 depending upon thelocal environment, and a commonly used value for testing purposes is 4. A largerpath loss exponent corresponds to greater path loss attenuation as would be the casein a built-up urban environment. 9



Xia et al [116] investigated path loss using actual measured data from variousurban, suburban, and rural areas. Path loss was found to be signi�cantly higher fornon-LOS (Line Of Sight) paths than for LOS paths. Consequently, cell shape wasfound to depend on the orientation of the LOS paths, with circular cells in rural areas,elliptical cells in suburban regions, and linear cells in built-up urban areas. Harley[33] also performed actual measurements of signal attenuation for carrier frequenciesof 900 MHz and 1.8 GHz over distances of less than 1 km, which represent typicalcell sizes for a microcell system.Note that �k dictates how the power of the signal falls o� as a function of distance.Therefore, the amplitude of the signal envelope should be multiplied by p�k. Thepath loss quantity is updated dynamically as mobiles move within the cell.2.3.2 ShadowingShadowing is caused by various obstacles such as trees and buildings in the transmis-sion path of a mobile. As a mobile moves around, the degree of shadowing will vary.However, for the results considered in this thesis, this quantity currently remains con-stant for the duration of a call since Rayleigh fading is assumed to a�ect the signalsmuch more dramatically. In addition, dynamic motion is often simulated by movinga mobile to a new location and beginning another call with a new shadowing value.This should, however, be modi�ed when further experiments are performed.A commonly accepted shadowing model is to use a lognormal random variablesuch as: Sk = 10�=10 (2.2)where � has a N(0; �2S) distribution. The value typically used for �S is 8 dB.A new value of Sk is chosen for each mobile at the start of each call by that mobile,and Sk currently remains constant for the duration of each call.2.3.3 Rayleigh FadingAlthough only a single resolvable path is considered for each mobile, Rayleigh fadingdue to multipath propagation is incorporated into the channel model. This type of10



fading can be modelled as either uncorrelated or correlated. Ricean fading wouldinclude a line of sight component, but Rayleigh fading was selected to representthe worst-case scenario. An introduction to the characteristics of and methods forovercoming Rayleigh fading in mobile digital communication systems may be foundin the recent pair of tutorial articles by Sklar [94] [95].2.3.3.1 Uncorrelated Rayleigh FadingThe simplest fading model is to consider Rayleigh-distributed random amplitude fac-tors which are mutually uncorrelated. This multiplicative quantity is calculated as:Rk = q(G1)2 + (G2)2 (2.3)where G1 and G2 are N(0; 1) Gaussian random variables.A new Rayleigh fading parameter is calculated for each mobile at a maximum ofevery 48 PN chips. This roughly corresponds to the time required to transmit theequivalent of one data bit (46 PN chips), but was rounded up since 48 divides evenlyinto the power control period of 1536 PN chips, thereby simplifying the simulationprocess. This parameter can also be changed at a faster rate such as every 24 or 16PN chips.2.3.3.2 Correlated Rayleigh FadingFor moving mobiles, time-correlated Rayleigh fading represents a more realistic fadingenvironment. For the simulations presented here, the third-order Butterworth �lterfading model discussed in [56] and [36] was used. In this model, pairs of Gaussianrandom numbers form the inputs to a �lter whose parameters depend on the mobile'scurrent velocity. The �lter outputs are correlated Gaussian random variables whichmay then be used in equation (2.3) to generate correlated fading values. Actualillustrative examples of correlated fading may be found in Section 3.5.2.3.3.3 Amplitude FadingAs can be seen from the above paragraphs, the fading models used within this thesisonly consider the e�ect of Rayleigh fading on the amplitude of the signal. However,11



in reality, there would also be a perturbation in the carrier phase due to the mul-tipath propagation. This would likely degrade the performance of the beamformingalgorithms to some extent, but it is not clear what level of impact would be observedwithout further investigation via both analysis and simulations as discussed in Section8.4.2.3.4 Overall Channel AttenuationThe transmission power and, hence, the signal amplitude or envelope originatingfrom each mobile is known. As the signal travels to the base station, its strength isattenuated by the previously discussed factors. Thus, the envelope is multiplied bythe following value to determine its magnitude as observed at the base station.�k = q�kSkRk (2.4)The path loss and shadowing terms a�ect the power of a signal, so it is necessary totake the square root of these terms when considering the signal amplitude.2.4 Antenna Array ProcessingThis section brie
y introduces the concept of beamforming with adaptive antennaarrays which is discussed in more detail in Chapter 5.2.4.1 Array Response Vector CalculationIf a multi-element antenna array is used at the base station, it is necessary to deter-mine the array response vector a for a signal arriving from a given direction. Thisvector speci�es the relative phases of the signal waveform at each of the antennaelements. Each entry in a is a unit magnitude complex number whose phase speci�esthe relative phase of the signal at the corresponding antenna element. Currently, itis assumed that identical copies of the signal, subject to this relative phase shift andindependent background noise, are observed at each antenna element.The antenna array is assumed to be in a circular form with NA representing anarbitrary number of elements which are omnidirectional with equal gains. Adjacent12
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rrrr """"""""bbbbbbbb'RADA XXXy XXXzDi�� �� �� �������XX XX XX XX XX XX XX XX XX XXXXzFigure 2.2: Array response vector calculation for a multi-element circular antennaarrayelements are assumed to have one-half wavelength (�c=2) spacing between them. Thisanalysis can be easily adapted for a linear array, although circular arrays were chosensince they are less directional in nature. In terms of antenna arrangements other thancircular and linear designs, Liang and Paulraj [54] investigated several di�erent arraytopologies and the resulting improvements in coverage.Refer to Figure 2.2 for the de�nition of quantities used in this derivation. If theinter-element spacing is DA = �c=2, then the corresponding radius of the circularantenna array can be calculated as follows [62, pp. 65].' = 2�NA (2.5)sin('=2) = DA=2RA (2.6)RA = DA=2sin('=2) = DA2 sin(�=NA) = �c4 sin(�=NA) (2.7)Let 
i represent the angle at which the ith (0 � i � NA� 1) element is located on thecircle. Without loss of generality, it can be assumed that 
0 = 0. Then:
i = i� 2�NA� (2.8)The position of the ith antenna element in Cartesian coordinates can thus be written13



as: xi = RA cos(
i) (2.9)yi = RA sin(
i) (2.10)Now assume that a plane wave with frequency fc and propagating in the direction� is impinging upon the antenna array as shown by the dashed arrow in Figure 2.2.A unit vector in the direction of wave propagation can be written as:u = � cos(�) sin(�) � (2.11)It is now simply necessary to take the dot product of this vector with the Cartesiancoordinates of each antenna element in order to �nd Di. This represents the distancealong the direction of wave propagation between the centre of the array and the ithantenna element. Di = xi cos(�) + yi sin(�)= RA cos(
i) cos(�) +RA sin(
i) sin(�) (2.12)= RA cos(� � 
i)Let �i represent the relative phase delay for the ith element. The centre of thecircle is taken to be the reference point with a phase delay of zero. Consequently, thephase at the ith element can be calculated as:�i = 2� �Di�c �= 2�RA cos(� � 
i)�c (2.13)= 2� cos(� � 
i)�c  �c4 sin(�=NA)!= � cos(� � 
i)2 sin(�=NA)It is interesting to note that the relative phase is independent of the carrier frequencysince the inter-element spacing is a function of this frequency value. Due to thislatter consideration, it is necessary to design the antenna array according to thecarrier frequency to be used. 14



2.4.2 BeamformingDigital beamforming can be utilized to increase the capacity of a cell [64] [67] [73][74]. By using a multi-element antenna array at the base station and a suitable set ofbeamforming coe�cients, it is possible to take a weighted sum of the antenna elementoutputs which maximizes the ratio of the desired mobile's signal power to the noiseand interference power. This is essentially a form of spatial �ltering that reducesinterference from other mobiles and thus boosts overall cell capacity. This process isonly covered brie
y here to show how it a�ects the reverse link signals. Beamformingis investigated and analyzed in much greater detail later in Chapter 5.In a simulation or analysis, the true array response vector ak can be determinedfor each of the mobiles in the system as shown in Section 2.4.1. For a multi-elementbase station array, the received signal vector x(t) can be calculated as:x(t) = NMXk=1�k(t)ak + n(t) (2.14)where �k(t) represents the signal strength from the kth mobile and n(t) representswide-sense stationary zero-mean Gaussian white noise with autocorrelation:Rn(� ) = 8><>: �2nI � = 00 � 6= 0 (2.15)It is necessary to reduce the complex vector x to a scalar quantity that can beused in the remainder of the decoding process. This can be accomplished by takinga weighted sum of the elements of x.xp = w�px (2.16)Each entry in the beamforming weight vector wp induces a phase shift in thecorresponding entry of the signal vector x and may also scale that quantity. If wp =ap, then the phase shifts introduced by the antenna array and the beamformingprocess will cancel each other out for mobile p. However, if the signal from anothermobile with a di�erent array response vector is considered, the entries from eachantenna element will not be in phase with each other when they are summed inequation (2.16). Typically, interfering signals will not add constructively, and thus theinterference from other mobiles will be greatly reduced by the beamforming process.15



If the interference is assumed to be spatially white, which will be the case for alarge number of mobiles [82], then the optimal (in terms of maximizing the outputsignal-to-noise-ratio) choice of beamforming weights for the pth mobile is to let wpequal the true array response vector ap. However, in reality ap is not known exactlyso it is necessary to estimate suitable values for wp from the received signal data asshown in Chapter 5.2.5 Demodulation and CorrelationThere are a number of processing steps required at the base station receiver in orderto recover the original data bits. These include demodulation, correlation, and datadecoding. This latter process is considered later in Chapter 4 due to the level of detailrequired in the presentation. Note that a rectangular chip pulse shape is assumedthroughout this thesis.2.5.1 DemodulationAfter taking the inner product of the signal vector from the antenna array with thevector of beamforming weights, the result is a scalar complex quantity xp as shownin (2.16) which can then be demodulated. It is simpler to consider the demodulationof the signal from a single antenna element �rst and then to generalize this result toa multi-element antenna array.2.5.1.1 Single Element DemodulationConsider the BPSK modulated in-phase and quadrature signal components originat-ing from the kth mobile: xIk(t) = cos(2�fct+ �Ik(t)) (2.17)xQk(t) = sin(2�fct+ �Qk(t)) (2.18)where �Ik(t) and �Qk(t) are the phase angles used to modulate the carrier signal andare limited to the following values:�Ik ; �Qk 2 f0; �g (2.19)16



Note that there should also be a scaling factor representing the signal amplitude, butfor simplicity this quantity can be ignored for the purposes of this analysis.The combined signal can be written as:Xk(t) = xIk(t) + xQk(t) (2.20)= cos(2�fct+ �Ik(t)) + sin(2�fct+ �Qk(t))Now introduce a random time delay �k which will cause a phase shift. Thisquantity is due to the lack of time synchronization between the mobiles on the reverselink and is assumed to be uniformly distributed over the interval [0; Tc).Xk(t) = cos(2�fc(t� �k) + �Ik(t� �k)) (2.21)+ sin(2�fc(t� �k) + �Qk(t� �k))�Ik and �Qk have a much lower frequency than fc, so their dependence on time andthe e�ects of the delay �k on these terms can be ignored during this analysis.Xk(t) = cos(2�fc(t� �k) + �Ik ) + sin(2�fc(t� �k) + �Qk)= fcos(�Ik) cos(2�fc(t� �k))� sin(�Ik) sin(2�fc(t� �k))g (2.22)+ fsin(�Qk) cos(2�fc(t� �k)) + cos(�Qk) sin(2�fc(t� �k))g= fcos(�Ik) + sin(�Qk)g cos(2�fc(t� �k))+ f� sin(�Ik) + cos(�Qk)g sin(2�fc(t� �k))Equation (2.22) can also be written in phasor format to simplify the remainder of theanalysis.Xk(t) = Renh fcos(�Ik) + sin(�Qk)g � j f� sin(�Ik) + cos(�Qk)giexp(j2�fc(t� �k))o= Ren [cos(�Ik) � j cos(�Qk)] exp(j2�fc(t� �k))o (2.23)= Ren [cos(�Ik) � j cos(�Qk)] exp(�j2�fc�k) exp(j2�fct)oNote that the sin terms in (2.23) will evaluate as zero due to the constraints given in(2.19) and can therefore be dropped from the equation. The cos terms will evaluateas �1. 17



To demodulate the in-phase component, equation (2.23) is multiplied by cos(2�fct)and low-pass �ltered. In complex exponential form:cos(2�fct) = 12 n exp(j2�fct) + exp(�j2�fct)o (2.24)This yields the �nal in-phase demodulated result:DIk (t) = Ren[cos(�Ik)� j cos(�Qk)] exp(�j2�fc�k) exp(j2�fct)�12 fexp(j2�fct) + exp(�j2�fct)g��LPF= Re�12 [cos(�Ik)� j cos(�Qk)] exp(�j2�fc�k)� (2.25)= 12 cos(�Ik) cos(2�fc�k)� 12 cos(�Qk) sin(2�fc�k)If the time delay �k is such that the e�ective phase due to the time delay is a multiple of2�, it will be possible to recover the in-phase signal exactly. Otherwise, the quadraturesignal will contribute interference.To demodulate the quadrature component, equation (2.23) is multiplied by sin(2�fct)and low-pass �ltered where:sin(2�fct) = �j 12 n exp(j2�fct)� exp(�j2�fct)o (2.26)This yields the demodulated quadrature signal:UQk(t) = Ren[cos(�Ik)� j cos(�Qk)] exp(�j2�fc�k) exp(j2�fct)��j 12 fexp(j2�fct)� exp(�j2�fct)g��LPF= Re�12 [j cos(�Ik) + cos(�Qk)] exp(�j2�fc�k)� (2.27)= 12 cos(�Ik) sin(2�fc�k) + 12 cos(�Qk) cos(2�fc�k)Similarly, there will be interference from the in-phase component unless the phaseshift due to the time delay is an integral multiple of 2�.Note that equations (2.25) and (2.27) only represent the demodulation of a signalfrom a single mobile. Consequently, it is necessary to sum the demodulation results foreach mobile in the system in order to obtain the total demodulated signal (includinginterfering signals from other users). If mobile p is the user of interest, then �p = 0but �k will be a uniformly distributed random variable for k 6= p.18



2.5.1.2 Multiple Element DemodulationConsider a received signal from mobile k in the form of (2.23).Xk(t) = Ren [cos(�Ik)� j cos(�Qk)] exp(�j2�fc�k) exp(j2�fct)o (2.28)For the ith antenna element, there is a known phase o�set �ki relative to the centre ofthe array. This phase o�set depends on the direction of arrival of the signal and thegeometry of the antenna array, and the value of this quantity comes directly from thearray response vector which was derived in Section 2.4.1. Thus, with this additionalphase o�set the received signal at the ith array element can be written as:Xki(t) = Ren [cos(�Ik)� j cos(�Qk)] (2.29)exp(�j�ki) exp(�j2�fc�k) exp(j2�fct)oLet wpi be the ith entry in the beamforming weight vector for the pth mobile whichis the mobile of interest. This represents a phase shift of the corresponding elementof the signal vector, so wpi can be written as:wpi = exp(�j�pi) (2.30)w�pi = exp(j�pi) (2.31)Thus, by combining equations (2.16), (2.29) and (2.31), the �nal complex quantityto be demodulated can be obtained as:Xp(t) = NAXi=1w�pi NMXk=1Xki(t)= NAXi=1 NMXk=1Ren [cos(�Ik)� j cos(�Qk)] (2.32)exp(j�pi) exp(�j�ki) exp(�j2�fc�kp) exp(j2�fct)o= NAXi=1 NMXk=1Ren [cos(�Ik)� j cos(�Qk)]exp(j(�pi � �ki � 2�fc�kp)) exp(j2�fct)oXp represents the received signal vector containing signals from all of the mobiles afterhaving undergone beamforming with the weights for the pth mobile. �kp representsthe relative time delay of the kth mobile's signal when �pp is assumed to be zero.19



Referring to equations (2.25) and (2.27), it is easy to see that the demodulatedin-phase and quadrature components should be:DIp(t) = 12 NAXi=1 NMXk=1 �kwk(t)ncos(�Ik) cos(�pi � �ki � 2�fc�kp)+ cos(�Qk) sin(�pi � �ki � 2�fc�kp)o (2.33)= 12 NAXi=1 NMXk=1 �kwk(t)nCIk cos(�ip � �ki � 2�fc�kp)+ CQk sin(�ip � �ki � 2�fc�kp)oDQp(t) = 12 NAXi=1 NMXk=1 �kwk(t)n� cos(�Ik) sin(�pi � �ki � 2�fc�kp)+ cos(�Qk) cos(�pi � �ki � 2�fc�kp)o (2.34)= 12 NAXi=1 NMXk=1 �kwk(t)n�CIk sin(�pi � �ki � 2�fc�kp)+ CQk cos(�pi � �ki � 2�fc�kp)owhere �k is the received signal strength as included in equation (2.14), wi(t) is thecurrent Walsh chip value for the kth mobile, and CIk and CQk represent the currentin-phase and quadrature PN chip values which are �1.2.5.2 CorrelationThe basic unit of time correlation is one PN chip (Tc). It is necessary to integrateequations (2.33) and (2.34) over this time period, multiply by the current known PNchip value for the pth mobile, and add the results together in order to obtain a PNchip correlation value.For the in-phase and quadrature signal components, the correlation values overone PN chip can be evaluated as:UIp [r] = 12CIp[r] NAXi=1 NMXk=1 �kwk(t)nCIk [r] cos(�pi � �ki � 2�fc�kp)(Tc � �kp)+ CIk [r � 1] cos(�pi � �ki � 2�fc�kp)�kp (2.35)+ CQk[r] sin(�pi � �ki � 2�fc�kp)(Tc � �kp)+ CQk[r � 1] sin(�pi � �ki � 2�fc�kp)�kpo20



UQp[r] = 12CQp[r] NAXi=1 NMXk=1 �kwk(t)nCIk [r] sin(�pi � �ki � 2�fc�kp)(Tc � �kp)+ CIk [r � 1] sin(�pi � �ki � 2�fc�kp)�kp (2.36)+ CQk[r] cos(�pi � �ki � 2�fc�kp)(Tc � �kp)+ CQk[r � 1] cos(�pi � �ki � 2�fc�kp)�kpoAdding (2.35) and (2.36) together yields the correlation value for the rth PN chipof mobile p. UCp[r] = UIp[r] + UQp[r] (2.37)In the IS-95 standard, the quadrature chip values are actually delayed by half achip period. This feature is incorporated into the simulation methodology but is notincluded here since it does not a�ect the basic results of the analysis.The correlation value for each Walsh chip is found by summing the NW = 4correlation values for the PN chips corresponding to the current Walsh chip.UWp [r] = NW�1Xm=0 UCp[rNW +m] (2.38)IfWn[�] represents the chip sequence of the nth Walsh function, then the correlationvalue of the rth Walsh function position with the nth Walsh function for mobile p is:UFp [r; n] = NF�1Xm=0 UWp [rNF +m]Wn[m] (2.39)The correlation quantities given by the above expression are suitable for inputs tothe decoding process as described in Chapter 4.2.5.2.1 Background Noise TermFor simplicity, equations (2.35) and (2.36) did not include a background noise com-ponent. The integrated thermal noise will have a zero-mean Gaussian distribution.The variance of this distribution is relatively easy to �nd [76, pp. 209].E hn2[r]i = Z Tc0 Z Tc0 E [n(t1)n(t2)] dt1dt2 (2.40)= Z Tc0 Z Tc0 Rn(t1; t2)dt1dt221



where the autocorrelation of n in this situation is:Rn(t1; t2) = 8><>: �2n t1 = t20 t1 6= t2 (2.41)Substituting yields: E hn2[r]i = Z Tc0 �2ndt = Tc�2n (2.42)This variance must be scaled by 1=2 to account for the e�ects of demodulation.As a result, it is only necessary to add a N(0; NATc�2n=2) random variable to both(2.35) and (2.36) to completely model the demodulation and correlation processes.The scaling factor of NA is included to account for the use of multiple element antennaarrays.2.6 SummaryThis chapter has presented components of the IS-95 reverse link required for thesystem simulation model including data encoding, transmission channel parameters,and demodulation and correlation of the received signal. Expressions for the PN andWalsh chip correlation values were derived, including the consideration of backgroundnoise and beamforming with multi-element antenna arrays. Additional aspects ofthe communication model are covered in Chapters 3 (power control) and 4 (datadecoding). A brief introduction to beamforming with antenna arrays was includedwith further details being reserved until Chapter 5.Additional details on the actual chip-level simulation platform and implementationprocess can be found in [15].
22



Chapter 3Power Estimation and Control3.1 IntroductionPower control is an important component of a CDMA communication system. Ifthe ratio of the received power from a given mobile to the corresponding interferencepower is too low, an unacceptably large number of errors in the data 
ow will occur.Conversely, if this ratio is too high, the mobile will generate excessive interferencefor other users. Therefore, it is necessary to measure the received signal power andinterference power for each user, and then to control the transmission power level foreach mobile so that a state of relative equilibrium in the system can be maintained.This chapter outlines how the received signal and interference power levels are es-timated for each mobile. Two types of power control methods, perfect and imperfect,each with di�erent advantages, are explained. The importance of power control inthe presence of correlated fading is then illustrated. Finally, the initialization of amobile's call, including the initialization of its transmission power, is considered.3.2 Related ResearchResearch by other individuals which is brie
y reviewed here may be divided into twobasic areas. One involves developing e�ective and e�cient power control algorithms,whereas the other investigates the e�ects of imperfect power control on system perfor-mance, which is usually, but not always, de�ned in terms of maximum cell capacity.23



3.2.1 Power Control TechniquesAlthough the power control algorithm for IS-95 has already been de�ned in the stan-dard (as discussed in Section 3.4.2), it is worth reviewing some of the work thathas been performed in this particular area in order to identify any limitations of thepresent design.Zander [122] investigated the performance of optimum transmitter power controlin a cellular system to reduce cochannel interference. This method was eigenvector-based and determined the optimum power vector which maximized the number ofsuccessful users out of all of the mobiles who were requesting access. If the desiredcarrier-to-interference ratio for a speci�c link could not be achieved, that link wasdeemed to be inactive. Thus, this control method may really be better suited for aTDMA or FDMA system, rather than CDMA where system performance can degradegracefully by relaxing the power requirements, although it could provide an upperbound for performance in this situation. A distributed power control algorithm wasthen proposed in [121] in which each base station was responsible for its own powercontrol, rather than using a centralized controller for the entire system. This latterdesign was somewhat unrealistic and infeasible for real-time operation. Leung [53]developed a distributed power control algorithm which included Zander's method asa special case, but which both converged more quickly and was less sensitive to mea-surement errors. Finally, Wu, Wu, and Zhou [115] applied the algorithms originallyintroduced by Zander to CDMA and compared outage probabilities obtained fromsimulations for the di�erent power control techniques.Hanly [32] developed a decentralized algorithm for determining the optimum al-location of mobiles to base stations in order to maximize system capacity. Each basestation was responsible for measuring the interference it received from all users andthen broadcasting this value to the mobiles over a control channel. In addition, if aparticular cell became congested with heavy tra�c, its physical size could be reducedand some of its mobiles handed o� to adjacent base stations.Power control and base station assignment were integrated into one algorithmby Yates and Huang [117]. While maintaining a desired CIR (carrier-to-interferenceratio) for each mobile, it is still possible to have many di�erent feasible assignments24



of users to base stations. Their MPA (Minimum Power Assignment) algorithm wasdeveloped to be optimum in terms of minimizing the total transmitted uplink power.Ariyavisitakul and Chang [3] investigated a feedback power control method whichallowed transmission power to be updated at a higher rate than that of multipathfading. In a sequel paper, Ariyavisitakul [2] proposed a uplink power control algorithmwhich depended on the signal-to-interference ratio (SIR). Simulation results showedthat when cell capacity was exceeded, users with low SIR values su�ered while mostof the other mobiles were relatively una�ected. Cell capacity could only be e�ectivelyincreased by reducing the desired power control threshold for all users.3.2.2 E�ects of Imperfect Power ControlIn reality, of course, it will not be possible to control the transmission power of eachmobile perfectly so that users interfere with each other only to the desired amount.Due to measurement noise and feedback delays, the performance of the power controlalgorithms will be degraded from their theoretical optimum levels. As a result, asigni�cant amount of research has gone into investigating the e�ects of imperfectpower control on system performance.Prasad, Kegel, and Jansen [83] demonstrated the need for power control on thereverse link of a CDMA system. This was accomplished by deriving expressions forthe outage probability and determining the maximumnumber of users which could beaccommodated with an outage probability of less than 1%. The cases of no power con-trol, perfect power control, and imperfect power control with an assumed log-normaldistribution of received power and varying standard deviations were considered. Asigni�cant increase in cell capacity was observed when either of the two power controlmethods were compared against the case of no power control. When no power con-trol feedback was used, the near-far e�ect resulted in nearby users generating moreinterference than far away mobiles which increased the latters' error rates and thusdecreased maximum system capacity.Naguib [65] studied the e�ect of closed-loop power control on system performancewhen base-station antenna arrays were used. It was found that this type of powercontrol could eliminate most of the channel variations. In addition, closed-loop power25



control was found to perform better with multiple antennas when the correlationbetween the antenna elements decreased.Cameron and Woerner [4] performed an analytical investigation into the e�ects ofimperfect power control on system capacity. This used the probability distributionfor multiple-access interference originally derived in [50] and [49], and thus did notrequire the use of a Gaussian approximation which is less accurate. By comparingimperfect and perfect power control results, it was shown that standard deviationsof 1, 1.4, and 2 dB in the Eb=N0 values corresponded to capacity reductions of 15%,30%, and 60%, respectively.Panicker and Kumar [75] evaluated the BER performance of an indoor multipathCDMA system with imperfections in power control, channel parameter estimation,and PN code phase estimation. Power control imperfections were modelled by con-sidering the received signal power to have a log-normal distribution. Variances of 1and 2 dB in the received power were found to correspond to capacity reductions of12.5% and 25%, respectively.The e�ects of imperfect power control on system performance were investigatedby Jansen and Prasad in [39]. They found that the system was quite sensitive to smallpower control errors with capacity reductions of 50-60% for a power control error of1 dB. This seems to be excessive when compared to other researchers' results [4] [75].Kim and Lee [44] examined the e�ects of imperfect power control on PN sequenceacquisition. Determining the mean time for synchronization with a user's PN sequenceis important, especially in a packet data type system or when hand-o�s are occurringbetween adjacent cells. Their analytical and simulation results showed that a standarddeviation in the power of more than 1 dB resulted in a signi�cant increase in the meanacquisition time.3.3 Power Measurement3.3.1 Power EstimationIn order to perform power control, it is necessary to estimate or measure the signalpower originating from each mobile. In addition, the interference power resulting from26



all of the other mobiles in the system must be estimated. A base station antennaarray with NA elements is assumed here since the results of this derivation can bereduced to the single element case simply by setting NA = 1.Recall equations (2.33) and (2.34), which give the demodulated in-phase andquadrature components of the received signal for the pth mobile.DIp(t) = 12 NAXi=1 NMXk=1�kwk(t)nCIk cos(�ip � �ki � 2�fc�kp) (3.1)+ CQk sin(�ip � �ki � 2�fc�kp)oDQp(t) = 12 NAXi=1 NMXk=1�kwk(t)n�CIk sin(�pi � �ki � 2�fc�kp) (3.2)+ CQk cos(�pi � �ki � 2�fc�kp)o�k is the received signal strength as included in equation (2.14), wi(t) is the currentWalsh chip value for the kth mobile, and CIk and CQk represent the current in-phaseand quadrature PN chip values which are �1.From the above equations, the received power values for the in-phase and quadra-ture components of the kth mobile when the beamforming coe�cients for the pthmobile are used can be easily shown to be:PIpk = 14�2k 8><>:24NAXi=1 cos(�pi � �ki � 2�fc�kp)352 (3.3)+ 24NAXi=1 sin(�pi � �ki � 2�fc�kp)3529>=>;PQpk = 14�2k 8><>:24NAXi=1 sin(�pi � �ki � 2�fc�kp)352 (3.4)+ 24NAXi=1 cos(�pi � �ki � 2�fc�kp)3529>=>;where �2k is the received signal strength. For notational simplicity, the following termmay be de�ned:�pk = 12 8><>:24NAXi=1 sin(�pi � �ki � 2�fc�kp)352 (3.5)27



+ 24NAXi=1 cos(�pi � �ki � 2�fc�kp)3529>=>;Note that PIpk and PQpk are equal. Since the in-phase and quadrature signalcomponents are independent due to the di�ering short code PN sequences, the totalreceived power from mobile p will simply be the sum of the two power values.PMp = PIpp + PQpp = �pp�2p (3.6)The corresponding total interference power for the pth mobile will be:PIp = Xk 6=p �PIpk + PQpk� = Xk 6=p�pk�2k (3.7)The power levels will vary between frames due to the updating of the beamformingweights which a�ects the �pk values, and will also vary within a frame due to dynamicRayleigh fading which a�ects the received signal envelopes (�k).3.3.2 Eb=N0 RatioIn a CDMA communication system, the standard unit of power measurement istermed the bit energy to interference and noise density ratio which, for the pth mobile,is de�ned as: �EbN0�p = PMp=RBPIp=B +NA�2n (3.8)where the signal and interference powers are de�ned in (3.6) and (3.7), respectively.RB is the data bit rate, B is the bandwidth of the spread CDMA signal, NA is thenumber of antenna elements in the event that beamforming at the base station isbeing performed, and �2n is the power of the background noise. The noise term mustbe multiplied by the number of antenna elements to compensate for the use of anantenna array. In addition, the scaling factors of 1=2 (from the demodulation process)and 2 (from considering both the in-phase and quadrature components) which a�ectthe background noise cancel each other and have therefore not been included in thedenominator of (3.8).It is generally desirable to adjust the transmission power of each mobile so that thisratio is maintained at a given value. For a given coding algorithm, the expected BER28



(Bit Error Rate) for a given Eb=N0 can easily be found. Hence, once an acceptableBER for the intended application has been de�ned (such as 10�3 for voice calls), thecorresponding desired Eb=N0 value will be known.3.3.3 Voice/Data Transmission Activity FactorIn voice applications, users typically spend less than 50% of their time actually talking.The actual percentage of time when speech is active is de�ned as the voice activityfactor ( ) and is generally assumed to have a value between 0:35 and 0:45. For datatransmission applications,  can be set to 1:0 to simulate full loading.During periods of voice inactivity, there is less data to transmit since there is novoice signal to encode and send. Thus, the data transmission rate can be reducedby a factor of � (� = 8 for IS-95) when speech is inactive, while still maintainingthe communication link. At the same time, the transmission power level is reducedby a factor of � so that the same Eb=N0 ratio is maintained. This feature has thee�ect of reducing the average interference power to other mobiles. As a result, thenet capacity of a cell will increase.In this thesis, periods of speech activity and inactivity are assumed to have expo-nentially distributed lengths with mean values speci�ed for each of these two quan-tities. Usually, it is simplest to use the same mean value for both lengths so that avoice activity factor of 0:5 results.3.4 Power Control MethodsIn this section, two di�erent power control methods are discussed. They each havetheir own advantages and disadvantages for analysis and simulation purposes, as willbecome evident.3.4.1 Perfect Power ControlIn perfect power control, each mobile's transmission power is set so that its corre-sponding Eb=N0 is exactly the desired value. In actuality, since dynamic Rayleighfading is used, the transmission power levels are chosen such that the observed Eb=N029



averaged over time will equal the desired value. This is accomplished by using themean of a squared Rayleigh random variable to represent the average e�ect of fadingon the power levels.Since the Eb=N0 ratio depends on both the power received from the desired mobileand the interference power from other mobiles, it is necessary to solve a simultaneoussystem of NM linear equations with NM unknowns in order to determine the appro-priate transmission levels for each mobile. It is usually necessary to do this at thebeginning of each frame, since channel conditions typically vary from frame to frame.From (3.8), Eb=N0 for the pth mobile can be calculated as:�EbN0�p = PMp=RBPIp=B +NA�2n (3.9)where the mobile and interference powers are de�ned in (3.6) and (3.7), respectively.Each (Eb=N0)p in (3.9) can be set to the exact desired value. This ratio is generallythe same for each mobile so the subscript will be dropped. By rearranging thisequation, the following expression can be obtained.�EbN0� PIpB +NA�2n! = PMpRB (3.10)Substituting (3.6) and (3.7) into (3.10) and taking the expectation yields:1RB (Eb=N0)�ppE h�2pi� 1B Xk 6=p�pkE h�2ki = NA�2n (3.11)If PTp is the transmission power of the pth mobile, then the expected squaredreceived signal strength from this mobile will be:E h�2pi = 2�pSpE hR2iPTp (3.12)where the e�ects of the channel parameters (path loss, shadowing, and Rayleighfading) on the signal power have been taken into account. PTp represents the unknownquantity which must be determined. Substituting (3.12) into (3.11) produces thefollowing equation for the pth mobile:1RB (Eb=N0)�pp�pSpE hR2iPTp � 1B Xk 6=p�pk�kSkE hR2iPTk = NA�2n (3.13)30



There are NM unknowns (PTp,PTk) in each equation and p can take on NM di�erentvalues. The result is a system of NM equations withNM unknowns which can be easilysolved using Gaussian elimination.In this system of equations, quantities are known exactly so the only perturba-tions in the coe�cients are due to the limits of numerical representation within thecomputer. Consequently, the solution should not be a�ected by parameter measure-ment noise which does not exist within the simulation environment. Of far greaterimportance is whether or not an acceptable solution actually exists.Either an in�nite number of or no solutions will exist if there is any dependenceamong the above equations. However, �pk, �k and Sk are all random quantities in(3.13). Consequently, it is extremely unlikely in practice that one or more of theequations will be linearly dependent on the others.When all of the equations are linearly independent, a single unique solution to thesystem of equations will exist. If the obtained transmission power values are positive,an acceptable solution has been found. Conversely, if the solution consists of negativepower levels, then the capacity of the cell has been exceeded and the desired level ofperformance cannot be maintained for all of the mobiles.Of course, perfect power control does not re
ect reality. However, this facilitydoes provide a useful testing scenario for verifying error analyses that assume perfectpower control, and also permits signi�cant computational simpli�cations to be madefor simulation purposes.3.4.2 Imperfect Power ControlA more realistic power control model which is imperfect in nature involves estimatingthe power received from each mobile over a set period of time, comparing this to themeasured noise and interference power, and then instructing each mobile to eitherraise or lower its transmitted signal strength by some set amount based on whetherthe observed Eb=N0 ratio is below or above a speci�ed threshold, respectively. If thenumber of mobiles does not exceed the capacity of the cell, a situation of relativeequilibrium in the power levels can be attained. This method of closed-loop feedbackpower control is the technique de�ned in the IS-95 standard and is used here in31



simulation experiments. Chang and Ariyavisitakul [5] also described a similar type ofpower control method for a CDMA system and investigated how the characteristicsof a fading multipath channel a�ected the signal-to-interference ratio. In addition,there is an open-loop power control algorithm included in IS-95 based on the downlinksignal strength which is designed to combat slow fading, although it is not consideredwithin this thesis due to the greater importance of the closed-loop feedback. Thee�ects of open-loop power control on capacity were investigated in [7] and [8] forRicean and Rayleigh fading, respectively.The feedback control algorithm described above is imperfect in two senses. Firstly,the average Eb=N0 ratios will not be exactly the desired value due to the quantizationof the power adjustment step size. Secondly, there is a time delay involved in thecontrol process. The received power levels must initially be estimated over a periodof time. Some additional time is then required to process this data and transmit theappropriate control directions back to each mobile. Thus, there is a de�nite timelag before a mobile will actually react to its power levels being too low or too high.In addition, there is a nonzero probability that a power control bit (which speci�eswhether the transmission power should be raised or lowered) will have its value 
ippeddue to transmission noise.In IS-95, the step sizes for power level adjustments have a �xed value in terms ofdecibels. Thus, the power levels can only be adjusted at a constant rate, regardless ofhow quickly the channel parameters are varying. An alternative is to use an adaptivepower step size such as in the power control technique proposed by Lee and Steele[46]. In this method, previous power control bits are saved so that the mobile candetermine how quickly and in which direction the power levels are changing. If thepower levels are remaining relatively constant, the step size is small, so as not todeviate signi�cantly from the desired Eb=N0 ratio. Conversely, if the power levels areconstantly decreasing or increasing, the power adjustment step size is increased inmagnitude so that convergence to the desired Eb=N0 value is achieved more quickly.As a result of this imperfect power control algorithm, the observed Eb=N0 ratiosfor each mobile will tend to vary about the desired value. The degree of this variationdepends on the particular fading model which has been selected.32



Within the context of this thesis, the received power levels are measured over thelength of one power control period. Since there are 16 of these periods in each framefor IS-95, each period has a length of 1536 PN chips. A new power control bit isgenerated and transmitted at the end of each of these periods.3.5 Fading and Power ControlWhen correlated Rayleigh fading is considered at the PN chip-level, it is preferable touse imperfect power control since it is better able to track the changing received powerlevel within the time period of a frame. When a mobile goes into a fade, it is necessaryto instruct it to increase its transmission power to reduce the BER. Conversely, if amobile comes out of a fade, it must decrease its transmission power so that it does notcause excessive interference to the other users in the system. The use of perfect powercontrol with correlated fading is less desirable since it is computationally expensive tosolve for the mobile transmission power levels more often than once per frame. Thus,perfect power control cannot track correlated fading values within a frame.Figures 3.1 through 3.4 and 3.5 through 3.8 show sample received power levelsfor correlated fading at various mobile velocities for imperfect (closed-loop) powercontrol methods A and B, respectively. Method A has no feedback delay and zeroprobability of feedback error for the power control bits, whereas method B delays thepower control bits by one power control period (1536 PN chips) with a probability offeedback error of 10%. Note that for a given user velocity, the fading pattern is thesame for both power control methods in these examples for comparison purposes. Bycomparing the two power control �gures for the same mobile speed, it can be seenthat slightly larger deviations from the desired mean value (as shown by the dashedlines) are obtained for method B relative to method A. For both of these methods,the transmitted power was adjusted up or down by 0.5 dB in each power controlperiod. Figures 3.9 through 3.12 show sample power control for method C which isidentical to method A except that the power control step is 1 dB. As can be seen,there appears to be little signi�cant di�erence between the results for methods A andC. Hence, a power control step of 0.5 dB is used almost primarily throughout the33



0 1 2 3 4 5
0

1

2

3

Frame

F
ad

in
g

0 1 2 3 4 5
−10

−5

0

5

10

15

20

Frame

E
b/

N
0 

(d
B

)

Figure 3.1: Correlated fading and feedback power control at 1 m/s (imperfect powercontrol method A)
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Figure 3.2: Correlated fading and feedback power control at 10 m/s (imperfect powercontrol method A) 34
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Figure 3.3: Correlated fading and feedback power control at 20 m/s (imperfect powercontrol method A)
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Figure 3.4: Correlated fading and feedback power control at 30 m/s (imperfect powercontrol method A) 35
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Figure 3.5: Correlated fading and feedback power control at 1 m/s (imperfect powercontrol method B)
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Figure 3.6: Correlated fading and feedback power control at 10 m/s (imperfect powercontrol method B) 36
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Figure 3.7: Correlated fading and feedback power control at 20 m/s (imperfect powercontrol method B)
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Figure 3.8: Correlated fading and feedback power control at 30 m/s (imperfect powercontrol method B) 37
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Figure 3.9: Correlated fading and feedback power control at 1 m/s (imperfect powercontrol method C)
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Figure 3.10: Correlated fading and feedback power control at 10 m/s (imperfect powercontrol method C) 38
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Figure 3.11: Correlated fading and feedback power control at 20 m/s (imperfect powercontrol method C)
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Figure 3.12: Correlated fading and feedback power control at 30 m/s (imperfect powercontrol method C) 39



remainder of this thesis for experiments involving imperfect power control.A velocity of 1 m/s corresponds roughly to walking speed, whereas the remainingvelocities are primarily for vehicles (note that 10 m/s is 36 km/h). As can be seenfrom Figures 3.1, 3.5, and 3.9, the closed-loop power control algorithm is rapid enoughto follow the slow rate of fading experienced with a mobile velocity of 1 m/s. Asvehicle speed increases, however, so does the rate of fading and there are greater
uctuations in the received power levels. This illustrates the importance of encodedbit interleaving, since enough of the redundant information in the signal will still beavailable for decoding purposes. At high speeds such as 30 m/s, the user does notremain in a particular fade for very long and this actually reduces data loss relativeto a slower speed such as 10 m/s as will be demonstrated in Chapter 4.3.6 Power Levels and Cell CapacityIn CDMA communication systems, the intent of power control is to keep the Eb=N0ratio for each mobile at a speci�ed level to guarantee a speci�c level of performance.When the capacity of the cell has been exceeded, it will prove impossible to accomplishthis, as will be shown in Section 7.6. However, the system can still continue to functionwith additional users by degrading gracefully. That is, if the desired Eb=N0 value isreduced, a greater number of mobiles can be accommodated at a slightly reducedlevel of performance before cell capacity is reached. By reducing Eb=N0 gradually,the corresponding BER will simultaneously gradually increase.Figures 3.13 through 3.15 show the mean attainable Eb=N0 ratio from power con-trol simulations for varying numbers of mobiles with desired Eb=N0 values of 7.0, 6.5and 6.0 dB, respectively. The solid lines indicate the mean observed values, while thedashed lines represent one standard deviation distance from the mean. The point atwhich the observed mean begins to decrease represents the maximum capacity of thecell.If these three graphs are superimposed on top of each other, it will be seen thatthe three angled lines representing the degraded means will coincide with each other.However, as soon as the capacity of the cell has been attained, the variance of the40
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Figure 3.13: Observed power level statistics (NA = 1,  = 1:0, Eb=N0 = 7:0 dB)
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Figure 3.14: Observed power level statistics (NA = 1,  = 1:0, Eb=N0 = 6:5 dB)41
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Figure 3.15: Observed power level statistics (NA = 1,  = 1:0, Eb=N0 = 6:0 dB)
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Eb=N0 values increases signi�cantly, due to the inability of the power control algorithmto maintain each mobile at the desired value. Essentially, the system loses its state ofequilibrium. This increased variance results in a signi�cant increase in the observedBER. Consequently, once the cell capacity has been exceeded for Eb=N0 = 7:0 dB, forexample, a better level of performance will be obtained by reducing the desired Eb=N0to 6.5 dB rather than attempting to maintain Eb=N0 = 7:0 dB for all users. This willdegrade system performance slightly, but not to the same extent as would increasedvariation in the power levels. The alternative, of course, is to refuse to accept newusers once the cell has reached capacity. In simulation experiments, mobile calls willbe denied if they cannot be initialized with the desired Eb=N0 ratio due to excessiveinterference. However, the topic of call admission is not a primary area of focus forthis thesis.3.7 Call InitializationThere are a number of tasks which must be executed whenever a user begins a newcall, which include the positioning of the mobile, initialization of transmission paths,selection of the preferred base station, and determination of the mobile's initial trans-mission power.The �rst step is to assign random coordinates to the mobile and ensure that thislocation physically falls within a valid cell. The nearest base station and its imme-diately adjacent neighbors (in the event of a multi-cell simulation) are identi�ed andconsidered as candidates for the base station with which the mobile will communicate.The length of the call in frames is taken from an exponential probability distribu-tion with a speci�ed mean.Next, initial path loss and shadowing values are randomly determined for each ofthe candidate base stations. The path loss depends upon the distances between themobile and the base stations and is calculated as shown in equation (2.1). The shad-owing value is computed from equation (2.2). Based on the path loss and shadowingvalues, the base station with the least attenuation in the transmission channel is se-lected as the one with which the mobile will communicate. This may not necessarily43



be the nearest one to the mobile due to the variability introduced by the shadowingfactor.The initial transmission power for the mobile is computed. This is accomplishedby estimating the total interference and noise power as seen by the base station whensynchronized with that particular mobile's signal. This information is then usedtogether with the channel parameters to determine the initial transmission powerrequired to obtain the desired Eb=N0 ratio. If this power level is above the maximumpossible output from the mobile, the call is denied and another attempt must bemade to reinitialize it. A count of the number of denied calls is maintained forsystem performance evaluation purposes.If PMk is the power received from the kth mobile and PIk is the interference power,then the Eb=N0 ratio is obtained from (3.8) as:EbN0 = PMk=RBPIk=B +NA�2n = PMkBRB(PIk +BNA�2n) (3.14)Solving (3.14) for PMk produces:PMk = RB(PIk +BNA�2n)B � EbN0 (3.15)The average value of the power received from the mobile can be written as:PMk = E hR2i �kSkPTk (3.16)where PTk is the power of the signal at the transmitter (mobile) and is the quantity tobe determined. Note that it is necessary to consider the expected value of the squareof R (Rayleigh fading) since it is currently the only quantity which is a randomvariable during the actual duration of a call.Equating (3.15) and (3.16) yields:RB(PIk +BNA�2n)B � EbN0 = E hR2i �kSkPTk (3.17)Finally, solving (3.17) for PTk produces:PTk = 1E [R2] �kSk  RB(PIk +BNA�2n)B � EbN0! (3.18)44



When simulations are conducted, all of the terms on the right side of (3.18) are known,so the initial signal power can be calculated. The amplitude of the signal envelope atthe mobile is the square root of 2PTk .Relative time delays between the signal from the new mobile and signals fromexisting mobiles are then calculated. This is accomplished by assigning a randomabsolute time delay for each mobile's signal at each base station whenever a newcall is initialized. This time delay is a uniformly distributed random variable in theinterval [0; Tc). By comparing the absolute time delay values for the mobiles, it issimple to compute the relative time delays with respect to each mobile.3.8 SummaryThis chapter has described the methodology for performing power estimation andcontrol for the reverse link. To perform accurate power control in a CDMA com-munication system, it is necessary to estimate the received signal and interferencepower for each user so that a desired Eb=N0 ratio can be maintained. Two di�erentpower control methods were presented, perfect and imperfect. Perfect power controlis useful for simplifying the computational complexity of capacity estimation simu-lations, as will be shown later, whereas the imperfect algorithm re
ects reality moreclosely. The need for power control to aid in overcoming time-correlated fading wasdemonstrated with examples showing that fading for slow mobile velocities (e.g. 1m/s) could be tracked with closed-loop power control, whereas faster vehicle speedsresulted in fading situations which relied more upon coding and bit interleaving toprotect against data loss. When the system exceeded maximum capacity (in thatthe desired Eb=N0 ratio could not be maintained for all mobiles), the feedback powercontrol algorithm was seen to break down with a signi�cant increase in the varianceof the mobiles' Eb=N0 values. Finally, call initialization and the computation of theinitial transmission power for a new mobile was discussed.45



Chapter 4Data Decoding4.1 IntroductionAs discussed in Section 2.2, the IS-95 reverse link uses a 32 � 18 array to blockinterleave data after convolutional encoding with a rate 1=3 encoder. The resultingbits are then grouped into sets of six that index one of 64 orthogonal Walsh functions,each corresponding to a sequence of 64 Walsh chips.To decode the received signal, correlation with each of the 64 possible Walsh chipsequences takes place at six-bit intervals. These correlation values may then be usedas soft-decision decoding metrics.Walsh function encoding after block interleaving causes a conventional Viterbi de-coder [25] [103] [104] using deinterleaved bit metrics to produce suboptimal results dueto suboptimal input metrics. Other techniques for convolutional decoding do exist,such as Fano's sequential decoding algorithm [21], [84, pp. 475] the stack algorithm[40], [84, pp. 477] and feedback decoding [84, pp. 480]. However, these alternativemethods are used primarily when dealing with large constraint lengths and are thusnot directly applicable to the IS-95 uplink decoding situation.Chang et al [6] compared the performance of two orthogonal coding techniquessimilar to the Walsh functions of IS-95. For bit interleaving, the soft-decision decodingmethod outlined in Section 4.2.3 was used. The second method interleaved the Walshsymbols rather than individual bits and was found to outperform the �rst approachin a personal wireless communications environment, although it did not match the46



IS-95 coding standard. However, the combined decoder/deinterleaver proposed hereis di�erent from both of these techniques. In addition, Viterbi, Viterbi, and Zehavi[106] investigated a power-controlled CDMA systemwith orthogonal coding, althoughthis was strictly an analytical study with simplifying assumptions.In this chapter, Section 4.2 outlines various existing Viterbi-based decoding strate-gies and then proposes a combined soft-decision deinterleaver/decoder which providesimproved performance over conventional Viterbi decoding with deinterleaved soft-decision bit metrics. The expected decoder performance of IS-95 cellular CDMAwith no interleaving is then derived in the following section for veri�cation purposes.Simulation results for the various described decoding methods are presented in Sec-tion 4.4 and aid in showing the improvement of the new proposed algorithm overpreviously-used techniques. Details of the combined deinterleaver/decoder have alsobeen proposed in [18].4.2 Decoding StrategiesThis section discusses various options for decoding the received signal data. The caseof no interleaving is considered �rst since it is the simplest and forms the basis forthe other methods. Next, the use of deinterleaved hard-decision and soft-decision bitmetric values is examined. Finally, a combined deinterleaver/decoder which providesenhanced performance is proposed.4.2.1 No InterleavingFor noninterleaved data, standard Viterbi decoding [104] may be applied to the Walshsequences by using the Walsh function correlations as metrics to evaluate survivingpaths in the trellis. Each branch between two successive nodes in the decoding trellishas a known Walsh function value associated with it. Thus, the correlation value fora speci�c Walsh function can be assigned as the metric for any branches which matchthat particular function value at the given position within the frame. Since eachWalsh function represents two data bits, each state transition in the trellis outputstwo data bits instead of the usual one. This double state transition eliminates the47



need to subdivide the Walsh correlation metrics.4.2.2 Deinterleaved Hard-Decision Bit MetricsIf a block interleaver is included in the coding process, it is necessary to generateindividual metrics for each convolutionally-encoded bit. These bit metrics can thenbe deinterleaved and summed in groups of six to form deinterleaved Walsh metrics.The result is appropriate for decoding as outlined in Section 4.2.1.One method to generate such bit metrics is by hard-decision decoding [60, pp. 298].At each Walsh function boundary, the Walsh function with the highest correlationis selected as being correct. Bit metrics are then assigned based on the Hammingdistance from the binary form of the selected Walsh function. That is, bits whichmatch the selected Walsh function value are assigned a bit metric equal to the Walshcorrelation value, whereas nonmatching bits are assigned a bit metric of zero.Table 4.1 illustrates a hard-decision bit metric assignment when three-bit Walshfunctions are considered. The maximum value from the upper table occurs for Walshfunction 6 (with a binary value of 110), and thus individual hard-decision bit metricsfor this particular set of bits within the frame would be set as shown in the lowertable.This technique is suboptimal for two reasons. First, the hard-decision quantiza-tion discards useful information. Second, since the Walsh functions are orthogonal,the correlations for incorrect Walsh functions should be zero-mean. However, hard-decision decoding will often cause an incorrect deinterleaved Walsh function to havea nonzero correlation which is closer to that of the correct Walsh function. This willincrease the probability of selecting an incorrect path, thus raising the number ofdecoding errors.4.2.3 Deinterleaved Soft-Decision Bit MetricsSoft-decision decoding is more desirable, as it generally outperforms the thresholdingof hard-decision decoding [60, pp. 297-302] and can be implemented with almost noadditional e�ort. For this reason, soft-decision Walsh correlation bit metrics havetypically been used in recent IS-95 performance studies [6] [37] [69] [71]. For each48



WalshFunction BinaryRepresentation CorrelationMetric0 000 61 001 22 010 73 011 44 100 15 101 56 110 87 111 3BitPosition BitValue BitMetric0 0 01 81 0 01 82 0 81 0Table 4.1: Bit metric calculation example for interleaved hard-decision decoding
49



WalshFunction BinaryRepresentation CorrelationMetric0 000 61 001 22 010 73 011 44 100 15 101 56 110 87 111 3BitPosition BitValue BitPattern BitMetric0 0 0�� 71 1�� 81 0 �0� 61 �1� 82 0 ��0 81 ��1 5Table 4.2: Bit metric calculation example for interleaved soft-decision decoding
50



speci�c bit value and position in the binary representation of a Walsh function, thereare 32 Walsh functions which match the given bit value at that bit position. Normally,the largest of these 32 Walsh function correlations is assigned as the soft-decision valuefor that particular bit position.Table 4.2 contains a simple example of a bit metric assignment for the case ofeight di�erent three-bit Walsh functions. The upper table lists the Walsh functioncorrelations for some position within a frame. The lower table selects the highestcorrelation from among all Walsh functions which match the speci�ed bit pattern.Thus, individual bit metrics have been assigned for each bit value and position, andthe data sequence can be decoded using a method similar to that in Section 4.2.1.This approach, although representing an improvement over quantized hard deci-sions, is also suboptimal due to the loss of Walsh function orthogonality as describedin Section 4.2.2.4.2.4 Combined Deinterleaving/DecodingObserve that the IS-95 interleaved convolutionally-encoded bits appear in the order:b0b32b64 : : : b1b33b65 : : : b543b575 (4.1)where the subscript denotes time. Thus, the correlation value of the �rst encodedWalsh function will depend on bits fb0; b32; b64; b96; b128; b160g. However, for stan-dard Viterbi decoding, the convolutionally-encoded bits must be processed in time-sequential order (b0; b1; b2; : : :). In the case of interleaving, as a progression is madethrough the decoding trellis, the six convolutionally-encoded bits corresponding toeach pair of data bits will therefore be distributed among six di�erent received Walshfunctions in a given frame.As surviving paths are generated during decoding, a possible received data sig-nal is gradually de�ned for each path. However, due to the interleaving, not allbits of each received Walsh function will be simultaneously de�ned during decoding.Clearly, a method of sequentially evaluating a path metric based on the correlationsof partially-speci�ed Walsh functions is required. Instead of directly deinterleavingbit metrics, another option is to reevaluate possible path metrics at each stage of the51



1 0 1 1 - -MW (1011--) = 7 1 0 1 1 0 0 MW (101100) = 51 0 1 1 0 1 MW (101101) = 41 0 1 1 1 0 MW (101110) = 71 0 1 1 1 1 MW (101111) = 3Figure 4.1: Illustration of partially-known Walsh function metric calculationdecoding process, based on available path state information. These calculations canbe structured to be e�cient in terms of computation time and delay.There are 26 possible metrics for every six bits within a frame. If only the �rstk of these six bits are known, there are 26�k di�erent matching Walsh functions. Ametric can be formed by taking the maximum Walsh correlation from among these26�k partial matches. For example, if the �rst four bits are 1011, then Walsh functions44 through 47 are potential matches (see Figure 4.1), and the maximum correlationin this case is MW (1011��) = 7. Another example using three-bit Walsh functionsis shown in Table 4.3. The di�erential metric denotes the di�erence between themetric of the current partially-de�ned Walsh function and that of the Walsh functionwith one less bit being de�ned. These di�erential metrics are precalculated beforedecoding each frame for e�cient implementation. As can be seen from the tables,these metrics are easily calculated in a progressive manner by selecting the maximumof the two previous matching di�erential metrics.A metric value for a partially-speci�ed Walsh function can be de�ned as:MW (P; i; bi) � 8><>: max [CF (P; i; bi)] bi > 00 bi = 0 (4.2)where bi bits have been received for the ith Walsh function position in path P. Thequantity, max [CF (P; i; bi)], represents the maximum correlation for all Walsh func-tions that share the same �rst bi bits in position i of path P.52



BinaryForm MetricValue Di�erentialMetric000 6 +0001 2 �4010 7 +0011 4 �3100 1 �4101 5 +0110 8 +0111 3 �5BinaryForm MetricValue Di�erentialMetric00� 6 �101� 7 +010� 5 �311� 8 +0BinaryForm MetricValue Di�erentialMetric0�� 7 +71�� 8 +8Table 4.3: Illustration of computation of partially-knownWalsh function metric values
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As the bits of a particular Walsh function become de�ned during decoding, thecontribution of that Walsh function to the overall path metric can be adjusted ac-cordingly. The metric value for a surviving path P can be calculated as:MP (P) = 96Xi=1MW (P; i; bi) (4.3)Note that only six Walsh functions in each path are modi�ed at each decoding stage.Thus, rather than reevaluating all of the summation terms in (4.3) at every stage, itis only necessary to modify the six MW (�) values which have changed. This can beaccomplished most e�ciently simply by adding the relevant precalculated di�erentialmetric values to the current path metric.In this situation, it is possible that an incorrect path may temporarily have thelargest metric value partway through the decoding process. The deinterleaver/decodershould therefore retain multiple surviving paths at each trellis node in order to reducethe possibility of accidentally deleting the optimal path. This di�ers from the con-ventional Viterbi decoder where only the best surviving path need be retained sinceit is known to be optimal.For further clari�cation, Figure 4.2 summarizes the basic steps of the proposeddecoding process.4.3 Performance Bound ApproximationIt is possible to estimate the BER for uncorrelated Rayleigh fading with no inter-leaving. This can be used as a performance bound for the case of perfect (in�nite)interleaving and also for decoder veri�cation purposes. Holtzman [34] presented acomputationally-inexpensive method for evaluating the error probability of a stan-dard spread-spectrum system without the additional coding layer of IS-95. Jallouland Holtzman [38] conducted a performance analysis of the uplink of a CDMA sys-tem with M -ary orthogonal modulation similar to the Walsh functions of IS-95 andderived expressions for the BER, although the convolutional encoding step was notconsidered. In addition, power control did not appear to be considered which meantthat the observed BER increased steadily with the number of users, instead of re-maining constant for a given Eb=N0 value. Consequently, it is necessary to derive the54



Let NS denote the number of surviving paths to be retained.At each decoding trellis stage and node, do the following:1. Extend each surviving path P to form four new paths Pi (1 � i � 4).2. For each new path, update the appropriate six Walsh functions with thenewly-de�ned bits, and reevaluate the path metric in Equation (4.3) byadding the precalculated di�erential metrics.3. Keep the best NS paths at each trellis node.Figure 4.2: Summary of the combined deinterleaver/decoder algorithm for the reverselink of IS-95 with interleaving
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expected BER for IS-95 from �rst principles here, due to IS-95's multilevel codingscheme.The derivation of the Walsh function correlation statistics is postponed until Chap-ter 6. From Section 6.2, the correct and incorrect Walsh function correlations areGaussian N(�F ; �2F ) and N(�F ; �2F ) random variables, respectively, where:�F = 128p2�TcqE[P ] (4.4)�F = 0 (4.5)�2F = 512( (NM � 1)T 2c f(� � 1) + 1gE[P ]3� + 12Tc�2n) (4.6)In (4.4) and (4.6), Tc is the PN chip period, NM is the number of mobiles, � is thefactor by which transmission power is reduced when no data is being transmitted,  is the voice activity factor, and �2n is the background noise variance. Only the caseof a single antenna element is considered here for purposes of simplicity.The expected received power in (4.4) and (4.6) can be calculated as shown inequations (6.25) or (6.26) for voice activity factors of  = 1:0 and  < 1:0, respec-tively.4.3.1 Path MetricsConsider the correct path P1 and an incorrect path P2 which di�er in d Walsh func-tions. It is necessary to statistically characterize the Walsh functions which are notcommon to both paths. Let M1 and M2 represent the metric values for the dissim-ilar portions of the two paths. Since these are simply the summation of Gaussianrandom variables, M1 and M2 will have distributions N(�1; �21) = N(d�w; d�2w) andN(�2; �22) = N(0; d�2w), respectively. Their di�erence, M3 = M2 �M1, will also beGaussian with parameters: �3 = �2 � �1 = �d�w (4.7)�23 = �22 + �21 = 2d�2w (4.8)The probability of the incorrect path having the higher metric value is:P (M2 > M1) = P (M2 �M1 > 0) = P (M3 > 0) (4.9)56



= 12 erfc 0� �3p2�3 ! = 12 erfc �w2�2F pd!4.3.2 Bit Error Rate EvaluationThe above statistics can be propagated through a standard Viterbi decoder to yieldan estimated BER. Only the noninterleaved case is considered, since an analyticalinvestigation of the combined deinterleaver/decoder appears intractable.The approach in [84] [105] for obtaining an upper bound to the BER is re�nedhere in order to obtain an actual approximate expectation. From (4.9) and [84, pp.459-463]: PB � 12 1Xd=dfree �d erfc� �w2�Fpd� (4.10)In (4.10), the minimum free distance is dfree = 5 for IS-95, �d is a weighting coe�cientbased on the number of paths and output bit errors, and d represents the distanceof an incorrect path from the correct path in terms of the number of incorrect Walshfunctions. The computation of �d is described in Appendix A.It should be noted that (4.10) is only an approximation due to the �nite framelength and also to the assumed statistical independence of distinct path metrics,which is not the case in actuality since trellis branches are shared among a number ofpaths. In practice, usually a maximum of only 25 terms of the summation in (4.10)are required due to the exponential decrease of the erfc(�) term.4.4 Simulation ResultsThe combined deinterleaver/decoder algorithm has been evaluated in a chip-level re-verse link simulation of IS-95 [15], consisting of a mobile in a circular cell of radius500 m. The probability distributions for the inputs to the Viterbi decoder in a mem-oryless channel are derived in Section 6.2 and veri�ed in Section 6.5. It is thereforepossible, in this instance, to generate these random values directly without requiringPN chip-level simulation.Figure 4.3 plots the simulated BER of memoryless Rayleigh fading for deinter-leaved hard-decision bit metrics (Sec. 4.2.2), deinterleaved soft-decision bit metrics57



(Sec. 4.2.3), and the proposed deinterleaver/decoder (Sec. 4.2.4) with one and two sur-viving paths being retained, respectively. Simulated noninterleaved results (Sec. 4.2.1)and the analytically calculated BER (Sec. 4.3.2) are also included for comparison. Atlow Eb=N0, incorrect path selection reduces interleaving performance, while at highEb=N0, the correlated Walsh functions reduce the relative performance of the non-interleaved system. From Figure 4.3, the combined deinterleaver/decoder with onesurviving path provides about a 1 dB improvement over soft-decision (Sec. 4.2.3) anda 2 dB improvement over hard-decision (Sec. 4.2.3) at a BER of 10�3. Retainingtwo surviving paths instead of one yields another 0.5 dB improvement at the cost ofadditional computational expense.When comparing the analytical and simulated BER for no interleaving, goodagreement is obtained over the Eb=N0 range from 3.5 to 5.5 dB. An exact correspon-dence is not expected since there may be signi�cant branch overlap between the longertrellis paths which were assumed to be statistically independent in the analysis. Atlower Eb=N0, longer paths have a nonnegligible contribution to the summation in(4.10), and the assumed statistical independence breaks down.Time-correlated Rayleigh fading represents a more realistic evaluation environ-ment for interleaving in IS-95. These simulations were conducted at the PN chip-levelusing correlated shadowed fading [56]. Figures 4.4 through 4.6 show the simulatedBER for user velocities ranging from 1 to 30 m/s with soft-decision decoding, andcombined deinterleaving/decoding with one and two surviving paths being retainedrespectively. As expected, lower BERs are observed at higher velocities since the mo-bile remains in fades for shorter periods of time. At low mobile velocities such as thepedestrian speed of 1 m/s, however, the IS-95 closed-loop power control algorithm israpid enough to compensate for the slow fading as shown in Section 3.5, and a muchlower BER is thus observed. Clearly, as the decoder complexity increases, the corre-sponding observed BER values simultaneously decrease, and the gains obtained forthe proposed decoder with correlated fading appear to be similar to those observedfor uncorrelated fading. Figure 4.7 illustrates the improvement in BER through theintroduction of interleaving for user velocities of 1 and 20 m/s in correlated fading.Finally, Figure 4.8 shows the improvement obtained by increasing the number of58
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Figure 4.3: BER for 1 mobile with uncorrelated Rayleigh fading
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Figure 4.4: BER for 1 mobile with correlated Rayleigh fading and interleaving (dein-terleaved soft-decision decoding) 59
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Figure 4.5: BER for 1 mobile with correlated Rayleigh fading and interleaving (com-bined deinterleaver/decoder with 1 surviving path)
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Figure 4.6: BER for 1 mobile with correlated Rayleigh fading and interleaving (com-bined deinterleaver/decoder with 2 surviving paths)60
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Figure 4.7: BER for 1 mobile with correlated Rayleigh fading (with and withoutinterleaving)
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Figure 4.8: BER for 1 mobile with uncorrelated Rayleigh fading (interleaving withcombined deinterleaver/decoder) 61



retained paths in the proposed decoder. However, added path computations trade o�against the improved performance. From Figure 4.8, retaining two paths per nodeseems bene�cial, while retaining additional paths provides diminishing returns withincreased computational expense.4.5 SummaryThis chapter has discussed the various decoding options previously available for theIS-95 reverse link, including no interleaving, deinterleaved hard-decision bit metrics,and deinterleaved soft-decision bit metrics. The latter choice, deinterleaved soft-decision bit metrics, has typically been the method used in previous research, due toits ease of implementation and improved performance over the hard-decision option.However, a combined deinterleaver/decoder has been proposed here which providesan enhanced level of performance. An expression for the predicted BER for the caseof no interleaving was derived for veri�cation purposes. Finally, simulation resultsdemonstrated the extent to which the new proposed algorithm outperforms the tradi-tional existing decoding techniques, and indicated that the modi�ed decoder functionsrelatively well in correlated fading. In simulation experiments, the proposed decoderwith one surviving path being retained at each node provided a gain of 1 dB oversoft-decision and 2 dB over hard-decision decoding at the standard acceptable biterror rate of 10�3 for voice. Retaining two surviving paths yielded an extra 0.5 dBof gain. As a result, the IS-95 reverse link BER performance can be signi�cantlyimproved by using the proposed deinterleaver/decoder with no additional decodingdelay.
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Chapter 5Digital Beamforming5.1 IntroductionDigital beamforming can be utilized to increase the capacity of a cell [64] [67] [73][74]. By using a multi-element antenna array at the base station and a suitable set ofbeamforming coe�cients, it is possible to take a weighted sum of the antenna elementoutputs which maximizes the ratio of the desired mobile's signal power to the noiseand interference power. This is essentially a form of spatial �ltering that reducesinterference from other mobiles and thus boosts overall cell capacity. Applebaum[1], Swales et al [99], and Van Veen and Buckley [101] provide good introductions tobeamforming and its e�ects on increasing the number of users in a communicationsystem. In addition, Krim and Viberg [45] present a comprehensive general overviewof parameter estimation methods through the use of sensor array processing, includingan extensive set of references. An alternative method of increasing system capacityinstead of beamforming is to split individual cells into smaller cells or sectors. How-ever, it can be shown [89] that this increases equipment requirements due to theincreased variability of using smaller service areas.The array response vector ai speci�es the relative phases of the ith mobile's signalas received at each of the NA antenna elements. This vector is a function of thesignal's direction of arrival and the antenna array geometry, and its derivation for acircular array geometry was shown in Section 2.4.1. If there are a su�cient numberof mobiles in the system, the interference will be approximately white [82] and it63



will only be necessary to estimate ai in order to determine suitable beamformingcoe�cients since this will maximize the output signal-to-noise-ratio (SNR) [82, pp.185]. Currently, the received signal data in a frame is used to estimate the requiredweights for the following frame.This chapter presents an existing beamforming weight estimation technique andinvestigates its application to the IS-95 reverse link. An extension to this algorithmis then proposed which yields signi�cantly improved accuracy in the estimation ofbeamforming coe�cients. An error analysis produces expressions for the mean vectorsand covariance matrices of the estimators. These derived probability distributionscan be used later to simulate imperfect beamforming without the need to resort tocomputationally expensive chip-level simulations. Finally, predicted and simulatedstatistical quantities are compared to illustrate the agreement between them.5.2 Related ResearchBeamforming primarily deals with two di�erent types of situations. Assume that thereare NA antenna elements and NI interferers in the system. In one case, there are onlya few strong interferers with NI < NA. In this situation, it is generally desirable tochoose the beamforming weights so that a null is formed in the direction of each of theinterferers. Thus, their contribution to the received signal will be suppressed and theinterference should ideally not a�ect the quality of the desired signal. This situation ismore likely to arise when dealing with TDMA or FDMA systems when there are fewerusers. Often, the goal here is to estimate the direction of arrival (DOA) of one or moresignals so that an appropriate steering vector can be computed. Two of the standardalgorithms for accomplishing this are MUSIC (MUltiple SIgnal Classi�cation) [92] andESPRIT (Estimation of Signal Parameters via Rotational Invariance Techniques) [88]which are eigen-based methods that identify the signal subspace from the antennaarray output data. MUSIC permits the estimation of such factors as the number ofsignals and their directions of arrival. ESPRIT is applicable when the sensor array hasdisplacement invariance (i.e. the sensors occur in matched symmetrically displacedpairs, as would be the case for a circular antenna array with an even number of64



elements) and o�ers performance and computational advantages over MUSIC. Yuenand Friedlander [120] performed an analysis of three di�erent versions of the ESPRITalgorithm to derive the asymptotic variance of the estimated direction of arrival andveri�ed their results with numerical simulations.Wang and Cruz [108] managed to use ESPRIT in a CDMA situation by consideringthe received signal after despreading. In this instance, the data could be treated asconsisting of the desired signal and noise (from the multi-user interference) whichallowed the use of ESPRIT.The alternative situation, which is more appropriate for CDMA, is when NI > NAand is usually signi�cantly greater. In this case, there are not enough degrees offreedom available to null out all of the other interferers. However, due to the powercontrol facility of the CDMA system, none of the interferers should be signi�cantlystronger than the desired signal. Thus, in this situation, the beamforming weights areselected to optimize some other criterion such as maximizing the signal to interferenceratio. This tends to suppress interference from other users, but not totally eliminateit. An advantage of this approach is that it is not necessary to accurately calibratethe antenna array which is required for direction of arrival estimation.Liberti and Rappaport [55] investigated how capacity could be increased throughthe use of base station antenna arrays. Their focus was to determine the reductionin BER for a given number of users when antenna array processing was used. Thisstudy was analytical in nature and considered �ve di�erent speci�c beam patterns, oneof which was omnidirectional. Signi�cant BER reductions were observed, especiallywhen sectorization and adaptive antenna techniques were combined.Lee and Lee [47] considered adaptive array beamforming when errors were presentin the steering vector. The task of �nding an optimal steering vector was formulatedas an optimization problem which used the received signal data and the probabilisticdistribution of the steering vector errors. This situation involved fewer interferersthan antenna elements.Yu and Lee [118] investigated the statistical performance of several eigenspace-based adaptive antenna array beamforming algorithms. However, they only consid-ered the case where the number of interferers is less than the number of antenna65



elements.Wax and Anu [109] analyzed the SINR (Signal-to-Interference-plus-Noise-Ratio)at the output of the minimum variance beamformer, although this too was for thecase of fewer interferers than antenna elements. The analysis was also extended [110]to consider the e�ects of steering vector errors.A projection approach to beamforming designed to reduce beamformer sensitivityto perturbation error and sample covariance error was presented by Feldman andGri�ths [23]. In a following paper [22], Feldman analyzed the expected performanceof the projection method beamformer and derived an expression for the SINR whenerrors were present.The research presented within this chapter is originally based on work performedat Stanford [64] [67] [73] [74] which is discussed in more detail in Section 5.4. Inaddition, a recursive method for estimating suitable beamforming coe�cients waspresented by the same authors in [70].5.3 Maximum SNR (Perfect) BeamformingMaximum SNR beamforming (henceforth referred to as perfect beamforming) as-sumes that the array response vector for the mobile under consideration is knownexactly. The beamforming weights for the pth mobile can then be set equal to the en-tries of the array response vector since this set of weights will be optimum in terms ofmaximizing the signal to interference and noise ratio when the interference is assumedto be white, which will be the case for a large number of active mobiles [82].wp = ap (5.1)Although in actual deployment the true array response vector would not be known,this case is useful for test purposes and for verifying error analyses that were per-formed with simplifying assumptions. In addition, evaluating system performancewith perfect beamforming provides an upper bound to the achievable level of service.Conversely, in reality, imperfect beamforming must be used where the beamformingcoe�cients are estimated from the received signal data.66



5.4 Code-Filtering CorrelationThe code-�ltering correlation technique has received an extensive amount of investi-gation from Naguib and Paulraj [64] [67] [73] [74]. In the following section, a simplespreading of the data bits via a PN chip sequence is assumed with the actual encod-ing process of IS-95 being considered immediately after the basic algorithm has beenexplained.5.4.1 Basic AlgorithmLet xp(t) be the received signal vector and zp[k] be the signal vector correlated withthe PN sequence of the desired mobile over the time period of the kth Walsh chip.Then, ap can be estimated as the principal eigenvector of the matrix Rzz�Rxx whereRxx and Rzz are the correlation matrices of xp(t) and zp[k] respectively [67]. Sincethese matrices must be estimated from the observed data, the system performancedepends on the accuracy of these estimates. The asymptotic values of Rxx and Rzzfor the pth mobile are [67]:Rxx = �2papa�p +Xk 6=p �2kaka�k + �2nI (5.2)Rzz = Gz�2papa�p +Xk 6=p�2kaka�k + �2nI (5.3)where Gz is the gain or spreading factor, �2p represents the received signal power fromthe pth mobile, and �2n is the thermal noise power.If the gain factor Gz between the Walsh and PN chips is su�ciently large, thearray response vector can be approximated simply as the principal eigenvector of Rzzsince Gz�2papa�p will be the dominant component of this matrix. In IS-95, however,Gz is less than 4 as illustrated in the following section. This gain is too low to accu-rately estimate ap using this approach. Thus, the quality of beamforming coe�cientsobtained via this technique is poor.5.4.2 Application to the IS-95 Reverse LinkThis section examines the use of the code-�ltering beamforming weight estimationtechnique in the reverse link of IS-95 and then demonstrates why this algorithm does67



not work well in this situation.In the code-�ltering correlation method for estimating beamforming coe�cients,the received signal vector is correlated over one PN chip to generate a set of x values.These vectors are in turn further correlated with the desired mobile's PN sequenceover the time period of one Walsh chip to yield z vectors.Recall that in IS-95, there are both in-phase and quadrature components in thesignal. Neglecting the thermal noise component for the time being, the in-phase signalvector for the pth mobile as correlated over one PN chip can be written as:xIp[r] = 12CIp[r] NMXk=1�kwk[r]nCIk [r] exp(�j2�fc�kp)(Tc � �kp)ak+ CIk [r � 1] exp(�j2�fc�kp)�kpak+ jCQk[r] exp(�j2�fc�kp)(Tc � �kp)ak+ jCQk[r � 1] exp(�j2�fc�kp)�kpako (5.4)= 12CIp[r] NMXk=1�kwk[r] exp(�j2�fc�kp)aknCIk [r](Tc � �kp) + CIk [r � 1]�kp+ jCQk[r](Tc � �kp) + jCQk [r � 1]�kpowhere CIk and CQk represent the current PN chip value for the kth mobile's in-phaseand quadrature components, respectively, �k is the received signal amplitude, wk isthe current Walsh chip value, �kp is the relative time delay, and Tc is the period ofone PN chip.Similarly, the corresponding quadrature x vector will be:xQp[r] = 12CIp[r] NMXk=1�kwk[r] exp(�j2�fc�kp)aknjCIk [r](Tc � �kp) + jCIk [r � 1]�kp (5.5)+ CQk [r](Tc � �kp) + CQk [r � 1]�kpoRecall that the Walsh and PN chip values are limited to �1 with the assumptionof equal probability. Consequently, xIp and xQp can easily be seen to be zero-mean.Let YIp and YQp be binary random variables where YIp = �1 and YQp = �1 with68



equal probability. Then equation (5.4) can be rewritten as:xIp[r] = 12�pTcwp[r]ap + j 12�pTcYQp [r]ap+ 12 Xk 6=p�k exp(�j2�fc�kp)ak (5.6)nYIk [r](Tc � �kp) + YIk [r � 1]�kp+ jYQk [r](Tc � �kp) + jYQk [r � 1]�kpowhere the relative time delay �pp has been set to zero with no loss of generality.The correlation matrix of xIp[r] is de�ned as:Rxx = E hxIp[r]x�Ip[r]i (5.7)When equation (5.6) is substituted into (5.7), any term containing two di�erent YIk orYQk random variables will evaluate as zero when the expected value is taken. Similarly,any term containing the square of a YIk or YQk random variable will evaluate as one.Rxx = 14�2pT 2c apa�p + 14�2pT 2c apa�p+ 14 Xk 6=p �2kaka�k nE [(Tc � �kp)] + E [�kp] + E [(Tc � �kp)] + E [�kp]o= 12�2pT 2c apa�p + 12 Xk 6=p �2kaka�k nE [(Tc � �kp)] + E [�kp]o (5.8)= 12�2pT 2c apa�p + 12 Xk 6=p �2kaka�k nT 2c � 2TcE [�kp] + 2E h� 2kpi oNote the following expectations for �kp which has a uniform distribution over theinterval [0; Tc). E [�kp] = 12Tc (5.9)E h� 2kpi = 13T 2c (5.10)Substituting (5.9) and (5.10) into (5.8) yields:Rxx = 12�2pT 2c apa�p + 12 Xk 6=p �2kaka�k �T 2c � T 2c + 23T 2c � (5.11)= 12T 2c �2papa�p + 13T 2c Xk 6=p �2kaka�k69



For the case of a single cell with one antenna element and perfect power control, it ispossible to predict Rxx exactly since all of the �k values will be equal (Section 6.3).When multiple antenna elements are used, an approximation for Rxx can be obtained(Section 6.4).Now consider the zIp[r] vector. Recall that there are NW = 4 PN chips for eachWalsh chip. By correlating (5.6) across the period of one Walsh chip, the followingexpression is obtained.zIp [r] = 12NW�pTcwp[r]ap + j 12�pTcap NWXi=1 YQp [i]+ 12 Xk 6=p �k exp(�j2�fc�kp)ak (5.12)NWXi=1 nYIk [i](Tc � �kp) + YIk [i� 1]�kp+ jYQk [i](Tc� �kp) + jYQk [i� 1]�kpoThe correlation matrix for zIp can be derived in a similar fashion as before.Rzz = E hzIpz�Ipi= 14N2W�2pT 2c apa�p + 14NW�2pT 2c apa�p + 14 Xk 6=p�2kaka�k (5.13)0@NWXi=1 nE h(Tc � �kp)2i+ E h� 2kpi+ E h(Tc � �kp)2i+ E h� 2kpio1A= 14NW (NW + 1)�2pT 2c apa�p + 14NW Xk 6=p�2kaka�k �43T 2c �= 14NW (NW + 1)�2pT 2c apa�p + 13NWT 2c Xk 6=p �2kaka�kAssuming that all of the mobiles have identical received power levels (i.e. �k is con-stant for all k), the gain for ap relative to the array response vectors of the interferersobtained by this correlation method can be easily seen to be:Gz = �14NW (NW + 1)�2pT 2c ���13NWT 2c �2p� (5.14)= 34(NW + 1) = 3:75The accuracy of this beamforming weight estimation depends on the value of Gz. Inthis application, Gz can be clearly seen to be too low to be of practical use. The70
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Figure 5.1: Feedback correlation beamformingnoise and interference will cause signi�cant errors in estimates of Rzz obtained from�nite sample sizes. A similar result will be obtained if the quadrature signal vectorsare correlated. However, only the in-phase case is considered here for reasons ofsimplicity.5.5 Walsh Chip Feedback CorrelationAs mentioned previously, using a spreading factor of only 4, as is the case for IS-95,yields extremely poor estimates of the array response vectors due to the compara-tively signi�cant interference and noise component in Rzz. However, an additionalcorrelation step can be performed to yield a much larger enhanced processing gainwhile not modifying the IS-95 coding process and without introducing any additionalprocessing delay [16].After the transmitted data bits have been recovered for a given mobile, the datacan be reencoded to reconstruct the original Walsh chip sequence, assuming thatno errors were made during the decoding process. The zi[k] vectors resulting fromcorrelating with the PN chip sequences can then be further correlated with the recon-structed Walsh chip sequence to produce a correlation vector for each Walsh function.This process is illustrated in Figure 5.1. The resulting correlation vectors can be pro-cessed in one of two ways to obtain an array response estimate as detailed in thefollowing sections. 71



Naguib and Paulraj [71] also considered beamforming on the IS-95 reverse linkusing their code-�ltering correlation algorithm. In this case, it was necessary to makea hard decision based on the correlation values prior to Viterbi decoding as to whichWalsh function was transmitted so that an appropriate correlation vector could beselected to update the current estimate of the correlation matrix. This approachwould likely degrade performance to some extent since there is a certain probabilitythat an incorrectWalsh function and correlation vector would be selected. As a result,a greater amount of variation in the correlation matrix estimate would be expected.5.5.1 Principal Eigenvector ApproachLet vIp[r] be the correlation vector corresponding to the rth Walsh function of thepth mobile. By correlating (5.12) with the correct Walsh function, the followingexpression can be obtained.vIp[r] = 12NFNW�pTcap + j 12�pTcap NFXm=1 NWXi=1 YQp[m; i]+ NFXm=1 12 Xk 6=p �k exp(�j2�fc�kp)ak (5.15)NWXi=1 nYIk [m; i](Tc� �kp) + YIk [m; i� 1]�kp+ jYQk [m; i](Tc � �kp) + jYQk [m; i� 1]�kpowhere Tc is the time period of one PN chip, NW = 4 speci�es the number of PN chipsin one Walsh chip, and NF = 64 is the number of Walsh chips in one Walsh functionchip sequence. When the expected value of this expression is taken, all of the binaryrandom variables will disappear since they are zero-mean.E hvIpi = 12NFNW�pTcap (5.16)Note that vIp, unlike xIp and zIp, is not zero-mean. In a similar manner, it can easilybe shown that the correlation matrix of the in-phase vIp[r] vectors is:Rvv = 14N2WN2F�2pT 2c apa�p + 14NWNF�2pT 2c apa�p (5.17)+ 13NWNFT 2c Xk 6=p �2kaka�k + 12NWNFTc�2nI72



The �rst term in (5.17) comes from the in-phase signal component, the second fromthe quadrature component, the third represents interference from other mobiles, andthe �nal term originates from the background noise.The covariance matrix for v can be easily obtained from equations (5.17) and(5.16). Cvv = Rvv � E hvIpiE hv�Ipi (5.18)= 14NWNF�2pT 2c apa�p + 13NWNFT 2c Xk 6=p �2kaka�k + 12NWNFTc�2nIAssuming that the received powers for each mobile are identical (which is an ap-proximation unless perfect power control and a single antenna element are assumed),the relative gain factor from equation (5.17) can be calculated as:Gv � �14N2WN2F + 14NWNF���13NWNFT 2c � (5.19)= 34 (NWNF + 1) = 34 [(4)(64) + 1] = 192:75A similar result holds for the quadrature signal component.Simulations have shown that the accuracy of the estimated beamforming weightssigni�cantly increases when the principal eigenvector of Rvv is used to estimate thedesired array response vector instead of Rzz, which is as would be expected due tothe larger gain factor. Note that it is not necessary to subtract Rzz from Rvv inthis instance due to the high processing gain which causes the interference and noiseterms to become negligible.5.5.2 Mean Correlation Vector ApproachDue to the large gain observed in (5.19), Rvv will be a close approximation to a rank-one matrix. Consequently, an alternative to computing the principal eigenvector ofRvv is to simply take the mean of the vIp correlation vectors over a certain period oftime (such as one frame). This eliminates the additional computational expense ofcalculating the principal eigenvector of a matrix, while simultaneously yielding esti-mates of an equivalent level of accuracy. Wu and Wong [114] independently proposeda similar technique in a cyclic adaptive beamforming algorithm in order to reducecomputational complexity. 73



The expected value of vIp is obtained from equation (5.16).E hvIpi = 12NFNW�pTcap (5.20)Suppose the vIp vectors are summed over an entire frame which contains FF = 96Walsh functions. If this sum is termed uIp , then (5.20) produces:E huIpi = 12FFNFNW�pTcap (5.21)which is simply a scalar multiple of the desired array response vector so this estimatoris unbiased.It is now necessary to rewrite equation (5.15) so that the correlation is performedacross the entire frame.uIp[r] = 12FFNFNW�pTcap + j 12�pTcap FFXn=1 NFXm=1 NWXi=1 YQp[n;m; i]+ FFXn=1 NFXm=1 12Xk 6=p �k exp(�j2�fc�kp)ak (5.22)NWXi=1 nYIk [n;m; i](Tc� �kp) + YIk [n;m; i� 1]�kp+ jYQk [n;m; i](Tc� �kp) + jYQk [n;m; i� 1]�kpoAll of the YIk and YQk random variables are mutually independent and will thusdisappear when the corresponding correlation matrix is calculated.Ruu = E huIpu�Ipi= 14F 2FN2WN2F�2pT 2c apa�p + 14FFNWNF�2pT 2c apa�p (5.23)+ 13FFNWNFT 2c Xk 6=p �2kaka�k + 12FFNWNFTc�2nIFrom equations (5.21) and (5.23), it is easy to see that the corresponding covariancematrix is: Cuu = Ruu �E huIpiE hu�Ipi= 14FFNWNF�2pT 2c apa�p + 13FFNWNFT 2c Xk 6=p �2kaka�k (5.24)+ 12FFNWNFTc�2nI74



Now refer back to equation (5.21). To maintain a constant magnitude, it is nec-essary to scale uIp . This step is primarily just important if the correlation processis extended for an arbitrary period of time so that corresponding quantities can becompared with each other. De�ne the following vector quantity.wIp = 1FFNFNWTcuIp (5.25)From (5.21), the mean of the above quantity can be seen to be:E hwIpi = 12�pap (5.26)and the corresponding covariance matrix is:Cww = 14 1FFNWNF �2papa�p + 13 1FFNWNF Xk 6=p �2kaka�k+ 12 1FFNWNF 1Tc�2nI (5.27)= 1FFNWNF 0@14�2papa�p + 13 Xk 6=p �2kaka�k + 12Tc�2nI1AThe initial scaling factor in equation (5.27) clearly indicates that as the sample sizefor estimating the beamforming weight vector increases, the covariance matrix ofthe estimate will asymptotically approach zero. For example, if the correlation wereperformed over n frames, a factor of n would appear in the denominator of (5.27).As n was allowed to go to in�nity, Cww would go to zero.Equation (5.26) indicates that the wIp estimate of the array response vector isunbiased. However, the beamforming weight vector is typically normalized to unitlength before being used, and this may introduce a bias into the results as explained inSection 5.5.3.2, although this bias appears to be negligible and has not been observedin simulations.5.5.3 Normalized Mean Correlation VectorSince the beamforming weight vector is usually normalized to unit length before beingused, it is also possible to derive the expected statistical parameters of the normalizedcoe�cient vector estimate. This provides for a fair comparison with the principaleigenvector approach of Section 5.5.1 which also produces a unit vector estimate.75



5.5.3.1 Covariance MatrixConsider the expression for wIp in (5.25) and assume that it has been normalized tounit length. That is, de�ne the following new quantity.qIp = wIpjwIpj = uIpjuIp j (5.28)The quantity in (5.28) represents the actual vector of coe�cients used for beamform-ing purposes. The covariance matrix of this estimator can be approximated by scalingthe covariance matrix for wIp in (5.27) by the reciprocal of the squared magnitude ofthe expected value of wIp . This approximates the e�ects of the vector normalizationprocess. Cqq � 1���E hwIpi���2Cww = 4�2pCww (5.29)When the observed covariance matrix is compared to the above predicted quantity,an exact agreement is not observed. However, since only the direction of the beam-forming weight vector is important and the magnitude is always unity, any variationin the same direction as the expected value of the coe�cient vector can be ignored.By subtracting o� the variation along this direction, an almost exact correspondencebetween the observed and simulated covariance matrices can be obtained.Let Cqq be the predicted covariance matrix as above and �q be the expected valueof the normalized estimate. From (5.26), �q can be seen to correspond to the arrayresponse vector for the pth mobile.Note that a Hermitian covariance matrix can be written in terms of its eigenvaluesand eigenvectors. Cqq = NAXi=1 �iviv�i (5.30)For each eigenvector in the above expression, the component which lies along thedirection of �q can be subtracted o� to yield a new vector.ui = vi � (v�i�q)��q (5.31)76



The modi�ed covariance matrix can now be written in terms of the original eigenvaluesand the adjusted eigenvectors from (5.31).Ĉqq = NAXi=1 �iuiu�i (5.32)This process can be repeated using the observed covariance matrix and mean vectorfrom simulations so that equivalent quantities can be compared.5.5.3.2 Mean VectorEquation (5.26) showed that the mean correlation vector method of estimating thebeamforming weights is unbiased. However, the normalized mean vector from obser-vations will have a magnitude slightly less than unity due to the vector normalizationfor each observation. The direction of the mean vector remains unbiased though. Itwill be seen that the di�erence in magnitude from unity is essentially negligible.It is not possible to derive an analytical expression for the expected length of themean observed vector. However, a value can be obtained via numerical integration.Consider the modi�ed covariance matrix given in equation (5.32) for the pth mo-bile. One of the eigenvalues of Ĉqq will be zero and its corresponding eigenvector willbe the array response vector ap, while the remaining eigenvalues will be nonzero.Assume that the distribution of the intersection of the observed vector estimatewith the hyperplane de�ned by the NA � 1 eigenvectors with nonzero eigenvaluesfollows a multivariate Gaussian distribution with mean zero and covariance de�ned by(5.32). In Figure 5.2, the vertical line represents the true mean, whereas the diagonalline represents the current normalized array response vector estimate. The horizontalline represents the distance within the de�ned hyperplane from the mean point to thecurrent vector estimate. The indicated distances shown in the diagram can be easilyderived in terms of known values. The xi quantities represent the distance along eacheigenvector axis that the current vector estimate is from the mean.It is desired to �nd d in Figure 5.2 as a function of the other known values. Usingsimilar triangles yields: d1 = 1vuut1 + NA�1Xi=1 x2i (5.33)77
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Figure 5.2: Estimation of observed mean vector lengthd = 0@1 + NA�1Xi=1 x2i1A� 12 (5.34)The product of this expression and the corresponding pdf can be integrated over thevalid range of xi values to �nd the expected length of the mean observed vector.E [d] = Z � � � Z d(x1; : : : ; xNA�1)24NA�1Yi=1 1p2��i exp � x2i2�i!35 dxNA�1 : : : dx1 (5.35)Although this integration cannot be performed analytically, a satisfactory result canbe obtained quite easily by integrating the above expression numerically.In practice, the covariance matrix of the normalized mean correlation vector esti-mator is generally small enough that the mean observed vector has a magnitude onlyslightly less than unity. 78



5.5.4 E�ect of Rayleigh FadingFor simplicity, the above derivations for mean vectors and covariance matrices assumethe absence of Rayleigh fading. However, it is quite simple to introduce fading to thederived expressions. Equations (5.16) and (5.26) should be multiplied by E [R] =q�=2, and (5.17), (5.18), and (5.27) should be multiplied by E [R2] = 2.5.5.5 E�ect of Decoding ErrorsIn the code-�ltering correlation beamforming weight estimation algorithm, once syn-chronization with the PN sequence of interest has been acquired, no correlation errorswere result. With the feedback correlation method, however, there is the possibilityof correlation errors occurring due to a frame's data being decoded incorrectly. Atpresent, no provision against this has been included in the basic algorithm. However,since a mobile's array response vector does not change rapidly from frame to frame,it should be possible to implement some form of �ltering to reduce the deleteriouse�ects of any incorrect beamforming coe�cient estimates. Another alternative wouldbe to disregard any frame estimates which are signi�cantly di�erent than the currentbeamforming vector estimate.In the previous paragraph, an assumption is made that a decoding error will have acatastrophic e�ect on the beamforming estimate produced by the feedback correlationmethod. However, it is not clear that this will de�nitely be true and this assumptionmay just represent a worst-case scenario. The Walsh chip feedback correlation tech-nique is similar to that used for decision-feedback equalization. Consequently, it maybe possible to use the upper bound on error probability decision-feedback equaliza-tion derived by Duttweiler, Mazo, and Messerschmitt [12] to obtain a bound on thee�ects of decoding errors in the feedback correlation algorithm.5.6 Eigenvector Perturbation AnalysisIt is possible to obtain an approximation for the covariance matrix of the principaleigenvector estimator derived in Section 5.5.1. This formulation was originally devel-oped for a similar problem involving the principal eigenvector of a real least-squares79



matrix and is described in [13] [14] [17] [19]. An extension to this technique forcomplex Hermitian matrices is presented here.It is important to note that this analysis is also applicable to many other least-squares type problems involving complex Hermitian matrices and is not just speci�cto the beamforming problem.5.6.1 Statistical Parameters of the Correlation MatrixIt is �rst necessary to consider the correlation matrix R̂vv. The expected value ofthis quantity is given by equation (5.17).Suppose the columns of R̂vv are stacked one above the other to form a vector r̂vvof dimension (NA)2. It is then possible to calculate a covariance matrix for this vectorquantity. Cr̂vv = E [̂rvv r̂�vv]� E [̂rvv]E [̂r�vv] (5.36)Consider the (i; j)th entry in the Cr̂vv matrix.�̂ij = E [(̂rvv)i(̂r�vv)j]�E [(̂rvv)i]E [(̂r�vv)j] (5.37)De�ne the following indices for notational simplicity:m = i mod NA p = j mod NA (5.38)n = 
oor (i=NA) q = 
oor (j=NA)where 
oor indicates the largest integer less than or equal to the given quantity. Forconvenience, it is assumed that 0 � i; j < NA.Now consider the �rst term in equation (5.37). The observed correlation matrixis calculated as: R̂vv = 1FF FFXk=1 v̂kv̂�k (5.39)where FF is the number of Walsh functions in one frame, and v̂k represents a measuredv vector which includes a zero-mean noise perturbation:v̂k = vk + �vk (5.40)80



Substituting (5.40) into (5.39) yields:R̂vv = 1FF FFXk=1(vk + �vk)(vk + �vk)� (5.41)= 1FF FFXk=1 (vkv�k + vk�v�k + �vkv�k + �vk�v�k)By using (5.38) and (5.41), it is possible to write expressions for the two quantitiesin (5.37).(̂rvv)i = 1FF FFXk=1 [(vk)m(v�k)n + (vk)m(�v�k)n + (�vk)m(v�k)n (5.42)+ (�vk)m(�v�k)n](̂rvv)j = 1FF FFXr=1 [(vr)p(v�r)q + (vr)p(�v�r)q + (�vr)p(v�r)q + (�vr)p(�v�r)q](5.43)The second subscript on each vector speci�es the individual vector element. Nowsubstitute (5.42) and (5.43) into the �rst term on the righthand side of (5.37) where(5.43) has been conjugated.E [(̂rvv)i(̂r�vv)j]= E 248<: 1FF FFXk=1 [(vk)m(v�k)n + (vk)m(�v�k)n + (�vk)m(v�k)n + (�vk)m(�v�k)n]9=;8<: 1FF FFXr=1 [(v�r)p(vr)q + (v�r)p(�vr)q + (�v�r)p(vr)q + (�v�r)p(�vr)q]9=;35= 1(FF )2 FFXk=1 FFXr=1E [(vk)m(v�k)n(v�r)p(vr)q + (vk)m(v�k)n(v�r)p(�vr)q (5.44)+ (vk)m(v�k)n(�v�r)p(vr)q + (vk)m(v�k)n(�v�r)p(�vr)q+ (vk)m(�v�k)n(v�r)p(vr)q + (vk)m(�v�k)n(v�r)p(�vr)q+ (vk)m(�v�k)n(�v�r)p(vr)q + (vk)m(�v�k)n(�v�r)p(�vr)q (5.45)+ (�vk)m(v�k)n(v�r)p(vr)q + (�vk)m(v�k)n(v�r)p(�vr)q+ (�vk)m(v�k)n(�v�r)p(vr)q + (�vk)m(v�k)n(�v�r)p(�vr)q+ (�vk)m(�v�k)n(v�r)p(vr)q + (�vk)m(�v�k)n(v�r)p(�vr)q+ (�vk)m(�v�k)n(�v�r)p(vr)q + (�vk)m(�v�k)n(�v�r)p(�vr)q]The non-� values are not random variables so they can be factored out of the ex-pectations. In addition, any term in the summation with only one � component will81



disappear when the expectation is taken since �v is zero-mean.It is reasonable to assume that �vk and �vr are independent if k 6= r. Thus,any term with three �'s will be zero if k 6= r since it will be possible to factorthe expectation of the term into the product of two expectations, one of which willbe zero-mean. If k = r and the �v perturbations are assumed to follow a Gaussiandistribution, the remaining terms with three �'s will also be zero since all odd momentsof a zero-mean Gaussian distribution are zero [59, p. 107].Eliminating all terms with either one or three � components from (5.45) produces:E [(̂rvv)i(̂r�vv)j]= 1(FF )2 FFXk=1 FFXr=1E [(vk)m(v�k)n(v�r)p(vr)q + (vk)m(v�k)n(�v�r)p(�vr)q+ (vk)m(�v�k)n(v�r)p(�vr)q + (vk)m(�v�k)n(�v�r)p(vr)q (5.46)+ (�vk)m(v�k)n(v�r)p(�vr)q + (�vk)m(v�k)n(�v�r)p(vr)q+ (�vk)m(�v�k)n(v�r)p(vr)q + (�vk)m(�v�k)n(�v�r)p(�vr)q]Terms with one �vk and one �vr will only be non-zero when k = r. Thus, (5.46) canbe further simpli�ed to:E [(̂rvv)i(̂r�vv)j ]= 1(FF )2 8<: FFXk=1 FFXr=1E [(vk)m(v�k)n(v�r)p(vr)q + (vk)m(v�k)n(�v�r)p(�vr)q+ (�vk)m(�v�k)n(v�r)p(vr)q + (�vk)m(�v�k)n(�v�r)p(�vr)q] (5.47)+ FFXk=1E [(vk)m(�v�k)n(v�k)p(�vk)q + (vk)m(�v�k)n(�v�k)p(vk)q+ (�vk)m(v�k)n(v�k)p(�vk)q + (�vk)m(v�k)n(�v�k)p(vk)qgTerms with two �vk's or �vr's can be expressed as the appropriate entry of thecovariance matrix Cvv, provided that one of the � values is conjugated while theother is not.E [(̂rvv)i(̂r�vv)j] = (v)m(v�)n(v�)p(v)q + (v)m(v�)n(C�vv)pq+ (Cvv)mn(v�)p(v)q + 1(FF )2 FFXk=1 FFXr=1E [(�vk)m(�v�k)n(�v�r)p(�vr)q]+ 1FF f(v)m(v�)p(Cvv)qn + (v)m(v)qE [(�v�)n(�v�)p] (5.48)+ (v�)n(v�)pE [(�v)m(�v)q] + (v�)n(v)q(Cvv)mpg82



The remaining two expectation terms with two �v's will both be zero (see equations(B.18) and (B.19) in Appendix B). Therefore, (5.48) simpli�es further to:E [(̂rvv)i(̂r�vv)j ] = (v)m(v�)n(v�)p(v)q + (v)m(v�)n(C�vv)pq+ (Cvv)mn(v�)p(v)q (5.49)+ 1(FF )2 FFXk=1 FFXr=1E [(�vk)m(�v�k)n(�v�r)p(�vr)q]+ 1FF f(v)m(v�)p(Cvv)qn + (v�)n(v)q(Cvv)mpgConsider just the fourth term of (5.49) (within the summation). This term with four�'s can be factored when k 6= r. When k = r, it is necessary to deal with the fourthmoment of a complex Gaussian distribution.1(FF )2 FFXk=1 FFXr=1E [(�vk)m(�v�k)n(�v�r)p(�vr)q] (5.50)= 1(FF )2 FFXk=18<:E [(�vk)m(�v�k)n(�v�k)p(�vk)q] +Xr 6=k(Cvv)mn(C�vv)pq9=;Now consider the expectation term in (5.50) which represents the fourth moment ofa complex Gaussian distribution. As shown in Appendix B (equation (B.40)), thisterm can be calculated as:E [(�vk)m(�v�k)n(�v�k)p(�vk)q] = E [(�vk)m(�v�k)n]E [(�vk)q(�v�k)p]+ E [(�vk)m(�v�k)p]E [(�vk)q(�v�k)n] (5.51)+ E [(�vk)m(�vk)q]E [(�v�k)n(�v�k)p]= (Cvv)mn(C�vv)pq + (Cvv)mp(C�vv)nqSubstituting (5.51) into (5.50) and simplifying yields:1(FF )2 FFXk=1 FFXr=1E [(�vk)m(�v�k)n(�v�r)p(�vr)q] (5.52)= (Cvv)mn(C�vv)pq + 1FF f(Cvv)mp(C�vv)nqgSubstituting (5.52) into (5.49) produces:E [(̂rvv)i(̂r�vv)j ] = (v)m(v�)n(v�)p(v)q + (v)m(v�)n(C�vv)pq83



+ (Cvv)mn(v�)p(v)q + (Cvv)mn(C�vv)pq (5.53)+ 1FF f(Cvv)mp(C�vv)nq + (v)m(v�)p(Cvv)qn+ (v�)n(v)q(Cvv)mpgRecalling that �v is zero-mean, the expected values of (5.42) and (5.43) can befound to be (note that (5.43) has been conjugated):E [(̂rvv)i] = (v)m(v�)n + (Cvv)mn (5.54)E h(̂rvv)�ji = (v�)p(v)q + (C�vv)pq (5.55)Multiplying (5.54) and (5.55) together generates:E [(̂rvv)i]E [(̂rvv)j ] = (v)m(v�)n(v�)p(v)q + (v)m(v�)n(C�vv)pq (5.56)+ (v�)p(v)q(Cvv)mn + (Cvv)mn(C�vv)pqReferring to (5.37), �̂ij may be calculated by subtracting (5.56) from (5.53).�̂ij = 1FF f(Cvv)mp(C�vv)nq + (v)m(v�)p(Cvv)qn + (v�)n(v)q(Cvv)mpg (5.57)Thus, entries of the covariance matrix of r̂vv can now be expressed in terms of knownquantities.5.6.2 Eigenvalue and Eigenvector CovarianceUsing equation (5.57), it is possible to approximate the covariance matrices for theactual eigenvalues and eigenvectors of R̂vv using matrix perturbation theory [112].This component of the derivation was also originally performed for a real symmetricmatrix [13] [14] [17] [19], but can be adapted directly to Hermitian matrices.Based on Weng's [111] �rst-order Taylor series expansion for the real case, the�rst-order perturbation terms for the eigenvalues and eigenvectors of a Hermitianmatrix may be derived as:��i � ��i = v�i�Rvvvi (5.58)�vi � �vi = V�iV��Rvvvi (5.59)84



where the columns of V are the eigenvectors of the true (predicted) Rvv, �Rvv repre-sents the perturbation in the R̂vv matrix, and �1 is de�ned as (�i is de�ned similarly,but i = 1 can be assumed for the principal eigenvector without loss of generality):�1 � 2666666664 0 0 : : : 00 1�1��2 : : : 0... ... . . . ...0 0 : : : 1�1��NA 3777777775 (5.60)It is assumed that the second and higher order terms in the Taylor series expansionwill be negligible.Note that �Rvvvi may be rewritten as:�Rvvvi = � (v1)iINA : : : (vNA)iINA ��Rvv = Ui�Rvv (5.61)The �rst-order eigenvalue and eigenvector perturbations are both zero-mean. Thecovariance matrix for vi may therefore be approximated as:� = E [�vi�v�i ]� E h(V�iV�Ui�Rvv) ���RvvU�iV�iV��i (5.62)= V�iV�UiE h�Rvv��RvviU�iV�iV�= V�iV�UiCr̂vvU�iV�iV�Equation (5.63) is used in Section 5.8 to predict covariance matrices for the eigenvectorestimators which may then be compared to the observed covariance matrices fromsimulations.The (i; j) entry of the NA�NA eigenvalue covariance matrix may be approximatedas: (�)i;j = E h��i���ji� E h(v�i�Rvvvi) �v�j�Rvvvj��i� E h(v�iUi�Rvv) ���RvvU�jvj�i (5.63)= v�iUiE h�Rvv��RvviU�jvj= v�iUiCr̂vvU�jvj85



The above expression for the covariance matrix of the eigenvalues can be used, if sodesired, to determine the probability that the principal eigenvector of a matrix isincorrectly identi�ed due to variation in the eigenvalues.5.7 Cram�er-Rao Lower BoundThere are two important quantities to consider when evaluating the performance ofa given estimator. The mean indicates whether or not the estimator is biased, andthe covariance matrix quanti�es the reliability of the estimator. A smaller covariancematrix is more desirable since any individual estimate will be more likely to be closerto the mean. The Cram�er-Rao lower bound (CRLB) represents the minimumpossiblecovariance matrix for any estimator. This implies that the di�erence between anyestimator's covariance matrix and the CRLB will be a positive semi-de�nite matrix(i.e. the eigenvalues will be non-negative).In this situation, the observations correspond directly to the parameter which isto be estimated (i.e. the array response vector). Consequently, the CRLB actuallycorresponds to the covariance matrix of the estimator. Formally, the CRLB is theinverse of the Fisher information matrix J [30] which is de�ned as:J � C�1qq (5.64)However, q is constrained to have unit magnitude so the above bound is not quitecorrect. Gorman and Hero [30] [31] developed the necessary modi�cations for con-strained situations with real parameters, although the analysis can also be applieddirectly to complex situations. With an unbiased estimator, as is the case here, theconstrained lower bound BC is:BC = QqJ�1 (5.65)Qq � INM � J�1[rGq]� n[rGq]J�1[rGq]�oy [rGq] (5.66)where the y operator represents the Moore-Penrose pseudo-inverse. In this case, thequantity within parentheses is a scalar so it is only necessary to take its reciprocal.86



rGq is the gradient matrix of the equality constraint which applies in this problem.Gq = q�q� 1 = 0@NAXi=1 q�iqi1A� 1 = 0 (5.67)rGq = � 2q1 : : : 2qNA � = 2a� (5.68)where a is the true array response vector.Substituting (5.64) and (5.68) into (5.66) produces:Qq = INM � Cqq(2a) f(2a�)Cqq(2a)gy (2a�) (5.69)= INM � 1a�CqqaCqqaa�Substituting (5.69) and (5.64) into (5.66) yields:BC =  INM � 1a�CqqaCqqaa�!Cqq (5.70)As will be seen in the following section, the above expression gives a result thatis similar, but not quite identical to equation (5.32). This is due to Cqq having aneigenvector which is close to, but not exactly equal to, ap.To show the approximate equivalence of these two covariance matrix predictions,assume that v1 is an eigenvector of Cqq which is equal to ap. Note that this is anapproximation. In this situation, the constrained bound in (5.70) evaluates as:BC =  INM � 1v�1Cqqv1Cqqv1v�1!Cqq= Cqq � 1�1 (�1v1) (�1v�1) (5.71)= Cqq � �1v1v�1If �q = ap is assumed to be an eigenvector of Cqq in (5.31), then it can be seen thatequations (5.32) and (5.71) are equivalent.5.8 Simulation Results and PredictionsTables 5.1 through 5.4 contain sample results obtained from PN chip-level simulationsalong with the predicted values calculated as shown earlier in this chapter. The87



desired received Eb=N0 was 5 dB in this instance, and perfect power control was used.Each simulation was executed for 10000 frames in order to obtain a suitable samplesize, and the statistics were recorded for one of the mobiles. During the course ofeach simulation, all of the users remained stationary so that the true array responsevectors did not vary. However, the transmitted data and background noise did varyfrom frame to frame. The beamforming coe�cient vector for the desired mobile wasestimated from the data received during each frame. A transmission activity factorof  = 1:0 was used for all of these experiments.The statistics in Tables 5.1 through 5.3 were obtained from the following combina-tions of numbers of antenna elements and mobiles: (2,30), (3,40), and (4,50). Fadingwas not initially considered. As can be seen from the sample data, there is gener-ally consistent agreement between the simulation observations (indicated by O) andpredictions (indicated by P). The sole exception appears to be the covariance matrixof the normalized mean vector (Cqq) which is due to the normalization process asdiscussed in Section 5.5.3.1. This can be compensated for by using the modi�ed co-variance matrix from equation (5.32) or the constrained CRLB from equation (5.70),as shown in the tables.Table 5.4 contains observed and predicted statistics for 3 antenna elements and40 mobiles when uncorrelated Rayleigh fading is introduced. The mobile positionsand transmission channel parameters are identical to those of Table 5.2, so that theresults can be compared directly. As expected, larger covariance matrices for theestimators are obtained in the presence of fading. In addition, the mean vectorapproach appears to perform slightly better than the principal eigenvector estimatorwhen fading is considered. This is evident from the presence of a possible bias in theobserved array response vector estimate from the eigenvector method (E [p]) and thesmaller covariance matrix of the mean vector estimator.Tables 5.5 and 5.6 contain the observed and predicted statistics when half anddouble the number of correlation vector samples are used to estimate the array re-sponse vector, respectively. As before, the mobile positions and transmission channelparameters are identical to those of Table 5.2. For Table 5.5, a half-size frame con-tained 88 data bits and 8 tail bits with 100 frames per second. Conversely, for Table88



Quantity O/P ValueRvv O " 1:5590 0:6983 + j0:65630:6983 � j0:6563 1:5602 #� 10�24P " 1:5615 0:6996 + j0:65720:6996 � j0:6572 1:5615 #� 10�24E [p] O h 6:5579 + j2:5968 6:5618 � j2:5984 i� 10�1P h 6:5953 + j2:5499 6:5953 � j2:5499 i� 10�1Cpp O " 2:2072 �1:6155 � j1:4972�1:6155 + j1:4972 2:2080 # � 10�3P " 2:1434 �1:5622 � j1:4676�1:5622 + j1:4676 2:1434 # � 10�3Ĉpp O " 2:2064 �1:6073 � j1:5096�1:6073 + j1:5096 2:2037 # � 10�3P " 2:1433 �1:5859 � j1:4418�1:5859 + j1:4418 2:1433 # � 10�3Table 5.1: Sample observed and predicted feedback correlation beamforming statisticswith 2 antenna elements and 30 users ( = 1:0)
89



Quantity O/P ValueE [w] O h 4:4319 + j1:7134 4:4319 � j1:7134 i� 10�9P h 4:4319 + j1:7134 4:4319 � j1:7134 i� 10�9E [q] O h 6:5857 + j2:5206 6:5721 � j2:5703 i� 10�1P h 6:5953 + j2:5499 6:5953 � j2:5499 i� 10�1Cww O " 1:4152 �0:0803 � j0:0222�0:0803 + j0:0222 1:4064 # � 10�19P " 1:3959 �0:0611 � j0:0047�0:0611 + j0:0047 1:3959 # � 10�19Cqq O " 2:3795 �0:6813 � j0:0583�0:6813 + j0:0583 2:3841 # � 10�3P " 3:0913 �0:1354 � j0:0103�0:1354 + j0:0103 3:0913 # � 10�3Ĉqq O " 1:6403 �1:2123 � j1:1032�1:2123 + j1:1032 1:6379 # � 10�3P " 1:5992 �1:1833 � j1:0758�1:1833 + j1:0758 1:5992 # � 10�3CRLB P " 1:5981 �1:1824 � j1:0750�1:1824 + j1:0750 1:5981 # � 10�3Table 5.1: (continued)
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Quantity O/P ValueRvv O 24 1:2405 �0:4059� j0:5260 0:3766+ j0:4904�0:4059 + j0:5260 1:2409 �0:7217+ j0:07080:3766� j0:4904 �0:7217� j0:0708 1:2410 35� 10�24P 24 1:2417 �0:4068� j0:5267 0:3776+ j0:4905�0:4068 + j0:5267 1:2417 �0:7225+ j0:07030:3776� j0:4905 �0:7225� j0:0703 1:2417 35� 10�24E [p] O � 5:0591� j2:3728 �1:0858 + j5:7918 1:4485� j5:5848 � � 10�1P � 5:1722� j2:5654 �1:0266 + j5:6815 1:6048� j5:5460 � � 10�1Cpp O 24 2:9412 0:5577 + j1:1790 �1:2373� j1:04190:5577� j1:1790 2:1716 0:9406 + j0:1614�1:2373 + j1:0419 0:9406� j0:1614 2:5195 35� 10�3P 24 3:0308 0:5709 + j1:1894 �1:2096� j1:08640:5709� j1:1894 2:1473 0:9495 + j0:1614�1:2096 + j1:0864 0:9495� j0:1614 2:5145 35� 10�3Ĉpp O 24 2:9788 0:5423 + j1:1830 �1:2063� j1:05330:5424� j1:1830 2:1419 0:9652 + j0:1774�1:2063 + j1:0533 0:9652� j0:1774 2:5021 35� 10�3P 24 2:9536 0:6019 + j1:1823 �1:2761� j1:06270:6019� j1:1823 2:1989 0:9091 + j0:1295�1:2761 + j1:0627 0:9091� j0:1295 2:5367 35� 10�3Table 5.2: Sample observed and predicted feedback correlation beamforming statisticswith 3 antenna elements and 40 users ( = 1:0)
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Quantity O/P ValueE [w] O � 3:5129� j1:7588 �0:6849 + j3:8685 1:0762� j3:7797 � � 10�9P � 3:5184� j1:7451 �0:6984 + j3:8649 1:0917� j3:7727 � � 10�9E [q] O � 5:1435� j2:5759 �1:0023 + j5:6629 1:5767� j5:5333 � � 10�1P � 5:1722� j2:5654 �1:0266 + j5:6815 1:6048� j5:5460 � � 10�1Cww O 24 1:3585 �0:0170 + j0:0251 �0:1893+ j0:0064�0:0170� j0:0251 1:3652 �0:1389� j0:0062�0:1893� j0:0064 �0:1389 + j0:0062 1:3629 35� 10�19P 24 1:3732 �0:0178 + j0:0256 �0:1796� j0:0070�0:0178� j0:0256 1:3732 �0:1357+ j0:0036�0:1796 + j0:0070 �0:1357� j0:0036 1:3732 35� 10�19Cqq O 24 2:5245 0:2302 + j0:4474 �0:6230� j0:37590:2302� j0:4474 2:3650 0:2351 + j0:0098�0:6230 + j0:3759 0:2351� j0:0098 2:4399 35� 10�3P 24 2:9676 �0:0386 + j0:0552 �0:3882� j0:0150�0:0386� j0:0552 2:9676 �0:2932 + j0:0079�0:3882+ j0:0150 �0:2932� j0:0079 2:9676 35� 10�3Ĉqq O 24 2:1350 0:5034 + j0:8564 �0:8542� j0:77350:5034� j0:8564 1:7721 0:7907 + j0:0264�0:8542 + j0:7735 0:7907� j0:0264 1:9307 35� 10�3P 24 2:1744 0:5135 + j0:8682 �0:8696� j0:79170:5135� j0:8682 1:7971 0:8007 + j0:0237�0:8696 + j0:7917 0:8007� j0:0237 1:9652 35� 10�3CRLB P 24 2:1597 0:5019 + j0:8683 �0:8712� j0:77970:5019� j0:8683 1:7879 0:7994 + j0:0332�0:8712 + j0:7797 0:7994� j0:0332 1:9552 35� 10�3Table 5.2: (continued) 92



Qnty O/P ValueRvv O 2664 1:085 0:113� j0:496 �0:332 + j0:447 �0:528� j0:1480:113 + j0:496 1:085 �0:528� j0:149 �0:104� j0:513�0:332� j0:447 �0:528 + j0:149 1:087 0:112 + j0:496�0:528 + j0:148 �0:104 + j0:513 0:112� j0:496 1:084 3775� 10�24P 2664 1:086 0:113� j0:496 �0:331 + j0:447 �0:530� j0:1480:113 + j0:496 1:086 �0:530� j0:148 �0:105� j0:514�0:331� j0:447 �0:530 + j0:148 1:086 0:113 + j0:496�0:530 + j0:148 �0:105 + j0:514 0:113� j0:496 1:086 3775� 10�24E [p] O � �2:399� j4:404 3:355� j3:613 �2:402 + j4:409 3:354 + j3:611 � � 10�1P � �2:370� j4:403 3:411� j3:656 �2:370 + j4:403 3:411 + j3:656 � � 10�1Cpp O 2664 2:546 �0:798 + j0:905 0:140� j0:758 0:740+ j0:017�0:798� j0:905 2:707 0:715+ j0:020 �0:567 + j0:9180:140 + j0:758 0:715� j0:020 2:467 �0:772� j0:8630:740� j0:017 �0:567� j0:918 �0:772 + j0:863 2:682 3775� 10�3P 2664 2:517 �0:789 + j0:889 0:127� j0:785 0:735+ j0:039�0:789� j0:889 2:727 0:735+ j0:039 �0:547 + j0:9270:127 + j0:785 0:735� j0:039 2:517 �0:789� j0:8890:735� j0:039 �0:547� j0:927 �0:789 + j0:889 2:727 3775� 10�3Ĉpp O 2664 2:533 �0:797 + j0:908 0:145� j0:769 0:743+ j0:018�0:797� j0:908 2:724 0:717+ j0:021 �0:569 + j0:9110:145 + j0:769 0:717� j0:021 2:456 �0:771� j0:8650:743� j0:018 �0:569� j0:911 �0:771 + j0:865 2:689 3775� 10�3P 2664 2:529 �0:792 + j0:888 0:126� j0:772 0:734+ j0:043�0:792� j0:888 2:715 0:734+ j0:043 �0:547 + j0:9390:126 + j0:772 0:734� j0:043 2:529 �0:792� j0:8880:734� j0:043 �0:547� j0:939 �0:792 + j0:888 2:715 3775� 10�3Table 5.3: Sample observed and predicted feedback correlation beamforming statisticswith 4 antenna elements and 50 users ( = 1:0)93



Qnty O/P ValueE [w] O � �1:653� j3:052 2:358� j2:543 �1:636 + j3:066 2:378+ j2:524 �� 10�9P � �1:645� j3:056 2:368� j2:538 �1:645 + j3:056 2:368+ j2:538 �� 10�9E [q] O � �2:370� j4:376 3:381� j3:646 �2:345 + j4:396 3:410+ j3:618 �� 10�1P � �2:370� j4:403 3:411� j3:656 �2:370 + j4:403 3:411+ j3:656 �� 10�1Cww O 2664 1:359 �0:129� j0:001 �0:098 + j0:010 �0:045� j0:033�0:129 + j0:001 1:342 �0:060� j0:047 �0:174 + j0:010�0:098� j0:010 �0:060 + j0:047 1:336 �0:128� j0:004�0:045 + j0:033 �0:174� j0:010 �0:128 + j0:004 1:332 3775� 10�19P 2664 1:352 �0:130� j0:002 �0:102 + j0:026 �0:059� j0:036�0:130 + j0:002 1:352 �0:059� j0:036 �0:165 + j0:017�0:102� j0:026 �0:059 + j0:036 1:352 �0:130 + j0:002�0:059 + j0:036 �0:165� j0:017 �0:130� j0:002 1:352 3775� 10�19Cqq O 2664 2:425 �0:378 + j0:338 �0:005� j0:297 0:247 + j0:003�0:378� j0:338 2:424 0:226� j0:018 �0:318 + j0:353�0:005 + j0:297 0:226+ j0:018 2:379 �0:378� j0:3380:247� j0:003 �0:318� j0:353 �0:378 + j0:338 2:412 3775� 10�3P 2664 2:806 �0:269� j0:005 �0:212 + j0:053 �0:123� j0:075�0:269 + j0:005 2:806 �0:123� j0:075 �0:343 + j0:036�0:212� j0:053 �0:123 + j0:075 2:806 �0:269 + j0:005�0:123 + j0:075 �0:343� j0:036 �0:269� j0:005 2:806 3775� 10�3Ĉqq O 2664 2:039 �0:496 + j0:689 0:200� j0:620 0:599 + j0:084�0:496� j0:689 2:069 0:582+ j0:070 �0:283 + j0:6970:200 + j0:620 0:582� j0:070 2:001 �0:497� j0:6740:599� j0:084 �0:283� j0:697 �0:497 + j0:674 2:077 3775� 10�3P 2664 2:029 �0:500 + j0:692 0:188� j0:615 0:595 + j0:084�0:500� j0:692 2:115 0:595+ j0:084 �0:272 + j0:7230:188 + j0:615 0:595� j0:084 2:029 �0:500� j0:6920:595� j0:084 �0:272� j0:723 �0:500 + j0:692 2:115 3775� 10�3CRLB P 2664 2:028 �0:500 + j0:692 0:187� j0:615 0:594 + j0:084�0:500� j0:692 2:115 0:594+ j0:084 �0:272 + j0:7240:187 + j0:615 0:594� j0:084 2:028 �0:500� j0:6920:594� j0:084 �0:272� j0:724 �0:500 + j0:692 2:115 3775� 10�3Table 5.3: (continued) 94



Quantity O/P ValueRvv O 24 1:0977 �0:3196� j0:4124 0:2790+ j0:3851�0:3196 + j0:4124 1:0979 �0:5793+ j0:05600:2790� j0:3851 �0:5793� j0:0560 1:0976 35� 10�24P 24 1:0657 �0:3195� j0:4136 0:2966+ j0:3853�0:3195 + j0:4136 1:0657 �0:5674+ j0:05520:2966� j0:3853 �0:5674� j0:0552 1:0657 35� 10�24E [p] O � 5:0306� j2:3105 �1:0944 + j5:8204 1:4021� j5:5918 � � 10�1P � 5:1722� j2:5654 �1:0266 + j5:6815 1:6048� j5:5460 � � 10�1Cpp O 24 4:1231 0:7845 + j1:5874 �1:7035� j1:51610:7845� j1:5874 2:8858 1:2157 + j0:1958�1:7035+ j1:5161 1:2157� j0:1958 3:4460 35� 10�3P 24 3:7478 0:7393 + j1:4706 �1:4617� j1:34580:7393� j1:4706 2:7390 1:2389 + j0:1688�1:4617+ j1:3458 1:2389� j0:1688 3:1582 35� 10�3Ĉpp O 24 4:1843 0:7523 + j1:5994 �1:6450� j1:53990:7523� j1:5994 2:8348 1:2571 + j0:2236�1:6450+ j1:5399 1:2571� j0:2236 3:4172 35� 10�3P 24 3:6514 0:7764 + j1:4618 �1:5454� j1:31690:7764� j1:4618 2:8053 1:1883 + j0:1276�1:5454+ j1:3169 1:1883� j0:1276 3:1840 35� 10�3Table 5.4: Sample observed and predicted feedback correlation beamforming statisticswith 3 antenna elements and 40 users ( = 1:0) (uncorrelated fading)
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Quantity O/P ValueE [w] O � 3:1142� j1:5559 �0:6010 + j3:4292 0:9505� j3:3498 � � 10�9P � 3:1181� j1:5466 �0:6189 + j3:4252 0:9675� j3:3435 � � 10�9E [q] O � 5:1401� j2:5688 �0:9916 + j5:6590 1:5699� j5:5280 � � 10�1P � 5:1722� j2:5654 �1:0266 + j5:6815 1:6048� j5:5460 � � 10�1Cww O 24 1:3913 �0:0056 + j0:0289 �0:1798� j0:0200�0:0056� j0:0289 1:3660 �0:1340� j0:0011�0:1798 + j0:0200 �0:1340 + j0:0011 1:3972 35� 10�19P 24 1:3732 �0:0178 + j0:0256 �0:1796� j0:0070�0:0178� j0:0256 1:3732 �0:1357+ j0:0036�0:1796 + j0:0070 �0:1357� j0:0036 1:3732 35� 10�19Cqq O 24 3:3346 �1:9601� j2:6483 2:2189 + j2:4327�1:9601+ j2:6483 3:3312 �3:2810 + j0:34042:2189� j2:4327 �3:2810� j0:3404 3:3342 35� 10�3P 24 3:7785 �0:0491 + j0:0703 �0:4943� j0:0191�0:0491� j0:0703 3:7785 �0:3733 + j0:0100�0:4943+ j0:0191 �0:3733� j0:0100 3:7785 35� 10�3Ĉqq O 24 2:7931 0:6673 + j1:0946 �1:1071� j1:04240:6673� j1:0946 2:2862 1:0153 + j0:0099�1:1071+ j1:0424 1:0153� j0:0099 2:5248 35� 10�3P 24 2:7685 0:6538 + j1:1055 �1:1072� j1:00800:6538� j1:1055 2:2882 1:0194 + j0:0302�1:1072+ j1:0080 1:0194� j0:0302 2:5022 35� 10�3CRLB P 24 2:7498 0:6390 + j1:1055 �1:1093� j0:99270:6390� j1:1055 2:2765 1:0178 + j0:0423�1:1093+ j0:9927 1:0178� j0:0423 2:4894 35� 10�3Table 5.4: (continued) 96



Quantity O/P ValueRvv O 24 1:2417 �0:4040� j0:5266 0:3766+ j0:4886�0:4040 + j0:5266 1:2374 �0:7191+ j0:07100:3766� j0:4886 �0:7191� j0:0710 1:2372 35� 10�24P 24 1:2417 �0:4068� j0:5267 0:3776+ j0:4905�0:4068 + j0:5267 1:2417 �0:7225+ j0:07030:3776� j0:4905 �0:7225� j0:0703 1:2417 35� 10�24E [p] O � 5:0524� j2:3686 �1:0745 + j5:7652 1:4457� j5:5549 � � 10�1P � 5:1722� j2:5654 �1:0266 + j5:6815 1:6048� j5:5460 � � 10�1Cpp O 24 5:9246 1:1309 + j2:3396 �2:4881� j2:11651:1309� j2:3396 4:2985 1:8134 + j0:3043�2:4881+ j2:1165 1:8134� j0:3043 5:0090 35� 10�3P 24 6:0617 1:1417 + j2:3787 �2:4192� j2:17271:1417� j2:3787 4:2947 1:8991 + j0:3228�2:4192+ j2:1727 1:8991� j0:3228 5:0290 35� 10�3Ĉpp O 24 5:9833 1:1026 + j2:3613 �2:4227� j2:14751:1026� j2:3613 4:2313 1:8616 + j0:3380�2:4227+ j2:1475 1:8616� j0:3380 4:9838 35� 10�3P 24 5:9072 1:2038 + j2:3645 �2:5521� j2:12551:2038� j2:3645 4:3979 1:8183 + j0:2591�2:5521+ j2:1255 1:8183� j0:2591 5:0735 35� 10�3Table 5.5: Sample observed and predicted feedback correlation beamforming statisticswith 3 antenna elements and 40 users ( = 1:0) (half frame length)
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Quantity O/P ValueE [w] O � 3:5134� j1:7607 �0:6835 + j3:8635 1:0763� j3:7677 � � 10�9P � 3:5184� j1:7451 �0:6984 + j3:8649 1:0917� j3:7727 � � 10�9E [q] O � 5:1325� j2:5731 �0:9980 + j5:6415 1:5733� j5:5022 � � 10�1P � 5:1722� j2:5654 �1:0266 + j5:6815 1:6048� j5:5460 � � 10�1Cww O 24 2:7448 �0:0059+ j0:0640 �0:3719� j0:0497�0:0059� j0:0640 2:6917 �0:2417 + j0:0280�0:3719 + j0:0497 �0:2417� j0:0280 2:7291 35� 10�19P 24 2:7465 �0:0357+ j0:0511 �0:3593� j0:0139�0:0357� j0:0511 2:7465 �0:2713 + j0:0073�0:3593 + j0:0139 �0:2713� j0:0073 2:7465 35� 10�19Cqq O 24 5:1071 0:4931 + j0:8984 �1:2729� j0:83600:4931� j0:8984 4:6686 0:5099+ j0:0465�1:2729 + j0:8360 0:5099� j0:0465 4:8753 35� 10�3P 24 5:9352 �0:0771 + j0:1104 �0:7764� j0:0301�0:07712� j0:1104 5:9352 �0:5864 + j0:0157�0:7764 + j0:0301 �0:5864� j0:0157 5:9352 35� 10�3Ĉqq O 24 4:3186 1:0178 + j1:7082 �1:7417� j1:59431:0178� j1:7082 3:5321 1:5643+ j0:0428�1:7417 + j1:5943 1:5643� j0:0428 3:9133 35� 10�3P 24 4:3488 1:0270 + j1:7365 �1:7392� j1:58341:0270� j1:7365 3:5943 1:6013+ j0:0475�1:7392 + j1:5834 1:6013� j0:0475 3:9304 35� 10�3CRLB P 24 4:3193 1:0037 + j1:7365 �1:7424� j1:55931:0037� j1:7365 3:5759 1:5987+ j0:0665�1:7424 + j1:5593 1:5987� j0:0665 3:9103 35� 10�3Table 5.5: (continued) 98



Quantity O/P ValueRvv O 24 1:2405 �0:4053� j0:5266 0:3767+ j0:4893�0:4053 + j0:5266 1:2410 �0:7216+ j0:07110:3767� j0:4893 �0:7216� j0:0711 1:2397 35� 10�25P 24 1:2417 �0:4068� j0:5267 0:3776+ j0:4905�0:4068 + j0:5267 1:2417 �0:7225+ j0:07030:3776� j0:4905 �0:7225� j0:0703 1:2417 35� 10�24E [p] O � 5:0685� j2:3765 �1:0858 + j5:8071 1:4526� j5:5918 � � 10�1P � 5:1722� j2:5654 �1:0266 + j5:6815 1:6048� j5:5460 � � 10�1Cpp O 24 1:4915 0:2983 + j0:5878 �0:6141� j0:53880:2983� j0:5878 1:0840 0:4597 + j0:0644�0:6141+ j0:5388 0:4597� j0:0644 1:2577 35� 10�3P 24 1:5154 0:2854 + j0:5947 �0:6048� j0:54320:2854� j0:5947 1:0737 0:4748 + j0:0807�0:6048+ j0:5432 0:4748� j0:0807 1:2573 35� 10�3Ĉpp O 24 1:5104 0:2900 + j0:5902 �0:5969� j0:54480:2900� j0:5902 1:0691 0:4711 + j0:0732�0:5969+ j0:5448 0:4711� j0:0732 1:2509 35� 10�3P 24 1:4768 0:3009 + j0:5911 �0:6380� j0:53140:3009� j0:5911 1:0995 0:4546 + j0:0648�0:6380+ j0:5314 0:4546� j0:0648 1:2684 35� 10�3Table 5.6: Sample observed and predicted feedback correlation beamforming statisticswith 3 antenna elements and 40 users ( = 1:0) (double frame length)
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Quantity O/P ValueE [w] O � 3:5121� j1:7590 �0:6842 + j3:8693 1:0771� j3:7761 � � 10�9P � 3:5184� j1:7451 �0:6984 + j3:8649 1:0917� j3:7727 � � 10�9E [q] O � 5:1529� j2:5811 �1:0038 + j5:6763 1:5807� j5:5399 � � 10�1P � 5:1722� j2:5654 �1:0266 + j5:6815 1:6048� j5:5460 � � 10�1Cww O 24 6:8709 �0:0894 + j0:1486 �0:8859� 0:0867�0:0894� j0:1486 6:8506 �0:6122+ j0:0643�0:8859 + j0:0867 �0:6122� j0:0643 6:8099 35� 10�20P 24 6:8662 �0:0892 + j0:1278 �0:8982� j0:0348�0:0892� j0:1278 6:8662 �0:6783+ j0:0182�0:8982 + j0:0348 �0:6783� j0:0182 6:8662 35� 10�20Cqq O 24 1:2803 0:1155 + j0:2368 �0:3108� j0:20800:1155� j0:2368 1:1857 0:1362 + j0:0125�0:3108+ j0:2080 0:1362� j0:0125 1:2225 35� 10�3P 24 1:4838 �0:0193 + j0:0276 �0:1941� j0:0075�0:0193� j0:0276 1:4838 �0:1466 + j0:0039�0:1941+ j0:0075 �0:1466� j0:0039 1:4838 35� 10�3Ĉqq O 24 1:0833 0:2552 + j0:4344 �0:4339� j0:39240:2552� j0:4344 0:8988 0:4018 + j0:0133�0:4339+ j0:3924 0:4018� j0:0133 0:9812 35� 10�3P 24 1:0872 0:2567 + j0:4341 �0:4348� j0:39590:2567� j0:4341 0:8986 0:4003 + j0:0119�0:4348+ j0:3959 0:4003� j0:0119 0:9826 35� 10�3CRLB P 24 1:0798 0:2509 + j0:4341 �0:4356� j0:38980:2509� j0:4341 0:8940 0:3997 + j0:0166�0:4356+ j0:3898 0:3997� j0:0166 0:9776 35� 10�3Table 5.6: (continued) 100



5.6, a double-length frame consisted of 376 data bits and 8 tail bits with 25 framesper second. These two tables relate back to equation (5.27) which indicates that theestimator covariance matrices should become smaller as more samples are used toestimate the beamforming weight vector. This can be seen by comparing the corre-sponding covariance matrices from Tables 5.2 (normal frame length), 5.5 (half framelength), and 5.6 (double frame length). As can be seen, the covariance matrix entriesare doubled in size when a half-length frame is used and halved for double-lengthframes, which is as expected.5.9 SummaryThis chapter has shown how the code-�ltering correlation method of estimating beam-forming weights can be applied to the reverse link of IS-95, including the derivation ofexpressions for the correlation matrices of the correlation vectors. However, the IS-95coding scheme is such that the accuracy of this technique is extremely limited due toa low PN spreading gain (� 4). A new algorithm involving feedback correlation of thereencoded data and a much higher processing gain (� 200) was proposed and shownto outperform code-�ltering correlation. The use of the mean correlation vector ratherthan the principal eigenvector of the correlation matrix as the array response vectorestimate provided equally accurate values with less computational cost. An erroranalysis derived the mean vectors and covariance matrices of the various estimatorsin terms of known quantities within a simulation environment. This allows the qualityof the obtained estimates to be evaluated and the di�erent estimators to be comparedwith each other. In addition, the derived probability distributions may be used tosimulate imperfect beamforming by generating random weight samples without theneed for computationally expensive chip-level simulations. An eigenvector perturba-tion analysis derived the covariance matrices for the eigenvectors and eigenvalues of aHermitian correlation matrix generated from noisy measurements. An expression forthe constrained Cram�er-Rao Lower Bound on the covariance matrices of the di�erentestimators was obtained. Finally, simulation results were compared with predictedvalues to show the close agreement between them. This provides justi�cation for using101



the predicted mean vectors and covariance matrices to generate random beamformingcoe�cient vectors from the derived distributions instead of using chip-level data toobtain these estimates.
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Chapter 6Error Analysis and System Validation6.1 IntroductionAn error analysis of the IS-95 simulator system will now be described. This allowsthe statistical properties of key correlation quantities to be predicted and comparedwith the corresponding values from simulations. A reasonable agreement betweenthe predictions and observations tends to support the acceptability of the simulationresults and thus the validity of the simulator. In addition, the equations derived hereare useful for predicting system performance as shown in the following chapter.6.2 Statistical Parameters of Correlation ValuesEquation (2.35) contains the correlated in-phase signal component for the pth mobile.Neglecting the thermal noise term for the moment, this equation is:UIp[r] = 12CIp[r] NMXk=1 �kwk(t) NAXi=1 nCIk [r] cos(�pi � �ki � 2�fc�kp)(Tc � �kp)+ CIk [r � 1] cos(�pi � �ki � 2�fc�kp)�kp (6.1)+ CQk [r] sin(�pi � �ki � 2�fc�kp)(Tc � �kp)+ CQk [r � 1] sin(�pi � �ki � 2�fc�kp)�kpoAssume that the �kp time delay values are uniformly distributed between 0 and Tcand that �pp = 0. Therefore, the quadrature components of mobile p will disappearsince the sin terms will evaluate as zero. Multiplying the other wkCIk and wkCQk103



terms by CIp[r] will result in binary random variables with the values �1 (YIk andYQk). Also, �pki = �pi � �ki � 2�fc�kp can be assumed to be a uniformly distributedrandom variable in [0; 2�). If the in-phase PN chip correlation value is treated as arandom variable, it can be written as:UIp [r] = 12NA�pTcwp(t) + 12 Xk 6=p �k NAXi=1nYIk [r] cos(�pki)(Tc � �kp) + YIk [r � 1] cos(�pki)�kp (6.2)+ YQk [r] sin(�pki)(Tc � �kp) + YQk [r � 1] sin(�pki)�kpoLet Ip be a random variable equal to the summation term in (6.2) which representsinterference from other mobiles and which can be modelled as being Gaussian via theCentral Limit Theorem. It is now desirable to determine the mean and variance ofthis distribution.YIk , YQk , �pki, and �pk can all be assumed to be independent. Although �pkiis a function of �pk, the fact that its value also depends on �pi and �ki lessens thedependence on �pk. Thus, when taking the expected value of Ip, the individual termsin the summation can be factored into the products of the expectations. Since YIkand YQk are both zero-mean, the mean of Ip will also be zero.E [Ip] = 0 (6.3)The expected value of I2p (which will equal the variance since Ip is zero-mean) istherefore:E hI2pi = 14E 240@Xk 6=p �k NAXi=1 nYIk [r] cos(�pki)(Tc � �kp) + YIk [r � 1] cos(�pki)�kp+ YQk [r] sin(�pki)(Tc � �kp) + YQk [r � 1] sin(�pki)�kpo�0@Xm6=p �m NAXn=1 nYIm [r] cos(�pmn)(Tc � �mp) + YIm [r � 1] cos(�pmn)�mp+ YQm[r] sin(�pmn)(Tc � �mp) + YQm [r � 1] sin(�pmn)�mpo��= 14E 24Xk 6=p �k Xm6=p �m NAXi=1 NAXn=1 (6.4)nYIk [r] cos(�pki)(Tc � �kp) + YIk [r� 1] cos(�pki)�kp104



+ YQk [r] sin(�pki)(Tc � �kp) + YQk [r � 1] sin(�pki)�kponYIm [r] cos(�pmn)(Tc � �mp) + YIm [r � 1] cos(�pmn)�mp+ YQm[r] sin(�pmn)(Tc � �mp) + YQm [r � 1] sin(�pmn)�mpo �The cos and sin terms are all zero-mean. Since �pki and �pmn are assumed to beindependent unless k = m and i = n, all of the expectations in (6.4) with k 6= mand/or i 6= n can be factored and will consequently evaluate as zero. Thus, (6.4) canbe immediately simpli�ed to:E hI2p i = 14E 24Xk 6=p �2k NAXi=1 nYIk [r] cos(�pki)(Tc � �kp) + YIk [r � 1] cos(�pki)�kp (6.5)+ YQk [r] sin(�pki)(Tc � �kp) + YQk [r � 1] sin(�pki)�kpo2�Similarly, YIk [r], YIk [r � 1], YQk [r], and YQk [r � 1] are all independent zero-meanrandom variables, so product terms in (6.5) which do not include a squared randomvariable can be factored and will have an expected value of zero. Therefore, (6.5) canbe further reduced to:E hI2pi = 14E 24Xk 6=p �2k NAXi=1 �fYIk [r] cos(�pki)(Tc � �kp)g2+ fYIk [r � 1] cos(�pki)�kpg2 (6.6)+ fYQk [r] sin(�pki)(Tc � �kp)g2+ fYQk [r � 1] sin(�pki)�kpg2�iThe expected values of (YIk [r])2, (YIk [r � 1])2, (YQk [r])2, and (YQk [r � 1])2 will all be+1. Thus:E hI2pi = 14E 24Xk 6=p �2k NAXi=1 �fcos(�pki)(Tc � �kp)g2 + fcos(�pki)�kpg2 (6.7)+ fsin(�pki)(Tc � �kp)g2 + fsin(�pki)�kpg2�i= 14NAE 24Xk 6=p�2k n(Tc � �kp)2 + � 2kpo35 (6.8)�k and �kp are the only two remaining random variables. Since they are independent,the expected value can be factored and evaluated as follows:E hI2pi = 14NAXk 6=pE h�2ki nT 2c � 2TcE [�kp] + 2E h� 2kpio (6.9)105



where �kp has a uniform distribution between 0 and Tc. Therefore, its �rst twomoments are: E [�kp] = 12Tc (6.10)E h� 2kpi = 13T 2c (6.11)Substituting (6.10) and (6.11) into (6.9) yields:E hI2pi = 16NAT 2c Xk 6=pE h�2ki (6.12)The power received from the kth mobile is given by NA�2k=2. Let P represent thepower received from a mobile with active speech. Assuming perfect power controland the voice activity situation described in Section 3.3.3, the expected value of �2kwill be: E h�2ki = 2NAE � P + (1�  )P� � = 2NA  (� � 1) + 1� !E [P ] (6.13)where  is the voice activity factor and � is the factor by which a mobile's transmissionpower is reduced when speech is not active.Substituting (6.13) into (6.12) and eliminating the summation produces:E hI2pi = (NM � 1)T 2c f(� � 1) + 1gE [P ]3� (6.14)The calculation of E [P ] is shown in Sections 6.3 and 6.4 for single and multipleantenna elements, respectively.Therefore, UIp [r] will have a Gaussian distribution with the following parameters.�c = 12NAwk(t)TcE[R]vuut2E[P ]E[R2] = p2�4 NAwk(t)TcqE[P ] (6.15)�2c = (NM � 1)T 2c f(� � 1) + 1gE[P ]3� + 12NATc�2n (6.16)E[R] = q�=2 and E[R2] = 2 are included in (6.15) to account for Rayleigh fading,and the second term in (6.16) is due to thermal noise as obtained from Section 2.5.2.1.Similarly, UQp[r] should have the same Gaussian distribution.106



Based on the above, the sum of the NW = 4 in-phase and quadrature PN chipcorrelations over oneWalsh chip will be a Gaussian random variable with the followingparameters. �w = 2NW�c (6.17)�2w = 2NW�2c (6.18)Correlating with the Walsh functions over NF = 64 Walsh chips will also producea Gaussian random variable due to linearity. If the signal is correlated with thecorrect Walsh function chip sequence (i.e. the one which was actually transmitted),the mean should be: �F = NF�w = 2NFNW�c (6.19)If the signal is correlated with any of the other Walsh function chip sequences whichdo not match the transmitted sequence and are therefore incorrect, the result will bezero-mean since the Walsh function chip sequences are all mutually orthogonal.�F = 0 (6.20)In both of these cases, the variance of the Walsh function correlation values will bethe same. �2F = NF�2w = 2NFNW�2c (6.21)As a result, equations (6.15) through (6.21) specify the expected statistical parametersof correlation quantities which are generated during the decoding process.6.3 Single Element Power Value CalculationIf P is the power level received from a mobile with active speech and perfect powercontrol is being used so that the same power is received from each user, then theinterference power seen by that mobile will be:I = NIP + (NM �NI � 1)P� (6.22)= �NI + NM �NI � 1� �P107



where NI is the number of interfering mobiles with active speech.Using these two power values, the Eb=N0 ratio is de�ned as:EbN0 = P=RBI=B + �2n (6.23)Substituting (6.22) into (6.23) and solving for P yields:P = �EbN0��2n � 1RB � 1B �EbN0��NI + NM �NI � 1� ���1 (6.24)For the case of  = 1:0, NI = NM � 1 and the expectation of both sides of (6.24) canbe taken directly. E [P ] = �EbN0��2n � 1RB � NM � 1B �EbN0���1 (6.25)When the voice activity factor is less than 1, the number of interferers with activespeech becomes a random variable and the expectation of (6.24) must be taken as aweighted sum.E [P ] = �EbN0��2n NM�1XnI=0 � 1RB � 1B �EbN0��nI + NM � nI � 1� ���1 P (NI = nI)(6.26)The probability term in the above equation is governed by a binomial distribution.P (NI = nI) = 0B@ NM � 1nI 1CA nI (1�  )NM�1�nI (6.27)For reasonable values of NM (e.g. NM > 20) and a voice activity factor of  = 0:5,this can be well-approximated by a Gaussian random variable with the followingparameters [42, pp. 245]. � = (NM � 1) (6.28)�2 = (NM � 1) (1�  ) (6.29)Thus, the probability expression of (6.27) may be approximated as:P (NI = nI) � 12 (erf  (nI + 0:5)� �p2� !� erf  (nI � 0:5)� �p2� !) (6.30)108



Depending upon the voice/transmission activity factor, either equation (6.25) or(6.26) can now be used in (6.15) and (6.16) to determine �c and �2c .Finally, for  = 1, the expected interference power can be obtained from (6.25).E [I] = (NM � 1)�EbN0��2n � 1RB � NM � 1B �EbN0���1 (6.31)For a non-unity voice activity factor, equations (6.22) and (6.26) can be combined toyield: E [I] = �EbN0��2n NM�1XnI=0 � 1RB � 1B �EbN0��nI + NM � nI � 1� ���1 (6.32)�nI + NM � nI � 1� �P (NI = nI)Consequently, it is also possible to predict the expected received interference powerfrom known quantities.6.4 Multi-Element Power Value CalculationThe results from Section 6.3 may now be generalized to cover the case of base stationantenna arrays. Consider the sums of sin and cos from (3.5).Spk = NAXi=1 sin(�pi � �ki � 2�fc�kp) = NAXi=1 sin(�pki) (6.33)Cpk = NAXi=1 cos(�pi � �ki � 2�fc�kp) = NAXi=1 cos(�pki) (6.34)where the phase angles of the sin and cos expressions are assumed to be uniformlydistributed random variables in the interval [0; 2�). By the Central Limit Theorem,both Spk and Cpk can be approximated by a Gaussian distribution. From simulations,it has been veri�ed that a close to Gaussian approximation is obtained even when NAis as small as 4 or 5.Since sin and cos are zero-mean, Spk and Cpk will also both be zero-mean.�S = �C = 0 (6.35)The variances of sin(�) and cos(�), where � has a uniform distribution, are:var [sin(�)] = var [cos(�)] = Z 2�0 12� fcos(�)g2 d� (6.36)= 12� (�) = 12109



Thus, the variances of Spk and Cpk are:�2S = �2C = NA � var [sin(�)] = 12NA (6.37)Combining equations (3.5), (6.33), and (6.34) yields:�pk = 12 �S2pk + C2pk� (6.38)Since both Spk and Cpk can be approximated by the same Gaussian distribution, �pkwill have a central �2 distribution with two degrees of freedom and parameters [84,pp. 26]: �� = 2�12�2S� = 12NA (6.39)�2� = 4�12�2S�2 = 14 (NA)2 (6.40)Now consider the interference power expression given in equation (3.7).PIp = Xk 6=p�pk�2k = �2Xk 6=p�pk (6.41)It has been assumed that �2k is a constant over all k due to perfect power control.Since �k will actually be a random variable in the multiple antenna situation, thisis not a completely valid assumption as will be illustrated shortly, but is required inorder to make the analysis tractable.Let V be the summation in (6.41) of NM � 1 independent �2 random variableswhich can be approximated as Gaussian via the Central Limit Theorem. Equation(6.41) actually assumes a voice activity factor of  = 1:0, but can easily be generalizedby assuming that there are NI mobiles with active speech. Thus, the parameters ofthe Gaussian random variable will be:�V = �NI + NM � 1 �NI� ��� = 12 �NI + NM � 1�NI� �NA (6.42)�2V = �NI + NM � 1 �NI�2 ��2� = 14 �NI + NM � 1 �NI�2 � (NA)2 (6.43)Consequently, equation (6.41) can be approximated as:PIp � �2V (6.44)110



If perfect beamforming is assumed, then �pi = �pi in (6.33) and (6.34) and thereceived power from the desired mobile will be:PMp = 12 (NA)2 �2 (6.45)Now consider �nding the required received power levels for the desired Eb=N0ratio. EbN0 = PMp=RBPIp=B +NA�2n (6.46)Note that background noise is received at each antenna element, which accounts forthe NA�2n term in the denominator of the above expression. Substituting for PMp andPIp from (6.45) and (6.44), respectively, and solving for �2 yields:�2 = �EbN0�NA�2n ( (NA)22RB � 1B �EbN0�V )�1 (6.47)Substituting (6.47) into (6.45) produces:P = 12 (NA)3 �EbN0��2n ((NA)22RB � 1B �EbN0�V )�1 (6.48)If the transmission activity factor is 1, then NI = NM � 1 and the expectation of(6.48) can be taken directly.E [P ] = 12 (NA)3 �EbN0��2nE 24( (NA)22RB � 1B �EbN0�V )�135 (6.49)Alternatively, for a non-unity voice activity factor, the expected received power mustbe calculated as a weighted sum.E [P ] = 12 (NA)3 �EbN0��2n NM�1XNI=0 P (NI = nI )E 24( (NA)22RB � 1B �EbN0�V )�135(6.50)P (NI = nI) may be calculated as shown in (6.30). Recall also that V is a function ofNI .As a consistency check, it can easily be seen that if NA is set to 1 and V is setequal to �V (since �2V will be zero for the case of one antenna element and perfectpower control), equations (6.48) and (6.50) reduce to (6.25) and (6.26), respectively,which is as expected. 111



Since the random variable V is in the denominator of a fraction together with otherterms, the expressions in (6.48) and (6.50) cannot be simpli�ed further. However, theprobability distribution of V is known, so the desired expected value can be foundvia numerical integration.Equation (6.44) implies that PIp will be Gaussian since V can be approximatedby a Gaussian distribution. However, the assumption that � was equal for all mobilesin the multi-element scenario is incorrect. For a single antenna element with perfectpower control, all of the mobiles will have the same received power at the base station.When an antenna array is used, the interference will be slightly di�erent for each user,so the corresponding received powers from each mobile will also vary, even though allof the users have the same Eb=N0 ratio.To illustrate this point, Figures 6.1 and 6.2 show frequency histograms of theinterference power (PIp) from simulations for 50 mobiles and 3 and 7 antenna elements,respectively. The distribution tails are de�nitely stretched out more on the right thanon the left, and thus a Gaussian distribution does not provide a completely accuratemodel of the true situation, although it is a suitable �rst approximation.6.5 System Validation ResultsTables 6.1 through 6.5 compare observed and predicted values (based on the deriva-tions in Sections 6.2, 6.3, and 6.4) for the correlation quantities prior to Viterbidecoding. Note that correct Viterbi decoder operation is easily veri�ed separately asdiscussed in Chapter 4. These values were generated over 100 frames, with 20 mobilesand 1 antenna element (Tables 6.1 and 6.2), 30 mobiles and 3 elements (Table 6.3),30 mobiles and 5 elements, (Table 6.4), and 40 mobiles and 5 elements (Table 6.5).As can be seen from Tables 6.1 and 6.2 for a single antenna element, there is gener-ally excellent agreement between the two columns which supports the validity of thesimulation program implementation. The observed and predicted values in Tables 6.3through 6.5 are for multiple element antenna arrays and agree to a lesser extent dueto the reasons discussed at the end of Section 6.4. However, they are still useful forsystem analysis and veri�cation purposes.112
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Figure 6.1: Interference power distribution for 3 antenna elements and 50 mobiles
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Figure 6.2: Interference power distribution for 7 antenna elements and 50 mobiles113



Quantity Observed Value Predicted Value Ref. Eqn.Mean mobile power 3:8041 � 10�16 3:8051 � 10�16 (6.25)Mean interference power 7:2275 � 10�15 7:2298 � 10�15 (6.31)Mean interference and noise 9:7158 � 10�15 9:7181 � 10�15Mean PN chip correlation 9:9442 � 10�15 9:9480 � 10�15 (6.15)Variance PN chip correlation 2:4510 � 10�27 2:4200 � 10�27 (6.16)Mean Walsh chip correlation 7:9554 � 10�14 7:9584 � 10�14 (6.17)Variance Walsh chip correlation 2:1124 � 10�26 1:9360 � 10�26 (6.18)Mean Walsh func. corr. (correct) 5:0914 � 10�12 5:0934 � 10�12 (6.19)Mean Walsh func. corr. (incorr.) 7:8604 � 10�17 0:0000 (6.20)Variance Walsh func. correlation 1:3467 � 10�24 1:2390 � 10�24 (6.21)Table 6.1: Observed and predicted statistical parameters of correlation values for 1antenna element, 20 mobiles, and  = 1:0Quantity Observed Value Predicted Value Ref. Eqn.Mean mobile power 1:7013 � 10�16 1:7051 � 10�16 (6.26)Mean interference power 1:8566 � 10�15 1:8663 � 10�15 (6.32)Mean interference and noise 4:3450 � 10�15 4:3547 � 10�15Mean PN chip correlation 6:6386 � 10�15 6:6592 � 10�15 (6.15)Variance PN chip correlation 1:2478 � 10�27 1:2263 � 10�27 (6.16)Mean Walsh chip correlation 5:3109 � 10�14 5:3273 � 10�14 (6.17)Variance Walsh chip correlation 1:0669 � 10�26 9:8101 � 10�27 (6.18)Mean Walsh func. corr. (correct) 3:3990 � 10�12 3:4095 � 10�12 (6.19)Mean Walsh func. corr. (incorr.) 1:2870 � 10�16 0:0000 (6.20)Variance Walsh func. correlation 6:7973 � 10�25 6:2785 � 10�25 (6.21)Table 6.2: Observed and predicted statistical parameters of correlation values for 1antenna element, 20 mobiles, and  = 0:5114



Quantity Observed Value Predicted Value Ref. Eqn.Mean mobile power 5:4193 � 10�16 4:7656 � 10�16 (6.48)Mean interference power 6:3758 � 10�15 4:6068 � 10�15 (6.44)Mean interference and noise 1:3841 � 10�14 1:2072 � 10�14Mean PN chip correlation 1:1845 � 10�14 1:1133 � 10�14 (6.15)Variance PN chip correlation 3:9172 � 10�27 2:8109 � 10�27 (6.16)Mean Walsh chip correlation 9:4756 � 10�14 8:9063 � 10�14 (6.17)Variance Walsh chip correlation 3:3506 � 10�26 2:2487 � 10�26 (6.18)Mean Walsh func. corr. (correct) 6:0644 � 10�12 5:7001 � 10�12 (6.19)Mean Walsh func. corr. (incorr.) 2:6601 � 10�16 0:0000 (6.20)Variance Walsh func. correlation 2:1354 � 10�24 1:4392 � 10�24 (6.21)Table 6.3: Observed and predicted statistical parameters of correlation values for 3antenna elements, 30 mobiles, and  = 1:0Quantity Observed Value Predicted Value Ref. Eqn.Mean mobile power 6:7858 � 10�16 6:3219 � 10�16 (6.48)Mean interference power 4:8870 � 10�15 3:6667 � 10�15 (6.44)Mean interference and noise 1:7328 � 10�14 1:6108 � 10�14Mean PN chip correlation 1:3282 � 10�14 1:2822 � 10�14 (6.15)Variance PN chip correlation 5:2498 � 10�27 4:2818 � 10�27 (6.16)Mean Walsh chip correlation 1:0625 � 10�13 1:0258 � 10�13 (6.17)Variance Walsh chip correlation 4:4697 � 10�26 3:4254 � 10�26 (6.18)Mean Walsh func. corr. (correct) 6:8002 � 10�12 6:5651 � 10�12 (6.19)Mean Walsh func. corr. (incorr.) 4:8667 � 10�16 0:0000 (6.20)Variance Walsh func. correlation 2:8507 � 10�24 2:1923 � 10�24 (6.21)Table 6.4: Observed and predicted statistical parameters of correlation values for 5antenna elements, 30 mobiles, and  = 1:0115



Quantity Observed Value Predicted Value Ref. Eqn.Mean mobile power 7:8537 � 10�16 7:0489 � 10�16 (6.48)Mean interference power 7:6094 � 10�15 5:4981 � 10�15 (6.44)Mean interference and noise 2:0051 � 10�14 1:7940 � 10�14Mean PN chip correlation 1:4287 � 10�14 1:3540 � 10�14 (6.15)Variance PN chip correlation 5:8569 � 10�27 4:3626 � 10�27 (6.16)Mean Walsh chip correlation 1:1430 � 10�13 1:0832 � 10�13 (6.17)Variance Walsh chip correlation 4:9986 � 10�26 3:4901 � 10�26 (6.18)Mean Walsh func. corr. (correct) 7:3151 � 10�12 6:9323 � 10�12 (6.19)Mean Walsh func. corr. (incorr.) 1:3464 � 10�16 0:0000 (6.20)Variance Walsh func. correlation 3:1873 � 10�24 2:2337 � 10�24 (6.21)Table 6.5: Observed and predicted statistical parameters of correlation values for 5antenna elements, 40 mobiles, and  = 1:0
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6.6 SummaryThis chapter has presented a derivation of the statistical parameters of the variouscorrelation quantities obtained from the received signals, including PN chip, Walshchip, and Walsh function correlation values. In addition, expressions for the estimatedreceived power for single and multiple antenna element con�gurations were obtained.These values can be used both for system validation purposes and also to reduce thecomplexity of simulations. For example, input values for testing the data decodingalgorithms in Chapter 4 can be generated directly from the derived probability dis-tributions without the need for PN chip-level simulations. In addition, the expectedreceived power equations may be used to predict cell capacity as will be shown in thenext chapter. Sample results showed the agreement between predicted and simulatedvalues for various numbers of antenna elements, mobiles, and voice activity factors.Close agreement was observed for the case of a single antenna element, whereas thecorrespondence between predictions and simulations for multiple elements was less ex-act due to the inexact approximation used for estimating the expected received power.In particular, the predicted power appears to be underestimated when antenna arraysare considered.

117



Chapter 7Cell Capacity Estimation7.1 IntroductionA critical area of investigation in cellular communications is cell capacity improvementtechniques that have minimal additional expense. Overall system capacity can beincreased in two di�erent ways. Splitting existing cells into smaller subcells is oneoption that may not be desirable for PCS (Personal Communication Systems) since itrequires additional base station hardware and increases the complexity of performinghand-o�s between di�erent base stations. However, if individual cell capacity canbe increased through a method such as digital beamforming as discussed in Chapter5, then system capacity will also increase with potentially less impact on the basestation costs.In order to obtain a prediction of how well a given system will perform, it is nec-essary to employ both analyses and simulations. This relatively low-cost evaluationmethodology is useful for testing various system designs before a potentially expensiveprototype is constructed.This chapter concerns itself with how cell capacity can be estimated in a cellularCDMA communication system. Two di�erent capacity estimation techniques for usein a simulation environment are described in Section 7.3, while the following sectiondescribes how beamforming can be integrated with these two techniques. Con�denceintervals for the simulation results are discussed in Section 7.5. Predicted values forcell capacity are then derived before actual simulation results for single and multi-cell118



con�gurations are presented in Sections 7.7 and 7.8, respectively. Finally, Section 7.9presents simulation results for a system which provides multi-service access (i.e. bothdata and voice).7.2 Related ResearchGilhousen et al [29] produced one of the earlier de�nitive papers on CDMA cellularcapacity and derived expressions for estimating cell capacity for both the forward andreverse links. However, direct comparison to [29] is di�cult due to the assumptionswhich were made. For example, [29] assumes an optimistic value of 0:375 for thevoice activity factor, as compared to the value of 0:5 used within this thesis. Moreimportantly though, was their assumption that speech-inactive mobiles would not betransmitting, which is unrealistic since it is necessary to maintain the link, albeit ata reduced data rate and interference power level. In addition, [29] also assumes thateach cell is split into three triangular sectors with directional antennas being usedat the base station for each sector. Although, this corresponds to the formal IS-95standard, it is a con�guration which does not lend itself as easily to beamformingwhich is the subject of this thesis.The work performed by a group of researchers at Stanford is the most similar tothe work presented in this thesis. Approximate expressions for the outage probability(de�ned in this instance as the probability of the BER exceeding 10�3) as a function ofbeamwidth and number of users were originally derived in [72] for both the uplink anddownlink. The uplink performance of a cellular CDMA network with an antenna arrayat the base station and multipath propagation was considered in [66], whereas thecorresponding downlink analysis can be found in [74]. A longer analysis of the uplinkperformance with base-station antenna arrays is contained in [67]. The earlier workby Naguib and Paulraj is essentially summarized in [73] which considers base stationantenna arrays for both the forward and reverse links. The performance enhancementdue to linear antenna arrays in a sectorized system with 120� sectors was investigatedin [68]. The e�ects of the resulting gain in Eb=N0 on system capacity, area of coverage,and mobile transmitter power were also examined. A similar sectorized system was119



also the focus of [69] which included M-ary orthogonal modulation (matching theIS-95 standard) on the uplink. In [71], the performance of an IS-95 system witha sectorized uniform linear antenna array and beam-steered Rake architecture wasanalyzed by extending the results in [38]. Diversity combining was used to exploitdelay spread, and the estimation of the array response of multiple paths per mobilewas required. Due to the delay spread arising from statistical variation of unresolvablepaths, the multiple access interference was approximated by white noise. Errors inclosed-loop power control were modeled by an equivalent Doppler shift. Finally, theuse of directional antennas for the reverse link of a �xed wireless CDMA systemwas investigated in [20]. It should be noted that most of the work described in thisparagraph focussed on analyzing system performance via probabilistic equations thatwere derived using simplifying assumptions. Simulations were used only to estimateprobability distributions for random variables when these distributions could not bederived analytically. In contrast, the work presented in this thesis is based on asigni�cantly more comprehensive chip-level simulation methodology.Jalali and Mermelstein investigated the e�ects of diversity, power control, andbandwidth on CDMA system capacity in [37]. Both the forward and reverse linkswere considered, with system bandwidths of 1.25 and 10 MHz, and the encodingscheme used for transmission complied with IS-95. The path loss exponent was foundto signi�cantly a�ect cell capacity since it determined the amount of intercell inter-ference. In addition, the wideband system was more bandwidth e�cient due to thelarger number of users that could be accommodated which reduced the variance ofthe multiple access interference.St�uber and Kchao considered both single cell [43] and multi-cell [98] CDMA sys-tems. Analytical expressions were derived to give the expected BER as a functionof the number of users per cell for both the uplink and downlink. The presence orabsence of power control was also a factor.Milstein, Rappaport, and Barghouti [61] derived expressions for the expected BERin terms of the number of users for di�erent path loss exponents. Both the forwardand reverse links were considered, together with the e�ects of imperfect power control.Recently, Foschini [26] investigated a �xed wireless system with equal numbers120



of antenna elements at both the transmitter and receiver. In a non-mobile system,su�cient processing power is available at both ends of the communications link topermit this. An architecture for layering signals in both space and time was developedfor increasing data rate capacity.The above papers considered cell capacity to be de�ned as the maximum numberof users which can be simultaneously supported by the system. Conversely, Viterbiand Viterbi [107] investigated the Erlang capacity of the reverse link of a power-controlled cellular CDMA system. This type of capacity is de�ned as the averagenumber of mobiles requesting service which results in a speci�ed blocking probability.The blocking probability is the probability that a user attempting to initiate a call willbe denied access due to the system already being at peak load for the speci�ed level ofservice, and typically might have a value of 1%. In this particular research, blockingwas deemed to have occurred when the interference-to-noise ratio (INR) had reacheda certain level. In a power-controlled situation, the INR should be proportional tothe SINR (signal-to-interference-plus-noise-ratio) which is another measure of systemquality. The CDMA system considered by this paper was found to have an Erlangcapacity about 20 times that of the existing AMPS system.7.3 Cell Capacity Estimation MethodsCell capacity can be de�ned as the maximum number of users per cell that can besupported with a given level of performance. For voice, this implies a BER (Bit ErrorRate) of 10�3 or less. Consequently, a simple way of measuring cell capacity is togradually add more users until the observed BER exceeds the desired value. Theproposed simulation technique is capable of estimating cell capacity using either adetailed PN chip-level approach or a less computationally expensive power controlmethod.7.3.1 Chip-Level Capacity EstimationThis thesis proposes the use of PN chip-level capacity simulations to investigate sit-uations involving imperfect power control and/or imperfect beamforming. These121



simulations are computationally expensive and so must be limited to a small numberof antenna elements (e.g. NA � 3). However, the ability to obtain data at the PNchip level is extremely important since it serves to validate simplifying assumptionsthat will allow faster simulations to be performed.Since data is actually being transmitted through the system, BER estimation iseasily performed provided that a su�cient number of data frames are processed toensure a tight enough con�dence interval as discussed in Section 7.5.7.3.2 Power-Level Capacity EstimationIt is well-accepted that a speci�ed Eb=N0 ratio corresponds roughly to a given BER.For example, an Eb=N0 of 7 dB is typically used for voice situations which require amaximum BER of 10�3. This approximate correspondence can be seen from Figures4.4 through 4.6. If perfect power control is used so that this Eb=N0 value is maintainedfor all mobiles, the observed BER should not be greater than the desired limit. Thiseliminates the need to encode and decode data bits via the chip-level technique.Consequently, it is possible to generate capacity estimates over longer time periodsand for more antenna elements.To obtain a capacity estimate for a given number of antenna elements, power-level simulations are performed for successively increasing numbers of mobiles. Alarge number of frames is required for accuracy since the interference power for mul-tiple antenna elements depends on the spatial distribution of the users which mustcontinually be randomly changed in order to ensure a uniform distribution (as as-sumed in Section 6.4) over a period of time. If the percentage of frames where thedesired Eb=N0 ratio could not be achieved for all mobiles exceeds a certain threshold(e.g. 1%), the capacity of the cell is deemed to have been reached. This percentageis termed the outage probability.7.3.3 Execution Time ComparisonTable 7.1 gives a comparison of sample execution times on a Sun UltraSparc 1 for boththe chip-level and power-level capacity estimation methods. These simulations were122



# of Users Capacity Estimation Method Savings FactorChip-Level Power-Level10 1091.85 4.21 25915 2006.54 6.90 29120 3989.55 9.81 40725 5623.97 13.40 42030 7632.78 17.95 42535 9384.77 23.73 395Table 7.1: Execution time comparison between the capacity estimation methods (inseconds)for three antenna elements over a time period of 100 frames and with a transmissionactivity factor of 1.0 corresponding to full loading of the system.The power-level capacity estimation method clearly provides a computational sav-ings of more than two orders of magnitude over the chip-level simulations. This servesto motivate the development of the power-level capacity estimation technique, sincelarger-scale simulations may now be performed with only modest computational re-quirements. Note also that the large CPU time requirements for the PN chip-levelsimulations explain why these simulations were limited in terms of antenna elements,simulation length, and intercell interference.7.4 Capacity Estimation with BeamformingWhen beamforming is used to increase the capacity of a cell, it is possible to considera variety of di�erent simulation alternatives. Results have been generated for allof the various combinations of options so that the similarities between the di�erentsimulation methods may be compared. 123



7.4.1 Perfect BeamformingFor perfect beamforming, it is assumed that the correct array response vector for eachmobile is known exactly. The array response values are used to form the beamformingweight vector directly so it is not necessary to estimate these coe�cients from thereceived signal data. Consequently, perfect beamforming can be easily used witheither the chip-level or power-level capacity estimation methods described in theprevious section.7.4.2 Imperfect BeamformingIn imperfect beamforming, the beamforming coe�cients are estimated from the re-ceived data and are therefore corrupted by measurement noise and interference. Im-perfect beamforming in both types of simulation environments, chip-level and power-level, has been considered as described below.7.4.2.1 Imperfect Beamforming { Chip-Level SimulationsWith PN chip-level simulations, the beamforming weights can be estimated directlyfrom the received signal data for each mobile as detailed in Section 5.5. Currently, thedata from one frame is used to estimate the beamforming coe�cients for the followingframe. Since the mobiles do not move a signi�cant distance within the time period ofone frame (1=50 of a second), the array response vectors do not change signi�cantlybetween frames under the assumed channel model.Ideally, it would be preferable to track the array response vectors over time whichwould reduce the e�ects of noise and interference on the weight estimates. Since thecoe�cients do not change signi�cantly between frames, a signi�cant amount of infor-mation is discarded after each frame. The computational requirements of estimat-ing the beamforming coe�cients could be reduced with a lower-complexity updatingmethod such as the computationally-e�cient algorithm for tracking array responsevectors given in [93]. 124



7.4.2.2 Imperfect Beamforming { Power-Level SimulationsWhen the more computationally-e�cient power-level capacity simulations are con-ducted, it is not possible to estimate suitable beamforming data from the receivedsignals since chip-level data is required for this purpose. However, it is possible to usethe statistical development in Sections 5.5 and 5.6 to generate random estimates of thecurrent array response vector for each frame. This is a signi�cant accomplishmentsince it allows the e�ects of imperfect beamforming on cell capacity to be investi-gated without having to resort to chip-level simulations which are computationallyintractable except for small numbers of antenna elements.7.5 Con�dence IntervalsWhen performing simulations, it is important to quantify the accuracy of the ob-served results. This can be accomplished by determining con�dence intervals for theobserved parameter estimates. By specifying the desired width of each interval, thenecessary simulation length can be calculated. The following sections describe variouscon�dence intervals for the parameters which are investigated later in this chapter.The purpose of these con�dence intervals is to ensure that su�cient simulations havebeen performed in order to justify the conclusions which are made from the observedresults.7.5.1 Bit Error RateWhen performing chip-level simulations, it is necessary to ensure that a su�cientnumber of data bits have been processed through the system in order to obtain anaccurate estimate of the actual BER for the current parameter con�guration.If BE and B̂E represent the true and observed BER values and NB the totalnumber of data bits processed in the simulation, then an approximate q% con�denceinterval for BE can be calculated from the observed value as [11, pp. 564]:B̂E �QvuutB̂E(1� B̂E)NB � BE � B̂E +QvuutB̂E(1 � B̂E)NB (7.1)125



q 90% 95% 99%Q 1.65 1.96 2.58Table 7.2: Standard deviation multipliers for various con�dence intervalswhere the value of Q depends on q as shown in Table 7.2. A Gaussian distributionfor B̂E is assumed here.By choosing a su�ciently large value for NB, the width of the con�dence intervalgiven by (7.1) can be made as narrow as desired for a given level of accuracy.If W is the desired width of the con�dence interval, then (7.1) yields:W = 2QvuutB̂E(1� B̂E)NB (7.2)Solving for NB in terms of the other parameters produces:NB = 4B̂E(1� B̂E)Q2W 2 (7.3)This expression gives the number of bits required to obtain the desired con�denceinterval width.7.5.2 Number of Frames { Outage ProbabilityThe power control outage probability is de�ned as the probability that perfect powercontrol will fail for a given number of users. Suppose that an estimate P̂ of thisquantity is desired. Equation (7.2) can be used to obtain the following expression forthe con�dence interval width as a function of the number of frames:W = 2QsP̂ (1� P̂ )F (7.4)where F is the number of frames tested in a simulation run. This expression gives anindication of the accuracy of a given outage probability estimate, which is importantin estimating cell capacity using the power-level method.126
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Figure 7.1: Con�dence interval width for a power control outage probability estimateof 1% as a function of number of framesFigure 7.1 shows the con�dence interval width as a function of the number offrames for 90%, 95%, and 99% con�dence intervals. A power control outage proba-bility of 1% was assumed as discussed in Section 7.3.2. For example, if the observedP̂ is 0.01 and 150000 frames have been simulated, then the 95% con�dence intervalfor the true power outage probability will be [0:0095; 0:0105].7.5.3 Number of Frames { Voice Activity FactorIn a simulation with NM mobiles and a non-unity voice activity factor  , it is im-portant to ensure that a su�cient number of frames have been processed in order toensure that a suitable distribution of the number of speech active mobiles has beenattained. This is especially important in the case of the more computationally expen-sive chip-level simulations where a much smaller number of frames can be processedas compared to the power-level capacity estimation simulations.In a voice communications system, setting  to 0:5 is typical. Let Ns be a random127



variable representing the number of mobiles with active speech for a particular frame.This quantity will have the following binomial probability distribution:P (Ns = ns) = 0B@ NMns 1CA ns(1�  )ns (7.5)For a reasonable number of mobiles (e.g. NM � 20) and the given voice activity factor( = 0:5), the above distribution can be accurately approximated by a Gaussiandistribution with the following parameters [42, pp. 245].�s = NM (7.6)�2s = NM (1�  ) (7.7)Thus, equation (7.5) can be approximated as:p(ns) � P (Ns = ns) � P (ns � 0:5 < Ns � ns + 0:5)= (12 + 12 erf  (ns + 0:5)� �sp2�s !) (7.8)� (12 + 12 erf  (ns � 0:5)� �sp2�s !)= 12 (erf  (ns + 0:5)� �sp2�s !� erf  (ns � 0:5) � �sp2�s !)Now consider a simulation which is run for F frames and assume that successiveframes are independent. The quantity of interest is now the number of frames whichhave exactly ns active speech mobiles. Let Nf (ns) be a random variable representingthis quantity. Its probability distribution can be approximated as binomial:P (Nf (ns) = nf ) � 0B@ Fnf 1CA p(ns)nf (1� p(ns))nf (7.9)where p(ns) is given by (7.8). Once again, the distribution in (7.9) can be approxi-mated as Gaussian with parameters:�f = Fp(ns) (7.10)�2f = Fp(ns)(1� p(ns)) (7.11)Suppose it is desired to estimate p(ns) from observations as:p̂(ns) = nfF (7.12)128



where nf is the number of frames with ns mobiles having active speech. The meanand variance for p̂(ns) can be obtained from (7.10) and (7.11).�p(ns) = �fF = p(ns) (7.13)�2p(ns) = �2fF 2 = p(ns)(1� p(ns))F (7.14)Since the true value of p(ns) can be predicted, a sum of squared error termsbetween the observed values of p̂(ns) and the true values of p(ns) can be de�ned as:ET � NMXns=0 [p̂(ns)� p(ns)]2 (7.15)It can be easily seen that this represents a summation of squared zero-mean Gaus-sian random variables each with variance given by (7.14). Equation (7.14) will bemaximized when p(ns) is as near as possible to 0:5 which will occur for:nmax = 8><>: NM=2 NM even(NM � 1)=2 NM odd (7.16)Thus, (7.15) can be upper-bounded by the summation of NM + 1 independent andidentically distributed zero-mean Gaussian random variables with variance given bysubstituting (7.16) into (7.14). This corresponds to a �2 distribution with NM + 1degrees of freedom and variance:�2� = 2(NM + 1) ��2p(ns)�2 (7.17)Let Emax represent the maximum desired squared error given by expression (7.15).The following equality can then be derived.Emax = ��2p(ns)�2 ��1(NM + 1; q) (7.18)where ��1 is the inverse standard �2 cdf with NM + 1 degrees of freedom and a cdfvalue of q (0:90, 0:95, or 0:99).Finally, combining (7.18), (7.16), and (7.14) allows a value for F to be calculated.Emax = p(nmax)(1� p(nmax))F ��1(NM + 1; q) (7.19)F = p(nmax)(1� p(nmax))Emax ��1(NM + 1; q) (7.20)129
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Figure 7.2: Number of frames required for Emax = 10�4 with con�dences of 99%,95%, and 90% when  = 0:5Although the expression in (7.20) is only an upper bound, it gives an indication asto the number of frames required for a given con�dence.As an example, Figure 7.2 shows the required number of frames to achieve Emax =10�4 with con�dences of 99%, 95%, and 90%.7.6 Predicting Single Cell CapacitiesBy using the equations from Sections 6.3 and 6.4, it is possible to generate approx-imate predictions for the capacity of a single cell with a given number of antennaelements. These predictions are obtained by considering the expected received powervalues.7.6.1 Single Antenna ElementConsider equations (6.25) and (6.26) which give the expected received power for aspeci�ed number of mobiles and voice activity factors of  = 1:0 and  < 1:0,130



respectively, when only a single antenna element is considered.E [P ] = �EbN0��2n � 1RB � NM � 1B �EbN0���1 (7.21)E [P ] = �EbN0��2n NM�1XnI=0 � 1RB � 1B �EbN0��nI + NM � nI � 1� ���1 P (NI = nI)(7.22)Clearly, as NM increases, the above quantities will increase in size and then eventuallybecome negative. Consequently, a simple method of predicting cell capacity in thissituation is to simply increase NM until the expected power becomes negative. Atthat point, the predicted capacity of the cell has been exceeded. Equation (7.21) canbe rearranged to yield a closed-form solution when  = 1:0 with E [P ] being set tozero to indicate the boundary between positive and negative expected received powervalues. NM = 
oor B " 1RB(Eb=N0) � �2n#+ 1! (7.23)However, the summation in (7.22) with a variable number of active speech interferersmakes it impossible to obtain a closed-form solution for  < 1:0. Thus, it is necessaryto use an incremental search technique in this situation to predict cell capacity.7.6.2 Multiple Antenna ElementsEquations (6.49) and (6.50) specify the expected received power for the multi-elementcase with  = 1 and  � 1, respectively, as:E [P ] = 12 (NA)3 �EbN0��2nE 24( (NA)22RB � 1B �EbN0�V )�135 (7.24)E [P ] = 12 (NA)3 �EbN0��2n NM�1XNI=0 P (NI = nI )E 24( (NA)22RB � 1B �EbN0�V )�135(7.25)where NI is the number of interferers with active speech, P (NI = nI) is calculatedfrom (6.30), and V is a Gaussian random variable with the following parameters.�V = 12 �NI + NM � 1�NI� �NA (7.26)�2V = 14 �NI + NM � 1�NI�2 � (NA)2 (7.27)131



NI can be set to NM � 1 when the voice activity factor is  = 1:0.Unlike (7.21), both of the above expressions must be numerically integrated inorder to obtain an estimate of the received power. For large values of V , the quantitiesinside the expectations will have a negative value which implies that the cell capacityhas been exceeded in that particular situation.Consequently, a method for estimating cell capacity with equation (7.24) or (7.25)is to evaluate the area under the pdf curve of V for which the received power expressionin the numerical integration evaluates as a negative number. This value will increaseas the number of mobiles is increased. Once this probability value exceeds a certainthreshold (such as the outage probability of 1% mentioned in Section 7.3.2), thecapacity of the cell can be deemed to have been exceeded.7.6.3 Predicted Cell CapacitiesTables 7.3 and 7.4 show predicted capacity values for single cells with voice activityfactors of 1:0 and 0:5, respectively. In Table 7.4, it is interesting to note that thecapacity relative to that for a single antenna element increases by more than 100%for each additional element, beginning with the transition from 2 to 3 elements. This isdue to the reduction in the relative variance of the number of speech active mobiles asthe number of mobiles in the cell increases. That is, as the total number of mobilesincreases with  = 0:5, the magnitude of the standard deviation of the binomialdistribution governing NI (the number of interferers with active speech) relative tothe mean will decrease.7.7 Single Cell CapacityThis section contains a variety of capacity results for a single cell as estimated fromsimulations. Sample results for the computationally more expensive multi-cell simu-lations are contained in Section 7.8.A number of parameters remain constant for all of the simulations. In the case ofmultiple antenna elements, the spacing between the elements was equal to half thewavelength of the carrier frequency (2 GHz). Rayleigh fading was assumed, which is132



Antenna Elements Capacity % of 1 Element Cap.1 26 100%2 37 142%3 59 227%4 82 315%5 104 400%6 128 492%Table 7.3: Capacity predictions for a single cell ( = 1:0)
Antenna Elements Capacity % of 1 Element Cap.1 35 100%2 62 177%3 100 286%4 139 397%5 179 511%6 220 629%Table 7.4: Capacity predictions for a single cell ( = 0:5)133



a worst-case scenario, and the fading gains were changed at least every 48 PN chips(roughly corresponding to the time of one data bit). The desired Eb=N0 ratio was setat 7 dB, and the power control step size was 0.5 dB. Power transmitted by a mobilewas reduced by a factor of 8 (corresponding to a data rate of 1200 bps) when speechwas inactive. All simulations in this section are for a hexagonal cell with a radius of500 m.When imperfect power control was used, three di�erent control methods werede�ned. Method A had no feedback delay and zero probability of feedback error forthe power control bits. Method B represents a more realistic situation and delayed thepower control bits by one power control period (1536 PN chips) with a probability offeedback error of 10%. Method C is the same as A, although with a power adjustmentstep size of 1 dB as compared to the 0.5 dB step size used for methods A and B.7.7.1 Single Cell Capacity with Perfect BeamformingFigures 7.3 through 7.7 show the observed BER values from PN chip-level simula-tions with perfect beamforming. Various combinations of interleaving, power controlmethods, and voice activity factors were considered. The legends indicate the powercontrol method and whether or not interleaving was used. Since no interleaving withuncorrelated Rayleigh fading is essentially the same as in�nite interleaving, not allcombinations of input parameters were considered for multiple antenna elements, dueto the required computational expense. Su�cient simulations were performed in orderto produce relatively smooth BER curves, although these results really only representapproximations to the true cell capacity. Capacity results from the BER plots aresummarized in Tables 7.5 and 7.6 for the two voice activity factors.Power control method B appears to reduce capacity slightly as compared tomethod A. In addition, interleaving does not appear to have much e�ect when un-correlated Rayleigh fading is used, although interleaving is essential for dealing withcorrelated fading. This is as expected, since uncorrelated fading is essentially thesame as in�nite interleaving. A 50% increase in capacity for 2 elements and 130% for3 elements were observed for  = 1:0. For  = 0:5, the capacity increase from 1 to 2elements was approximately 65%. 134
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Figure 7.3: Observed BER curves for PN chip-level capacity estimation with perfectbeamforming (NA = 1,  = 1:0)
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Figure 7.4: Observed BER curves for PN chip-level capacity estimation with perfectbeamforming (NA = 1,  = 0:5) 135



P=A, I=N    
P=B, I=N    

40 41 42 43 44
−3.5

−3

−2.5

−2

number of mobiles

lo
g1

0(
B

E
R

)

Figure 7.5: Observed BER curves for PN chip-level capacity estimation with perfectbeamforming (NA = 2,  = 1:0)
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Figure 7.6: Observed BER curves for PN chip-level capacity estimation with perfectbeamforming (NA = 2,  = 0:5) 136
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Figure 7.7: Observed BER curve for PN chip-level capacity estimation with perfectbeamforming (NA = 3,  = 1:0)Antenna Elements Power Control Method Interleaving Cell CapacityA N 261 Y 27B N 26Y 252 A N 41B N 403 A N 60Table 7.5: Estimated cell capacities from chip-level simulations with perfect beam-forming and uncorrelated fading ( = 1:0)137



Antenna Elements Power Control Method Interleaving Cell CapacityA N 411 Y 41B N 41Y 402 A N 68B N 68Table 7.6: Estimated cell capacities from chip-level simulations with perfect beam-forming and uncorrelated fading ( = 0:5)
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Figure 7.8: Observed BER for PN chip-level capacity estimation with perfect beam-forming, correlated fading, interleaving, and 1 antenna element ( = 1:0)138
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Figure 7.9: Observed BER for PN chip-level capacity estimation with perfect beam-forming, correlated fading, interleaving, power control method A, and 2 antennaelements ( = 1:0)Antenna Elements Mobile Velocity Power Control Cell Capacity1 m/s A 261 C 2730 m/s A 20C 192 1 m/s A 43Table 7.7: Estimated cell capacities from chip-level simulations with perfect beam-forming, correlated fading, and interleaving ( = 1:0)139



Figures 7.8 and 7.9 and Table 7.7 show the observed BER curves and correspond-ing cell capacities when correlated fading is used with chip-level simulations. Powercontrol methods A and C were tested here to determine the e�ect of the size of thepower adjustment step on fading compensation. As can be seen, when all of themobiles moved at 1 m/s (suitable for pedestrians), the power control algorithm couldoperate quickly enough to compensate for the fading and the cell capacity was notreduced as compared to the uncorrelated fading results in Table 7.5. In addition,a larger power step size appeared to improve performance slightly by allowing thefading to be tracked more accurately. Conversely, for faster mobile speeds such as 30m/s, the fading had a greater e�ect on cell capacity due to the inability of the powercontrol scheme to compensate for the fades as shown in Figure 3.4.Tables 7.8 and 7.9 show the estimated cell capacities using the power-level capacityestimation method with perfect beamforming for voice activity factors of 1:0 and 0:5,respectively. In order to estimate cell capacity in this instance, 200000 frames wereprocessed for each antenna element and voice activity factor pair. This yielded asu�ciently narrow con�dence interval width for the observed outage probability asdescribed in Section 7.5.2. The observed power outage probabilities (the percentageof frames where a transmission power solution could not be found via perfect powercontrol) are shown in Figures 7.10 and 7.11. The point at which each curve crossesthe 0.01 horizontal line determines the estimated capacity of the cell. The curves areoccasionally less smooth further away from this line since fewer than 200000 frameswere processed for those numbers of mobiles during the initial determination of theinterval containing the desired capacity.There is reasonable agreement between the chip-level and power-level capacityestimates contained in Tables 7.5 and 7.6, and Tables 7.8 and 7.9, respectively. Thechip-level simulations likely yielded higher capacity values since a BER of 10�3 canbe maintained at less than Eb=N0 = 7 dB in the presence of uncorrelated fading asshown by Figure 4.3. Many of the bit errors are likely due to the increased variationin the power control when the system becomes overloaded (as discussed in Section3.6 and observed by other researchers [4] [39] [75]).140



Antenna Elements Capacity % of 1 Element Cap.1 26 100%2 36 138%3 58 223%4 67 258%5 96 369%6 107 412%Table 7.8: Power-level capacity estimates for a single hexagonal cell with perfectbeamforming ( = 1:0)
Antenna Elements Capacity % of 1 Element Cap.1 36 100%2 57 158%3 95 264%4 112 311%5 158 439%Table 7.9: Power-level capacity estimates for a single hexagonal cell with perfectbeamforming ( = 0:5) 141
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Figure 7.10: Outage probabilities for power-level capacity estimation with perfectbeamforming ( = 1:0)
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Figure 7.11: Outage probabilities for power-level capacity estimation with perfectbeamforming ( = 0:5) 142
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Figure 7.12: Observed and predicted cell capacity values from power-level simulationswith perfect beamformingFinally, Figure 7.12 summarizes the observed cell capacities from power-level sim-ulations with perfect beamforming for voice activity factors of  = 1:0 and  = 0:5.In addition, the predicted cell capacities from Tables 7.3 and 7.4 have been includedto represent an upper bound on cell capacity. As can be seen, agreement betweenthe predicted and observed values is quite good, especially for 3 or fewer antennaelements. This latter observation may be a little surprising, given that the interfer-ence modelling assumption in Section 6.4 was assumed to improve as the numberof antenna elements increased, rather than decreased. As observed from Tables 6.3through 6.5, the expected received power is underestimated as compared to the val-ues obtained from simulations. Since this value forms the basis for the predicted cellcapacities, it is not surprising that the predicted values in Figure 7.12 are slightlygreater than the estimates obtained from simulations.7.7.2 Single Cell Capacity with Imperfect BeamformingTable 7.10 contains chip-level simulation results for imperfect (feedback correlation)beamforming with two antenna elements and a voice activity factor of  = 1:0. Note143



Antenna Elements Power Control Method Interleaving Cell CapacityA N 261 Y 27B N 26Y 252 A N 45Table 7.10: Estimated cell capacities from chip-level simulations with feedback cor-relation beamforming and uncorrelated fading ( = 1:0)
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Figure 7.13: Observed BER for PN chip-level capacity estimation with imperfectbeamforming (NA = 2,  = 1:0) 144



that the single element capacity values are the same as in Table 7.5 since no beam-forming is performed for a single antenna element. Figure 7.13 shows the observedBER curve from chip-level simulations with imperfect beamforming for two antennaelements. It is interesting to note that when Figures 7.13 (imperfect beamforming)and 7.3 (perfect beamforming) are compared, it actually appears as though imperfectbeamforming yields a higher capacity than does the theoretically optimum perfectbeamforming. One possible explanation is that an insu�cient number of trials wereconducted to obtain fully accurate BER curves due to the computational expense in-volved. Another potential cause of this e�ect would be an incorrect implementation ofthe PN chip level imperfect beamforming algorithm, although signi�cant precautionswere taken to guard against the likelihood of this event occurring.Tables 7.11 and 7.12 show the estimated cell capacities for a single hexagonal cellwith voice activity factors of 1:0 and 0:5, respectively. These estimates were obtainedusing the power-level capacity estimation method with simulated feedback correla-tion beamforming. Only 100000 frames were processed for each case here, due tothe additional computational expense of producing the random beamforming weightestimates. Figures 7.14 and 7.15 show the observed power outage probabilities whichwere used to determine the cell capacities. By comparing Tables 7.8 and 7.9 to Ta-bles 7.11 and 7.12, it can be seen that the feedback correlation method of estimatingbeamforming weights performs almost as well as the upper bound of perfect beam-forming. The cases where imperfect beamforming appeared to slightly outperformthe perfect method were likely due to a requirement for additional simulation framesin order to obtain a more exact capacity estimate.Finally, Figure 7.16 compares the observed cell capacity estimates for imperfectbeamforming from power-level simulations with the predicted values.7.7.3 Comparison to Other Researchers' ResultsAs mentioned previously, the work presented within this thesis most closely resemblesthat performed by Naguib and Paulraj at Stanford University. Of course, thereare di�erences in assumed system parameters and con�gurations between their workand that contained within this document. However, it is still possible to perform145



Antenna Elements Capacity % of 1 Element Cap.1 26 100%2 36 138%3 59 227%4 66 254%5 95 365%6 106 408%Table 7.11: Power-level capacity estimates for a single hexagonal cell with simulatedfeedback correlation beamforming ( = 1:0)
Antenna Elements Capacity % of 1 Element Cap.1 36 100%2 61 169%3 95 264%4 113 314%5 156 433%Table 7.12: Power-level capacity estimates for a single hexagonal cell with simulatedfeedback correlation beamforming ( = 0:5)146
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Figure 7.14: Outage probabilities for power-level capacity estimation with simulatedfeedback correlation beamforming ( = 1:0)
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Figure 7.15: Outage probabilities for power-level capacity estimation with simulatedfeedback correlation beamforming ( = 0:5)147
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Figure 7.16: Observed and predicted cell capacity values from power-level simulationswith simulated feedback correlation beamforming
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a comparison of the observed relative capacity improvements due to beamformingwith multiple antenna elements in order to ensure that reasonable results have beenobtained.A hexagonal cell with two surrounding tiers of interfering cells and circular antennaarrays was analyzed in [67] and [66] where a 1-D and 2-D RAKE receiver were includedin the base station design, respectively. Cell capacity was measured in terms of thesystem outage probability. Their sample results showed that a 5 element array yieldeda cell capacity which was approximately 440% to 450% of the single antenna capacityvalue, depending upon the actual RAKE receiver being utilized.A three-sector cell with linear antenna arrays, an equivalent coding scheme to IS-95, and a voice activity factor of 0.375 was considered in [69] [71]. This investigationconsisted primarily of an analytical study of expected system performance. For 3 and5 elements, Naguib and Paulraj predicted improvements of approximately 295% and495% relative to the single element case.The corresponding relative capacity improvements from Table 7.9 for a voice ac-tivity factor of 0.5 are roughly 260% and 440% for 3 and 5 antenna elements, respec-tively. These are quite comparable to the values given above and aid to support thevalidity of the results presented here. An exact correspondence between the observedimprovements would not be expected due to di�erences in the parameter values used(such as the voice activity factor).7.7.4 E�ects of Antenna Array Topology on CapacityIt is interesting to note that in the observed cell capacity results, an exact linearrelationship between the number of antenna elements and corresponding cell capacityis not obtained. Instead, when an even number of array elements are used, thecapacity increase over the previous number of odd elements is less than expected.This is clearly visible in Figures 7.12 and 7.16 which exhibit a slight staircase-typee�ect for the observed results. One possible explanation for this phenomenon lies withthe antenna array geometry and the corresponding beam patterns that are produced.Figures 7.17 through 7.21 show sample beamforming patterns for the indicateddirections of arrival for 2 to 6 antenna elements, respectively. One antenna element is149
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always located at 0� on the circle, with the remaining elements being spaced evenlyat �c=2 intervals to produce a circle. The direction of arrival (DOA) indicates thedirection from which the desired signal propagates, and the beamforming weightsare assumed to correspond to the array response vector (i.e. perfect beamforming).The beam patterns represent the attenuation due to beamforming of an interferer'spower whose signal arrives from another direction relative to the received power fromthe desired mobile. For example, in Figure 7.17 with a DOA of 0�, signals arrivingfrom either 0� or 180� are not suppressed at all. Conversely, signals arriving from 90�and 270� will be completely suppressed. Interfering signals arriving from 45�, 135�,225�, and 315� will retain approximately 80% of their power (i.e. 20% attenuation).The sample directions of arrival only cover a range of 360=NA degrees, since thebeamforming patterns will repeat after that range due to the symmetry of the circularantenna array.One interesting e�ect observed by comparing DOA = 090� and DOA = 045� inFigures 7.17 and 7.19, respectively, is that the 4 element array can reduce to anequivalent of a 2 element array. In addition, by comparing the secondary lobes for 4elements (DOA = 045�) versus 3 (DOA = 060�), and 6 elements (DOA = 030�) versus5 (DOA = 036�), it can be seen that the antenna arrays with even numbers of elementshave larger secondary lobes for certain directions of arrival. Thus, interference powerfrom certain directions will be less attenuated, and this may account for the less-than-expected increase in cell capacity for the antenna arrays with even numbers ofelements.7.8 Multi-Cell CapacityAlthough the single cell simulations give a good indication as to the type of capacityincreases that can be obtained through the use of beamforming, a multi-cell environ-ment with interference occurring between adjacent cells is clearly more realistic innature. Consequently, sample multi-cell simulations have been performed to explorethe di�erence between the single cell and multi-cell cases. However, it should beremembered that these simulations are computationally expensive due to the large155



numbers of mobiles, so their scope is restricted to some illustrative examples.One advantage of CDMA is that adjacent cells are able to use the same frequencybandwidth allocations since undesired signals are treated as interference. Conse-quently, it is possible to increase capacity in a given area by splitting a given cellinto smaller cells. Kajiwara [41], for example, investigated the e�ects of cell size (andindirectly the number of cells) on total capacity in a CDMA system using directionalantennas. This study was accomplished via computer simulations, although exactdetails of the nature of the simulations do not seem to be provided. With directionalantennas, capacity increases were found to be roughly proportional to the number ofcells.In this multi-cell investigation, a square area measuring 1200 m on each side wasconsidered, and the power-level capacity estimationmethod with perfect beamformingwas used to obtain results. The tested cell con�gurations were one square cell witha radius of 600 m, a 3 � 3 grid of square cells each with radius 200 m, and a 5 � 5grid of cells each with radius 120 m. It would be expected that per cell capacitywould decrease as the number of cells increases due to increased intercell interference.However, the total capacity for the same area of land should increase as the numberof base stations increases. With more base stations, mobiles will be able to interactwith a base that is less distant. Therefore, a lower transmission power will be requiredand the interference to other users will decrease. Although the cell sizes vary in thisexperiment, depending on the number of cells being considered, this simply a�ectsa scaling factor by which all of the transmission power values would be multiplied.Consequently, modifying the sizes of the cells would not a�ect the observed capacityvalues, and this example serves as a valid multi-cell scenario.Table 7.13 contains the total system and per cell capacity values, and Figures7.22 through 7.24 show the corresponding outage curves from which the capacityestimates were obtained. By comparing the single cell capacities (1 � 1 grid) for asquare cell with those for a hexagonal cell in Table 7.8, it can be seen that almostexact agreement is obtained, so it is more likely that the staircase capacity e�ectdiscussed in Section 7.7.4 is due to the antenna array topology rather than being anartifact of the assumed cell geometry. In Table 7.13, cell capacity is clearly reduced156



Antennas Cell Grid System Capacity Per Cell Capacity % Increase1 � 1 26 26.0 100%1 3 � 3 129 14.3 496%5 � 5 309 12.4 1188%2 1 � 1 36 36.0 100%3 � 3 217 24.1 603%3 1 � 1 59 59.0 100%3 � 3 339 37.7 575%Table 7.13: Capacity estimates for varying numbers of cells for a given area ( = 1:0)
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Figure 7.22: Outage probabilities for power-level capacity estimation in multi-cellsimulations with perfect beamforming (NA = 1,  = 1:0)157
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Figure 7.23: Outage probabilities for power-level capacity estimation in multi-cellsimulations with perfect beamforming (NA = 2,  = 1:0)
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Figure 7.24: Outage probabilities for power-level capacity estimation in multi-cellsimulations with perfect beamforming (NA = 3,  = 1:0)158



as the number of cells is increased due to increasing intercell interference. This e�ectappears to be most pronounced when going from a 1�1 grid to a 3�3 con�guration.The 5�5 grid considered for a single antenna element indicates that per cell capacityis further reduced by additional intercell interference, but not to as great an extent.Consequently, 5 � 5 cell grids were not considered for the cases of two and threeantenna elements due to computational expense.Even though the per cell capacity was dramatically reduced by the introduction ofintercell interference, the total system capacity for a multi-cell con�guration was foundto increase signi�cantly. The �nal column in Table 7.13 lists the relative increase insystem capacity as compared to the single cell case with the same number of antennaelements. It appears as though total capacity can be increased by a factor of between5 and 6 when a 3 � 3 grid of cells is used as compared to a single cell. It shouldbe noted, however, that in a true large-scale system, the observed increase should belarger since the 1 � 1 cell grid would also be subject to intercell interference whichwas not the case in this particular simulation study.Note that as the number of cells increases and cell size decreases, it is likely that anincreased number of hand-o�s between cells will be required as mobiles move around.This is a signi�cant research area in itself and has not been considered within thecontext of this thesis.7.9 Multi-Service Cell Capacity7.9.1 IntroductionIn future wireless communication networks, there will be a demand for services otherthan voice. For example, video and data �le transfers will be equally as importantin a multimedia environment. These services, of course, will require a higher band-width than does voice and are also more likely to be continuously operating (i.e. atransmission activity factor of  = 1:0).It is possible to emulate a mixed voice and data environment fairly easily with theexisting simulation program. As before, voice is assumed to be transmitted at 9600bits per second, while data is sent at 64 kilobits per second. Thus, a data mobile159



can be easily simulated by positioning seven voice mobiles at the same location andsynchronizing them in time. Each group of seven mobiles has the same path loss,shadowing, and Rayleigh fading values, and also responds to the closed-loop powercontrol identically. Recalling that voice actually has 9200 data bits per second (theremaining 400 represent coding overhead), it can be seen that this corresponds to adata rate of 64400 bits per second. In addition, voice mobiles are assumed to have anactivity factor of  = 0:5, whereas data mobiles have a transmission activity factorof  = 1:0.The above method for modelling data mobiles is very similar to that proposed forthe MC-CDMA (multicode CDMA) system described in [35]. This is a packet-basedwireless system which can accommodate multimedia tra�c. MC-CDMA preserves theexisting physical layer of IS-95 by allocating multiple streams for a single user whena higher bit rate than the base rate is required. The LIDA (Load- and Interference-Based Demand Assignment) network is also discussed in this paper. This networkdesign protects voice users in a communications system from the bursty demand ofhigh-bandwidth data users. Sourour and Nakagawa [97] also investigated the perfor-mance of an orthogonal multicarrier CDMA system which converted a high data ratebit stream into a set of parallel lower rate streams.A circular cell of radius 500 m was used for simulation purposes with a desiredEb=N0 of 7 dB and Rayleigh fading. It should be noted that in reality, a BER of10�3 is acceptable for voice, but a lower BER would be required for other types ofcommunication such as video. Thus, the capacity values presented here represent anupper bound since the data mobiles should really have a higher Eb=N0 than 7 dB.Wu and Kohno [113] developed methods for the optimum allocation of transmissionpower in a multimedia wireless CDMA systemwhere the di�erent media have di�erentacceptable BER values and priorities. Their algorithms used channel measurementinformation such as tra�c amounts and patterns to determine the optimum powerallocation.Cell capacity was determined in this instance by using the power-level capacityestimation method with perfect power control and perfect beamforming. For a givennumber of data mobiles, a binary search was performed to determine the number of160



voice mobiles which produced an observed outage probability of 1%. The number offrames processed for each search point varied depending on computational expense,but su�cient frames were used to ensure a reasonable sampling of the distribution ofspeech-active voice mobiles.7.9.2 Multi-Service Capacity Predictions7.9.2.1 Single Antenna ElementFor the case of a single antenna element, it is possible to easily predict the approximateexpected cell capacity for a multi-service situation. This is accomplished by modifyingequation (7.21) as shown below.E [P ] = �EbN0��2n NV �1XnI=0 P (NI = nI) (7.28)� 1RB � 1B �EbN0��7ND + nI + NV � nI � 1� ���1ND represents the number of data mobiles, and NV the number of voice mobiles.To predict cell capacity for a given number of data mobiles, ND is �xed at thedesired value and then NV is increased until a negative power value is obtained, atwhich point the predicted capacity of the cell has been exceeded.7.9.2.2 Multiple Antenna ElementsWhen multiple antenna elements are utilized, it is necessary to reconsider part ofthe multi-element power value calculation originally presented in Section 6.4. Thesin/cos term de�ned in (6.38) for a voice mobile can be approximated by a central �2distribution with parameters:(��)V = 2�12�2S� = 12NA (7.29)(�2�)V = 4�12�2S�2 = 14 (NA)2 (7.30)Note that equation (6.38) is simply multiplied by 7 (the number of voice mobileswhich represent one data mobile) when a data mobile interferer is being considered.161



Thus, for a data mobile, the �2 distribution parameters are:(��)D = 7(��)V = 72NA (7.31)(�2�)D = (7)2(�2�)V = 494 (NA)2 (7.32)When ND data mobiles and NV voice mobiles (NI of which have active speech)are considered, the summation of the above interference random variables can still beapproximated as Gaussian via the Central Limit Theorem with the following param-eters. �V = ND(��)D + �NI + NV � 1�NI� � (��)V (7.33)= 12NA �7ND + �NI + NV � 1�NI� ���2V = ND(�2�)D + �NI + NV � 1 �NI�2 � (�2�)V (7.34)= 14 (NA)2 �49ND + �NI + NV � 1�NI�2 ��Similarly to (6.50), the expected received power can be calculated as a weighted sum.E [P ] = 12 (NA)3 �EbN0��2n NV �1XNI=0 P (NI = nI)E 24( (NA)22RB � 1B �EbN0�V )�135 (7.35)Note that in (7.35), V is a function of the current value of NI .It is now simply necessary to �x the value of ND in (7.33) and (7.34), and thento increase NV until the probability of obtaining a negative power value during thenumerical integration of (7.35) exceeds the chosen threshold of 1%.7.9.3 Multi-Service ResultsFigure 7.25 shows the observed voice/data cell capacity from simulations for 1, 2, 3,and 4 antenna elements, using the standard IS-95 bandwidth of 1.2288 MHz. Thecorresponding predicted values are contained in Figure 7.26. Obviously, as the numberof active data mobiles within the cell increases, the allowable number of voice mobilessimultaneously decreases.Figure 7.27 shows the total observed throughput of the cell for a given number ofantenna elements and data mobiles at 1.2288 MHz, and Figure 7.28 contains the cor-responding predictions. Throughput is measured in terms of equivalent full-time voice162
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Figure 7.25: Observed multi-service voice and data user capacity for 1.2288 MHz
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Figure 7.26: Predicted multi-service voice and data user capacity for 1.2288 MHz163
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Figure 7.27: Observed multi-service total cell throughput for 1.2288 MHz
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Figure 7.28: Predicted multi-service total cell throughput for 1.2288 MHz164
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Figure 7.29: Observed multi-service voice and data user capacity for 4.9152 MHz
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Figure 7.30: Predicted multi-service voice and data user capacity for 4.9152 MHz165
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Figure 7.31: Observed multi-service total cell throughput for 4.9152 MHz
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Figure 7.32: Predicted multi-service total cell throughput for 4.9152 MHz166



mobiles. Therefore, each data mobile corresponds to seven full-time voice mobiles,and each regular voice mobile to one-half.As can be seen, the relatively narrow bandwidth of standard IS-95 is not particu-larly suitable for multimedia services. A maximum of only 3 or 4 data mobiles can beaccommodated within the cell. In addition, very little improvement is observed whengoing from 3 to 4 antenna elements. The clustering e�ect of the data mobiles signif-icantly reduces the validity of the white interference and noise assumption, therebyreducing capacity. In this instance, it may be more advantageous to select beamform-ing coe�cients such that nulls are steered towards any interfering data mobiles. Whenbeamforming is used, the overall throughput decreases as the number of data mobilesgoes up. The observations and predictions for 1 and 3 antenna elements agree quitewell, with reasonable agreement for 2 elements, and poor correlation for 4 elements.This latter situation is likely due to a combination of the antenna array geometry andcorresponding beam patterns as discussed in Section 7.7.4 and the small number ofdata mobiles that can actually be accommodated in the cell.To increase cell capacity, despite the higher volumes of data which must be trans-mitted in this situation, a higher spreading factor and a bandwidth of approximately5 MHz can be used. Since no de�nitive coding standard yet exists for this type ofmultimedia network, the IS-95 coding method was retained with an increase in thePN spreading factor from 4 to 16, thereby resulting in a bandwidth of 4.9152 MHz.Figure 7.29 shows the observed voice/data cell capacity from simulations for 1,2, and 3 antenna elements, with Figure 7.30 containing the corresponding predictedvalues. Clearly, capacity in terms of the total number of data mobiles which can beaccommodated has increased signi�cantly over the 1.2288 MHz system. In addition,there is quite good correspondence between the observed and predicted results.Figure 7.31 shows the total observed throughput of the cell for a given numberof antenna elements and data mobiles, and Figure 7.32 contains the correspondingpredicted total throughput. As can be seen, throughput for a single antenna elementactually increases as the number of data mobiles increases. This is likely due to thevoice activity factor of the voice mobiles being less than unity. The number of voice167



mobiles which currently have active speech is a random variable which follows a bi-nomial distribution. This quantity will vary over time within a reasonable range ofvalues. Consequently, in order to ensure that a power control outage does not occurif signi�cantly more than half of the voice mobiles have active speech, it is necessaryto reserve a certain amount of the cell throughput which will not be utilized all ofthe time (i.e. when fewer voice mobiles have active speech). In addition, voice mo-biles which are not currently transmitting speech do not contribute towards the cellthroughput, but they still produce a certain amount of interference, albeit at reducedpower. However, the data mobiles transmit continuously with constant throughput.In e�ect, the data mobiles can utilize cell throughput more e�ciently than can thevoice mobiles. Thus, when the number of data mobiles is increased and the number ofvoice mobiles is decreased, the cell throughput can be utilized more e�ciently. Con-versely, the cell throughput for multiple antenna elements appears to stay relativelyconstant regardless of the number of data mobiles. In a beamforming situation, itwould be expected that the data mobiles would degrade system performance to someextent by reducing the uniformity of the spatial distribution of the users. However, itwould appear that this is o�set by the voice activity factor e�ect which was observedfor a single base station antenna.7.10 SummaryThis chapter has presented an investigation into estimating cell capacity in a CDMAsystem, both through theoretical analyses and simulations. Two simulation meth-ods were utilized: a PN chip-level approach and a more computationally e�cientpower-level method. Sample execution times demonstrated the computational sav-ings o�ered by the latter technique. In simulation experiments, reasonable agreementwas obtained between these capacity estimation methods, as well as with the pre-dicted capacity values obtained by considering the expected received power values.These latter predictions tended to be slightly optimistic when multiple antenna el-ements were considered due to the underestimation of the expected received powervalue which was used to predict cell capacity.168



In addition, two types of beamforming were tested: perfect beamforming (wherethe true array response vector is used as the beamforming weight vector), and im-perfect beamforming (where the beamforming coe�cients are estimated from thereceived data). Due to the excellent performance of the feedback correlation beam-forming weight estimation method as described in Chapter 5, simulated capacityestimates for both perfect and imperfect beamforming agreed quite well. Con�denceintervals were also calculated to determine the number of frames to be tested in eachsimulation run.Capacity results for both single and multiple cells demonstrated that signi�cantincreases in capacity could be obtained through the use of multi-element antennaarrays. For example, in a single cell with a transmission activity factor of  = 1:0,capacity can be approximately quadrupled with the use of six elements, and with = 0:5, capacity can be approximately tripled by using a four element array. Multi-cell simulations demonstrated that individual cell capacity went down dramaticallydue to intercell interference. However, similar improvements in cell capacity wereobserved when antenna arrays were applied in a multi-cell situation. It was alsoobserved that even numbers of antenna elements did not provide as great a capacityincrease as did odd numbers, and this appeared to be due to the antenna arraygeometry.Finally, an investigation into multimedia service and its e�ects on cell capacitywas included. The relatively narrow bandwidth of IS-95 was found to be unsuitablefor satisfactorily accommodating data mobiles, and beamforming did not appear toprovide much assistance in increasing capacity when data mobiles were present in thesystem, due to the loss of a uniform spatial distribution of interferers. However, by ex-panding the system bandwidth from 1.2288 MHz to 4.9152 MHz, system performancewas found to improve since su�cient data mobiles could be active within the systemthat the interfering signals were still uniformly distributed in space. Agreement be-tween predicted and observed capacity values was fair at a bandwidth of 1.2288 MHzand quite good at 4.9152 MHz. In the latter case, total system throughput appearedto remain relatively constant as the number of data mobiles was varied.169



Chapter 8Summary and Conclusions8.1 IntroductionThis thesis opened with a brief description of the motivation behind the speci�cresearch problems investigated here. The reverse link of the IS-95 cellular CDMAstandard was then examined in detail, including separate chapters for power controland data decoding. The use of beamforming to increase cell capacity by reducing thee�ects of multi-user interference was analyzed, which was itself followed by an erroranalysis of the IS-95 reverse link. Finally, an investigation into estimating cell capacityand the improvements that can be achieved through base station beamforming wasincluded.This chapter �rst summarizes the most signi�cant research contributions con-tained in this thesis. Section 8.3 then presents the conclusions which may be drawnfrom the research results. Finally, the last section describes a number of ways inwhich this thesis work may be further extended.8.2 Summary of ContributionsOne of the major achievements accomplished during the course of this thesis researchwas the development of a comprehensive simulation platform for the IS-95 reverselink. This detailed program allowed for the veri�cation of various analyses and as-sisted in the development and testing of new algorithms while this research was being170



conducted. In addition, the simulator is easily usable and expandable by other indi-viduals for performing further research in this area.In the IS-95 reverse link, the block-interleaving followed by orthogonal Walsh func-tion encoding after the convolutional encoder causes a standard Viterbi decoder withdeinterleaved soft-decision bit metrics to produce suboptimal results. To overcomethis problem, a combined deinterleaver/decoder was proposed in Section 4.2.4, andsimulation results demonstrated superior performance to the traditional approach ofusing soft-decision bit metric values.The potential increase in cell capacity through the use of beamforming to re-duce multi-user interference was a primary concern of this thesis. The code-�lteringcorrelation algorithm [64] [67] [73] [74] has provided promising results in the past,but was not directly applicable to IS-95 due to the low actual spreading factor of 4.However, Section 5.5 presented a new feedback correlation algorithm for estimatingsuitable beamforming weights for the IS-95 reverse link. By using the decoded datato provide a second layer of correlation with the received signal data, it was possibleto improve the e�ective spreading factor to almost 200 which greatly increased theaccuracy of the beamforming coe�cient estimation process. In addition, a detailederror analysis of the proposed algorithm was included and veri�ed with simulationresults.The error analysis of the IS-95 reverse link performed in Chapter 6 served twouseful purposes. First, it allowed the operation of the simulation program to bevalidated by comparing predicted values with simulated results. In addition, theexpected received power equations which were derived were useful in obtaining ap-proximate predictions for cell capacity which also aided in verifying the simulationresults contained in the following chapter.The power-level capacity estimation approach described in Section 7.3.2 is a muchmore computationally-e�cient technique for performing cell capacity estimation thanare chip-level simulations. Without this method, it would not have been possible toobtain accurate capacity estimates for higher numbers of antenna elements.The error analysis of the feedback correlation beamforming algorithm allowedthis technique to be used with the power-level capacity estimation method, which171



resulted in signi�cant computational savings. Rather than having to perform PNchip-level simulations in order to obtain the required signal data for beamformingweight estimation purposes, it was simply necessary to use the derived probabilitydistribution for the beamforming coe�cient vector to produce a random estimate foreach frame. This allowed the realistic imperfect beamforming method to be tested ina feasible and e�cient manner with several antenna elements and with multiple cells.Finally, an investigation into the area of multi-service operation was performed.This combined data mobiles (with a higher bit rate) and voice mobiles in the samecell. When a larger bandwidth was available for communication, the use of datamobiles did not seem to a�ect the total cell throughput when beamforming was usedto increase cell capacity.8.3 ConclusionsBased on the analyses and simulations presented within this document, the followingconclusions may be drawn.Accurate power control is required within a cellular CDMA system in order to min-imize multi-access interference and thereby maximize system capacity. The closed-loop control algorithm considered here appears to be capable of fully compensatingfor correlated Rayleigh fading at low mobile velocities, but less so at higher veloci-ties. When the system capacity has been exceeded, the variance of the receivedEb=N0values increases signi�cantly unless the desired target ratio is reduced.System performance on the IS-95 reverse link can be increased through the use ofa combined deinterleaver/decoder rather than the more traditional Viterbi decoderwith deinterleaved soft-decision bit metric inputs. At a voice-quality BER of 10�3, theproposed decoder o�ered gains of 1.0 or 1.5 dB over soft-decision decoding with bothuncorrelated and correlated fading, depending on whether one or two surviving pathswere retained, respectively. Further gains can be obtained by retaining additionalsurviving paths, although the additional computational expense does not appear tomake this worthwhile. 172



The proposed feedback correlation method of estimating beamforming weight vec-tors is much more suited to the IS-95 reverse link due to its signi�cantly higher pro-cessing gain (� 200 as compared to � 4). Analytical and simulation results demon-strated that using the mean correlation vector as the array response vector estimatewas equally accurate as taking the principal eigenvector of the appropriate correla-tion matrix, with reduced computational expense. The mean vectors and covariancematrices of the various estimators can be predicted with high accuracy and then usedto simplify simulation complexity by generating random beamforming vectors fromthe derived distributions instead of using chip-level data to obtain these estimates.The statistical parameters of key correlation quantities prior to decoding can beaccurately predicted for single antenna systems and reasonably approximated formulti-element arrays. A more exact approximation for the expected received powerfrom an antenna array would be useful for predicting the correlation quantities withgreater accuracy in this situation. The derived probability distributions may be uti-lized for purposes such as reducing simulation complexity or predicting cell capacity.System capacity on the reverse link can be signi�cantly improved through the useof antenna arrays and beamforming at the base station. Sample capacity improve-ments for the case of a single cell can be seen in Tables 7.8 and 7.9. Incorporatingintercell interference into the system through consideration of multi-cell environmentsdemonstrated that this factor dramatically reduces per cell capacity, although beam-forming still provided a similar capacity improvement as before. When a multimedia-type environment was considered, it was found that a wider system bandwidth wasrequired in order for data mobiles to be accommodated within the cell without vio-lating the assumption of a uniform spatial distribution of interferers. In all instances,cell capacity values could be predicted with a reasonable level of accuracy.8.4 Future DirectionsThere are, of course, a signi�cant number of issues remaining to be explored withrespect to the research results presented in this thesis. This section discusses a numberof these issues and illustrates how the work which has already been performed can be173



extended. Some of these proposals could be implemented with little additional e�ort,but would require more time for simulations to be run and the results to be analyzed.Most of the results presented in this document are for a single cell, primarily dueto computational limitations. The capacity values do give a reasonable indicationof the gains that can be made through the use of digital beamforming. However,a multi-cell situation would provide a more realistic scenario and would also takeinto consideration the interference between adjacent cells. This facility is alreadycontained in the simulation program, although a more e�cient method of modellingmulti-cell interference would aid greatly in reducing the required computation time.It should not be di�cult to incorporate an e�ective multi-access interference modelsince its statistics can be tested against those of the existing simulation system. Onefactor which has not been considered is that of performing hand-o�s as mobiles movefrom one cell to another. It would likely be relatively simple to incorporate this intothe simulation program, although it would be necessary to have some method fordetermining when a hand-o� should occur.The user motion model in the current simulation program is relatively simplistic,in that mobiles move in a random direction with a constant velocity and then changeboth direction and speed according to a certain speci�ed probability. An interestingarea of exploration could be to implement a motion model with speci�ed constraints.For example, a cell could represent part of an urban environment where the mo-biles are constrained to move along a grid of city streets. Another possible scenariowould involve using a building's internal 
oorplan to model users walking aroundwhile communicating. This constraint could easily reduce the assumed uniformity ofthe spatial distribution of the users, and thereby have a negative e�ect on systemcapacity. Rudokas [89] used measured data to show that call tra�c is not uniformacross geography (or time of day), for example, unlike the assumptions made earlier.Di�erent array geometries could easily be tested, simply by deriving the appro-priate array response vectors in a manner similar to that of Section 2.4.1. Lineararrays have also received a signi�cant amount of study. This geometry tends to bemore directional in nature than is a circular array, although this may actually beadvantageous depending upon the actual topography of the cell being considered. In174



addition, rectangular arrays might represent another candidate geometry, althoughthe computational expense of computing the beamforming weights increases with thenumber of antenna elements being considered. Yu and Lee [119] proposed a partiallyadaptive beamforming technique for dealing with a 2-D rectangular array which re-quired less computational complexity than fully adaptive algorithms for the samesituation.The current shadowing model simply assigns a shadowing value at the beginningof each call and then does not modify this value during the duration of the call. Tobe more realistic, the shadowing parameter should be varied at a regular interval tosimulate slow fading, even though fast fading is more likely to have a signi�cant e�ecton the mobile's signal.In equations (2.25) and (2.27), it has been assumed that the demodulation hasbeen performed with perfect synchronization. To model imperfect synchronization,the cos and sin terms in (2.24) and (2.26), respectively, can be perturbed by a randomphase shift. It would be expected that this would have a negative e�ect on systemcapacity due to the increased e�ects of multi-user interference relative to the desiredsignal. In addition, a random phase term due to either imperfect synchronization orfading would likely a�ect the quality of the beamforming weight estimates to someextent.It is presently assumed that the same signal, subject to a phase shift, is receivedat each element of an antenna array. That is, the correlation between all of the signalcomponents from the array is assumed to be 1.0. However, there will be some degreeof independent fading due to multipath propagation in a real-life scenario. A morerealistic correlation value for adjacent elements would lie in the range from 0.5 to 0.8[90] [91]. In addition, the incorporation of an alternative correlated fading model suchas the ARMA model proposed by Colman, Blostein and Beaulieu [9] into the systemsimulation component may be useful. Fast fading in a multi-antenna communicationsystem suitable for adaptive beamforming was also investigated in [87].Some type of robust algorithm should be implemented for tracking array responsevector estimates for each mobile over time. Currently, the estimate obtained from theprevious frame is used to generate the beamforming weights for the current frame.175



However, there are problems with this approach. One problem is that a signi�cantamount of useful information is discarded by not utilizing the array response esti-mates from previous frames. This implies that the estimation process could be mademore computationally e�cient. For example, Shiu and Blostein [93] presented a low-complexity method for updating beamforming weights via a noniterative rank-onesignal subspace eigenstructure update algorithm [10]. Secondly, the feedback corre-lation method of increasing the gain for improved estimation accuracy assumes thatthe data for the current frame has been correctly decoded. This, of course, is notalways the case, particularly in an environment with high interference and noise lev-els. Consequently, some kind of smoothing technique such as a Kalman �lter wouldsigni�cantly reduce the e�ects of incorrect data decoding within a single frame. If thebeamforming weights are generated from incorrect data, they will a�ect the qualityof the decoded data for the next frame and there could be a catastrophic cascadee�ect before the system recovers.Although both uncorrelated and correlated Rayleigh fading due to multipath prop-agation have been considered, the signal from each mobile has been assumed to haveonly one resolvable path. This may be suitable for modelling a narrowband CDMAsystem such as IS-95. However, a wideband system should consider additional resolv-able paths due to the propagation environment. Consequently, implementing a RAKEreceiver [84, pp. 732] at the base station together with multipath propagation wouldcertainly be a useful area to explore. Kchao and St�uber [43] analyzed a single-cellspread-spectrum system and considered three di�erent types of receivers: multipathrejection, RAKE with predetection selective diversity combining, and RAKE withpostdetection equal gain combining. The RAKE receivers resulted in a signi�cantperformance improvement when the channel contained multiple faded paths. Naguiband Paulraj [66] [69] [71] also considered using a RAKE receiver in a cellular CDMAuplink system. In addition, only amplitude fading is considered at the moment. Ifthe fading value were maintained as a complex quantity, a phase component wouldbe introduced as well. The basis for conducting such an analysis might be to includea random phase term due to fading in the demodulation and correlation equationscontained in Section 2.5. 176



The current matched �lter model for the receiver which considers users other thanthe desired one to be interference may not be optimal. It is suitable for a reasonablenumber of mobiles with e�ective power control. However, with fading and shadowing,the power control algorithm is not always able to adjust the transmitted power fastenough to keep up. This results in a near-far problem where some users have muchlarger power values than do others. An alternative is to simultaneously decode all ofthe signals using a multi-user detection algorithm rather than the more traditionalsingle user approach, although algorithm complexity can increase exponentially withthe number of users. Tsatsanis and Giannakis [100] derived linear decorrelating re-ceivers to address this problem and based their work on earlier research by Lupasand Verd�u [57] [58]. In particular, Verd�u [102] proposed a multiuser detector that hasformed the basis for work by many other researchers. Also, an overview of multi-userdetection algorithms in CDMA communication systems (which includes an extensivebibliography) was prepared by Moshavi [63]. This area of investigation may promisea BER reduction through the use of potentially superior receivers.Finally, it may be possible to apply importance sampling (IS) to certain aspectsof the simulation process in order to signi�cantly reduce the computational require-ments. Importance sampling reduces the variance of the estimator being evaluatedby choosing a distribution of random input values which emphasizes their impact onthe parameter being estimated. The biased outputs can then be weighted in sucha way to ensure that the IS estimator is unbiased. Thus, a desired precision in theestimated outputs can be obtained with fewer simulation runs. Smith, Sha�, andGao [96] provide an introduction to importance sampling and review its use in vari-ous aspects of simulating communication systems. Particular examples of the use ofimportance sampling in relevant situations can be found in [51] which outlines howBER values for a BPSK CDMA system can be e�ciently evaluated, and [52] whichdetails the simulation and determination of error-rate performance of wireless CDMAover multiple Rayleigh fading paths. 177



Appendix ACalculation of �dThis appendix outlines the numerical calculation of the �d coe�cients used in theexpression for the approximate predicted BER for IS-95 with no interleaving as givenby equation (4.10).It is �rst necessary to obtain the transfer function [84, pp. 451-454], T (D;N),for IS-95 encoding without interleaving, where the exponent of D is the distance ofthe current path from the correct path in terms of incorrect Walsh functions, andthe exponent of N is the number of output bit errors. T (D;N) can be obtained byderiving a system of equations from the encoding trellis, which can then be solvedusing symbolic computation software.An in�nite series representation of the transfer function is:T (D;N) = 1Xd=dfree adDdNf(d) (A.1)where ad is the number of paths of distance d from the correct path with the speci�ednumber of output bit errors. From (A.1):dT (D;N)dN �����N=1 = 1Xd=dfree f(d)adDd = 1Xd=dfree �dDd (A.2)where �d is a weighting term which combines the number of paths and the numberof output bit errors for the current probability term.Since Equation (A.2) speci�es the �d coe�cients in (4.9), the approximate BERin (4.10) can be obtained. For numerical purposes, (A.2) can also be expressed as theratio of two polynomials which, for the case of IS-95 encoding with no interleaving,178



can be derived as:G = d51 � 16d50 + 118d49 � 532d48 + 1664d47 � 4003d46 + 8338d45 � 16528d44+ 30644d43 � 47518d42 + 52593d41 � 24631d40 � 43887d39 + 125350d38� 161892d37 + 108602d36 + 17501d35 � 139070d34 + 178294d33 � 117113d32+ 6252d31 + 76146d30 � 83526d29 + 34115d28 + 14432d27 � 27526d26 (A.3)+ 19847d25 � 15612d24 + 11283d23 + 3658d22 � 18527d21 + 18427d20� 7280d19 � 1594d18 + 2691d17 � 169d16 � 667d15 � 386d14 + 1214d13� 847d12 � 43d11 + 168d10 + 42d9 + 17d8 � 41d7 + 11d6 + 4d5H = 4d50 � 52d49 + 289d48 � 864d47 + 1350d46 � 436d45 � 2491d44 + 5576d43� 6912d42 + 7382d41 � 5944d40 � 3360d39 + 20574d38 � 33378d37 + 30938d36� 14968d35 � 6965d34 + 28584d33 � 44096d32 + 45376d31 � 25127d30� 11006d29 + 41533d28 � 45134d27 + 19584d26 + 12746d25 � 25958d24 (A.4)+ 17018d23 � 174d22 � 10366d21 + 8565d20 � 1402d19 � 2548d18 + 2762d17� 850d16 � 314d15 � 29d14 � 26d13 � 22d12 + 110d11 + 297d10 � 24d9� 132d8 � 54d7 � 21d6 + 22d5 + 54d4 + 14d3 + d2 � 6d+ 1The values of �d in (A.2) can then be calculated by dividingH into G until a su�cientnumber of nonnegligible summation terms have been determined.
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Appendix BComplex Gaussian MomentsThis appendix derives expressions for certain moments of complex Gaussian randomvectors that are required for the beamforming error analysis performed in Chapter 5.Note that the moments considered here are not the typical �rst and second momentsof complex vectors.B.1 Complex Eigenvector Phase ShiftsLet A be a Hermitian matrix which will thus have real eigenvalues and orthogonaleigenvectors. Let � and v be an eigenvalue/eigenvector pair of A.Av = �v (B.1)Now multiply both sides of equation (B.1) by exp(�j�) where � is an arbitrary angle.exp(�j�) fAvg = exp(�j�) f�vg (B.2)A fexp(�j�)vg = � fexp(�j�)vg (B.3)Clearly, exp(�j�)v is also an eigenvector of A. Consequently, it is possible to inducean arbitrary phase shift of � into all of the elements of an eigenvector of a complexmatrix without a�ecting its eigenvector properties.180



B.2 Complex Second MomentsLet x be a zero-mean complex Gaussian random vector with covariance matrix P. Pwill be a Hermitian matrix and, as a result, will have real eigenvalues and orthogonaleigenvectors. Thus, P can be factored into a product of these components.P = U�U� (B.4)The columns of U are the eigenvectors of P, and � is a real diagonal matrix containingthe eigenvalues of P.Now de�ne a new random vector w where:w = U�x (B.5)w will also be zero-mean with the following covariance matrix.Cww = E [ww�] = E [(U�x) (U�x)�]= E [U�xx�U] = U�E [xx�] U (B.6)= U�PUSubstituting (B.4) into (B.6) produces:Cww = U�(U�U�)U = � (B.7)Recalling that U�1 = U�, (B.2) can be rewritten as:x = Uw (B.8)Note that w will be a complex vector, even though it has a strictly real covariancematrix.Consider (B.5), but de�ne another new random vector as:y = �U�x (B.9)where � is de�ned as:� = 266666664 exp(�j�1) 0 : : : 00 exp(�j�2) : : : 0... ... . . . ...0 0 : : : exp(�j�n) 377777775 (B.10)181



The �i values are chosen to give an appropriate phase shift to the correspondingeigenvector so that y will be a strictly real vector with the same covariance matrixas w. Cyy = � (B.11)Clearly, a di�erent � must be selected for each speci�c random sample of x in orderto satisfy the condition that y is real. The �i values will therefore be uniformlydistributed in the interval [0; 2�).Inverting (B.9) yields: x = U��y (B.12)Consider only the mth entry of x in the above equation which can be written as:xm = Um��y (B.13)where Um is the mth row of U. Since the columns of U are the eigenvectors of P, notethat Um is not an eigenvector of P.Now consider the following second moment of x.E [xmxn] = E [fUm��ygfUn��yg] (B.14)Unlike the typical second moment of a complex quantity, this does not corresponddirectly to an entry of the P matrix since neither of the terms is conjugated. Since(B.13) represents a scalar quantity, (B.14) can be rewritten as:E [xmxn] = E hfUm��ygnyT��UTnoi (B.15)Noting that Um and Un are not random quantities and that y is independent of theother quantities in the expression, (B.15) can be written as:E [xmxn] = UmE h��yyT��iUTn= UmE h��E hyyTi��iUTn (B.16)= UmE [�����] UTn182



The expectation is now of the product of three diagonal matrices and will thus alsobe a diagonal matrix. Consider the ith element of this expectation and recall that �ihas a uniform distribution on [0; 2�).E [exp(j�i)�i exp(j�i)] = �iE [exp(j2�i)]= �i fE [cos(2�i)] + jE [sin(2�i)]g= 12��i �Z 2�0 cos(2�i)d� + j Z 2�0 sin(2�i)d�� (B.17)= 14��i nsin(2�i)j2�0 � cos(2�i)j2�0 o= 14��i f(0 � 0)� (1� 1)g= 0By substituting (B.16) into (B.17), it can be seen that:E [xmxn] = 0 (B.18)Similarly, by conjugating the above expression:E [x�mx�n] = 0 (B.19)Thus, these particular complex second moments have been shown to be zero. Thiscorresponds to the assumption of circularity for a complex random vector [77] whichalso implies that these moments would be zero. Circularity has been assumed withinthis thesis. Additional information on second-order complexGaussian random vectorswhich are not subject to the circularity assumption may be found in [78] and [79].B.3 Complex Fourth MomentsAs before, let x be a zero-mean complex Gaussian random vector of size d withcovariance matrix P. This vector can be written as the sum of a real and imaginaryvector. x = y + jz (B.20)Now de�ne a new real vector as: v � 264 yz 375 (B.21)183



v will also be zero-mean since y and z are both zero-mean. Let Q represent thecovariance matrix of v. Q can be calculated as:Q = E hvvTi = E8><>:264 yz 375 � yT zT �9>=>; = E8><>:264 yyT yzTzyT zzT 3759>=>; (B.22)where each of the blocks in the resulting matrix is a d�d submatrix. It can be shown(see Section B.4) that Q can also be written as:Q = 12 264 R STS R 375 (B.23)where the submatrices are the real (symmetric) and imaginary (skew-symmetric)components of the complex covariance matrix.P = R + jS (B.24)Consider the following fourth moment of the complex Gaussian random vector.E hxmx�nx�pxqi = E [(ym + jzm)(yn � jzn)(yp � jzp)(yq + jzq)]= E [f(ymyn + zmzn) + j(zmyn � ymzn)gf(ypyq + zpzq) + j(ypzq � zpyq)g]= E [f(ymyn + zmzn)(ypyq + zpzq)� (zmyn � ymzn)(ypzq � zpyq)g+ j f(ymyn + zmzn)(ypzq � zpyq) (B.25)+ (zmyn � ymzn)(ypyq + zpzq)g]= E [fymynypyq + ymynzpzq + zmznypyq + zmznzpzq� zmynypzq + zmynzpyq + ymznypzq � ymznzpyqg+ j fymynypzq � ymynzpyq + zmznypzq � zmznzpyq+ zmynypyq + zmynzpzq � ymznypyq � ymznzpzqg]The complex fourth moment has now been written entirely in terms of real fourthmoments. As an illustrative example, the fourth moment of a real Gaussian vectorcan be written as the following [59, p. 107].E [ymznzpyq] = E [ymzn]E [zpyq] + E [ymzp]E [znyq]184



+ E [ymyq]E [znzp] (B.26)= Qm;d+nQd+p;q +Qm;d+pQd+n;q +QmqQd+n;d+pwhere the Q terms are the speci�ed entries from the Q covariance matrix de�ned in(B.22). Essentially, d is added to the subscript of Q corresponding to each term thatis a z instead of a y.Thus, equation (B.25) can be written in terms of entries from the Q covariancematrix.E hxmx�nx�pxqi = f(QmnQpq +QmpQnq +QmqQnp)+ (QmnQd+p;d+q +Qm;d+pQn;d+q +Qm;d+qQn;d+p)+ (Qd+m;d+nQpq +Qd+m;pQd+n;q +Qd+m;qQd+n;p)+ (Qd+m;d+nQd+p;d+q +Qd+m;d+pQd+n;d+q +Qd+m;d+qQd+n;d+p)� (Qd+m;nQp;d+q +Qd+m;pQn;d+q +Qd+m;d+qQnp)+ (Qd+m;nQd+p;q +Qd+m;d+pQnq +Qd+m;qQn;d+p)+ (Qm;d+nQp;d+q +QmpQd+n;d+q +Qm;d+qQd+n;p)g� (Qm;d+nQd+p;q +Qm;d+pQd+n;q +QmqQd+n;d+p) (B.27)+ j f(QmnQp;d+q +QmpQn;d+q +Qm;d+qQnp)� (QmnQd+p;q +Qm;d+pQnq +QmqQn;d+p)+ (Qd+m;d+nQp;d+q +Qd+m;pQd+n;d+q +Qd+m;d+qQd+n;p)� (Qd+m;d+nQd+p;q +Qd+m;d+pQd+n;q +Qd+m;qQd+n;d+p)+ (Qd+m;nQpq +Qd+m;pQnq +Qd+m;qQnp)+ (Qd+m;nQd+p;d+q +Qd+m;d+pQn;d+q +Qd+m;d+qQn;d+p)� (Qm;d+nQpq +QmpQd+n;q +QmqQd+n;p)� (Qm;d+nQd+p;d+q +Qm;d+pQd+n;d+q +Qm;d+qQd+n;d+p)gRearranging terms produces the following.E hxmx�nx�pxqi = f(QmnQpq +QmnQd+p;d+q +Qd+m;d+nQpq+ Qd+m;d+nQd+p;d+q �Qd+m;nQp;d+q +Qd+m;nQd+p;q+ Qm;d+nQp;d+q �Qm;d+nQd+p;q)185



+ j (QmnQp;d+q �QmnQd+p;q +Qd+m;d+nQp;d+q�Qd+m;d+nQd+p;q +Qd+m;nQpq +Qd+m;nQd+p;d+q�Qm;d+nQpq �Qm;d+nQd+p;d+q)g+ f(QmpQnq +QmpQd+n;d+q +Qd+m;d+pQnq+ Qd+m;d+pQd+n;d+q �Qd+m;pQn;d+q +Qd+m;pQd+n;q+ Qm;d+pQn;d+q �Qm;d+pQd+n;q) (B.28)+ j (QmpQn;d+q �QmpQd+n;q +Qd+m;d+pQn;d+q�Qd+m;d+pQd+n;q +Qd+m;pQnq +Qd+m;pQd+n;d+q�Qm;d+pQnq �Qm;d+pQd+n;d+q)g+ f(QmqQnp �QmqQd+n;d+p �Qd+m;d+qQnp+ Qd+m;d+qQd+n;d+p +Qd+m;qQn;d+p +Qd+m;qQd+n;p+ Qm;d+qQn;d+p +Qm;d+qQd+n;p)+ j (�QmqQn;d+p �QmqQd+n;p +Qd+m;d+qQn;d+p+ Qd+m;d+qQd+n;p +Qd+m;qQnp �Qd+m;qQd+n;d+p+ Qm;d+qQnp �Qm;d+qQd+n;d+p)gSubstituting for the Q terms from (B.23) yields:E hxmx�nx�pxqi = 14 f(RmnRpq +RmnRpq +RmnRpq +RmnRpq� SmnSqp + SmnSpq + SnmSqp � SnmSpq)+ j (RmnSqp � RmnSpq +RmnSqp � RmnSpq+ SmnRpq + SmnRpq � SnmRpq � SnmRpq)g+ 14 f(RmpRnq +RmpRnq +RmpRnq +RmpRnq� SmpSqn + SmpSnq + SpmSqn � SpmSnq) (B.29)+ j (RmpSqn � RmpSnq +RmpSqn � RmpSnq+ SmpRnq + SmpRnq � SpmRnq � SpmRnq)g+ 14 f(RmqRnp � RmqRnp � RmqRnp +RmqRnp+ SmqSpn + SmqSnp + SqmSpn + SqmSnp)+ j (�RmqSpn �RmqSnp +RmqSpn + RmqSnp186



+ SmqRnp � SmqRnp + SqmRnp � SqmRnp)gNote that S is a skew-symmetric matrix. Simplifying the above expression produces:yields: E hxmx�nx�pxqi = 14 f(RmnRpq +RmnRpq +RmnRpq +RmnRpq+ SmnSpq + SmnSpq + SmnSpq + SmnSpq)+ j (�RmnSpq � RmnSpq � RmnSpq � RmnSpq+ SmnRpq + SmnRpq + SmnRpq + SmnRpq)g+ 14 f(RmpRnq +RmpRnq +RmpRnq +RmpRnq+ SmpSnq + SmpSnq + SmpSnq + SmpSnq)+ j (�RmpSnq � RmpSnq � RmpSnq � RmpSnq (B.30)+ SmpRnq + SmpRnq + SmpRnq + SmpRnq)g+ 14 f(RmqRnp � RmqRnp � RmqRnp +RmqRnp� SmqSpn + SmqSnp + SmqSnp � SmqSnp)+ j (RmqSnp �RmqSnp � RmqSnp +RmqSnp+ SmqRnp � SmqRnp � SmqRnp + SmqRnp)g= f(RmnRpq + SmnSpq) + j (�RmnSpq + SmnRpq)g+ f(RmpRnq + SmpSnq) + j (�RmpSnq + SmpRnq)gReferring to equations (B.22) and (B.23), it is possible to write entries from thecomplex covariance matrix P in terms of R and S as shown below.Pmn = Rmn + jSmn (B.31)P�pq = Rpq � jSpq (B.32)Pmp = Rmp + jSmp (B.33)P�nq = Rnq � jSnq (B.34)From (B.18) and (B.19), respectively, the following equalities are known.E [xmxq] = 0 (B.35)E hx�nx�pi = 0 (B.36)187



Multiplying equations (B.31) and (B.32) together yields:PmnP�pq = (Rmn + jSmn) (Rpq + jSpq) (B.37)= (RmnRpq + SmnSpq) + j (�RmnSpq + SmnRpq)Similarly, multiplying equations (B.33) and (B.34) together yields:PmpP�nq = (Rmp + jSmp) (Rnq + jSnq) (B.38)= (RmpRnq + SmpSnq) + j (�RmpSnq + SmpRnq)Finally, multiplying equations (B.35) and (B.36) together yields:E [xmxq]E hx�nx�pi = 0 (B.39)By comparing equations (B.30), (B.37), (B.38), and (B.39), it can be seen that(B.30) can be written as:E hxmx�nx�pxqi = PmnP�pq + PmpP�nq + E [xmxq]E hx�nx�pi (B.40)= PmnP�pq + PmpP�nqB.4 Covariance Matrix ExpansionEquation (B.23) claims that the covariance matrix of the expanded real vector v canbe written as: Q = 12 264 R STS R 375 (B.41)where the submatrices are the real (symmetric) and imaginary (skew-symmetric)components of the complex covariance matrix of x.P = R + jS (B.42)The covariance matrix of x = y + jz can be written as:P = E [xx�] = E h(y+ jz) �yT � jzT�i (B.43)= E h�yyT + zzT�+ j �zyT � yzT�i188



By equating the real and imaginary terms in (B.42) and (B.43), it can be seen that:R = E hyyT + zzTi = E hyyTi+ E hzzT i (B.44)S = E hzyT � yzT i = E hzyT i� E hyzT i (B.45)Since y and z should have identical distributions, their covariance matrices are con-strained to be equal and equation (B.44) gives:E hyyTi = E hzzT i = 12R (B.46)It can easily be seen that the general solution to (B.45) can be written in the form:V = W+ 12S (B.47)where W is an arbitrary symmetric matrix and:E hzyTi = V = W+ 12S (B.48)E hyzTi = VT = W � 12S (B.49)Subtracting (B.49) from (B.48) yields:E hzyT i�E hyzT i = �W+ 12S�� �W � 12S� = S (B.50)Consequently, equation (B.45) is satis�ed and it now only remains to show that Wmust be zero.Recall that y and z represent the real and imaginary parts of x, respectively. Theyshould also be identically distributed. Therefore, V should be either a symmetric orskew-symmetric matrix. By performing a 90� rotation of the axes which maps y to zand z to �y, and consulting equations (B.48) and (B.49), it can be seen that V mustnecessarily be a skew-symmetric matrix. Thus, W must be zero and it has now beenshown that equation (B.41) holds. 189
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