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AbstractIn recent years, humanity has looked to science for ways to increase safety andconvenience in our everyday lives. This need for added security and convenience hasdrastically increased the demand for cellular telephony, necessitating the developmentof methods to increase the number of users that can be supported by a cellularsystem at one time. Beamforming has been proposed as a method for increasing thecapacity of a cellular system. In this work, we predict the capacity of a code divisionmultiple access (CDMA) cellular system implementing beamforming in a scatteringenvironment.First, we examine channel models for the auto- and cross correlation statisticsof a Rayleigh fading environment with scatter. We use ARMA modelling to �nd a�lter which matches known autocorrelation statistics. We then generalize a modelfor cross correlation statistics between elements of an antenna array in a scatteringenvironment to include arbitrary distributions of angle-of-arrival statistics.Finally, we improve a method for determining CDMA system uplink capacity givenby Earnshaw and extend the analysis to determine the e�ect of inter-element crosscorrelation in an antenna array due to scatter on the overall system capacity. Capacityis determined both through analytical means and through computer simulation. Thee�ect of high-rate data users and the problem of transmission beamforming in thedownlink are also examined. ii
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Chapter 1Introduction1.1 MotivationIn an age where frequency bandwidth is regarded as one of the world's natural re-sources, it is becoming increasingly important to optimize the bandwidth require-ments of existing systems. In the midst of an already crowded system, the areaof mobile communications is experiencing increasing demand without the luxury ofan increased allocation of bandwidth. Because of this, there has been increased in-terest in multiple access techniques, which allow di�erent users to share the sameportion of the radio spectrum. TDMA (time-division multiple access) and FDMA(frequency-division multiple access) grant individual users separate time-slots or fre-quency bands respectively. CDMA (code-division multiple access), on the other hand,allows multiple users simultaneous use of the same frequency band, by assigning aunique individual pseudo-noise sequence to each user.Another factor limiting the number of mobile users in a given area is de�nedby the signal processing limitations of the base-station. In order to maintain anacceptable quality of service, the base station must be able to maintain a signal-to-noise ratio corresponding to a desired maximum bit error rate. This is partlyachieved through power control techniques, which ensure that the received powerlevels for all mobiles remain approximately equal. One method for increasing thenumber of users sustainable in a given region is through subdividing the region into1



smaller and smaller cells, thereby reducing the requirements of each base station.This, however, dramatically increases the cost of the system. Recent studies haveshown signi�cant increases in the capacity of a single cell through the use of antennaarray beamforming at the base station.Beamforming takes advantage of the geometry of the antenna array by determin-ing the phase delays of a planewave signal at the di�erent antenna array elements.When the signals arriving from a speci�c direction are then co-phased, the desiredsignal power bene�ts from diversity e�ects, while interfering signals will tend to berandomized, decreasing their e�ect on the signal-to-noise ratio of the system.The best way to determine the capacity of a CDMA system using beamforming isto implement the system and increase the number of mobile users in the system untilthe quality of service becomes unacceptable. Actual implementation of a CDMA sys-tem with an antenna array in the base station, however, would be both very expensiveand very time-consuming. As an alternative to system creation, many e�ects seen innature can be modelled accurately through statistical modelling. Through the use ofboth analytical arguments and computer simulation, an initial idea can be gained ofthe capacity of the system.In this work, we use existing models for the autocorrelation of the Rayleigh fadingenvelope and cross correlation of signals received by a pair of antennas to simulatereceived signals in an antenna array with realistic auto- and cross correlation statistics.We then see the e�ect of cross correlation statistics due to a scattering environmenton the capacity of a CDMA system using beamforming.1.2 Literature SurveyOne of the major contributions of this thesis is the calculation of the capacity ofa CDMA system using digital beamforming. In this section, we discuss some otherworks that have also addressed capacity issues in a CDMA environment. Some ofthese papers deal strictly with the calculation of the capacity, while others analyse2



the bene�ts of improvements to the system.One of the �rst and most cited papers dealing with CDMA system capacity is[17]. Gilhousen et al. addressed the problem of calculating the capacity of a CDMAsystem using omnidirectional antennas with cell sectorization, taking into accountpath loss and shadowing, and introducing the system bene�ts of voice activity. Inthis thesis, we do not address voice activity, and so our capacity predictions are overlypessimistic. The addition of voice activity factors would be a simple extension to ourwork. We also modify the method of predicting downlink capacity in [17] to includetransmission beamforming in the downlink.Some other examples of capacity determination with omnidirectional antennasinclude [5], [8], [31] and [48]. In [5], Cameron and Woerner show a 10-30% loss insystem capacity from a perfect power control scenario with the implementation ofa realistic method of power control. Corazza, De Maio and Vatalaro [8] determineoutage probabilities as a function of path loss, fading, shadowing and power controlmethods by looking at the interference contributions both from inside and outside thecell. Milstein, Rappaport and Barghouti [31] study the e�ects of path loss exponent,total number of users and diversity on the bit-error probability for both the uplink anddownlink. In [48], the bit-error rates are also determined as a function of path-loss,fading, multiple access interference, and background noise with and without powercontrol. The e�ects of selection diversity are also studied. Viterbi and Viterbi [50]determine the erlang capacity of a power controlled CDMA system by looking at theprobability of system blockage from a queueing theory viewpoint.Manji and Zhuang have extended the theory presented in [17] to include capacitycalculations in multiple rate systems [29]. A further example including variable datarates is proposed by Paulrajan, Roberts and Machamer in [41]. Multiple rate systemcapacity is studied in Chapters 4 and 5.Barberis [3], and Kajiwara [24] have looked at the capacity of an indoor picocellularenvironment.Some methods have been proposed for improving the capacity of a cellular CDMA3



system. Giannetti [15] and Giannetti et al. [16] have proposed a 50% increase in sys-tem capacity by using the 63-64 GHz band. In this band, the e�ects of interferersare lowered through atmospheric attenuation. Viterbi et al. [51] have proposed a softhando� scheme that can increase coverage by more than a factor of 2. In [10], Di-vsalar, Simon and Raphaeli show that parallel interference cancellation dramaticallyimproves the capacity of a CDMA system.One of the most promising methods for increasing the capacity of a cellular CDMAsystem is through the use of base-station antenna arrays. In this thesis, we determinethe increase in capacity due to antenna beamformimng. This work is an extensionof work done by Earnshaw in [11], who studies the capacity of the uplink usingbeamforming for the single and multi-rate cases. Naguib and Paulraj [35] - [39],present the work most related to our own. The e�ects of antenna beamforming onsystem capacity are studied although a simpli�ed model for interference power isused. Other works including antenna beamforming in CDMA systems as a methodfor increasing cell capacity include [26] and [52].1.3 Summary of ContributionsThis section presents a list of the major contributions of this thesis.� A study of the use of Autoregressive-Moving Average (ARMA) models formatching the autocorrelation statistics of the multipath fading model presentedby Jakes in [23].� Generation of a low-order �lter through the use of traditional AR modelling plusMA modelling through power spectral density analysis to match the multipathfading model presented by Jakes in [23].� Amodel given by Salz andWinters in [46] for cross-correlation statistics betweentwo antenna elements assuming uniform angle-of-arrival statistics is generalizedto the case of any angle-of-arrival probability distribution P (�).4



� A method for simulating envelopes at an antenna array having the autocorre-lation statistics of [23] and the cross-correlation statistics based on [46]� Improved CDMA power and capacity predictions from Earnshaw in [11] for themultiple element antenna array case with better agreement to simulation values.� The extension of the CDMA power and capacity predictions to the scatter-ing environment case through analysis and simulation of the cross correlationstatistics at the antenna array.� The illustration of direction-of-arrival e�ects in antenna beamforming.� The application of the methodology for power and capacity predictions to theproblem of multi-service systems and transmission beamforming in the down-link.1.4 Thesis OutlineThe following chapters examine the auto- and cross-correlation statistics of an antennaarray in a Rayleigh fading environment. This study is aimed at determining thecapacity of a CDMA system in a scattering environment.Chapter 2 explores the possibilities of using autoregressive-moving average (ARMA)modelling in order to match the autocorrelation statistics given in [23]. Two existingmethods for matching Jakes' model are presented, followed by the proposed ARMAmodel. A discussion is given comparing the computational complexity of the ARMA�lter with that of the FFT method proposed by Smith [47]. Finally, the developed�lter is applied to the problem of channel gain tracking.The �nal goal of Chapter 3 is to simulate fading envelopes with autocorrelationstatistics de�ned in Chapter 2, with realistic cross correlation statistics. A cross-correlation model for the scattering environment derived by Salz and Winters foruniformly distributed angle-of-arrival statistics in [46] is generalized for any distribu-tion of angle-of-arrival statistics. Using this model, the cross correlation statistics of5



an antenna array can be determined. A method for generating signals with desiredcross correlation statistics is then given, and the linear and circular antenna arraygeometries are discussed.In Chapter 4, the power and capacity of a CDMA uplink system using beamform-ing are studied. The chapter commences with the improvement of system power andcapacity predictions from [11] by utilising the beampattern to predict the interfer-ence power levels. Using the models developed in Chapter 3 for the inter-elementcross correlation in a scattering environment, these power and capacity predictionsare extended to the scattering environment case. Finally, the probability distributionof the interference power is examined in order to extend the study to a multi-servicecase.Chapter 5 explores other beamforming applications using the same methodologyas Chapter 4. First, the direct matrix inversion algorithm is used to null out heavyinterferers in a predominantly voice mobile environment, and then an examination ismade of the use of transmission beamforming in the downlink by using a downlinkbeamforming method developed in [28]. Finally, Chapter 6 summarizes the contribu-tions of this thesis and presents a discussion of future research possibilities.
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Chapter 2Autocorrelation Matching ThroughARMA Modelling2.1 IntroductionThe Jakes model for fading channel simulation is a commonly accepted model ofthe multipath fading environment [23]. In recent years the development of compu-tationally e�cient and accurate channel simulators implementing Jakes' model hasbeen of great interest in the area of wireless communications. Methods that have beenproposed include truncation to a �nite impulse response �lter implemented using anIDFT [47, 56]. There is also a sum-of-sinusoids method outlined by Jakes [23], aswell as a recent AR(2) model described in [54]. The work in this chapter aims atreducing computational cost by employing low-order autoregressive moving-average(ARMA) processes, while maintaining high accuracy. It will then be combined withthe work of Chapter 3 to generate antenna array signal envelopes with accurate auto-and inter-element cross correlation statistics for simulation purposes.2.1.1 Chapter OutlineThis chapter begins with a brief overview of the Jakes model of the fading en-vironment. We then give an introduction to two methods for generating Rayleighrandom variates with statistics de�ned by Jakes. The �rst of these methods is the7



sum-of-sinusoids method given by Jakes in [23]. The second method, due to Smith[47] and improved by Young and Beaulieu in [56] utilises the IDFT.We then present an investigation into the use of auto-regressive moving average(ARMA) modelling for fading channel simulation yielding mixed results. It will beshown that the ARMA parameter estimation methods of [25] prove unsatisfactoryfor our purposes, whereas a method of AR modelling from [25] combined with MAparameter determination through power spectral density analysis matches the Jakesautocorrelation function well.In the latter part of the chapter, a comparison of the computational complexity ismade between the �ltering approach proposed in this chapter with the IDFT methodof variate generation. Finally, the impact of the proposed �lter to fading channel gaintracking on system performance is demonstrated and compared to trackers based onother channel estimation approaches.2.2 Jakes Model for Envelope AutocorrelationIn Section 1.3.6 of [23], Jakes develops the autocorrelation function for the electric�eld component of the signal. This function is given in Equation (1.3-50) of [23] asr(� ) = �8 b0J20 (!m� ) (2.1)where J0 is the zeroth order Bessel function of the �rst kind, � is the correlation timelag, b0 is the unmodulated signal energy and !m is the Doppler frequency in radiansper second. In order to generate an envelope with these autocorrelation statistics, itis easiest to generate two independent sequences, corresponding to the real and imag-inary, or in-phase and quadrature signals, each having an autocorrelation functionapproximating the Bessel function (Fig. 2.1). The Bessel squared autocorrelation isachieved by taking the square root of the sum of the squares of the two sequences.It is desirable, then, to generate a sequence with an autocorrelation function asshown in Figure 2.1. 8
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In the following sections, two di�erent methods of generating sequences with theBessel autocorrelation are presented. The �rst method, given by Jakes, is known asthe sum-of-sinusoids method [23]. The second method, developed by Smith [47], usesan IFFT algorithm developed by Smith.2.2.1 Jakes Sum-of-Sinusoids MethodIn [23], the need for a method of modelling the statistical properties encounteredin �eld testing is discussed. By modelling through computer simulation, much timeand energy that would otherwise have to be spent on �eld measurements can be saved.In Section 1.7.1 of [23], the mathematical development of the Jakes model is given.It is reproduced in part below.We start with an expression that represents the �eld as a superposition of planewaves: E(t) = Re[T (t)ei!ct] (2.2)where T (t) = E0 NXn=1 cnei(!mt cos�n+�n) (2.3)and c2n = p(�n)d� = 12�d� (2.4)The arrival angles are assumed to be uniformly distributed over [0; 2�] with d� =2�=N . This results in c2n = 1=N , and�n = 2�nN ; n = 1; 2; :::; N (2.5)By assuming N/2 is an odd integer, the series is rearranged and represented in termsof waves whose frequencies do not overlap, Jakes shows10



T (t) = E0pN 8<:p2 N0Xn=1[ei(!mt cos�n+�n) + e�i(!mt cos�n+��n)] (2.6)+ ei(!mt+�N ) + e�i(!mt+��N )o ; N0 = 12 �N2 � 1� (2.7)The autocorrelation function of T (t) is then shown to beRT (� ) = b0N cos(!c� )244 N0Xn=1 cos�!m� cos 2�nN �+ 2 cos(!m� )35 : (2.8)It is recognized that (2.8) is of the form of a carrier multiplied by a low frequencyfactor. As J0(x) is de�ned asJ0(x) = 2� Z �=20 cos(x cos�)d�; (2.9)from [23] 2 N0Xn=1 cos�!m� cos 2�nN �+ cos(!m� ) � N2 J0(!m� ): (2.10)Using this analysis, a method for simulation is clear and is depicted in Figure 2.2.In this �gure, !n = !m cos(2�n=N) (2.11)N0 = 12 �N2 � 1� (2.12)� = �4 (2.13)�n = �nN0 : (2.14)It should be noted that the output sequence is deterministic for a set of o�setoscillator phases. For further discussion of the realisation of this method, see section(1.7.2) of [23]. 11
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2.2.2 IDFT MethodA second method for generating sequences with autocorrelation functions thatmatch the model given in [23] uses the inverse discrete Fourier transform (IDFT) andwas developed by Smith [47], and modi�ed by Young and Beaulieu [56]. In the �rststep of this method, in generating a sequence with N samples, a complex sequencefX[k]g, k = 0; 1; :::; N � 1 is formed.X[k] = F [k]A[k]� jF [k]B[k] (2.15)where fA[k]g and fB[k]g are i.i.d. Gaussian variates, and fF [k]g are �lter coe�cientsde�ned to match the Jakes spectrum SJ (f).SJ (f) = 1:5�fmr1 � � ffm�2 ; jf j � fm (2.16)The �lter coe�cients are de�ned in [56] asF [k] = 8>>>>>>>><>>>>>>>>: 0 k = 01p2FS[k] k = 1; 2; :::; N2 � 1FS[k] k = N21p2FS[N � k] k = N2 + 1; :::; N � 1 (2.17)and FS[k] = 8>>>>>>>>>><>>>>>>>>>>: 0 k = 0s 1q1�( kNfm=fs ) k = 1; 2; :::; km � 1r�2 � arctan � km�1p2km�1�2 k = km0 elsewhere (2.18)where fm is the Doppler frequency, fs is the sample rate, fp = fs=N . and km =bfm=fpc. 13



An IDFT is then taken of the X[k] sequence from Equation (2.15) to attainthe desired sequence x[n] which has real and imaginary components, each of whichis Gaussian distributed with an autocorrelation function approximating the Besselfunction. This method is block-based and requires a large memory allocation whengenerating long sequences.2.3 ARMA ModelsAutoregressive and Moving-Average models are commonly used to approximatemany discrete-time random processes [25]. They are often chosen due to their rela-tionship to linear �lters with rational transfer functions, and their ability, througha random input sequence, to simulate noiselike behaviour accurately. Autoregressive(AR) models are used most commonly, due to the ease in calculating parametersby solving a set of equations. AR models are most e�ectively used in systems withpower spectral densities (PSDs) with sharp peaks. Moving-Average models are use-ful in characterising systems whose PSDs have sharp nulls and wide peaks. ARMAmodels are most useful in cases where the PSD can not be modelled accurately byeither a pure AR or MA model. Unfortunately, there is no simple way of determin-ing an optimal ARMA estimator, although there are several standard methods fordetermining the AR and MA parameters to be used in the ARMA model.The following sections give a brief outline of the least squares modi�ed YuleWalker equation (LSMYWE) method of AR estimation [25], chosen because it makesuse of many lags of the nonrational Jakes autocorrelation function in determining ARparameters, as well as the Durbin method for MA parameter de�nition.2.3.1 AR Parameter De�nitionIn the following equations p denotes the order of the AR term, while q denotes theorder of the MA term. The basic relationship between the autocorrelation function(ACF) frxx(m)g and the ARMA(p,q) parameters is given by [44]:14



rxx(m) = 8>>>>><>>>>>: �Ppk=1 akrxx(m� k) m > q�Ppk=1 akrxx(m� k) + �2wPq�mk=0 h(k)bk+m 0 � m � qr�xx(�m) m < 0 (2:19)where �2w is the variance of a white noise input sequence to the desired �lter havingan impulse response of h(k). In a purely AR process, this simpli�es torxx(m) = 8>>>>><>>>>>: �Ppk=1 akrxx(m� k) m > 0�Ppk=1 akrxx(m� k) + �2w m = 0r�xx(�m) m < 0 : (2:20)This gives rise to the Yule-Walker equations which when solved yield the autoregres-sive �lter coe�cients fakg.2666666664 rxx(0) rxx(�1) � � � rxx(�p + 1)rxx(1) rxx(0) . . . rxx(�p + 2)... . . . . . . ...rxx(p� 1) rxx(p� 2) � � � rxx(0) 37777777752666666664 a1a2...ap 3777777775 = �2666666664 rxx(1)rxx(2)...rxx(p) 3777777775 (2:21)This system of equations can be solved easily and e�ciently using the Levinson algo-rithm.It was found that AR modelling was unsatisfactory in approximating the Jakes au-tocorrelation sequence. Higher-order models (p > 8) yielded �lters with poles outsidethe unit circle, and lower-order models resulted in very low accuracy. This stabil-ity problem motivated the use of the LSMYWE method to �nd the AR parameters,though at the cost of destroying the correlation-matching property of AR modelling[25].With LSMYWE, the information contained in the higher order samples of theACF is used. The equations are of the following form [25]; where the number of lagsused in the calculation M > p 15



2666666664 rxx(q + 1)rxx(q + 2)...rxx(M) 3777777775 = �2666666664 rxx(q) rxx(q � 1) rxx(q � 2) � � � rxx(q � p + 1)rxx(q + 1) rxx(q) rxx(q � 1) . . . rxx(q � p + 2)... . . . . . . . . . ...rxx(M � 1) rxx(M � 2) � � � � � � rxx(M � p) 37777777752666666664 a1a2...ap 3777777775(2:22)which can be represented in matrix-vector form asrxx = �Rxxa (2:23)It follows from this that a least-squares estimate of a can be found byâ = �(RHxxRxx)�1RHxxrxx (2:24)where RHxx denotes the Hermitian transpose of Rxx.An important advantage of this method is that a large number of ACF samples areused in the computation of the �lter coe�cients. The optimal number of equationsto be used in this method, however, is not known a priori. For the Jakes ACF,satisfactory results were obtained using M � q = 23 equations in computing a p = 7order AR process.2.3.2 MA Parameter De�nitionThe parameters of the MA model are related to the ACF using (2.19) where ak= 0, and h(k) = bk for 1 � k � q. In this case, Equation (2.19) simpli�es to:rxx(m) = 8>>>>><>>>>>: 0 m > q�2wPq�mk=0 bkbk+m 0 � m � qr�xx(�m) m < 0 : (2:25)One method for calculating the fbkg parameters is based on a high-order ARapproximation to the MA process, and is attributed to Durbin [25, 44]. In thismethod, the MA(q) process is modelled by an AR(p0) process where p0 � q. (In ourdesign, the AR process was of order 300 to determine the MA(7) parameters.)16



In matching the MA process to the AR process, we have the z-transform relation-ship B(z) = 1=A(z) or B(z)A(z) = 1. This can be represented by a convolutionalsum ân + qXk=1 bkân�k = 8><>: 1 n = 00 n 6= 0 (2:26)A better �t for the fbkg parameters is found by using a least-squares error criterion.The squared error E is formedE = p0Xn=0[ân + qXk=1 bkân�k]2 � 1 (2:27)where â0 = 1, âk = 0 for k < 0 and âk = ak for 1 � k � p0 given by the high-orderAR solution to (2.21).The result of this minimization is b̂ = �R�1aa raa (2:28)where the ji� jj-th element of matrix Raa is given byRaa(ji� jj) = p0�ji�jjXn=0 ânân+ji�jj i; j = 1; 2; � � � ; q (2:29)and the ith component of vector raa israa(i) = p0�iXn=0 ânân+i i = 1; 2; � � � ; q (2:30)2.4 Results using ARMA methodsUsing the method outlined above, and a normalized Doppler frequency of 2�fm =0:3, an ARMA(7,7) �lter was obtained with the following transfer function:H(z) = 1 + 0:0338z�1+ 0:0569z�2+ 0:00357z�3+ 0:00337z�4+ 0:00468z�5+ 0:00563z�6+ 0:0323z�71� 3:5282z�1+ 4:1031z�2 � 0:8564z�3� 1:4288z�4+ 0:4452z�5+ 0:4939z�6 + 0:2275z�7(2:31)When zero-mean white Gaussian noise with variance 1 was passed through this�lter and after 5000 samples were discarded for start-up transients to become neg-ligible, an output waveform with the autocorrelation function shown in Figure 2.317



was produced. Also shown in this �gure is the AR(2) model of [54]. As can be seenfrom this plot, the autocorrelation function of the output sequence does not matchthe bessel autocorrelation closely. A modi�cation to the algorithm to ensure a good�t to the autocorrelation function is proposed in the following sections.2.5 PSD Method of Matching Jakes ACFAs the results of existing methods for determining the coe�cients for the �ltertaps seemed inaccurate, information contained in the Jakes' power spectral density(PSD) was used match the system more closely to theory.The PSD of of the Jakes model is depicted in Figure (2.4).The power spectral density of the Autoregressive portion of the ARMA modeldeveloped earlier in this chapter shows a similarity to the theoretical PSD (Fig 2.5).In order for the PSD to match the Jakes PSD more closely, the MA componentmust contribute to the system.It was found that if a comb �lter [44] is used in the numerator of the �lter, nullscan be placed in desired locations in order to make the roll-o� of the �lter steeper.Using the AR(7) model found earlier and a 15th order comb �lter, improved resultswere obtained. The following diagrams show an example of a system with a Dopplerfrequency !m = 0:3. Figure 2.5 shows the PSD of the AR(7) process, Figure 2.6 showsthe PSD of the comb �lter, and �nally Figure 2.7 shows the PSD of the completesystem. As can be seen in this graph, the total power spectral density of the systemresembles the Jakes PSD quite closely; it has a much steeper rollo� at the dopplerfrequency than the AR(7) PSD.2.5.1 ResultsUsing the method outlined in the previous sections for determining the �lter taps,a digital �lter was implemented in order to test this fading generator.When zero-mean white Gaussian noise with unit variance was passed through18
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this �lter and discarding 5000 samples for transient e�ects to become negligible, anoutput waveform with the autocorrelation function shown in Figure 2.8 was produced.As can be seen from this plot, the autocorrelation function of the output sequencematches the bessel ACF much more closely than the �lter produced by the ARMAmethods of [25].2.5.2 Model Order SelectionThe model order of an ARMA process has been studied by Merhav in [30] andHannan and Rissanen in [19]. Both of these methods assume a data sequence ykis being modelled. Unfortunately, the nature of our problem is di�erent, as we aretrying to model a known ACF with a true model order that is in�nite.2.5.3 Computational Comparison with IDFT MethodOne of the main goals of the development of an ARMA �lter to generate cor-related Rayleigh random variates was to minimize the computation time. In [56],the complexity of the IDFT method of generation compared favorably to the sum-of-sinusoids method described earlier in the chapter. In this section we compare thecomputational complexity of the IIR �lter with the IDFT method for random variategeneration.If a �lter has M non-zero entries in the numerator and N non-zero entries inthe denominator of the transfer function, it will require M + N real additions andM+N+1 real multiplications per output sample [44]. The �lter derived in this chaptertherefore requires 9 additions and 10 multiplications per sample or 18 additions and20 multiplications per complex sample.This compares favourably with the IDFT method [56] which requires 3 log2N realadds per complex sample and 2 log2N real multiplications per complex sample. Table2.1 compares the computations required per complex sample to generate a complexsequence of length 2N . Table 2.1 illustrates the computational bene�t of the ARMA�lter especially if the data set to be generated is long.24



Jakes Model   

ARMA

AR(2)         

10 20 30 40 50 60 70 80 90 100
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

lag

c
o

rr
e

la
ti
o

n
 f

a
c
to

r

Comparison of Autocorrelation Functions

Figure 2.8: A comparison of the Jakes autocorrelation function with autocorrelationfunctions generated by the new ARMA �lter and the AR(2) �lter.
25



Sequence Length ARMA �lter IDFT Method212 = 4096 18 adds, 20 mults 36 adds, 24 mults214 = 16384 18 adds, 20 mults 42 adds, 28 mults216 = 65536 18 adds, 20 mults 48 adds, 32 mults218 = 262144 18 adds, 20 mults 54 adds, 36 mults220 = 1048576 18 adds, 20 mults 60 adds, 40 multsTable 2.1: Comparison of computational requirements per complex sample for theARMA �lter and IDFT method of random variate generationSome other advantages of the ARMA �lter method over the IDFT method includememory e�ciency and a recursive rather than block calculation. These computationalbene�ts are multiplied when being used to simulate antenna array situations.2.6 Application to Fading Channel Gain TrackingTo detect an information sequence transmitted coherently and reliably over afading channel, it is necessary to estimate the channel phase and amplitude. Thisis motivated by the fact that coherent detection of signals over fading channels issuperior to non-coherent detection if accurate channel state information is available[43]. Prediction of fading dynamics can be applied to channel estimation in systemsemploying coherent modulation. In [27], Liu and Blostein propose a decision feedbackand adaptive linear prediction (DFALP) algorithm which is reproduced for referencein Appendix A. [27] assumes the Rayleigh fading channel given in [23], and producesbit-error-rate (BER) curves of system performance based on that assumption. Inthe following section, we illustrate the importance of model accuracy on simulationvalidity. 26



2.6.1 Analytical Performance EstimationAccording to [27], the bit error rate (BER) of symbol-by-symbol CPSK signaldetection for an SNR per symbol 
s isPe = 12 0BB@1 � 1r1 + �2̂c log2 q+
�1s1��2̂c 1CCA (2.32)where �2̂c is the mean-square-error of the unbiased minimum mean square error(MMSE) estimator ĉk of ck and q = 2 for BPSK and q = 4 for QPSK. It is seenthat the BER performance is dependent only on the MSE of the channel gain esti-mator ĉk.An estimated MSE of the channel gain estimator ĉk for DFALP is derived in [27]as �2̂c � r0 � ~rT (Rc + 1
s IN�N)�1~r (2.33)where Rc is the covariance matrix of the channel gain ~c(k) = (ck�1; :::; ck�N)T , ~r is thecovariance between ck and ~c(k), IN�N is the identity matrix. The approximation in(2.33) is due to the fact that errorless decision feedback is assumed in step 1.4 of thealgorithm (Appendix A). For the Jakes fading model, the autocorrelation sequence,rk, is given by rk = r0J0(2�fmTk) (2.34)where r0 is the variance of the input sequence (assumed to be unity). Also,fmT = v�T = vfvlfs (2.35)is the normalized fading bandwidth with v the vehicle speed, f the wave frequency,fs the symbol rate and vl the speed of light. Eqs.(2.32) and (2.33) can be used toestimate the BER performance of the DFALP algorithm when the channel matchesJakes' model perfectly.In simulation of the DFALP algorithm, a channel simulator must be used in orderto generate channel gain values. The choice of the channel simulator is an important27



one as its accuracy will determine the system performance. Figure 2.9 plots the an-alytical estimate of the BER performance of the DFALP algorithm using CQPSK,comparing the the BER performance of the system if driven by ARMA �lter devel-oped in this chapter with an AR(2) �lter used by Wu and Duel-Hallen in [54]. Theperformance curve obtained by truncating Jakes' autocorrelation function to 200 sam-ples is also plotted for reference. It can be seen from this plot that the performance ofthe system using the ARMA �lter comes much closer to matching the curve producedusing the theoretical autocorrelation function than that of the AR(2) �lter. However,at higher SNR, the ARMA �lter may not provide autocorrelation statistics accurateenough for all simulation purposes.2.7 Chapter SummaryIn this chapter, we have investigated the use of autoregressive moving-average(ARMA) modelling to design a digital �lter which matches the Jakes autocorrelationfunction of the multipath fading environment. ARMA modellingas in [25] provedine�ective in matching the Bessel autocorrelation output. However, the use of theJakes PSD in order to improve the response of the overall �lter proved an e�ectiveway to achieve satisfactory results while maintaining the bene�t of a low-order �lterin order to decrease simulation run-time.The ARMA �lter was then applied to the problem of fading channel gain tracking.This illustrated the importance of model accuracy in simulation.
28
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Chapter 3Cross Correlation3.1 IntroductionIn the past, much of the research and simulation work involving antenna arraysassumed either that the envelopes of the signals received at each of the antennaelements in the array were uncorrelated (in the case of diversity research) or perfectlycorrelated (in the case of research in beamforming). In this chapter we examine thecross-correlation statistics between antennas within an antenna array. The goal of thisis to model the e�ects of cross-correlation statistics more accurately both in analysisand simulation.3.1.1 Chapter OutlineThe beginning of this chapter deals with a model for the cross-correlation statisticsbetween signals received from the same source at a pair of antennas. This model hasderivations in [4], [46], and [35]. The derivation by Bramley [4] is followed closelyin this chapter. The �nal model presented in [46] and [35] is then generalized to anarbitrary angle-of-arrival distribution.The second part of the chapter deals with linear and circular antenna arrays. First,a method for generating signals with desired cross-correlation statistics is presentedfollowed by a discussion of linear and circular array structures. This method is then30



Environment Angle Spread (2�)Flat Rural (Macro) 1 degreeUrban (Macro) 20 degreesHilly (Macro) 30 degreesMicrocell (Mall) 120 degreesPicocell (Indoors) 360 degreesTable 3.1: Typical angle spreads (2�) in cellular applicationsveri�ed using some sample data. Finally, the array response vectors for linear andcircular arrays are presented.3.2 ScatterIn the analysis and simulation of a wireless multipath system, it is important totake the e�ects of scatter into account. Scatter occurs when signals from a singlesource arrive at a base station from several directions within an angular region afterbeing re
ected by objects in the surrounding vicinity. This e�ect is depicted in Figure3.1 where the signal is shown to arrive within [�k��; �k+�]. Typical angle spreadsfor di�erent environments are given in [42] and are shown for reference in Table 3.1.In [13], Ertel et al. discuss a number of spatial channel models including theGaussian Wide Sense Stationary Uncorrelated Scattering (GWSSUS), Gaussian An-gle of Arrival (GAA), Typical Urban (TU), and Bad Urban (BU) models. Much ofthe work in this chapter deals with the cross-correlation statistics between elementsof an antenna array in a scattering environment. Throughout the remainder of thisthesis, the distribution of the arriving signal power, P (�), plays a signi�cant role. Inthis chapter, a model for determining cross correlation statistics given by Salz and31



Winters in [46], which assumes a uniform distribution of arrival statistics, is gener-alized for any distribution of arrival statistics. In [2], a discussion is raised of theappropriateness of a Gaussian distributed angle-of-arrival (AOA) model versus a uni-formly distributed AOA model. It has been suggested in [2] that the Gaussian AOAmodel more accurately represents the environment in rural and suburban environ-ments, whereas environments with much higher angle spread may be more accuratelymodelled by a uniform AOA model. The model that is then chosen for analysis andsimulation throughout this work is the GAA model by applying a Gaussian distri-bution of arrival statistics. It should be noted that the same methodology can beapplied to distributions corresponding to other environments as well.3.3 Derivation of Cross Correlation ModelThis section presents the derivation for the cross-correlation statistics of the mul-tipath fading channel. It is based on and similar to a derivation given in [4], andyields similar results to derivations found in [46] and [35]. In the latter derivations,the assumption is made that the information arriving at the receiver is containedwithin a beamwidth of 2�, and that it is uniformly distributed therein. This deriva-tion takes the model one step further by assuming no speci�c distribution so that anydistribution can be used with the result of the derivation.Assume that two identical antennas i and j, spaced at a distance d are receivingsignals from the same source. Let the direction of the rth wave make an angle �krwith the line ij, and let the rth wave produce voltagesvir = ar cos !t+  r + �d� cos(�kr )! (3.1)and vjr = ar cos !t+  r � �d� cos(�kr)! (3.2)32
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in i and j for a coplanar ray of frequency f = !=2� with wavelength �. Thequantity  r represents the phase delay of ray r, and ar represents the amplitude ofray r.Then the total voltages produced by all the waves at i and j are then:vi = nXr=1 ar cos !t+  r + �d� cos(�kr)! (3.3)and vj = nXr=1 ar cos !t+  r � �d� cos(�kr )! (3.4)If Eqs. (3.3) and (3.4) are written in the following formvi = A1 cos(!t+	1) (3.5)and vj = A2 cos(!t+	2) (3.6)then the amplitudes and the phases at the two antennas will, in general, be di�erent.It can readily be shown from Eq.(3.3) and Eq.(3.4) that the mean signal voltage at ior j is: �v1 = �v2 = 0 (3.7)The mean square signal voltage at i or j is�v21 = �v22 = 12 nXr=1 a2r (3.8)34



The mean square signal amplitude at i or j is�A21 = �A22 = nXr=1 a2r (3.9)The mean product of v1 and v2 isv1v2 = 12 nXr=1 a2r cos 2�d� cos(�kr)! (3.10)When the individual rays above are now dealt with as distributions of rays, thesummations in Eqs. (3.8), (3.9), and (3.10) are replaced by integrals over the distri-bution of received waves.The total power received from the whole distribution of waves isP0 = Z 2�0 P (�)d� (3.11)Equations (3.8), (3.9), and (3.10) now become�v21 = �v22 = P0 = Z 2�0 P (�)d� (3.12)�A21 = �A22 = 2P0 = 2 Z 2�0 P (�)d� (3.13)v1v2 = Z 2�0 P (�) cos 2�d� cos(�)! d� (3.14)From Eqs. (3.7), (3.12), and (3.14) the correlation coe�cient between the instan-taneous signals at the two antennas is given by:�v = v1v2�v21 = R 2�0 P (�) cos �2�d� cos(�)� d�R 2�0 P (�)d� (3.15)35



In practice, it is the signal amplitude that is observed, and we need to �nd thecorrelation coe�cient between A1 and A2.Eqs. (3.5) and (3.6) may be writtenv1 = B1c cos(!t) +B1s sin(!t) (3.16)and v2 = B2c cos(!t) +B2s sin(!t) (3.17)where B1c = A1 cos(	1) = mXr=1 ar cos( r + �r) (3.18)B2c = A2 cos(	2) = mXr=1 ar cos( r � �r) (3.19)B1s = A1 sin(	1) = mXr=1 ar sin( r + �r) (3.20)B2s = A2 sin(	2) = mXr=1 ar sin( r � �r) (3.21)and �r = �d� cos(�kr) (3.22)Since the phase angles,  , are assumed to be random, and m is assumed to belarge, B1c, B2c, B1s, and B2s, are each distributed normally with mean zero.The joint probability distribution of A1 and A2 is determined by the second mo-ments: �B21c, �B22c, �B21s, �B22s, B1cB2c, B1sB2s, B1cB1s, B2cB2s, B1cB2s, and B2cB1s.�B21c = �B22c = �B21s = �B22s = 12 mXr=1 a2r = P0 = Z 2�0 P (�)d� (3.23)36



B1cB2c = B1sB2s = 12 mXr=1 a2r cos 2�d� cos(�kr )! (3.24)= Z 2�0 P (�) cos  2�d� cos(�)! d� = �RiRj (3.25)B1cB1s = B2cB2s = 0 (3.26)B1cB2s = �B2cB1s = �12 mXr=1 a2r sin 2�d� cos(�kr)! (3.27)= � Z 2�0 P (�) sin 2�d� cos(�)! d� = �RiIj (3.28)Where the notation �RiRj denotes the cross-correlation factor of the real compo-nent of the Rayleigh fading value at antenna element i with the real component ofthe Rayleigh fading value at element j. In the same way, �RiIj denotes the cross-correlation factor of the real component of the Rayleigh fading value at antennaelement i with the imaginary component of the Rayleigh fading value at element j.Equations (3.25) and (3.28) agree with Equations (6) and (7) given by Salz andWinters in [45] and are the end result of the derivation by Bramley in [4]. At this pointin the derivation, both [45] and [35] assume that P (�) is uniform on the beamwidth[�k ��; �k +�]. If that is followed through, Eqn. (3.25) becomes:�RiRj = 12� Z �k+��k�� cos 2�d� cos(�)! d�= 12� Z �k+��k�� [J0(2�d� ) + 2 1Xm=1J2m(2�d� ) cos 2m�]d�= J0(2�d� ) + 2 1Xm=1 J2m(2�d� ) cos 2m�k sin(2m�)2m� (3.29)and Eqn. (3.28) becomes:�RiIj = 2 1Xm=1J2m+1(2�d� ) sin((2m + 1)�k)sin((2m+ 1)�)(2m+ 1)� (3.30)37



which is the �nal result of the derivation in both [45] and [35]. Instead, we make noassumption for the distribution of P (�). Eqn. (3.25) becomes:�RiRj = Z 2�0 P (�) cos 2�d� cos(�)! d�= Z 2�0 P (�)[J0(2�d� ) + 2 1Xm=1 J2m(2�d� ) cos 2m�]d�= J0(2�d� ) + 2 1Xm=1J2m(2�d� ) Z 2�0 P (�) cos(2m�)d� (3.31)and Eqn. (3.28) becomes:�RiIj = � Z 2�0 P (�) sin 2�d� cos(�r)! d�= � Z 2�0 P (�)2 1Xm=1 J2m+1(2�d� ) sin((2m+ 1)�)d�= �2 1Xm=1J2m+1(2�d� ) Z 2�0 P (�) sin((2m+ 1)�)d� (3.32)Equations (3.31) and (3.32), each contain an integral consisting of the probabilitydistribution function of the angle-of-arrival statistics multiplied by a sinusoid. Theseintegrals are very closely related with the de�nition for the real and imaginary compo-nents of the Fourier transform of P (�) . This result enables a closed-form expressionfor the cross correlation statistics to be found for any angle-of-arrival distributionP (�) for which the Fourier transform of P (�) has a closed-form expression.In this work we propose the use of a Gaussian distribution for P (�). The nextsection outlines the theory and results of this model.3.3.1 Use of a Gaussian Distribution for P (�)If a Gaussian distribution is used for P (�) with mean AOA �k and variance �2�P (�) = 1q2��2� e�(���k)22�2� (3.33)38



Eqs. (3.31) and (3.32) become:�RiRj = J0(2�d� ) + 2 1Xm=1 J2m(2�d� ) cos(2m�k)e�2m2�2� (3.34)and �RiIj = 2 1Xm=0J2m+1(2�d� ) sin((2m+ 1)�k)e�(2m+1)2�2�2 (3.35)In determining (3.34) and (3.35), integrals are taken over [0; 2�). It should benoted that for these integrals, the Gaussian AOA distibution is being truncated. As�2� increases, (3.34) and (3.35) become more approximate.The following graphs show the relationship between the cross correlation of theantennas and the antenna spacing for arrival angles of 0o and 90o. The graphs showthe relationships for the cross correlation factors between the real components of theRayleigh fading between two antennas as a function of antenna spacing. Figures (3.2)and (3.3) show results assuming a uniform distribution within the beamwidth. Figures(3.4) and (3.5) assume a Gaussian angle of arrival distribution as in Eqn. (3.34). Asa means of comparison, these graphs are plotted for a Gaussian distribution with thesame variance as the corresponding uniform distributions. Similar plots can also bemade of the correlation factor between the real component of the Rayleigh Fadingvalue at one antenna and the imaginary component of the Rayleigh fading value atanother antenna using Eqn. (3.35).3.3.2 Generation of Envelopes with Proper Cross Correla-tionFrom the previous chapter, we saw that it was possible to create sequences of datathat had desirable autocorrelation sequences. A major goal of this work is to havesignals arriving at an antenna array with proper auto- as well as cross correlationstatistics. In order for this to be possible we �lter uncorrelated data, denoted by39
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Figure 3.2: Correlation of the real portion of the fading versus antenna spacing for� = 0o and angle-of-arrival uniformly distributed.
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Figure 3.3: Correlation of the real portion of the fading versus antenna spacing for� = 90o and angle-of-arrival uniformly distributed.
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the multi-channel vector �y, to produce correlated data, denoted by the multi-channelvector �x: �x = A�y (3.36)where A is a matrix containing the �lter coe�cients to be determined.First, note that �x�xT = A�y�yTAT (3.37)Taking the expected value of both sides of this equation yields:R = Ef�x�xTg = EfA�y�yTATg (3.38)Where R is the desired cross correlation matrix. This simpli�es to:R = Ef�x�xTg = AEf�y�yTgAT= AIAT= AAT (3.39)Therefore, in order to generate data with the proper auto and cross correlationstatistics denoted by the matrix R, it is only necessary to generate uncorrelated dataand multiply it by matrix A.3.4 Array Con�gurations3.4.1 Linear ArrayIf the antennas are arranged in a linear array of NA elements, as shown in Fig-ure 3.6, calculations to determine the desired cross correlation matrix are simpli�edconsiderably. The spacing between neighbouring antennas is simply �=2, making the44



possible separation of pairs of antennas multiples of �=2. The angle of arrival, unlikethat of a circular antenna array, is the same for each pair of antennas, as the assumeddistance to the mobile is much larger than the length of the antenna array.De�ning the 2 x 2 matrix:Dji�jj = 264 �RiRj �RiIj�IiRj �IiIj 375= 264 �RiRj �RiIj��RiIj �IiIj 375 (3.40)where i; j = 1; :::NA, the cross correlation matrix R can be de�ned as:R � 26666666666664 I2�2 D1 D2 � � � DNADT1 I2�2 D1 . . . DNA�1DT2 DT1 I2�2 . . . DNA�1... . . . . . . . . . ...DTNA DTNA�1 DTNA�2 � � � I2�2 37777777777775 (3.41)An example of such a cross correlation matrix for an antenna array with 5 antennaelements with the signals coming from � = 5o with a beamwidth � = 5o yields a crosscorrelation matrix as follows:R = 26666666666666666666666664
1:00 0:00 0:95 0:26 0:81 0:49 0:61 0:65 0:38 0:730:00 1:00 �0:26 0:95 �0:49 0:81 �0:65 0:61 �0:73 0:380:95 �0:26 1:00 0:00 0:95 0:26 0:81 0:49 0:61 0:650:26 0:95 0:00 1:00 �0:26 0:95 �0:49 0:81 �0:65 0:610:81 �0:49 0:95 �0:26 1:00 0:00 0:95 0:26 0:81 0:490:49 0:81 0:26 0:95 0:00 1:00 �0:26 0:95 �0:49 0:810:61 �0:65 0:81 �0:49 0:95 �0:26 1:00 0:00 0:95 0:260:65 0:61 0:49 0:81 0:26 0:95 0:00 1:00 �0:26 0:950:38 �0:73 0:61 �0:65 0:81 �0:49 0:95 �0:26 1:00 0:000:73 0:38 0:65 0:61 0:49 0:81 0:26 0:95 0:00 1:00

37777777777777777777777775 (3.42)45
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Figure 3.6: Linear array geometry.46



3.4.2 Circular ArrayIf the antennas are arranged in a circular array, as shown in Figure 3.7, the calcu-lations to determine the cross correlation matrix are more mathematically involved.The cross correlation coe�cients between any two antennas are calculated simply bydetermining the distance between the pair of antennas and the angle of arrival inrelation to the geometry of the two antennas. The distance between neighbouringantennas in the array is assumed to be �=2. Using this information and the numberof antennas in the array, the distance between any pair of antenna elements can becalculated. The distances between pairs of antenna elements can be calulated usingthe cosine law and the geometry of the circular array. For example, the distancebetween antennas 1 and 3, d13 is given byd213 = 2 �2!2  1� cos �(NA � 2)NA !! (3.43)Once the entire geometry of the circular array is de�ned, a cross correlation matrixcan be calculated.An example of such a cross correlation matrix for an antenna array with 5 antennaelements with the signals coming from � = 5o with a beamwidth � = 5o yeilds a crosscorrelation matrix as follows:
R = 26666666666666666666666664

1:00 0:00 0:95 0:26 0:23 0:97 �0:84 0:49 �0:47 0:880:00 1:00 �0:26 0:95 �0:97 0:23 �0:49 0:84 �0:88 �0:470:95 �0:26 1:00 0:00 �0:04 0:99 �0:96 �0:18 �0:04 �0:990:26 0:95 0:00 1:00 �0:99 �0:04 0:18 �0:96 0:99 �0:040:23 �0:97 �0:04 �0:99 1:00 0:00 �0:97 �0:25 0:87 �0:410:97 0:23 0:99 �0:04 0:00 1:00 0:25 �0:97 0:41 0:87�0:84 �0:49 �0:96 0:18 �0:97 0:25 1:00 0:00 �0:99 �0:080:49 �0:84 �0:18 �0:96 �0:25 �0:97 0:00 1:00 0:08 �0:99�0:47 �0:88 �0:04 �0:99 0:87 0:41 �0:99 0:08 1:00 0:000:88 �0:47 0:99 �0:04 �0:41 0:87 �0:08 �0:99 0:00 1:00
37777777777777777777777775 (3.44)47
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3.4.3 Con�dence Intervals about Cross Correlation ValuesIn order to ensure the accuracy of simulated results, it is important to determinean acceptable range into which simulation results should fall. In determining whetherthe cross correlation statistics come within an acceptable range of values about thedesired value, a con�dence interval can be set for each value in the cross correlationmatrix.A method for determining this con�dence interval is given by Myers and Wellin [34]. If the cross correlation coe�cient of the data is given by r, and the FisherZ-Transform of r is given by Zr = 12 ln �1 + r1� r � (3.45)Then the 95% con�dence interval for Zr is given byZ = Zr � 1:96pN � 3 (3.46)where N is the number of samples in each of the Gaussian sequences.The inverse Fisher Z-Transform of the con�dence interval for Zr then yields thecon�dence interval around r. �max;min = e2Z � 1e2Z + 1 (3.47)As an example of this, and as an illustration of the e�ectiveness of the strategyfor generating envelopes with correct cross-correlation statistics, a sample cross cor-relation matrix of the Gaussian components of the Rayleigh fading using a 3 elementcircular array is given by R: 49



R = 26666666666666664 1:0000 0:0000 �0:8156 �0:3412 0:4311 �0:23670:0000 1:0000 0:3412 �0:8156 0:2367 0:4311�0:8156 0:3411 1:0000 0:0000 �0:5254 0:5400�0:3411 �0:8156 0:0000 1:0000 �0:5400 �0:52540:4312 0:2367 �0:5254 �0:5400 1:0000 0:0000�0:2367 0:4311 0:5400 �0:5254 0:0000 1:0000
37777777777777775 (3.48)The cross correlation matrix of the six 10000 sample sequences is denoted by %% = 26666666666666664 1:0000 0:0040 �0:8144 �0:3409 0:4271 �0:24670:0040 1:0000 0:3371 �0:8191 0:2439 0:4195�0:8144 0:3371 1:0000 �0:0001 �0:5232 0:5447�0:3409 �0:8191 �0:0001 1:0000 �0:5378 �0:51240:4271 0:2439 �0:5232 �0:5378 1:0000 �0:0090�0:2467 0:4195 0:5447 �0:5124 �0:0090 1:0000
37777777777777775 (3.49)Now using the method outlined ablove, the 95% con�dence interval is determinedfor the individual elements of the matrix %. From %, the individual cross correlationvalues, �, are upper bounded by:%max = 26666666666666664 1:0000 0:0236 �0:8077 �0:3235 0:4430 �0:22820:0236 1:0000 0:3543 �0:8126 0:2623 0:4355�0:8077 0:3543 1:0000 0:0195 �0:5088 0:5584�0:3235 �0:8126 0:0195 1:0000 �0:5238 �0:49780:4430 0:2623 �0:5088 �0:5238 1:0000 0:0106�0:2282 0:4355 0:5584 �0:4978 0:0106 1:0000
37777777777777775 (3.50)and lower bounded by: 50



%min = 26666666666666664 1:0000 �0:0156 �0:8209 �0:3581 0:4109 �0:2650�0:0156 1:0000 0:3196 �0:8255 0:2254 0:4032�0:8209 0:3196 1:0000 �0:0197 �0:5373 0:5308�0:3581 �0:8255 �0:0197 1:0000 �0:5516 �0:52670:4109 0:2254 �0:5373 �0:5516 1:0000 �0:0286�0:2650 0:4032 0:5308 �0:5267 �0:0286 1:0000
37777777777777775 (3.51)As can be seen by these matrices, every value contained in R �ts in the 95%con�dence interval established by matrix %. This shows that this method for gener-ating sequences with speci�c cross-correlation statistics is satisfactory in the abovestatistical sense.3.4.4 Array Response VectorsWhen multi-element antenna arrays are used to receive signals, it is necessaryto determine the array response vector �a for a signal arriving from direction �k.This vector comprises the relative phases of the received signal at each of the antennaelements, and is important in beamforming as a means to co-phase the signals arrivingfrom a speci�ed direction. The process of co-phasing the signal for a given directionwill tend to randomize the phases of signals arriving from other directions. The nete�ect of this is the ampli�cation of desired signals and the suppression of undesiredsignals, known as a type of spatial �ltering called beamforming. In this section wepresent the array response vectors for both linear and circular arrays.3.4.4.1 Array Response Vector for a Linear ArrayThe relative phase of a signal at �k being received at the ith element of a lineararray of NA elements is given by Van Veen and Buckley in [49].51



�a = 26666666666664 1ej� cos(�k)ej2� cos(�k)...ej(NA�1)� cos(�k) 37777777777775 (3.52)3.4.4.2 Array Response Vector for a Circular ArrayThe array response vector of a circular array is considerably more complicated toderive than that of the linear array. It has been derived by Earnshaw in [11]. Therelative phase of a signal at �k being received at the ith element of a circular array isgiven by �a = 26666666666664 1e�j�1e�j�2...e�j�NA�1 37777777777775 (3.53)where the phase delays at each antenna �i are:�i(�k) = � cos(�k � i 2�NA )2 sin( �NA ) (3.54)3.5 Chapter SummaryIn this chapter, we presented a model given in [4], [46], and [35] for the cross-correlation factor for the envelope of a quadrature signal arriving at a pair of antennas.We then generalized the model to include any angle of arrival distribution. Forillustration purposes, a comparison was made between the cross correlation statisticsof a system assuming a uniform AOA distribution with a system assuming a GaussianAOA distribution. 52



A method was then shown to generate signals with speci�c cross-correlation statis-tics from uncorrelated signals. This was then veri�ed using con�dence intervals fromsome sample data. Finally, the array response vectors for both linear and circulararrays were presented.
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Chapter 4Power and Capacity Considerations4.1 Chapter IntroductionBeamforming is a widely studied technique for improving the signal-to-noise ra-tio of a received signal. Through the use of an antenna array, signals arriving froma desired direction can be isolated by multiplying the total signal received at thedi�erent antenna elements by a series of beamforming weights. These weights arechosen to co-phase the desired signal, while randomizing the signals arriving fromother directions. In this chapter, new techniques for power levels and system capac-ity evaluation of a CDMA system using beamforming are determined both throughanalytical means and through computer simulation. This chapter will deal with fourmain topics: power prediction, uplink capacity prediction, the extension to scatteringenvironments, and �nally, the extension to other beamforming applications such as amulti-service environment.4.1.1 Chapter OutlineThe �rst main topic of this chapter deals with power value prediction. Analysisstarts with the simple case of a single antenna element in a CDMA system. Thisis then extended to include the case of multiple antenna element arrays by utilisingthe beampattern in order to determine power levels that are in
uenced by interfering54



mobiles. A comparison of predicted values with simulation results given in [11] isthen presented.The second topic, the capacity of the CDMA system uplink, is investigated by us-ing the previously derived power value expressions in order to determine the thresholdfor the number of mobiles that the system can handle before power control starts tofail. These values are also compared with simulation results from [11].In the third section, this analysis is extended to the case of a scattering en-vironment. A basic calculation is made through information contained within thebeampattern only, which yields an overly pessimistic view on the power levels andcapacity of the system. The second method converts the e�ects of increased scatterinto decreased cross-correlation statistics as derived in Chapter 3. These results arealso compared with chip-level and power-control-level simulation results.The �nal part of the chapter further presents extensions of this work. Firstly,the capacity of the system is studied in a more in-depth manner by determining theprobability distribution of the interference. This analysis enables an introductorylook at the multi-service case.4.2 Power Value CalculationsThe analysis in this chapter is closely related to that presented by Earnshaw in[11]. Some of the di�erences between [11] and our work are outlined below.In Eqs. (3.3) and (3.4) in [11], the received power values for the in-phase andquadrature components of the kth mobile when beamforming coe�cients for the dthmobile are used are shown for an NA element array to be, respectively:PIdk = 14�2k 8><>:24NAXi=1 cos('di � �ki � 2�fc�kd)352+ 24NAXi=1 sin('di � �ki � 2�fc�kd)3529>=>; (4.1)55



PQdk = 14�2k 8><>:24NAXi=1 sin('di � �ki � 2�fc�kd)352+ 24NAXi=1 cos('di � �ki � 2�fc�kd)3529>=>; (4.2)where �k is the received signal strength, �ki is the relative phase of the ith entry ofmobile k's array response vector, and 'di is the relative phase angle of the ith entryof mobile d's beamforming weight vector. It should be noted that these quantitiesare equal.In Chapter 6 of his thesis, Earnshaw simpli�es (4.1) and (4.2) by de�ning �dki �'di � �ki � 2�fc�kd. He then assumes that the �dki values are independent randomvariables, and in power calculations assumes that (PNAi=1 sin(�dki))2 is independentof (PNAi=1 cos(�dki))2. These approximations are made in order to derive closed-formexpressions, but adversely a�ect the accuracy of the analysis. In this work, we do notmake these assumptions. Rather, we derive insight from the information containedwithin the beampattern which enables a more accurate, yet simpler, view of theproblem.4.2.1 Single Element Power CalculationsIn a system where perfect power control [11] is employed and only a single antennaelement is used, each mobile k in the system will contribute an amount of interferencepower, PIk , equivalent to the signal power PR.For a voice activity factor of unity, this meansPI = NIPR (4.3)where NI = NM � 1 is the number of interferers.Substituting Eqn. (4.3) into the de�nition for the signal-to-noise ratio (Equation(6.23) from [11]): 56



EbN0 = PR=RBPI=B + �2n (4.4)with RB representing the single data bit rate for all users, B the bandwidth of thespread signal and �2n the variance of the background thermal noise. Solving Eqn.(4.4)for PR yields: PR = �EbN0��2n � 1RB � NIB �EbN0���1 (4.5)From Eqn. (4.5), the signal power and the interference power can be predictedfor one antenna element and a given target signal-to-noise ratio.4.2.2 Multiple Antenna Element Power CalculationsCalculations for predicted power values in the multiple-antenna-element case areessentially the same as in the single-element case, except that, due to beamforming,signals coming from certain directions will be suppressed more than others. Thiscan be illustrated by a sample beampattern. In Figure 4.1, the desired signal isarriving from the direction where the beampattern is at its peak, and signals arrivingfrom other mobiles that are evenly positioned around the cell will be suppressed asillustrated by the beampattern.In the multiple antenna element case, the SNR equation from (4.4) becomes:EbN0 = PR=RBPI=B +NA�2n (4.6)where NA is the number of antenna elements in the array, and PR is the total receivedsignal power at the antenna array. Note that the factor of NA in (4.6) is due toindependent noise at each array element. The interference contributed by a givenmobile k is given by: PIk = �kPR (4.7)57



where NIXk=1PIk = PI (4.8)where �k is the fraction of interferer k's signal power passed by the beamformingweights.The expected interference power is then given by:E[PI ] = E[�k]NIPR (4.9)In the same way as the single element case, this value can be substituted intoEq(4.6) in order to solve for the predicted power level. In this case the receivedpower is: E[PR] = �EbN0�NA�2n ( 1RB � E[�k]NIB �EbN0�)�1 (4.10)4.2.2.1 Calculation of E[�k]For illustration purposes, the maximum SNR beamforming weights for a desireduser d at an angle of �d in a circular array are calculated in the following way:~w(�d) = 2666666664 ej�0ej�1...ej�NA�1 3777777775 (4.11)where the phase delays at each antenna �i were de�ned by Eq. (3.54) as:�i(�d) = � cos(�d � i 2�NA )2 sin( �NA ) (4.12)This method may be extended to other array geometries as well.58
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Figure 4.1: A sample beampattern focusing on an angle-of-arrival (AOA) of 92 degreesin an array with 5 elements.
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Number of Antennas (NA) E[�k]1 1.00002 0.54633 0.39504 0.32415 0.24606 0.20587 0.19568 0.1682Table 4.1: Expected values of �kThe amount of interference power seen from an interferer k at direction-of-arrivalof �k is then: �k(�d; �k) = j~wH(�d)~a(�k)j2 (4.13)where ~wH(�d) denotes the complex conjugate transpose of ~w(�d).Assuming that both �d and �k are random variables uniformly distributed on(0; 2�], the expected value of �k can be calculated by substituting (4.11) into (4.13)and calculating the expected value of the result. For the case of a circular array,E[�k(�d; �k)] = 14�2NA Z 2�0 Z 2�0 �������NAXq=1 ej�� cos(�d�q 2�NA )2 sin( �NA ) �� cos(�k�q 2�NA )2 sin( �NA ) ��������2 d�dd�k(4.14)Table 4.1 shows the calculated expected values for �k as a function of the numberof antennas; these values were obtained by numerically integrating (4.14).Now using the results from Table 4.1 and Eqs. (4.9) and (4.10), the mean mobilepower and mean interference power can be predicted for di�erent values of NA. Theresults of these calculations are presented in Table 4.2.60



# of Ants (NA) # of Mobs (NM ) Mean Mobile Power Mean Interference Power1 20 3:8052 � 10�16 7:2299 � 10�152 30 5:1324 � 10�16 8:1311 � 10�153 30 5:3002 � 10�16 6:0714 � 10�154 30 6:1667 � 10�16 5:7960 � 10�155 30 6:7598 � 10�16 4:8225 � 10�156 30 7:6286 � 10�16 4:5529 � 10�157 30 8:7675 � 10�16 4:9733 � 10�158 30 9:6347 � 10�16 4:6996 � 10�15Table 4.2: Predicted mean mobile and interference power values for Eb=N0 = 7dBusing Eqn. (4.10)4.2.3 Comparison with Simulated ValuesPN-chip level simulation of the CDMA environment has been performed by Earn-shaw in [11]. A comparison of simulation results with predicted values from Table 4.2are given in Tables 4.3, 4.4, and 4.5. As can be seen from these tables, the results fromsimulation come much closer to matching the predictions from Eq. (4.10) than from[11]. This is likely due to the assumptions Earnshaw makes in his power calculationsfor the multiple element antenna array case as discussed in Section 4.2.4.3 Capacity Calculations4.3.1 Single Antenna ElementIn calculating the maximum number of mobiles that the system can handle, welook at the expression for calculating mean mobile power Eq.(4.5).61



Quantity Observed Value Predicted Value Predictedvia Simulation Eq. (4.5) Value in [11]Mean mobile power 3:8041 � 10�16 3:8052 � 10�16 3:8052 � 10�16Mean interference power 7:2275 � 10�15 7:2299 � 10�15 7:2299 � 10�15Table 4.3: Comparison of Predicted and Simulated Power Values for NA = 1, and 20mobilesQuantity Observed Value Predicted Value Predictedvia Simulation Eq. (4.10) Value in [11]Mean mobile power 5:4193 � 10�16 5:3002 � 10�16 4:7656 � 10�16Mean interference power 6:3758 � 10�15 6:0714 � 10�15 4:6068 � 10�15Table 4.4: Comparison of Predicted and Simulated Power Values for NA = 3, and 30mobilesQuantity Observed Value Predicted Value Predictedvia Simulation Eq. (4.10) Value in [11]Mean mobile power 6:7858 � 10�16 6:7598 � 10�16 6:3219 � 10�16Mean interference power 4:8870 � 10�15 4:8225 � 10�15 3:6667 � 10�15Table 4.5: Comparison of Predicted and Simulated Power Values for NA = 5, and 30mobiles 62



P = �EbN0��2n � 1RB � NIB �EbN0���1 (4.15)It is easy to see from this equation that as the number of users in the systemincreases, the power level will decrease and eventually become negative. Solving thisequation for the maximum number of mobiles still yielding a positive result yields:NM = $ BRB(Eb=N0)%+ 1 (4.16)where b:c is the 
oor function. This expression for capacity is derived based on asingle desired user with interferers and is optimistic. Information on power controland a multi-user based criterion for capacity determination is found in [11].4.3.2 Capacity Prediction with Multiple Antenna ElementArraysIn the same way as the single element case, an estimate for the capacity of thesystem is found by �nding the minimum number of mobiles needed to make Eq.(4.10) become negative. In the multiple antenna element case, the expression for thepredicted capacity of the single cell is:NM = $ 1E[�k] ( BRB(Eb=N0))%+ 1 (4.17)Predicted capacities for the single and multiple element cases for the capacity ofa single cell are given in Table 4.6. As can be seen from this table, as the number ofantenna elements in the array increases, the number of mobiles that can be supportedincreases as well. These values show some discrepancy from the values predicted in[11], especially for low numbers of antenna elements, where Earnshaw's Gaussianapproximations would be especially poor.63



(NA) Capacity CapacityEq. (4.17) From [11]1 26 262 47 373 65 594 79 825 104 1046 125 128Table 4.6: Predicted capacity values using perfect power control and correlation 1.0between array elements.4.3.3 Comparison with Chip-Level Simulated ValuesThrough PN-chip-level simulation, the capacity of the system can also be esti-mated by increasing the number of mobile users in the system until the BER of thereceived signals exceeds 10�3. This method of simulation is computationally expen-sive, especially as the number of mobile users and the number of elements in theantenna array increase. It is for this reason that Earnshaw performed chip-level sim-ulations for cases only up to 3 antenna elements. Table 4.7 compares the analyticalprediction of capacity with the chip-level simulation results from [11]. As can be seenfrom this table, the agreement for the single element case is closer than that for themultiple elements case. This is due to the averaging e�ect of the interference powerover the beampattern. For some mobile arrangements in the multiple antenna case,a greater amount of interference will be seen (due to several mobiles being clusteredaround the maximum of the beampattern). This will tend to degrade the capacity inthe multiple antenna case as is evident from table 4.7. This e�ect is studied in moredetail in sections 4.4.6 and 4.4.7. 64



(NA) Capacity Simulation CapacityEq. (4.17) From [11]1 26 262 47 413 65 604 79 -5 104 -6 125 -Table 4.7: Predicted and observed capacity values using perfect power control andcorrelation 1.0 between array elements.4.4 Multiple Antenna Scattering EnvironmentIn Section 3.2, an introduction was given to scatter. Typical values for anglespread, and di�erent methods for modelling angle-of-arrival (AOA) statistics werediscussed. In the remainder of this chapter, the model that is implemented for theAOA statistics is the Gaussian Angle of Arrival model, as discussed in [13]. Thismodel assumes that the scattered signal arrives at the antenna array Gaussian dis-tributed around a mean angle of �k with a variance of �2�, where �2� denotes a varianceequivalent to a uniform distribution over [�k ��; �k + �]. The AOA distribution isdenoted by P (�).In this section, we extend the work of this chapter to the case of scattering environ-ments. This is done in using two separate methods. The �rst uses the beampattern.The second method deals with increasing scatter through decreasing the envelopecorrelation within the antenna array. In both cases, the e�ects of phase delay areignored. 65



4.4.1 Beampattern MethodThis simple method to give an indication of possible system behaviour in the scat-tering environment uses the beampattern to determine the amount that the desiredsignal will be suppressed due to scattering. Power predictions, in the scattering casewith an AOA distribution of P (�), can be calculated much in the same way as thosewithout scattering, except that the signal is assumed to be made up of a large numberof individual paths that will all behave in the way that the signal behaved with noscatter.So in this case the interference contributed by a mobile k is given by:PIk = �kPR (4.18)where �k is the relative percentage of the signal power of an interferer passed by thebeamforming weights. The expected interference power in this case is the same as inthe previous case as each individual path will still be suppressed by its location inthe beam pattern. E[PI ] = E[�k]NIP (4.19)Again, this value can be substituted into Eqn. (4.6) in order to solve for thepredicted power level. In this case, however, some of the desired signal itself will besuppressed due to the fact that not all of the signal is located at the maximum of thespatial �lter corresponding to the maximum SNR beamformer. The percentage ofthe desired signal passed by the beam pattern for a mean angle-of-arrival �d is givenby: �d = Z 2�0 P (�) �������NAXq=1 ej�� cos(�d�q 2�NA )2 sin( �NA ) �� cos(��q 2�NA )2 sin( �NA ) ��������2 d� (4.20)66



If P (�) is assumed to be Gaussian with mean �d and variance equivalent to thatof a uniform distribution over [�d � �; �d + �] as illustrated in Figure 3.1, (4.20)becomes:�d = s 32��2 Z 2�0 e�3(���d)2=�2 �������NAXq=1 ej�� cos(�d�q 2�NA )2 sin( �NA ) �� cos(��q 2�NA )2 sin( �NA ) ��������2 d� (4.21)The expected value of (4.21) can be calculated asE[�d] = 12�s 32��2 Z 2�0 Z 2�0 e�3(���d)2=�2�������NAXq=1 ej�� cos(�d�q 2�NA )2 sin( �NA ) �� cos(��q 2�NA )2 sin( �NA ) ��������2 d�d�d (4.22)Again, similar calculations as in the preceding sections can be performed numer-ically yielding analytically predicted values for mobile and interference powers andfrom the, analytical evaluations of system capacity. The equation for system capacityin this case is given by: NM = $ 1E[�k] ( E[�d]BR(Eb=N0))%+ 1 (4.23)Assuming the angle-of-arrival statistics are Gaussian-distributed about some nom-inal angle, �d, the predicted system capacities are calculated and shown shown inFigure 4.2.4.4.2 Mobile Power Prediction Using Cross-Correlation Statis-ticsIn Eqs.(3.3) and (3.4) in [11], the received power values for the in-phase andquadrature components of the kth mobile when beamforming coe�cients for the dth67
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mobile are used are given, respectively, by:PIdk = 14�2k 8><>:24NAXi=1 cos('di � �ki � 2�fc�kd)352+ 24NAXi=1 sin('di � �ki � 2�fc�kd)3529>=>; (4.24)PQdk = 14�2k 8><>:24NAXi=1 sin('di � �ki � 2�fc�kd)352+ 24NAXi=1 cos('di � �ki � 2�fc�kd)3529>=>; (4.25)where �k is the received signal strength, �ki is the relative phase of the ith entry ofmobile k's array response vector, and 'di is the relative phase angle of the ith entryof mobile d's beamforming weight vector. In [11], it was assumed that the signalstrength of the received signal at the di�erent antenna elements was the same. Inthe following, this arti�cial assumption is not made. Letting �ki denote the signalstrength due to mobile k at element i, the received power values for the in-phase andquadrature components of the kth mobile when beamforming coe�cients for the dthmobile are used are generalized from Eqs. (4.24) and (4.25) to:PIdk = 14 8><>:24NAXi=1 �ki cos('di � �ki � 2�fc�kd)352 (4.26)+ 24NAXi=1 �ki sin('di � �ki � 2�fc�kd)3529>=>;PQdk = 14 8><>:24NAXi=1 �ki sin('di � �ki � 2�fc�kd)352 (4.27)+ 24NAXi=1 �ki cos('di � �ki � 2�fc�kd)3529>=>;For notational simplicity, the following term may be de�ned:
idk � 'di � �ki � 2�fc�kd (4.28)69



Then the total received power by substituting (4.28) into (4.26) and (4.27) is:Pdk = PIdk + PQdk= 12 8><>:24NAXi=1 �ki cos(
idk)352 + 24NAXi=1 �ki sin(
idk)3529>=>; (4.29)Without loss of generality, we simplify the notation and de�ne the reference mobilecorresponding to d = 1. In the following, if k = 1, reference is made to the desiredsignal, otherwise it refers to the interferer k, where k 6= 1. This notation modi�es(4.28) to 
ik = 'i � �ki � 2�fc�k (4.30)By expanding (4.29), the interference power due to mobile k, Pk, becomes:Pk = 12f[�k1�k1 cos2(
1k) + �k1�k2 cos(
1k) cos(
2k)+ �k1�k3 cos(
1k) cos(
3k) + :::+ �kNA�kNA cos2(
NAk)]+ [�k1�k1 sin2(
1k) + �k1�k2 sin(
1k) sin(
2k)+ �k1�k3 sin(
1k) sin(
3k) + :::+ �kNA�kNA sin2(
NAk)]g (4.31)Using the identity cos(A) cos(B) + sin(A) sin(B) = cos(A � B), (4.31) simpli�esto Pk = 12 NAXi=1 NAXj=1 �ki�kj cos(
ik � 
jk) (4.32)Note that in this equation cos(
ik � 
jk) = 1 for i = j regardless of whether k isthe reference mobile.Equation (4.32) can now be used to aid in the calculation of both the mobile andinterference power. In calculating reference mobile power, (k = 1), we substitute(4.30) into (4.32) 70



Pk = 12 NAXi=1 NAXj=1 �ki�kj cos(('i � �ki � 2�fc�k)� ('j � �kj � 2�fc�k)) (4.33)= 12 NAXi=1 NAXj=1 �ki�kj cos(('i � �ki)� ('j � �kj)) (4.34)Using maximum SNR beamforming [49] for the reference mobile (k = 1), the relativephase of the ith element of the array response vector, �1i, will equal the relative phaseof the ith beamforming weight, 'i. Therefore, cos(('i��1i)�('j��1j)) = cos(0) = 1,and (4.34) becomes P1 = 12 NAXi=1 NAXj=1 �1i�1j (4.35)The mean power is thenE[P1] = 12 NAXi=1 NAXj=1E[�1i�1j] (4.36)where �1i is the signal strength received at element i, which is proportional to theRayleigh fading random variables for mobile 1 at element i,R1i . We write �1i = �1R1i,where �1 models other e�ects such as path loss and shadowing, which are assumedto be independent of the Rayleigh fading and equal across the antenna array. Eqn.(4.37) becomes E[P1] = 12 NAXi=1 NAXj=1E[�1R1i�1R1j]= 12E[�21] NAXi=1 NAXj=1E[R1iR1j] (4.37)where R1i and R1j are both Rayleigh-distributed random variables that are eacha function of two Gaussian distributed random variables. The second-order statis-tics among these four Gaussian distributed random variables are given by the cross-correlation matrix between antenna elements i and j, Rij71



Rij = 2666666664 �RiRi �RiIi �RiRj �RiIj�IiRi �IiIi �IiRj �IiIj�RjRi �RjIi �RjRj �RjIj�IjRi �IjIi �IjRj �IjIj 3777777775 (4.38)This can be simpli�ed toRij = 2666666664 1 0 �RiRj �RiIj0 1 ��RiIj �RiRj�RiRj ��RiIj 1 0�RiIj �RiRj 0 1 3777777775 (4.39)where �RiRj is de�ned as the cross-correlation factor between the real componentof the Rayleigh fading value at antenna i with the real component of the Rayleighvalue at antenna j, and �RiIj is de�ned as the cross-correlation factor between thereal component of the Rayleigh fading at antenna i with the imaginary componentof the Rayleigh fading at antenna j. The quantities �RiRj and �RiIj are calculatedbased on the cross-correlation model derived in Section 3.3. In this case, E[RkiRkj ],the cross-correlation between the Rayleigh distributed random variables at antennasi and j due to mobile k, is given in terms of the con
uent hypergeometric function2F1(�12;�12 ; 1; :) as shown by Davenport and Root in [9]E[RkiRkj ] = �2 (2F1(�12 ;�12; 1; �2ji)) (4.40)with �2ji = �2RiRj + �2RiIj. In the case of maximum correlation between antenna el-ements, E[RkiRkj ] = 2. As the inter-element correlation decreases, E[RkiRkj ] willalso decrease to a minimum of �2 . In the channel model for the case of no scattering,if the angle-of-arrival distribution has zero variance, then all of the Rayleigh cross-correlation values will equal 2. On the other hand, for the case of scattering, the AOAstatistics are more spread out, and values in the cross-correlation matrix o� the maindiagonal will decrease as the AOA distribution variance, �2� increases. �2� is equal tothe variance of a uniformly distributed random variable over ��o.72



4.4.2.1 Mobile Power E�ect due to Cross-CorrelationWe denote the quantity �M to represent the net e�ect of correlation loss induced byangle-of-arrival distribution spread. This value can be used as a factor in determiningthe mean mobile power. In the SNR equation (4.6), PR can be replaced by �MPR.Without loss of generality, we consider mobile 1. We de�ne �M as�M � E[P1jAOA dist variance = �2�]E[P1jAOA dist variance = 0] (4.41)From (4.37), (4.41) can be written as�M = 12�21PNAi=1PNAj=1 E[R1iR1jjAOA dist variance = �2�]12�21PNAi=1PNAj=1E[R1iR1jjAOA dist variance = 0] (4.42)Evaluating the con
uent hypergeometric function as discussed in the previoussection, (4.42) can be simpli�ed to:�M = PNAi=1PNAj=1E[RkiRkjjAOA dist variance = �2�]2N2A (4.43)Values of �M can be calculated using the hypergeometric function and E[�M ] cal-culated by averaging �M over all directions-of-arrival, and are presented in Table 4.8.In this table, AOA distribution � indicates a Gaussian angle-of-arrival distributionwith variance equivalent to a uniform distribution of �� degrees. As expected, thecross-correlation e�ects are more pronounced as the AOA distribution variance in-creases, and as the number of antenna elements increases (increasing the percentage ofelements in the cross-correlation matrix a�ected by cross-correlation, and increasingthe diameter of the circular array).4.4.2.2 Interference Power E�ect Due to Cross-CorrelationCalculations for the e�ect on an interferer's power due to the amplitude cross-correlation e�ects are similar to the calculations of the cross-correlation e�ect on the73



AOA Distribution � NA = 2 NA = 3 NA = 4 NA = 50 1.0000 1.0000 1.0000 1.00002 0.9998 0.9997 0.9995 0.99935 0.9985 0.9980 0.9970 0.995610 0.9942 0.9922 0.9886 0.984020 0.9799 0.9733 0.9628 0.951040 0.9475 0.9300 0.9119 0.896590 0.9108 0.8811 0.8650 0.8525180 0.9024 0.8699 0.8545 0.8385Table 4.8: Mobile power suppression factors E[�M ] due to cross-correlation statisticsmobile power. De�ne �Ik to be the e�ect on an interferer's power due to beamformingas well as cross-correlation e�ects. By determining �Ik , interference power PI in theSNR equation (4.6) can be replaced by �IkPRNI in order to solve for the mobile andinterference power. �Ik is de�ned as�Ik � E[PIk jAOA dist variance = �2�]E[P1jAOA dist variance = 0] (4.44)Using equations (4.32) and (4.37), (4.44) can be rewritten as:�Ik = 12E[�2k]PNAi=1PNAj=1 E[RkiRkj cos(
ik � 
jk)jAOA dist variance = �2�]12E[�21]PNAi=1PNAj=1 E[R1iR1jjAOA dist variance = 0] (4.45)But E[R1iR1j] = 2 for all i; j in the case of AOA distribution variance = 0. Also,it is assumed that due to perfect power control, E[�21] = E[�2k], and (4.45) simpli�esto �Ik = PNAi=1PNAj=1 E[RkiRkj cos(
ik � 
jk)jAOA dist variance = �2�]2N2A (4.46)74



It is assumed that the fading information (Rki,Rkj) is independent of the angles
ik and 
jk. With this assumption, (4.46) factors to�Ik = PNAi=1PNAj=1 E[RkiRkj jAOA dist variance = �2�] cos(
ik � 
jk)2N2A (4.47)In Section 4.2.2.1 a similar expression was calculated for beamforming by ignoringthe cross-correlation e�ects and analysing the beampattern. The amount that aninterferer k was suppressed was de�ned as �k, and this corresponded the amount ofsignal passed by the spatial �lter. The analysis in Section 4.2.2.1 is equivalent to thecase of perfect correlation at the antenna elements (AOA distribution variance = 0).For perfect correlation, E[RkiRkj ] = 2 regardless of the antenna pair i and j, and�Ik = �k = 12N2A NAXi=1 NAXj=1 2 cos(
ik � 
jk) (4.48)or NAXi=1 NAXj=1 cos(
ik � 
jk) = �kN2A (4.49)By removing all values in the summation for which i = j and hence cos(
ik�
jk) =1, (4.49) becomes: NAXi=1 NAXj=1;j 6=i cos(
ik � 
jk) = �kN2A �NA (4.50)This result will now be used to analyse cross-correlation degradation. By removingthe terms in (4.47) for which i = j and hence cos(
ik � 
jk) = 1, (4.47) becomes�Ik = 12N2A 0@2NA + NAXi=1 NAXj=1;j 6=iE[RkiRkj jAOA dist variance = �2�] cos(
ik � 
jk)1A(4.51)75



The E[RkiRkj ] terms for which i 6= j can be calculated using the con
uent hyper-geometric function for a given direction-of-arrival and AOA distribution variance �2�.From the properties of the hypergeometric function, �2 � E[RkiRkj ] � 2. Letting �krepresent the average o�-diagonal cross-correlation value, (4.51) can be approximatedby: �Ik � 12N2A 0@2NA + NAXi=1 NAXj=1;j 6=i �k cos(
ik � 
jk)1A (4.52)= 12N2A 0@2NA + �k NAXi=1 NAXj=1;j 6=i cos(
ik � 
jk)1A (4.53)Substituting the result from (4.50), this becomes�Ik � 12N2A �2NA + �k(�kN2A �NA)� (4.54)Averaging this result over all directions-of-arrivalE[�Ik ] � 12N2A �2NA + E[�k](E[�k]N2A �NA)� (4.55)= 1NA + E[�k]E[�k]2 � E[�k]2NA (4.56)The interference suppression factors due to cross-correlation statistics and beam-forming e�ects are calculated numerically, and are given in Table 4.9. As in the tableof �M values, the values decrease as the number of antennas increases, and as theAOA distribution variance increases.The two methods outlined in this section for determining the amount of sup-pression due to scatter yielded drastically di�erent results. The �rst method, usinginformation from the beampattern exclusively, showed a drastic decrease in the sig-nal power as the angle spread increased. A more in-depth method, using the crosscorrelation information caused by the scatter seems to indicate that the e�ects onpower due to scatter, may, in fact, be quite small, suggesting that beamforming willstill provide signi�cant capacity bene�ts, even in high scatter environments.76



AOA Distribution � NA = 2 NA = 3 NA = 4 NA = 50 0.5463 0.3950 0.3241 0.24602 0.5463 0.3950 0.3241 0.24605 0.5462 0.3948 0.3238 0.245710 0.5458 0.3943 0.3230 0.245120 0.5444 0.3925 0.3204 0.243240 0.5414 0.3885 0.3154 0.240090 0.5380 0.3840 0.3108 0.2375180 0.5373 0.3830 0.3097 0.2367Table 4.9: Interference suppression factors �Ik due to cross-correlation statistics andbeamforming4.4.3 Power and Capacity PredictionOnce again, the same calculations as in the preceding sections can be performednumerically yielding predicted values for mobile and interference power as well aspredictions for system capacity. Repeating the multiple antenna expression for SNR(4.6) here: EbN0 = PR=RBPI=B +NA�2n (4.57)As mentioned in the previous sections, if PR is replaced by E[�M ]PR, and PIreplaced by E[�Ik ]PRNI , (4.57) becomes:EbN0 = E[�M ]PR=RBE[�Ik ]P1NI=B +NA�2n (4.58)Solving this for PR yields: 77



PR = �EbN0�NA�2n (E[�M ]RB � E[�I ]NIB �EbN0�)�1 (4.59)The equation for system capacity, i.e. the maximum value of NM = NI + 1 thatwill still yield a positive result in (4.59), is given by:NM = $( E[�M ]BE[�I ]RB(Eb=N0))%+ 1 (4.60)Assuming the angle-of-arrival statistics are Gaussian-distributed about some nom-inal angle, �k, the system capacities can be predicted and are shown in Figure 4.3.The previous sections have all assumed mobiles that are distributed uniformly in acell. In the following sections we extend this to include the possibility of nonuniformlydistributed mobiles in the cell. This will also enable the analysis of a multi-servicesystem.4.4.4 Simulation MethodologyFor additional veri�cation, a detailed system simulation has been performed takinginto account inter-element cross-correlation statistics. A version of the simulatordeveloped by Earnshaw in [11] was obtained and modi�ed to allow inclusion of inter-element cross-correlation statistics within the antenna array. Salz and Winters haveconsidered inter-element statistical correlation for the case of uniformly distributedscatterers [45]. A modi�ed relationship for a Gaussian scatter distribution was derivedin Chapter 3, and is given by�RiRj = J0(2�d� ) + 2 1Xm=1 J2m(2�d� ) cos 2m�ke�2m2�2� (4.61)and �RiIj = 2 1Xm=0J2m+1(2�d� ) sin((2m+ 1)�k)e�(2m+1)2�2�2 (4.62)78
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where � is the mean angle-of-arrival, �2� is the variance of the Gaussian angle-of-arrivaldistribution, and �RiRj refers to the correlation coe�cient between the real componentof the Rayleigh fading at antenna i and the real component of the Rayleigh fading atantenna j.4.4.5 Simulation Results - PowerAn important aspect of con�rming analytical calculations for system power andcapacity is the con�rmation of the results through computer simulation. Using perfectpower control, chip-level simulations were run to examine the e�ect of inter-elementstatistical correlation on mean mobile power and interference power. The results for3 and 5 element antenna arrays are shown in Figure 4.4.From Figure 4.4, a general trend of degradation of signal to interference (SIR)power ration is observed as the variance, �2�, of the angle-of-arrival distribution isincreased. However, this decrease in SIR is negligible for low �2� and is quite smalleven for high �2�. This suggests that even though there is lowered inter-elementcorrelation the, users' array responses remain fairly distinct.4.4.6 Simulation Results - CapacityThere are several ways of testing the capacity of the system through simulation. Adirect approach is to perform a PN-chip-level simulation, and continue to add mobilesuntil the BER of the system drops below some accepable level such as 10�3. Thismethod is computationally very expensive, especially for large numbers of mobilesand large antenna elements. In order to make these simulations more computationallye�cient, capacity was determined through power-control-level simulation instead [11].In this approach, power levels are periodically determined such that the signal-to-noise ratio for each mobile is kept �xed at 7dB. As the number of mobiles increases,however, there comes a point where the solution to the power control problem startsto break down. The point where valid solutions to the power control system ofequations cannot be found is taken to be the capacity of the system. Examples of the80
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SNR curves for 3 antenna elements and angle-of-arrival distribution with equivalentvariance to uniform distributions over �2o and over �900 are plotted in Figure 4.5.Due to computer processing resource limitations, it was only feasible to run thesesimulations for 3 antenna elements, and even then not for enough trials to producesmooth SNR curves.These curves were generated using the power control method of simulation. Simi-lar curves were also obtained for AOA distributions with variance equivalents to ��where � = 0; 2; 5; 10; 20; 40; 90; and 180 degrees. It is di�cult to obtain a speci�c ca-pacity value for the point when power control starts to break down. If the maximumpoint on the SNR curve is taken as the breakdown point, then the capacity of thesystem is given in Table 4.10. As can be seen in this table, the performace degrades asthe AOA distribution variance increases, but no signi�cant degredation is seen withsmall AOA distribution variance. It is also noted that the predicted capacity valuefrom Eq. (4.60) is consistently higher than the values obtained through simulation.This is caused by a built-in assumption in the predicted value that the mobiles areuniformly distributed about the cell. In the simulation, the location of each mobileis generated randomly, allowing cases where mobiles are clustered. These cases ac-count for a decrease in the overall capacity. The e�ects on non-uniform placement ofmobiles is studied in the next section.4.4.7 Capacity Prediction - Non-Uniform Placement of Mo-bilesIn this section the interference power distribution is calculated and used to de-termine the proportion of interference power that will be seen by a mobile. In theprevious sections, it was assumed that the mobiles were uniformly distributed aboutthe cell, thus ignoring situations where large numbers of mobiles may be clustered inone area increasing their mutual interference.Recall in Fig. 4.1 that a sample beampattern was shown for a 5-antenna-elementcircular array. As can be seen from this example, there is a small probability that a82
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� Predicted Value SimulationEq. (4.60)0 65 612 65 615 65 6110 65 6120 64 6140 62 5990 59 57180 59 53Table 4.10: Comparison of predicted capacity values (from Figure 4.5) with valuesobserved through simulationrandomly placed interferer will have 90-100% of its power passed by the spatial �lter(i.e. the direction of arrival is approximately 92o), a moderately small probabilitythat 35-90% of the interferer's power is passed by the spatial �lter, and a relativelyhigh probability that 0-35% of the interferer's power is passed. In other words, theinformation contained within the beampattern can therefore be used to determinea probability density function for the percentage of an interferer's power that willbe passed by the spatial �lter de�ned by the beamforming weights. The probabilitydensity function corresponding to the beampattern given in Fig. 4.1 is shown in Fig.4.6 As more mobiles are added to the system, the overall interference a�ecting eachuser will increase. Using the probability density function (Fig. 4.6) for a singleinterferer, the density function of the total interference can be determined numericallythrough repeated convolution. Fig. 4.7 shows the overall probability distributionof the total interference with a 5-element antenna array and 56,64,72,80, and 8884
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interferers.4.4.7.1 Capacity RevisitedReexamining the expression for the Signal to Noise Ratio (SNR) in the multipleantenna case (Eq. (4.6)) EbN0 = PR=RBPI=B +NA�2n (4.63)with a large number of interferers, under the condition that the interference is muchgreater than the e�ects due to thermal noise, and from Eq. (4.63) we obtainPR=RBPI=B � EbN0 (4.64)For an SNR of 7.0 dB, RB = 9600Hz, and B = 128 � 9600Hz , for each user, werequire the total interference power PI over the total received signal power PR to bePIPR � 25:5 (4.65)As can be seen in Fig. 4.7, for 5 antennas and a direction-of-arrival of 92 degrees,this expression holds for almost all cases for 56-72 mobiles, but starts to break downin some cases with 80-88 mobiles.4.4.7.2 Capacity Sensitivity to DOAThe probability density function in Fig. (4.6) corresponds to a single beampat-tern, which in turn correspnds to a single direction-of-arrival for a given number ofantennas. As the direction-of-arrival changes, so does the probability density func-tion for the interference. This variation due to direction-of-arrival will decrease as thenumber of antennas tends to in�nity removing the directionality of the circular array.86
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Outage Probability 0.0001 0.001 0.01 0.05 0.1 0.25 0.51 Antenna 26 26 26 26 26 26 262 Antennas 30 31 33 35 36 37 403 Antennas 46 49 52 56 58 61 654 Antennas 49 52 57 63 66 71 775 Antennas 70 75 82 88 91 98 1046 Antennas 74 80 87 94 99 105 1137 Antennas 87 93 101 110 114 122 131Table 4.11: Worst-case capacity over all DOA's as a function of the outage probabilityand the number of antenna elements. Computed from Figs. 4.8 and 4.9By increasing the number of interferers in the system, and seeing the total percent-age of the distribution that falls above a total interference of 25:5PR, the capacitiescorresponding to di�erent outage probabilities can be determined.Figures 4.8 and 4.9 show that antenna arrays with an odd number of elements aremuch less sensitive to DOA e�ects than the arrays with an even number of elements.In Figures 4.8 and 4.9, the outage probabilities for arrays with 2-7 antenna elementsare plotted aginst the number of interference mobiles NI , and each curve representsa di�erent DOA in increments of 1o.Using the outage probabilities from Figures 4.8 and 4.9, a more complete estimateof system capacity can be made. Table 4.12 shows the worst-case capacity over allDOA's as a function of the outage probability. As can be seen from Table 4.12,data mobiles have a large e�ect on the overall system performance. For acceptableoutage probabilities (0.001), the addition of a single data mobile reduces the overallcapacity by 16 mobiles. This motivates the need for nulling of heavy interferers whichis investigated in Chapter 5. 90



Outage Probability 0.0001 0.001 0.01 0.05 0.1 0.25 0.50 data 70 75 82 88 91 98 1041 data 54 59 67 76 82 90 982 data 37 43 55 66 72 82 923 data 21 31 44 57 63 74 854 data 8 18 33 47 54 66 78Table 4.12: Worst-case capacity over all DOA's as a function of the outage probabilityand the number of data mobiles; computed from Fig. 4.11, it represents the case of5 antennas and 0-4 data mobiles4.5 Multi-Service/Rate SystemsIn calculating the power statistics for a multi-service or multi-rate system, manyof the same techniques can be used as presented in the previous sections to givean initial indication of how data mobiles will co-exist within a voice mobile system.By assuming that the net e�ect of a data mobile is that of a number voice mobilesclustered together in a small area, it will act as a heavy interferer. By modifying theprobability density function for the single voice mobile to produce a larger amount oftransmitted power (for our calculations one data mobile produces 7 times the powerof a voice mobile). This assumes a voice activity factor of unity, making our resultspessimistic. The density of the interference power due to a single data mobile is thenshown in Fig. 4.10. Again, as in the previous section, as the number of voice mobilesincreases, more of the interference distribution will lie above the point where powercontrol will start to break down. Fig. 4.11 shows the percentage of all cases of mobileplacement for which power control will break down for 0-4 data mobiles in a 5 elementarray. 91
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4.6 SummaryThe e�ects of using beamforming in a cellular CDMA system were analysed inthis chapter. Both the mean signal and interference power of a multi-user CDMAenvironment were predicted and compared to computer simulations. This was thenapplied to the problem of capacity estimation of the system. It was found thatsigni�cant increases in capacity are achieved as the number of antennas in the basestation are increased.Then the analysis was extended to include a scattering environment. In section4.4.1, we have shown that the e�ect of the spatial �ltering of scattered energy is notsu�cient to obtain an accurate picture of the system performance . As a result, wehave examined the e�ect of the scattering on both the signal and interference throughevaluating the cross-correlation statistics of the antenna array. In conclusion, thee�ects due to inter-element cross-correlation on system capacity were minimal for lowscatter and only small (� 10%) for high scatter environments.Finally, a more in-depth look was taken into system capacity under non-uniformenvironments. It was shown that in maintaining an acceptable Quality-of-Service(outage probabiltity < 0:001) with non-uniform mobile placement, the system capac-ity is decreased by about 30%. This analysis also illustrated the e�ects on systemcapacity due to DOA e�ects. It was shown that antenna arrays with certain numbersof antenna elements are more susceptible to DOA e�ects. The addition of high ratedata mobiles was shown to decrease system capacity by about 16 voice mobiles perdata mobile in a 5 element array. This result motivates the implementation of moresophisticated beamforming algorithms to null heavy interferers.
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Chapter 5Application to Di�erent BeamformingScenarios5.1 IntroductionThe method shown in Chapter 4 for predicting mobile power and capacity in aCDMA environment using maximumSNR beamforming is not limited to this speci�ctype of beamforming, and in fact can be used for other beamforming situations (bothuplink and downlink). In order to illustrate this, in this chapter we show an initialstudy into two scenarios employing di�erent methods of beamforming. The �rst is anextension to a multi-service environment utilising a direct matrix inversion algorithm[7] to reduce the e�ect of high interference data mobiles in a predominantly voicemobile environment. The second scenario is that of utilising beamforming in thedownlink of a mobile environment.These two examples are used to show the versatility of the methods developed inChapter 4 to calculate system performance, and are by no means optimized in termsof the type of beamforming. In this chapter, we show that the proposed framework ofcapacity evaluation can be applied to di�erent beamforming applications: the directmatrix inversion (DMI) algorithm in order to reduce the e�ect of heavy interferers isshown, as well as a type of transmission beamforming as required in the downlink.95



5.2 Methods of BeamformingIn Chapter 4, beamforming was used in order to maximize the desired signalwhile minimizing a large number of interfering signals arriving from many directionsin the uplink of a CDMA system. This was accomplished through individual-usermaximumSNR beamforming. In this method of beamforming, the weights are chosento maximize the desired signal, without taking into account any of the informationfrom the interfering user (i.e. the weights are set equal to the complex conjugate ofthe array response vector of the desired mobile).Other methods of beamforming exist which consider the e�ects of other mobilesin the system. These methods are used both for the uplink and downlink problems.Some examples of this type include maximum SINR beamforming [28], and othermethods presented in the tutorial paper by Van Veen and Buckley in [49].The process of beamforming in the downlink is a completely di�erent and moredi�cult problem than that of the uplink [14]. In the uplink, the goal is to maximize thereceived signal power in the direction of arrival of the desired user while minimizingthe received signal power from all other directions. In the downlink, however, a singleset of beamforming weights is used to transmit the signals to all users simultaneously.Beamforming in the downlink has been studied more extensively in [14],[28] and [55].5.2.1 Beamforming in a Multi-Service Environment Usingthe Direct Matrix Inversion AlgorithmThe direct matrix inversion method for determining beamforming weights is pre-sented by Compton in [7]. In this method, K samples of a known signal vector X areobtained, and an estimate of the covariance matrix �̂ is formed by�̂ = 1K KXk=1X�(k)XT (k) (5.1)whereX�(k) denotes the conjugate ofX(k) and XT (k) denotes the transpose ofX(k).The weights W are then calculated through inversion of the covariace matrix.96



Outage Probability 0.0001 0.01 0.05 0.1 0.25 0.53 data 48 56 60 62 66 71Table 5.1: Capacity as a function of the outage probability with 5 antenna elements,the desired voice mobile DOA at 70o and data mobiles at DOAs of 150o,210o, and290o using the DMI algorithm to determine beamforming weights.W = �̂�1U�d (5.2)where U�d represents the array response vector of the desired signal. For CDMAsystems, the PN code structure may be employed to obtain X(k) rather than usingtraining sequences [35].Using this algorithm, heavy interferers can be spatially �ltered. As an example ofthis, a beampattern is shown for the desired voice user at 70o with data mobiles at150o, 210o, and 290o in Figure 5.3.Now, using the information contained within this beampattern, the same typeof analysis can be performed in order to determine the capacity of the system. Asdiscussed previously, capacity is de�ned here as the maximum number of mobile forwhich a solution to the power control equations can be found. Table 5.1 shows thesystem capacity as a function of outage probability and Figure 5.2 shows the outageprobability curve for the desired voice mobile at 70o. This compares favourably withthe corresponding row of Table 4.12, where the capacity for an outage probability of0.0001 is 21 voice mobiles.This analysis has been performed on a single beampattern for which the DMIalgorithm produces good results. The DMI algorithm starts to break down in caseswhere the the desired mobile is close to one of the heavy interferers, yielding a beam-pattern that will produce poor results. As an example of this, a beampattern is shownin Figure 5.3 for the case where the desired mobile is moved to within 10 degrees of97
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Figure 5.1: Beampattern produced using the DMI algorithm to generate weights for adesired voice user at 70o with data mobiles at 150o, 210o, and 290o.
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Figure 5.2: Outage probability for increasing interferers and 5 antenna elements forthe desired mobile at 70o and 3 data mobiles at 150o,210o, and 290o using the DMIalgorithm to determine beamforming weights.
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a heavy interferer.5.2.2 Maximum Sum of SNR Beamforming AlgorithmOne method for determining the beamforming weights for transmission beam-forming has been proposed by Luo in Chapter 5 of [28], and is summarized below.The received signal at the kth mobile after despreading is given by:rk = �wH�akbk + nk (5.3)where �w represents the beamforming weights used at the base station, �ak representsthe array response vector of the kth mobile, bk represents the current BPSK bit, andnk represents the white thermal noise with variance �2.The received output of the decorrelator, yk will then beyk = ( �wH�akbk + nk)( �wH�ak)� (5.4)and the average SNR of the kth mobile isSNRk = E[k �wH�akk4]E[k( �wH�ak)�nkk2] (5.5)= E[k �wH�akk2]�2 (5.6)For the case of N users, we wish to maximize the SNR for several mobiles simul-taneously. One way to do this is to maximizeNMXk=1E[k �wHk �akk2] (5.7)= �wHk E[NMXk=1 �ak�aHk ] �w (5.8)The solution of this is to choose �w as the eigenvector corresponding to the largesteigenvalue of E[PNMk=1 �ak�aHk ]. This solution for the weights used in beamforming tendsto raise the beampattern in the direction of mobile users and lower it in other direc-tions. 100
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Figure 5.3: Beampattern produced using the DMI algorithm to generate weights for adesired voice user at 140o with data mobiles at 150o,210o, and 290o.
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5.2.3 Beamforming in the DownlinkIn their paper [17], Gilhousen et al. studied both the uplink and downlink CDMAsystem capacity. In this section, we examine the e�ect of beamforming on the capacityof the downlink. For the downlink, the expression for the signal to noise ratio at theith mobile is given by �EbN0�i � �#iST1i=RBh�PKj=1 STji�+ �2ni =B (5.9)where STji is the power received by mobile i due to base station j, assuming a max-imum of K cells from which interference power is received (for the purposes of thiswork, it is assumed that only cells within the second ring of cells contribute inter-ference, and so K = 19), � is the fraction of the total cell site power devoted to themobiles (1-�) is devoted to the pilot, and #i is the fraction of � devoted to user i.From (5.9), the following is obtained#i � (Eb=N0)�B=RB "1 +  PKj=2 STjiST1i !+ �2n(ST1i)# (5.10)where the apportionment of the total power to individual users must sum to no morethan one NMXi=1 #i � 1 (5.11)If the relative received cell-site power measurements are de�ned asfi � 0@1 + KXj=2STji=ST1i1A ; i = 1; : : : ; NM (5.12)then it follows from (5.10) and (5.11) that the sum over all mobiles of the given cellis bounded by 102



NMXi=1 fi � �B=RBEb=N0 � NMXi=1 �2nST1i (5.13)Gilhousen et al. [17] also state that the sum on the right-hand side of (5.13)is negligible, and for our Monte Carlo simulations, we assume RB = 9600Hz, B =128� 9600Hz, � = 0:8 and Eb=N0 = 5dB to ensure a BER of � 10�3 justi�ed by thecoherent reception using the pilot as reference. Using this information, the capacitycan be estimated through Monte Carlo simulation, adding users to all cells until anunacceptable percentage of the cases do not satisfy Eq.(5.13). In order to simulatethe power that a mobile i can expect to receive from base station j, received powerSTji is de�ned by the path loss and shadowing e�ects in [17] asSTji = 10�=10d�4ji (5.14)where dji is the distance between the mobile i and one of the 19 base stations j, and� is a Gaussian distributed random variable with variance = 8dB. We have performedMonte Carlo simulation using a voice activity factor of one with the method describedabove using a hexagonal cell structure with interference received from base stationsin two rings around the centre base station. We have extended the above approach tothe case of beamforming to examine its e�ect on the system. The outage probabilitycurve as a function of the number of mobiles in each cell is given in Figure 5.6.With the addition of transmission beamforming, we modify the power STji that amobile i can expect to receive from base station j to include path loss and shadowingas well as the transmitted beam power from the jth base station, j �wHj �aijj2 where �wjrepresents the transmission beamforming weights at base station j and �aij is the arrayresponse vector of mobile i with respect to base station j. For the case of transmissionbeamforming, STji is given by:STji = 10�=10d�4j j �wHj �aijj2 (5.15)103



In the Monte Carlo simulations with beamforming, the locations of mobiles werechosen in all 19 cells, and beamforming weights �wj were determined using the trans-mission beamforming method developed in [28] and outlined in Section 5.2.2. Thiswas done in order to determine the spatial suppression due to beamforming for eachof the 19 cells in the direction of the desired mobile in the centre cell. Figure (5.4)depicts a beampattern where the algorithm works well. However, under other cir-cumstances some mobiles may end up in a lower power part of the beampattern asillustrated by Figure (5.5), signi�cantly decreasing the SNR for that mobile, and sig-ni�cantly increasing the contribution due to that mobile in Equation (5.13). It is thise�ect that may severely degrade the performace of the system with the type of beam-forming outlined below. The overall performance of the system is shown in Figure(5.6) using the Monte Carlo approach; and as can be seen in this �gure, the capacityof the system is actually higher without beamforming than it is with beamforming.This can be explained by the presence of the intra-cell interference, which was nottaken into account in the determination of the beamforming weights.The goal of this section was to illustrate a method that could be used to test amethod of downlink beamforming. The type of beamforming tested in this sectionproved ine�ective. Other methods of downlink beamforming, however, may prove toincrease the capacity of the downlink. A method of allocating power to beamformingweights that maximizes the SNR of the mobile with the minimum SNR such as thatpresented in [55] may perform better than that of [28], since intra-cell interference istaken into account. However, its complexity is higher than that of [28]. The optimalchoice of weights is still an open problem.5.3 SummaryInitial studies were made into the multi-service/multi-rate environment. The useof the DMI algorithm for heavy interferer cancellation was shown to be an e�ectivemethod to reduce interference contributed by data mobiles in a predominantly voice104
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Figure 5.4: One of the beampatterns produced using the algorithm for transmissionbeamforming from [28] for mobiles at 112o, 205o, and 303o. Vertical spikes indicatedesired directions for maximal transmission power.
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mobile environment. It was also shown, however, that this method beaks down whena desired user comes close to a data mobile.The application of transmission beamforming in the downlink of a CDMA systemwas also examined. A method developed by Gilhousen et al. [17] for calculatingdownlink capacity was extended to include beamforming. A method of maximumsumof SNR transmission beamforming developed in [28] was tested and shown to performpoorly. However, intra-cell interference was not taken into account in the developmentof the beamformingmethod in [28]. A method of transmission beamforming developedin [55] may give better performance than the method outline here.
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Chapter 6Conclusion6.1 IntroductionThis chapter reiterates some of the major contributions of this work, and outlinessome possible extensions and improvements that could be made.6.2 Summary of ContributionsThis section presents a list of the major contributions of this thesis.� A study was made into the e�ectiveness of the use of ARMA modelling tocreate a low-order �lter to generate a sequence with the autocorrelation outlinedby Jakes in [23]. It was found that traditional methods of ARMA modellingwere ine�ective for the Jakes autocorrelation function as the true order of themodel is in�nite. By using the AR(7) model as found above with a comb �lterwith a carefully selected null location in its PSD, it was found that the Besselautocorrelation could be matched quite closely for the �rst 100 lags.� A model given by Salz and Winters in [46] for cross-correlation statistics be-tween two antenna elements assuming uniform angle-of-arrival statistics wasgeneralized to the case of any angle-of-arrival probability distribution P (�). AGaussian angle-of-arrival distribution was chosen as an example for the purposes109



of this thesis, and the the cross correlation statistics were used to generate sig-nals that would have the Jakes' autocorrelation statistics and cross correlationstatistics matching the GAA model.� The most signi�cant contribution of this thesis is the improvement of the powerand capacity predictions of a CDMA system in the multiple antenna elementbeamforming case from [11], and the extension of this to include power andcapacity prediction and simulation incorporating inter-element cross-correlatione�ects due to scatter. Beampatterns were used to determine the amount ofinterference that would be expected in a multiple user system, and the e�ect ofthe inter-element cross-correlation on the desired mobile power and interferencepower was helpful in determining the overall capacity of the system. Analysiswas veri�ed by simulations involving antennas with correlated signals as outlinedabove. We have shown that signi�cant increases in capacity may be achieveableusing beamforming, even in environments with moderate to high amounts ofscatter. It was also shown that the directional nature of antenna arrays canlower the capacity of the system. However, circular antenna arrays with certainnumbers of antenna elements (e.g. NA = 5 and NA = 7) are minimally a�ectedby DOA.� Other beamforming applications were then explored. It was shown how thedirect matrix inversion (DMI) algorithm may be an e�ective means to eliminatethe e�ects of heavy interferers in a multi-service system. However, it was alsonoted that the DMI algorithm tended to break down in cases where the desireduser came within 10o of a heavy interferer. A method for determining thecapacity of the downlink developed in [17] was extended to include transmissionbeamforming. It was shown that the system capacity using the transmissionbeamforming method developed in [28] may be lower without beamforming.However, improved transmission beamforming methods may outperform thesingle element case. 110



6.3 Future WorkWe will now suggest areas where further study could be made to complement thiswork� In Chapter 2, an attempt was made to minimize the mean square error betweenthe autocorrelation of the ARMA �lter's output sequence and the desired BesselACF, while trying to minimize the order of the ARMA �lter. An initial studywas made into methods of optimum model order selection, but a more in-depthstudy to determine the order of the optimal �lter is needed.� In Chapter 4, power and capacity values were predicted for the uplink of aCDMA system. This study neglected e�ects due to the delay spread of theenvironment. A necessary extension of this work is the inclusion of the e�ectsof delay spread on the system.� In Chapter 5, the DMI algorithm was used to minimize the e�ects of heavyinterferers in a predominantly voice mobile system. It was found that in caseswhere the desired mobile was at a direction of arrival within 10o of a heavyinterferer, the performance of the system is poor. A possible improvement ofthis algorithm would be to employ more sophisticated constraints to determinehow to cope with heavy interferers close to the desired mobile.� In Chapter 5, a method of transmission beamforming developed in [28] wasshown to be outperformed by the same test performed without beamforming.It would be useful to investigate improvedmethods of transmission beamformingbased on preliminary work in [55] to compare performance with that of [28].6.4 ConclusionsIn this thesis we applied a speci�c improvement to ARMA modelling of fadingchannels and a model based on the work of Salz and Winters in [46] in order to111



simulate the auto- and cross-correlation statistics of the fading envelopes received bythe elements of an antenna array. We then developed a method for determining thepower levels and capacity of a CDMA system using beamforming with a multi-elementantenna array. This analysis and simulation was extended to the case of the scatteringenvironment where it was shown that large capacity gains may be obtainable usingbeamforming, even in high-scatter environments.
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Appendix AApplication to Fading Channel GainTrackingTo detect an information sequence transmitted coherently and reliably over afading channel, it is necessary to estimate the channel phase and amplitude. Thisis motivated by the fact that coherent detection of signals over fading channels issuperior to non-coherent detection if accurate channel state information is available[43]. Prediction of fading dynamics can be applied to channel estimation in systemsemploying coherent modulation.Because of this, we present an algorithm given in [27] in order to illustrate anapplication of the channel simulator developed in Chapter 2. This will show that theaccuracy of the chosen channel simulator can have a signi�cant e�ect on the BERcurves produced during simulation.Let Ik denote a binary information sequence, and xk the q�ary output of a low-pass equivalent discrete-time encoder/modulator. The complex signal xk is transmit-ted over a frequency-nonselective Rayleigh or Rician fading channel. The receivedlow-pass equivalent discrete-time signal is then [43]yk = xkck + nk (A.1)where ck is channel gain, a complex Gaussian process with memory. The mean of ckis a = Efckg: When a = 0, the fading channel is Rayleigh. Otherwise it is Rician.The covariance function of ck is rk;k�n = rn 4= Ef(ck � a)(ck�n � a)�g: A special113



case of the above model is the Jakes-Reudink fading channel [23] with rn given byrn = r0J0(2�fmnT ) = r0 12� R ��� ej2�fmnT sin �d�; where J0() is the zeroth order Besselfunction, T is the symbol period and fm is the maximumDoppler frequency given byfm = v� with v and � de�ned as mobile vehicle speed and transmission wavelength,respectively.The channel gain ck can be divided into two parts: the line-of-sight (LOS) partwith average power a2 and the random scattering part with average power r0. The Kfactor is de�ned as the ratio [32]K 4= a2r0 : If r0 is normalized to 1, then K = a2. TheKfactor is equal to zero for Rayleigh fading channels and is greater than zero for Ricianfading channels. The average signal-to-noise (SNR) ratio per symbol is then 
s =a2+r0�2n ; where �2n is the variance of the additive white Gaussian noise (AWGN) nk. Theaverage signal-to-noise (SNR) ratio per bit for q-ary constant-envelope modulation is
 = a2+r0�2n log2 q :If xk is a known training symbol and if the signal-to-noise ratio (SNR) is high, agood estimate of ck can be easily computed asck � yk=xk 4= ~ck (A.2)according to Eq.(A.1), where yk is the received signal. However, most of the receivedsymbols are not training symbols. In these cases the available information for esti-mating ck can be based upon prediction from the past detected data-bearing symbols�xi (i < k). Since a fading channel is usually correlated [23], it is possible to usean adaptive linear �lter to estimate the current complex channel gain ck using thepast detected symbols �xi (i < k) and the current observed signal yk. The idea ofdecision-feedback has long been used in adaptive equalization of deterministic tele-phone channels [43]. The same idea was also used in [22]. However, [22] mainlyused training-symbol information and did not consider the high correlation of bothRayleigh and Rician fading channels.We now summarize the decision feedback and adaptive linear prediction (DFALP)algorithm: Let the past detected data symbols be �xk�1; �xk�2; ... �xk�N . The pastreceived signals are yk�1; yk�2; ::: yk�N . Notice that �xi and yi are complex, and that114



�xi takes on a �nite number of values (e.g., four values for QPSK). Then the pastdecision feedback complex channel gains areyk�i�xk�i i = 1; 2; :::; N: (A.3)If the fed back data symbol happens to be correct, that is, �xk�i = xk�i, the estimateyk�i=�xk�i would be reliable. However, this may not be always true. Therefore theestimate yk�i=�xk�i should be corrected in a manner to be described later in thissection. Let ~ck�i denote the corrected fading channel estimate from yk�i=�xk�i, orthe fading channel estimate if training symbols were available (Eq.(A.2)). Using astandard linear prediction approach [20], the predicted fading channel gain at time kis ĉk = NXi=1 b�i ~ck�i = ~b(k)~~c(k) (A.4)where ~~c(k) = (~ck�1; ~ck�2; :::;~ck�N)T (A.5)is a vector of past corrected channel gain estimates and~b(k) = (b1; b2; :::; bN)T (A.6)are the �lter (linear predictor) coe�cients at time k. The constant N is the orderof the linear predictor. The objective is to minimize the estimation error adaptively,i.e., min�k = jck = ĉkj2 (A.7)where ck is the actual complex channel gain. Liu and Blostein suggest using theWidrow-Ho�'s least-mean-square algorithm [53] in order to determine the �lter coef-�cients of the next time step ~b(k + 1). This is given by~b(k + 1) = ~b(k) + �(ck � ĉk)�~~c(k) (A.8)115



where � is the adaptation parameter controlling the convergence-rate and the steady-state error of the algorithm. Since the actual channel gain ck is not available, thecurrent corrected channel gain estimate is substituted.~b(k + 1) = ~b(k) + �(~ck � ĉk)�~~c(k) (A.9)Now the problem of using decision feedback and correction to obtain the correctedchannel gain estimate ~ck from the predicted channel gain ĉk is addressed. First, Liuand Blostein [27] estimate the data symbol using the predicted channel gain ĉk:x̂k = ykĉk (A.10)where yk is the current received signal plus noise, and ĉk is a channel estimate givenby the linear predictor (A.4). Second, [27] use the minimum distance decision ruleminxk2D jx̂k � xkj (A.11)where D is the signal constellation of the modulated complex low-pass equivalentsignal xk. For QPSK, D = fejn�=4; n = 1; 3; 5; 7g. Let �xk denote the detected datasymbol, i.e., jx̂k � �xkj = minxk2D jx̂k � xkj: (A.12)Using the detected data symbol �xk, a new estimate of the channel gain is formulated.yk�xk : (A.13)There exist two possibilities for the decision rule (A.12). One possibility is that thedecision is correct, i.e., �xk = xk. Then the estimate yk=�xk would be reliable. On theother hand, if the decision is wrong, i.e., �xk 6= xk, the estimate yk=�xk will certainly bevery poor. To solve this problem, a thresholding idea similar to that proposed in [22]is used. In most cases, if the decision is correct, the distance between the predictedchannel gain ĉk and the decision feedback estimate yk=�xk would not be large, i.e., theprobability that jĉk � yk=�xkj < � would be high, where � is a chosen threshold. Onthe other hand, if the decision is wrong, the distance between the predicted channel116



gain ĉk and the decision-feedback estimate yk=�xk would be large, i.e., the probabilitythat jĉk � yk=�xkj � � would be high. Therefore the corrected channel estimate maybe expressed as ~ck = 8><>: yk=�xk if jĉk � yk=�xkj < �ĉk if jĉk � yk=�xkj � � (A.14)The justi�cation for thresholding appears in [22]. There exists no analytical approachto choosing the threshold �. In [22], it was proposed that for q-ary PSK � is chosento be ej�=(2q).The corrected channel estimate ~ck is then low-pass �ltered using a linear phaselow-pass �lter (LPF) with 2Df +1 taps to reduce the noise. That is, the �nal channelgain estimate is �ck�Df = 2DfXi=0 hi~ck�i (A.15)where hi is the impulse response of a LPF with 2Df + 1 taps. The choice of �ltercuto� frequency is discussed in [27]. A linear phase FIR �lter is used and a delay ofDf samples is incurred after the above �nal low-pass �ltering. The algorithm stepsare summarized below: DFALP Fading Channel TrackerRepeat Steps 1-3:� Step 1: If a training symbol xk is available, set ~ck = yk=xk. Otherwise,1.1 Predict channel gain:ĉk =PNi=1 b�i ~ck�i = ~b(k)~~c(k);1.2 Estimate data symbol: x̂k = yk=ĉk;1.3 Tentative decision: �nd �xk such that jx̂k � �xkj = minxk2D jx̂k � xkj;1.4 Correction:If predicted gain agrees with decision feedback estimate, use the fed back esti-mate, 117



i.e., if jĉk � yk=�xkj < �, then ~ck = yk=�xk,else use predicted gain only, i.e., if jĉk � yk=�xkj � � then ~ck = ĉk;� Step 2: Low pass �lter ~ck: �ck�Df = P2Dfi=0 hi~ck�i� Step 3: Output �ck�Df , increment k and go to Step 1.The notations are:�ck�Df = �nal (delayed) channel gain estimate;ak, bk = ARMA �lter coe�cients;~~c(k) = past corrected channel gain estimate;yk = received signal plus noise at time kT ;�xk = detected data symbol at time kT .One training symbol is sent for transmitting every Kt � 1 data symbols. Theinitial conditions for the �lter coe�cients vb are chosen to be~b(0) = (1; 0; :::; 0)T (A.16)A block diagram of the DFALP algorithm is shown in Figure A.1. The receivedsignal yk is divided by a channel estimate ĉk from the adaptive linear predictor. Theestimated data symbol is detected using a minimum distance decision rule. Then thecorrected channel estimate ~ck is obtained. The corrected channel estimate ~ck is thenpassed through a LPF with 2Df + 1 taps to reduce the noise, resulting in a decisiondelay Df . The �nal smoothed channel estimate �ck�Df is sent out for soft Viterbidecoding. Note that only ~ck can be fed back and the smoothed estimate �ck�Df cannotbe fed back since it is delayed by Df .
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Figure A.1: The DFALP algorithm for tracking phase and amplitude of frequencynonselective fading channels.
119



Bibliography[1] Sidney P. Applebaum. \Adaptive arrays". IEEE Transactions on Antennasand Propagation, 24(5):585{598, 1976.[2] David Aszetly. On Antenna Arrays in Mobile Communication Systems: FastFading and GSM Base Station Receiver Algorithms. PhD thesis, Dept. of Sig-nals, Sensors and Systems Signal Processing, Royal Institute of Technology,1996.[3] S. Barberis, L. Bonzano, E. Gaiani and M. Tosalli. \Capacity of a CDMAWireless Communication System in Picocellular Environment". In 1996 Inter-national Conference on Communications, volume 3, pages 1824{1828, 1996.[4] E. N. Bramley \Diversity E�ects in Spaced-Aerial Reception of IonosphericWaves". IEE Proceedings, 98(3):19-25, Jan 1951.[5] Rick Cameron and Brian Woerner. \Performance analysis of CDMA with im-perfect power control". IEEE Transactions on Communications, 44(7):777{781,1996.[6] Geo�rey W.K. Colman, Steven D. Blostein, and Norman C. Beaulieu. \AnARMA multipath fading simulator". In The 7th Annual Virginia Tech Sympo-sium on Wireless Personal Communications, 1997.[7] R.T. Compton Jr. Adaptive Arrays, Concepts and Performance. Prentice HallInc., 1988. 120



[8] Giovanni Emanuele Corazza, Giovanni De Maio and Francesco Vatalaro.\CDMA Cellular Systems Performance with Fading, Shadowing, and ImperfectPower Control". IEEE Transactions on Vehicular Technology, 47(2):450{459,1998.[9] Wilbur B. Davenport and William L. Root An Introduction to the Theory ofRandom Signals and Noise. McGraw-Hill, 1958.[10] Dariush Divsalar, Marvin K. Simon and Dan Raphaeli. \Improved ParallelInterference Cancellation for CDMA". IEEE Transactions on Communications,46(2):258{268, 1998.[11] A. Mark Earnshaw. An Investigation into Improving Performance of CellularCDMA Communication Systems with Digital Beamforming. PhD thesis, Dept.of Electrical and Computer Engineering, Queen's University, 1997.[12] A. Mark Earnshaw and Steven D. Blostein. \Investigating the e�ects of imper-fect digital beamforming on cell capacity in a cellular CDMA communicationsystem". In 1996 International Conference on Universal Personal Communi-cations, pages 458{462, 1996.[13] Richard B. Ertel, Paolo Cardieri, Kevin W. Sowerby, Theodore S. Rappaport,Je�rey H. Reed. \Overview of Spatial Channel Models for Antenna Array Com-munication Systems". IEEE Personal Communications, pages 10{22, February1998.[14] A. Gerlach. Adaptive Transmitting Antenna Arrays at the Base Station inMobile Radio Networks. PhD thesis, Dept. of Electrical Engineering, StanfordUniversity, 1995.[15] Filippo Giannetti. \Capacity evaluation of a cellular CDMA system operatingin the 63-64 GHz band". IEEE Transactions on Vehicular Technology, 46(1):55{64, 1997. 121



[16] Filippo Giannetti, Marco Luise and Ruggero Reggiannini. \The Capacity ofCellular CDMA in the 63-64 GHz Band". In 1997 International Conference onCommunications, pages 989{993, 1997.[17] Klein S. Gilhousen, Irwin M. Jacobs, Roberto Padovani, Andrew J. Viterbi, Jr.Lindsay A. Weaver, and Charles E. Wheatley III. \On the capacity of a cellularCDMA system". IEEE Transactions on Vehicular Technology, 40(2):303{312,1991.[18] R. Haeb and H. Meyr. \A systematic approach to carrier recovery and detectionof digitally phase modulated signals on fading channels". IEEE Transactionson Communications, 37(7):748{754, 1989.[19] E. J. Hannan and J. Rissanen. \Recursive Estimation of Mixed Autoregressive-Moving Average Order". Biometrika, 69(1):81{94, 1982.[20] S. S. Haykin. Adaptive Filter Theory. Englewood Cli�s: Prentice Hall, 1991.[21] Steven J. Howard and Kaveh Pahlavan. \Autoregressive modelling of wide-band indoor radio propagation". IEEE Transactions on Communications,40(9):1540{1552, 1992.[22] G.T. Irvine and P.J. McLane. \Symbol-aided plus decision-directed receptionfor PSK/TCMmodulation on shadowed mobile satellite fading channels". IEEEJournal on Selected Areas in Communications, 10(8):1289{1299, 1992.[23] William C. Jakes. Microwave Mobile Communications. John Wiley & Sons,Inc., 1974.[24] Akihiro Kajiwara. \E�ects of Cell Size, Directional Antenna, Diversity, andShadowing on Indoor Radio CDMA Capacity". IEEE Transactions on Vehicu-lar Technology, 46(1):242{247, 1991.[25] Steven M. Kay. Modern Spectral Estimation. Prentice Hall, Inc., 1988.122



[26] Joseph C. Liberti, Jr. and Theodore S. Rappaport. \Analytical results for ca-pacity improvements in CDMA". IEEE Transactions on Vehicular Technology,43(3):680{690, 1994.[27] Yong Liu and Steven D. Blostein. \Identi�cation of frequency non-selectivefading channels usinfg decision feedback and adaptive linear prediction". IEEETransactions on Communications, 43(2/3/4):1484{1492, 1995.[28] Tao Luo. Beamforming in the Uplink and Downlink Channels of a CellularCDMA Communication System. MSc. thesis, Dept. of Electrical and ComputerEngineering, Queen's University, 1998 .[29] Salim Manji and Weihua Zhuang. \Capacity Analysis of an IntegratedVoice/Data DS-CDMA Network". In 1997 International Conference on Com-munications, volume 2, pages 979{983, 1997.[30] Neri Merhav. \The Estimation of the Model Order in Exponential Families".IEEE Transactions on Information Theory, 35(5):1109{1114, Sept. 1989.[31] Laurence B. Milstein, Theodore S. Rappaport, and Rashad Barghouti. \Per-formance evaluation for cellular CDMA". IEEE Journal on Selected Areas inCommunications, 10(4):680{689, 1992.[32] M.L. Moher and J.H. Lodge. \TCMP-A modulation and coding strategy forRician fading channels". IEEE Journal on Selected Areas in Communications,7(9):1347{1355, 1989.[33] Robert A. Monzingo and Thomas W. Miller. Introduction to Adaptive Arrays.John Wiley & Sons, Inc., 1980.[34] Jerome L. Myers and Arnold D. Well. Research Design & Statistical Analysis.Harper Collins Publishers Inc., 1991.[35] Ayman F. Naguib. Adaptive Antennas for CDMA Wireless Networks. PhDthesis, Dept. of Electrical Engineering, Stanford University, 1995.123



[36] Ayman F. Naguib and Arogyaswami Paulraj. \Performance of DS/CDMA withM-ary orthogonal modulation cell site antenna arrays". In 1995 InternationalConference on Communications, pages 697{702, 1995.[37] AymanF. Naguib and Arogyaswami Paulraj. \Recursive adaptive beamformingfor wireless CDMA". In 1995 International Conference on Communications,pages 1515{1519, 1995.[38] Ayman F. Naguib and Arogyaswami Paulraj. \Performance of wireless CDMAwith M-ary orthogonal modulation and cell site antenna arrays". IEEE Journalon Selected Areas in Communications, 14(9):1770{1783, 1996.[39] Ayman F. Naguib, Arogyaswami Paulraj, and Thomas Kailath. \Capacity im-provement with base-station antenna arrays in cellular CDMA". IEEE Trans-actions on Vehicular Technology, 43(3):691{698, 1994.[40] Athanasios Papoulis. Probability, Random Variables, and Stochastic Processes.McGraw-Hill, Inc., 1984.[41] Vijayanand K. Paulrajan, James A. Roberts and D. L. Machamer. \Capacityof a CDMA Cellular System with Variable User Data Rates". In 1996 IEEEGlobal Telecommunications Conference, volume 2, pages 1458{1462, 1996.[42] Arogyaswami J. Paulraj, and Constantinos B. Papadias. \Space-Time Process-ing for Wireless Communication". IEEE Signal Processing Magazine, pages49{83, Nov. 1997.[43] John G. Proakis. Digital Communications. McGraw-Hill, Inc., 1989.[44] John G. Proakis and Dimitris G. Manolakis. Digital Signal Processing. Macmil-lan Publishing Co., 1992.[45] Jack Salz and Jack H. Winters. \E�ect of fading correlation on adaptive ar-rays in digital wireless communications". In 1993 International Conference onCommunications, volume 3, pages 1768{1774, 1993.124



[46] Jack Salz and Jack H. Winters. \E�ect of fading correlation on adaptive ar-rays in digital mobile radio". IEEE Transactions on Vehicular Technology,43(4):1049{1057, 1994.[47] John I. Smith. \A computer generated multipath fading simulation for mobileradio". IEEE Transactions on Vehicular Technology, 24(3):39{40, 1975.[48] Gordon L. St�uber and Chamroeun Kchao. \Analysis of a multiple-cell direct-sequence CDMA cellular mobile radio system". IEEE Journal on Selected Areasin Communications, 10(4):669{679, 1992.[49] Barry D. Van Veen and KevinM. Buckley. \Beamforming: A versatile approachto spatial �ltering". IEEE ASSP Magazine, pages 4{24, April 1988.[50] Audrey M. Viterbi and Andrew J. Viterbi. \Erlang Capacity of a Power Con-trolled CDMA System". IEEE Journal on Selected Areas in Communications,11(6):892{899, 1993.[51] Andrew J. Viterbi, Audrey M. Viterbi, Klein S. Gilhousen and ArogyaswamiEphraim Zehavi. \Soft Hando� Extends CDMA Cell Coverage and IncreasesReverse Link Capacity". IEEE Journal on Selected Areas in Communications,12(8):1281{1287, 1994.[52] Yiping Wang and J.R. Cruz. \Performance Analysis of CDMA Cellular Sys-tems with Adaptive Antenna Arrays over Multipath Channels". In 1996 Inter-national Conference on Communications, pages 536{540, 1996.[53] B. Widrow, J.M. McCool, and M. Ball. \The Complex LMS Algorithm". InProceeding of IEEE, pages Vol 63, pages 96{104, 1975.[54] Hsin-Yu Wu and Alexandra Duel-Hallen. \On the performance of coherentand noncoherent multiuser detectors for mobile radio CDMA channels". In 5thIEEE International Conference on Universal Personal Communications, pages76{80, 1996. 125



[55] Weidong Yang and Guanghan Xu. \Optimal Downlink Power Assignment forSmart Antenna System". In International Conference on Acoustics, Speech,and Signal Processing 1998.[56] David J. Young and Norman C. Beaulieu. \On the generation of correlatedRayleigh random variates by inverse discrete time fourier transform". In 5thIEEE International Conference on Universal Personal Communications, pages231{235, 1996.

126



Vita Geo�rey W. K. ColmanEDUCATIONQueen's University M.Sc.(Eng.) Electrical Engineering 1996{98Queen's University B.Sc.(Eng.) Electrical Engineering 1991{96EXPERIENCEDefence Scientist (1998{),Defence Research Establishment Ottawa, Ottawa, OntarioResearch Assistant (1996{1998),Electrical and Computer Engineering, Queen's UniversityTeaching Assistant (1996{1996),Electrical and Computer Engineering, Queen's University
127



PUBLICATIONSGeo�rey W.K. Colman and Steven D. Blostein (1998), \Improved Power and CapacityPredictions of a CDMA System with Base-Station Antenna Arrays and Digital Beamform-ing", 19th Biennial Symposium on Communications, Queen's University, 1998.Geo�rey W.K. Colman, Steven D. Blostein and Norman C. Beaulieu (1997), \An ARMAMultipath Fading Simulator", 7th Virginia Tech/MPRG Symposium on Wireless Per-sonal Communications.

128


