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Abstract

Rateless codes, also known as fountain codes, are a classofe@error-control codes that
are particularly well suited for broadcast/ multicast spss. Raptor codes, as a particularly
successful implementation of digital fountain codes, hiagen used as the application-
layer forward error correction (FEC) codes in the third gatien partnership program
(3GPP) Multimedia Broadcast and Multicast Services (MBM&ndard. However, the
application of rateless codes to wireless multimedia braatimulticast communications
has yet to overcome two major challenges: first, wirelesgimatlia communications usu-
ally has stringent delay requirements. In addition, mudiiila multicast has to overcome
heterogeneity. To meet these challenges, we propose asaiusbde design that takes the
layered nature of source traffic as well as the varying quafitransmission channels into
account. A convex optimization framework for the applioatof unequal error protection
(UEP) rateless codes to synchronous and asynchronousmadlt multicast to heteroge-
neous users is proposed.
A second thread of the thesis addresses the noisy, burstiirmedvarying nature of

wireless communication channels that challenge the assumgf erasure channels often

used for the wired internet. In order to meet this challerige,optimal combination of



application-layer rateless code and physical layer FE@ ¢atks in time-varying fading
channelsisinvestigated. The performance of ratelessandigbrid error-erasure channels
with memory is then studied, and a cross-layer decoding odeith proposed to improve

decoding performance and complexity.
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Chapter 1

Introduction

Multimedia multicast over wireless channels has gainedrenas attention due to the in-
creasing demand for multimedia content on mobile devicesveév¥er, delivering rich mul-
timedia content to heterogeneous users is still a chalhgnigisk. A fundamental question
for reliable multimedia multicast is how to efficiently ceat erased packets for multiple
heterogeneous users with varying loss rates. The recerdfyoped fountain codes [3]
provide an efficient solution to this problem.

Fountain codes are a class of rateless codes that are dyigilesigned for binary
erasure channels (BEC). Erasure channels are channels déer are either transmitted
completely reliably or else erased. Besides theoreticpbmance, erasure channels have
gained significant attention in modeling practical comneatibn scenarios. For example,
on the internet, data is transmitted in small packets. Fatipackets, reliability is guaran-
teed by appropriate protocols. The correctness of the dadaeceived packet is verified
by a built-in check mechanism within each packet, such asksuens and cyclic redun-

dancy checks (CRCs) [4]. Packets that are lost, corruptdydd or do not satisfy certain



quality of service (QoS) requirements can be discardedéeda In wireless communica-
tions, transmitted data are subject to noise and fadingr Eorrecting codes are typically
selected in the physical layer to correct most errors widlaioh packet. At the packet level,
the channels can also be similarly modeled as (packet)rerabannels when packets with
uncorrected errors are declared as erased.

The simplest way to deal with erased packets is to retranbmm. In this method,
the receiver needs to feedback the indices identifying tissing packets to the transmit-
ter. Automatic repeat request (ARQ) is one of these protopl However, there are
some drawbacks in using re-transmission schemes. Fiesthnnel capacity of an era-
sure channel has been shown to be the same with and withalliafele [S]. This suggests
that the added complexity introduced by a feedback chanaglmot be necessary. Sec-
ond, while re-transmission schemes may work well for urigastocols, they are very
difficult to implement in broadcast/multicast scenario@n€ider the case where a server
is distributing the same information to multiple users. cgirach user has different chan-
nel conditions resulting in different missing packetstrasmission according to requests
from each individual user can quickly overwhelm the server.

Another way to deal with erased packets is to deploy tradktidolock codes on the
source packets before transmission to efficiently corrassimg packets at the receiver.
By efficiently, we mean codes that perform at near Shannoitsliwhile maintaining low
complexity as is suitable for practical deployment. The mwaslely used classical era-
sure codes are Reed-Solomon (RS) codes [4] [6]. RS codestha\desirable property

that they are maximum distance separable (MDS) [4]. A MDSecisda code whereby



the originalK source symbols can be recovered by &nguccessfully received symbols.
However, the encoding and decoding complexities limit pcat RS codes to small code
lengths. In addition, as with other traditional block codiee rate of RS codes has to be
predetermined based on the erasure probability. In hezasmus multicast scenarios, dif-
ferent receivers may have different erasure probabilitresuch scenarios, the transmitter
would be forced to select the rate according to the worst, wgich is very inefficient.
One way to overcome the inefficiency is to regenerate andgmnéara new block of RS
codes when some receiver fails to decode the source bloakidihe lack of an “on-the-
fly” generation feature of RS codes, the receiver may reqgalieety of duplicate packets
before receiving useful information to finish decoding. @thesearchers propose to use
hybrid approaches which combine traditional erasure ceddsARQ schemes [7]. Al-
though these approaches reduce re-transmission ratetihdyp siot perform well enough
for multicast scenarios.

A class of recently developed forward error correctionsespdhamed fountain codes
[3], are ideal solutions to the above problems. A well impteted fountain code has the
following properties: (i) fountain codes have near optipeitformance for erasure chan-
nels, i.e., from only slightly more thak successfully received encoding symbols, the
receiver is able to recover the originélinformation symbols with high probability; (ii)
fountain codes can be universal, meaning that the samedioucbde can achieve near
optimal performance regardless of the erasure probahdlity (iii) fountain codes are ef-

fectively rateless. The source can generate a potenti#ilyite number of symbols and



only stops transmission when it receives an acknowledgeA&€K) from the receiver in-
dicating successful decoding. Therefore, the rate of atbonrcode is determined at the
receiver on-the-fly rather than predetermined during eimgpd

The above properties make fountain codes self-adaptiveaonrel conditions without
requiring feedback. The concept of fountain codes is firgppsed in [8], where the ap-
proach is named a Digital Fountain (DF). The name comes fiwrfdllowing analogy.
The encoder is the “fountain”, encoded symbols/packetsvater drops; the “fountain”
creates potentially an infinite number of water drops dugngoding. The decoder is the
“bucket”, which has capacity equal to the number of infoliorasymbols. The “bucket”
collects water drops sprayed from the fountain. When theKbti is full, it is able to
recover the original information independently of whichteradrops have been collected.
The first practical implementation of fountain codes is thubdy. Transform (LT) code [9],
which has a very simple linear structure. In LT codes, a degjre first chosen according to
some degree distribution, therbinary bits are randomly chosen amaddgource bits and
are linearly combined in the binary field to produce an ouyatbol. The decoding of LT
codes is similar to belief propagation (BP) decoding of leansity parity check (LDPC)
codes over erasure channels. With carefully designed detjstributions, LT codes are
able to perform nearly as well as an ideal fountain code wide@ding complexity pro-
portional toK InK. Later on, Shokrollahi [10] [11] extended the idea of LT cetieraptor
codes, which have even lower decoding complexity. The kdsig of raptor codes is to

pre-code the source bits with a block code before the innerdde.



LT and raptor codes have been found to have many applicationsernet and wire-
less communications, such as peer-to-peer communicatparallel downloading [12]
and multicasting [13]. For example, in 3GPP Multimedia Rlcast/Mutlicast Services
(MBMS), raptor codes have been chosen as the forward erreeatmon (FEC) code in the
application layer for file downloading services [14]. Thesdue to the great attributes of
raptor codes: linear encoding complexity, linear decodiognplexity and nearly optimal

performance independent of channel conditions.

1.1 Motivation and Thesis Overview

There are generally two types of wireless multicast sesvifiée downloading and multi-
media streaming. File download delivery services are Wsaakociated with transmitting
a chunk of data to a variable number of users. File downloadcss require high accu-
racy but can tolerate long delays. On the other hand, mulliangtreaming services are
real time applications. For users with a limited amount dfdaing, the service is usually
delay sensitive but can tolerate a small amount of errors.

While rateless codes have been shown to be very promisingrdasmitting large
chunks of data, the application of rateless codes to weetadtimedia multicast applica-
tions is still a challenging task. The two major challengesafireless multimedia multicast
are user heterogeneities and time varying wireless chanimethis thesis, we mainly focus
on addressing these two major challenges in the applicafioateless codes to wireless

multimedia multicast.



The first challenge in the application of rateless codes foglass multimedia multicast
is user heterogeneity. Although rateless codes can pr@xtta flexibility in code design
as well as better efficiency compared to fixed-rate codes fdtimnedia multicast appli-
cations, the original design of raptor codes, despite bleighly efficient for broadcasting
bulk data, has very poor progressive decoding performadoeghe other hand, multimedia
content often has a scalable structure in which certainceohits have higher priorities
than others. Therefore, an efficient fountain code desifpradultimedia streaming appli-
cations should provide unequal error protection (UEP) tietint source symbols. Code
optimization for UEP has been proposed for fixed-rate FE@saa [15] [16] [17]. How-
ever, these approaches do not consider guaranteed QoSdardeneous users and do not
take rateless code performance into account. Recently, ldiegess code designs have
been proposed in [18] [19]. However, these involve complesoding and decoding and
use computationally complex exhaustive search to opticondiguration parameters.

The second challenge of the application of raptor codes itirmedia multicast is the
time-varying wireless channels. They are generally natiefitly modeled as erasure chan-
nels. On the other hand, most applications of rateless dodkzde assume a perfect erasure
channel [11] [20], where received fountain encoded packet®ither received error free
or completely lost. It has been shown in [11] that raptor sog® “universally” optimal
for erasure channels, meaning that the same code pararoateeshieve optimal perfor-
mance regardless of the channel erasure probability. Beslbthe advantages of fountain
codes, there are some difficulties involved in applying taimcodes to wireless broad-

cast/multicast channels. In wireless communicationsstrassion data is subject to noise



and fading, and errors can also be bursty. Powerful charoads; such as turbo codes
[20], are adopted in the physical layer to correct most srvaithin each packet. In this

case, the channel at the packet level can be modelled as ke{pacasure channel when
packets with uncorrected errors are declared as erased.

As system simulation results of a raptor-coded cellulamboast system in [20] and
[21] suggest, an optimal balance between physical andagtign-layer code rates exists.
In many cases, a higher packet error rate (PER) that is d¢eddxy the application-layer
raptor code can be more efficient than traditional desigreswvé¥er, the conclusions pro-
vided in [20] are from system simulations, and do not prowdtficient insight and quan-
tification of the optimal rate combination.

There are also approaches that study the performance afrrepies over additive
white Gaussian noise (AWGN) or fading channels using safodang [22] [23]. It has
also been shown in [22] that raptor codes no longer possgudiperty of universal opti-
mality over those noisy channels. In addition, performiofy decision decoding increases
the decoding complexity significantly compared to that eksere decoding.

In this thesis, we address the above two major challenges drfew different aspects
that have not been investigated in the literature. To addtesfirst challenge, we propose
a convex optimization framework for UEP raptor code desmnsiynchronous and asyn-
chronous multimedia multicasting to heterogeneous uskssexisting simulation results
suggest (e.g. [20] [24]), a non cross-layer approach to #sgd of rateless codes can
result in low system efficiency in noisy channels with low SE¥&n though raptor codes

have high efficiency at the application layer. Thereforeaddress the second challenge,



we propose two cross-layer approaches for rateless codelitss communication systems
with memory to improve the overall system efficiency. In thetfcross-layer approach,
we propose to use traditional erasure decoding of an apiplictayer raptor code to main-

tain low decoding complexity. However, we jointly optimittee physical-layer code rate
and application-layer raptor code rate to maximize systemughput in both slow and

fast fading channels. In the second cross-layer approawbsa-layer hybrid erasure-error
decoding scheme is proposed, which utilizes soft inforomefiom physical-layer decoder

as well as side information from the build-in CRCs. The reees are flexible in adopting

the proposed hybrid erasure-soft decoding scheme to achiesirable performance and
complexity. The rest of the thesis is organized as follows:

In Chapter 2, background on rateless codes and their peafares are first reviewed.
The fundamentals behind the encoder and decoder designhafdds and raptor codes are
described. The performance of LT codes and raptor codestmdrasure channels and
noisy channels are also simulated. The systematic vergicaptor codes, that has been
standardized is also introduced.

In Chapter 3, an optimization framework for UEP ratelessecoelsign for multimedia
multicast to heterogeneous users with different QoS requents is presented. Optimiza-
tion problems with objectives that either provide guaradt€oS or provide best-effort
QoS for heterogeneous users are formulated. A randomeatert rateless encoder design
is proposed. Unlike previous designs, existing standacdiiaptor codes can be directly ap-
plied to this design without requiring re-optimization.dalving the optimization problem

for guaranteed QoS, the original problem is transformeddmraex optimization problem,



and then optimal configuration parameters of the proposdel tdkeless code are obtained.

In Chapter 4, a different UEP rateless code optimizatioblgr that focuses on asyn-
chronous multimedia multicast is addressed. A similarmoation problem with a differ-
ent UEP rateless code design was first formulated in [25] 26f [The problem is solved
using an iterative search method in [25] and [26] which hah lmtomplexity. In Chapter
4, we show that under certain assumptions and under theatedaof integer constraints,
this problem can be formulated in terms of convex optimaati An analytical solution
is then found for the asynchronous multicast optimizatiombfem without outage con-
straints [25]. For the more general formulation with outagastraints [26], an analytical
solution is found for the special case where there are twoalasses. Numerical solutions
using convex optimization software [27] [28] are requiredblve the more general cases.

In Chapter 5, the optimal rate combination of the applicateyer rateless codes and
physical-layer codes in wireless fading channels is ingattd. Both slow and fast fading
channel conditions are considered. The optimal physeaaf modulation and code rate
pair is analyzed in order to maximize overall system thrqughFor slow fading systems,
cross-layer adaptive modulation and coding design is alspgsed to maximize system
throughput. The performance of the proposed cross-layggaés then compared to tradi-
tional designs via numerical examples.

In Chapter 6, a hybrid erasure-error decoder is proposettirodesirable decoder
complexity and performance. The performance of raptor sadehybrid error-erasure
channels and Gilbert-Elliott channels are first presentdiich does not appear in the ex-

isting literature. A hybrid erasure-error decoder is thesppsed as a cross-layer approach



for the decoding of raptor codes. A hierarchical Markov madgegroposed for model-
ing the cross-layer hybrid error-erasure channels with orgnThe performance of raptor
codes under both cross-layer and non cross-layer decodiregres are compared using
the proposed channel model.

Chapter 7 concludes this thesis and suggests future work.

1.2 Thesis Contributions

The primary contributions of this thesis are briefly summedias follows.

e Arandom interleaved raptor code with unequal error prataqUEP) properties for
multimedia multicast is proposed and an optimization fraork of UEP rateless
code design for multimedia multicasting to heterogene@esaiis presented. The
problem of minimizing the transmission overhead while jmlowg heterogeneous
users different levels of QoS guarantees is solved. Numlegsults using and-or tree
analysis are presented that demonstrate that the propasddm interleaved UEP
rateless code outperforms non-optimized rateless codeslbas recently proposed
UEP rateless codes that use the same LT degree distribufithesguaranteed-QoS
problem using standardized raptor codes is transformeddonaex optimization
problem. The convexity of the problem is proven and a singalifnethod to solve
the convex optimization problem analytically is propos€le optimization problem
of providing best-effort QoS under a fixed transmission eatgloying the proposed

UEP rateless code is also formulated. Numerical result shat with the ability to
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adopt superior standardized raptor codes, the proposedai&lEss code can provide
a significant additional gain compared to existing rateteste designs for both the

guaranteed QoS and best-effort QoS problems.

In optimizing unequal error protection (UEP) rateless ofibe asynchronous mul-
timedia multicast to heterogeneous users, we prove tharuwsitain nonrestrictive
assumptions and with the relaxation of integer constraihis problem can be trans-
formed into a convex optimization problem. An analyticalusion for the asyn-
chronous multicast optimization problem without outagastmints is then found.
An analytical solution for the more general formulationhwdutage constraints is
found for the case of two user classes. For the general probi¢h outage con-
straints and more than two user classes, standard convewizgtion software is
used to solve the problem. Numerical examples for the cddegeuser classes and

four-user classes are presented, which illustrate the eefmntques.

The system throughput of a two-layer rateless coded sygpeiied to Rayleigh fad-
ing channels is determined as a function of channel SNR andhbice of physical-
layer modulation scheme and code rate. The optimal choigaisysical-layer mod-
ulation and code rate that maximize overall system througip both slow and
fast fading channels are computed. A cross-layer adapto@uiation and coding
(AMC) scheme that maximizes overall system throughput limwv $ading channels
is proposed. Numerical results show that the proposed-tagss adaptive and non-

adaptive schemes outperform traditional non cross-lagaptve and non-adaptive
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schemes. Insight is also provided on the balance betwedwepator correction and

error correction via application-layer erasure codes.

e The performance of raptor codes over binary symmetric cblamith erasures (BSCE)
is analyzed and simulated. The property that the averagéead of raptor codes
over BSCE is the same as that of corresponding binary synmeéisnnels (BSC) is
proven. The performance of fixed rate raptor codes over @ibiiott (GE) chan-
nels with and without channel state information (CSI) atibeeiver is simulated.

Sensitivity to different channel parameters is also ingesed.

e A hybrid erasure-soft decoding algorithm as a cross-layetogol for decoding
application-layer raptor codes is proposed. A hierard¢itarkov model is applied
to model the correlated fading channel that the raptor cedpsrience. The per-
formance and throughput of different protocols using tlegdrichical Markov model
are compared, and the advantage of the cross-layer praogubying the proposed

hybrid erasure-soft decoder is quantified.
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Chapter 2

Background

In this chapter, rateless codes and their performance sugrahannels are first reviewed.
The performances of Luby Transform (LT) and raptor codesaisynchannels are then
described. After that, application of rateless codes teless broadcast/multicast channels

are highlighted. Finally, standardized raptor codes dreduced.

2.1 LT and raptor codes in erasure channels

LT codes, proposed by Luby [9], are the first practical redion of fountain codes. LT
codes encod& information symbolgxi, X2, ...,Xk) into a potentially infinite number of
output symbolgz, 2,73, ...). The input information symbol can be a one-bit binary sym-

bol, a general-bit symbol, or a data packet. The encoding process is dofadlass:

1. A degreed is chosen by sampling from a given distributibn which is called
the “degree distribution”. LetQ1,Qoy,...,Qk) be a distribution 0{1,2,...,K} such

thatQ; represents the probability that values chosen. The degree distributibris
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denoted by the polynomi&(x) = =K, Q(i)x.

2. d input symbols are chosen uniformly at random fromkhimput symbols. The
value of the output symbol is the exclusive-or (XOR) of thehosen input symbols,
i.e.,z= 3K ,vix;, where the coefficientg € {0,1} fori =1,2,....K, =X ,vj = d and

modulo 2 bit-wise sum is used.

The assumption is made that the receiver knows the coeffoierin practice, this can be
achieved in many ways. For example, the degree and the Insgighbors can be included
in a packet header, or a key may be associated with each ehspadol and both encoder
and decoder use the same function of the key to compute theedagd set of neighbors.
The encoding process of LT codes can be represented by timefTgraph shown in Fig.

2.1. In the graph, input variable nodes and output variablies represent information
symbols and encoded output symbols, respectively. Thekahedes represent the XOR

calculation. A direct way to decode a LT code in erasure caBnis to use Gaussian

Information symbols (input variable nodes)

Check

nodes

Encoded symbols (output variable nodes)

Figure 2.1. Shown is the Tanner graph of a LT code.

14



elimination to solve the set of linear equations. Howeverysian elimination generally
has computational complexity @(K?3) [29], which is very high. A practical decoding
scheme is to use the iterative belief propagation (BP) dlyar in a very similar manner
to the BP decoding of low density parity check (LDPC) codese BP decoding is much
simpler in erasure channels than in noisy channels sintleeaflymbols received are either

completely correct or completely uncertain. The decodsreyimmarized briefly as follows:

1. Find an encoded symba] that is only connected to one information symkgol
Then decode the information symbol, i.e., determénieom z,. If no such encoded

symbol exists, the decoding process stops.

2. Add the value of the decoded information symkoto all the other encoded

symbols that are connectedxo Then remove all edges that are connecteq.to

3. Repeat Steps 1 and 2 until all information symbols have lobeeoded success-

fully.

The design of the degree distribution plays a central rollkeerperformance and complexity
of LT codes. The most crucial value is the average degregusecboth encoding and
decoding complexity scale linearly with the total numbedefjrees. However, to ensure
that every information symbol is covered with high probifilthe total degree of the

output symbols must be at least of or#dn K. Therefore, IfK serves as a lower bound for
the average degree of an ideal LT code. In addition, theraldhme at least one encoded

symbols with degree 1 to initiate the decoding process. dasethese requirements, a
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robust soliton distribution (RSD) has been proposed by L{@hyThe RSDu is given by
p(d)=——= d=12..,K, (2.1)

wheref ==K _, (p(d) + 1(d)), p(d) is the ideal soliton distribution,

p(1)=1/K
(2.2)
p(d)=1/d(d-1), d=23,....,K
andrt(d) is defined as
R/(dK) for d=1,2,...,[K/R|-1
1(d) = {RIN(R/8)/K for d=[K/R] (2.3)
0 for d> [K/R],

whereR= ¢ In(K/3)+v/K is the average number of degree one encoded symbols,aui

0 are parameters. The RSD in fact achieves the average degveelound of an ideal
LT code, with an average degree that scales linearly with bnd ensures that the receiver
can recover the origindf information symbols with probability + 6 when K output
symbols are successfully received [9].

In practice, a constant average degree which results iarlidecoding complexity is
desirable. Shokrollahi [10] fulfilled this requirement bytending the idea of LT codes
to raptor codes. Raptor codes are simply constructed byatenating a block code with
a weakened LT code. The weakened LT codes have a constaagaMgreei_. Using
a weakened LT code, the fraction of information symbols #ratnot covered by ank
output symbols are approximatdyd_. Hence, if the pre-code is able to correct this fraction
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of erasures, all thK information symbols will be recovered. The drawback of oajgbdes

is that they are bounded away from the capacity when the idheobdes and the precode
are decoded separately, with a gap equal to the rate of theoplee The design of the
pre-code and the parameters of raptor codes are presentkdaihin [11]. One of the
preferred pre-codes are high rate LDPC codes, due to thmissganner graphs, resulting
in low decoding complexity using the BP algorithm. We nekistrate the raptor code
from [11] for simulation and analysis. The pre-code of tlaptor code is a left regular
and right Poisson LDPC code with rat€8. The variable nodes of this LDPC code have
constant degree 4 and check nodes that are connected to &#mhles node are chosen
uniformly at random. The Tanner graph of the LDPC pre-codshwvn in Fig. 2.2. The

inner LT codes use the degree distribution,

Qr(x) = 0.00796% + 0.493570¢ + 0.1666220C + 0.072646¢* + 0.08255&

+0.0560588 +0.037229° + 0.05559%!°+ 0.025023°° + 0.00313%%6.  (2.4)

LDPC coded symbols

Check nodes

Figure 2.2. Tanner graph of the LDPC code.
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The average number of output degrees per information nodleeoAbove weakened
LT codes is independent of code dimensknand therefore has the advantage of low
decoding complexity compared to RSD-based LT codes. Thienpeance of the inner
weakened LT codes with a degree distribution given by (2d)the performance of raptor
codes with the same inner LT codes for a BEC with zero erasateeare simulated in
Figs. 2.3 and 2.4. Once a new symbol is received, we attengedode both the inner LT
codes and the LDPC codes using iterative BP algorithms ti@itlecoding is completely
successful or stuck. The transmitter continues to send srmreded symbols until all the
information symbols are successfully decoded. Figs. 2d32a# show histograms of the
numbers of received symbols required to successfully detioel weakened LT codes and
the raptor codes. The raptor codes require very little ceadhwhile the LT codes require
a large overhead to successfully decode the message. Wievettkened LT codes are
used, the number of decoded information symbols versusttimdar of received encoded
symbols for three different randomly chosen realizatiamsskown in Fig. 2.5. From the
intermediate performance of the inner LT codes shown in Eig, it can be seen that after
collecting slightly more than 10000 encoded symbols, onlgry small portion of source

symbols are not covered, which can be easily decoded by éheqate.
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Figure 2.3. Histogram of the number of received symbols tmcessfully decoding the

inner LT codes with code dimensiéh= 10000.
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Figure 2.5. Intermediate performance of the weakened Llesauth code dimension

K = 10000 and degree distributid®(x) = Q(X).

2.2 Raptor codes in noisy channels

The success of raptor codes in binary erasure channels (Bliggjests that the fountain
concept may be extendable to more general types of chasnelsas additive white Gaus-
sian noise (AWGN) channels. The use of fountain codes iryrakiannels can be described
in the following way: the receiver collects output symbatslaalculates the channel ca-
pacity. Once channel capacity exceeds the realized cogletihatreceiver starts to attempt
to decode. The performances of raptor codes over binary ggnachannels (BSC) and
Binary input AWGN (BIAWGN) channels are simulated in [23]2]2 Decoding of raptor
codes is normally performed iteratively using BP algorighmhich have been widely used
in decoding linear codes such as LDPC codes [30] and turbescfgl] [32]. By merg-

ing the Tanner graph of LT codes (Fig. 2.1) and the Tannertgodphe LDPC pre-codes
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(Fig. 2.2) into one Tanner graph, the message passing ruleedBP decoding over the
Tanner graph of raptor codes is very similar to that of LDP@es For a LT output bit
z, the initial log-likelihood ratio (LLR), defined d.R(z) = In(P(z = 0|y;)/P(z = 1|y;))

wherey; is the corresponding received symbol, can be calculateddbas the channel

information [30]. For BEC,

(

+oo, yi =0

LLR(Z) =4 o, yi—1 (2.5)

0, y; = erasure.

For BSC with symbol-error probabilitg,
LLR(z) = (=1)Y'In((1—¢)/¢). (2.6)
For BIAWGN channels with noise variance,
LLR(z) = 2yi/0”. (2.7)

The initial LLRs of the LT input bits can be set to zero. The ld.&e iteratively updated
by passing messages between the variable nodes and cheek oiothe Tanner graph.
After a pre-determined number of iterations, a hard deciggomade based on the final
LLRs. In practice, the receiver has to attempt to decoderaegmint and relies on a cyclic
redundancy check (CRC) to determine whether the decodmgtseare correct. A good
starting point is when the realized code rate is below th@hiecapacity. When decoding
fails, the receiver waits for a certain number of symbols ateimpts to decode again [33].
The waiting time has to be carefully chosen as too little igitime will result in high
complexity and too much waiting time will result in lower pamance [34] [35].
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In [23] and [22], the performances of LT and raptor codes areilated based on bit
error rate (BER) for a given code rate. We simulate the peréorces of LT and raptor

codes in Fig. 2.6, where the LT codes have a code dimen&ienil0000 and the raptor

-1
10 F T T T

—+—LT codes
—%— Raptor codes

1071

BER

10

1R

Figure 2.6. LT codes and Raptor codes over BSC channelsswitf.11

codes have a code dimensign= 9500 with a rate-0.95 LDPC code as the precode and
both use the degree distributiéq (x) given by Eq. (2.4). It can be seen that raptor codes
easily outperform LT codes of the same rate. Also, LT codes karor floors even at a low
rate. This is not only because there are some informatiorbeismot connected to output
symbols, but also because some symbols are not protectegtendhe LT codes using
RSD have similar error floors. In addition, the performanteaptor codes in BIAWGN
channels has been simulated in [23]. The performance isalesg to the Shannon limit,

with an overhead of less than 10 percent. The above simnlegults indicate that a raptor
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code designed for a BEC channel can perform quite well foertypes of channels. Sim-
ilar simulation studies on raptor codes over fading chanhale been carried out in [33].
Some further detailed analysis of raptor codes over BSC dAWBN channels appears
in [22]. Besides simulation results, the authors in [22] aggaussian approximation (GA)
method to derive criteria for the output degree distributio produce good raptor codes.
A lower bound of the fraction of output symbols of degree 2 asivkbd, which depends

on the noise level in the BIAWGN and BSC channels. This olaem suggests that a
universal raptor code which can perform arbitrarily clos&hannon limits for any noise
level of AWGN channel may not exist. However, [22] also pr®teat asymptotically, a

universal raptor code designed for BECs needs at mostlogerhead when applied over
BSCs using the BP decoding algorithm.

Despite the relatively good performance of raptor codes ngesy channels, the com-
plexity of the BP decoding of raptor codes in AWGN and fadih@mnels is much larger
than in erasure channels. Reducing decoding complexityeiefore a useful area of re-
search. The results in [35] and [34] show that it is possiblattlize the output of the
previous decoding attempt to initialize the current deogdattempt. Such an approach
would reduce the total number of iterations required for@easful decoding when more
than one decoding attempt is used.

LT and raptor codes are not the only implementable codestbatsed to approximate a
digital fountain (DF) over wireless communications chdanin [36], the author proposes
to use turbo codes to approximate a DF over AWGN and fadingredla. Turbo codes

are among the most powerful codes that perform very closeani$n capacity in AWGN
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and fading channels. In [36], the information symbols ar fiassed to a rate/3 turbo
encoder. The output bits of the turbo encoder are then appiea potentially limitless
number of random interleavers to produce a rateless codse.turbo-fountain technique
performs quite well as indicated by simulations. The siraferesults show that the turbo-
fountain code closely approximates a DF code in noisy anddechannels. However, there
is still a gap between the performance of turbo-fountairesaghd the theoretical capacity
limits throughout the SNR range, suggesting that futurerowpments in the codes are
possible. The turbo fountain codes are, in fact, a specp# tf raptor code, known as
pre-code only (PCO) raptor codes [11]. The turbo code useberturbo-fountain code
forms the pre-code. The turbo-fountain code does not irciudinner LT code, but uses a
potentially endless set of random interleavers insteaa éfficiency of such PCO raptor

codes over erasure channels is analyzed in [37].

2.3 Application of fountain codes to wireless multicast

As described in the introduction, fountain codes are paldarty useful in wireless multicast
scenarios because of their superior performance and chadagetivity without feedback.
The advantage of using fountain codes for asynchronousaasithas long been justified
since the invention of LT codes [13]. Later on, fountain cotave also been proposed for
use over wireless channels. Raptor codes have been steredhbirdthe 3GPP Multimedia
Broadcast/Multicast Services (MBMS) system [14]. The MBIst® mobile multimedia

services over GSM-based 3rd generation (3G) cellular mésvoln MBMS, the raptor
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codes are used at the application layer to provide packet{eotection as a complement
to the FEC codes at the physical layer. The receiver droppdhkets where uncorrected
errors occur within the packet and uses raptor codes to ee¢bhe source packets at the
packet-level. Since at the packet level, the channel isapgfoximated by a virtual erasure
channel, all the advantages of raptor codes over erasunaelsacan be exploited.

In [24], the concatenation of LT codes and bit-interleavederl modulation (BICM)
is used in a wireless internet application, modeled as asuegachannel contaminated by
AWGN. The performance of this scheme is very good when tham#laSNR exceeds a
threshold, but rather poor in low SNR. This is because in IlNRSthe inner BICM fails
to correct some errors in most packets and results in veryplket throughput. In [38],
this problem is resolved by utilizing the soft informatiangerform iterative decoding of
LT codes. This requires the use of CRC to verify whether degpts successful. The
decoding algorithms are the same as discussed in SectionTRi& decoding process is
considered as an information collection process. Univegamal fountain codes over
AWGN and fading channels are defined here as rateless codedlsat as long as the
mutual information the receiver collects exceeds the egtiaf the source information,
the receiver is able to recover the information. Assumirgg tiniversal optimal fountain
code is used, the probability that the receiver cannot sistaly decode th& information

symbols at timeN is given by

N
Po(K,N) = Pr{B.ZlRI (hi) <K} (2.8)

whereB is the bandwidthh; is the particular channel realization at time sl@ndR, (h)
is the mutual information supported by the channel. Sindkdinitions of ideal fountain
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codes can also be found elsewhere such as in [33]. Simulasutts show that the perfor-
mance gain by utilizing soft information is very large in I&NR. Also, it is shown that
when soft decoding of fountain codes is utilized, there is\eed to use another channel
code to protect the packets. This is because a single foucdaie with soft decoding can
provide better performance than that using both physigarl&EC and erasure fountain
codes.

There are generally two types of wireless multicast sesvicownload services and
media streaming services. Download services require vigly &ccuracy but can toler-
ate long delays. On the other hand, media streaming serareedelay sensitive but can
usually tolerate some small amounts of errors. Streaminguslly accomplished in such
a way that the receiver can begin play-out by using the eadgived data while receiv-
ing new data. The design of delay sensitive asynchronousantedivery using fountain
codes has been discussed in [39]. The original media datdiaded intoM segments,
{S1,S,...,Sv}, and transmitted in parallel using fountain cod8gis chosen to have the
highest rate to minimize initial play out delay. Segmeitais a useful technique to bal-
ance the initial play out delay and bandwidth expansionptg(S) represents the latest
time the receiver has to reconstruct segm@rafter play-out begins, for a given initial

play-out delayd, the outage probability can be expressed as

M
Pout (0) = 1— _U(l— Po(|S|,toTs(S) +9)) (2.9)

where po() is given by (2.8). Simulation results using universal ogtifountain codes
defined in [38] show that the required initial play-out detigcreases when the average
SNR increases. The results also show that such fountairs@dperform erasure fountain
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codes by a large margin.

2.4 Systematic standardized raptor codes

Since the introduction of raptor codes [10], a fully spedifieersion of raptor codes has
been approved [40]. The raptor codes that have been speicified 3GPP MBMS stan-

dard [14], known as standardized raptor codes, is a sysiewaasion of raptor codes. The
standardized raptor codes have refined the original rapite design to ensure low en-
coding and decoding complexity as well as low overhead. Téedsardized raptor codes
use a very efficient implementation of a maximum likeliho®dL] decoder as opposed
to iterative decoder and therefore allow very fast encodind decoding. Compared to
Reed-Solomon codes, the computational complexity of stathzed raptor codes is orders
of magnitude less [21]. For details about the pre-code, #wra® distribution and the
parameters used for standardized raptor codes, readersfeato [14] (Annex B).

The reception overhead performance of standardized raptias can be expressed by
the decoding failure probabiliti?l (M,K), which is the probability that the receiver fails
to fully recoverK source symbols afté¥l symbols are successfully received. Extensive
simulations have been conducted to evaluate the perforenaratandardized raptor codes.
It has been shown in [20] [21] that fa€ > 200, the decoding failure probability of stan-

dardized raptor codes can be well modeled by the empiridatlgrmined equation,

1 if M<K
PL(M,K) = (2.10)

abM-K if M>K
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wherea andb are constants given ky= 0.85,b = 0.567. The above results indicate that
the decoding failure probability decreases exponenta@ilyeM > K. For a typical size of

code dimensiolK, the overhead of standardized raptor codes is very small.
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Chapter 3

Optimization of unequal error protection

rateless codes for multimedia multicast

3.1 Introduction

Multimedia communications has gained an increasing amaifuaitention due to high de-
mand for high-definition video content. In multimedia conmuations, while multicast
solutions usually provide better bandwidth efficiency thauitiple uni-cast solutions, mul-
ticast over lossy packet networks is still a challengind thse to heterogeneous user net-
works as well as stringent delay requirements. On the sarodmg side, scalable video
coding (SVC) has been developed to allow for progressivernrgcuction of multimedia
content at the receiver. However, on the channel coding $idedesign of forward er-
ror correction (FEC) codes for multimedia multicast fades problem of heterogeneity.
For example, Reed-Solomon (RS) codes are usually custdniieespecific loss rates.

For heterogenous users with differing loss rates, trathli&EC design accommodates the
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worst-case scenario, which is very inefficient.

Recently proposed rateless codes, also known as fountdas¢dl], provide efficient
and flexible FECs for broadcasting or multicasting over @mshannels. Fountain codes
are rateless in the sense that the transmitter may genasmtegeded, a potentially infi-
nite number of encoded symbols. The receiver may succéssédover all information
symbols by collecting any subset of the encoded symbolswsds the number of received
symbols is slightly greater than the number of informatipmbols. Raptor codes [11], rep-
resenting the most successful implementation of digitahtain codes, have been used as
application layer FEC codes in the third generation pastmprprogram (3GPP) Multime-
dia Broadcast/Multicast Services (MBMS) standard [14]uftain codes, highly efficient
for broadcasting bulk data, can potentially improve fleijpand efficiency for multicast
applications. However, the original raptor-code desidl] Has very poor progressive de-
coding performance. On the other hand, multimedia contexyt Imave a scalable structure
in which certain source symbols have higher priorities tbdrers. Therefore, an efficient
fountain code is sought for multimedia streaming applaadithat also provides unequal
error protection (UEP) of source symbols.

The idea of priority encoding transmission (PET) was pioeéén [42] over a decade
ago. Since then, many approaches to provide UEP for mulianeave emerged. For
example, in [15], Mohr et al. propose a PET-based pack&irzacheme for transmitting
compressed images over noisy channels. In [16] and refesetherein, Mohr’'s scheme

is optimized to minimize end-to-end distortion. Similartiogizations of receiver-driven
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networks have been investigated in [43]. A summary of theseogher approaches to rate-
distortion-based optimization can be found in [17]. Mosbpiork employs fixed-rate
codes, such as RS codes. Because RS codes are maximumedggpacable (MDS), code
performance is usually not factored into the optimizatidtateless codes, on the other
hand, are based on random linear codes, with overhead ties Y@r different designs and
implementations. In this thesis, code performance is takeraccount in the UEP rateless
code optimization.

Recently, techniques have been proposed for UEP desigtetésa codes. In [1], mes-
sage symbols are encoded by non-uniform selection of s@yro&ols, where the perfor-
mance of more important symbols is improved at the expenskgbitly decreased overall
performance. The design in [1] has been applied to MPEGdkkeitransmission in [18].
In [2], expanding window fountain (EWF) codes are proposdikre source symbols are
arranged to lie inside a sequence of windows that are nesteedgpanding in size such that
the larger windows contain all the symbols of the smallerdeins. In [19], the design of
EWF codes in [2] is applied to scalable video multicastingwdver, the UEP raptor code
schemes in [18] [19] do not provide user QoS guarantees. ditiad, the designs in [1]
and [2] have inherent disadvantages: since both alter teeathluby Transform (LT)
code [9] degree distribution, they significantly changeecbdhavior. As it is well known
that both performance and complexity are sensitive to @edigtribution, the above de-
signs may worsen code behavior unless the degree distnbigtjointly-optimized, which
would be very complex.

Previous approaches to UEP optimization for both fixed¥&€ codes [15] [16] [17]
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and rateless codes [18] [19] focus almost exclusively owiding best-effort QoS, i.e.,
maximization of an average fidelity measure of video/imagality of end users for a
given transmission rate. However, because rateless cadesno pre-determined rate at
the transmitter, guaranteed QoS may be achieved by simghgmitting enough coded
symbols to meet users’ QoS demands. Therefore, It is impioidaminimize the number
of transmitted coded symbols to meet user QoS demands.

In this chapter, we address the open problem of guarante&doimization, as well
as address best-effort QoS optimization of UEP rateless dedign for multimedia mul-
ticasting to heterogeneous users, i.e., users with differeception capabilities and QoS
requirements. We propose a simpler and more modular UERsateode design which
encodes different layers separately and retains desipaibfgerties of rateless codes. An
important advantage over [19] and others is that the prapbi&eP design allow for direct
application of existing high-performance raptor codeshsas those used in the 3GPP stan-
dard [14], known as standardized raptor codes. In additlenreceiver is able to decode
each layer separately to significantly reduce decoding texitp. Section 3.2 describes
the system setup and proposed UEP rateless code desigignSeé& presents problem
formulations for different scenarios; Section 3.4 prositige solution for guaranteed QoS.
In Section 3.4, for the proposed UEP raptor codes, the @igiroblem formulation for
guaranteed QoS is transformed into a convex optimizatioblpm where optimal selec-
tion probabilities are obtained analytically. In contrasie algorithm in [19] requires a
numerical search to find the optimum, which is a complex taskmthe number of user

classes is large. Comparisons with the UEP rateless codimgnges in [1] and [19] for
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both guaranteed and best-effort QoS problems are prowd8ddtion 3.5.

Related work is presented in [25] and [26], which investgabptimal UEP rateless
code design using a packetization structure similar to iimdfil5] in a different asyn-
chronous multimedia multicast system setup and uses catiprglly expensive iterative
search to find the optimal allocation parameters. Unlikepitupposed approach, the rate-
less code used in both [25] and [26] is assumed to have fixethead and hence code

performance is not factored in.

3.2 System setup and proposed design

3.2.1 System setup

A multimedia server transmits multimedia content simudi@ausly to multiple users, which
may include streaming with strict delay requirements. &fae, it is not feasible to use
a large-dimension fountain code to protect the entire maltia source. Instead, the mul-
timedia content is divided into multiple coded blocks. Tleever first compresses each
source block using a pre-defined source coder and then entfwelsource information us-
ing a UEP rateless code. The encoded symbols are multicastovireless lossy packet
network.

User subscribers are categorized into different classesodiifferent reception capabil-
ities. Assume that there adeclasses of users. For Clagasers, the reception capabilidy
is defined as the proportion of symbols that the receiver nacessfully receive compared

to the number of transmitted symbols, wherg § < J. Therefore, in each transmission
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session, the number of successfully received encoded dgrfdyeach user in Clasgis
0jM, whereM is the number of symbols transmittédWithout loss of generality, we as-
sume 0< &1 < &... < 93 < 1. The reception capabilities are determined by channeitgua
and bandwidth between server and receiver. For exampleass @luser may represent a
mobile cell phone with limited reception quality due to sa®d power restrictions, while
a Class 2 user may represent an automobile equipped witlyer lantenna and better re-
ception quality. Users in different classes also have @ffeQoS requirements. Asutage
QoSguaranteerefers to the ability of users to recover a given portion afrse data with an
achieved target probability. Without loss of generaligak signal-to-noise ratio (PSNR), a
common measure of visual quality, is used in the proposedf@Qo&ulation. The proposed
formulation is also applicable to QoS requirements defirgdgiother measures of media
quality.

Let K represent the number of information symbols in a raptoredosburce block.
Assume the server is transmittiy= (1+ €)K encoded symbols in order to meet all the
subscribed users’ QoS demands, wherethe transmission overhead. The rateless coded
source block is divided inth layers in order of importance, where Layer 1 contains the
most important source symbols and Layecontains the least important source symbols.
For example, for a compressed video or image file, Layer Icalyi represents the base

layer (BL), and Layer 2 represents the first enhancement I@le etc. The number of

For analytical simplicity, the number of received symbelsdach user class is modeled as being equal to
0; multiplied by the transmission volume, which is the samed$9]. In Appendix A or [44], an alternative
model that takes into account the randomness of the numbyeceived symbols is evaluated, and found to

produce similar transmission overheads.
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source symbols in Layeris given byS. ThereforeK = Z|L:15-

3.2.2 Proposed UEP rateless code

We propose a random interleaved UEP rateless encoder te asrFEC for multimedia

multicast, whose structure is illustrated in Fig. 3.1. Tmeader assumes that source

Select layer / P
with probability £
0, /
(e
Encoded digital )
fountain symbol

Raptor encoder 2y
LayerL g stream
ticast

Transmitter/server M

channels

Layer1 S Raptor encoder
!  ——

Dimension= S,

Layer2 S Raptor encoder

Dimension= S,

(1+e)K

Figure 3.1. The proposed random interleaved UEP raptongadiethod.

symbols have been allocated to theayers prior to the encoding process. Encoding is
performed in the following way: a layer is randomly selecteldere the probability of
selecting layet isp for|l =1,2,...,L and z,L:lp| = 1. Then, the encoded output symbol

is generated by the raptor encoder for Lalyaith code dimensioly, degree distribution

Q| (x) and precod€;. Therefore, the overall encoded data stream is an intextestream

of raptor encoded symbols from theencoders. The proposed UEP rateless coded scheme
extends the fountain code principle to random interleavivtych has origins in the design

of turbo fountain codes [45] and EWF codes [19]. This appnaa@ble to control the rate
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of different layers using selection probabilities whileintaining the rateless property. In
[45], the output turbo-coded symbols are randomly seleitiexnieate a potentially infinite
number of rateless coded symbols. However, in [45], ther@iprobability distribution
associated with the selection to create the UEP propertgy.pfbbabilistic based encoding
structure of the proposed UEP rateless codes is more sitildyat of [19], except that
independent coding layers are used rather than an oventappndow approach. As a
result, the raptor encoder and selection probabilitiehefihterleaver can be optimized
separately. On the other hand, in [19], the degree distabsitand selection probabilities
need to be optimized jointly for best performance, a comtask that is not carried out. In
practice, one can alter the ordering of the output symbolsa fihe random interleaved UEP
raptor coder by using scheduling algorithms to meet delsirgdals while maintaining the
priority of each layer. Some investigations on re-ordeniatgless code output symbols
have been recently proposed in [46] and [47]. However, tlapgpeoaches only apply to
limited situations where the ordering of the encoded sysbultters.

Note that unlike [25] [26], the proposed design does noti§pagracketization struc-
ture and thus retains generality. Without loss of genegtaliie result in this thesis may be

applied to data packets rather than symbols, creating packsure channels.
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3.3 Problem formulations with QoS constraints

3.3.1 Guaranteed QoS formulation

In the system under consideration, we consider establisbets that require play-back
media at a quality no lower than their own QoS requirementthis scenario, since the
transmitter has to provide guaranteed QoS for all user etabsfore the start of trans-
mission of the next source block, the throughput of the sydt@ each source block is
determined by the maximum number of transmitted symbolsired to satisfy the QoS of
each individual user class. Therefore, the objective ofUB® raptor code design prob-
lem is to provide different levels of QoS guarantees acogrth users’ requirements while
minimizing the maximum transmission overhead

Problem 3.10(Guaranteed QoS):

min £ 3.1
P1;---5PL ( )
st. ProdPSNR; > yj) > P, j=1,2,...,], (3.2)

wherePSNR; represents the PSNR of the successfully recovered soutz@fihe clasg
user giverM = (1+ ¢)K transmitted symbols, ang and 1- P; denote the target PSNR
threshold and target outage probability for the Classser, respectively. The aim is to
allocate coding rates across layers through optimizatidheoprobabilitieso;, 1 <1 < L.

We require the source (e.g., video, image) coder to be pseiyes so that the recon-
struction media quality is determined mainly by the symbrobies in the lowest layer en-
countered in the recovery process. et =1,2,...,L, represent the PSNR that is achieved
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when Layers 1 td are successfully recovered in the raptor decoding prodessa given
source coder, if the source PSNR is represented as a nosagewy function of the to-
tal number of source symbols decoded by the receiver, derntef (.), then we have
q = f(31S) anda < gp... < qu. Foreach clas§, 1< j <J, letgj € {1,2,...,L} be the
minimum index that satisfiegg; > y;. In order to satisfiPSNR;j > yj, users in Clasg
require the raptor decoder to successfully decode at lengirk 1 tog;. For a given UEP
raptor code design, ld%(l, j) represent the probability that the Clagslecoder fails to
fully decode Layet given transmission overheadand reception quality;. In the most
stringent case when decoding errors across layers areendept, the QoS requirements
of end users can be simplified to

9j
1-R(,j)>P j=1,2,..,J. 3.3
ID( (1,0) =P ] (3.3)

3.3.2 Best-effort QoS formulations

While above formulation focuses on minimizing transmiasayerhead subject to satis-
fying users’ guaranteed Qo0S, this section considers tressson overhead that is upper
bounded due to delay constraints or cost. For this scergavien a maximum transmission
overhead gy, the service provider attempts to provide users of diffecksses with the
best possible QoS. While this scenario is similar to thasmered in [19], the following
best-effort QoS problem extends that in [19] by 1) considgboth constrained and un-
constrained cases, 2) allowing for allocating differenighéng factors to different user
classes as well as 3) possessing the advantages of the @doo&lom interleaved UEP
raptor codes.
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The average PSNR of users in Clas#/hich serves as a measure of the best-effort QoS,
can be evaluated agBESNR;) = Z|L:1 P jai, Whereg, is the PSNR achieved when Layers 1
up tol are successfully recovered. The quantity represents the probability that a Clgss
user successfully recovers Layers 1 tut fails to recover Laydr+ 1. The optimization of
UEP rateless codes has to balance users of different clagbadifferent channel qualities.

If we assign a weighting coefficiemt; for Classj where 0< w;j <1, zlewj =1andthe
choice ofw; depends on both the importance of the user class as well asithber of
users in each user class, then it is reasonable to consilerdighted average PSNR over
all user classes as the objective function. The problem edormulated as:

Problem 3.2Q (Best-effort QoS)

J L
ma i i 3.4
pmax jlel (IZ PLj-o) (3.4)
subjectto €< g (3.5)
where

Moy@=Pe(i, ) xP(I4+1,j) 1=212..,L-1

PLj= (3.6)
M1(1—Pe(i, })) =L,

andPg(i, j) is probability that Clas$ users fail to decode Layér
In Problem 3.20, no guaranteed minimum QoS is provided. @oess this concern, for
a given maximum transmission overhead, the service providg instead aim to provide
best-effort QoS to multiple user classes, but under thetiaddi constraint that a minimum
QoS guarantee for each user class is met. This problem camrbelbted as:
Problem 3.3Q (Best-effort QoS with constraints on individual classes)
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pl7p27"'7p|_ 1—

J L
(S P 3.7
max lewj (I;Dm q) (3.7)

subjectto €< ¢ (3.8)

g,
and [1(1—Pe(l,}) 2P j=1,2,....d (3.9)
=1

where py j is given by (3.6) andyj € {1,2,...,L} (j =1,2,...J) is the minimum layer
index that satisfiegg, > y;. Problem 3.20 can be viewed as a special case of Problem 3.30
without the service-fulfillment probability constraints.

In the next section, we show that Problem 3.10 can be tramsitrto an equivalent
convex optimization problem when standardized raptor sade employed. Unfortunately,
Problems 3.20 and 3.30 cannot be transformed to a convemiaption problem in the
same way as Problem 3.10 due to the form offtheexpressions. However, Problems 3.20
and 3.30 can still be solved numerically by searching(the 1)-dimensional parameter
space of{ p1, P2, ...,pL—1}, checking the constraints (3.9) and the resulting aver&jeRP
(3.7). WhenL = 2, the numerical method is significantly simplified as it ongeds to find
the optimalp; € [0, 1] that gives the maximum average PSNR. Numerical results adngp
the proposed scheme with EWF codes [19] for Problems 3.2@&tdare shown later in

Fig. 3.8.
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3.4 Solving the guaranteed QoS problem

3.4.1 Evaluation of decoding failure probability

An advantage of the proposed design is that existing higfepeance standardized raptor
codes can be directly applied. Standardized raptor coéeefined systematic raptor codes
designed to ensure low encoding/decoding complexity armth@ad. Details about the
pre-code, degree distribution and construction of statded raptor codes can be found in
[14], (Annex B). When standardized raptor codes with maxmtikelihood (ML) decoding

are used, for code dimension greater than 200, the decaaiingef probability, i.e., failure

to decodek source symbols aftan symbols are successfully received, can be accurately

modeled by the empirically determined equation [20],

1 if m<k
PL(mk) = (3.10)

ab™ K if m>k
wherea = 0.85,b = 0.567 are constants. Note that fox 200, Eq. (3.10) underestimates
the error probability due to short block length. One way tgiave code performance
for layers with fewer symbols is to merge source layers withilar optimized selection
probabilitiesp;j into larger layers. We note that, for high-rate media suchidso, the
conditionk < 200 is unlikely to occur.
When more general LT or raptor codes using iterative degpdie employed, the de-

coding failure probabilityPs(l, j) can be approximated by
Pe(l,)) =1~ (1-a )%, (3.11)
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whereg j is the symbol error probability of a Clagsuser decoding Laydr This approx-
imation is based on the assumption that symbol errors iatiter decoding are mutually
independent. The symbol error probabiléy; of an iterative decoder can be analytically
determined by “and-or” tree analysis [48] [1]. Applying thad-or tree technique, Eq.

(3.11) can be evaluated using

1 n=0
&) = (3.12)

exp(—(1+)Kp g Q' (1-¢h)/s) n>1
whereQ(.) is the LT code degree distributiof®/(x) denotes derivative with respect xp
andn is the number of decoding iterations. The asymptotic syneair probability of
iterative decodingy | = Iimn_meﬂj can be estimated by choosing a large vatua Eq.

(3.12) [48].

3.4.2 Convexity analysis

For a given transmission overheagdthe total average number of encoded symbols trans-
mitted for Layerl in each transmission block is defined fy= (1+ £)Kpj, and satisfies
Sk_it = (1+¢&)K. When standardized raptor codes are used, substitatiag;; and
k=S into Egs. (3.10) and (3.3), and taking the logarithm of thestaints described by
(3.3), Problem 3.10 is transformed to:

Problem 3.121

min skt (3.13)

st.—3) logl—gaj]+logPj <0, j=12,..J, (3.14)
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wherec = ab™S, aj = b% andgj € {1,2,...,.L}. The constraints thaid; > S, | =
1,2,...,3,1 =1,2,...,9; are implicitly guaranteed by the 16g function. To ensure an in-
teger solution, we computg,t,,....t; as if real-valued, then round to the nearest larger
integer. Although the above transformation uses the degofiilure probability evalua-
tion of standardized raptor codes given by Eqg. (3.10), alammethod can be applied
to other decoding failure probability models that can berapijnated by an exponential
function.

To solve Problem 3.1, we first prove convexity. As the objective function isslam, we
only need to prove that the constraint functions are conutéxnespect tdj,i =1,2,...,L. It
can be shown that fdr=1,2,....L, the second derivatives eflog(1—¢ alt') with respect

tot satisfy

0%[~log(1-ca)] ca/(loga;)?
ot? - (1-qa')?

>0 j=1,2,..J. (3.15)

According to the second order condition of convex functif?ig, —log[1 — ¢ alt'] is a
convex function of;. Since nonnegative weighted sums preserve convexity {B&]con-
straint functions (3.14) are convex functions of the vetter]ty,tp, ...,t ] . Problem 3.11
can therefore be solved numerically by available convexmapation algorithms [27].

Lett = [ty,tp,....t]T andA = [A1,Az,...,A5]T be the variable vectors of the primal and
dual problems of Problem 3.11, respectivelyt*I= [t;,t5, ..., t1]T andA* = [Af, A5, ..., A5]T
represent sets of primal and dual optimal points, they maigfg the Karush-Kuhn-Tucker

(KKT) optimality conditions for objective functionf(.) and constraint functiong;(.):
fi(t) <0, j=1,2,..., (3.16)
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>0, j=12..3 (3.17)

At =0, j=1,2,..,3 (3.18)
J

Ofp(t)+ Y A{Ofj(t") =0 (3.19)
=1

where herefo(t) = =-_,t andfj(t) = -2 , log[1 - g a}'] +logPj, j =1,2,...,J. Since the
original Problem 3.11 is convex and satisfies Slater’s dmmithe above KKT optimality
conditions provide the necessary and sufficient conditionsptimality [27]. In general,
solving the KKT condition is not straightforward. Howevdrwe can identify a set of
inequality constraints that are most likely to be active., iachieve equality at the optimal
solution, then we can obtain a corresponding set of primdldual solution points and
verify the optimality with KKT condition.

A simplification to the problem arises if we have a one-to-orapping between user
classes and channel coding layers, igg.= j for j = 1,2,..,J andL = J, which is the
assumption used in the formulation of [19], and if all theguality constraints are active.
Using the above assumption, the solution to Problem 3.11beaobtained by findindy
using the constraint for Class 1 in Eq. (3.14) and substiguitie solution of; into the next
constraint, solving fot, with the constraint for Class 2 in Eq. (3.14) etc. until alltbé
variabled,ty,...,t are determined. However, since this simplification has eeniproven
to be equivalent to Problem 3.11 in general, the solutioaiakd in this manner has to be
verified using the KKT optimality conditions. If all the ineglity constraints are active,
Egs. (3.16) and (3.18) are automatically satisfied. Theeeibwe obtain a solutiot* of
Problem 3.11 by solving;(t*) =0, j = 1,2,...,J, we can substitute the value @ifinto Eq.
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(3.19) and obtaim *. If A* satisfies Eq. (3.17), i.eAj* >0,j=1,2,...,J, then we have
proven that the value df we obtained is indeed an optimal solution of Problem 3.11. If
the KKT optimality condition is not satisfied, then numeticgethod can be used to solve
this convex optimization problem.

In the following, we propose an algorithm to transform a gahguaranteed QoS prob-
lem into a problem with one-to-one mapping between usesetaand channel coding lay-
ers. The idea is to reduce the dimensionality of the problgmemoving redundant user
constraints and merging source coding layers. The proseseplained in the following

algorithm:

3.4.3 Class-to-layer mapping algorithm

Algorithm 3.1: (Class-to-layer mapping algorithm)

Step 1(User class amalgamation): Repeat the following class gemahtion operation
until gi < gx for everyi < k, where 1<i < J,1 < k < J: for any pair of user class indices
i andk wherei < k (henced < &), if Classi users have the same or higher target PSNR
threshold than Cladsusers (i.e.y; > y or g; > gk), we absorb Claskinto Class.

Step 2(Source layer merging): Repeat until for every layex 1 < L, there exists
a classj,1 < j < J such thatg; = I: if there exists a source layérwhere there is no
corresponding user class (i.e., pexists such thag; = 1), Layers| andl + 1 are merged
to form a new source layét with code dimensiols =S + S 1.

Step 1 finds a set of the most demanding user classes withctetsptheir channel

conditions; Step 2 reduces the number of channel codingdagethe minimum without
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compromising the performance. After performing AlgoritBm, we can show the follow-
ing fact:

Lemma 3.1 After performing Algorithm 3.1 =Jandg; = jfor j=1,2,....J. If for
every Classk that has been absorbed into ClassStep 1B > F is also satisfied, then the
new optimization problem after performing Algorithm 3.1eiquivalent to Problem 3.11.
In addition, any further partitioning of layers cannot redithe minimum transmission
overhead required to achieve the QoS requirements.

Proof: First we show that any QoS constraint dropped from Step ér(class amal-
gamation) is irrelevant. Suppose the QoS constraint ofdlassers is satisfied, i.e.,
|‘||g‘:1(1— Pe(l,1)) > R. Sincei < k, we haved < &. Hence, Clas& users receive more
coded symbols than Classisers. Therefore, the decoding failure probabikgy,i) >
Pe(l,k) for all 1 <1 < L. Then, becausg; > gk, from the assumption of Lemma 3.1,

R>H, and

Ok

[P0 > I|gj<1—F>e<l,i>> > Elu—Pe(I,i» >R >R (3.20)

Hence, the QoS constraint for Cldsasers is also satisfied.

Next we show that after performing Algorithm 3.1, the numbgsource layerg and
the number of user classé@sre equal. The class amalgamation procedure ensureséhat th
setgj, j = 1,2,...,J is monotonically increasing witl. This fact does not change after
performing the source layer merging procedure. Sigice {1,2,...,L}, we havelL > J.
On the other hand, source layer merging ensures that fol any, 2, ...L, there exists an
integer j € {1,2,...,J} such thatg; = |. Therefore, we also have < J. Thus,L =J.
Together with the fact thag; is monotonically increasing witl, we can conclude that
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gi=jforj=12..7J.

Finally, to complete the proof, we need to show that any frrgartitioning of layers
cannot reduce the required minimum transmission overh€hd.details can be found in
Appendix B.QED.

Remark 1. The condition that for every Clagsthat has been absorbed into Class
P > P, is a sufficient condition for Lemma 3.1 but not a necessangditmn. Even if this
condition is not satisfied, it is possible that the transfedmproblem due to Algorithm 3.1
results in the optimal solution. In addition, if this condit is violated, to ensure that the
optimal solution of the transformed problem is the optinwdlison of the original problem,
we can always verify if the obtained solution satisfies al ¢bnstraints of the user classes
that have been amalgamated in Step 1. If not, we can resastving the convex problem
(Problem 3.11) numerically. This is further illustrateddaction 3.4.4.

Remark 2: For best-effort QoS Problem 3.30, the transformation klesd by Algo-
rithm 3.1 may not be optimal. Since optimal solution alsoatefs on the fidelity measure

of the multimedia source.

3.4.4 A numerical example on video multicasting

We now illustrate the mapping and solutions to the guarah@®S problem in an example
where the transmitter is multicasting a H.264 SVC [49] costeglam. We use a H.264 SVC
video sequence which contains a total of 15 layers with ose bayer (BL) and fourteen
enhancement layers (ELs). Since the focus of the paper iptimiaing the channel coder

for a given source coder, the number of information symbitstae corresponding PSNR
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Table 3.1. Example of user classes and their QoS requireament

User class index (j) 1 2 3 4

User reception capability; 04 | 05| 0.6 1

User QoS requirement (PSNR threshgi@iB)) | 25.79| 29 | 27.25| 40.28

number of decoded symbols to achieve QoS 400 | 1155| 700 | 3800

number of decoded source layers requirgd (| 1 4 2 15

probability thresholdq 0.8 | 0.9 | 0.85| 0.95

values of this H.264 SVC video sequence are taken from Tatil¢19]. We consider the
same source symbol size as [19], where each source symhbekesps 400 source bits.
The UEP rateless encoders and decoders are operated atihe! $gvel. We assume there
are four classes of users with reception capabilities anl @quirements shown in Table
3.1.

In order to simplify the mapping between classes and laysespbserve thag, > g3
while &, < d3, which means that Class 3 users have better reception ¢iipathan Class
2 users, while at the same time, have a lower PSNR requirermbatefore, the QoS con-
straint from Class 3 users can be dropped. In addition, shrcaumber of layers required
by the three classes are 1, 4 and 15, after the layer-mergowggure of Algorithm 3.1,
we obtain a new set of channel layers with Layer 1 compridiegBL, Layer 2 consisting
of the first 3 ELs, and Layer 3 consisting of the fourth to feerith ELs. Sinc®, > P;
in Table 3.1, from Lemma 3.1, the new problem after mappiregjigvalent to the original

problem. The parameters of the new problem after the mamsmghown in Table 3.2.
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Table 3.2. User classes and QoS requirements after the ngappi

Combined class-layer index (j or 1) 1 2 3
reception capability; 04 | 05 1
PSNR thresholg;(dB) 25.79] 29 | 40.28

number of decoded symbols to achieve Qo800 | 1155| 3800

number of decoded layers requirgo= | 1 2 3

probability thresholdP, 08 | 09 | 0.95

number of symbol§ in each layer 400 | 755 | 2645

When standardized raptor codes are applied to the threeayans| the problem is to

find p1, po andps to minimizet, +t, 4-t3 such that
(

(1—ab®2-S)) > py

(1—abl%2=9))(1— ab(2%22)) > p, (3.22)

(1—ab(%-S1)) (1 — ab(2%~%))(1 — abs%~%)) > p;.

\

Assuming all the inequality constraints are active, we iobtaminimum overhead
Emin = 36.2%, which is achieved whepy = 0.1946,p, = 0.2933 andos = 0.5121. This
solution is then verified using KKT conditions and we find ttias solution is indeed op-
timal. In contrast, an equal error protection (EEP) allmratequires a minimum overhead
of 152%, a factor of four higher than the optimal UEP solution

With the optimal selection parameters, we find that ClasseBsusf the original prob-
lem (Table 3.1) can successfully decode the base layer amemimancement layer with
a probability higher than 99%. This means that even if the target probability threshold
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Ps = 99% in Table 3.1, which violates the assumption of Lemma tBid problem trans-
formed by Algorithm 3.1 still has the same optimal solutiartlee original problem. As a
further remark, suppose the conditions of Lemma 3.1 aretedl we assume the extreme
case o3 = 99% and vary the value @ within the range ®= & < 83 < 1= &. We find
that only when (b < &3 < 0.503, our obtained solution does not satisfy the QoS comstrai
of Class 3 users; we expect that, in practice, two distiragsgs to have greater reception

capability difference thag233 x 100%= 0.6%.

3.5 Numerical and simulation results

To demonstrate the advantages of optimization, the opdthZEP raptor code scheme is
first compared to EEP raptor coding. For simplicity, only tlagers are considered. In
these comparisons shown in Figs. 3.2 to 3.4, the proposedmamterleaved UEP design
employing standardized raptor codes is used. The code diorenf the standardized
raptor code used in layérs §. The small inefficiencies incurred by the standardizedaapt
codes are characterized by the decoding failure probaBjlit ) in Eq. (3.10). The optimal
selection probabilityp; and minimum overhead for the UEP scheme are obtained by the
simplified method described in Section 3.4 for solving PeabB.11, i.e., by assuming that
all inequality constraints are active. All the results showFigs. 3.2 to 3.4 satisfy the KKT
optimality conditions after verification. The EEP schemedaites each encoded symbol
such that every information symbol has the same priorityeré&fore, for EEP, the ratio

p1/p2 is fixed to S /S,. For all the results shown in this section, the parameteosen
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Figure 3.2. UEP versus EEP for varyig/ S, K = 9000;0 = [0.4,0.8]; P=[0.95,0.8].

are described in the caption of each corresponding figurg. &2 shows the minimum
transmission overhead requirement for optimized UEP aniéd eptor codes as the ratio
between the numbers of bits in the two laye®s,S,, is varied. Fig. 3.3 shows the same
comparison as the channel reception quadiyof the first user class varies. It can be
seen that UEP has a significant advantage over EEP in alnhasisals. When the channel
reception qualities of the two classes approach each dii#?,approaches the optimized
UEP in performance. Fig. 3.4 shows the minimum overhead vdifégrent values ofo1
are used. It can be seen that the minimum required transmieserhead is very sensitive
to the choice o, and an arbitrary non-optimized allocation scheme mayoperimuch
worse than both the optimal allocation scheme and EEP.

Next, to investigate the performance of the proposed randdenleaved UEP raptor
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Figure 3.3. UEP versus EEP for varying/ &, S= [1000 800d; & = 0.8;P = [0.95,0.8].

coding, we compare its performance to a recent UEP rapta dedign proposed by Rah-
navardet al. [1] as well as EWF codes proposed by Vukobratatial. [19] in Figs. 3.5
and 3.6. We remark that [1] and [19] cannot deploy existiagdardized raptor codes di-
rectly. Therefore, for a fair comparison, instead of usitagndardized raptor codes, we use

LT codes with iterative decoding and degree distribution

Qr(x) = 0.00796%+ 0.493576¢ + 0.16662%°
+0.072646* + 0.08255& + 0.0560588 + 0.03722%°

+0.055596¢° 4 0.025023° + 0.003135C¢ (3.22)

for all the layers of our proposed random interleaved UERecdidshould be stressed that
the advantage of being able to utilize high performancedstatized raptor codes is not
shown in these comparisons, which would further favor tleppsed design. The degree
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Figure 3.4. The effect of layer allocation probabilpy, standardized raptor codds—=

2;K = 9000;S= [10008000; 5 = [0.4,0.8];P = [0.95,0.8].

distribution, (3.22), originally from [11], has been adegtby [1]. In Figs 3.5 and 3.6,
the same degree distributi@ (x) is applied to Rahnavard’s UEP raptor code and all the
windows of the EWF code. For analytical simplicity, no prde is used for all three
schemes. The decoding failure probabifyon the left side of the constraint functions in
Eqg. (3.3) is evaluated as follows: the symbol error proligiolf each layer in Rahnavard’s
scheme and the EWF code can both be estimated by the “andeertechnique [1] [19].
The symbol error probabilitg of Layer| for Rahnavard’s scheme, the EWF code, and the
proposed UEP scheme are obtained using Egs. (6) and (7),i&q1](7) in [2], and EQ.
(3.12) in this paper, respectively. The failure probapibf decoding each layer can then

be estimated aR(1) =1— (1—q)3.
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Fig. 3.5 shows the minimum transmission overhead requvezhtisfy all user con-
straints of the proposed UEP scheme and Rahnavard’'s UERechih different values
for parameteky [1], which governs the degree of non-uniformity of input dyshselec-
tions. It can be seen that the optimized proposed UEP schetperforms Rahnavard’s
UEP scheme even Ky is optimized. Fig. 3.6 shows a similar comparison between th
proposed scheme and the EWF code. The size of the first windtve iEWF code is fixed
to the number of symbols in Layer &(. Parametef 1 is the probability of choosing the
first window (the more important layer) during encoding (E&3). It can be observed that
the proposed scheme, when optimized, also performs bb#erthe EWF code with opti-
mizedl 1. Note that there are two local minima in Fig. 3.6 because vatated symbol
error rates of the more important bits are not monotoniaigdlgreasing al; increases (see
Fig. 1in [19]).

As pointed out in [2], one of the advantages of EWF codes owmBvard's UEP
scheme is flexibility in using different degree distribusoapplied to different windows.
Therefore, in order to isolate the performance gains dudfereint code structures, degree
distributions and decoder efficiencies, we use differegteke distributions applied to dif-
ferent windows of EWF codes as well as to different layershefpgroposed UEP scheme.
Fig. 3.7 shows the performance of the three different UER®@&S using LT codes after
optimization over their respective configuration paramsetd he performance curves de-
pict minimum transmission overhead for different sets ohp@eters and variable numbers
of symbols in the first layer/window. The degree distribnfi@hosen for the more impor-

tant bits (MIB) and less important bits (LIB) are denotedBa$x) andQ2(x), respectively.
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Figure 3.5. Proposed scheme versus [1]. LT codes with ierdiecodinglL = 2;K =

9000;S= [100Q8000; & = [0.4,0.8]; P = [0.95,0.8].

Apart from using degree distributiof, (x) described by Eq. (3.22), we also show the
performance when a truncated robust soliton distributR80) Q,s(kss, d,¢), whereks

is the maximum degree, is applied to the MIB for EWF codes &edproposed random
interleaved UEP scheme. The truncated RSD is a strongeeeldggtribution compared to
Q,(x) at the cost of higher decoding complexity. It can be seen famn3.7 that using the
stronger truncated RSD for the MIB provides a significanfqgrenance boost for both the
EWF codes and the proposed UEP codes. Nevertheless, wHesdb@mes use the trun-
cated RSD distribution for the MIB, the minimum requirednisenission overhead for the
proposed UEP scheme is still lower. A more important adgentd the proposed scheme

is easy adoption of standardized raptor codes. As showmirBiH4, the minimum overhead
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Figure 3.6. Proposed scheme versus the EWF code [2]. LT codesterative decoding,

L = 2;K = 9000;S= [100Q08000; 5 = [0.4,0.8]; P = [0.95,0.8].

for S = 1000 using a standardized raptor code is only around 40%hwgisignificantly
lower than any curve shown in Fig. 3.7. This difference coffinesy the superiority of
standardized raptor codes, which includes the use of a leghnmance pre-code as well
as more efficient maximum likelihood (ML) decoding in comstreo iterative decoders used
for Fig. 3.7.

Fig. 3.8 shows the PSNR performance of the proposed randeneiaved UEP scheme
and the EWF scheme for the best-effort QoS formulation desdiby Problems 3.20 and
3.30. We evaluate transmission of the H.264 SVC codedSfan video sequence [19],
where we consider the case of two layers, with the base layredfirst layer, containing

S =400 symbols and all enhancement layers as the second layeBw 3400 symbols.
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Figure 3.7. Performance comparisons using LT codes wiferéifit degree distributions.

L = 2;K = 9000;5 = [0.4,0.8]; P = [0.95,0.8).

Successfully decoding the first layer provides a PSNR of 288 while decoding both
the first and second layers provides a PSNR of 40.28 dB. THerp&nce is shown as the
average PSNR versus the selection probalgilitior the proposed random interleaved UEP
scheme and the first window selection probabiflifyof the EWF code. Givep; orI1, the
average PSNR is obtained numerically by setting &g and substituting the corresponding
decoding failure probabilitiege(i, j ) into (3.6) and (3.7). The selection probabilities for the
two different schemes have different meanings and are nmopacable. However, in order
to compare the maximum achievable PSNR of the schemesggikttiormance curves are
shown in one figure. For the cross-marked and star-markagtsuwe have used the LT

code with an iterative decoder and degree distribu€p(x) applied to all windows and
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layers. For these parameters, the proposed random inteddaEP scheme provides a
maximum average PSNR of 32.42 dB when optimized while the EBéHeme provides
32.36 dB when optimized. For problem 3.30, the feasible regadrselection probabilities
p1 andl 1 are obtained by checking the constraints (3.9). We noteftind&®roblem 3.30,
the maximum achievable average PSNRs remain the same siticéhb optimal operating
points of the proposed UEP scheme and the EWF code are ihgdedsible regions. The
diamond-marked curve shows the results when standarcapeorrcodes are employed for
the proposed random interleaved UEP scheme. A maximumg&8NR of 40.28 dB
can be achieved for.01 < p; < 0.18, which, as expected, is significantly higher than the
other two LT coded curves. We can also observe from Fig. &aBdifferent choices gb;
result in significant differences in average PSNR, showlrag the optimization process is
necessatry.

The above results for LT codes with iterative decoding ataiabd using “and-or” tree
analysis which assume infinite block length. To verify theufes in practice, we test the
performance of the proposed random interleaved encodétae Carlo simulations. We
consider a guaranteed QoS problem with two source layerdvemdisers classes. The
number of source symbols in each layer and the receptiormeadrof each user class are
given in the caption of Fig. 3.9. The rateless encoders tigatised to encode each layer
are both LT codes constructed using degree distribU@dx). By using and-or tree anal-
ysis via Eq. (3.11) and (3.12) to determine the constram®roblem 3.10, we obtain the

optimal selection probabilityp; = 0.19 and minimum overheashi, = 1.475. Using the
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Figure 3.8. Average PSNR performance of two UEP schemes. odEswith iterative

decodingL = 2;S=[400,3400; 6 = [0.55,1]; P =[0.95,0.8]; &0 = 1;w=[0.5,0.5].

optimal selection probabilitp; = 0.19, we verify the probabilities of successfully achiev-
ing the target PSNRs of the two user classes via Monte Camlolations for different given
transmission overheads in Fig. 3.9. The iterative decodinmerformed using the belief
propagation (BP) algorithm as in [9] and [11]. The horizdrateis shows the transmis-
sion overheads chosen for simulation, which covers thermim overhead we achieved
with our analysis &yin = 1.475), as well as 5% (1.525) and 10% (1.575) greater than the
minimum. The resulting PSNR for each user class is compueddch realization. The
vertical axis shows the relative frequency that the PSNRngelr than desired threshold
(ProlPSNIR; > ;)) for each user class. Using the minimum overhead = 1.475 ob-

tained from and-or tree analysis, it can be seen from Fig.tt&0the simulation results
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closely match the theoretical analysis. The probabilityezfching the target PSNR in
simulation is the same as or above the desired probabiligstioldP;. With an extra 5%

overhead at = 1.525, higher probabilities in reaching target QoS can beiobth

1
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—+— Class 1, simulation results
—o6— Class 2, simulation results
= o9 - - —Class 1, QoS probability threshold Pl
A\:‘_ ’ - - ~Class 2, QoS probability threshold P,
z
0
[
8
& 0851 -
[0  eee —
0.75 I I I I I

1.48 15 152 1.54 1.56 1.58

Figure 3.9. Outage probability comparison, simulatiorultssversus desired threshold,

L = 2;S=[10008000; & = [0.4,0.8]; P = [0.95,0.8]; p; = 0.19.

3.6 Conclusions

Two general problems, guaranteed and best-effort QoSpearaufated for optimizing UEP
rateless codes for scalable multimedia multicasting syst&ith heterogeneous users. A
random interleaved UEP raptor code design is proposed. Gaeagteed QoS problem is

converted into a convex optimization problem, which can ddeexl analytically in many
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practical scenarios. Numerical results show that, for #meessystem parameters, the min-
imum transmission overhead required for the optimized psed UEP rateless codes can
be fewer than a quarter of that for an EEP design and more %nldwer than that for
optimized EWF codes [19] and non-uniform-selection UERIess codes [1]. Signifi-
cant additional gains for the proposed UEP scheme can bmetthy employing superior
standardized raptor codes. For example, in the best-&®& example shown in Fig. 3.8,
the maximum achievable average PSNR using the proposeghdesiploying standard-
ized raptor codes is around 8 dB higher than that of the pexpdesign and EWF codes

employing LT codes with an iterative decoder.
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Chapter 4

Rateless coded asynchronous multicast

4.1 Introduction

In Chapter 3, optimization of UEP rateless codes for scalahlltimedia multicast is inves-
tigated. In this chapter, we consider a different scenahier& the users can asynchronously
tune-in and out of the multicast session at any time. In thigwahronous multicast sce-
nario, users who receive enough transmitted symbols te@eelai desired quality will either
leave the multicast session or use the rest of the trangmitigie frame to perform other
valuable tasks. For that reason, the system cost is maialtirtie that the users spend to
collect the rateless coded symbols to achieve their own @q&irements, which are pro-
portional to the numbers of transmitted coded symbols reduor each user class given
a fixed symbol rate. Therefore, for a multicast system witfetént user classes, the cost
function for this asynchronous multicast scenario is amaye of transmitted symbols re-
guired to achieve the different QoS weighted by the diffeteser classes.

The asynchronous multicast optimization problem for aed#ght UEP rateless code
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design is first investigated in [25]. In [25], a priority emling transmission (PET) based
packetization scheme [15] using a rateless code with fixesth@ad is proposed. The
formulation in [26] generalizes the optimization problem{25] by adding the constraint
of a transmission deadline. However, in solving the optatian problem of asynchronous
multimedia multicast, both [25] and [26] use an iterativarsb method which has high
complexity.

In this chapter, we investigate the asynchronous multiopstnization problem and
find a systematic and low complexity solution. The PET pazké&bn scheme that is pro-
posed in [15] and [25] are used as opposed to the randomaated UEP scheme proposed
in Chapter 3. We show that under certain assumptions and timeleelaxation of integer
solution constraints, this problem can be transformedantonvex optimization problem.
Furthermore, an analytical solution is found for the asyanbus multicast optimization
problem [25] without the outage constraints. For the moreegal formulation with outage
constraints [26], an analytical solution is found for theapl case where there are two user
classes, and we resort to numerical solution using convaration software [27] [28]
to solve the more general cases.

The rest of the chapter is organized as follows: Section dsZribes the system setup
and transmission scheme proposed in [25] and [26]; Secti®prisents the optimization
problem formulation; Section 4.4 transforms the formwlain Section 4.3 to an equivalent
but simplified problem by reducing the number of parametedsthen the convexity of the
transformed problem is proven; Section 4.5 presents aoalytolutions to the convex

optimization problem formulated in Section 4.4; Sectio® grovides numerical results to
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verify our findings; Section 4.7 provides the conclusionthis chapter.

4.2 Asynchronous multicast system and packetization schem

4.2.1 System setup

Similar to the system described in Chapter 3, a server iscasting a scalable multimedia
source, e.g., image or video, to a totalloflass of users. We assume the indices oflthe
classes of users are ordered in terms of their QoS requitsr{eshopposed to the channel
conditions used by Chapter 3), i.¢1, < y»... < y3, wherey; is the target peak-signal-to-
noise-ratio (PSNR) for Clasg users. In the following formulation, the PSNR can also
be replaced by other fidelity measures without loss of gditer&ach user in Clas$ is
assumed to experience a packet erasure channel with eraseim, which is assumed
to be fixed. For a more general setup wheyas a random variable, readers can refer to
Appendix C.

In asynchronous systems without transmission deadliressiwcan join or leave the
multicast session at any time [25]. Nevertheless, if thetimeldia content is partitioned
into multiple groups of frames (GOF) before multicastifggre is usually a deadline for
the transmission of a particular frame due to delay requerégs Therefore, it is assumed
as in [26] that the server can transmit at mbkt packets for all users in each multicast
session without causing an outage. It is assumed that aligbes access the multicast
system at the same time as the start of the transmission. \i¢oyke results in this chapter

can also apply to the case where users access the multiséstsgit a random time with
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known statistics, a discussion of which can be found in tetappendix C.

4.2.2 The priority encoding transmission (PET) packetizabn scheme

In contrast to Chapter 3 that use a random interleaved UEEhsehin this chapter, a PET
based packetization scheme is used. The PET packetizatieme is first proposed with
Reed-Solomon (RS) codes in [15]. Later, [25] proposes atn@éssion scheme to combine
the PET packetization scheme with a rateless code. Theegymbols are first loaded
into the PET rateless coded packetization structure bé&fanemission. The detailed struc-
ture of the PET packetization with rateless coding is showkig. 4.1. The source symbol
stream is first partitioned intb vertical layers such that source symbols with a lower layer
index are more important than those with a higher layer indérerel is the total number

of layers, which is equal to the packet length. Note that #yelds here are defined dif-
ferently from the layers used in Chapter 3. The number of@aymbols inside Laydy

| €{1,2,...,L} is denoted b¥;. TheK; source symbols are then encoded by a rateless en-
coder to produce arbitrary number of rateless encoded sigrdhod,, ..., dij, ..., whered;;
represents the—thrateless encoded symbol in theth layer. Each data packet is formed
by selecting one corresponding encoded symbol from eadhr, lag., Packeit consists of
symbolsdsy;j, dyi,ds;,...,dj. The PET packetization design objective is to ensure that th
information symbols in a layer with smaller index are beftetected against packet loss
compared to information symbols in a layer with a larger xadeherefore, the following

constraints have to be satisfied:

Ki<Kp<--- <KL (4.1)
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Figure 4.1. The transmission scheme using PET packetizatimbined with rateless cod-

ing.

4.3 The asynchronous multicast optimization problem

4.3.1 Users’ QoS requirements

As with the scenario described in Chapter 3, for a given soaodler, the PSNR or equiva-
lent fidelity measures are a function of the number of decagetbols, where the symbols
are in decreasing order of importance. The QoS requirenfeamiGassj user is that the
obtained PSNR value should be greater than or equal to QeShiidy;, which can be

expressed as:

PSNR; (K1,Kz, ....,KL) > Vi, (4.2)
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wherePSNR; (K1,Kp, ..., KL ) represents the PSNR of Clapsisers given the allocated set
of Ki,Ko,...,K_ . Let f(.) represent the PSNR value as a non-decreasing function of the
total number of symbols decoded by the receitagidenote the number of layers (starting
from the first layer) that a Clagauser needs to decode to achieve the target PSNR threshold

y; for a given se{K1,Ky, ...,K_}. Then the QoS requirements can be expressed as:

hi
f(|;K|) > Vi (4.3)

or, due to the monotone one to one functign), as

hi
I;K. > 71(y). (4.4)

wheref ~1 denotes the inverse function bf Note that unlike the QoS constraints described
in Chapter 3, there is no outage probability involved in th@SQ@onstraints. Rather, in
this asynchronous multicast scenario, the receiver kealpecting rateless coded packets
until its QoS requirement is met. In the case where the receannot reach its own QoS
requirement even if the maximum number of packégdhas been transmitted by the server,
an outage occurs. However, this outage probability constas a separate type of outage

constraint as described in the following subsection.

4.3.2 Outage probabilities and constraints

In this section, we briefly describe the outage probabiligstraints. It is assumed that in
order for the receiver to decode Layewith K; information symbols, the receiver needs
to collect at leas{K|(1+ w)]| encoded symbols, whefiex] denotes the smallest integer
that is larger tharx and w is the overhead of the rateless code, which is assumed to be
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fixed for different realizations. For a Clagsiser with erasure ratg;, the failure proba-
bility of decoding Layeth; is equivalent to the situation where the receiver colleetgel
than [Kp, (1+ w)] encoded packets aftéhy packets have been transmitted, which can be

expressed as:

|—Khj(1+w).|_1 MO .
I __Mo—i
Oj = % (1—0j) g, (4.5)
= i
whereQ;j is the outage probability of Clagsusers. Users in different classes may have

different outage tolerances. Therefore, the outage cintdrcan be expressed as:
Oj <13, =12 .., (4.6)

wherer; is the outage probability threshold for Classsers. Note that we have used the
assumption that the outage probability is mainly limitedtoy decoding failure probability
of Layerhj. This assumption is reasonable as the performance of a egtjged rateless
code has very steep error curves. Therefore, given thereamisof (4.1), the probability
that a user fails to decode Laylewherel < h; given that Layeh; is successfully decoded

can be neglected compared to the probability of failure icodeng Layeth;.

4.3.3 Cost function

In the asynchronous multicast problem, the outage prabalsimainly bottle-necked by
users that require the largest number of transmitted psit&aneet their QoS constraints.
As described in Section 4.1, a reasonable objective is tanmue the average time that

all users spend collecting rateless coded packets uniil &S requirements have been
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met, which is proportional to the average number of transehipackets required to meet
each user’s QoS constraint, or equivalently, to succdgsfatode Layeh;. If there are no
limits on the maximum number of transmitted packets, theaye number of transmitted

packets required to meet the QoS constraint of a Jlaser is given by:

Khj(l-i- w)

E(M)) = 1-0,

, 4.7)

whereM;j is the number of transmitted packets required to meet Glassr’'s QoS require-
ment, E(.) denotes expectatiom; is the number of decoded layers required to achieve
Classj users’ QoS requirements awxl is the erasure rate of Clagsisers. For analytical
simplicity, the ceiling operator oKy, (1+ w) is omitted in the cost function. Eq. (4.7)
can be intuitively interpreted as having the additional pensation factog__%,j in order to
compensate a packet loss ratesptompared to that of no packet loss. For a more detailed
justification of (4.7), users can refer to Appendix C. Whegr¢hs a limitMg on the maxi-
mum number of transmitted packets, Eq. (4.7) still servesagoper bound on the average
number of required transmitted symbols for all the usersth&sprobability that a user is

in outage is usually well within the outage constraints, @q7) is still an appropriate cost
function for this PET rateless code design with a transminsdeadline.

The total overall cost function averaged over all the usasszs is thus given by

J
My = ZW]‘E(M]‘), (4.8)
=

wherew; is a given weighting coefficient for Clagsisers which takes the number of users
and the relative significance of users in each user classaactount, where for P, ...,J,
0<w;j<landyjwj=1.
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4.3.4 Optimization problem formulation

In summary, the asynchronous multicast optimization mobis to find the best non-
decreasing s€itKi, Ko, ...,Kj} to minimize Eq. (4.8), such that users’ target PSNR is met,

under the outage constraints of each individual user cldss.problem can be summarized

as:
Problem 4.10
Jnn o May (4.9)
subject to
Ki <Ky <--- <K (4.10)
and
0; <T1j, ji=1,2..J (4.11)

On the other hand, if there is no transmission deadline ascir@ario discussed in [25],

the problem can be formulated as

Problem 4.20Q
KlmanL May (4.12)
subject to
Ki<Kp<--- <KL (4.13)

We will later determine an analytical solution for Problera@
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4.3.5 Greedy search algorithm

A direct way to solve Problems 80 and 420 is to list all possible sets of source symbol
layer allocationKy, K>, ..., K, test the constraints and compare the resultant cost. The
optimal solution is the sefKi, Ko, ...,K_} which provides the minimal cost among those
that satisfy the constraints. However, the complexity ahsa brute-force search algorithm
can be prohibitively high as it depends on the total numbesooice symbols —1(y;) as
well asL. A suboptimal greedy search algorithm is proposed in [25] [@6]. The basic
idea of this algorithm is to first find all possible setglof, hy, ..., h;], which represents the
number of layers required to decode for each user class.debrgredetermined allocation
of [h,hy,...,hy], the greedy search algorithm allocateils(y;)] — [f~(y;—1)] source
symbols to layer$;_; + 1 to hj nearly equally, where[ f ~1(yp)] = 0. By nearly equally

we mean the difference among the number of source symbolayersh;_; +1 to hj,
i.e., Kh;_1+1: Khy_y+2; - Kny, should be at most 1. In the end, the best possible allocegtion
chosen by selecting the one with minimal cost that satidie®titage constraints.

The greedy search algorithm proposed in [25] has a complexitoughly JL7—1/2
elementary operations. Although the complexity is lowanpared to brute force search
over all possible sets diKy, Ko, ...,KL}, it is still very high for largel. andJ. In addition,
the optimality of the greedy search algorithm has not beewgar. This motivates a lower

complexity and analytical solution to this problem.
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4.4 Transformation to equivalent and simplified convex

optimization problem

4.4.1 Grouping layers to chucks

To find an analytical solution to Problems 4.10 and 4.20, ve¢ diivide the source symbols

in each block inta) chunks, where the number of symbols in each chunk is given by

[T = T4 (y-0)] j=2..3
Uj = (4.14)

(1)1 =1
wherey; is the target PSNR threshold for Clagsssers and ~1(x) is the minimum number

of decoded symbols required to reach the target PSNR theghDefine
lj =hj—hj_1 ji=2,..,J (4.15)

whereh;j is the number of required decoded layers to reach target QGtssj users and
ho = 0. Therefore]; represents the number of layers allocated to Chynihich should

satisfy

J

z lj =hy=L. (4.16)
=1

In addition, we have

Ki = U; =12 .3 (4.17)
i=hj_1+1
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4.4.2 Simplification of the cost function

Substituting Eq. (4.7) into (4.8), the cost function can kgressed as

iE(Mj)

=
<
|
M«
=

I
IMe |
H
|
S

Khj(l-i- w)
Wi

(4.18)

I
M-
=
)
=

wheren; = %;w) are the combined cost coefficients of Claasers, which combine the
importance weighting coefficiem;, code-efficiency factofl+ w) and reception capabil-

ity 1/(1—gj).

4.4.3 Reducing the number of parameters

Problem 4.10 containk variables. In order to obtain an equivalent problem withéew
variables, we first prove the following fact.

Lemma 4.1: If we relax the integer constraints &f,i = 1,2, ...,L, then the optimal
solution to Problem 4.10 should satisfy,_, 11 =Kn,_;42=...=Kp forj=1,2,..7,ie,
theU; source symbols of Chunkshould be allocated equally among laykeys; + 1 toh;.

To prove this, assume there exists allocation Scheyméhere there is at least one chunk
(index denoted by) within which theU; source symbols are not equally allocated among
layershj_1 + 1 to hj. Then, becausg; is a non-decreasing set arzquihjiﬁl Ki = Uj,

we have, for allocation Schen@ K > Uj/(hj —hj-1) =U;/Ij, whereK®,I =1,2,....L

represents the source symbol to layer allocation for Scli&niée next construct allocation
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Schemed whereKp 1 =K ., =...=Kg =Uj/l; with all the other chunks allocated

441
identically to Schem¢€, whereKlD,I =1,2,...,L represents the source symbols to layer
allocation for Schem®. BecauseK > Uj/Ij = KP andKg = KR for all i # j, it is
obvious from the cost function expression (4.18f, = yi_; niK§ > 571 niKD = MR,
whereM$, andMY, are the overall costs of ScherBeand Schem®, respectively. Hence,
allocation Schem€ does not minimize the cost function. Therefore, an optimaltson
that minimizesMa, should allocateJ; symbols among layens;j_; + 1 to h; equally for
j=12..Jie,Ki=Ko=...=Kp, <Kpp1=...=Kp, <... <Kp, ;11 =... =K, = KL.
QED

Therefore, we can reduce the number of parameters by usiagparameteK, to
represent th&, h;_, +1 <| < h; values of Chunk, i.e.,KhHH =Kh_j12=...=Kp, =

Uj/l;. Using the above, the cost function can be further simpliiged

J J J
Mav = 5 njKn =5 nuj/li= 3 aj/lj, (4.19)
= = =
where
w;Uj(1+ w)
ai=nUj= 1= (4.20)
i =njY; 1-0

Also, using the constraint thét; is a non-decreasing set, Eqg. (4.1), can be transformed to
Kn, < Kp,... < Kn, =Ky orUs/ly <Up/la... <Uy/l;.

In addition, observe that since the average outage pratya@il5) is monotonically
increasing withKy,, the constraints are equivalent k@, being less than a threshold, or

alternatively, equivalent th being greater than a constant fo= 1,2, ..., J.
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4.4.4 Transformation to a convex optimization problem

In summary, if we relax the integer constraintskni = 1,2, ..., L, the allocation problem

described by Problem 4.10 can be transformed to the follpwauivalent problem,

Problem 4.11

J
min a;/l; (4.21)

1,0 e

subject to
J
li=L (4.22)
2

0<13/Uy <ly_1/Uj_1... <11/Ug, (4.23)
lj > 6, j=12,..,3, (4.24)

where®;, j = 1,2,...,J are constants derived from average outage probabilitytcints
given by Eq. (4.6).
Similar to the transformation of Problem 4.10 to Probleml4 Rroblem 4.20, which

does not have outage constraints, can be transformed to:

Problem 4.21
J
min ai/l; 4.25
el i; i/l (4.25)
subject to

J
Z\n =L (4.26)

i=
0<13/Uy<ly-1/Uj_1... <l1/Us. (4.27)
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Note that in Problem 4.11 and 4.21, we have assumedithatl, 2, .., J are continuous
variables rather than integers. In the following sectior,sslve alternative tractable ver-
sions of problems to 4.11 and 4.21 that are equivalent to tigénal allocation problems
without integer constraints. We next show that Problems arid 4.21 are both convex op-
timization problems. This can be proven by showing that thjeaive function is convex

and all the constraint functions are linear.

4.5 Analytical solutions

4.5.1 Dual problem

The standard way to proceed is to simplify Problem 4.11 byisglthe dual problem,
because the optimal solutions of Problem 4.11 and its desile same due to convexity
[27]. The Lagrange function

J I J

LA =5 zl. +z -G~ Mg+ 3 A8 =), (828

UH—l |

wherel = (I1,12,...,13) are primary variables\ = (A1, A2, ...,A23) andv are dual variables.

The Lagrange dual function is

g(A,v) = ir|1fL(I,A,v)
= inf J +|(—A'+A — i) + A6 (4.29)
- | Z || U| U| 1 I+J I+J .
where}‘O = 0 and the dual function have meaningful solutions onb_y—rf)" + —Airy >

(I}\v)

Ofori=1,2,...,J. By solving = 0 and substituting the resulting, I», ..., 1 back
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intoL(l,A,v) to obtaing(A,v) =inf; L(I,A,v), the dual problem can be written as

J
Ai Al
AV) = 2i/aj(v——+ —=— A Airg6 4.30
rr\l/?x g(A,v) .Z\< \/a.(v Ui+Ui—1 i+3) + it |> (4.30)

subject to
Aj >0, j=12..2J. (4.31)

Unfortunately, it is not straightforward to find an analgisolution to the dual problem.

4.5.2 Analytical optimization solution without outage corstraints

We next show that the optimal solution of Problem 4.21, theb@m without outage con-
straints, can be obtained analytically. As a first step, weesBroblem 4.21 without the
inequality constraints provided by (4.27), which is eadibye by using Lagrange’s method.

The Lagrangé. function in this case would be
J J
Libv) =Y ai/li+v(d) li—L)
20/

:_i(ai/n +Ij) — VL. (4.32)

The optimal solution; for Problem 4.21 without inequality constraints (4.27) miize
ai/li+Vij foralli =1,2,...,J. By setting the derivative ofi; /I; + vi; with respect td; to

zero, the optimadl; can be obtained as

= YO 10 (4.33)
dic1\/0i

Now if the above solution satisfies the inequality constsaprovided by (4.27), then we
are done. In order to solve the problem when (4.33) does tisfysaequality constraints

(4.27), we deploy a similar method that used in [50]. First,move the following fact:
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Lemma 4.2 For anyj € (1,2,...,.J—1), if —\(,T > ‘{J;']" then the optimal solution
lja
of Problem 4.21 satlsflegr = Unr
Proof: Assume—Vl+ > ‘/_ , 1 €(1,2,...,J—1) and that there exists a set of optimal
solutionsX = {IX i=12,..., vu, 7£ ‘*1} Now we create a new set of solutio¥is=

{I",i=1,2,...,3} by perturbingl and|*

i1 by a very small amounkl > 0 such that the

constraints (4.23) are still valid, i.e., foe 1,2, ..,J,

(

1X— Al if i= |

= 01X4 Al if i=j+1 (4.34)
1X if i, +1.
\

Now the difference in the cost functions due to (4.36) is

Y X dji1 [of i1
I\/Iav_Mav ‘X—‘i‘ﬁ I_Y] —X—|H
j+1 j+1
=Al [ 5xg) SIS . (4.35)
NG AI) (AT
oF (oF | X |X
As YL > YOI and - > 2L, we have
j+1 j i j+1
2 X
djr1 Ui (S 1)
i+ j+ i+ (4.36)

lof sz (Ii()
Therefore, ifAl > 0 is chosen to be small enough, then we certainly hgﬂe> ‘—*;’%ﬂ’flz—sl)
HenceMy, — MZ, < 0, which contradicts the assumption that the set of solatiois op-
timum. Therefore, the optimal solution must sati%ﬁ/_ L'J’—”l if % > ‘{Ji]" for any
j=1,2,..J—1.QED
With the above lemma, ig > Y7 we haveKp, llJ—J = % = Kp,,,- Therefore, we
can reduce the number of parameters further by grouping iChand Chunkj + 1 into a
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new chunk, i.eU M =Uj+Uj, 1, 1" =1+ 111, af™ = (aj/lj + ajia/lj1) (1) +1j21) =
(aj/Uj+dj+1/Uj+1) (Uj4+Uj11), new = J— 1 and decrease the indices of all parameters
with index larger tharj + 1 by one. This procedure is repeated untiljr@{1,2,...,J—1}

with % > \(,;'J" exists, i.e.,% < ‘{J;']" forall j=1,2,...,J—1. Denotex'as the new

value of variablex after the chunk grouping process, Problem 4.21 is thenftvamed to:

Problem 4.22
‘JA ~
min Zai/h (4.37)
l1,...,15 i=
subject to
J
li=L (4.38)
=
0< I}/Ujg I}fl/UJ;l... < |A1/L'jl, (4.39)

Where@ is a non-increasing set fgr= 1,2, ...,J. Following the same approach as in
J

(4.33), the optimal solution without constraint (4.39) is:

L\/q; R
P?:ji‘, i=12..J. (4.40)
2i=1Vai
. P /4 NG 0 . . .
- i L > j+1 L — i+l _
Slncer 0, 3,va = U 30, 7a Uj+1,the inequality constraints (4.39) are sat

isfied. Therefore, the solutiori?,j —1,2,...,J given by (4.40) form an optimal set of
solutions for Problem 4.22. We have thus found an analysohition to Problem 4.21,
which is also the problem described in [25].

The analytical solution only requires the computatiod oﬂ’)efﬁcients\/u—? and perform

at most] — 1 chunk grouping processes, and compltariables according to (4.40). In
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the worst case, the analytical solution requires roughliyeldmentary operations, which is
linear inJ and independent df. The complexity of the analytical solution is significantly
lower than that of the greedy search algorithm proposed5ijy \@hich requires roughly
JLI~1/2 elementary operations. For example, if the packetlsize1 000, with] = 4 user
classes, the greedy search algorithm requires on the ofd€®@lementary operations,
while the analytical solution requires less than 100 eldargroperations.

Given the solution of Problem 4.21, we now proceed to find thet®n of the more
general problem with the outage constraints, i.e., Prolddr. First, if the outage thresh-
olds satisfyy?_ , 6; > L, then there is no feasible solution for Problem 4.11. Thiseso
sponds to the case when the transmission deallliyie too small for the outage probability
constraints to be met. In the case whgh, 6; = L, the problem is trivial as there is only
one feasible solutioh) = 6; for j = 1,2,..,J. On the other hand, if the optimal solution we
found for Problem 4.21 satisfies all the outage probabilitystraints described by (4.24),
then the optimal solution of Problem 4.21 is also the optis@ltion of Problem 4.11.
This corresponds to the case whdp is large enough such that all the outage constraints
are loose and do not play any role in the optimization probllré‘v/inenz;]:1 8j <L and at
least one outage probability constraint is active, soltirggproblem is not straightforward
in general. However, given that the optimization problemasvex with linear constraints,
we resort to standard convex optimization software to nicakly solve the problem, e.g.,
CVX [28] [27]. Because Problem 4.11 has many fewer parametars ttie formulation

in [26], the complexity of the numerical method is much sierpl
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4.5.3 Analytical solution for two user classes

For the special case where there are only two classes of usehave the following simpli-
fication to the solution of Problem 4.11. Assume the set ohagitsolutions for Problem
4.21 obtained using the method described above is givehl byl(l) andl, = |g where
If-l— |g = L and that the outage constraints can be simplified te 6; andl, > 6,. The

optimal solution set for Problem 4.11 is given by:

/

(19,19) if 6,<19 and 6, <19

No feasible solution  if6;+6, > L
(I1,12) = (4.41)

(91,L— 91) if 6, > |? and 6, < |8

\(L—Bz,ez) if 6,<19 and 6, >19.
The first two cases of Eq. (4.41) follow straightforwardlprir the previous discussion
in Section 4.5.2. The last two cases in Eq. (4.41) can be progengcomplementary
slackness. As shown before, Problem 4.11 is a convex optimization jerob Given that
57 1 0; < L and there are points that are strictly feasible, Slaterstcaint qualification
condition holds [27]. Therefore, according to Slater’s diteen, strong duality holds for
Problem 4.11 and its dual problem described by (4.30) ar®iL}427]. Strong duality
means the optimal duality gap is zero. Also, complementiagkaess holds if strong

duality holds [27]. The condition of complementary slacksiemeans that thieth optimal

Lagrange multiplier; is zero unless thieth constraint is active at the optimum, which in

LComplementary slackness is also part of the KKT optimalityditions, which hold true if strong duality

holds.
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turn means that the optimal solution for the problem is theesas the optimal solution
without this constraint. For Case 3 of (4.41), namely whére- If and 6, < Ig, if the
optimal Lagrange multiplier for the constrailt> 6, is zero, then the optimal solution
should be the same as the case without the constiain®;, which is given by(l1,12) =
(12,19). This solution, however, is not feasible because it doesatisfy the constraints.
Therefore, for Case 3, we conclude that constriaint 0, is active, i.e.]1 = 6;. Similarly,
we can prove that the solution for the cake< 19 and6, > 19 of (4.41) is optimal.

Finally, assume that we have reached a set of optimal snBJb;-Po i=12,..,J for
Problem 4.11 or 4.21. We can proceed to find a close-to-opsniation for the original
problem with integer constraint; = [19] andlj = |5/, 19— 51711 for j=2,...,3,,
where|x] is the nearest integer to Each chunk otJ; source symbols is allocated nearly
equally in the sense that there is maximum of one symbolreifiee amondgn; 1, ... and

K,

J

4.6 Numerical results

To illustrate the above process of solving Problem 4.10faHewing numerical example
is considered. The same parameters as the simulation sef@pliis used for verifica-
tion purpose. In the setup, the server is multicasting aabtalimage or video sequence
to two user classes. The total number of layers in the pakein scheme is fixed at

L = 47. The two user classes have a target QoS (PSHR) 27 dB andy, = 30 dB,
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respectively. From the PSNR curve of the image, the minimumber of source sym-
bols needed to provide the corresponding QoS requiremeatsfa’(y;)] = 11072 and
[f=1(y)] = 24728, respectively [25]. Therefore the chunk sidgs= [f~1(y1)] = 11072
andU, = [f~1(y)] — [f1(y1)] = 13656. For each user class, the channel erasure rate is
01 = 02 = 0.0549. 2 The overhead of the rateless code is assumed  be5%. The
weighting coefficient for Class 1 usesg can be varied to obtain different results.

In order to find the best allocation scheme based on the paakenh structure for
Problem 4.20, the following relevant coefficients are fiminputed. From (4.20)x; =

njuvj = %ﬁ“’) =1.111U;jw; for j = 1,2 and weighting coefficiem, = 1 —w;. We now
determine a sufficient condition for the optimal solutiors&tisfyKy, = Kp,. According to

Lemma4.2, if\gz > \(Jill the optimal solution of Problem 4.21 should satigfyb L'J—ZZ The

above condition is equivalent tb/WZUZ(lﬁg’)/ 1% \/Wlul(lﬁf’)/ 1%  Sinceo; = oy

andw, = 1 — wj, this condition is equivalent té;v—‘i"l > B—i or wp < 0.448. Therefore,
for wy < 0.448, the optimal solution is to allocate the number of sogsgabols equally
among thel = 47 layers, i.e., the optimal allocation scheme is an equal @rotection
(EEP) scheme. Hence\if; < 0.448, each layer should hayé—1(y)]/L = 2472847 =
52613 source symbols, To satisfy the integer constraints, vealldhthen allocate 526
source symbols for the first 47527— 24728= 41 layers and allocate 527 symbols for the
last 6 layers. Generalizing from the above process, we w@ardbxe following interesting

corollary as a special case of Lemma 4.2:

2The channel erasure rates are chosen such that they aralequio the parameterizations used in [25]

in the sense that they satisfy Eq. (C.7).
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Corollary 4.2: In Problem 4.21, if there are only two user classes with Hraes
channel conditions and the weighting coefficient of classdrsisatisfies;, < Uy /(U1 +
U»), then the optimal allocation scheme is an EEP scheme.

Now if wy > 0.448, the problem is transformed to Problem 4.22 and the @bsotution

is given by (4.40), i.eld = z?:\l/% = L\/wlﬁwuz' Therefore, ifw;, = 0.6, thenl? =
24.65. With integer constraints, we hale—= U(ﬂ = 25,1, =22. To allocatdJ; = 11072
symbols nearly equally among the first 25 layers, we obkain= K, = Kz = 442 and
Ks=Ks=...=Ky5=1443. Similarly, to allocat&), = 13656 symbols among the remaining
22 layers, we obtaifyg = Ko7 = ... = K31 = 620 andK3p = K3z = ... = K47 = 621. If
wy = 0.8, thenlf = LWL — 3022 and; = [19] = 30. Ifwy =1, thenly =L = 47.
Therefore, the optimal solution is to allocéte = 11072 symbols among all 47 layers. The
number of source symbols allocated for each layer wiress 0.4,0.6,0.8 and 1 are shown
in Figs. 4.2 to 4.5, respectively. By comparing Figs. 4.2 ®t Fig. 2 of [25] obtained
by the greedy search method, we can see that all the resuith mach other accurately.
Readers can refer to [25] for comparisons of the ratelesB-&fieme used in this paper to
the UEP scheme in [15] using Monte Carlo simulations, whieeeaidvantages of rateless
codes over fixed-rate RS codes are clearly demonstrated.

Now assume there are outage constrdints 25 andl, > 17, i.e,6, = 25 andf, = 17.
The optimal solution for Problem 4.11 can thus be computetbraling to Eq. (4.41).
Whenw; < 0.6, we always havé, > Ii’ and 6, < Ig. Therefore, the optimal solution is

changed td; = 6; = 25,1, = L — 6; = 22. Whenw; > 0.8, we always havé; < If and

6, > |g, the optimal solutioni$; =L — 6, =30 andl, = 6, = 17. When 06 < w; < 0.8,
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Figure 4.2. Allocation of source symbols for an asynchr@multimedia multicast system

with two user classes and no transmission deadline witmpatexw; = 0.4.

we always haved; < 19 and 6, < 19. Therefore, the optimal solution is the same as the
solution for Problem 4.21, i.ely =19 andl, = I9.

The number of source symbols allocated for each layer focéses of 6< wy; < 0.6
and 08 < w; < 1 are shown in Figs. 4.6 and 4.7, respectively. Comparingdbelts of
Fig. 4.6 and 4.7 to Figs. 4.2 and 4.5, the differences duedmtitage constraints for the
cases ofv; = 0.4 andwy = 1 can be easily observed.

To demonstrate the solution of Problem 4.10 with more thandlasses, we consider
an example where the server is multicasting a scalable \stteam to four user classes.

The number of symbols and the PSNR values of the video sequerdaken from Table
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Figure 4.3. Allocation of source symbols for an asynchr@multimedia multicast system

with two user classes and no transmission deadline witmpatexw; = 0.6.

| of [19]. The video sequence consists of one base layer (BH)faurteen enhancement
layers (EL) with a total of 3800 symbols where each symbotesgnts 50 bytes. The
channel erasure rateg, PSNR thresholdg; and weighting coefficientsy; of the user
classes is shown in Table 4.1 . The total number of laiiers47 and the rateless code’s
overhead is assumed again tode= 5%. The number of symbols required to reach the
PSNR threshold ~1(y;), Uj, aj = w;U;j(1+w)/(1— 0j) and,/a7j/U; is computed based
on the above given parameters.

First we consider the case where there is no transmissiodiideai.e., no outage

constraint. The optimization problem is thus in the form oblitem 4.21. Following
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Figure 4.4. Allocation of source symbols for an asynchr@multimedia multicast system

with two user classes and no transmission deadline witmpatexw; = 0.8.

the steps described in Section 4.5.2, we first compare thmsmﬂf{]—o_Tj among different
classes. Sincé&> > f , from Lemma 4.2, the optimal solution must satléfy =
Therefore, this Problem can be transformed into the formrobm 4.22 by merging
Chunk 2 and Chunk 3 to a new chunk with parametérs= U, 4+ U3 = 755 andd, =
(aj/Uj+dji1/Uj1) (Uj+Uj1) = 5549. Slnce‘/_ is now non-increasing, the opti-
mal solution of Problem 4.22 can be computedioas ‘{;f ] =1,2,3. The parameters
and solutions for the transformed problem, Problem 4.2hisfexample are summarized

in Table 4.2.

The optimal solution for Problem 4.21 can thus be obtainetby 19, 19 = 'gu;fus’
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Figure 4.5. Allocation of source symbols for an asynchr@multimedia multicast system

with two user classes and no transmission deadline witmpaterw; = 1.

19 = Igﬁ andl$ = IE. With integer constraints, we obtdin= 14,1, = 7,13 = 10,1, =
16. Alternatively, if we solve Problem 4.21 with parametieosn Table 4.1 usingVXx [28],
a convex optimization software package for Matlab, we obtlae¢ same optimal solution.
The number of source symbols allocated to each Ier,= 1,2, ...,L, are presented in
Fig. 4.8.

Finally, if outage constraints are considered, the optiatlatation scheme can be ob-
tained by solving Problem 4.10, or the transformed probleroplem 4.11. Assume the
maximum number of transmitted packets allowed for all utEsses is given by the dead-

line My and outage probability thresholds are giventpy= 0.01, for j = 1,2,3,4. To
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Table 4.1. Parameters of the asynchronous multimedia easttexample with four user

classes.

User class index (j) 1 2 3 4

User erasure rate; 0.6 0.5 0.4 0

User QoS requirement (PSNR threshgj@B)) | 25.79 | 27.25 29 40.28

numberofdecodedsymbolsrequire‘d%(yj)) 400 700 1155 | 3800

weighting coefficient for Clasg users ;) 0.4 0.1 0.3 0.2
number of symbols for each churi;( 400 300 455 2645
aj = MG 420.0 | 63.00 | 238.9 | 555.5
\(Jiji 0.0512| 0.0265| 0.0340| 0.0089

Table 4.2. Parameters and optimal solution of Problem 42 wansformation of the

asynchronous multimedia multicast example.

User class index (j) 1 2 3

number of symbols for each churlfj) | 400 | 755 | 2645

A

aj 420.0| 554.9| 555.5

optimal solutiony 14.2 | 16.4 | 16.4
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Figure 4.6. Allocation of source symbols for a two-usesslasynchronous multimedia

multicast system with outage constraiht$> 25,1, > 17 and parameter € w; < 0.6.

show how the outage constraints affect the optimal allooasicheme in different situa-
tions, four different values d1g, Mg = 60,100 140,180, are considered. For each value
of Mo, we gradually increase the valueky, until the outage probability calculated by Eq.
(4.5) reaches the outage probability threshgldDenote the maximum value &, that
keeps the outage probability below the thresholdﬁ}s The outage probability constraint
is equivalent td; > 6;, wheref; = (Uj/Kﬁj}. The resultingd; for different choices oMg
are shown in Table 4.3.

WhenMg = 60 orMg = 100, we can see thgq]:l 6 > L, and no feasible solution exists.

WhenMg = 180, as the optimal solution for Problem 4.5 without the gataonstraint is
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Figure 4.7. Allocation of source symbols for a two-usesslasynchronous multimedia

multicast system with outage constraiht$> 25,1, > 17 and parameter.®<w; < 1.

given byl{ = 14,19 =7,19 = 10,19 = 16, they all satisfytj > 6; for j =1,2,..,J. As a
consequence, the optimal solution for Problem 4.11 is theesas the optimal solution for
Problem 4.21.

WhenMg = 140, we can sek > 61,19 > 6,,19 > 65,19 < 6, andy;_, 6 < L. There-
fore, the problem has feasible solutions and the optimaitiswl is no longer the same as
the case without outage constraints. Using the Matlab geckaX, for specifying and
solving convex programs [28], we obtain the optimal solufior Mg = 140 ad; = 13.03,

o =5.95, I3 = 9.02 andl4 = 19.00. With integer constraints, the solution is given by

1 =13,1, =6, I3 =9 andl4, = 19. The number of symbols allocated to each layer is
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Figure 4.8. Allocation of source symbols for the asynchtsmultimedia multicast sys-

tem with four user classes without transmission deadline.

presented in Fig. 4.9. It can be seen that with a transmisi@adlineMy = 140, some of
the source symbols that are originally allocated to therkayathin Chunk 4 are instead

allocated to layers within Chunks 1 to 3.

4.7 Conclusions

We show that the problem of optimal allocation of UEP ratelesdes for asynchronous
multimedia multicast [25] [26] can be transformed into a\e®noptimization problem
when integer constraints are relaxed. Because the prokleonvex and the total number

of variables for the transformed problem is equal to the nemolbuser classes, the solution
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Table 4.3. The values of threshol@g given different maximum number of transmitted

packetdMg

60 | 25|14 | 16| 44

1001 13| 7 | 9 | 27

1401 9 | 5| 6 |19

180 7 | 4| 5|15

is much simpler. In addition, an analytical solution is fduior the case when there are
no outage constraints [25], which has several orders of matglower computational
complexity compared to the greedy search algorithm prapiwg@5]. For the more general
formulation with outage constraints [26], an analyticdusion is found for the special case
of two user classes, and numerical methods of convex optioiz software [27] [28] can

be used to solve the more general cases.
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Figure 4.9. Allocation of source symbols for the asynchtemultimedia multicast sys-

tem with four user classes with maximum number of transuhipecketdvip = 140.
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Chapter 5

Cross-layer rate allocation for wireless

transmission

5.1 Introduction

To date, most studies of raptor codes focus on memorylessirer&hannels where the
erasure rate is fixed and known. However, due to the time ngnyature of wireless chan-
nels, a physical-layer code is required to provide probectigainst fading and noise. In
most communication systems, the physical-layer code aptication-layer erasure code
are studied separately. The quality of service (QoS) isllysgaaranteed by the physical
layer code to ensure a packet error rate (PER) below a céetaeh (1 percent for exam-
ple). The packets that fail to be decoded by the physicaflegde are then corrected at the
packet level by an erasure FEC or retransmitted using ameaiio repeat request (ARQ)
protocol. This scheme usually results in very little préiaT at the packet level. From an

information theory perspective, since one can always usdesi physical layer code to
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drive the packet error rate to zero, erasure protectioneapéitket-level is not needed. If
such an ideal physical layer code could be designed at agatérequal to the information
capacity that the channel supports, then a scheme withakepbevel erasure protection
would be indeed “optimum”. However, in practice, such aralgghysical-layer code does
not exist, especially for time varying fading channels.

As the system simulation results in [20] suggest, in a raptaled broadcast system,
an optimal combination of physical and application-layade rates exists. In many cases,
a higher physical layer PER that is corrected by the appiindayer raptor code can be
more efficient than traditional designs. However, the itsquiovided in [20] are from sys-
tem simulations, and do not provide sufficient insight andrdification of the optimal rate
combination. In [51], we also select the best overall codesry evaluating the capacity
of raptor codes in hybrid error-erasure channels whenréiftephysical layer code rates
are used (see Fig. 4 of [51]), but do not attempt to find thenogitrate combination. Re-
cently, [52] discusses certain aspects of the balance beatttee physical-layer code rate
and packet-level erasure code rate in Rayleigh block fadirannels. However, the for-
mulation in [52] considers transmitting a prescribed nundfenformation bits within a
given transmission time. The rate of the packet-level estetode is fixed during the whole
transmission period. The objective of the optimizatiorb][is to minimize the operational
channel average SNR under certain outage constraints.nétgses in [52] provides theo-
retical insights of the best physical layer and applicalayer rate combination. However,
in systems where the objective is to maximize throughpetgibtimal solution in [52] can

be very inefficient if the actual channel average SNR is knawth much higher than the
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minimum operational SNR. In addition, [52] considers aralgghysical-layer code which

gives a zero packet error rate as long as the code rate is betanformation capacity that

the channel supports. Finally, [52] also does not consateradaption in the physical-layer
when the channel fading is slow.

In this chapter, we investigate the optimal combinationlofgcal-layer code rate and
application-layer rateless code rate for systems in fadirannels. The application-layer
rateless code is assumed to keep generating coded packgts ty until all erroneous
packets are corrected. Therefore, the “rateless” profgeeyploited in our scheme to drive
outage to nearly zero; while in [52], the erasure code rafiexézl during transmission
and there is a certain probability of outage. In additiormpared to [52], more practical
error curves for physical layer codes are used. We considgleigh fading channels with
both slow and fast fading. For fast fading channels, we fireddptimal physical-layer
modulation and code rate that maximizes the overall systeaughput. We compare the
proposed choice of the physical-layer code rate to thettoadil choice of the physical-
layer code rate to demonstrate the advantage of the propps@dization method.

For slow fading channels where physical-layer rate adaptas feasible, we propose
a cross-layer adaptive modulation and coding scheme whaximizes overall system
throughput. Adaptive modulation and coding (AMC) (e.g [B34ve been proposed for the
physical layer in the literature for many different commuation scenarios. In [54], AMC
have been used in combination with truncated automaticatapguest (ARQ). However,
all existing adaptive schemes essentially choose the ratdnland coding mode to guar-

antee minimum PER requirement rather than provide the lvesalb system performance.
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We derive the overall system throughput for different scesaand compare the proposed
cross-layer AMC design to traditional non cross-layer AM&3igns.

The rest of this chapter is organized as follows: Sectiorddstribes the system setup,
channel models, as well as introduces the performance mesasLapplication-layer raptor
coding and physical-layer modulation and coding. Secti@hdiscusses and derives the
throughput performance of the proposed cross-layer tressson in fast fading channels
as well as the cross-layer AMC design in slow fading chann®8kction 5.5 presents the
numerical results, which includes a comparison betweemptbposed cross-layer design

and traditional non cross-layer design.

5.2 System setup and channel models

5.2.1 System model

The paper considers a two-layer model where the transnaitiempts to deliver messages

to single or multiple users. The information bits are didideto data frames. Each data
frame contains a total &€ source symbols which are encoded by a raptor code to generate
a potentially infinite number of raptor-encoded symbolschEsource symbol or raptor-
encoded symbol consists 8 bits. A packet is formed by.r raptor encoded symbols

(Py = LrSR bits) together with packet header informatid#j bits) and cyclic redundancy
checks (CRC)R-rc bits). Thus the total number of bits within each paclkgt,is given

by P> = Py + B, + Pcre. Each packet is further protected by a physical-layer cotte av

code rateR; and modulated usinigl-QAM and transmitted to the wireless fading channel.
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Finally, pilot symbols are added to every one or more codaéwadepending on how fast
the channel fades. The structure of each packet is showmyirbEL. For each data frame,
the transmitter keeps sending packets until either it veseacknowledgements from all
the intended receivers or until the maximum number of pacakbdbwed has been reached.
After that, the transmitter starts to transmit the next digtane. On the receiver side, each
user first demodulates and decodes the physical-layer cadeh&cks its correctness with a
CRC. If there are uncorrected errors, the entire packeigmid. Otherwise, the correctly
decoded packets are further used to decode the originaimatmon data using a raptor
decoder. Once the receiver successfully decodes the dae fran acknowledgement is
sent to the transmitter. L&, be the actual number of packets transmitted for each data
frame. Then the number of raptor encoded symbols selt is NpLgr. For analytical

simplicity, we assumér = 1, i.e, each raptor coded symbol is a physical-layer packet.

1 2 K
K Source . R Raptor
symbols |SR bits | | | I:I encoder
1V 2v v K
K, Encoded
symbols |SR bits | | | L | | | | mun
L, raptor
encoded symbols
Packet § £, =5, +F, + Fe bits
Header Data payload CRC
B, bits P, bits Prpe bits
Physical layer coding (Rate R, )
v and modulation ( M -QAM)
P R 1 M | _ To wireless
",/ (R, log, M)  Channel symbols I > channols

Figure 5.1. System setup and packet structure.
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To quantify the overall system performance, we calculagetrerall system throughput
in terms of the average number of information bits transditper channel symbol. To
simplify the notation, defind&Rr = K/K; as the realized raptor code rag, = (Pcrc +
R,) /Py as the packet overhead whefg Pcrc and Py = LrSk are the numbers of bits
representing packet header information, CRCs, and dat@amhyn each physical-layer
packet, respectivelyRy, = log, M is the modulation rate. Then the system throughput,
which is defined by the total number of information bits dedby total number of channel

symbols used, can be calculated as

total number of information bits
" total number of channel symbols
KX
- PeNp/(RnRc)

KR 1
=R RuRe
PdNP 1+ gp

Kk 1

" LRSRKt/Lr 1+ &p
1

:1+£p

RmRc

RnR:Rr bits/channel symbol (5.1)

5.2.2 Physical-layer channel model

We assume the link between the server and all the users to tel@doas independently and
identically distributed (i.i.d) Rayleigh block fading ai@els. The channel quality of each
user is characterized by the instantaneous signal-tefraito (SNR)y. In the Rayleigh

fading model, the probability density function (pdf) of thestantaneous channel SNR
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can be characterized as:

fy(y) = SO (5.2)

wherey is the average channel SNR.

We also categorize the channel fading into two differenhades depending on the
coherence time of channel fades. In the fast fading scenaei@ssume that the coherence
time of the channel fades are of a similar length to the packatsmission time. Therefore,
the instantaneous chanrNIR remains the same for each packet, but varies from packet
to packet. In the slow fading scenario, we assume the cotertéme to be much longer
than the transmission time of a raptor coded data frame. eftwey, for slow fading, the
instantaneous SNR is assumed to remain the same for the vapite coded data frame
but varying from frame to frame. It is also assumed that tiseaimaneous channel SNR is

available to the transmitter in the slow fading scenario.

5.2.3 Packet error rate and physical layer design

At the physical layer, we consider possible choices of mldttransmission modes with
different combinations of modulation and convolutionatiitmy pairs as in [54], which are
borrowed from HIPERLAN/2, IEEE 802.11a and 3GPP standdfdsanalytical simplic-

ity, we use the PER expressions developed in [54], where @ivemnn modulation and code

pair in moden, the packet error rate is approximated by:

1 if Y <VYpn
PERn(y) = (5.3)

anexp(—gny) if Yy>ym
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wherey is the instantaneous channel SNR, which is assumed to remairanged for the
whole packet. In [54]an, gn andypn are parameters that are mode-dependent. The param-
eter values for different uncoded M-QAM (rectangular) miations (TM1) and convolu-

tionally coded modulations (TM2) are listed in Table | andb[€l of [54], respectively.

5.2.4 Application-layer raptor codes

Raptor codes see a virtual erasure channel in the applicatyer. The erasure probability
P. is equal to the packet error rate. The decoding failure goitibaof the raptor code used

in the 3GPP standard can be well modeled by the following tau20],

1 if Ks<K
Prail (Ks,K) = (5.4)

abKs—K if Ks>K

whereP 4 (Ks, K) denotes the probability that the receiver fails to dedéd®urce packets
afterKs packets are successfully received and0.85 andb = 0.567 are constants. Denote
Ks andK; as random variables representing the number of successfakived packets,
and the total number of transmitted packets during the tnésson of one raptor code
frame, respectively. Consider a continuous transmissiapfames. The effective raptor
code rateRg = zij*(ﬁ(i)’ whereK; (i) is the number of packets transmitted during ittle
frame. Asg gets large over a long time, according the weak law of largebers (WLLN),
%ziq:l Ki(i) — E(K;). Therefore, the average long-term effective raptor cotke can be
evaluated aRr = K/E(K;).

To evaluateE (K ), since the packets transmitted through the erasure chesprelsent

a Bernoulli process with failure probability equal to thesiure probability?, it can be
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shown (proof-omitted, see e.g. [55]) that the random véeih conditioned orKs follows

a negative binomial distribution, with average value edoaE (K;|Ks) = 1fspe. Hence

E(Ky) = E(E(Ki[Ks)) = E( ;) = 'i(_Kng. To calculateE (Ks) using Eq. (5.4), we have, for

a positive integex,

P(Ks = K+ x) =Prob(decoding failure wherKs < K +X)

x Prob(decoding success whels = K + x)
x-1

— |'L(abi)(1—abx); (5.5)

Therefore,
E(Ks) =K + Z)XP(KSZ K +X)
=K + % |'L )(1—ab)]
_K-I—% a*b**1/2(1 — ab¥)
=K +C, (5.6)

whereC is a constant that can be easily evaluated numerically (berd.39). Therefore,

the realized raptor code ratean be evaluated as

K K(1-PER) (1-PER)
Rr= E(K))  K+C  1+g ' (5.7)

wherePER is the packet error rate argl = C/K is defined as the raptor code overhead,

which decreases as the raptor code dimenKigrcreases. It should be noted that Eq. (5.4)

We have assumed that the maximum number of transmitted dgrftv@ach code frame is large enough

except wherPER = 1, in which case an outage event occurs.
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used in this section is not critical to the results of thispika This is because the optimal
choice of physical layer modulation and code pairs does apedd on the average code

overheack; .

5.3 Performance analysis in fast fading channels

In the fast fading scenario, each raptor encoded packetiergpes a different instantaneous
SNR. Therefore the erasure rate for application layer rapbddes is equal to the PER
averaged over different channel SNRs. Therefore, for angikensmission mode (with
modulation raten, = log, M and code rat&,), using Egs. (5.3) and (5.2), the erasure rate

for the raptor code is:

Pe() = | “PER\(y)f,(Y)dy (5.8)

Ypn ®
:/0 f,(y)dy + i anexp(—gny) fy(y)dy
on

Yon an 1
=l—-exp——=)+ = expl—(Oh+ = .
o % ) Von+ 1 P(—(On y)Vpn)

By substituting Egs. (5.7), (5.8) afRER = P.(n) into Eqg. (5.1), the system throughput

in fast fading for given transmission modes given by

TPtag (N) :1+1€p”thnRR
T (1+ ep)1(1+ gr)m”RCn(l—PER)
ey AT e ™R R
:(1+5p;-(1+£r)nthn(eX[x—L;])
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an 1
Vgn_i_lexlj(—(gn'i‘;/—)Vpn))- (5.9)

5.3.1 Traditional non cross-layer scheme

Commonly, the physical layer modulation and coding dessgimdependent of the upper
layer design. The QoS is guaranteed entirely by the phykigal which ensures that the
packet dropping rate is below a certain level. Thereforeemédntraditional non cross-layer
scheme is used, the transmitter chooses the transmissibawith the highest modulation
and coding rate which guarantees that the average PER Gurenate) is below a certain
valueRss. Therefore, for a known avera@®lR, transmission modeis chosen according

to the following criterion:
n=arg n?]a>(rthcn) subject toPs(n) < Rgss. (5.10)

We remark thaB s = 0.01 is chosen for all performance comparisons in this thesis.

5.3.2 Proposed cross-layer scheme

In the proposed cross-layer scheme, the physical layegulésiaware of the application

layer FEC. Here, the QoS is guaranteed by both the physigal &nd the application layer

FECs. The application layer rateless code is able to codregiped packets by generating
sufficient numbers of raptor encoded packets to drive thageuprobability to nearly zero.

Therefore, the objective of the proposed cross-layer ddasitp maximize the overall sys-

tem throughput. Since the overhead parametgiande; are independent of modeg the

criteria for choosing the transmission maaéased on our proposed cross-layer scheme
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can be found by using the mode that maximizes Eq. (5.9):

n=argmaxTPras(n)}

=arg rq\a{nthn(exp(—y%‘)
an 1
- Vot 16Xp(—(gn+ 7)Vpn>)}- (5.11)

5.4 Performance analysis in slow fading channels

When the fading is slow, the instantaneous SNR remains tie $ar each raptor coded
data frame. Therefore, the throughput performance in shalinfy channel can be obtained
by averaging the throughput performance for a given SNR thedistribution of SNR. For
any given SNR, it is assumed that the rateless code in thécapph layer experiences a
memoryless erasure channel. Therefore, Eq. (5.7) castilsed to compute the realized
rateless code rate. By substituting Eq. (5.7) to Eq. (5.&)pltain that the system through-
put performance for a given SN\R which is the same as the throughput performance in an

AWGN channel, when modeis chosen and is given by:

MyRen(1—PERG(Y))
(1+¢&p)(1+¢&)

TPaven(N,Y) = 7 (5.12)

wherePER(y) is given by Eq. (5.3).

5.4.1 Non adaptive scheme

When a non-adaptive scheme is used, the transmission misdigxed during the whole

transmission period. The long term average throughput fusraadaptive scheme using
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moden is then given by:

TPyou(n) = | " TRavan(n.y) fy(Y)dy. (5.13)

By substituting Egs. (5.12) and (5.3) into Eq. (5.13), weaaft

_ 1 _ Y
an 1
- mexm—(gw—y)vpn))- (5.14)

5.4.2 Proposed cross-layer AMC scheme

For the slow fading scenario, we propose a cross-layer AM@mse where the transmis-
sion mode is chosen according to the instantaneous SNR timmzaxhe system through-
put. In this case, for a given instantaneous channel $NtRe modulation and coding

mode is chosen according to

n = argmaxmRen(1—PERs(Y))}, (5.15)

wherePER,(y) is given by Eq. (5.3).

Without loss of generality, it is assumed that the transimssodes are ordered such
thatmyRcn is monotonically increasing with, andN is the total number of available trans-
mission modes. As shown later in Figs. 5.2 and 5.3, when thRe $i¢ low but greater
thanyp, transmission mode 1 provides the maximum throughput. 8\@NRy gradually
increases, the index of the best transmission nmoalso increases. The design criteria can
be further simplified to choose modewvhen the SNRy lies betweeny, and y, 1, where

Y1 = Yp1, W1 = andyn(n=1,2,...,N) is the solution to the following equation,

(1—an-18Xp(—gn-1¥h)) X Mh-1Rn_1)
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= (1—anexp(—gnh)) X MyRen (5.16)

for n=1,2,...,N, When the channel SNR is beloy:, the PER approaches 1, and an

outage event occurs. The outage probability can be casxlibd
Yp1
Pout = /0 fy(y)dy = 1—exp(—y%l). (5.17)

The probability that moda is chosen is given by:

Yt
P [ )y = expl— ) —ex ), (5.18)

Therefore, the long-term average system throughput ubagitoposed cross-layer AMC

scheme can be evaluated as:

N
TPamc = Z PaE(TPamc|Vh < ¥ < Yht1)
=1

N Yt f
= Z Pn/ TPaven(n,y) ﬁy)dy
n=1 ¥h n

N Yh+1
= Z /y TPaven(n, y) fy(y)dy. (5.19)
=1/ v

Applying Egs. (5.2) and (5.12) to Eqg. (5.19), we obtain therage throughput

TPayc = ! {N MaRen x [exp(— 20)
AMC = T ) (L &) 2y e 7

G
bny

—exp(— yn);l) + exp(—bnyhr1)

an
- we)(p(_bnyn)]}a (5.20)

whereb, =gn+1/y.
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5.4.3 Non cross-layer AMC scheme

Traditionally, AMC design in physical layer is independehtiata link layer and applica-
tion layer designs. If AMC is used in a traditional non crteger design, the transmitter
chooses the transmission mode with the highest modulatidrtading rate while still en-
suring the packet error rate given the current channelntestous SNR is below threshold
Ross. Therefore, the choice of the modulation and coding paict®eding to the following

criterion:

n=arg rr;]a>(mchn) subject toPER,(Y) < Ross, (5.21)

wherePER,(y) is given by Eq. (5.3). The outage probability and overalbtlghput using
a traditional non cross-layer AMC scheme can be obtainedasignexcept the threshold
Y IS

1., an
— Ay 22

Note that the choice of the transmission mode of the non deyss AMC scheme de-
scribed above is the same as that of the AMC design descrilj&éd]. The only difference
is that the threshol&arge is used in [54] instead dfoss Used in this chapter, wheReyrge

is a constant determined by the maximum number of re-tressam attempts allowed in
the ARQ protocol as well as by the maximum packet loss ragr #fte re-transmission

attempts.
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5.5 Numerical Results

With a packet lengti?, = 1080 bits, the parameteag, gn, ypn for calculating packet error
rates under different modulation and coding modes have lsted in Table | and Table I
of [54]. The throughput performance of the combinationsifiétent modulation and cod-
ing schemes (uncoded and convolutionally coded) with eeasaptor codes over AWGN
channels can be calculated by Egs. (5.12) and (5.3). Thadhput performances of un-
coded M-QAM modulations and convolutionally coded M-QAM dutations in AWGN
channels are shown in Figs. 5.2 and 5.3, respectively. \Witluss of generalityg, = 0
and& = 0 are used for Figs. 5.2 and 5.3. Although the focus of the telnap on fad-
ing channels, the results for AWGN channels are also predédatillustrate how different

modulation and coding modes are chosen at different SNRdaptae schemes. From
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Figure 5.2. Throughput performance of uncoded packets iGA/¢hannels.

110



4.5 T T T T
———BPSK, Rc=1/2

QPSK, R=1/2

35F | —— QPSK, RC: 3/4 b

I | ——16-0am,R=9/16 ettt

—— 16-QAM, R = 3/4

251 64-QAM,R=3/4 | [ i

. //7 ,
1F /7 ,

0.5

Throughput (bits/symbol

-5 0 5 ‘ 10 15 20 25 30
SNR (db)

Figure 5.3. Throughput performance of convolutinally abgackets in AWGN channels.

Figs. 5.2 and 5.3, it can be seen that the best modulation @tidgcmode which maxi-
mizes the throughput differs for different SNRs. In very IBMR, coded BPSK offers the
best throughput performance; while at high SNR, uncodel lggel modulation is best.
This is to be expected, as in low SNR, low-rate codes and natidul schemes should be
chosen to achieve an acceptable packet error rate; On teeh@hd, in high SNR, a small
packet error rate can be easily corrected by the raptor cadds high-rate modulation and
coding scheme can achieve a higher rate. Therefore, it isficead to use AMC to select
the best modulation and coding mode according to the SNR wieeohannel varies over
time. Comparing all the curves in both Figs. 5.2 and 5.3, 1t lsa seen that the uncoded
schemes using BPSK, QPSK, 8-QAM and 16-QAM does not offerimuam throughput

at any SNR. Therefore, in the proposed AMC scheme for sloméadhannels, only the
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coded modulation mode and uncoded 32-QAM, 64-QAM, 128-QAdgmission modes
are candidates.

We next compare the performance of different choices of adidun and coding schemes
in fast fading channels. Without loss of generality, forta® numerical results presented
afterwards, it is assumed that packet overhgag 2%, raptor code dimensial = 256
and raptor code overheagd= C/K = 0.0054. Fig. 5.4 shows the throughput performance
of the proposed cross-layer optimized transmission modR&gleigh fading channels for
different average SNRs. For comparison, throughput pedoce of three specific trans-
mission modes as well as the transmission mode chosen byptheross-layer scheme are
also shown in Fig. 5.4. For all the curves in Fig. 5.4, thedlgigput is calculated using Eq.
(5.9), with the transmission mogtebeing selected according to the corresponding criteria
described as follows: for the “proposed cross-layer selectcheme”, the transmission
moden is selected according to the criteria described by Eq. {5fadthe traditional “non
cross-layer selection scheme”, the transmission mmogechosen according to the crite-
ria described by Eq. (5.10); for the curves representingipéransmission moda, the
modulation and coding pair used for the transmission isdeggned and fixed for all the
average SNR values. It can be seen that the proposed cyasdriansmission scheme of-
fers significantly better overall system performance ovestof the SNR range compared
to the traditional non cross-layer transmission scheme.

Fig. 5.5 shows the resulting average packet errorRgt® for the proposed cross-layer
scheme and the traditional non cross-layer scheme in fdstgahannels. The average

PER is calculated using Eq. (5.8) with the transmission nmosielected according to the

112



corresponding criteria. It can be observed that while tiaafl non cross-layer schemes
use strong and conservative physical layer coding to gtegaa low PER, the optimal
choice of transmission mode from a throughput maximizapierspective involves trans-
mission with a high PER to be corrected by the applicatig@daaptor code. Note that in
the case of low SNR where a PER below 0.01 cannot be guaraiotegn® traditional non
cross-layer scheme no matter which transmission mode & tise PER is computed by
choosing the transmission mode= 1 which corresponds tBPSK modulation with code

rateR. = 1/2.
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—+--BPSK, R=0.5

¢ 16-QAM, Rc:9/16

- % -64-QAM, R =1 6006

[

a1

N

w

N
T
O
<>
<>
<>
<>
<>
<>
<>
<
<>
<>
<>
<>
<>
<
$
&
e

2

System throughput (bits/symbol)

BB +++ ++ +++ ++ +++ +—+ + A+ + T

nnnnnnnnnnnnn

I
0 5 10 15 20 25 30 35 40 45 50
Average SNR (dB)

Figure 5.4. Throughput performance comparison for fashfae, = 0.02, K = 256,& =

0.0054).

In Fig. 5.6, for the slow fading scenario, the throughpufqenance of the proposed

cross-layer AMC scheme is shown in comparison with the bedbpming non-adaptive
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Figure 5.5. Average packet error rate in fast Rayleigh fadimannels.

scheme, as well as AMC using traditional non cross-layeigdexiteria. When the pro-
posed cross-layer AMC scheme is used, the transmission mémteany given instanta-
neous SNRy is chosen according to the criteria described in Eq. (5.I8p throughput
performance of the cross-layer AMC scheme is given by EQOj5where the threshold pa-
rametersy, is given by the solution of Eq. (5.16). When the non croseilaMC scheme
is used, the transmission moddor any given instantaneous SNHRs selected according
to criteria described by Eq. (5.21) and the throughput of crass-layer AMC scheme is
calculated using Eq (5.20) with parametggggiven by Eq. (5.22). For the non-adaptive
schemes, the throughput performance is calculated usin¢gcElt), where for each given
average SNRy, the best performing transmission maae- argmax{TPyow(n)} is cho-

sen, wherel Pyqy(n) is the throughput given by Eq. (5.14). Note that we have shown
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two curves of non-adaptive schemes where the candidattiasion modes are limited to
either uncoded modulation modes or convolutionally codeduation modes. It can be
seen that both non cross-layer and cross-layer AMC scheuntpsréorm the best perform-
ing non-adaptive schemes. The cross-layer AMC design pesfdetter than traditional
non cross-layer AMC design across the entire average SNjereonsidered. For exam-
ple, at an average SNR of 10dB, the cross-layer AMC, tratilidsAMC, and non AMC

designs achieve throughputs of 1.68, 1.42, and 1.10 bitdiel; respectively.

5 L I I T
—o6— Non-adaptive, uncoded modulation A
4.5 | —«— Non-adaptive, covolutionally coded modulation
—+— AMC, cross—layer

—*— AMC, non cross—layer

System throughput (bits/symbol)
N
(6]

| |
0 5 10 15 20 25
Average SNR (dB)

Figure 5.6. Throughput performance comparison for slownfae, = 0.02, K = 256, & =

0.0054).

Fig. 5.7 shows the PER of the transmission mode chosen byrtip®ged cross-layer
and traditional non cross-layer schemes as a function tdntsneous SNRs for the slow
fading scenario. It can be seen that while traditional nessfayer schemes keep the PER
very low (belowRs = 0.01), the proposed optimized cross-layer scheme allows much
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larger PER to be corrected by the application-layer rapides.

04 T T T T
—*— Crosslayer AMC

0.35F % — © —Non cross-layer AMC

packet error rate
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Figure 5.7. Packet error rate of traditional and optimalioh@f transmission mode as a

function of instantaneous SNR.

5.6 Conclusions

This chapter studies the optimal combination of the phydayger and application-layer
raptor code rates for rateless coded communication systéfasconsider both slow and
fast Rayleigh fading channels. We propose a cross-layenselo optimize the set of avail-
able physical-layer modulation and coding pairs. In addita cross-layer adaptive modu-
lation and coding design is proposed for the slow fading agen The system throughput
performance that considers both physical-layer code rat@pplication-layer erasure code

rate is analyzed. Numerical results show that the proposessdayer design outperforms
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traditional non cross-layer design significantly in botbwsbnd fast fading channels.
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Chapter 6

Hybrid error-erasure decoding of raptor codes

over wireless channels

6.1 Introduction

In wireline internet communications, as packets can bedostto network congestion, the
channel can be easily modeled by a packet erasure channgireless communications,
packets can be both lost and corrupted. Traditionally,ugied packets are discarded and
not forwarded to the application layer. These dropped packee either re-transmitted
using an automatic repeat request (ARQ) protocol or areveged using application layer
forward error correction (FEC) codes. These schemes caltt ne¢arge packet drops and
hence very low throughput when the channel condition is.pbmmitigate the inefficiency
of such schemes, newer cross-layer protocols allow cadjpickets to be relayed into the
application layers. With these protocols, the applicatayer FEC sees both erasures and

errors. Such channels can be modeled as hybrid error-eraBannels. The simplest form
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of a hybrid error-erasure channel is the binary symmetranaolel with erasures (BSCE).

To date, most of the applications envisioned for raptor s@lsume a perfect erasure
channel [20]. For example, authors in [20] investigated dpplication of raptor codes
in download delivery of multimedia broadcast and multicsestvices (MBMS). In their
system, packets which contain errors that are not fullyezed by the physical layer turbo
code are discarded. Such schemes may result in large numbdrepped packets in
poor channel conditions. The performance of raptor codes meisy channels have been
investigated using soft decoding [22] [23] [56]. Itis fouimd22] that unlike binary erasure
channels (BECs), the optimal degree distribution for raptmles is no longer universal
for binary input additive white gaussian noise (BIAWGN) aridary symmetric channels
(BSCs), but depends on the noise level. Nevertheless, arraptle designed for BEC
performs quite well in BSC and BIAWGN channels [22] [23]. Tékre, raptor codes
are good FEC candidates in correcting both erasures an etfowever, soft decoding
schemes are usually more complex than traditional eramaedihg schemes. In addition,
raptor codes are not originally designed as physical lagdes, and incorporating raptor
codes directly in the physical layer would require modifimato the whole system design
which is not practical. To date, the performance of raptatesofor hybrid error-erasure
channels has not been explored.

In reality, wireless fading channels are correlated, whegults in a burstiness of bit
errors and erasures. A FEC usually performs best when eatdh syonbol experiences
independent fading. The traditional way to deal with chaiqmemory is to interleave

the encoded symbols prior to transmission. However, iedé®ihg introduces large delays
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and complexity, motivating the study of the performanceapitor codes in channels with
memory. To the author’s best knowledge, only [56] [57] hadldrassed this issue. In [56],
the authors study the performance of fixed-rate raptor codexsRayleigh fading channels
with memory via simulation. However, [56] considers raptodes as a pure physical
layer code, while the conventional usage of raptor codesppécation-layer FEC codes.
Also, hybrid error-erasure channels have not been coreidar[56]. In [57], application
layer raptor codes are evaluated over DVB-H where shadowamntyeffects of memory
are taken into consideration. However, [57] considersticathl non-cross-layer protocols
which drop all corrupted packets and render pure erasuneneff&for the raptor codes.
Finally, [57] assumes that raptor codes have a fixed twogp¢roverhead, which is not
realistic.

Recently, two general cross-layer communication promckhown as hybrid error-
erasure protocols (HEEPS), are applied to Reed Solomong@tgs and low density parity
check (LDPC) codes in wireless multimedia/video transioisfs8]. These HEEPSs allow
corrupted packets to be relayed into the application laydosvever, the protocols in [58]
have not been applied to rateless raptor codes and do notl @adical physical layer
channels and the behavior of physical layer FECs. In additbannel memory has not
been considered in [58].

In this chapter, we first analyze and simulate the performarcactual raptor codes
over BSCE and Gilbert-Elliott (GE) channels, which have bneén studied in the litera-
ture. These are fundamental channel models that are forjddferent cross-layer and

non-cross-layer protocols. By using the rateless propafrtyaptor codes, we reveal the
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relationship between the overheads of raptor codes overd@8®SCE channels; by sim-
ulating the performance of actual raptor codes over GE aiarusing iterative decoding,
we demonstrate the desirable performance of raptor codesainnels with memory and
investigate the effect of channel memory as well as the abviitly of channel state infor-

mation (CSlI).

We then investigate performance of raptor codes in MBMS filerloading services
when either different cross-layer protocols or converdlgrotocols are applied. The rap-
tor coded packets experience both packet erasures duevtorkatongestion and packet
corruptions due to wireless fading and noise. Channel mgindvoth the wireline chan-
nel and the wireless channel have been considered. By takiagnel memory and the
behavior of physical layer turbo codes into account, we rttaechannel that the raptor
code experiences as a hierarchical Markov model. We ddneéransition probabilities
based on the turbo code rate and parameters of correlatddigtaiading. The main dif-
ference between this channel model and a regular Markaz-typdel (such as the well
known GE channel) is the choice of channel states. Ratharttireausual choice of good
and bad states, the three states used in this model (erdéste® sorrupt states and correct
states) directly represent the results of the physicalrldgeoder. With this model, the
two cross-layer protocols considered here only differ makailability of side information
about the instantaneous channel state. Therefore, bagbs omodel, we are able to easily
evaluate and compare the performance of different croas-End conventional protocols
in channels with memory.

We also propose a hybrid erasure-soft raptor decoding seheimplement cross-layer
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protocols with respect to application layer raptor codeke @ecoding scheme improves
system performance substantially compared to that of cdiw@al protocols [20] with
modification required only on the receiver side. The main @& of the decoding scheme
is to perform traditional erasure decoding based on thecbpacket transmission first and
soft iterative decoding based on corrupted packets aftesvén broadcasting applications,
each user/receiver also has the flexibility to choose whhdthase traditional erasure de-
coding or the proposed hybrid decoding depending on chamoralitions and individual
quality of service (QoS) requirements. Therefore, the loydecoding provides a flexible
balance between performance and complexity. For examplenwhe channel quality is
good and the physical layer code is able to correct all trwem most packets, the receiver
can recover all information using simpler traditional emr@sdecoding methods; when those
non-corrupt packets are insufficient to decode all the soumormation, the receiver can
collect soft information from corrupted packets to helphe tlecoding process. Third, we
evaluate the system throughput using different turbo catisrand simulate performance
of an actual raptor code using different protocols in vagioblannel conditions.

The rest of the chapter is organized as follows. In Secti@n @erformance of raptor
codes over BSCE channels is derived. Section 6.3 preseritsrpance of raptor codes
over GE channel using iterative decoding. In section 6.4 fivg¢ describe the overall
MBMS system model and the application of cross-layer pritt our system. We then
illustrate the channel modeling and derive the transiti@mbabilities based on the physical
layer parameters. In Section 6.5 , we evaluate the apmicddlyer capacity and maximum

system throughput when different turbo code rates are Us&kction 6.6, we first provide
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relevant background information of raptor codes. We thestilee the proposed hybrid
erasure-soft decoder for different cross-layer protoc8ksction 6.7 shows the simulation
results of raptor codes using conventional and cross-lpy@&ocols in various channel

conditions. Section 6.8 provides the main conclusionstsr ¢hapter.

6.2 Performance of raptor codes over BSCE channels

6.2.1 Hybrid error-erasure channels

The simplest form of hybrid error-erasure channel is the B&Gannel (Fig. 6.1). The
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Figure 6.1. BSCE channel model with erasure probahilignd bit error probabilityp
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BSCE channel is a discrete-input, discrete-output chawitalinput alphabek € {0,1}

and output alphabste {0,E,1}. The erasure probability = Pr(y =E|x=0) =Pr(y=

E|x = 1), and the error probabilityy = Pr(y = 1|x = 0) = Pr(y = O|x = 1). Denote the
probability that a bit error occurs conditioned on the cds the information bit is not
erased ap. Thenp= % and the information capacity of such a hybrid channel can be

easily calculated as [5],
C=(1-0a)(1—hp(p)), (6.1)

wherehy(p) = —plogp— (1 — p)log(1— p) is the binary entropy function. In the fol-
lowing, we useBSCE(a, p) to represent a BSCE channel with erasure probahilignd

conditional error probabilityp.

6.2.2 Raptor codes over BSCE channels

As a rateless code, the performance of raptor codes over B&&tnels can be measured
by the average overhead for which all the information bits successfully decoded. To
decode raptor codes, the receiver collects output bits ecatds the reliability of the bit

as a measure of the amount of information received. Oncetakamount of information
received exceeds that of the source, the receiver startedodd. If decoding fails, the
receiver waits for a certain number of bits and again attertgptlecode. For a raptor code
with K information bits, letK; represent the number of generated coded bits required for

successive decoding. The overhead of raptor codes is deffned

_k—-(K/C) _C
- ARt =Rt 6.2)
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whereC is the channel capacity afil= K/K; is the realized rate. Then the following
property is satisfied:

Property 6.1: The average overhead of a raptor code (or LT code) requiresliccess-
ful decoding over 8CE(a, p) channel is the same as that oveB3C(p) channel.

Intuitively, the property can be interpreted as a compemsé&br erasure loss: the raptor
codes need to generate more code bits by the factor cormisppoto the erasure rate for
BSCE(a, p) channels compared to that BEC(p) channels. However, the number of bits
erased, successfully received as well as the ratio betwssn vary for each realization.
Although the numbers and the patterns of bits discardedriaaievant to the code perfor-
mance, they are important in practice as they contributbdditme that the receiver needs
to wait for successful decoding. A simple formal proof faistproperty is as follows:

Proof: Consider a rateless raptor code transmitted over a B&@EChannel. Denote
SandX as random variables representing the numbers of codedbés/ed and the coded
bits erased on successful raptor decoding, respectivlly.aVerage number of coded bits
generated is thek; = E{S+ X}. By taking the expectation conditioned & we have
Ki = E{S+ X} = Es{E{S+ X|S}} = Es{S+E{X|S}}. If an un-erased bit is considered
as a successful trial and an erased bit is considered a®d tadl with failure probability
equal toa, then conditional on the number of successful trids s, it is easily shown that
X follows a negative binomial distribution which gives thepability of s— 1 successes

andx failures inx+s— 1 trials, and success on tlve+ s)-th trial, i.e.,

X+s—1
Ras(Xls) = (1-a)°a™. (6.3)
s—1
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Since the average of the negative binomial distributionaisilg computed a&{X|S} =

2=S, E{S+X} = 2-E{S}. By substituting (6.1) into (6.2), the average overhead is

obtained ag = }5(_}(%/)0) = E{S}(1—hp(p))K~1—1. Since erased bits do not contribute

to code performance, and each coded bit is generated indepiy) E{S} is the same for
the BSCE(a, p) channel andSC(p) channel. Hence is also independent of erasure rate
a.U

As a corollary to of Property 6.1, a raptor code has the saraghead for BEC channels
of all erasure rates. This also confirms the property of “ersality” of raptor codes over

BEC channels [11].

6.2.3 Simulation results and analysis

Due to the decoding complexity, the performance in termgalized rate is not simulated.
As an alternative, the performance of raptor codes B8JE (a, p) channels is measured
by bit error rate (BER) versus the inverse of code Rté, which is proportional to the

number of coded bits generated. The decoding of raptor codessBSCE channels is
performed by using initial LLRs according to (2.5) and (228 performing belief propa-
gation (BP) decoding in the same way as for BSC channels.sgmentioned otherwise,
the raptor code used in this chapter is the same as the ragderistroduced in Section
2.1, with a code dimensial = 9500, LT degree distributiof, (x) given by Eq. (2.4) and

a rate 0.95 LDPC code as the precode. Fig. 6.2 shows the penfice of raptor codes
overBSCE(a, p) channels for different parametersandp. The figure includes botBEC

(p=10) andBC (a = 0) as a special case. The capacity of BSCE channels is esdluat
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Figure 6.2. Raptor code performance over BS@Ep| channels with erasure rateand

error probabilityp.

by Eq. (6.1). From Fig. 6.2, it can be seen that to achieve arage BER of 102, the
raptor codes require approximately 9%,10% and 11% overfeedBEC, BSCp = 0.05),

and BSCp = 0.11), respectively, compared to their own information cayawounds. It

can also be found that a BSQE Q) channel requires approximately the same overhead as a
BSC(p) channel with the same error rgte For Fig. 6.2, the BER curve of the BSGE)

is not an exact horizontal shift of the BER curve of the BE&hannel. This is because for

a fixed rate raptor code over BSQE() wherea # 0, the number of non-erased bits varies
with each implementation, while this value does not chargdB5C(). The simulation
demonstrates that in the case of channel with no memory,ahation of the number of

received bits in different realizations has little effeattbe performance of raptor codes.
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6.3 Performance of raptor codes over GE channels

6.3.1 Gilbert-Elliott (GE) channels

GE channels are models for time varying binary symmetricabés containing a good

stateG and a bad statB (Fig. 6.3). For a given state, the channel can be modeled as

b

1-b l-¢

Figure 6.3. Structure of the Gilbert Elliott channel

a BSC channel. Leg andPs represent the channel error probabilities in good and bad
states, respectively, we have<OPg < Ps < 1. The transition between the two states form
a binary Markov process. Letandb represent the transition probabilities between state
G and stateB, {s};>, represent the states at tiches € {G,B}. Then the stationary
distribution can be obtained &gy, 1) = [W‘Jg, Fbg} . The good-to-bad ratip is defined as

p =P(s =G)/P(s = B) =g/b. By induction onl, it can be easily verified that [59], for
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§c{G,B},P(s=¢&|sp=&)—P(5 =&|so# &) = (1—g—b)'. Denote parameter
p=1-9g-b (6.4)

as the channel memoryi (€ [0,1]). Whenpu = 0, the channel is memoryless, i.e., the
current state is independent of previous states.

The capacity of GECs depends on the availability of chantaé snformation (CSI)
1 at the receiver [59]. Le€cg represent the channel capacity when CSl is available at
the receiver, i.e., when the receiver knows the currené statCyy andCy, represent the
channel capacity when the channel has no memory, and wheth#mnel memory igt,

respectively. For a fixeBg, Ps andp, it is shown in [59] that

Cwm <Cy <Ccg, (6.5)

whereCcg remains the same for differept

6.3.2 Simulation results and analysis

Fig. 6.4 shows the performance of raptor codes for the speasa of GE channels where
the probability of erasure is 0 in the good state and 1 in tliedbate. These GE channels
correspond to non-cross-layer protocols and can well mibgebursty behavior of packet
losses due to network congestion or packet drops due toptarng. The average erasure
ratePe s, Which is equal to the steady-state probability of the batest,, of the four curves

are chosen to be the sanfé§ = 0.1). It is not surprising that memory generally has a

Throughout this chapter, CSI only refers to the informatbthe current channel state. The values of

Ps andPs are assumed to be known by the receiver in all cases.
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Figure 6.4. Raptor code performance over erasure chanitélgifferent amount of mem-

ory plotted as a function of the number of decoded bits

negative effect on the performance of raptor codes. Thepadnce loss is a result of the
distribution of bad states (erasures) over one code blodthoAgh the average numbers
of bad states are the same for the four different cases, anehaith higher correlation
(memory) has higher variation of the number of bad statelimvitne block length. The
probability density function (PDF) of the number of bad esat, that occur amongn
consecutive bits is provided in [60]. It is interesting tasebve that at the left part of each
curve, i.e., when most of the information bits are not ablbda@ecoded, the channel with
higher memory actually shows better performance than aiamvith no memory. This can
be explained by the fact that raptor codes have a very steé@rp@nce curve in erasure

channels. When not enough coded bits are received, mos offttrmation bits cannot be
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decoded. In this case, the higher variation of the numbeadfdtatesy, is actually helpful.

Fig. 6.5 shows the performance of raptor codes over morerge@& channels. When
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Figure 6.5. Raptor code over GE channels with and withouhwbhlstate information.

HereP; = 0.01,Rs =0.5andp =g/b= 3.

CSl is available, the decoding is performed using iterafedecoding with initial LLR
equal to O for the code bit experiencing a bad state(arid¥ In((1— R,) /R,) for the code
bit experiencing a good state. For GE channels when no CShitahle, the initial LLRs
for all code bits are set according to the average error fuibtyeover all the states. It can
be seen from Fig. 6.5 that there is a significant differenamte performance between the
case when CSl is available and the case when it is not. It @& observed that memory

has a negative effect on performance regardless of theabildy of CSI. The reason is the
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same as that for the case of erasure channels; memory iasrb&svariation of the number
of bad states in a given block length.

The results in Fig. 6.5 seem to be contrary to the capacityyg&0] which shows that
memory increases capacity when CSl is not available. Thygest that decoding perfor-
mance can be improved. To exploit the improved capacitydgmoder needs to utilize
channel correlation for better estimation of CSI [59]. Timgrovement may possibly be
obtained by employing similar estimation and decoding négplnes used for LDPC codes,
though applying such decoding methods to raptor codes israkthe scope of this the-
sis. Since no attempt is made to estimate CSI, the perforenahraptor codes over GE

channels with no CSl is still bounded By .

6.4 System and channel models

6.4.1 System model and cross-layer protocols

Two layers of FEC are used in multimedia broadcast and nagitiservice (MBMS): turbo
codes in the physical layer and raptor codes in the appicéaiyer [20]. Since the protocol
stack in MBMS systems is overly detailed to present here, @ysimpler two layer model
that captures the essential performance is consideredurimodel, the information data
are first segmented into data-bearing packets. Multipla datkets are coded by a raptor
code where each packet is considered as a bit (a vector afylnita) of a raptor code.
Cyclic redundancy checks (CRC) and packet header infoomatie then appended to each

output packet to form the transmitted packets. Each pasketther protected by a physical
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layer turbo code, modulated by BPSK and transmitted ovepltysical channel.

The packets experience a hybrid type of channel where trigtesihpackets can be lost
due to network congestion. Packets that are not lost arsuilected to channel fading and
noise. When the packet is not lost, the receiver first denatesiland decodes data using
the turbo decoder. The correctness of the turbo decodeditoigtghecked by the CRC

embedded in each packet. In the current MBMS standard, tiire gracket is dropped if

s Segmen Application Raptor Aooend turbo
grrren ting into » layer Raptor » encoded " oho [ encoder and
packets encoder packets Modulator 3
S =
3=
F ded t No ('::I; %
orwaraed 10 (7]
L S - w
Hybrid application ey _ Demodul
Decoder | Erasure- layer CRC check: ation and
output +— soft ® Packet contain Turbo
Raptor Forwardedto =~ «—* errors? decoder
decoder application layer corrupted
but inform
decoder packet
is corrupted

Figure 6.6. Cross-layer decoder with side information (&) Bystem diagram.

the CRC fails, which we denote as the conventional (CON)sehd herefore only packets
that do not contain errors are forwarded to the raptor daco@@o general cross-layer
protocols, known as cross-layer design (CLD) and crossrldgsign with side information
(CLDS), are proposed in [58]. For the CLD protocols, CRC infation is simply ignored

and all turbo decoder outputs are forwarded to the raptavabsc For the CLDS protocols,
all outputs of the turbo decoder are forwarded to the rapéaoder along with the side
information provided by the CRC indicating whether the padk corrupted. The system
diagram for the CLDS protocol is illustrated in Fig. 6.6.
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6.4.2 Channel modeling

Packets are lost in bursts when network congestion is sevdrerefore a more accurate
model for packet loss should take channel memory into adcd@ model the behavior of
packet losses as a GE channel, a well known two state Markoehfmr modeling channels
with memory (Fig. 6.3). The transition between the two stdtgem a binary Markov
process. We consider a special case of GE channel where bathstate (erasure state),
the packet loss probability is 1 while in the good state (raasure state), the packet loss
probability is 0, which is equivalent tgs = 0, Ps = 0.5. Letg; andb; represent transition
probabilities from bad state to good state, and from gooi stabad state, respectively.
The average packet loss rate= by /(g1 + b1). The channel memory is defined ps=
1—g1—Dby [59]. The two parameterd and u; determineg; andb; and the packet loss
behavior.

The physical layer wireless channel is assumed to be a ateteRayleigh fading with
Doppler frequencyfy and average received SNR The “water-fall” region of the turbo
code is narrow [20] and has the following property: for a givateR; o, there exists a
SNR thresholdy such that when the channel SNR- y, the turbo decoder almost always
decodes the information correctly; and wher: ¢, the decoder almost always fails due
to errors in the decoder output. The cutoff rate of the turbdet satisfiedR yrpo(%) =

1—log,(1+exp(—u)) [20]. Hence for a given turbo code rafgrpo,
= —In(21 Rumo _ 1), (6.6)
To model the combination of correlated fading channels hedwo cross-layer protocols,
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a good state is used to represent the case when the instansarteannel SNR > ¥, while

a bad state represents the case wheny. In the good state (correct state), the turbo code
always decodes the information correctly and the CRC sulscda the bad state (corrupt
state), there are errors present in the turbo decoder campiihe CRC fails.

To match the two-state GE channel to the correlated Raylaigjing, the steady-state
probability i, = [ fy(y)dy = 1—exp(—w/y) wherefy(y) = -exp(—y/y) is the PDF of
the instantaneous SNR of Rayleigh fading channels. Nexmatching the average fade
duration, e.g., the time the fading amplitude is below threghold to the average time of

the GE channel staying in the bad state, it can be shown ti§f [6

_ VW/YfaTv2m 6.7)
exp(y/y) —1 '
by = /%/yfaTV2m (6.8)

wheregz and by are the transition probabilities of the “fading” GE chammd is the
Doppler frequencyT is the packet duration andT is the normalized Doppler frequency.
The overall channel for the application-layer raptor cod&s be represented as a hi-
erarchical Markov channel model (Fig. 6.7 ). At the higheelethe channel can be in
the erasure state (packet loss) or the non-erasure stéterarisition probabilitieg; and
by, respectively where the erasure probability is 1 in thelwemastate and 0 in non-erasure
state. Conditional on the event that the packet is not eraeedchannel is a GE channel
with transition probabilitieg, andb,, where the error probabilities in the good (correct)
state and bad (corrupt) state are 0 @ndespectively, where is also termed th@acket
corruption level. Note thatg; andb; are independent af, and b, because the packet
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Figure 6.7. The hierarchical markov model for cross-layetgrols

loss in this channel model is caused by network congestiayppesed to packet header

corruption assumed in [58].

6.5 Capacity and system throughput evaluation

The capacity of CON, CLD and CLDS protocols for memorylessttels have been sum-

marized in [58]. Letd and A represent the packet dropping rate in the CON and CLD

schemes, respectively. Lptrepresent the probability that an error occurs in a datanlaini

unerased packet. The packet corruption leviesl equal to the conditional probability that

an error occurs in a random data bit in an unerased packet tiae the CRC fails. The

capacity of the three schemes for memoryless channel caasllg ebtained as [58],
Mo =1-06 (6.9)
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Cab = (1-A) (1—hy(p)) (6.10)

Nbs=(1—8)+(5—A)(1—hy(e)) (6.11)

where the superscrifdM represents no memory ahg(.) is the binary entropy function,

defined as in Eq. 6.1 as my(p) = —plogp— (1— p)log(1— p), and where
p=(0—A)g/(1—-A). (6.12)

In the channel model of Fig. 6.7, CLD and CLDS schemes onfgiddy the availability
of instantaneous channel state at the receiver. In [59, shown that channel memory
does not change the capacity of GE channel with erasure $tative same average erasure

rate. As a consequence, we can conclude
NM
Ccon = Ccon- (6.13)

As CLD scheme using the hierarchical Markov model is esakatCLDS scheme without

CSl, from (6.5), we obtain

CAb < Cewp < Cbs: (6.14)

Finally, receivers using CLDS scheme is fully aware of C%,, ithey know whether the
channel is in erasure, correct or corrupt state. Staegis not affected by channel memory,

we have

Cetos = Cllbs: (6.15)

Nevertheless, as the raptor decoder does not attemptnoegstside information of the
instantaneous channel state, the performance of raptesanger these decoding schemes
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is still bounded by the capacity for the case of no memory. E&9), (6.10) and (6.11) can
be used to evalua@M,, C¥M andCYM,.. By definition, 1 & is steady state probability of
the correct state in the hierarchical Markov model whiteALis the steady state probability

of the non-erased state. Therefober 1—(1—-A) p%-.

The application layer capacity provides a bound to the perémce of raptor codes.
However, the application layer capacity does not take imimant the extra protection
overhead used in the physical layer to protect the inforonabits. To compare the system
performance using different turbo code rates, we use theérmaem system throughput
which is equal taC x Rrne, WhereC is the application layer capacity as a performance
metric. Fig. 6.8 shows a comparison of the maximum achievaptem throughputs of
each of the three schemes as a function of channel SNR foriffeoesht turbo code rates.
It is quite obvious that the proposed hybrid scheme usin@ihieS protocol can achieve
much higher throughput over most of the SNR range. When ai&@MR is very high, the
difference becomes negligible. We also observe that a higineo code rate is preferable
except for the extremely low SNR regime. We remark that [2@thes similar conclusions
about the combinations of the turbo code and raptor cods, atkthe results there are only

limited to simulations in the CON scheme.
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Figure 6.8. Maximum system throughput as a function of cel®NR for the fading

channel in Fig. 6.7 with parameteks= 0.1, u; = 0.9, fdT = 0.01,¢ = 0.05.

6.6 Raptor codes and the hybrid erasure-soft decoder

The first practical realization of fountain codes is knowrtles class of Luby Transform
(LT) codes [9] that encodkinformation bits(xs, Xz, ..., X) into a potentially infinite num-
ber of output bits(z;,2,73,...). The encoding process is performed by first sampling a
probability distributionQ and a degree d distinct information bits are then chosen uni-
formly at random from thek input bits. The value of each output bit is the modulo 2
bit-wise summation of thd chosen input bits. The output bit stream is generated indepe

dently until the transmitter receives an acknowledgemA@() of successful decoding
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from the receiver of successful decoding or until a predesigcode rate is achieved. The
degree distributio® is described by its generating polynomf(x) = =X ,Q;x, where

Q; represents the probability that values chosen. Shokrollahi [11] extended the idea of
LT codes to raptor codes to reduce the decoding complexibe tinear for binary erasure
channels (BEC). A raptor code with paramet&sC, Q) is constructed by concatenating
a block codeC with a LT code with degree distributioR. To encode a raptor code, the
precodecC first encodes information bits intok intermediate bits. The output bit streams
are then generated by applying the inner LT code orktinéeermediate bits.

Decoding of the raptor codes for a binary symmetric char38l3) can be performed
iteratively using belief propagation (BP) algorithms otlee Tanner graph of the raptor
code [23]. For the BEC, the BP algorithm can be significanihypdified, which allows
for linear decoding complexity of raptor codes [11]. In theper, we term the decoding
method for BEC as erasure decoding, and iterative decotliaguses soft information
as soft decoding. Note that the complexity of erasure degpii much lower than soft
decoding.

To implement a cross-layer protocol for raptor coding inM#&MS system, we propose
a hybrid erasure-soft decoder. The hybrid decoder workslkmss:

Step 1) The Tanner graph of the raptor code is constructedagnsin Fig. 6.9. For
each LT encoded bit, a corresponding check node is addedrtoddoranner graph of the
LT code. In the final Tanner graph, there are two types of égiaodes (input variable
nodes and output variable nodes) and two types of check na@#3C check nodes and

LT check nodes).
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Figure 6.9. Tanner graph of raptor code

Step 2) The LLRs of the variable nodes are initialized. ThgalnLLRs for input
variable nodes are all set to 0 because they have not beesmiitéed. For all output variable
nodes connected to a packet that is lost or discarded, the iniRs should also be set to
0.

In the CLD scheme, since the CRC is turned off, the raptor decdoes not know
whether the channel is in the correct state or the corrupg,sta, the decoder does not know
the instantaneous channel state. Therefore, the dec@d¢s the channel as a BSC with
crossover probability at non-erasure states, wheres given by (6.12). Hence the decoder
will set the initial LLRs of output bits to 0 for the erasuratgt and —1)YIn((1—p)/p) [30]

for the non-erased state, where {0, 1} is the physical layer decoder output.
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In the CLDS scheme, the receiver knows which state the cucteamnel is in. There-
fore, the decoder sets the initial LLR to O for the erasuréesta-1)Y - « for the correct
state, and—1)YIn((1— €)/¢) for the corrupt state.

Step 3) The decoder eliminates all the nodes and edges éhasswciated with encoded
bits that are in the erasure state since they provide zdsabildly.

Step 4) Based on the value of all the encoded bits in the dostate, the decoder
performs erasure decoding on the decoding Tanner graphindaynation bit that can be
decoded and any edges associated with these decoded nedemared from the graph.
In CLD scheme, this step is not performed because the reaes not identify the correct
states using CRC.

Step 5) Iterative BP decoding based on LLRs from the corrtgiedgs performed on
the remaining graph. Because the number of remaining edgasaller than that of the
original decoding graph, the decoding complexity of theritybcheme is simpler than the
traditional iterative decoding scheme. The updating eqador the BP algorithm is the

same as that used for LDPC codes [30].

6.7 Simulation results

To simulate the actual performance of raptor codes, therautde described in [23] is
used. The pre-code of this raptor code is a left regular agid Roisson LDPC code with

rate 095, and the variable nodes of this LDPC code have constam¢eled 4. The code
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dimensiork = 9500 and the inner LT codes use the degree distribution,

Q(x) = 0.00796% + 0.493570¢ + 0.16662%°
+0.072646* + 0.08255& + 0.0560588 + 0.03722%°

+0.055596° + 0.025023°° + 0.003135°°. (6.16)

Fig. 6.10 depicts the performance of raptor codes of theetboenmunication schemes
with channel memory for different raptor code rates. It caiséen that the CLDS and CLD
schemes perform significantly better than the CON schemachieve an average BER of
102, the difference between the number of raptor coded bitstixads to be generated in
the CON and CLDS schemes is approximately 21% when the dowrievele = 0.02 and
18% whens = 0.05. The CLDS scheme performs slightly better than the CL2s&hand
the difference between their performance increases a®thgption level increases. It can
be seen that the gap between the CLD and CLDS scheme&%sfOr e = 0.02 and 15%
for € = 0.05 to achieve a BER of 1&. The raptor codes require less than 12% overhead for
CLD and CLDS schemes to achieve a BER of46ompared to their own capacity bounds
obtained by evaluating (6.10) and (6.11), respectivelghtiuld be noted that among the
three schemes, CLD has the highest decoding complexity.p@oed to CLD, CLDS not
only provides additional performance gain, but also redwsroding complexity. It can
also be observed that the performance curve of the rapta isodery steep. Therefore,
the rateless property of raptor codes is very importantowige the flexibility of different
code rates to accommodate different channel conditions.

Fig. 6.11 shows the effect of channel memory on the threerdifft schemes caused by
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Figure 6.10. Raptor code over hybrid error-erasure fadivanoels with parametevs =

0.1, ti1 = 0.9, Ruyrbo = 0.93, y = 10dB, fqT = 0.01.

fading correlation. It can be observed that memory decsgthgeperformance of the cross-
layer schemes. However, the cross-layer protocols are cpliust to fading correlation as
the effect of memory is only significant for CLD and CLDS sclesmvhen the normalized
Doppler frequency is below.01. This can be explained by the fact that packet corruption
only results in a small probability of error for a particuldt inside a packet.

Figs. 6.12 and 6.13 show the influences of channel SNR andptarn levele. An in-
crease of average SNR decreases the average number oft cbatep, and hence improves

the performances of all three schemes. It can be observeththaerformances of CLD
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and CLDS are less sensitive to SNR than CON. The differenetgden the SNR require-
ment to achieve BERs of 1® and 102 is approximately 7dB for CLD and CLDS, and
5dB for CON. This also shows that the combination of an apgibo layer raptor code and
a physical layer code is very robust to variations in chaquelity, as a significant drop in
channel SNR can be compensated by a slightly lowered raptie rate. The corruption
level also has a significant impact on the performance of Ch® GLDS schemes. As
shown in Fig. 6.13, for the same raptor code rate and withhallother parameters equal,

the performances of CLD and CLDS are reasonable at a casrufgvel of 0.005 (BER
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below 10°2) but very poor at a corruption level above 0.5. The changepiiption level
does not affect the performance of CON since it does not e¢hémg average number of

corrupt states.

10 T T
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—e—CLD
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Figure 6.12. Performance of raptor codes in correlatechéadhannels as a function of
different SNR with parameterd = 0.1, 3 = 0.9, Rypo = 0.93£ = 0.02, R"1 = 1.25,

fdT =0.01.)

6.8 Conclusion

This chapter proposes a hybrid erasure-soft decoding sefi@napplication-layer raptor

codes used in broadcasting services with cross-layer g@tstoBy taking channel memory
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Figure 6.13. Bit error rate performance of raptor codesqu€hD, CLDS and CON

schemes as a function of corruption level with paramete£s0.1, (3 = 0.9, Ryrpo = 0.93,

y=10dB, R"1 = 1.25, fdT = 0.01.

into account, the composite channel is modeled by a hie@icMarkov model which
includes erasure, correct and corrupt states. For thisnghamodel, the CLD and CLDS
schemes differ only by the availability of side informatiabout instantaneous channel
state. The proposed cross-layer decoding schemes outparémventional (CON) scheme
using erasure decoding significantly. The difference inrtbmber of raptor coded bits
required to achieve the same BER of £Gor the CLDS and CON schemes can be 20%

as shown in Fig. 6.10. Channel correlation decreases tlierpemce of raptor codes for
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all three schemes and the impact is significant when the raedaDoppler frequency
is small. The effect of the choice of turbo code rate on theesyshroughput is also

discussed.
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Chapter 7

Conclusions and Future Work

In this chapter, we summarize the major contributions is thesis and suggest several

topics for future research.

7.1 Conclusions

In this thesis, we address two major challenges of the agipdic of rateless codes over
wireless multimedia multicast. To address the challengestd user heterogeneity, we
propose UEP rateless code designs and present an optonizamework and different
solutions depending on the constraints of the multimedilicast system.

In Chapter 3, two general problems are formulated for ogiimgi unequal error protec-
tion (UEP) rateless codes for scalable multimedia multicgsystems with heterogeneous
users. The design objective is to either minimize transimiseverhead for guaranteed
guality of service (QoS) or provide best-effort QoS for aggitransmission overhead. A

random interleaved UEP raptor code design is proposeddhab&e advantage of the high
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performance of existing standardized raptor codes. Thaudtated problem is converted
into a convex optimization problem which can be solved amaily. Numerical results
demonstrate that the optimized proposed UEP raptor codésripebetter than existing
UEP raptor code designs when the same degree distributobitemative decoding is ap-
plied. Large additional gains for the proposed UEP schemeébeaobtained by using the
superior existing standardized raptor codes which alsestaklvantage of a corresponding
efficient maximum likelihood (ML) decoder.

In Chapter 4, we show that the problem of optimal allocatibpririty encoding trans-
mission (PET) based rateless codes for asynchronous nedlignmulticast [25] [26] can
be transformed into a convex optimization problem whengeteconstraints are relaxed.
Because the problem is convex and the total number of paeasntetr the optimization
is equal to the number of user classes, the solution singlifie addition, an analytical
solution is found for the case when there are no outage @nt(25]. For the more gen-
eral formulation with outage constraints [26], an anaBftgolution is found for the special
case of two user classes. Numerical methods of convex gqattian software [27] [28] are
required to solve the more general cases.

To address the second challenge due to the time varyingesg@&hannel, we first find
the optimal combination of physical layer code rate andiappbn layer code rate that
maximize overall throughput. We then propose a hybrid esasaft decoder of rateless
codes for wireless channels with memory to improve perforceaand reduce complexity.

In Chapter 5, the balance between physical layer rate antappn-layer raptor code

rate for rateless coded communication systems is investig&oth slow and fast Rayleigh
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fading have been considered. Unlike traditional approsetigich choose physical layer
modulation and coding pairs to meet a target outage prabalpilodulation and coding is

optimally chosen in our proposed cross-layer scheme irr éodeaximize system through-
put. In addition, a cross-layer adaptive modulation andrgpdesign is proposed for the
slow fading scenario. The proposed cross-layer designskmmificantly higher through-

put compared to traditional non cross-layer design. It dam lae seen from this study that
allowances for high packet error rates to be corrected blicgton-layer erasure codes
can be efficient in many situations.

In Chapter 6, performance of raptor codes over BSCE and Gianettsare evaluated,
where it is first shown that the average overhead of raptoesaver BSCE and BSC
channels with the same cross-over probabilities are the sArhierarchical Markov model
is proposed which includes erasure, correct and corrupgssta model hybrid erasure-
error channels with memory. A cross-layer hybrid eraswoife-decoder for raptor code is
proposed. It has been shown that the cross-layer hybriddéeautperforms the erasure
decoder, which also takes advantage of the build-in CRC aresi that exists in current

protocols.

7.2 Future Work

There are several areas that are suggested for futurecbsear

e In Chapter 3, the best-effort QoS formulation is only solwednerically. It is thus

of interest for future studies to find a systematic and lowenglexity method to
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solve the best-effort QoS problem, which is to find the optisgection probabil-
ities of proposed UEP rateless code that maximize the agdrdglity measure of

multimedia content for multimedia multicasting over hetggneous users.

In Chapter 4, for the general asynchronous multicast opétian problem with out-
age constraints, an analytical solution is not found degpiat it is a convex opti-
mization problem. It would be of interest if a similar anatyl solution can be found

as in the case without outage constraints.

In Chapter 5, the results are primarily presented for singkr cases. It is thus of
interest to investigate the optimal combination of phyldimger code rate and appli-
cation layer code rate in multicast, multiple access anératulti-user scenarios.
In addition, the results are presented for slow and fashtadhannels. It would be
of interest to provide analytical result for correlatedifegdchannels with a given

normalized Doppler frequency.

In Chapter 6, although the relationships among the capaafithree cross-layer and
conventional schemes are expressed in relative termsyitvbe of interest to derive

the exact capacity values as a function of channel parameter

Rateless codes also have potential applications in relagradis. It would be inter-
esting to investigate the optimal degree distribution oteless code design when

utilized in relay channels.
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Appendix A

Decoding failure probability evaluation of
rateless codes when the number of received

symbols is random

In Chapter 3, a simplified channel model is considered whgdumes that the number
of received symbols of classusers does not change and equglsimes the number of

transmitted symbols. In this appendix, we show numeridhify the difference created by
using this model and a model which takes into account theormnéss of the number of

received symbols is insignificant.
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A.1 Decoding failure probability evaluation

As described in Chapter 3, when standardized raptor codassad, fok > 200, the prob-
ability that the receiver fails to fully recovérsource symbols aften symbols are success-

fully received can be well modeled by the empirically deteread equation [20],

1 if m<k
PL(m, k) = (A.1)

ab™ K if m>k
wherea andb are constants given k&= 0.85,b = 0.567.

To calculate the decoding failure probability in the QoSstaaints of Eqg. (3.3) when
the channel experiences independent packet losses, hetk, 1 — p represent the total
number of transmitted symbols, received symbols, infoionatymbols and the erasure rate
for each code block, respectively. Theris a Binomial random variable with probability

density function (PDFProb(m= x) = —%_-pX(1— p)"*. Therefore, the probability of

(n—x)!x!

successfully decoding the whole code frame is equal to

n

1—-Pl(nk p) = Zk(l— ab* *)P(m=x) (A.2)

X=

_ xk n! _ p\N—X
Zk —ab = X)'le(l p)" (A.3)

Sincen is large, the above equation can be computationally complestting h =
min(k+ 8,n), we approximate the above equation while significantly oty computa-

tional complexity via

h

1-Rlinkep) > 3 (L-ab ) -

n!

+(1-ab®) ;(1— abx_k>mpx(l— P
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g ek 1 —(x—np)?

Nx;((l 2™ Zmp(l—p)expznp(l—p)

1-ab®)(Q(— =Py =P A4
- ahQ ) Q) A

whereQ(x) = ﬁf;’ exp(—x?/2)dx is the Q-function. The difference between the two
sides of the inequality in the first step is minimal becausemh> k + 8, the outage
probabilityab® < 0.01 is very small and can be ignored. The approximations matteei
second step use the normal approximation (known also as edMbaplace Theorem)
[55], which are also very accurate for large The probability that the decoder of a class
j user fails to fully decode layér P(1, j) in (3.3), can be evaluated %(n, k, p) of (A.4)
with the number of transmitted symbais=t; = (1+ €)Kpj, the code dimensiok = §

andp = 9;.

A.2 Numerical results

In Fig. 3.4, the minimum overhead required to achieve us&S @equirements when
different value ofp; is used. The results in Fig. 3.4 are shown using the simplifnechnel
model. In Fig. A.1, the same results are shown using the &tanadel described in this
appendix. The proposed random interleaved UEP design gmplstandardized raptor
codes is used. The dashed line represents the results ofigfireabmemoryless erasure
channel model based on the decoding failure probabilitjueded in Section A.1, while
the solid line represents the results of simplified chanrad@hthat is analyzed in Section
3.4.2. The operating point @ /p, = S;/S on each curve is marked with a star, which
indicates the performance of the equal error protectiorPlE,€heme. It can be seen that
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the minimum required transmission overhead is very semsit the choice op;: the
minimum transmission overhead with the optimal choicpigberforms significantly better
than that of the EEP scheme and other arbitrary non-optaralecation schemes. Also,
the performance difference between the two curves is veslisrAs shown in Fig. 3.2
and Fig. 3.3, the use of an inferior raptor encoder/decodsrahmuch larger impact on
performance. This validates the use of the simplified chiamuelel which allows for a

much simpler solution based on convex analysis.

3 \ T T T T T T T T

\ —— Proposed UEP, simplified channel model
- = =Proposed UEP, memoryless erasure channel model

min
=
a1

T

O | | | |
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Figure A.1. Minimum transmission overhead required to nusetrs’ QoS constraints for
different layer allocation probabilities;. Two different channel models with proposed
UEP rateless codes employing standardized raptor codesade where parametdrs=

2;K = 9000;S= [10008000; 5 = [0.4,0.8];P = [0.95,0.8].
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Appendix B

Proof of the last part of Lemma 3.1

In this appendix, we prove the last part of Lemma 3.1, i.¢éergferforming Algorithm 3.1,
the transmission overhead cannot be further reduced withialal layer partitioning and
selection probability re-assignment. Let Scheme A der@sdurce-to-channel layer map-
ping produced by Algorithm 3.1 and denote Scheme B as ondwiither partitions Layer

| into Layersmandn with dimensionss,, andS,, respectively. Denote the resulting optimal
selection probabilities for Scheme B which minimize thexsrmaission overhead @, and
pn for Layersmandn, respectively. We now show that the minimum required traasion
overhead is no larger by using Scheme A with selection priéibaly, = pm+ pn assigned
to Layerl. For the same number of total transmitted symlibd)she effective average rap-
tor code rates for Laydrin SchemeA, Layermin SchemeB and Layem in SchemeB are

_ S — Sn _ 5 i ; ;
R = Mg Rm= Mo andR, = Mpr respectively. Without loss of generality, we assume

S, o S
- — _SntS o mPraP s

Pm/Snm > Pn/Sh- Thenit can be shown thBt = Mo o) < pM(pmfpn) = Mo = R,. As the

decoding failure probability of the raptor codes is mondatalty increasing with code rate

for the same user class, we hgte-Pq(l, j)) > (1—PRe(n, j)) > (1 —Pe(m, j))(1—Pe(n, j))
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for any class indey, wherePy(.) is the same decoding failure probability function as de-
fined in (3.3). This means that for the same number of tratsdhgymbols, the original
mapping scheme (Scheme A) has higher probability of suftdgsdecoding all the sym-
bols in Layer than Scheme B for all user classes. Therefore, for the sarBecQustraints
described by (3.3), Scheme A requires less minimum trarssomsverhead compared to
Scheme B. Finally, raptor codes with larger dimension hastéeb performance for the

same code rate, which also favors no further layer partitgpn
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Appendix C

General asynchronous multicast system setup

In Chapter 4, the rateless coded asynchronous multicagnsyis described where fixed
channel erasure rates are used and all the users are assuaneelds the multicast system at
the same time. In this appendix, a more general and dynarsiersymodel is investigated
where both the channel erasure rate and user access timendnr. The cost functions
and outage probabilities are first derived using the moregisystem model. Then the
transformation of Problem 4.10 to 4.11 under the new modefrésented. It is shown
that the methods and results presented in Chapter 4 fongpallve asynchronous multicast
optimization problems can still be applied to the more gehgystem model used in this
Appendix.

In the dynamic system model, it is assumed that the packetieraates; for a classj
user at any given time is a random variable with probabilégsity function (PDF) denoted
by fg;(.), however, the packet erasure rate for each user is fixed fr edeless code
frame. This usually corresponds to a block fading channalleghased in the physical

layer.
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In order to reach the target QoS of a Clgasser, the user is required to decode Layer
hj. The number of packets need to decode ldyes given by[Kp, (14 w)]. To compute
the average number of transmitted packets required, a galee ofg; is first considered.

If an un-erased packet is considered as a successful tdaraarased packet is considered
as a failed trial with failure probability equal twj, then given the number of successful
trials [Kp, (1+ w)], the number of transmitted packets requirtdj, follows a negative
binomial distribution with probability oM; = x equal to the probability ofKkp, (1+w)| -1
successes andailures in[Kp, (1+w) | +x—1 trials, and success on thigy, (1+ w)] +x-

th trial, i.e.,
X+ (Khj 1+ w)] -1

Pr(M; =x) = (1— o)/l gx, (C.1)
K, (1+ )] — 1

It can be shown that the average valueMyf of the above negative binomial distribution

conditional on a givew; is [55]
EMj)|g, = —+——. (C.2)
Whenagj is a random variable with a PDfg; (),

E(Mj) =Eq; (E(M))]s;)

:(Khj(1+wﬂE (1_101)

' —faj ) dx

i (C.3)

= Kn(1+w)] |

Finally, the cost function for all the user classes is givgn b

J
May = 3 WiE(M;)
=1
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Lo (X)
1-x

J
=1+ w) ) WKy, A dx. (C.4)
=1

To compute the outage probabilities, we first introduce tloess time random variable
T; for Classj users, which is defined by the number of packets that havetbaesmitted
before the user accesses the multicast session. Usersithatiulticast session too late
may not be able to achieve their QoS requirements beforedhdlide. Users that join
a session within a certain time interval, or access winddter aransmission starts are
allowed to access the multicast content. Therefore, theevaliT; for active users in Class
j are truncated with a maximum valdg ;. The probability mass function (PMF) of the
access timdj of Classj users is denoted byr (T; = x) = pr;(X),0 <X < To ;.

For a given erasure ratg and access tim@j, the outage probability is equal to the
probability that the receiver collects fewer thai,, (1+ w)| encoded packets aftéfo

packets have been transmitted, which can be expressed as

[Kny (1)1 =1 [ v,
] i Mo—Tj—i
Ojlo;.7, = Zy (1-0j) o 7" (C.5)
i= i

Thus the outage probability can be expressed as

[Khj(ler)"*lTo_’j 1 MO _y ) )
0 = pr; () / (1—x)" xMo=Y=T £ (x)dx. (C.6)
J i;) y;) : 0 %

[
Comparing the cost functions given by Egs. (C.4) and (4t&gn be seen that the cost
function of this dynamic model is equivalent to the cost timcof the model described in

Chapter 4 with fixed erasure rates for Classsers,og j, if

1 1 fg;(X)
= [ ———dx
1-— 0 0o 1-X

(C.7)
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In addition, observe that the outage probabily given by Eq. (C.6), despite being
more complex than the outage expression, Eq. (4.5), in @hdpis also a monotonically
increasing function oKp,. Hence the outage constraidt < 1j can also be simplified as
lj being greater than a constant fpe= 1,2,...,J. Therefore, all the results provided by
Chapter 4 for solving the asynchronous multicast optinorgbroblem can also be applied

to the more general and dynamic model described in this abpen
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