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Abstract

Rateless codes, also known as fountain codes, are a class of erasure error-control codes that

are particularly well suited for broadcast/ multicast systems. Raptor codes, as a particularly

successful implementation of digital fountain codes, havebeen used as the application-

layer forward error correction (FEC) codes in the third generation partnership program

(3GPP) Multimedia Broadcast and Multicast Services (MBMS)standard. However, the

application of rateless codes to wireless multimedia broadcast/multicast communications

has yet to overcome two major challenges: first, wireless multimedia communications usu-

ally has stringent delay requirements. In addition, multimedia multicast has to overcome

heterogeneity. To meet these challenges, we propose a rateless code design that takes the

layered nature of source traffic as well as the varying quality of transmission channels into

account. A convex optimization framework for the application of unequal error protection

(UEP) rateless codes to synchronous and asynchronous multimedia multicast to heteroge-

neous users is proposed.

A second thread of the thesis addresses the noisy, bursty andtime- varying nature of

wireless communication channels that challenge the assumption of erasure channels often

used for the wired internet. In order to meet this challenge,the optimal combination of
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application-layer rateless code and physical layer FEC code rates in time-varying fading

channels is investigated. The performance of rateless codes in hybrid error-erasure channels

with memory is then studied, and a cross-layer decoding method is proposed to improve

decoding performance and complexity.
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Chapter 1

Introduction

Multimedia multicast over wireless channels has gained enormous attention due to the in-

creasing demand for multimedia content on mobile devices. However, delivering rich mul-

timedia content to heterogeneous users is still a challenging task. A fundamental question

for reliable multimedia multicast is how to efficiently correct erased packets for multiple

heterogeneous users with varying loss rates. The recently proposed fountain codes [3]

provide an efficient solution to this problem.

Fountain codes are a class of rateless codes that are originally designed for binary

erasure channels (BEC). Erasure channels are channels where data are either transmitted

completely reliably or else erased. Besides theoretical importance, erasure channels have

gained significant attention in modeling practical communication scenarios. For example,

on the internet, data is transmitted in small packets. For most packets, reliability is guaran-

teed by appropriate protocols. The correctness of the data in a received packet is verified

by a built-in check mechanism within each packet, such as checksums and cyclic redun-

dancy checks (CRCs) [4]. Packets that are lost, corrupted, delayed or do not satisfy certain

1



quality of service (QoS) requirements can be discarded (erased). In wireless communica-

tions, transmitted data are subject to noise and fading. Error correcting codes are typically

selected in the physical layer to correct most errors withineach packet. At the packet level,

the channels can also be similarly modeled as (packet) erasure channels when packets with

uncorrected errors are declared as erased.

The simplest way to deal with erased packets is to retransmitthem. In this method,

the receiver needs to feedback the indices identifying the missing packets to the transmit-

ter. Automatic repeat request (ARQ) is one of these protocols [4]. However, there are

some drawbacks in using re-transmission schemes. First, the channel capacity of an era-

sure channel has been shown to be the same with and without feedback [5]. This suggests

that the added complexity introduced by a feedback channel may not be necessary. Sec-

ond, while re-transmission schemes may work well for unicast protocols, they are very

difficult to implement in broadcast/multicast scenarios. Consider the case where a server

is distributing the same information to multiple users. Since each user has different chan-

nel conditions resulting in different missing packets, re-transmission according to requests

from each individual user can quickly overwhelm the server.

Another way to deal with erased packets is to deploy traditional block codes on the

source packets before transmission to efficiently correct missing packets at the receiver.

By efficiently, we mean codes that perform at near Shannon limits while maintaining low

complexity as is suitable for practical deployment. The most widely used classical era-

sure codes are Reed-Solomon (RS) codes [4] [6]. RS codes havethe desirable property

that they are maximum distance separable (MDS) [4]. A MDS code is a code whereby

2



the originalK source symbols can be recovered by anyK successfully received symbols.

However, the encoding and decoding complexities limit practical RS codes to small code

lengths. In addition, as with other traditional block codes, the rate of RS codes has to be

predetermined based on the erasure probability. In heterogeneous multicast scenarios, dif-

ferent receivers may have different erasure probabilities. In such scenarios, the transmitter

would be forced to select the rate according to the worst user, which is very inefficient.

One way to overcome the inefficiency is to regenerate and transmit a new block of RS

codes when some receiver fails to decode the source block. Due to the lack of an “on-the-

fly” generation feature of RS codes, the receiver may receiveplenty of duplicate packets

before receiving useful information to finish decoding. Other researchers propose to use

hybrid approaches which combine traditional erasure codeswith ARQ schemes [7]. Al-

though these approaches reduce re-transmission rate they still do not perform well enough

for multicast scenarios.

A class of recently developed forward error corrections codes, named fountain codes

[3], are ideal solutions to the above problems. A well implemented fountain code has the

following properties: (i) fountain codes have near optimalperformance for erasure chan-

nels, i.e., from only slightly more thanK successfully received encoding symbols, the

receiver is able to recover the originalK information symbols with high probability; (ii)

fountain codes can be universal, meaning that the same fountain code can achieve near

optimal performance regardless of the erasure probability; and (iii) fountain codes are ef-

fectively rateless. The source can generate a potentially infinite number of symbols and
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only stops transmission when it receives an acknowledgement (ACK) from the receiver in-

dicating successful decoding. Therefore, the rate of a fountain code is determined at the

receiver on-the-fly rather than predetermined during encoding.

The above properties make fountain codes self-adaptive to channel conditions without

requiring feedback. The concept of fountain codes is first proposed in [8], where the ap-

proach is named a Digital Fountain (DF). The name comes from the following analogy.

The encoder is the “fountain”, encoded symbols/packets arewater drops; the “fountain”

creates potentially an infinite number of water drops duringencoding. The decoder is the

“bucket”, which has capacity equal to the number of information symbols. The “bucket”

collects water drops sprayed from the fountain. When the “bucket” is full, it is able to

recover the original information independently of which water drops have been collected.

The first practical implementation of fountain codes is the Luby Transform (LT) code [9],

which has a very simple linear structure. In LT codes, a degreed is first chosen according to

some degree distribution, thend binary bits are randomly chosen amongK source bits and

are linearly combined in the binary field to produce an outputsymbol. The decoding of LT

codes is similar to belief propagation (BP) decoding of low density parity check (LDPC)

codes over erasure channels. With carefully designed degree distributions, LT codes are

able to perform nearly as well as an ideal fountain code with adecoding complexity pro-

portional toK lnK. Later on, Shokrollahi [10] [11] extended the idea of LT codes to raptor

codes, which have even lower decoding complexity. The basicidea of raptor codes is to

pre-code the source bits with a block code before the inner LTcode.
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LT and raptor codes have been found to have many applicationsin internet and wire-

less communications, such as peer-to-peer communications, parallel downloading [12]

and multicasting [13]. For example, in 3GPP Multimedia Broadcast/Mutlicast Services

(MBMS), raptor codes have been chosen as the forward error correction (FEC) code in the

application layer for file downloading services [14]. This is due to the great attributes of

raptor codes: linear encoding complexity, linear decodingcomplexity and nearly optimal

performance independent of channel conditions.

1.1 Motivation and Thesis Overview

There are generally two types of wireless multicast services: file downloading and multi-

media streaming. File download delivery services are usually associated with transmitting

a chunk of data to a variable number of users. File download services require high accu-

racy but can tolerate long delays. On the other hand, multimedia streaming services are

real time applications. For users with a limited amount of buffering, the service is usually

delay sensitive but can tolerate a small amount of errors.

While rateless codes have been shown to be very promising fortransmitting large

chunks of data, the application of rateless codes to wireless multimedia multicast applica-

tions is still a challenging task. The two major challenges for wireless multimedia multicast

are user heterogeneities and time varying wireless channels. In this thesis, we mainly focus

on addressing these two major challenges in the applicationof rateless codes to wireless

multimedia multicast.
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The first challenge in the application of rateless codes for wireless multimedia multicast

is user heterogeneity. Although rateless codes can provideextra flexibility in code design

as well as better efficiency compared to fixed-rate codes for multimedia multicast appli-

cations, the original design of raptor codes, despite beinghighly efficient for broadcasting

bulk data, has very poor progressive decoding performance.On the other hand, multimedia

content often has a scalable structure in which certain source bits have higher priorities

than others. Therefore, an efficient fountain code designedfor multimedia streaming appli-

cations should provide unequal error protection (UEP) of different source symbols. Code

optimization for UEP has been proposed for fixed-rate FEC codes in [15] [16] [17]. How-

ever, these approaches do not consider guaranteed QoS for heterogeneous users and do not

take rateless code performance into account. Recently, UEPrateless code designs have

been proposed in [18] [19]. However, these involve complex encoding and decoding and

use computationally complex exhaustive search to optimizeconfiguration parameters.

The second challenge of the application of raptor codes in multimedia multicast is the

time-varying wireless channels. They are generally not efficiently modeled as erasure chan-

nels. On the other hand, most applications of rateless codesto date assume a perfect erasure

channel [11] [20], where received fountain encoded packetsare either received error free

or completely lost. It has been shown in [11] that raptor codes are “universally” optimal

for erasure channels, meaning that the same code parameterscan achieve optimal perfor-

mance regardless of the channel erasure probability. Despite all the advantages of fountain

codes, there are some difficulties involved in applying fountain codes to wireless broad-

cast/multicast channels. In wireless communications, transmission data is subject to noise
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and fading, and errors can also be bursty. Powerful channel codes, such as turbo codes

[20], are adopted in the physical layer to correct most errors within each packet. In this

case, the channel at the packet level can be modelled as a (packet) erasure channel when

packets with uncorrected errors are declared as erased.

As system simulation results of a raptor-coded cellular broadcast system in [20] and

[21] suggest, an optimal balance between physical and application-layer code rates exists.

In many cases, a higher packet error rate (PER) that is corrected by the application-layer

raptor code can be more efficient than traditional designs. However, the conclusions pro-

vided in [20] are from system simulations, and do not providesufficient insight and quan-

tification of the optimal rate combination.

There are also approaches that study the performance of raptor codes over additive

white Gaussian noise (AWGN) or fading channels using soft decoding [22] [23]. It has

also been shown in [22] that raptor codes no longer posses theproperty of universal opti-

mality over those noisy channels. In addition, performing soft decision decoding increases

the decoding complexity significantly compared to that of erasure decoding.

In this thesis, we address the above two major challenges from a few different aspects

that have not been investigated in the literature. To address the first challenge, we propose

a convex optimization framework for UEP raptor code design for synchronous and asyn-

chronous multimedia multicasting to heterogeneous users.As existing simulation results

suggest (e.g. [20] [24]), a non cross-layer approach to the design of rateless codes can

result in low system efficiency in noisy channels with low SNReven though raptor codes

have high efficiency at the application layer. Therefore, toaddress the second challenge,
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we propose two cross-layer approaches for rateless coded wireless communication systems

with memory to improve the overall system efficiency. In the first cross-layer approach,

we propose to use traditional erasure decoding of an application-layer raptor code to main-

tain low decoding complexity. However, we jointly optimizethe physical-layer code rate

and application-layer raptor code rate to maximize system throughput in both slow and

fast fading channels. In the second cross-layer approach, across-layer hybrid erasure-error

decoding scheme is proposed, which utilizes soft information from physical-layer decoder

as well as side information from the build-in CRCs. The receivers are flexible in adopting

the proposed hybrid erasure-soft decoding scheme to achieve desirable performance and

complexity. The rest of the thesis is organized as follows:

In Chapter 2, background on rateless codes and their performances are first reviewed.

The fundamentals behind the encoder and decoder design of LTcodes and raptor codes are

described. The performance of LT codes and raptor codes in both erasure channels and

noisy channels are also simulated. The systematic version of raptor codes, that has been

standardized is also introduced.

In Chapter 3, an optimization framework for UEP rateless code design for multimedia

multicast to heterogeneous users with different QoS requirements is presented. Optimiza-

tion problems with objectives that either provide guaranteed QoS or provide best-effort

QoS for heterogeneous users are formulated. A random interleaved rateless encoder design

is proposed. Unlike previous designs, existing standardized raptor codes can be directly ap-

plied to this design without requiring re-optimization. Insolving the optimization problem

for guaranteed QoS, the original problem is transformed to aconvex optimization problem,
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and then optimal configuration parameters of the proposed UEP rateless code are obtained.

In Chapter 4, a different UEP rateless code optimization problem that focuses on asyn-

chronous multimedia multicast is addressed. A similar optimization problem with a differ-

ent UEP rateless code design was first formulated in [25] and [26]. The problem is solved

using an iterative search method in [25] and [26] which has high complexity. In Chapter

4, we show that under certain assumptions and under the relaxation of integer constraints,

this problem can be formulated in terms of convex optimization. An analytical solution

is then found for the asynchronous multicast optimization problem without outage con-

straints [25]. For the more general formulation with outageconstraints [26], an analytical

solution is found for the special case where there are two user classes. Numerical solutions

using convex optimization software [27] [28] are required to solve the more general cases.

In Chapter 5, the optimal rate combination of the application-layer rateless codes and

physical-layer codes in wireless fading channels is investigated. Both slow and fast fading

channel conditions are considered. The optimal physical-layer modulation and code rate

pair is analyzed in order to maximize overall system throughput. For slow fading systems,

cross-layer adaptive modulation and coding design is also proposed to maximize system

throughput. The performance of the proposed cross-layer design is then compared to tradi-

tional designs via numerical examples.

In Chapter 6, a hybrid erasure-error decoder is proposed to obtain desirable decoder

complexity and performance. The performance of raptor codes in hybrid error-erasure

channels and Gilbert-Elliott channels are first presented,which does not appear in the ex-

isting literature. A hybrid erasure-error decoder is then proposed as a cross-layer approach
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for the decoding of raptor codes. A hierarchical Markov model is proposed for model-

ing the cross-layer hybrid error-erasure channels with memory. The performance of raptor

codes under both cross-layer and non cross-layer decoding schemes are compared using

the proposed channel model.

Chapter 7 concludes this thesis and suggests future work.

1.2 Thesis Contributions

The primary contributions of this thesis are briefly summarized as follows.

• A random interleaved raptor code with unequal error protection (UEP) properties for

multimedia multicast is proposed and an optimization framework of UEP rateless

code design for multimedia multicasting to heterogeneous users is presented. The

problem of minimizing the transmission overhead while providing heterogeneous

users different levels of QoS guarantees is solved. Numerical results using and-or tree

analysis are presented that demonstrate that the proposed random interleaved UEP

rateless code outperforms non-optimized rateless codes aswell as recently proposed

UEP rateless codes that use the same LT degree distributions. The guaranteed-QoS

problem using standardized raptor codes is transformed to aconvex optimization

problem. The convexity of the problem is proven and a simplified method to solve

the convex optimization problem analytically is proposed.The optimization problem

of providing best-effort QoS under a fixed transmission rateemploying the proposed

UEP rateless code is also formulated. Numerical results show that with the ability to
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adopt superior standardized raptor codes, the proposed UEPrateless code can provide

a significant additional gain compared to existing ratelesscode designs for both the

guaranteed QoS and best-effort QoS problems.

• In optimizing unequal error protection (UEP) rateless codes for asynchronous mul-

timedia multicast to heterogeneous users, we prove that under certain nonrestrictive

assumptions and with the relaxation of integer constraints, this problem can be trans-

formed into a convex optimization problem. An analytical solution for the asyn-

chronous multicast optimization problem without outage constraints is then found.

An analytical solution for the more general formulation with outage constraints is

found for the case of two user classes. For the general problem with outage con-

straints and more than two user classes, standard convex optimization software is

used to solve the problem. Numerical examples for the cases of two-user classes and

four-user classes are presented, which illustrate the new techniques.

• The system throughput of a two-layer rateless coded system applied to Rayleigh fad-

ing channels is determined as a function of channel SNR and the choice of physical-

layer modulation scheme and code rate. The optimal choices of physical-layer mod-

ulation and code rate that maximize overall system throughput in both slow and

fast fading channels are computed. A cross-layer adaptive modulation and coding

(AMC) scheme that maximizes overall system throughput for slow fading channels

is proposed. Numerical results show that the proposed cross-layer adaptive and non-

adaptive schemes outperform traditional non cross-layer adaptive and non-adaptive
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schemes. Insight is also provided on the balance between packet error correction and

error correction via application-layer erasure codes.

• The performance of raptor codes over binary symmetric channels with erasures (BSCE)

is analyzed and simulated. The property that the average overhead of raptor codes

over BSCE is the same as that of corresponding binary symmetric channels (BSC) is

proven. The performance of fixed rate raptor codes over Gilbert-Elliott (GE) chan-

nels with and without channel state information (CSI) at thereceiver is simulated.

Sensitivity to different channel parameters is also investigated.

• A hybrid erasure-soft decoding algorithm as a cross-layer protocol for decoding

application-layer raptor codes is proposed. A hierarchical Markov model is applied

to model the correlated fading channel that the raptor codesexperience. The per-

formance and throughput of different protocols using the hierarchical Markov model

are compared, and the advantage of the cross-layer protocolemploying the proposed

hybrid erasure-soft decoder is quantified.
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Chapter 2

Background

In this chapter, rateless codes and their performance in erasure channels are first reviewed.

The performances of Luby Transform (LT) and raptor codes in noisy channels are then

described. After that, application of rateless codes to wireless broadcast/multicast channels

are highlighted. Finally, standardized raptor codes are introduced.

2.1 LT and raptor codes in erasure channels

LT codes, proposed by Luby [9], are the first practical realization of fountain codes. LT

codes encodeK information symbols(x1,x2, ...,xK) into a potentially infinite number of

output symbols(z1,z2,z3, ...). The input information symbol can be a one-bit binary sym-

bol, a generall-bit symbol, or a data packet. The encoding process is done asfollows:

1. A degreed is chosen by sampling from a given distributionD, which is called

the “degree distribution”. Let(Ω1,Ω2, ...,ΩK) be a distribution on{1,2, ...,K} such

thatΩi represents the probability that valuei is chosen. The degree distributionD is
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denoted by the polynomialΩ(x) = ΣK
i=1Ω(i)xi.

2. d input symbols are chosen uniformly at random from theK input symbols. The

value of the output symbol is the exclusive-or (XOR) of thed chosen input symbols,

i.e., z = ΣK
i=1vixi, where the coefficientsvi ∈ {0,1} for i = 1,2, ...,K, ΣK

i=1vi = d and

modulo 2 bit-wise sum is used.

The assumption is made that the receiver knows the coefficients vi. In practice, this can be

achieved in many ways. For example, the degree and the list ofneighbors can be included

in a packet header, or a key may be associated with each encoded symbol and both encoder

and decoder use the same function of the key to compute the degree and set of neighbors.

The encoding process of LT codes can be represented by the Tanner graph shown in Fig.

2.1. In the graph, input variable nodes and output variable nodes represent information

symbols and encoded output symbols, respectively. The check nodes represent the XOR

calculation. A direct way to decode a LT code in erasure channels is to use Gaussian

.  .  .  .

.  .  .

Information symbols (input variable nodes)

+ + + +

Encoded symbols (output variable nodes)

Check

nodes

Figure 2.1. Shown is the Tanner graph of a LT code.
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elimination to solve the set of linear equations. However, Gaussian elimination generally

has computational complexity ofO(K3) [29], which is very high. A practical decoding

scheme is to use the iterative belief propagation (BP) algorithm, in a very similar manner

to the BP decoding of low density parity check (LDPC) codes. The BP decoding is much

simpler in erasure channels than in noisy channels since allthe symbols received are either

completely correct or completely uncertain. The decoding is summarized briefly as follows:

1. Find an encoded symbolzn that is only connected to one information symbolxi.

Then decode the information symbol, i.e., determinexi from zn. If no such encoded

symbol exists, the decoding process stops.

2. Add the value of the decoded information symbolxi to all the other encoded

symbols that are connected toxi. Then remove all edges that are connected toxi.

3. Repeat Steps 1 and 2 until all information symbols have been decoded success-

fully.

The design of the degree distribution plays a central role inthe performance and complexity

of LT codes. The most crucial value is the average degree, because both encoding and

decoding complexity scale linearly with the total number ofdegrees. However, to ensure

that every information symbol is covered with high probability, the total degree of the

output symbols must be at least of orderK lnK. Therefore, lnK serves as a lower bound for

the average degree of an ideal LT code. In addition, there should be at least one encoded

symbols with degree 1 to initiate the decoding process. Based on these requirements, a
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robust soliton distribution (RSD) has been proposed by Luby[9]. The RSDµ is given by

µ(d) =
ρ(d)+ τ(d)

β
, d = 1,2, ...,K, (2.1)

whereβ = ΣK
d=1(ρ(d)+ τ(d)), ρ(d) is the ideal soliton distribution,
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ρ(1) = 1/K

ρ(d) = 1/d(d−1), d = 2,3, ...,K

(2.2)

andτ(d) is defined as

τ(d) =


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R/(dK) for d = 1,2, ...,⌈K/R⌉−1

R ln(R/δ )/K for d = ⌈K/R⌉

0 for d > ⌈K/R⌉,

(2.3)

whereR = c ln(K/δ )
√

K is the average number of degree one encoded symbols, andc and

δ are parameters. The RSD in fact achieves the average degree lower bound of an ideal

LT code, with an average degree that scales linearly with lnK, and ensures that the receiver

can recover the originalK information symbols with probability 1− δ whenβK output

symbols are successfully received [9].

In practice, a constant average degree which results in linear decoding complexity is

desirable. Shokrollahi [10] fulfilled this requirement by extending the idea of LT codes

to raptor codes. Raptor codes are simply constructed by concatenating a block code with

a weakened LT code. The weakened LT codes have a constant average degreēd. Using

a weakened LT code, the fraction of information symbols thatare not covered by anyK

output symbols are approximatelye−d̄. Hence, if the pre-code is able to correct this fraction
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of erasures, all theK information symbols will be recovered. The drawback of raptor codes

is that they are bounded away from the capacity when the innerLT codes and the precode

are decoded separately, with a gap equal to the rate of the pre-code. The design of the

pre-code and the parameters of raptor codes are presented indetail in [11]. One of the

preferred pre-codes are high rate LDPC codes, due to their sparse Tanner graphs, resulting

in low decoding complexity using the BP algorithm. We next illustrate the raptor code

from [11] for simulation and analysis. The pre-code of this raptor code is a left regular

and right Poisson LDPC code with rate 0.95. The variable nodes of this LDPC code have

constant degree 4 and check nodes that are connected to each variable node are chosen

uniformly at random. The Tanner graph of the LDPC pre-code isshown in Fig. 2.2. The

inner LT codes use the degree distribution,

Ωr(x) = 0.007969x+0.493570x2+0.1666220x3+0.072646x4+0.082558x5

+0.056058x8+0.037229x9+0.055590x19+0.025023x65+0.003135x66. (2.4)

.  .  .  .

.  .  .

LDPC coded symbols 

Check nodes

+ + + +

Figure 2.2. Tanner graph of the LDPC code.
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The average number of output degrees per information node ofthe above weakened

LT codes is independent of code dimensionK, and therefore has the advantage of low

decoding complexity compared to RSD-based LT codes. The performance of the inner

weakened LT codes with a degree distribution given by (2.4) and the performance of raptor

codes with the same inner LT codes for a BEC with zero erasure rate are simulated in

Figs. 2.3 and 2.4. Once a new symbol is received, we attempt todecode both the inner LT

codes and the LDPC codes using iterative BP algorithms untilthe decoding is completely

successful or stuck. The transmitter continues to send moreencoded symbols until all the

information symbols are successfully decoded. Figs. 2.3 and 2.4 show histograms of the

numbers of received symbols required to successfully decode the weakened LT codes and

the raptor codes. The raptor codes require very little overhead while the LT codes require

a large overhead to successfully decode the message. When the weakened LT codes are

used, the number of decoded information symbols versus the number of received encoded

symbols for three different randomly chosen realizations are shown in Fig. 2.5. From the

intermediate performance of the inner LT codes shown in Fig.2.5, it can be seen that after

collecting slightly more than 10000 encoded symbols, only avery small portion of source

symbols are not covered, which can be easily decoded by the pre-code.
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Figure 2.3. Histogram of the number of received symbols for successfully decoding the

inner LT codes with code dimensionK = 10000.
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Figure 2.4. Histogram of the number of received symbols for successfully decoding the

raptor codes with code dimensionK = 9500 and a rate-0.95 LDPC code as the precode.
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Figure 2.5. Intermediate performance of the weakened LT codes with code dimension

K = 10000 and degree distributionΩ(x) = Ωr(x).

2.2 Raptor codes in noisy channels

The success of raptor codes in binary erasure channels (BEC)suggests that the fountain

concept may be extendable to more general types of channels,such as additive white Gaus-

sian noise (AWGN) channels. The use of fountain codes in noisy channels can be described

in the following way: the receiver collects output symbols and calculates the channel ca-

pacity. Once channel capacity exceeds the realized code rate, the receiver starts to attempt

to decode. The performances of raptor codes over binary symmetric channels (BSC) and

Binary input AWGN (BIAWGN) channels are simulated in [23] [22]. Decoding of raptor

codes is normally performed iteratively using BP algorithms, which have been widely used

in decoding linear codes such as LDPC codes [30] and turbo codes [31] [32]. By merg-

ing the Tanner graph of LT codes (Fig. 2.1) and the Tanner graph of the LDPC pre-codes
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(Fig. 2.2) into one Tanner graph, the message passing rule ofthe BP decoding over the

Tanner graph of raptor codes is very similar to that of LDPC codes. For a LT output bit

zi, the initial log-likelihood ratio (LLR), defined asLLR(zi) = ln(P(zi = 0|yi)/P(zi = 1|yi))

whereyi is the corresponding received symbol, can be calculated based on the channel

information [30]. For BEC,

LLR(zi) =


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
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+∞, yi = 0

−∞, yi = 1

0, yi = erasure.

(2.5)

For BSC with symbol-error probabilityε,

LLR(zi) = (−1)yi ln((1− ε)/ε). (2.6)

For BIAWGN channels with noise varianceσ2,

LLR(zi) = 2yi/σ2. (2.7)

The initial LLRs of the LT input bits can be set to zero. The LLRs are iteratively updated

by passing messages between the variable nodes and check nodes of the Tanner graph.

After a pre-determined number of iterations, a hard decision is made based on the final

LLRs. In practice, the receiver has to attempt to decode at some point and relies on a cyclic

redundancy check (CRC) to determine whether the decoding results are correct. A good

starting point is when the realized code rate is below the channel capacity. When decoding

fails, the receiver waits for a certain number of symbols andattempts to decode again [33].

The waiting time has to be carefully chosen as too little waiting time will result in high

complexity and too much waiting time will result in lower performance [34] [35].
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In [23] and [22], the performances of LT and raptor codes are simulated based on bit

error rate (BER) for a given code rate. We simulate the performances of LT and raptor

codes in Fig. 2.6, where the LT codes have a code dimensionK = 10000 and the raptor
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Figure 2.6. LT codes and Raptor codes over BSC channels withε = 0.11

codes have a code dimensionK = 9500 with a rate-0.95 LDPC code as the precode and

both use the degree distributionΩr(x) given by Eq. (2.4). It can be seen that raptor codes

easily outperform LT codes of the same rate. Also, LT codes have error floors even at a low

rate. This is not only because there are some information symbols not connected to output

symbols, but also because some symbols are not protected enough. The LT codes using

RSD have similar error floors. In addition, the performance of raptor codes in BIAWGN

channels has been simulated in [23]. The performance is veryclose to the Shannon limit,

with an overhead of less than 10 percent. The above simulation results indicate that a raptor
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code designed for a BEC channel can perform quite well for other types of channels. Sim-

ilar simulation studies on raptor codes over fading channels have been carried out in [33].

Some further detailed analysis of raptor codes over BSC and BIAWGN channels appears

in [22]. Besides simulation results, the authors in [22] usea Gaussian approximation (GA)

method to derive criteria for the output degree distribution to produce good raptor codes.

A lower bound of the fraction of output symbols of degree 2 is derived, which depends

on the noise level in the BIAWGN and BSC channels. This observation suggests that a

universal raptor code which can perform arbitrarily close to Shannon limits for any noise

level of AWGN channel may not exist. However, [22] also proves that asymptotically, a

universal raptor code designed for BECs needs at most log2e overhead when applied over

BSCs using the BP decoding algorithm.

Despite the relatively good performance of raptor codes over noisy channels, the com-

plexity of the BP decoding of raptor codes in AWGN and fading channels is much larger

than in erasure channels. Reducing decoding complexity is therefore a useful area of re-

search. The results in [35] and [34] show that it is possible to utilize the output of the

previous decoding attempt to initialize the current decoding attempt. Such an approach

would reduce the total number of iterations required for a successful decoding when more

than one decoding attempt is used.

LT and raptor codes are not the only implementable codes thatare used to approximate a

digital fountain (DF) over wireless communications channels. In [36], the author proposes

to use turbo codes to approximate a DF over AWGN and fading channels. Turbo codes

are among the most powerful codes that perform very close to Shannon capacity in AWGN
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and fading channels. In [36], the information symbols are first passed to a rate 1/3 turbo

encoder. The output bits of the turbo encoder are then applied to a potentially limitless

number of random interleavers to produce a rateless code. This turbo-fountain technique

performs quite well as indicated by simulations. The simulation results show that the turbo-

fountain code closely approximates a DF code in noisy and fading channels. However, there

is still a gap between the performance of turbo-fountain codes and the theoretical capacity

limits throughout the SNR range, suggesting that future improvements in the codes are

possible. The turbo fountain codes are, in fact, a special type of raptor code, known as

pre-code only (PCO) raptor codes [11]. The turbo code used inthe turbo-fountain code

forms the pre-code. The turbo-fountain code does not include an inner LT code, but uses a

potentially endless set of random interleavers instead. The efficiency of such PCO raptor

codes over erasure channels is analyzed in [37].

2.3 Application of fountain codes to wireless multicast

As described in the introduction, fountain codes are particularly useful in wireless multicast

scenarios because of their superior performance and channel adaptivity without feedback.

The advantage of using fountain codes for asynchronous multicast has long been justified

since the invention of LT codes [13]. Later on, fountain codes have also been proposed for

use over wireless channels. Raptor codes have been standardized in the 3GPP Multimedia

Broadcast/Multicast Services (MBMS) system [14]. The MBMSare mobile multimedia

services over GSM-based 3rd generation (3G) cellular networks. In MBMS, the raptor
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codes are used at the application layer to provide packet-level protection as a complement

to the FEC codes at the physical layer. The receiver drops thepackets where uncorrected

errors occur within the packet and uses raptor codes to recover the source packets at the

packet-level. Since at the packet level, the channel is wellapproximated by a virtual erasure

channel, all the advantages of raptor codes over erasure channels can be exploited.

In [24], the concatenation of LT codes and bit-interleaved coded modulation (BICM)

is used in a wireless internet application, modeled as an erasure channel contaminated by

AWGN. The performance of this scheme is very good when the channel SNR exceeds a

threshold, but rather poor in low SNR. This is because in low SNR, the inner BICM fails

to correct some errors in most packets and results in very lowpacket throughput. In [38],

this problem is resolved by utilizing the soft information to perform iterative decoding of

LT codes. This requires the use of CRC to verify whether decoding is successful. The

decoding algorithms are the same as discussed in Section 2.2. This decoding process is

considered as an information collection process. Universal optimal fountain codes over

AWGN and fading channels are defined here as rateless codes such that as long as the

mutual information the receiver collects exceeds the entropy of the source information,

the receiver is able to recover the information. Assuming that universal optimal fountain

code is used, the probability that the receiver cannot successfully decode theK information

symbols at timeN is given by

po(K,N) = Pr{B
N

∑
i=1

RI(hi)≤ K} (2.8)

whereB is the bandwidth,hi is the particular channel realization at time sloti andRI(h)

is the mutual information supported by the channel. Similardefinitions of ideal fountain
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codes can also be found elsewhere such as in [33]. Simulationresults show that the perfor-

mance gain by utilizing soft information is very large in lowSNR. Also, it is shown that

when soft decoding of fountain codes is utilized, there is noneed to use another channel

code to protect the packets. This is because a single fountain code with soft decoding can

provide better performance than that using both physical layer FEC and erasure fountain

codes.

There are generally two types of wireless multicast services: download services and

media streaming services. Download services require very high accuracy but can toler-

ate long delays. On the other hand, media streaming servicesare delay sensitive but can

usually tolerate some small amounts of errors. Streaming isusually accomplished in such

a way that the receiver can begin play-out by using the early received data while receiv-

ing new data. The design of delay sensitive asynchronous media delivery using fountain

codes has been discussed in [39]. The original media data aredivided intoM segments,

{S1,S2, ...,SM}, and transmitted in parallel using fountain codes.S1 is chosen to have the

highest rate to minimize initial play out delay. Segmentation is a useful technique to bal-

ance the initial play out delay and bandwidth expansion. IftDTS(Si) represents the latest

time the receiver has to reconstruct segmentSi after play-out begins, for a given initial

play-out delayδ , the outage probability can be expressed as

pout(δ ) = 1−
M

∏
i=1

(1− po(|Si|, tDTS(Si)+δ )) (2.9)

where po() is given by (2.8). Simulation results using universal optimal fountain codes

defined in [38] show that the required initial play-out delaydecreases when the average

SNR increases. The results also show that such fountain codes outperform erasure fountain
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codes by a large margin.

2.4 Systematic standardized raptor codes

Since the introduction of raptor codes [10], a fully specified version of raptor codes has

been approved [40]. The raptor codes that have been specifiedin the 3GPP MBMS stan-

dard [14], known as standardized raptor codes, is a systematic version of raptor codes. The

standardized raptor codes have refined the original raptor code design to ensure low en-

coding and decoding complexity as well as low overhead. The standardized raptor codes

use a very efficient implementation of a maximum likelihood (ML) decoder as opposed

to iterative decoder and therefore allow very fast encodingand decoding. Compared to

Reed-Solomon codes, the computational complexity of standardized raptor codes is orders

of magnitude less [21]. For details about the pre-code, the degree distribution and the

parameters used for standardized raptor codes, readers canrefer to [14] (Annex B).

The reception overhead performance of standardized raptorcodes can be expressed by

the decoding failure probabilityPr
e (M,K), which is the probability that the receiver fails

to fully recoverK source symbols afterM symbols are successfully received. Extensive

simulations have been conducted to evaluate the performance of standardized raptor codes.

It has been shown in [20] [21] that forK > 200, the decoding failure probability of stan-

dardized raptor codes can be well modeled by the empiricallydetermined equation,

Pr
e (M,K) =



















1 if M ≤ K

abM−K if M > K

(2.10)
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wherea andb are constants given bya = 0.85,b = 0.567. The above results indicate that

the decoding failure probability decreases exponentiallyonceM ≥ K. For a typical size of

code dimensionK, the overhead of standardized raptor codes is very small.
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Chapter 3

Optimization of unequal error protection

rateless codes for multimedia multicast

3.1 Introduction

Multimedia communications has gained an increasing amountof attention due to high de-

mand for high-definition video content. In multimedia communications, while multicast

solutions usually provide better bandwidth efficiency thanmultiple uni-cast solutions, mul-

ticast over lossy packet networks is still a challenging task due to heterogeneous user net-

works as well as stringent delay requirements. On the sourcecoding side, scalable video

coding (SVC) has been developed to allow for progressive reconstruction of multimedia

content at the receiver. However, on the channel coding side, the design of forward er-

ror correction (FEC) codes for multimedia multicast faces the problem of heterogeneity.

For example, Reed-Solomon (RS) codes are usually customized for specific loss rates.

For heterogenous users with differing loss rates, traditional FEC design accommodates the
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worst-case scenario, which is very inefficient.

Recently proposed rateless codes, also known as fountain codes [41], provide efficient

and flexible FECs for broadcasting or multicasting over erasure channels. Fountain codes

are rateless in the sense that the transmitter may generate,as needed, a potentially infi-

nite number of encoded symbols. The receiver may successfully recover all information

symbols by collecting any subset of the encoded symbols as long as the number of received

symbols is slightly greater than the number of information symbols. Raptor codes [11], rep-

resenting the most successful implementation of digital fountain codes, have been used as

application layer FEC codes in the third generation partnership program (3GPP) Multime-

dia Broadcast/Multicast Services (MBMS) standard [14]. Fountain codes, highly efficient

for broadcasting bulk data, can potentially improve flexibility and efficiency for multicast

applications. However, the original raptor-code design [11] has very poor progressive de-

coding performance. On the other hand, multimedia content may have a scalable structure

in which certain source symbols have higher priorities thanothers. Therefore, an efficient

fountain code is sought for multimedia streaming applications that also provides unequal

error protection (UEP) of source symbols.

The idea of priority encoding transmission (PET) was pioneered in [42] over a decade

ago. Since then, many approaches to provide UEP for multimedia have emerged. For

example, in [15], Mohr et al. propose a PET-based packetization scheme for transmitting

compressed images over noisy channels. In [16] and references therein, Mohr’s scheme

is optimized to minimize end-to-end distortion. Similar optimizations of receiver-driven
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networks have been investigated in [43]. A summary of these and other approaches to rate-

distortion-based optimization can be found in [17]. Most prior work employs fixed-rate

codes, such as RS codes. Because RS codes are maximum distance separable (MDS), code

performance is usually not factored into the optimization.Rateless codes, on the other

hand, are based on random linear codes, with overhead that varies for different designs and

implementations. In this thesis, code performance is takeninto account in the UEP rateless

code optimization.

Recently, techniques have been proposed for UEP design of rateless codes. In [1], mes-

sage symbols are encoded by non-uniform selection of sourcesymbols, where the perfor-

mance of more important symbols is improved at the expense ofslightly decreased overall

performance. The design in [1] has been applied to MPEG-II video transmission in [18].

In [2], expanding window fountain (EWF) codes are proposed,where source symbols are

arranged to lie inside a sequence of windows that are nested and expanding in size such that

the larger windows contain all the symbols of the smaller windows. In [19], the design of

EWF codes in [2] is applied to scalable video multicasting. However, the UEP raptor code

schemes in [18] [19] do not provide user QoS guarantees. In addition, the designs in [1]

and [2] have inherent disadvantages: since both alter the overall Luby Transform (LT)

code [9] degree distribution, they significantly change code behavior. As it is well known

that both performance and complexity are sensitive to degree distribution, the above de-

signs may worsen code behavior unless the degree distribution is jointly-optimized, which

would be very complex.

Previous approaches to UEP optimization for both fixed-rateFEC codes [15] [16] [17]
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and rateless codes [18] [19] focus almost exclusively on providing best-effort QoS, i.e.,

maximization of an average fidelity measure of video/image quality of end users for a

given transmission rate. However, because rateless codes have no pre-determined rate at

the transmitter, guaranteed QoS may be achieved by simply transmitting enough coded

symbols to meet users’ QoS demands. Therefore, It is important to minimize the number

of transmitted coded symbols to meet user QoS demands.

In this chapter, we address the open problem of guaranteed QoS optimization, as well

as address best-effort QoS optimization of UEP rateless code design for multimedia mul-

ticasting to heterogeneous users, i.e., users with differing reception capabilities and QoS

requirements. We propose a simpler and more modular UEP rateless code design which

encodes different layers separately and retains desirableproperties of rateless codes. An

important advantage over [19] and others is that the proposed UEP design allow for direct

application of existing high-performance raptor codes, such as those used in the 3GPP stan-

dard [14], known as standardized raptor codes. In addition,the receiver is able to decode

each layer separately to significantly reduce decoding complexity. Section 3.2 describes

the system setup and proposed UEP rateless code design; Section 3.3 presents problem

formulations for different scenarios; Section 3.4 provides the solution for guaranteed QoS.

In Section 3.4, for the proposed UEP raptor codes, the original problem formulation for

guaranteed QoS is transformed into a convex optimization problem where optimal selec-

tion probabilities are obtained analytically. In contrast, the algorithm in [19] requires a

numerical search to find the optimum, which is a complex task when the number of user

classes is large. Comparisons with the UEP rateless coding schemes in [1] and [19] for
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both guaranteed and best-effort QoS problems are provided in Section 3.5.

Related work is presented in [25] and [26], which investigates optimal UEP rateless

code design using a packetization structure similar to thatin [15] in a different asyn-

chronous multimedia multicast system setup and uses computationally expensive iterative

search to find the optimal allocation parameters. Unlike theproposed approach, the rate-

less code used in both [25] and [26] is assumed to have fixed overhead and hence code

performance is not factored in.

3.2 System setup and proposed design

3.2.1 System setup

A multimedia server transmits multimedia content simultaneously to multiple users, which

may include streaming with strict delay requirements. Therefore, it is not feasible to use

a large-dimension fountain code to protect the entire multimedia source. Instead, the mul-

timedia content is divided into multiple coded blocks. The server first compresses each

source block using a pre-defined source coder and then encodes the source information us-

ing a UEP rateless code. The encoded symbols are multicast over a wireless lossy packet

network.

User subscribers are categorized into different classes due to different reception capabil-

ities. Assume that there areJ classes of users. For Classj users, the reception capabilityδ j

is defined as the proportion of symbols that the receiver can successfully receive compared

to the number of transmitted symbols, where 1≤ j ≤ J. Therefore, in each transmission
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session, the number of successfully received encoded symbols for each user in Classj is

δ jM, whereM is the number of symbols transmitted1. Without loss of generality, we as-

sume 0< δ1 ≤ δ2...≤ δJ ≤ 1. The reception capabilities are determined by channel quality

and bandwidth between server and receiver. For example, a Class 1 user may represent a

mobile cell phone with limited reception quality due to sizeand power restrictions, while

a Class 2 user may represent an automobile equipped with a larger antenna and better re-

ception quality. Users in different classes also have different QoS requirements. Anoutage

QoS guarantee refers to the ability of users to recover a given portion of source data with an

achieved target probability. Without loss of generality, peak signal-to-noise ratio (PSNR), a

common measure of visual quality, is used in the proposed QoSformulation. The proposed

formulation is also applicable to QoS requirements defined using other measures of media

quality.

Let K represent the number of information symbols in a raptor-coded source block.

Assume the server is transmittingM = (1+ ε)K encoded symbols in order to meet all the

subscribed users’ QoS demands, whereε is the transmission overhead. The rateless coded

source block is divided intoL layers in order of importance, where Layer 1 contains the

most important source symbols and LayerL contains the least important source symbols.

For example, for a compressed video or image file, Layer 1 typically represents the base

layer (BL), and Layer 2 represents the first enhancement layer (EL) etc. The number of

1For analytical simplicity, the number of received symbols for each user class is modeled as being equal to

δ j multiplied by the transmission volume, which is the same as in [19]. In Appendix A or [44], an alternative

model that takes into account the randomness of the number ofreceived symbols is evaluated, and found to

produce similar transmission overheads.
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source symbols in Layerl is given bySl. Therefore,K = ∑L
l=1Sl.

3.2.2 Proposed UEP rateless code

We propose a random interleaved UEP rateless encoder to serve as FEC for multimedia

multicast, whose structure is illustrated in Fig. 3.1. The encoder assumes that source
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Figure 3.1. The proposed random interleaved UEP raptor coding method.

symbols have been allocated to theL layers prior to the encoding process. Encoding is

performed in the following way: a layer is randomly selectedwhere the probability of

selecting layerl is ρl for l = 1,2, ...,L and∑L
l=1ρl = 1. Then, the encoded output symbol

is generated by the raptor encoder for Layerl with code dimensionSl, degree distribution

Ωl(x) and precodeCl. Therefore, the overall encoded data stream is an interleaved stream

of raptor encoded symbols from theL encoders. The proposed UEP rateless coded scheme

extends the fountain code principle to random interleaving, which has origins in the design

of turbo fountain codes [45] and EWF codes [19]. This approach is able to control the rate
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of different layers using selection probabilities while maintaining the rateless property. In

[45], the output turbo-coded symbols are randomly selectedto create a potentially infinite

number of rateless coded symbols. However, in [45], there isno probability distribution

associated with the selection to create the UEP property. The probabilistic based encoding

structure of the proposed UEP rateless codes is more similarto that of [19], except that

independent coding layers are used rather than an over-lapping window approach. As a

result, the raptor encoder and selection probabilities of the interleaver can be optimized

separately. On the other hand, in [19], the degree distributions and selection probabilities

need to be optimized jointly for best performance, a complextask that is not carried out. In

practice, one can alter the ordering of the output symbols from the random interleaved UEP

raptor coder by using scheduling algorithms to meet desirable goals while maintaining the

priority of each layer. Some investigations on re-orderingrateless code output symbols

have been recently proposed in [46] and [47]. However, theseapproaches only apply to

limited situations where the ordering of the encoded symbols matters.

Note that unlike [25] [26], the proposed design does not specify a packetization struc-

ture and thus retains generality. Without loss of generality, the result in this thesis may be

applied to data packets rather than symbols, creating packet erasure channels.
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3.3 Problem formulations with QoS constraints

3.3.1 Guaranteed QoS formulation

In the system under consideration, we consider establishedusers that require play-back

media at a quality no lower than their own QoS requirement. Inthis scenario, since the

transmitter has to provide guaranteed QoS for all user classes before the start of trans-

mission of the next source block, the throughput of the system for each source block is

determined by the maximum number of transmitted symbols required to satisfy the QoS of

each individual user class. Therefore, the objective of theUEP raptor code design prob-

lem is to provide different levels of QoS guarantees according to users’ requirements while

minimizing the maximum transmission overheadε:

Problem 3.10(Guaranteed QoS):

min
ρ1,...,ρL

ε (3.1)

s.t. Prob(PSNR j ≥ γ j)≥ Pj, j = 1,2, ...,J, (3.2)

wherePSNR j represents the PSNR of the successfully recovered source data of the classj

user givenM = (1+ ε)K transmitted symbols, andγ j and 1−Pj denote the target PSNR

threshold and target outage probability for the Classj user, respectively. The aim is to

allocate coding rates across layers through optimization of the probabilitiesρl, 1≤ l ≤ L.

We require the source (e.g., video, image) coder to be progressive, so that the recon-

struction media quality is determined mainly by the symbol errors in the lowest layer en-

countered in the recovery process. Letql, l = 1,2, ...,L, represent the PSNR that is achieved
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when Layers 1 tol are successfully recovered in the raptor decoding process.For a given

source coder, if the source PSNR is represented as a non-decreasing function of the to-

tal number of source symbols decoded by the receiver, denoted by f (.), then we have

ql = f (∑l
1Sl) andq1 ≤ q2...≤ qL. For each classj, 1≤ j ≤ J, let g j ∈ {1,2, ...,L} be the

minimum index that satisfiesqg j ≥ γ j. In order to satisfyPSNR j ≥ γ j, users in Classj

require the raptor decoder to successfully decode at least Layers 1 tog j. For a given UEP

raptor code design, letPe(l, j) represent the probability that the Classj decoder fails to

fully decode Layerl given transmission overheadε and reception qualityδ j. In the most

stringent case when decoding errors across layers are independent, the QoS requirements

of end users can be simplified to

g j

∏
l=1

(1−Pe(l, j))≥ Pj j = 1,2, ...,J. (3.3)

3.3.2 Best-effort QoS formulations

While above formulation focuses on minimizing transmission overhead subject to satis-

fying users’ guaranteed QoS, this section considers transmission overhead that is upper

bounded due to delay constraints or cost. For this scenario,given a maximum transmission

overhead,ε0, the service provider attempts to provide users of different classes with the

best possible QoS. While this scenario is similar to that considered in [19], the following

best-effort QoS problem extends that in [19] by 1) considering both constrained and un-

constrained cases, 2) allowing for allocating different weighting factors to different user

classes as well as 3) possessing the advantages of the proposed random interleaved UEP

raptor codes.
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The average PSNR of users in Classj, which serves as a measure of the best-effort QoS,

can be evaluated as E(PSNR j) =∑L
l=1 pl, jql, whereql is the PSNR achieved when Layers 1

up tol are successfully recovered. The quantitypl, j represents the probability that a Classj

user successfully recovers Layers 1 tol but fails to recover Layerl+1. The optimization of

UEP rateless codes has to balance users of different classeswith different channel qualities.

If we assign a weighting coefficientw j for Classj where 0≤ w j ≤ 1, ∑J
j=1 w j = 1 and the

choice ofw j depends on both the importance of the user class as well as thenumber of

users in each user class, then it is reasonable to consider the weighted average PSNR over

all user classes as the objective function. The problem can be formulated as:

Problem 3.20: (Best-effort QoS)

max
ρ1,ρ2,...,ρL

J

∑
j=1

w j · (
L

∑
l=1

pl, j ·ql) (3.4)

subject to ε ≤ ε0 (3.5)

where

pl, j =



















∏l
i=1(1−Pe(i, j))×Pe(l+1, j) l = 1,2, ...,L−1

∏L
i=1(1−Pe(i, j)) l = L,

(3.6)

andPe(i, j) is probability that Classj users fail to decode Layeri.

In Problem 3.20, no guaranteed minimum QoS is provided. To address this concern, for

a given maximum transmission overhead, the service provider may instead aim to provide

best-effort QoS to multiple user classes, but under the additional constraint that a minimum

QoS guarantee for each user class is met. This problem can be formulated as:

Problem 3.30: (Best-effort QoS with constraints on individual classes)
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max
ρ1,ρ2,...,ρL

J

∑
j=1

w j · (
L

∑
l=1

pl, j ·ql) (3.7)

subject to ε ≤ ε0 (3.8)

and
g j

∏
l=1

(1−Pe(l, j))≥ Pj j = 1,2, ...,J (3.9)

where pl, j is given by (3.6) andg j ∈ {1,2, ...,L} ( j = 1,2, ...J) is the minimum layer

index that satisfiesqg j ≥ γ j. Problem 3.20 can be viewed as a special case of Problem 3.30

without the service-fulfillment probability constraints.

In the next section, we show that Problem 3.10 can be transformed to an equivalent

convex optimization problem when standardized raptor codes are employed. Unfortunately,

Problems 3.20 and 3.30 cannot be transformed to a convex optimization problem in the

same way as Problem 3.10 due to the form of thepl, j expressions. However, Problems 3.20

and 3.30 can still be solved numerically by searching the(L−1)-dimensional parameter

space of{ρ1,ρ2, ...,ρL−1}, checking the constraints (3.9) and the resulting average PSNR

(3.7). WhenL = 2, the numerical method is significantly simplified as it onlyneeds to find

the optimalρ1∈ [0,1] that gives the maximum average PSNR. Numerical results comparing

the proposed scheme with EWF codes [19] for Problems 3.20 and3.30 are shown later in

Fig. 3.8.
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3.4 Solving the guaranteed QoS problem

3.4.1 Evaluation of decoding failure probability

An advantage of the proposed design is that existing high-performance standardized raptor

codes can be directly applied. Standardized raptor codes are refined systematic raptor codes

designed to ensure low encoding/decoding complexity and overhead. Details about the

pre-code, degree distribution and construction of standardized raptor codes can be found in

[14], (Annex B). When standardized raptor codes with maximum likelihood (ML) decoding

are used, for code dimension greater than 200, the decoding failure probability, i.e., failure

to decodek source symbols afterm symbols are successfully received, can be accurately

modeled by the empirically determined equation [20],

Pr
e (m,k) =



















1 if m ≤ k

abm−k if m > k

(3.10)

wherea = 0.85,b = 0.567 are constants. Note that fork < 200, Eq. (3.10) underestimates

the error probability due to short block length. One way to improve code performance

for layers with fewer symbols is to merge source layers with similar optimized selection

probabilitiesρ j into larger layers. We note that, for high-rate media such asvideo, the

conditionk < 200 is unlikely to occur.

When more general LT or raptor codes using iterative decoding are employed, the de-

coding failure probabilityPe(l, j) can be approximated by

Pe(l, j) = 1− (1− el, j)
Sl , (3.11)
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whereel, j is the symbol error probability of a Classj user decoding Layerl. This approx-

imation is based on the assumption that symbol errors in iterative decoding are mutually

independent. The symbol error probabilityel, j of an iterative decoder can be analytically

determined by “and-or” tree analysis [48] [1]. Applying theand-or tree technique, Eq.

(3.11) can be evaluated using

en
l, j =



















1 n = 0

exp(−(1+ ε)Kρlδ jΩ′(1− en−1
l, j )/Sl) n ≥ 1

(3.12)

whereΩ(.) is the LT code degree distribution,Ω′(x) denotes derivative with respect tox,

andn is the number of decoding iterations. The asymptotic symbolerror probability of

iterative decodingel, j = limn→∞ en
l, j can be estimated by choosing a large valuen in Eq.

(3.12) [48].

3.4.2 Convexity analysis

For a given transmission overheadε, the total average number of encoded symbols trans-

mitted for Layerl in each transmission block is defined bytl = (1+ ε)Kρl, and satisfies

∑L
l=1 tl = (1+ ε)K. When standardized raptor codes are used, substitutingm = tlδ j and

k = Sl into Eqs. (3.10) and (3.3), and taking the logarithm of the constraints described by

(3.3), Problem 3.10 is transformed to:

Problem 3.11:

min
t1,...,tL

ΣL
i=1ti (3.13)

s.t.−Σg j

l=1 log[1− clα
tl
j ]+ logPj ≤ 0, j = 1,2, ...,J, (3.14)
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where cl = ab−Sl , α j = bδ j and g j ∈ {1,2, ...,L}. The constraints thattlδ j ≥ Sl, j =

1,2, ...,J, l = 1,2, ...,g j are implicitly guaranteed by the log(.) function. To ensure an in-

teger solution, we computet1, t2, ..., tl as if real-valued, then round to the nearest larger

integer. Although the above transformation uses the decoding failure probability evalua-

tion of standardized raptor codes given by Eq. (3.10), a similar method can be applied

to other decoding failure probability models that can be approximated by an exponential

function.

To solve Problem 3.11, we first prove convexity. As the objective function is linear, we

only need to prove that the constraint functions are convex with respect toti, i= 1,2, ...,L. It

can be shown that forl = 1,2, ...,L, the second derivatives of− log(1− clα
tl
l ) with respect

to tl satisfy

∂ 2[− log(1− clα
tl
l )]

∂ t2
l

=
clα

tl
l (logαl)

2

(1− clα
tl
l )

2
> 0 j = 1,2, ...,J. (3.15)

According to the second order condition of convex functions[27], − log[1− clα
tl
l ] is a

convex function oftl. Since nonnegative weighted sums preserve convexity [27],the con-

straint functions (3.14) are convex functions of the vectort = [t1, t2, ..., tL]T . Problem 3.11

can therefore be solved numerically by available convex optimization algorithms [27].

Let t = [t1, t2, ..., tL]T andλ = [λ1,λ2, ...,λJ]
T be the variable vectors of the primal and

dual problems of Problem 3.11, respectively. Ift∗= [t∗1, t
∗
2, ..., t

∗
L]

T andλ ∗= [λ ∗
1 ,λ

∗
2 , ...,λ

∗
J ]

T

represent sets of primal and dual optimal points, they must satisfy the Karush-Kuhn-Tucker

(KKT) optimality conditions for objective functionsf0(.) and constraint functionsf j(.):

f j(t∗)≤ 0, j = 1,2, ...,J (3.16)
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λ ∗
j ≥ 0, j = 1,2, ...,J (3.17)

λ ∗
j f j(t∗) = 0, j = 1,2, ...,J (3.18)

∇ f0(t∗)+
J

∑
j=1

λ ∗
j ∇ f j(t∗) = 0 (3.19)

where heref0(t) = ΣL
i=1ti and f j(t) =−Σg j

l=1 log[1−clα
tl
j ]+ logPj, j = 1,2, ...,J. Since the

original Problem 3.11 is convex and satisfies Slater’s condition, the above KKT optimality

conditions provide the necessary and sufficient conditionsfor optimality [27]. In general,

solving the KKT condition is not straightforward. However,if we can identify a set of

inequality constraints that are most likely to be active, i.e., achieve equality at the optimal

solution, then we can obtain a corresponding set of primal and dual solution points and

verify the optimality with KKT condition.

A simplification to the problem arises if we have a one-to-onemapping between user

classes and channel coding layers, i.e.,g j = j for j = 1,2, ..,J andL = J, which is the

assumption used in the formulation of [19], and if all the inequality constraints are active.

Using the above assumption, the solution to Problem 3.11 canbe obtained by findingt1

using the constraint for Class 1 in Eq. (3.14) and substituting the solution oft1 into the next

constraint, solving fort2 with the constraint for Class 2 in Eq. (3.14) etc. until all ofthe

variablest1, t2, ..., tL are determined. However, since this simplification has not been proven

to be equivalent to Problem 3.11 in general, the solution obtained in this manner has to be

verified using the KKT optimality conditions. If all the inequality constraints are active,

Eqs. (3.16) and (3.18) are automatically satisfied. Therefore, if we obtain a solutiont∗ of

Problem 3.11 by solvingf j(t∗) = 0, j = 1,2, ...,J, we can substitute the value oft∗ into Eq.
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(3.19) and obtainλ ∗. If λ ∗ satisfies Eq. (3.17), i.e.,λ ∗
j ≥ 0, j = 1,2, ...,J, then we have

proven that the value oft∗ we obtained is indeed an optimal solution of Problem 3.11. If

the KKT optimality condition is not satisfied, then numerical method can be used to solve

this convex optimization problem.

In the following, we propose an algorithm to transform a general guaranteed QoS prob-

lem into a problem with one-to-one mapping between user classes and channel coding lay-

ers. The idea is to reduce the dimensionality of the problem by removing redundant user

constraints and merging source coding layers. The process is explained in the following

algorithm:

3.4.3 Class-to-layer mapping algorithm

Algorithm 3.1: (Class-to-layer mapping algorithm)

Step 1(User class amalgamation): Repeat the following class amalgamation operation

until gi < gk for everyi < k, where 1≤ i ≤ J,1≤ k ≤ J: for any pair of user class indices

i andk wherei < k (henceδi < δk), if Classi users have the same or higher target PSNR

threshold than Classk users (i.e.,γi ≥ γk or gi ≥ gk), we absorb Classk into Classi.

Step 2 (Source layer merging): Repeat until for every layer 1≤ l ≤ L, there exists

a classj,1 ≤ j ≤ J such thatg j = l: if there exists a source layerl where there is no

corresponding user class (i.e., noj exists such thatg j = l), Layersl andl +1 are merged

to form a new source layerl′ with code dimensionSl′ = Sl +Sl+1.

Step 1 finds a set of the most demanding user classes with respect to their channel

conditions; Step 2 reduces the number of channel coding layers to the minimum without
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compromising the performance. After performing Algorithm3.1, we can show the follow-

ing fact:

Lemma 3.1: After performing Algorithm 3.1,L = J andg j = j for j = 1,2, ...,J. If for

every Classk that has been absorbed into Classi in Step 1,Pi ≥ Pk is also satisfied, then the

new optimization problem after performing Algorithm 3.1 isequivalent to Problem 3.11.

In addition, any further partitioning of layers cannot reduce the minimum transmission

overhead required to achieve the QoS requirements.

Proof: First we show that any QoS constraint dropped from Step 1 (user class amal-

gamation) is irrelevant. Suppose the QoS constraint of Class i users is satisfied, i.e.,

∏gi
l=1(1−Pe(l, i)) ≥ Pi. Sincei < k, we haveδi < δk. Hence, Classk users receive more

coded symbols than Classi users. Therefore, the decoding failure probabilityPe(l, i) >

Pe(l,k) for all 1 ≤ l ≤ L. Then, becausegi ≥ gk, from the assumption of Lemma 3.1,

Pi ≥ Pk, and

gk

∏
l=1

(1−Pe(l,k))>
gk

∏
l=1

(1−Pe(l, i))≥
gi

∏
l=1

(1−Pe(l, i))≥ Pi ≥ Pk. (3.20)

Hence, the QoS constraint for Classk users is also satisfied.

Next we show that after performing Algorithm 3.1, the numberof source layersL and

the number of user classesJ are equal. The class amalgamation procedure ensures that the

setg j, j = 1,2, ...,J is monotonically increasing withj. This fact does not change after

performing the source layer merging procedure. Sinceg j ∈ {1,2, ...,L}, we haveL ≥ J.

On the other hand, source layer merging ensures that for anyl = 1,2, ...L, there exists an

integer j ∈ {1,2, ...,J} such thatg j = l. Therefore, we also haveL ≤ J. Thus,L = J.

Together with the fact thatg j is monotonically increasing withj, we can conclude that
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g j = j for j = 1,2, ...,J.

Finally, to complete the proof, we need to show that any further partitioning of layers

cannot reduce the required minimum transmission overhead.The details can be found in

Appendix B.QED.

Remark 1: The condition that for every Classk that has been absorbed into Classi,

Pi ≥ Pk, is a sufficient condition for Lemma 3.1 but not a necessary condition. Even if this

condition is not satisfied, it is possible that the transformed problem due to Algorithm 3.1

results in the optimal solution. In addition, if this condition is violated, to ensure that the

optimal solution of the transformed problem is the optimal solution of the original problem,

we can always verify if the obtained solution satisfies all the constraints of the user classes

that have been amalgamated in Step 1. If not, we can resort to solving the convex problem

(Problem 3.11) numerically. This is further illustrated inSection 3.4.4.

Remark 2: For best-effort QoS Problem 3.30, the transformation described by Algo-

rithm 3.1 may not be optimal. Since optimal solution also depends on the fidelity measure

of the multimedia source.

3.4.4 A numerical example on video multicasting

We now illustrate the mapping and solutions to the guaranteed QoS problem in an example

where the transmitter is multicasting a H.264 SVC [49] codedstream. We use a H.264 SVC

video sequence which contains a total of 15 layers with one base layer (BL) and fourteen

enhancement layers (ELs). Since the focus of the paper is on optimizing the channel coder

for a given source coder, the number of information symbols and the corresponding PSNR
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Table 3.1. Example of user classes and their QoS requirements

User class index (j) 1 2 3 4

User reception capabilityδ j 0.4 0.5 0.6 1

User QoS requirement (PSNR thresholdγ j(dB)) 25.79 29 27.25 40.28

number of decoded symbols to achieve QoS 400 1155 700 3800

number of decoded source layers required (g j) 1 4 2 15

probability thresholdPl 0.8 0.9 0.85 0.95

values of this H.264 SVC video sequence are taken from Table Iof [19]. We consider the

same source symbol size as [19], where each source symbol represents 400 source bits.

The UEP rateless encoders and decoders are operated at the symbol level. We assume there

are four classes of users with reception capabilities and QoS requirements shown in Table

3.1.

In order to simplify the mapping between classes and layers,we observe thatg2 > g3

while δ2 < δ3, which means that Class 3 users have better reception capabilities than Class

2 users, while at the same time, have a lower PSNR requirement. Therefore, the QoS con-

straint from Class 3 users can be dropped. In addition, sincethe number of layers required

by the three classes are 1, 4 and 15, after the layer-merging procedure of Algorithm 3.1,

we obtain a new set of channel layers with Layer 1 comprising the BL, Layer 2 consisting

of the first 3 ELs, and Layer 3 consisting of the fourth to fourteenth ELs. SinceP2 > P3

in Table 3.1, from Lemma 3.1, the new problem after mapping isequivalent to the original

problem. The parameters of the new problem after the mappingare shown in Table 3.2.
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Table 3.2. User classes and QoS requirements after the mapping

Combined class-layer index (j or l) 1 2 3

reception capabilityδ j 0.4 0.5 1

PSNR thresholdγ j(dB) 25.79 29 40.28

number of decoded symbols to achieve QoS400 1155 3800

number of decoded layers requiredg j = j 1 2 3

probability thresholdPj 0.8 0.9 0.95

number of symbolsSl in each layer 400 755 2645

When standardized raptor codes are applied to the three new layers, the problem is to

find ρ1, ρ2 andρ3 to minimizet1+ t2+ t3 such that






































(1−ab(t1δ1−S1))≥ P1

(1−ab(t1δ2−S1))(1−ab(t2δ2−S2))≥ P2

(1−ab(t1δ3−S1))(1−ab(t2δ3−S2))(1−ab(t3δ3−S3))≥ P3.

(3.21)

Assuming all the inequality constraints are active, we obtain a minimum overhead

εmin = 36.2%, which is achieved whenρ1 = 0.1946,ρ2 = 0.2933 andρ3 = 0.5121. This

solution is then verified using KKT conditions and we find thatthis solution is indeed op-

timal. In contrast, an equal error protection (EEP) allocation requires a minimum overhead

of 152%, a factor of four higher than the optimal UEP solution.

With the optimal selection parameters, we find that Class 3 users of the original prob-

lem (Table 3.1) can successfully decode the base layer and one enhancement layer with

a probability higher than 99.9%. This means that even if the target probability threshold
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P3 = 99% in Table 3.1, which violates the assumption of Lemma 3.1,the problem trans-

formed by Algorithm 3.1 still has the same optimal solution as the original problem. As a

further remark, suppose the conditions of Lemma 3.1 are violated, we assume the extreme

case ofP3 = 99% and vary the value ofδ3 within the range 0.5= δ2 < δ3 ≤ 1= δ4. We find

that only when 0.5< δ3 < 0.503, our obtained solution does not satisfy the QoS constraint

of Class 3 users; we expect that, in practice, two distinct classes to have greater reception

capability difference than0.003
0.500×100%= 0.6%.

3.5 Numerical and simulation results

To demonstrate the advantages of optimization, the optimized UEP raptor code scheme is

first compared to EEP raptor coding. For simplicity, only twolayers are considered. In

these comparisons shown in Figs. 3.2 to 3.4, the proposed random interleaved UEP design

employing standardized raptor codes is used. The code dimension of the standardized

raptor code used in layerl is Sl. The small inefficiencies incurred by the standardized raptor

codes are characterized by the decoding failure probability Pr
e (.) in Eq. (3.10). The optimal

selection probabilityρ1 and minimum overhead for the UEP scheme are obtained by the

simplified method described in Section 3.4 for solving Problem 3.11, i.e., by assuming that

all inequality constraints are active. All the results shown in Figs. 3.2 to 3.4 satisfy the KKT

optimality conditions after verification. The EEP scheme allocates each encoded symbol

such that every information symbol has the same priority. Therefore, for EEP, the ratio

ρ1/ρ2 is fixed toS1/S2. For all the results shown in this section, the parameters chosen
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Figure 3.2. UEP versus EEP for varyingS1/S2, K = 9000;δ = [0.4,0.8];P = [0.95,0.8].

are described in the caption of each corresponding figure. Fig. 3.2 shows the minimum

transmission overhead requirement for optimized UEP and EEP raptor codes as the ratio

between the numbers of bits in the two layers,S1/S2, is varied. Fig. 3.3 shows the same

comparison as the channel reception qualityδ1 of the first user class varies. It can be

seen that UEP has a significant advantage over EEP in almost all cases. When the channel

reception qualities of the two classes approach each other,EEP approaches the optimized

UEP in performance. Fig. 3.4 shows the minimum overhead whendifferent values ofρ1

are used. It can be seen that the minimum required transmission overhead is very sensitive

to the choice ofρ1, and an arbitrary non-optimized allocation scheme may perform much

worse than both the optimal allocation scheme and EEP.

Next, to investigate the performance of the proposed randominterleaved UEP raptor
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Figure 3.3. UEP versus EEP for varyingδ1/δ2, S = [1000,8000];δ2 = 0.8;P = [0.95,0.8].

coding, we compare its performance to a recent UEP raptor code design proposed by Rah-

navardet al. [1] as well as EWF codes proposed by Vukobratovicet al. [19] in Figs. 3.5

and 3.6. We remark that [1] and [19] cannot deploy existing standardized raptor codes di-

rectly. Therefore, for a fair comparison, instead of using standardized raptor codes, we use

LT codes with iterative decoding and degree distribution

Ωr(x) = 0.007969x+0.493570x2+0.166622x3

+0.072646x4+0.082558x5+0.056058x8+0.037229x9

+0.055590x19+0.025023x65+0.003135x66 (3.22)

for all the layers of our proposed random interleaved UEP code. It should be stressed that

the advantage of being able to utilize high performance standardized raptor codes is not

shown in these comparisons, which would further favor the proposed design. The degree

52



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

ρ
1

M
in

im
um

 tr
an

sm
is

si
on

 o
ve

rh
ea

d

 

 

Proposed UEP
Optimal operating point
 EEP operating point

Figure 3.4. The effect of layer allocation probabilityρ1, standardized raptor codes,L =

2;K = 9000;S = [1000,8000];δ = [0.4,0.8];P = [0.95,0.8].

distribution, (3.22), originally from [11], has been adopted by [1]. In Figs 3.5 and 3.6,

the same degree distributionΩr(x) is applied to Rahnavard’s UEP raptor code and all the

windows of the EWF code. For analytical simplicity, no pre-code is used for all three

schemes. The decoding failure probabilityPe on the left side of the constraint functions in

Eq. (3.3) is evaluated as follows: the symbol error probability of each layer in Rahnavard’s

scheme and the EWF code can both be estimated by the “and-or” tree technique [1] [19].

The symbol error probabilityel of Layerl for Rahnavard’s scheme, the EWF code, and the

proposed UEP scheme are obtained using Eqs. (6) and (7) in [1], Eq. (7) in [2], and Eq.

(3.12) in this paper, respectively. The failure probability of decoding each layer can then

be estimated asPe(l) = 1− (1− el)
Sl .
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Fig. 3.5 shows the minimum transmission overhead required to satisfy all user con-

straints of the proposed UEP scheme and Rahnavard’s UEP scheme with different values

for parameterkM [1], which governs the degree of non-uniformity of input symbol selec-

tions. It can be seen that the optimized proposed UEP scheme outperforms Rahnavard’s

UEP scheme even ifkM is optimized. Fig. 3.6 shows a similar comparison between the

proposed scheme and the EWF code. The size of the first window in the EWF code is fixed

to the number of symbols in Layer 1 (S1). ParameterΓ1 is the probability of choosing the

first window (the more important layer) during encoding (see[19]). It can be observed that

the proposed scheme, when optimized, also performs better than the EWF code with opti-

mizedΓ1. Note that there are two local minima in Fig. 3.6 because the evaluated symbol

error rates of the more important bits are not monotonicallydecreasing asΓ1 increases (see

Fig. 1 in [19]).

As pointed out in [2], one of the advantages of EWF codes over Rahnavard’s UEP

scheme is flexibility in using different degree distributions applied to different windows.

Therefore, in order to isolate the performance gains due to different code structures, degree

distributions and decoder efficiencies, we use different degree distributions applied to dif-

ferent windows of EWF codes as well as to different layers of the proposed UEP scheme.

Fig. 3.7 shows the performance of the three different UEP schemes using LT codes after

optimization over their respective configuration parameters. The performance curves de-

pict minimum transmission overhead for different sets of parameters and variable numbers

of symbols in the first layer/window. The degree distributions chosen for the more impor-

tant bits (MIB) and less important bits (LIB) are denoted asΩ1(x) andΩ2(x), respectively.
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Figure 3.5. Proposed scheme versus [1]. LT codes with iterative decoding,L = 2;K =

9000;S = [1000,8000];δ = [0.4,0.8];P = [0.95,0.8].

Apart from using degree distributionΩr(x) described by Eq. (3.22), we also show the

performance when a truncated robust soliton distribution (RSD) Ωrs(krs,δ ,c), wherekrs

is the maximum degree, is applied to the MIB for EWF codes and the proposed random

interleaved UEP scheme. The truncated RSD is a stronger degree distribution compared to

Ωr(x) at the cost of higher decoding complexity. It can be seen fromFig. 3.7 that using the

stronger truncated RSD for the MIB provides a significant performance boost for both the

EWF codes and the proposed UEP codes. Nevertheless, when both schemes use the trun-

cated RSD distribution for the MIB, the minimum required transmission overhead for the

proposed UEP scheme is still lower. A more important advantage of the proposed scheme

is easy adoption of standardized raptor codes. As shown in Fig. 3.4, the minimum overhead
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Figure 3.6. Proposed scheme versus the EWF code [2]. LT codeswith iterative decoding,

L = 2;K = 9000;S = [1000,8000];δ = [0.4,0.8];P = [0.95,0.8].

for S1 = 1000 using a standardized raptor code is only around 40%, which is significantly

lower than any curve shown in Fig. 3.7. This difference comesfrom the superiority of

standardized raptor codes, which includes the use of a high performance pre-code as well

as more efficient maximum likelihood (ML) decoding in contrast to iterative decoders used

for Fig. 3.7.

Fig. 3.8 shows the PSNR performance of the proposed random interleaved UEP scheme

and the EWF scheme for the best-effort QoS formulation described by Problems 3.20 and

3.30. We evaluate transmission of the H.264 SVC coded CIFStefan video sequence [19],

where we consider the case of two layers, with the base layer as the first layer, containing

S1 = 400 symbols and all enhancement layers as the second layer with S2 = 3400 symbols.

56



500 1000 1500 2000

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

S
1

M
in

im
um

 tr
an

sm
is

si
on

 o
ve

rh
ea

d

 

 

EWF [2], Ω
1
(x)=Ω

2
(x)=Ω

r
(x)

EWF [2],  Ω
1
(x)=Ω

rs
(500, 0.03, 0.5), Ω

2
(x)=Ω

r
(x)

Proposed UEP,  Ω
1
(x)=Ω

2
(x)=Ω

r
(x)

Proposed UEP,  Ω
1
(x)=Ω

rs
(500, 0.03,0.5), Ω

2
(x)=Ω

r
(x)

Rahnavard’s UEP [1], Ω(x)=Ω
r
(x)

Figure 3.7. Performance comparisons using LT codes with different degree distributions.

L = 2;K = 9000;δ = [0.4,0.8];P = [0.95,0.8].

Successfully decoding the first layer provides a PSNR of 25.79 dB while decoding both

the first and second layers provides a PSNR of 40.28 dB. The performance is shown as the

average PSNR versus the selection probabilityρ1 for the proposed random interleaved UEP

scheme and the first window selection probabilityΓ1 of the EWF code. Givenρ1 or Γ1, the

average PSNR is obtained numerically by settingε = ε0 and substituting the corresponding

decoding failure probabilitiespe(i, j) into (3.6) and (3.7). The selection probabilities for the

two different schemes have different meanings and are not comparable. However, in order

to compare the maximum achievable PSNR of the schemes, all the performance curves are

shown in one figure. For the cross-marked and star-marked curves, we have used the LT

code with an iterative decoder and degree distributionΩr(x) applied to all windows and
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layers. For these parameters, the proposed random interleaved UEP scheme provides a

maximum average PSNR of 32.42 dB when optimized while the EWFscheme provides

32.36 dB when optimized. For problem 3.30, the feasible regionsof selection probabilities

ρ1 andΓ1 are obtained by checking the constraints (3.9). We note thatfor Problem 3.30,

the maximum achievable average PSNRs remain the same since both the optimal operating

points of the proposed UEP scheme and the EWF code are inside the feasible regions. The

diamond-marked curve shows the results when standardized raptor codes are employed for

the proposed random interleaved UEP scheme. A maximum average PSNR of 40.28 dB

can be achieved for 0.11≤ ρ1 ≤ 0.18, which, as expected, is significantly higher than the

other two LT coded curves. We can also observe from Fig. 3.8 that different choices ofρ1

result in significant differences in average PSNR, showing that the optimization process is

necessary.

The above results for LT codes with iterative decoding are obtained using “and-or” tree

analysis which assume infinite block length. To verify the results in practice, we test the

performance of the proposed random interleaved encoder viaMonte Carlo simulations. We

consider a guaranteed QoS problem with two source layers andtwo users classes. The

number of source symbols in each layer and the reception overhead of each user class are

given in the caption of Fig. 3.9. The rateless encoders that are used to encode each layer

are both LT codes constructed using degree distributionΩr(x). By using and-or tree anal-

ysis via Eq. (3.11) and (3.12) to determine the constraints in Problem 3.10, we obtain the

optimal selection probabilityρ1 = 0.19 and minimum overheadεmin = 1.475. Using the

58



0 0.05 0.1 0.15 0.2 0.25 0.3
25

30

35

40

ρ
1
 (for proposed UEP) or Γ

1
 (for EWF code [2] )

A
ve

ra
ge

 P
S

N
R

 

 

Proposed UEP, LT codes, Ω
1
(x)=Ω

2
(x)=Ω

r
(x)

EWF code [2], LT codes, Ω
1
(x)=Ω

2
(x)=Ω

r
(x)

Proposed UEP, standardized raptor codes

Figure 3.8. Average PSNR performance of two UEP schemes. LT codes with iterative

decoding,L = 2;S = [400,3400];δ = [0.55,1];P = [0.95,0.8];ε0 = 1;w = [0.5,0.5].

optimal selection probabilityρ1 = 0.19, we verify the probabilities of successfully achiev-

ing the target PSNRs of the two user classes via Monte Carlo simulations for different given

transmission overheads in Fig. 3.9. The iterative decodingis performed using the belief

propagation (BP) algorithm as in [9] and [11]. The horizontal axis shows the transmis-

sion overheads chosen for simulation, which covers the minimum overhead we achieved

with our analysis (εmin = 1.475), as well as 5% (1.525) and 10% (1.575) greater than the

minimum. The resulting PSNR for each user class is computed for each realization. The

vertical axis shows the relative frequency that the PSNR is larger than desired threshold

(Prob(PSNR j ≥ γ j)) for each user class. Using the minimum overheadεmin = 1.475 ob-

tained from and-or tree analysis, it can be seen from Fig. 3.9that the simulation results

59



closely match the theoretical analysis. The probability ofreaching the target PSNRγ j in

simulation is the same as or above the desired probability thresholdPj. With an extra 5%

overhead atε = 1.525, higher probabilities in reaching target QoS can be obtained.
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Figure 3.9. Outage probability comparison, simulation results versus desired threshold,

L = 2;S = [1000,8000];δ = [0.4,0.8];P = [0.95,0.8];ρ1 = 0.19.

3.6 Conclusions

Two general problems, guaranteed and best-effort QoS, are formulated for optimizing UEP

rateless codes for scalable multimedia multicasting systems with heterogeneous users. A

random interleaved UEP raptor code design is proposed. The guaranteed QoS problem is

converted into a convex optimization problem, which can be solved analytically in many
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practical scenarios. Numerical results show that, for the same system parameters, the min-

imum transmission overhead required for the optimized proposed UEP rateless codes can

be fewer than a quarter of that for an EEP design and more than 10% lower than that for

optimized EWF codes [19] and non-uniform-selection UEP rateless codes [1]. Signifi-

cant additional gains for the proposed UEP scheme can be obtained by employing superior

standardized raptor codes. For example, in the best-effortQoS example shown in Fig. 3.8,

the maximum achievable average PSNR using the proposed design employing standard-

ized raptor codes is around 8 dB higher than that of the proposed design and EWF codes

employing LT codes with an iterative decoder.
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Chapter 4

Rateless coded asynchronous multicast

4.1 Introduction

In Chapter 3, optimization of UEP rateless codes for scalable multimedia multicast is inves-

tigated. In this chapter, we consider a different scenario where the users can asynchronously

tune-in and out of the multicast session at any time. In this asynchronous multicast sce-

nario, users who receive enough transmitted symbols to achieve a desired quality will either

leave the multicast session or use the rest of the transmission time frame to perform other

valuable tasks. For that reason, the system cost is mainly the time that the users spend to

collect the rateless coded symbols to achieve their own QoS requirements, which are pro-

portional to the numbers of transmitted coded symbols required for each user class given

a fixed symbol rate. Therefore, for a multicast system with different user classes, the cost

function for this asynchronous multicast scenario is an average of transmitted symbols re-

quired to achieve the different QoS weighted by the different user classes.

The asynchronous multicast optimization problem for a different UEP rateless code
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design is first investigated in [25]. In [25], a priority encoding transmission (PET) based

packetization scheme [15] using a rateless code with fixed overhead is proposed. The

formulation in [26] generalizes the optimization problem in [25] by adding the constraint

of a transmission deadline. However, in solving the optimization problem of asynchronous

multimedia multicast, both [25] and [26] use an iterative search method which has high

complexity.

In this chapter, we investigate the asynchronous multicastoptimization problem and

find a systematic and low complexity solution. The PET packetization scheme that is pro-

posed in [15] and [25] are used as opposed to the random interleaved UEP scheme proposed

in Chapter 3. We show that under certain assumptions and under the relaxation of integer

solution constraints, this problem can be transformed intoa convex optimization problem.

Furthermore, an analytical solution is found for the asynchronous multicast optimization

problem [25] without the outage constraints. For the more general formulation with outage

constraints [26], an analytical solution is found for the special case where there are two user

classes, and we resort to numerical solution using convex optimization software [27] [28]

to solve the more general cases.

The rest of the chapter is organized as follows: Section 4.2 describes the system setup

and transmission scheme proposed in [25] and [26]; Section 4.3 presents the optimization

problem formulation; Section 4.4 transforms the formulation in Section 4.3 to an equivalent

but simplified problem by reducing the number of parameters and then the convexity of the

transformed problem is proven; Section 4.5 presents analytical solutions to the convex

optimization problem formulated in Section 4.4; Section 4.6 provides numerical results to
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verify our findings; Section 4.7 provides the conclusions ofthis chapter.

4.2 Asynchronous multicast system and packetization scheme

4.2.1 System setup

Similar to the system described in Chapter 3, a server is multicasting a scalable multimedia

source, e.g., image or video, to a total ofJ class of users. We assume the indices of theJ

classes of users are ordered in terms of their QoS requirements (as opposed to the channel

conditions used by Chapter 3), i.e.,γ1 ≤ γ2... ≤ γJ, whereγ j is the target peak-signal-to-

noise-ratio (PSNR) for Classj users. In the following formulation, the PSNR can also

be replaced by other fidelity measures without loss of generality. Each user in Classj is

assumed to experience a packet erasure channel with erasurerateσ j, which is assumed

to be fixed. For a more general setup whereσ j is a random variable, readers can refer to

Appendix C.

In asynchronous systems without transmission deadlines, users can join or leave the

multicast session at any time [25]. Nevertheless, if the multimedia content is partitioned

into multiple groups of frames (GOF) before multicasting, there is usually a deadline for

the transmission of a particular frame due to delay requirements. Therefore, it is assumed

as in [26] that the server can transmit at mostM0 packets for all users in each multicast

session without causing an outage. It is assumed that all theusers access the multicast

system at the same time as the start of the transmission. However, the results in this chapter

can also apply to the case where users access the multicast system at a random time with
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known statistics, a discussion of which can be found in detail in Appendix C.

4.2.2 The priority encoding transmission (PET) packetization scheme

In contrast to Chapter 3 that use a random interleaved UEP scheme, in this chapter, a PET

based packetization scheme is used. The PET packetization scheme is first proposed with

Reed-Solomon (RS) codes in [15]. Later, [25] proposes a transmission scheme to combine

the PET packetization scheme with a rateless code. The source symbols are first loaded

into the PET rateless coded packetization structure beforetransmission. The detailed struc-

ture of the PET packetization with rateless coding is shown in Fig. 4.1. The source symbol

stream is first partitioned intoL vertical layers such that source symbols with a lower layer

index are more important than those with a higher layer index, whereL is the total number

of layers, which is equal to the packet length. Note that the layers here are defined dif-

ferently from the layers used in Chapter 3. The number of source symbols inside Layerl,

l ∈ {1,2, ...,L} is denoted byKl. TheKl source symbols are then encoded by a rateless en-

coder to produce arbitrary number of rateless encoded symbols dl1,dl2, ...,dli, ..., wheredli

represents thei− th rateless encoded symbol in thel− th layer. Each data packet is formed

by selecting one corresponding encoded symbol from each layer, i.e., Packeti consists of

symbolsd1i,d2i,d3i, ...,dLi. The PET packetization design objective is to ensure that the

information symbols in a layer with smaller index are betterprotected against packet loss

compared to information symbols in a layer with a larger index. Therefore, the following

constraints have to be satisfied:

K1 ≤ K2 ≤ ·· · ≤ KL. (4.1)
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Figure 4.1. The transmission scheme using PET packetization combined with rateless cod-

ing.

4.3 The asynchronous multicast optimization problem

4.3.1 Users’ QoS requirements

As with the scenario described in Chapter 3, for a given source coder, the PSNR or equiva-

lent fidelity measures are a function of the number of decodedsymbols, where the symbols

are in decreasing order of importance. The QoS requirement of a Classj user is that the

obtained PSNR value should be greater than or equal to QoS thresholdγ j, which can be

expressed as:

PSNR j(K1,K2, ...,KL)≥ γ j, (4.2)
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wherePSNR j(K1,K2, ...,KL) represents the PSNR of Classj users given the allocated set

of K1,K2, ...,KL. Let f (.) represent the PSNR value as a non-decreasing function of the

total number of symbols decoded by the receiver,h j denote the number of layers (starting

from the first layer) that a Classj user needs to decode to achieve the target PSNR threshold

γ j for a given set{K1,K2, ...,KL}. Then the QoS requirements can be expressed as:

f (
h j

∑
l=1

Kl)≥ γ j (4.3)

or, due to the monotone one to one functionf (.), as

h j

∑
l=1

Kl ≥ f−1(γ j). (4.4)

wheref−1 denotes the inverse function off . Note that unlike the QoS constraints described

in Chapter 3, there is no outage probability involved in the QoS constraints. Rather, in

this asynchronous multicast scenario, the receiver keeps collecting rateless coded packets

until its QoS requirement is met. In the case where the receiver cannot reach its own QoS

requirement even if the maximum number of packetsM0 has been transmitted by the server,

an outage occurs. However, this outage probability considered as a separate type of outage

constraint as described in the following subsection.

4.3.2 Outage probabilities and constraints

In this section, we briefly describe the outage probability constraints. It is assumed that in

order for the receiver to decode Layerl with Kl information symbols, the receiver needs

to collect at least⌈Kl(1+ω)⌉ encoded symbols, where⌈x⌉ denotes the smallest integer

that is larger thanx andω is the overhead of the rateless code, which is assumed to be
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fixed for different realizations. For a Classj user with erasure rateσ j, the failure proba-

bility of decoding Layerh j is equivalent to the situation where the receiver collects fewer

than⌈Kh j(1+ω)⌉ encoded packets afterM0 packets have been transmitted, which can be

expressed as:

O j =

⌈Kh j
(1+ω)⌉−1

∑
i=0









M0

i









(

1−σ j
)i σ M0−i

j , (4.5)

whereO j is the outage probability of Classj users. Users in different classes may have

different outage tolerances. Therefore, the outage constraints can be expressed as:

O j ≤τ j, j = 1,2, ...,J, (4.6)

whereτ j is the outage probability threshold for Classj users. Note that we have used the

assumption that the outage probability is mainly limited bythe decoding failure probability

of Layerh j. This assumption is reasonable as the performance of a well designed rateless

code has very steep error curves. Therefore, given the constraint of (4.1), the probability

that a user fails to decode Layerl wherel < h j given that Layerh j is successfully decoded

can be neglected compared to the probability of failure in decoding Layerh j.

4.3.3 Cost function

In the asynchronous multicast problem, the outage probability is mainly bottle-necked by

users that require the largest number of transmitted packets to meet their QoS constraints.

As described in Section 4.1, a reasonable objective is to minimize the average time that

all users spend collecting rateless coded packets until their QoS requirements have been
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met, which is proportional to the average number of transmitted packets required to meet

each user’s QoS constraint, or equivalently, to successfully decode Layerh j. If there are no

limits on the maximum number of transmitted packets, the average number of transmitted

packets required to meet the QoS constraint of a Classj user is given by:

E(M j) =
Kh j(1+ω)

1−σ j
, (4.7)

whereM j is the number of transmitted packets required to meet Classj user’s QoS require-

ment,E(.) denotes expectation,h j is the number of decoded layers required to achieve

Class j users’ QoS requirements andσ j is the erasure rate of Classj users. For analytical

simplicity, the ceiling operator onKh j(1+ω) is omitted in the cost function. Eq. (4.7)

can be intuitively interpreted as having the additional compensation factor 1
1−σ j

in order to

compensate a packet loss rate ofσ j compared to that of no packet loss. For a more detailed

justification of (4.7), users can refer to Appendix C. When there is a limitM0 on the maxi-

mum number of transmitted packets, Eq. (4.7) still serves asan upper bound on the average

number of required transmitted symbols for all the users. Asthe probability that a user is

in outage is usually well within the outage constraints, Eq.(4.7) is still an appropriate cost

function for this PET rateless code design with a transmission deadline.

The total overall cost function averaged over all the user classes is thus given by

Mav =
J

∑
j=1

w jE(M j), (4.8)

wherew j is a given weighting coefficient for Classj users which takes the number of users

and the relative significance of users in each user class intoaccount, where for 1,2, ...,J,

0≤ w j ≤ 1 and∑J
1 w j = 1.
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4.3.4 Optimization problem formulation

In summary, the asynchronous multicast optimization problem is to find the best non-

decreasing set{K1,K2, ...,KJ} to minimize Eq. (4.8), such that users’ target PSNR is met,

under the outage constraints of each individual user class.This problem can be summarized

as:

Problem 4.10:

min
K1,...,KL

Mav (4.9)

subject to

K1 ≤ K2 ≤ ·· · ≤ KL (4.10)

and

O j ≤τ j, j = 1,2, ...,J. (4.11)

On the other hand, if there is no transmission deadline as thescenario discussed in [25],

the problem can be formulated as

Problem 4.20:

min
K1,...,KL

Mav (4.12)

subject to

K1 ≤ K2 ≤ ·· · ≤ KL. (4.13)

We will later determine an analytical solution for Problem 4.20.
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4.3.5 Greedy search algorithm

A direct way to solve Problems 4.10 and 4.20 is to list all possible sets of source symbol

layer allocationsK1,K2, ...,KL, test the constraints and compare the resultant cost. The

optimal solution is the set{K1,K2, ...,KL} which provides the minimal cost among those

that satisfy the constraints. However, the complexity of such a brute-force search algorithm

can be prohibitively high as it depends on the total number ofsource symbolsf−1(γJ) as

well asL. A suboptimal greedy search algorithm is proposed in [25] and [26]. The basic

idea of this algorithm is to first find all possible sets of[h1,h2, ...,hJ], which represents the

number of layers required to decode for each user class. For each predetermined allocation

of [h1,h2, ...,hJ], the greedy search algorithm allocates⌈ f−1(γ j)⌉ − ⌈ f−1(γ j−1)⌉ source

symbols to layersh j−1+1 to h j nearly equally, where⌈ f−1(γ0)⌉ = 0. By nearly equally

we mean the difference among the number of source symbols in Layersh j−1+ 1 to h j,

i.e.,Kh j−1+1,Kh j−1+2, ...,Kh j , should be at most 1. In the end, the best possible allocationis

chosen by selecting the one with minimal cost that satisfies the outage constraints.

The greedy search algorithm proposed in [25] has a complexity of roughly JLJ−1/2

elementary operations. Although the complexity is lower compared to brute force search

over all possible sets of{K1,K2, ...,KL}, it is still very high for largeL andJ. In addition,

the optimality of the greedy search algorithm has not been proven. This motivates a lower

complexity and analytical solution to this problem.
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4.4 Transformation to equivalent and simplified convex

optimization problem

4.4.1 Grouping layers to chucks

To find an analytical solution to Problems 4.10 and 4.20, we first divide the source symbols

in each block intoJ chunks, where the number of symbols in each chunk is given by

U j =



















⌈ f−1(γ j)⌉−⌈ f−1(γ j−1)⌉ j = 2, ...,J

⌈ f−1(γ1)⌉ j = 1,

(4.14)

whereγ j is the target PSNR threshold for Classj users andf−1(x) is the minimum number

of decoded symbols required to reach the target PSNR threshold x. Define

l j = h j −h j−1 j = 2, ...,J (4.15)

whereh j is the number of required decoded layers to reach target QoS of Class j users and

h0 = 0. Therefore,l j represents the number of layers allocated to Chunkj, which should

satisfy

J

∑
j=1

l j = hJ = L. (4.16)

In addition, we have

h j

∑
i=h j−1+1

Ki =U j j = 1,2, ...,J. (4.17)
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4.4.2 Simplification of the cost function

Substituting Eq. (4.7) into (4.8), the cost function can be expressed as

Mav =
J

∑
j=1

w jE(M j)

=
J

∑
j=1

w j
Kh j(1+ω)

1−σ j

=
J

∑
j=1

η jKh j , (4.18)

whereη j ≡ w j(1+ω)
1−σ j

are the combined cost coefficients of Classj users, which combine the

importance weighting coefficientw j, code-efficiency factor(1+ω) and reception capabil-

ity 1/(1−σ j).

4.4.3 Reducing the number of parameters

Problem 4.10 containsL variables. In order to obtain an equivalent problem with fewer

variables, we first prove the following fact.

Lemma 4.1 : If we relax the integer constraints onKi, i = 1,2, ...,L, then the optimal

solution to Problem 4.10 should satisfyKh j−1+1 =Kh j−1+2 = ...=Kh j for j = 1,2, ...,J, i.e.,

theU j source symbols of Chunkj should be allocated equally among layersh j−1+1 toh j.

To prove this, assume there exists allocation SchemeC, where there is at least one chunk

(index denoted byj) within which theU j source symbols are not equally allocated among

layersh j−1+ 1 to h j. Then, becauseK j is a non-decreasing set and∑
h j

i=h j−1+1Ki = U j,

we have, for allocation SchemeC, KC
h j
>U j/(h j −h j−1) =U j/l j, whereKC

l , l = 1,2, ...,L

represents the source symbol to layer allocation for SchemeC. We next construct allocation
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SchemeD whereKD
h j−1+1 = KD

h j−1+2 = ...= KD
h j
=U j/l j with all the other chunks allocated

identically to SchemeC, whereKD
l , l = 1,2, ...,L represents the source symbols to layer

allocation for SchemeD. BecauseKC
h j

> U j/l j = KD
h j

and KC
hi
= KD

hi
for all i 6= j, it is

obvious from the cost function expression (4.18),MC
av = ∑J

i=1ηiKC
hi
> ∑J

i=1 ηiKD
hi
= MD

av,

whereMC
av andMD

av are the overall costs of SchemeC and SchemeD, respectively. Hence,

allocation SchemeC does not minimize the cost function. Therefore, an optimal solution

that minimizesMav should allocateU j symbols among layersh j−1+ 1 to h j equally for

j = 1,2, ..,J, i.e.,K1 =K2 = ...=Kh1 ≤Kh1+1 = ...=Kh2 ≤ ...≤KhJ−1+1 = ...= KhJ =KL.

QED

Therefore, we can reduce the number of parameters by using one parameterKh j to

represent theKl,h j−1+1≤ l ≤ h j values of Chunkj, i.e.,Kh j−1+1 = Kh j−1+2 = ...= Kh j =

U j/l j. Using the above, the cost function can be further simplifiedas

Mav =
J

∑
j=1

η jKh j =
J

∑
j=1

η jU j/l j =
J

∑
j=1

α j/l j, (4.19)

where

α j ≡ η jU j =
w jU j(1+ω)

1−σ j
. (4.20)

Also, using the constraint thatK j is a non-decreasing set, Eq. (4.1), can be transformed to

Kh1 ≤ Kh2...≤ Kh j = KJ or U1/l1 ≤U2/l2...≤UJ/lJ.

In addition, observe that since the average outage probability (4.5) is monotonically

increasing withKh j , the constraints are equivalent toKh j being less than a threshold, or

alternatively, equivalent tol j being greater than a constant forj = 1,2, ...,J.
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4.4.4 Transformation to a convex optimization problem

In summary, if we relax the integer constraints onKi, i = 1,2, ...,L, the allocation problem

described by Problem 4.10 can be transformed to the following equivalent problem,

Problem 4.11:

min
l1,...,lJ

J

∑
i=1

αi/li (4.21)

subject to

J

∑
i=1

li = L (4.22)

0≤ lJ/UJ ≤ lJ−1/UJ−1...≤ l1/U1, (4.23)

l j ≥ θ j, j = 1,2, ...,J, (4.24)

whereθ j, j = 1,2, ...,J are constants derived from average outage probability constraints

given by Eq. (4.6).

Similar to the transformation of Problem 4.10 to Problem 4.11, Problem 4.20, which

does not have outage constraints, can be transformed to:

Problem 4.21:

min
l1,...,lJ

J

∑
i=1

αi/li (4.25)

subject to

J

∑
i=1

li = L (4.26)

0≤ lJ/UJ ≤ lJ−1/UJ−1...≤ l1/U1. (4.27)
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Note that in Problem 4.11 and 4.21, we have assumed thatli, i= 1,2, ..,J are continuous

variables rather than integers. In the following section, we solve alternative tractable ver-

sions of problems to 4.11 and 4.21 that are equivalent to the original allocation problems

without integer constraints. We next show that Problems 4.11 and 4.21 are both convex op-

timization problems. This can be proven by showing that the objective function is convex

and all the constraint functions are linear.

4.5 Analytical solutions

4.5.1 Dual problem

The standard way to proceed is to simplify Problem 4.11 by solving the dual problem,

because the optimal solutions of Problem 4.11 and its dual are the same due to convexity

[27]. The Lagrange function

L(l,λ ,v) =
J

∑
i=1

αi

li
+ v(

J

∑
i=1

li −L)+
J−1

∑
i=1

λi(
li+1

Ui+1
− li

Ui
)−λJ

lJ
UJ

+
J

∑
i=1

λi+J(θi − li), (4.28)

wherel = (l1, l2, ..., lJ) are primary variables,λ = (λ1,λ2, ...,λ2J) andv are dual variables.

The Lagrange dual function is

g(λ ,v) = inf
l

L(l,λ ,v)

= inf
l

(

J

∑
i=1

(

αi

li
+ li(v−

λi

Ui
+

λi−1

Ui−1
−λi+J)+λi+Jθi

)

)

(4.29)

whereλ0
U0

= 0 and the dual function have meaningful solutions only ifv− λi
Ui
+ λi−1

Ui−1
−λi+J >

0 for i = 1,2, ...,J. By solving ∂L(l,λ ,v)
∂ li

= 0 and substituting the resultingl1, l2, ..., lJ back
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into L(l,λ ,v) to obtaing(λ ,v) = infl L(l,λ ,v), the dual problem can be written as

max
v,λ

g(λ ,v) =
J

∑
i=1

(

2

√

αi(v−
λi

Ui
+

λi−1

Ui−1
−λi+J)+λi+Jθi

)

(4.30)

subject to

λ j ≥ 0, j = 1,2, ...,2J. (4.31)

Unfortunately, it is not straightforward to find an analytical solution to the dual problem.

4.5.2 Analytical optimization solution without outage constraints

We next show that the optimal solution of Problem 4.21, the problem without outage con-

straints, can be obtained analytically. As a first step, we solve Problem 4.21 without the

inequality constraints provided by (4.27), which is easilydone by using Lagrange’s method.

The LagrangeL function in this case would be

L(l,v) =
J

∑
i=1

αi/li + v(
J

∑
i=1

li −L)

=
J

∑
i=1

(αi/li + vli)− vL. (4.32)

The optimal solutionsli for Problem 4.21 without inequality constraints (4.27) minimize

αi/li + vli for all i = 1,2, ...,J. By setting the derivative ofαi/li + vli with respect toli to

zero, the optimalli can be obtained as

li =
L
√

αi

∑J
i=1

√
αi
, j = 1,2, ...,J. (4.33)

Now if the above solution satisfies the inequality constraints provided by (4.27), then we

are done. In order to solve the problem when (4.33) does not satisfy inequality constraints

(4.27), we deploy a similar method that used in [50]. First, we prove the following fact:
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Lemma 4.2: For any j ∈ (1,2, ...,J−1), if
√α j+1
U j+1

>
√α j

U j
, then the optimal solution

of Problem 4.21 satisfiesl j
U j

=
l j+1
U j+1

.

Proof: Assume
√α j+1
U j+1

>
√α j

U j
, j ∈ (1,2, ...,J−1) and that there exists a set of optimal

solutionsX = {lX
i , i = 1,2, ...,J,

lX
j

U j
6= lX

j+1
U j+1

}. Now we create a new set of solutionsY =

{lYi , i = 1,2, ...,J} by perturbinglX
j andlx

j+1 by a very small amount∆l > 0 such that the

constraints (4.23) are still valid, i.e., fori = 1,2, ..,J,

lYi =







































lX
i − △ l if i = j

lX
i + △ l if i = j+1

lX
i if i 6= j, j+1.

(4.34)

Now the difference in the cost functions due to (4.36) is

MY
av −MX

av =
α j

lX
j −∆l

+
α j+1

lX
j+1+∆l

− α j

lX
j
− α j+1

lX
j+1

= ∆l

(

α j

lX
j (l

X
j −∆l)

− α j+1

lX
j+1(l

X
j+1+∆l)

)

. (4.35)

As
√α j+1
U j+1

>
√α j

U j
and

lX
j

U j
>

lX
j+1

U j+1
, we have

α j+1

α j
>

U2
j+1

U2
j

>
(lX

j+1)
2

(lX
j )

2
. (4.36)

Therefore, if∆l >0 is chosen to be small enough, then we certainly have
α j+1
α j

>
lX

j+1(l
X
j+1+∆l)

lX
j (l

X
j −∆l)

.

HenceMY
av −MX

av < 0, which contradicts the assumption that the set of solutions X is op-

timum. Therefore, the optimal solution must satisfyl j
U j

=
l j+1
U j+1

if
√α j+1
U j+1

>
√α j

U j
for any

j = 1,2, ...,J−1. QED

With the above lemma, if
√α j+1
U j+1

>
√α j

U j
, we haveKh j =

U j
l j
=

U j+1
l j+1

=Kh j+1. Therefore, we

can reduce the number of parameters further by grouping Chunk j and Chunkj+1 into a
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new chunk, i.e,Unew
j =U j+U j+1, lnew

j = l j+l j+1, αnew
j =

(

α j/l j +α j+1/l j+1
)(

l j + l j+1
)

=

(

α j/U j +α j+1/U j+1
)(

U j +U j+1
)

, Jnew = J−1 and decrease the indices of all parameters

with index larger thanj+1 by one. This procedure is repeated until noj ∈ {1,2, ...,J−1}

with
√α j+1
U j+1

>
√α j

U j
exists, i.e.,

√α j+1
U j+1

≤
√α j

U j
for all j = 1,2, ...,J−1. Denote ˆx as the new

value of variablex after the chunk grouping process, Problem 4.21 is then transformed to:

Problem 4.22:

min
l̂1,...,l̂Ĵ

Ĵ

∑
i=1

α̂i/l̂i (4.37)

subject to

Ĵ

∑
i=1

l̂i = L (4.38)

0≤ l̂Ĵ/ÛĴ ≤ l̂Ĵ−1/ÛĴ−1...≤ l̂1/Û1, (4.39)

where
√

α̂ j

Û j
is a non-increasing set forj = 1,2, ..., Ĵ. Following the same approach as in

(4.33), the optimal solution without constraint (4.39) is:

l̂0
j =

L
√

α̂ j

∑Ĵ
i=1

√
α̂i

, j = 1,2, ..., Ĵ. (4.40)

Since
l̂0

j

Û j
=

√
α̂ j

Û j

L

∑Ĵ
i=1

√
α̂i

≥
√

α̂ j+1

Û j+1

L

∑Ĵ
i=1

√
α̂i

=
l̂0

j+1

Û j+1
, the inequality constraints (4.39) are sat-

isfied. Therefore, the solutionŝl0
j , j = 1,2, ..., Ĵ given by (4.40) form an optimal set of

solutions for Problem 4.22. We have thus found an analyticalsolution to Problem 4.21,

which is also the problem described in [25].

The analytical solution only requires the computation ofJ coefficients
√α j

U j
, and perform

at mostJ −1 chunk grouping processes, and computeJ variables according to (4.40). In
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the worst case, the analytical solution requires roughly 14J elementary operations, which is

linear inJ and independent ofL. The complexity of the analytical solution is significantly

lower than that of the greedy search algorithm proposed in [25], which requires roughly

JLJ−1/2 elementary operations. For example, if the packet sizeL = 1000, withJ = 4 user

classes, the greedy search algorithm requires on the order of 109 elementary operations,

while the analytical solution requires less than 100 elementary operations.

Given the solution of Problem 4.21, we now proceed to find the solution of the more

general problem with the outage constraints, i.e., Problem4.11. First, if the outage thresh-

olds satisfy∑J
i=1θ j > L, then there is no feasible solution for Problem 4.11. This corre-

sponds to the case when the transmission deadlineM0 is too small for the outage probability

constraints to be met. In the case when∑J
i=1θ j = L, the problem is trivial as there is only

one feasible solutionl j = θ j for j = 1,2, ..,J. On the other hand, if the optimal solution we

found for Problem 4.21 satisfies all the outage probability constraints described by (4.24),

then the optimal solution of Problem 4.21 is also the optimalsolution of Problem 4.11.

This corresponds to the case whenM0 is large enough such that all the outage constraints

are loose and do not play any role in the optimization problem. When∑J
i=1 θ j < L and at

least one outage probability constraint is active, solvingthe problem is not straightforward

in general. However, given that the optimization problem isconvex with linear constraints,

we resort to standard convex optimization software to numerically solve the problem, e.g.,

CVX [28] [27]. Because Problem 4.11 has many fewer parameters than the formulation

in [26], the complexity of the numerical method is much simpler.
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4.5.3 Analytical solution for two user classes

For the special case where there are only two classes of users, we have the following simpli-

fication to the solution of Problem 4.11. Assume the set of optimal solutions for Problem

4.21 obtained using the method described above is given byl1 = l0
1 and l2 = l0

2 where

l0
1 + l0

2 = L and that the outage constraints can be simplified tol1 ≥ θ1 and l2 ≥ θ2. The

optimal solution set for Problem 4.11 is given by:

(l1, l2) =



























































(l0
1, l

0
2) if θ1 ≤ l0

1 and θ2 ≤ l0
2

No feasible solution ifθ1+θ2 > L

(θ1,L−θ1) if θ1 > l0
1 and θ2 ≤ l0

2

(L−θ2,θ2) if θ1 ≤ l0
1 and θ2 > l0

2.

(4.41)

The first two cases of Eq. (4.41) follow straightforwardly from the previous discussion

in Section 4.5.2. The last two cases in Eq. (4.41) can be proven usingcomplementary

slackness. As shown before, Problem 4.11 is a convex optimization problem. Given that

∑J
i=1θ j < L and there are points that are strictly feasible, Slaters constraint qualification

condition holds [27]. Therefore, according to Slater’s Theorem, strong duality holds for

Problem 4.11 and its dual problem described by (4.30) and (4.31) [27]. Strong duality

means the optimal duality gap is zero. Also, complementary slackness holds if strong

duality holds [27]. The condition of complementary slackness1 means that thei-th optimal

Lagrange multiplierλi is zero unless thei-th constraint is active at the optimum, which in

1Complementary slackness is also part of the KKT optimality conditions, which hold true if strong duality

holds.
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turn means that the optimal solution for the problem is the same as the optimal solution

without this constraint. For Case 3 of (4.41), namely whereθ1 > l0
1 andθ2 ≤ l0

2, if the

optimal Lagrange multiplier for the constraintl1 ≥ θ1 is zero, then the optimal solution

should be the same as the case without the constraintl1 ≥ θ1, which is given by(l1, l2) =

(l0
1, l

0
2). This solution, however, is not feasible because it does notsatisfy the constraints.

Therefore, for Case 3, we conclude that constraintl1 ≥ θ1 is active, i.e.,l1 = θ1. Similarly,

we can prove that the solution for the caseθ1 ≤ l0
1 andθ2 > l0

2 of (4.41) is optimal.

Finally, assume that we have reached a set of optimal solutions l0
i , i = 1,2, ...,J for

Problem 4.11 or 4.21. We can proceed to find a close-to-optimal solution for the original

problem with integer constraints:l1 = ⌊l0
1⌉ and l j = ⌊∑ j

i=1 l0
i −∑ j−1

i=1 li⌉ for j = 2, ...,J,,

where⌊x⌉ is the nearest integer tox. Each chunk ofU j source symbols is allocated nearly

equally in the sense that there is maximum of one symbol difference amongKh j−1, ... and

Kh j .

4.6 Numerical results

To illustrate the above process of solving Problem 4.10, thefollowing numerical example

is considered. The same parameters as the simulation setup in [25] is used for verifica-

tion purpose. In the setup, the server is multicasting a scalable image or video sequence

to two user classes. The total number of layers in the packetization scheme is fixed at

L = 47. The two user classes have a target QoS (PSNR)γ1 = 27 dB andγ2 = 30 dB,
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respectively. From the PSNR curve of the image, the minimum number of source sym-

bols needed to provide the corresponding QoS requirements are ⌈ f−1(γ1)⌉ = 11072 and

⌈ f−1(γ2)⌉= 24728, respectively [25]. Therefore the chunk sizesU1 = ⌈ f−1(γ1)⌉= 11072

andU2 = ⌈ f−1(γ2)⌉−⌈ f−1(γ1)⌉= 13656. For each user class, the channel erasure rate is

σ1 = σ2 = 0.0549. 2 The overhead of the rateless code is assumed to beω = 5%. The

weighting coefficient for Class 1 usersw1 can be varied to obtain different results.

In order to find the best allocation scheme based on the packetization structure for

Problem 4.20, the following relevant coefficients are first computed. From (4.20),α j =

η jU j =
U jw j(1+ω)

1−σ j
= 1.111U jw j for j = 1,2 and weighting coefficientw2 = 1−w1. We now

determine a sufficient condition for the optimal solution tosatisfyKh1 = Kh2. According to

Lemma 4.2, if
√

α2
U2

>
√

α1
U1

, the optimal solution of Problem 4.21 should satisfyl1
U1

= l2
U2

. The

above condition is equivalent to
√

w2U2(1+ω)/(1−σ2)
U2

>

√
w1U1(1+ω)/(1−σ1)

U1
. Sinceσ1 = σ2

and w2 = 1−w1, this condition is equivalent to1−w1
w1

> U2
U1

or w1 < 0.448. Therefore,

for w1 < 0.448, the optimal solution is to allocate the number of sourcesymbols equally

among theL = 47 layers, i.e., the optimal allocation scheme is an equal error protection

(EEP) scheme. Hence ifw1 < 0.448, each layer should have⌈ f−1(γ2)⌉/L = 24728/47=

526.13 source symbols, To satisfy the integer constraints, we should then allocate 526

source symbols for the first 47×527−24728= 41 layers and allocate 527 symbols for the

last 6 layers. Generalizing from the above process, we uncover the following interesting

corollary as a special case of Lemma 4.2:

2The channel erasure rates are chosen such that they are equivalent to the parameterizations used in [25]

in the sense that they satisfy Eq. (C.7).
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Corollary 4.2: In Problem 4.21, if there are only two user classes with the same

channel conditions and the weighting coefficient of class 1 users satisfiesw1 < U1/(U1+

U2), then the optimal allocation scheme is an EEP scheme.

Now if w1>0.448, the problem is transformed to Problem 4.22 and the optimal solution

is given by (4.40), i.e.,l0
1 =

L
√α1

∑2
i=1

√
αi

= L
√

w1U1√
w1U1+

√
w2U2

. Therefore, ifw1 = 0.6, thenl0
1 =

24.65. With integer constraints, we havel1 = ⌊l0
1⌉ = 25, l2 = 22. To allocateU1 = 11072

symbols nearly equally among the first 25 layers, we obtainK1 = K2 = K3 = 442 and

K4=K5= ...=K25= 443. Similarly, to allocateU2= 13656 symbols among the remaining

22 layers, we obtainK26 = K27 = ... = K31 = 620 andK32 = K33 = ... = K47 = 621. If

w1 = 0.8, thenl0
1 = L

√
w1U1√

w1U1+
√

w2U2
= 30.22 andl1 = ⌊l0

1⌉= 30. If w1 = 1, thenl1 = L = 47.

Therefore, the optimal solution is to allocateU1 = 11072 symbols among all 47 layers. The

number of source symbols allocated for each layer whenw1 = 0.4,0.6,0.8 and 1 are shown

in Figs. 4.2 to 4.5, respectively. By comparing Figs. 4.2 to 4.5 to Fig. 2 of [25] obtained

by the greedy search method, we can see that all the results match each other accurately.

Readers can refer to [25] for comparisons of the rateless-UEP scheme used in this paper to

the UEP scheme in [15] using Monte Carlo simulations, where the advantages of rateless

codes over fixed-rate RS codes are clearly demonstrated.

Now assume there are outage constraintsl1 ≥ 25 andl2 ≥ 17, i.e,θ1 = 25 andθ2 = 17.

The optimal solution for Problem 4.11 can thus be computed according to Eq. (4.41).

Whenw1 ≤ 0.6, we always haveθ1 > l0
1 andθ2 ≤ l0

2. Therefore, the optimal solution is

changed tol1 = θ1 = 25, l2 = L−θ1 = 22. Whenw1 ≥ 0.8, we always haveθ1 ≤ l0
1 and

θ2 ≥ l0
2, the optimal solution isl1 = L−θ2 = 30 andl2 = θ2 = 17. When 0.6< w1 < 0.8,
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Figure 4.2. Allocation of source symbols for an asynchronous multimedia multicast system

with two user classes and no transmission deadline with parameterw1 = 0.4.

we always haveθ1 ≤ l0
1 andθ2 ≤ l0

2. Therefore, the optimal solution is the same as the

solution for Problem 4.21, i.e.,l1 = l0
1 andl2 = l0

2.

The number of source symbols allocated for each layer for thecases of 0≤ w1 ≤ 0.6

and 0.8≤ w1 ≤ 1 are shown in Figs. 4.6 and 4.7, respectively. Comparing theresults of

Fig. 4.6 and 4.7 to Figs. 4.2 and 4.5, the differences due to the outage constraints for the

cases ofw1 = 0.4 andw1 = 1 can be easily observed.

To demonstrate the solution of Problem 4.10 with more than two classes, we consider

an example where the server is multicasting a scalable videostream to four user classes.

The number of symbols and the PSNR values of the video sequence are taken from Table
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Figure 4.3. Allocation of source symbols for an asynchronous multimedia multicast system

with two user classes and no transmission deadline with parameterw1 = 0.6.

I of [19]. The video sequence consists of one base layer (BL) and fourteen enhancement

layers (EL) with a total of 3800 symbols where each symbol represents 50 bytes. The

channel erasure ratesσ j, PSNR thresholdsγ j and weighting coefficientsw j of the user

classes is shown in Table 4.1 . The total number of layersL = 47 and the rateless code’s

overhead is assumed again to beω = 5%. The number of symbols required to reach the

PSNR thresholdf−1(γ j), U j, α j = w jU j(1+w)/(1−σ j) and
√α j/U j is computed based

on the above given parameters.

First we consider the case where there is no transmission deadline, i.e., no outage

constraint. The optimization problem is thus in the form of Problem 4.21. Following
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Figure 4.4. Allocation of source symbols for an asynchronous multimedia multicast system

with two user classes and no transmission deadline with parameterw1 = 0.8.

the steps described in Section 4.5.2, we first compare the values of
√α j

U j
among different

classes. Since
√α3
U3

>
√

α2
U2

, from Lemma 4.2, the optimal solution must satisfyl2
U2

= l3
U3

.

Therefore, this Problem can be transformed into the form of Problem 4.22 by merging

Chunk 2 and Chunk 3 to a new chunk with parametersÛ2 = U2+U3 = 755 andα̂2 =

(

α j/U j +α j+1/U j+1
)(

U j +U j+1
)

= 554.9. Since
√

α̂ j

Û j
is now non-increasing, the opti-

mal solution of Problem 4.22 can be computed asl̂0
j =

L
√

α̂ j

∑Ĵ
i=1

√
α̂i
, j = 1,2,3. The parameters

and solutions for the transformed problem, Problem 4.22, ofthis example are summarized

in Table 4.2.

The optimal solution for Problem 4.21 can thus be obtained byl0
1 = l̂0

1, l0
2 = l̂0

2
U2

U2+U3
,
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Figure 4.5. Allocation of source symbols for an asynchronous multimedia multicast system

with two user classes and no transmission deadline with parameterw1 = 1.

l0
3 = l̂0

2
U3

U2+U3
andl0

4 = l̂0
4. With integer constraints, we obtainl1 = 14, l2 = 7, l3 = 10, l4 =

16. Alternatively, if we solve Problem 4.21 with parametersfrom Table 4.1 usingCVX [28],

a convex optimization software package for Matlab, we obtain the same optimal solution.

The number of source symbols allocated to each layer,Ki, i = 1,2, ...,L, are presented in

Fig. 4.8.

Finally, if outage constraints are considered, the optimalallocation scheme can be ob-

tained by solving Problem 4.10, or the transformed problem,Problem 4.11. Assume the

maximum number of transmitted packets allowed for all user classes is given by the dead-

line M0 and outage probability thresholds are given byτ j = 0.01, for j = 1,2,3,4. To
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Table 4.1. Parameters of the asynchronous multimedia multicast example with four user

classes.

User class index (j) 1 2 3 4

User erasure rateσ j 0.6 0.5 0.4 0

User QoS requirement (PSNR thresholdγ j(dB)) 25.79 27.25 29 40.28

number of decoded symbols required (f−1(γ j)) 400 700 1155 3800

weighting coefficient for Classj users (w j) 0.4 0.1 0.3 0.2

number of symbols for each chunk (U j) 400 300 455 2645

α j =
w jU j(1+ω)

1−σ j
420.0 63.00 238.9 555.5

√α j

U j
0.0512 0.0265 0.0340 0.0089

Table 4.2. Parameters and optimal solution of Problem 4.22 after transformation of the

asynchronous multimedia multicast example.

User class index (j) 1 2 3

number of symbols for each chunk (Û j) 400 755 2645

α̂ j 420.0 554.9 555.5

optimal solutionl̂0 14.2 16.4 16.4
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Figure 4.6. Allocation of source symbols for a two-user-class asynchronous multimedia

multicast system with outage constraintsl1 ≥ 25, l2 ≥ 17 and parameter 0≤ w1 ≤ 0.6.

show how the outage constraints affect the optimal allocation scheme in different situa-

tions, four different values ofM0, M0 = 60,100,140,180, are considered. For each value

of M0, we gradually increase the value ofKh j until the outage probability calculated by Eq.

(4.5) reaches the outage probability thresholdτ j. Denote the maximum value ofKh j that

keeps the outage probability below the threshold asK0
h j

. The outage probability constraint

is equivalent tol j ≥ θ j, whereθ j = ⌈U j/K0
h j
⌉. The resultingθ j for different choices ofM0

are shown in Table 4.3.

WhenM0= 60 orM0= 100, we can see that∑J
i=1θi > L, and no feasible solution exists.

WhenM0 = 180, as the optimal solution for Problem 4.5 without the outage constraint is
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Figure 4.7. Allocation of source symbols for a two-user-class asynchronous multimedia

multicast system with outage constraintsl1 ≥ 25, l2 ≥ 17 and parameter 0.8≤ w1 ≤ 1.

given byl0
1 = 14, l0

2 = 7, l0
3 = 10, l0

4 = 16, they all satisfyl j ≥ θ j for j = 1,2, ..,J. As a

consequence, the optimal solution for Problem 4.11 is the same as the optimal solution for

Problem 4.21.

WhenM0 = 140, we can seel0
1 > θ1, l0

2 > θ2, l0
3 > θ3, l0

4 < θ4 and∑J
i=1θi < L. There-

fore, the problem has feasible solutions and the optimal solution is no longer the same as

the case without outage constraints. Using the Matlab package, CVX, for specifying and

solving convex programs [28], we obtain the optimal solution for M0 = 140 asl1 = 13.03,

l2 = 5.95, l3 = 9.02 andl4 = 19.00. With integer constraints, the solution is given by

l1 = 13, l2 = 6, l3 = 9 andl4 = 19. The number of symbols allocated to each layer is
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Figure 4.8. Allocation of source symbols for the asynchronous multimedia multicast sys-

tem with four user classes without transmission deadline.

presented in Fig. 4.9. It can be seen that with a transmissiondeadlineM0 = 140, some of

the source symbols that are originally allocated to the layers within Chunk 4 are instead

allocated to layers within Chunks 1 to 3.

4.7 Conclusions

We show that the problem of optimal allocation of UEP rateless codes for asynchronous

multimedia multicast [25] [26] can be transformed into a convex optimization problem

when integer constraints are relaxed. Because the problem is convex and the total number

of variables for the transformed problem is equal to the number of user classes, the solution
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Table 4.3. The values of thresholdsθ j given different maximum number of transmitted

packetsM0

M0 θ1 θ2 θ3 θ4

60 25 14 16 44

100 13 7 9 27

140 9 5 6 19

180 7 4 5 15

is much simpler. In addition, an analytical solution is found for the case when there are

no outage constraints [25], which has several orders of magnitude lower computational

complexity compared to the greedy search algorithm proposed in [25]. For the more general

formulation with outage constraints [26], an analytical solution is found for the special case

of two user classes, and numerical methods of convex optimization software [27] [28] can

be used to solve the more general cases.
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Figure 4.9. Allocation of source symbols for the asynchronous multimedia multicast sys-

tem with four user classes with maximum number of transmitted packetsM0 = 140.
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Chapter 5

Cross-layer rate allocation for wireless

transmission

5.1 Introduction

To date, most studies of raptor codes focus on memoryless erasure channels where the

erasure rate is fixed and known. However, due to the time varying nature of wireless chan-

nels, a physical-layer code is required to provide protection against fading and noise. In

most communication systems, the physical-layer code and application-layer erasure code

are studied separately. The quality of service (QoS) is usually guaranteed by the physical

layer code to ensure a packet error rate (PER) below a certainlevel (1 percent for exam-

ple). The packets that fail to be decoded by the physical-layer code are then corrected at the

packet level by an erasure FEC or retransmitted using an automatic repeat request (ARQ)

protocol. This scheme usually results in very little protection at the packet level. From an

information theory perspective, since one can always use anideal physical layer code to
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drive the packet error rate to zero, erasure protection at the packet-level is not needed. If

such an ideal physical layer code could be designed at a rate nearly equal to the information

capacity that the channel supports, then a scheme without packet level erasure protection

would be indeed “optimum”. However, in practice, such an ideal physical-layer code does

not exist, especially for time varying fading channels.

As the system simulation results in [20] suggest, in a raptorcoded broadcast system,

an optimal combination of physical and application-layer code rates exists. In many cases,

a higher physical layer PER that is corrected by the application-layer raptor code can be

more efficient than traditional designs. However, the results provided in [20] are from sys-

tem simulations, and do not provide sufficient insight and quantification of the optimal rate

combination. In [51], we also select the best overall code rates by evaluating the capacity

of raptor codes in hybrid error-erasure channels when different physical layer code rates

are used (see Fig. 4 of [51]), but do not attempt to find the optimal rate combination. Re-

cently, [52] discusses certain aspects of the balance between the physical-layer code rate

and packet-level erasure code rate in Rayleigh block fadingchannels. However, the for-

mulation in [52] considers transmitting a prescribed number of information bits within a

given transmission time. The rate of the packet-level rateless code is fixed during the whole

transmission period. The objective of the optimization in [52] is to minimize the operational

channel average SNR under certain outage constraints. The analysis in [52] provides theo-

retical insights of the best physical layer and applicationlayer rate combination. However,

in systems where the objective is to maximize throughput, the optimal solution in [52] can

be very inefficient if the actual channel average SNR is knownand much higher than the
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minimum operational SNR. In addition, [52] considers an ideal physical-layer code which

gives a zero packet error rate as long as the code rate is belowthe information capacity that

the channel supports. Finally, [52] also does not consider rate adaption in the physical-layer

when the channel fading is slow.

In this chapter, we investigate the optimal combination of physical-layer code rate and

application-layer rateless code rate for systems in fadingchannels. The application-layer

rateless code is assumed to keep generating coded packets onthe fly until all erroneous

packets are corrected. Therefore, the “rateless” propertyis exploited in our scheme to drive

outage to nearly zero; while in [52], the erasure code rate isfixed during transmission

and there is a certain probability of outage. In addition, compared to [52], more practical

error curves for physical layer codes are used. We consider Rayleigh fading channels with

both slow and fast fading. For fast fading channels, we find the optimal physical-layer

modulation and code rate that maximizes the overall system throughput. We compare the

proposed choice of the physical-layer code rate to the traditional choice of the physical-

layer code rate to demonstrate the advantage of the proposedoptimization method.

For slow fading channels where physical-layer rate adaptation is feasible, we propose

a cross-layer adaptive modulation and coding scheme which maximizes overall system

throughput. Adaptive modulation and coding (AMC) (e.g [53]) have been proposed for the

physical layer in the literature for many different communication scenarios. In [54], AMC

have been used in combination with truncated automatic repeat request (ARQ). However,

all existing adaptive schemes essentially choose the modulation and coding mode to guar-

antee minimum PER requirement rather than provide the best overall system performance.
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We derive the overall system throughput for different scenarios and compare the proposed

cross-layer AMC design to traditional non cross-layer AMC designs.

The rest of this chapter is organized as follows: Section 5.2describes the system setup,

channel models, as well as introduces the performance measures in application-layer raptor

coding and physical-layer modulation and coding. Section 5.3 discusses and derives the

throughput performance of the proposed cross-layer transmission in fast fading channels

as well as the cross-layer AMC design in slow fading channels. Section 5.5 presents the

numerical results, which includes a comparison between theproposed cross-layer design

and traditional non cross-layer design.

5.2 System setup and channel models

5.2.1 System model

The paper considers a two-layer model where the transmitterattempts to deliver messages

to single or multiple users. The information bits are divided into data frames. Each data

frame contains a total ofK source symbols which are encoded by a raptor code to generate

a potentially infinite number of raptor-encoded symbols. Each source symbol or raptor-

encoded symbol consists ofSR bits. A packet is formed byLR raptor encoded symbols

(Pd = LRSR bits) together with packet header information (Ph bits) and cyclic redundancy

checks (CRC) (PCRC bits). Thus the total number of bits within each packet,PP, is given

by PP = Pd +Ph +PCRC. Each packet is further protected by a physical-layer code with a

code rateRc and modulated usingM-QAM and transmitted to the wireless fading channel.
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Finally, pilot symbols are added to every one or more code frames depending on how fast

the channel fades. The structure of each packet is shown in Fig. 5.1. For each data frame,

the transmitter keeps sending packets until either it receives acknowledgements from all

the intended receivers or until the maximum number of packets allowed has been reached.

After that, the transmitter starts to transmit the next dataframe. On the receiver side, each

user first demodulates and decodes the physical-layer code and checks its correctness with a

CRC. If there are uncorrected errors, the entire packet is dropped. Otherwise, the correctly

decoded packets are further used to decode the original information data using a raptor

decoder. Once the receiver successfully decodes the data frame, an acknowledgement is

sent to the transmitter. LetNp be the actual number of packets transmitted for each data

frame. Then the number of raptor encoded symbols sent isKt = NpLR. For analytical

simplicity, we assumeLR = 1, i.e, each raptor coded symbol is a physical-layer packet.
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encoder 

Header         Data  payload                               CRC
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Physical layer coding (Rate       ) 
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Figure 5.1. System setup and packet structure.
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To quantify the overall system performance, we calculate the overall system throughput

in terms of the average number of information bits transmitted per channel symbol. To

simplify the notation, defineRR = K/Kt as the realized raptor code rate,εp = (PCRC +

Ph)/Pd as the packet overhead wherePh, PCRC and Pd = LRSR are the numbers of bits

representing packet header information, CRCs, and data payload in each physical-layer

packet, respectively.Rm = log2M is the modulation rate. Then the system throughput,

which is defined by the total number of information bits divided by total number of channel

symbols used, can be calculated as

T P =
total number of information bits
total number of channel symbols

=
KSR

PPNP/(RmRc)

=
KSR

PdNP

1
1+ εp

RmRc

=
KSR

LRSRKt/LR

1
1+ εp

RmRc

=
1

1+ εp
RmRcRR bits/channel symbol. (5.1)

5.2.2 Physical-layer channel model

We assume the link between the server and all the users to be modeled as independently and

identically distributed (i.i.d) Rayleigh block fading channels. The channel quality of each

user is characterized by the instantaneous signal-to-noise-ratio (SNR)γ. In the Rayleigh

fading model, the probability density function (pdf) of theinstantaneous channel SNRγ
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can be characterized as:

fγ(γ) =
1
γ̄

exp−1
γ̄
, (5.2)

whereγ̄ is the average channel SNR.

We also categorize the channel fading into two different scenarios depending on the

coherence time of channel fades. In the fast fading scenario, we assume that the coherence

time of the channel fades are of a similar length to the packettransmission time. Therefore,

the instantaneous channelSNR remains the same for each packet, but varies from packet

to packet. In the slow fading scenario, we assume the coherence time to be much longer

than the transmission time of a raptor coded data frame. Therefore, for slow fading, the

instantaneous SNR is assumed to remain the same for the wholeraptor coded data frame

but varying from frame to frame. It is also assumed that the instantaneous channel SNR is

available to the transmitter in the slow fading scenario.

5.2.3 Packet error rate and physical layer design

At the physical layer, we consider possible choices of multiple transmission modes with

different combinations of modulation and convolutional coding pairs as in [54], which are

borrowed from HIPERLAN/2, IEEE 802.11a and 3GPP standards.For analytical simplic-

ity, we use the PER expressions developed in [54], where for agiven modulation and code

pair in moden, the packet error rate is approximated by:

PERn(γ) =



















1 if γ < γpn

an exp(−gnγ) if γ ≥ γpn

(5.3)
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whereγ is the instantaneous channel SNR, which is assumed to remainunchanged for the

whole packet. In [54],an,gn andγpn are parameters that are mode-dependent. The param-

eter values for different uncoded M-QAM (rectangular) modulations (TM1) and convolu-

tionally coded modulations (TM2) are listed in Table I and Table II of [54], respectively.

5.2.4 Application-layer raptor codes

Raptor codes see a virtual erasure channel in the application layer. The erasure probability

Pe is equal to the packet error rate. The decoding failure probability of the raptor code used

in the 3GPP standard can be well modeled by the following equation [20],

Pf ail(Ks,K) =



















1 if Ks ≤ K

abKs−K if Ks > K

(5.4)

wherePf ail(Ks,K) denotes the probability that the receiver fails to decodeK source packets

afterKs packets are successfully received anda= 0.85 andb= 0.567 are constants. Denote

Ks andKt as random variables representing the number of successfully received packets,

and the total number of transmitted packets during the transmission of one raptor code

frame, respectively. Consider a continuous transmission of q frames. The effective raptor

code rateRR = qK
∑q

i=1 Kt(i)
, whereKt(i) is the number of packets transmitted during thei-th

frame. Asq gets large over a long time, according the weak law of large numbers (WLLN),

1
q ∑q

i=1 Kt(i)→ E(Kt). Therefore, the average long-term effective raptor code rate can be

evaluated asRR = K/E(Kt).

To evaluateE(Kt), since the packets transmitted through the erasure channelrepresent

a Bernoulli process with failure probability equal to the erasure probabilityPe, it can be
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shown (proof-omitted, see e.g. [55]) that the random variable Kt , conditioned onKs follows

a negative binomial distribution, with average value equalto E(Kt |Ks) =
Ks

1−Pe
. Hence

E(Kt) = E(E(Kt|Ks)) = E( Ks
1−Pe

) =
E(Ks)
1−Pe

. To calculateE(Ks) using Eq. (5.4), we have, for

a positive integerx,

P(Ks = K+ x) =Prob(decoding failure whenKs < K + x)

×Prob(decoding success whenKs = K+ x)

=
x−1

∏
i=0

(abi)(1−abx); (5.5)

Therefore,

E(Ks) =K+
∞

∑
x=0

xP(Ks = K + x)

=K+
∞

∑
x=0

x[
x−1

∏
i=0

(abi)(1−abx)]

=K+
∞

∑
x=0

xaxbx(x−1)/2(1−abx)

=K+C, (5.6)

whereC is a constant that can be easily evaluated numerically (hereC ≃ 1.39). Therefore,

the realized raptor code rate1 can be evaluated as

RR =
K

E(Kt)
=

K(1−PER)
K +C

=
(1−PER)

1+ εr
, (5.7)

wherePER is the packet error rate andεr = C/K is defined as the raptor code overhead,

which decreases as the raptor code dimensionK increases. It should be noted that Eq. (5.4)

1We have assumed that the maximum number of transmitted symbols for each code frame is large enough

except whenPER = 1, in which case an outage event occurs.
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used in this section is not critical to the results of this chapter. This is because the optimal

choice of physical layer modulation and code pairs does not depend on the average code

overheadεr.

5.3 Performance analysis in fast fading channels

In the fast fading scenario, each raptor encoded packet experiences a different instantaneous

SNR. Therefore the erasure rate for application layer raptor codes is equal to the PER

averaged over different channel SNRs. Therefore, for a given transmission moden (with

modulation ratemn = log2M and code rateRcn), using Eqs. (5.3) and (5.2), the erasure rate

for the raptor code is:

Pe(n) =
∫ ∞

0
PERn(γ) fγ(γ)dγ (5.8)

=

∫ γpn

0
fγ(γ)dγ +

∫ ∞

γpn

an exp(−gnγ) fγ(γ)dγ

=1−exp(−γpn

γ̄
)+

an

γ̄gn +1
exp(−(gn +

1
γ̄
)γpn).

By substituting Eqs. (5.7), (5.8) andPER = Pe(n) into Eq. (5.1), the system throughput

in fast fading for given transmission moden is given by

T Pf ast(n) =
1

1+ εp
mnRcnRR

=
1

(1+ εp)(1+ εr)
mnRcn(1−PER)

=
1

(1+ εp)(1+ εr)
mnRcn(1−Pe(n))

=
1

(1+ εp)(1+ εr)
mnRcn(exp(−γpn

γ̄
)
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− an

γ̄gn +1
exp(−(gn +

1
γ̄
)γpn)). (5.9)

5.3.1 Traditional non cross-layer scheme

Commonly, the physical layer modulation and coding design is independent of the upper

layer design. The QoS is guaranteed entirely by the physicallayer which ensures that the

packet dropping rate is below a certain level. Therefore, when a traditional non cross-layer

scheme is used, the transmitter chooses the transmission mode with the highest modulation

and coding rate which guarantees that the average PER (or erasure rate) is below a certain

valuePloss. Therefore, for a known averageSNR, transmission moden is chosen according

to the following criterion:

n = argmax
n

(mnRcn) subject toPe(n)≤ Ploss. (5.10)

We remark thatPloss = 0.01 is chosen for all performance comparisons in this thesis.

5.3.2 Proposed cross-layer scheme

In the proposed cross-layer scheme, the physical layer design is aware of the application

layer FEC. Here, the QoS is guaranteed by both the physical layer and the application layer

FECs. The application layer rateless code is able to correctdropped packets by generating

sufficient numbers of raptor encoded packets to drive the outage probability to nearly zero.

Therefore, the objective of the proposed cross-layer design is to maximize the overall sys-

tem throughput. Since the overhead parametersεp andεr are independent of moden, the

criteria for choosing the transmission moden based on our proposed cross-layer scheme
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can be found by using the mode that maximizes Eq. (5.9):

n = argmax
n

{T Pf ast(n)}

= argmax
n

{mnRcn(exp(−γpn

γ̄
)

− an

γ̄gn +1
exp(−(gn +

1
γ̄
)γpn))}. (5.11)

5.4 Performance analysis in slow fading channels

When the fading is slow, the instantaneous SNR remains the same for each raptor coded

data frame. Therefore, the throughput performance in slow fading channel can be obtained

by averaging the throughput performance for a given SNR overthe distribution of SNR. For

any given SNR, it is assumed that the rateless code in the application layer experiences a

memoryless erasure channel. Therefore, Eq. (5.7) can stillbe used to compute the realized

rateless code rate. By substituting Eq. (5.7) to Eq. (5.1), we obtain that the system through-

put performance for a given SNRγ, which is the same as the throughput performance in an

AWGN channel, when moden is chosen and is given by:

T PAWGN(n,γ) =
mnRcn(1−PERn(γ))

(1+ εp)(1+ εr)
, (5.12)

wherePERn(γ) is given by Eq. (5.3).

5.4.1 Non adaptive scheme

When a non-adaptive scheme is used, the transmission moden is fixed during the whole

transmission period. The long term average throughput for anon-adaptive scheme using
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moden is then given by:

T Pslow(n) =
∫ ∞

0
T PAWGN(n,γ) fγ(γ)dγ. (5.13)

By substituting Eqs. (5.12) and (5.3) into Eq. (5.13), we obtain,

T Pslow(n) =
1

(1+ εp)(1+ εr)
mnRcn(exp(−γpn

γ̄
)

− an

γ̄gn +1
exp(−(gn +

1
γ̄
)γpn)). (5.14)

5.4.2 Proposed cross-layer AMC scheme

For the slow fading scenario, we propose a cross-layer AMC scheme where the transmis-

sion mode is chosen according to the instantaneous SNR to maximize the system through-

put. In this case, for a given instantaneous channel SNRγ, the modulation and coding

mode is chosen according to

n = argmax
n

{mnRcn(1−PERn(γ))}, (5.15)

wherePERn(γ) is given by Eq. (5.3).

Without loss of generality, it is assumed that the transmission modes are ordered such

thatmnRcn is monotonically increasing withn, andN is the total number of available trans-

mission modes. As shown later in Figs. 5.2 and 5.3, when the SNR γ is low but greater

thanγp1, transmission mode 1 provides the maximum throughput. While SNRγ gradually

increases, the index of the best transmission moden also increases. The design criteria can

be further simplified to choose moden when the SNRγ lies betweenγn andγn+1, where

γ1 = γp1, γN+1 = ∞ andγn(n = 1,2, ...,N) is the solution to the following equation,

(1−an−1exp(−gn−1γn))×mn−1Rc(n−1)
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= (1−an exp(−gnγn))×mnRcn (5.16)

for n = 1,2, ...,N, When the channel SNR is belowγp1, the PER approaches 1, and an

outage event occurs. The outage probability can be calculated as

Pout =

∫ γp1

0
fγ(γ)dγ = 1−exp(−γp1

γ̄
). (5.17)

The probability that moden is chosen is given by:

Pn =
∫ γn+1

γn

fγ(γ)dγ = exp(−γn

γ̄
)−exp(−γn+1

γ̄
). (5.18)

Therefore, the long-term average system throughput using the proposed cross-layer AMC

scheme can be evaluated as:

T PAMC =
N

∑
n=1

PnE(T PAMC|γn < γ ≤ γn+1)

=
N

∑
n=1

Pn

∫ γn+1

γn

T PAWGN(n,γ)
fγ(γ)
Pn

dγ

=
N

∑
n=1

∫ γn+1

γn

T PAWGN(n,γ) fγ(γ)dγ. (5.19)

Applying Eqs. (5.2) and (5.12) to Eq. (5.19), we obtain the average throughput

T PAMC =
1

(1+ εh)(1+ εr)
{

N

∑
n=1

mnRcn × [exp(−γn

γ̄
)

−exp(−γn+1

γ̄
)+

an

bnγ̄
exp(−bnγn+1)

− an

bnγ̄
exp(−bnγn)]}, (5.20)

wherebn = gn +1/γ̄ .
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5.4.3 Non cross-layer AMC scheme

Traditionally, AMC design in physical layer is independentof data link layer and applica-

tion layer designs. If AMC is used in a traditional non cross-layer design, the transmitter

chooses the transmission mode with the highest modulation and coding rate while still en-

suring the packet error rate given the current channel instantaneous SNR is below threshold

Ploss. Therefore, the choice of the modulation and coding pair is according to the following

criterion:

n = argmax
n

(mnRcn) subject toPERn(γ)≤ Ploss, (5.21)

wherePERn(γ) is given by Eq. (5.3). The outage probability and overall throughput using

a traditional non cross-layer AMC scheme can be obtained similarly except the threshold

γn is

γn =
1
gn

ln(
an

Ploss
). (5.22)

Note that the choice of the transmission mode of the non cross-layer AMC scheme de-

scribed above is the same as that of the AMC design described in [54]. The only difference

is that the thresholdPtarget is used in [54] instead ofPloss used in this chapter, wherePtarget

is a constant determined by the maximum number of re-transmission attempts allowed in

the ARQ protocol as well as by the maximum packet loss rate after the re-transmission

attempts.
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5.5 Numerical Results

With a packet lengthPp = 1080 bits, the parametersan,gn,γpn for calculating packet error

rates under different modulation and coding modes have beenlisted in Table I and Table II

of [54]. The throughput performance of the combinations of different modulation and cod-

ing schemes (uncoded and convolutionally coded) with erasure raptor codes over AWGN

channels can be calculated by Eqs. (5.12) and (5.3). The throughput performances of un-

coded M-QAM modulations and convolutionally coded M-QAM modulations in AWGN

channels are shown in Figs. 5.2 and 5.3, respectively. Without loss of generality,εp = 0

andεr = 0 are used for Figs. 5.2 and 5.3. Although the focus of the chapter is on fad-

ing channels, the results for AWGN channels are also presented to illustrate how different

modulation and coding modes are chosen at different SNRs in adaptive schemes. From

−5 0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

SNR (dB)

T
hr

ou
gh

pu
t (

bi
ts

/s
ym

bo
l)

 

 
BPSK
QPSK
8−QAM
16−QAM
32−QAM

Figure 5.2. Throughput performance of uncoded packets in AWGN channels.
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Figure 5.3. Throughput performance of convolutinally coded packets in AWGN channels.

Figs. 5.2 and 5.3, it can be seen that the best modulation and coding mode which maxi-

mizes the throughput differs for different SNRs. In very lowSNR, coded BPSK offers the

best throughput performance; while at high SNR, uncoded high level modulation is best.

This is to be expected, as in low SNR, low-rate codes and modulation schemes should be

chosen to achieve an acceptable packet error rate; On the other hand, in high SNR, a small

packet error rate can be easily corrected by the raptor codes, and a high-rate modulation and

coding scheme can achieve a higher rate. Therefore, it is beneficial to use AMC to select

the best modulation and coding mode according to the SNR whenthe channel varies over

time. Comparing all the curves in both Figs. 5.2 and 5.3, it can be seen that the uncoded

schemes using BPSK, QPSK, 8-QAM and 16-QAM does not offer maximum throughput

at any SNR. Therefore, in the proposed AMC scheme for slow fading channels, only the
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coded modulation mode and uncoded 32-QAM, 64-QAM, 128-QAM transmission modes

are candidates.

We next compare the performance of different choices of modulation and coding schemes

in fast fading channels. Without loss of generality, for allthe numerical results presented

afterwards, it is assumed that packet overheadεp = 2%, raptor code dimensionK = 256

and raptor code overheadεr =C/K = 0.0054. Fig. 5.4 shows the throughput performance

of the proposed cross-layer optimized transmission mode for Rayleigh fading channels for

different average SNRs. For comparison, throughput performance of three specific trans-

mission modes as well as the transmission mode chosen by the non cross-layer scheme are

also shown in Fig. 5.4. For all the curves in Fig. 5.4, the throughput is calculated using Eq.

(5.9), with the transmission moden being selected according to the corresponding criteria

described as follows: for the “proposed cross-layer selection scheme”, the transmission

moden is selected according to the criteria described by Eq. (5.11); for the traditional “non

cross-layer selection scheme”, the transmission moden is chosen according to the crite-

ria described by Eq. (5.10); for the curves representing specific transmission moden, the

modulation and coding pair used for the transmission is pre-designed and fixed for all the

average SNR values. It can be seen that the proposed cross-layer transmission scheme of-

fers significantly better overall system performance over most of the SNR range compared

to the traditional non cross-layer transmission scheme.

Fig. 5.5 shows the resulting average packet error ratePe(n) for the proposed cross-layer

scheme and the traditional non cross-layer scheme in fast fading channels. The average

PER is calculated using Eq. (5.8) with the transmission moden selected according to the
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corresponding criteria. It can be observed that while traditional non cross-layer schemes

use strong and conservative physical layer coding to guarantee a low PER, the optimal

choice of transmission mode from a throughput maximizationperspective involves trans-

mission with a high PER to be corrected by the application-layer raptor code. Note that in

the case of low SNR where a PER below 0.01 cannot be guaranteedfor the traditional non

cross-layer scheme no matter which transmission mode is used, the PER is computed by

choosing the transmission moden = 1 which corresponds toBPSK modulation with code

rateRc = 1/2.
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Figure 5.4. Throughput performance comparison for fast fading (εp = 0.02,K = 256,εr =

0.0054).

In Fig. 5.6, for the slow fading scenario, the throughput performance of the proposed

cross-layer AMC scheme is shown in comparison with the best performing non-adaptive
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Figure 5.5. Average packet error rate in fast Rayleigh fading channels.

scheme, as well as AMC using traditional non cross-layer design criteria. When the pro-

posed cross-layer AMC scheme is used, the transmission moden for any given instanta-

neous SNRγ is chosen according to the criteria described in Eq. (5.15).The throughput

performance of the cross-layer AMC scheme is given by Eq. (5.20), where the threshold pa-

rametersγn is given by the solution of Eq. (5.16). When the non cross-layer AMC scheme

is used, the transmission moden for any given instantaneous SNRγ is selected according

to criteria described by Eq. (5.21) and the throughput of noncross-layer AMC scheme is

calculated using Eq (5.20) with parametersγn given by Eq. (5.22). For the non-adaptive

schemes, the throughput performance is calculated using Eq. (5.14), where for each given

average SNR̄γ, the best performing transmission moden = argmaxn{T Pslow(n)} is cho-

sen, whereT Pslow(n) is the throughput given by Eq. (5.14). Note that we have shown
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two curves of non-adaptive schemes where the candidate transmission modes are limited to

either uncoded modulation modes or convolutionally coded modulation modes. It can be

seen that both non cross-layer and cross-layer AMC schemes outperform the best perform-

ing non-adaptive schemes. The cross-layer AMC design performs better than traditional

non cross-layer AMC design across the entire average SNR range considered. For exam-

ple, at an average SNR of 10dB, the cross-layer AMC, traditional AMC, and non AMC

designs achieve throughputs of 1.68, 1.42, and 1.10 bits/symbol, respectively.
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Figure 5.6. Throughput performance comparison for slow fading (εp = 0.02,K = 256,εr =

0.0054).

Fig. 5.7 shows the PER of the transmission mode chosen by the proposed cross-layer

and traditional non cross-layer schemes as a function of instantaneous SNRs for the slow

fading scenario. It can be seen that while traditional non cross-layer schemes keep the PER

very low (belowPloss = 0.01), the proposed optimized cross-layer scheme allows much
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larger PER to be corrected by the application-layer raptor codes.
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Figure 5.7. Packet error rate of traditional and optimal choice of transmission mode as a

function of instantaneous SNR.

5.6 Conclusions

This chapter studies the optimal combination of the physical layer and application-layer

raptor code rates for rateless coded communication systems. We consider both slow and

fast Rayleigh fading channels. We propose a cross-layer scheme to optimize the set of avail-

able physical-layer modulation and coding pairs. In addition, a cross-layer adaptive modu-

lation and coding design is proposed for the slow fading scenario. The system throughput

performance that considers both physical-layer code rate and application-layer erasure code

rate is analyzed. Numerical results show that the proposed cross-layer design outperforms
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traditional non cross-layer design significantly in both slow and fast fading channels.
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Chapter 6

Hybrid error-erasure decoding of raptor codes

over wireless channels

6.1 Introduction

In wireline internet communications, as packets can be lostdue to network congestion, the

channel can be easily modeled by a packet erasure channel. Inwireless communications,

packets can be both lost and corrupted. Traditionally, corrupted packets are discarded and

not forwarded to the application layer. These dropped packets are either re-transmitted

using an automatic repeat request (ARQ) protocol or are recovered using application layer

forward error correction (FEC) codes. These schemes can result in large packet drops and

hence very low throughput when the channel condition is poor. To mitigate the inefficiency

of such schemes, newer cross-layer protocols allow corrupted packets to be relayed into the

application layers. With these protocols, the applicationlayer FEC sees both erasures and

errors. Such channels can be modeled as hybrid error-erasure channels. The simplest form
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of a hybrid error-erasure channel is the binary symmetric channel with erasures (BSCE).

To date, most of the applications envisioned for raptor codes assume a perfect erasure

channel [20]. For example, authors in [20] investigated theapplication of raptor codes

in download delivery of multimedia broadcast and multicastservices (MBMS). In their

system, packets which contain errors that are not fully corrected by the physical layer turbo

code are discarded. Such schemes may result in large numbersof dropped packets in

poor channel conditions. The performance of raptor codes over noisy channels have been

investigated using soft decoding [22] [23] [56]. It is foundin [22] that unlike binary erasure

channels (BECs), the optimal degree distribution for raptor codes is no longer universal

for binary input additive white gaussian noise (BIAWGN) andbinary symmetric channels

(BSCs), but depends on the noise level. Nevertheless, a raptor code designed for BEC

performs quite well in BSC and BIAWGN channels [22] [23]. Therefore, raptor codes

are good FEC candidates in correcting both erasures and errors. However, soft decoding

schemes are usually more complex than traditional erasure decoding schemes. In addition,

raptor codes are not originally designed as physical layer codes, and incorporating raptor

codes directly in the physical layer would require modification to the whole system design

which is not practical. To date, the performance of raptor codes for hybrid error-erasure

channels has not been explored.

In reality, wireless fading channels are correlated, whichresults in a burstiness of bit

errors and erasures. A FEC usually performs best when each code symbol experiences

independent fading. The traditional way to deal with channel memory is to interleave

the encoded symbols prior to transmission. However, interleaving introduces large delays
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and complexity, motivating the study of the performance of raptor codes in channels with

memory. To the author’s best knowledge, only [56] [57] have addressed this issue. In [56],

the authors study the performance of fixed-rate raptor codesover Rayleigh fading channels

with memory via simulation. However, [56] considers raptorcodes as a pure physical

layer code, while the conventional usage of raptor codes areapplication-layer FEC codes.

Also, hybrid error-erasure channels have not been considered in [56]. In [57], application

layer raptor codes are evaluated over DVB-H where shadowingand effects of memory

are taken into consideration. However, [57] considers traditional non-cross-layer protocols

which drop all corrupted packets and render pure erasure channels for the raptor codes.

Finally, [57] assumes that raptor codes have a fixed two-percent overhead, which is not

realistic.

Recently, two general cross-layer communication protocols, known as hybrid error-

erasure protocols (HEEPs), are applied to Reed Solomon (RS)codes and low density parity

check (LDPC) codes in wireless multimedia/video transmission [58]. These HEEPs allow

corrupted packets to be relayed into the application layers. However, the protocols in [58]

have not been applied to rateless raptor codes and do not model practical physical layer

channels and the behavior of physical layer FECs. In addition, channel memory has not

been considered in [58].

In this chapter, we first analyze and simulate the performance of actual raptor codes

over BSCE and Gilbert-Elliott (GE) channels, which have notbeen studied in the litera-

ture. These are fundamental channel models that are formed by different cross-layer and

non-cross-layer protocols. By using the rateless propertyof raptor codes, we reveal the
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relationship between the overheads of raptor codes over BSCand BSCE channels; by sim-

ulating the performance of actual raptor codes over GE channels using iterative decoding,

we demonstrate the desirable performance of raptor codes inchannels with memory and

investigate the effect of channel memory as well as the availability of channel state infor-

mation (CSI).

We then investigate performance of raptor codes in MBMS file downloading services

when either different cross-layer protocols or conventional protocols are applied. The rap-

tor coded packets experience both packet erasures due to network congestion and packet

corruptions due to wireless fading and noise. Channel memory in both the wireline chan-

nel and the wireless channel have been considered. By takingchannel memory and the

behavior of physical layer turbo codes into account, we model the channel that the raptor

code experiences as a hierarchical Markov model. We derive the transition probabilities

based on the turbo code rate and parameters of correlated Rayleigh fading. The main dif-

ference between this channel model and a regular Markov-type model (such as the well

known GE channel) is the choice of channel states. Rather than the usual choice of good

and bad states, the three states used in this model (erasure states, corrupt states and correct

states) directly represent the results of the physical layer decoder. With this model, the

two cross-layer protocols considered here only differ in the availability of side information

about the instantaneous channel state. Therefore, based onthis model, we are able to easily

evaluate and compare the performance of different cross-layer and conventional protocols

in channels with memory.

We also propose a hybrid erasure-soft raptor decoding scheme to implement cross-layer
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protocols with respect to application layer raptor codes. The decoding scheme improves

system performance substantially compared to that of conventional protocols [20] with

modification required only on the receiver side. The main newidea of the decoding scheme

is to perform traditional erasure decoding based on the correct packet transmission first and

soft iterative decoding based on corrupted packets afterwards. In broadcasting applications,

each user/receiver also has the flexibility to choose whether to use traditional erasure de-

coding or the proposed hybrid decoding depending on channelconditions and individual

quality of service (QoS) requirements. Therefore, the hybrid decoding provides a flexible

balance between performance and complexity. For example, when the channel quality is

good and the physical layer code is able to correct all the errors in most packets, the receiver

can recover all information using simpler traditional erasure decoding methods; when those

non-corrupt packets are insufficient to decode all the source information, the receiver can

collect soft information from corrupted packets to help in the decoding process. Third, we

evaluate the system throughput using different turbo code rates and simulate performance

of an actual raptor code using different protocols in various channel conditions.

The rest of the chapter is organized as follows. In Section 6.2, performance of raptor

codes over BSCE channels is derived. Section 6.3 presents performance of raptor codes

over GE channel using iterative decoding. In section 6.4, wefirst describe the overall

MBMS system model and the application of cross-layer protocols to our system. We then

illustrate the channel modeling and derive the transition probabilities based on the physical

layer parameters. In Section 6.5 , we evaluate the application-layer capacity and maximum

system throughput when different turbo code rates are used.In Section 6.6, we first provide
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relevant background information of raptor codes. We then describe the proposed hybrid

erasure-soft decoder for different cross-layer protocols. Section 6.7 shows the simulation

results of raptor codes using conventional and cross-layerprotocols in various channel

conditions. Section 6.8 provides the main conclusions for this chapter.

6.2 Performance of raptor codes over BSCE channels

6.2.1 Hybrid error-erasure channels

The simplest form of hybrid error-erasure channel is the BSCE channel (Fig. 6.1). The

0 0

e

11

1

1

x y

Figure 6.1. BSCE channel model with erasure probabilityα and bit error probabilityp
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BSCE channel is a discrete-input, discrete-output channelwith input alphabetx ∈ {0,1}

and output alphabety ∈ {0,E,1}. The erasure probabilityα = Pr(y = E|x = 0) = Pr(y =

E|x = 1), and the error probabilityβ = Pr(y = 1|x = 0) = Pr(y = 0|x = 1). Denote the

probability that a bit error occurs conditioned on the case that the information bit is not

erased asp. Thenp = β
1−α and the information capacity of such a hybrid channel can be

easily calculated as [5],

C = (1−α)(1−hb(p)), (6.1)

wherehb(p) = −p logp− (1− p) log(1− p) is the binary entropy function. In the fol-

lowing, we useBSCE(α, p) to represent a BSCE channel with erasure probabilityα and

conditional error probabilityp.

6.2.2 Raptor codes over BSCE channels

As a rateless code, the performance of raptor codes over BSCEchannels can be measured

by the average overhead for which all the information bits are successfully decoded. To

decode raptor codes, the receiver collects output bits and records the reliability of the bit

as a measure of the amount of information received. Once the total amount of information

received exceeds that of the source, the receiver starts to decode. If decoding fails, the

receiver waits for a certain number of bits and again attempts to decode. For a raptor code

with K information bits, letKt represent the number of generated coded bits required for

successive decoding. The overhead of raptor codes is definedas

ε =
Kt − (K/C)

(K/C)
=

C
R
−1, (6.2)
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whereC is the channel capacity andR = K/Kt is the realized rate. Then the following

property is satisfied:

Property 6.1: The average overhead of a raptor code (or LT code) required for success-

ful decoding over aBSCE(α, p) channel is the same as that over aBSC(p) channel.

Intuitively, the property can be interpreted as a compensation for erasure loss: the raptor

codes need to generate more code bits by the factor corresponding to the erasure rate for

BSCE(α, p) channels compared to that ofBSC(p) channels. However, the number of bits

erased, successfully received as well as the ratio between them vary for each realization.

Although the numbers and the patterns of bits discarded are irrelevant to the code perfor-

mance, they are important in practice as they contribute to the time that the receiver needs

to wait for successful decoding. A simple formal proof for this property is as follows:

Proof: Consider a rateless raptor code transmitted over a BSCE(α,p) channel. Denote

S andX as random variables representing the numbers of coded bits received and the coded

bits erased on successful raptor decoding, respectively. The average number of coded bits

generated is then̄Kt = E{S+X}. By taking the expectation conditioned onS, we have

K̄t = E{S+X} = ES{E{S+X |S}}= ES{S+E{X |S}}. If an un-erased bit is considered

as a successful trial and an erased bit is considered as a failed trial with failure probability

equal toα, then conditional on the number of successful trialsS = s, it is easily shown that

X follows a negative binomial distribution which gives the probability of s−1 successes

andx failures inx+ s−1 trials, and success on the(x+ s)-th trial, i.e.,

PX |S(x|s) =









x+ s−1

s−1









(1−α)sαx. (6.3)
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Since the average of the negative binomial distribution is easily computed asE{X |S} =

α
1−α S, E{S + X} = 1

1−α E{S}. By substituting (6.1) into (6.2), the average overhead is

obtained as̄ε =
K̄t−(K/C)
(K/C) = E{S}(1−hb(p))K−1−1. Since erased bits do not contribute

to code performance, and each coded bit is generated independently,E{S} is the same for

theBSCE(α, p) channel andBSC(p) channel. Hencēε is also independent of erasure rate

α. �

As a corollary to of Property 6.1, a raptor code has the same overhead for BEC channels

of all erasure rates. This also confirms the property of “universality” of raptor codes over

BEC channels [11].

6.2.3 Simulation results and analysis

Due to the decoding complexity, the performance in terms of realized rate is not simulated.

As an alternative, the performance of raptor codes overBSCE(α, p) channels is measured

by bit error rate (BER) versus the inverse of code rateR−1, which is proportional to the

number of coded bits generated. The decoding of raptor codesover BSCE channels is

performed by using initial LLRs according to (2.5) and (2.6)and performing belief propa-

gation (BP) decoding in the same way as for BSC channels. Unless mentioned otherwise,

the raptor code used in this chapter is the same as the raptor code introduced in Section

2.1, with a code dimensionK = 9500, LT degree distributionΩr(x) given by Eq. (2.4) and

a rate 0.95 LDPC code as the precode. Fig. 6.2 shows the performance of raptor codes

overBSCE(α, p) channels for different parametersα andp. The figure includes bothBEC

(p = 0) andBSC (α = 0) as a special case. The capacity of BSCE channels is evaluated
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Figure 6.2. Raptor code performance over BSCE (α,p) channels with erasure rateα and

error probabilityp.

by Eq. (6.1). From Fig. 6.2, it can be seen that to achieve an average BER of 10−2, the

raptor codes require approximately 9%,10% and 11% overheadfor BEC, BSC(p = 0.05),

and BSC(p = 0.11), respectively, compared to their own information capacity bounds. It

can also be found that a BSCE(α,p) channel requires approximately the same overhead as a

BSC(p) channel with the same error ratep. For Fig. 6.2, the BER curve of the BSCE(α,p)

is not an exact horizontal shift of the BER curve of the BSC(p) channel. This is because for

a fixed rate raptor code over BSCE(α,p) whereα 6= 0, the number of non-erased bits varies

with each implementation, while this value does not change for BSC(p). The simulation

demonstrates that in the case of channel with no memory, the variation of the number of

received bits in different realizations has little effect on the performance of raptor codes.
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6.3 Performance of raptor codes over GE channels

6.3.1 Gilbert-Elliott (GE) channels

GE channels are models for time varying binary symmetric channels containing a good

stateG and a bad stateB (Fig. 6.3). For a given state, the channel can be modeled as

G B

b

g

b1 g1

Figure 6.3. Structure of the Gilbert Elliott channel

a BSC channel. LetPG andPB represent the channel error probabilities in good and bad

states, respectively, we have 0≤ PG ≤ PB ≤ 1. The transition between the two states form

a binary Markov process. Letg andb represent the transition probabilities between state

G and stateB, {sl}∞
l=0 represent the states at timel, sl ∈ {G,B}. Then the stationary

distribution can be obtained as[πg,πb] =
[

g
b+g ,

b
b+g

]

. The good-to-bad ratioρ is defined as

ρ = P(sl = G)/P(sl = B) = g/b. By induction onl, it can be easily verified that [59], for
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ξ ∈ {G,B}, P(sl = ξ |s0 = ξ )−P(sl = ξ |s0 6= ξ ) = (1−g−b)l. Denote parameter

µ = 1−g−b (6.4)

as the channel memory (µ ∈ [0,1]). When µ = 0, the channel is memoryless, i.e., the

current state is independent of previous states.

The capacity of GECs depends on the availability of channel state information (CSI)

1 at the receiver [59]. LetCCSI represent the channel capacity when CSI is available at

the receiver, i.e., when the receiver knows the current state. LetCNM andCµ represent the

channel capacity when the channel has no memory, and when thechannel memory isµ,

respectively. For a fixedPG, PB andρ , it is shown in [59] that

CNM ≤Cµ ≤CCSI, (6.5)

whereCCSI remains the same for differentµ.

6.3.2 Simulation results and analysis

Fig. 6.4 shows the performance of raptor codes for the special case of GE channels where

the probability of erasure is 0 in the good state and 1 in the bad state. These GE channels

correspond to non-cross-layer protocols and can well modelthe bursty behavior of packet

losses due to network congestion or packet drops due to corruptions. The average erasure

ratePera, which is equal to the steady-state probability of the bad stateπb, of the four curves

are chosen to be the same (Pera = 0.1). It is not surprising that memory generally has a

1Throughout this chapter, CSI only refers to the informationof the current channel state. The values of

PG andPB are assumed to be known by the receiver in all cases.
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Figure 6.4. Raptor code performance over erasure channels with different amount of mem-

ory plotted as a function of the number of decoded bits

negative effect on the performance of raptor codes. The performance loss is a result of the

distribution of bad states (erasures) over one code block. Although the average numbers

of bad states are the same for the four different cases, a channel with higher correlation

(memory) has higher variation of the number of bad states within one block length. The

probability density function (PDF) of the number of bad states nb that occur amongn

consecutive bits is provided in [60]. It is interesting to observe that at the left part of each

curve, i.e., when most of the information bits are not able tobe decoded, the channel with

higher memory actually shows better performance than channels with no memory. This can

be explained by the fact that raptor codes have a very steep performance curve in erasure

channels. When not enough coded bits are received, most of the information bits cannot be
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decoded. In this case, the higher variation of the number of bad statesnb is actually helpful.

Fig. 6.5 shows the performance of raptor codes over more general GE channels. When
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Figure 6.5. Raptor code over GE channels with and without channel state information.

HerePG = 0.01,PB = 0.5 andρ = g/b = 3.

CSI is available, the decoding is performed using iterativeBP decoding with initial LLR

equal to 0 for the code bit experiencing a bad state and(−1)y ln((1−Pb)/Pb) for the code

bit experiencing a good state. For GE channels when no CSI is available, the initial LLRs

for all code bits are set according to the average error probability over all the states. It can

be seen from Fig. 6.5 that there is a significant difference incode performance between the

case when CSI is available and the case when it is not. It can also be observed that memory

has a negative effect on performance regardless of the availability of CSI. The reason is the
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same as that for the case of erasure channels; memory increases the variation of the number

of bad states in a given block length.

The results in Fig. 6.5 seem to be contrary to the capacity study [59] which shows that

memory increases capacity when CSI is not available. This suggest that decoding perfor-

mance can be improved. To exploit the improved capacity, thedecoder needs to utilize

channel correlation for better estimation of CSI [59]. Thisimprovement may possibly be

obtained by employing similar estimation and decoding techniques used for LDPC codes,

though applying such decoding methods to raptor codes is beyond the scope of this the-

sis. Since no attempt is made to estimate CSI, the performance of raptor codes over GE

channels with no CSI is still bounded byCNM.

6.4 System and channel models

6.4.1 System model and cross-layer protocols

Two layers of FEC are used in multimedia broadcast and multicast service (MBMS): turbo

codes in the physical layer and raptor codes in the application layer [20]. Since the protocol

stack in MBMS systems is overly detailed to present here, a much simpler two layer model

that captures the essential performance is considered. In our model, the information data

are first segmented into data-bearing packets. Multiple data packets are coded by a raptor

code where each packet is considered as a bit (a vector of binary bits) of a raptor code.

Cyclic redundancy checks (CRC) and packet header information are then appended to each

output packet to form the transmitted packets. Each packet is further protected by a physical
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layer turbo code, modulated by BPSK and transmitted over thephysical channel.

The packets experience a hybrid type of channel where transmitted packets can be lost

due to network congestion. Packets that are not lost are still subjected to channel fading and

noise. When the packet is not lost, the receiver first demodulates and decodes data using

the turbo decoder. The correctness of the turbo decoded output is checked by the CRC

embedded in each packet. In the current MBMS standard, the entire packet is dropped if
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Figure 6.6. Cross-layer decoder with side information (CLDS) system diagram.

the CRC fails, which we denote as the conventional (CON) scheme. Therefore only packets

that do not contain errors are forwarded to the raptor decoder. Two general cross-layer

protocols, known as cross-layer design (CLD) and cross-layer design with side information

(CLDS), are proposed in [58]. For the CLD protocols, CRC information is simply ignored

and all turbo decoder outputs are forwarded to the raptor decoder. For the CLDS protocols,

all outputs of the turbo decoder are forwarded to the raptor decoder along with the side

information provided by the CRC indicating whether the packet is corrupted. The system

diagram for the CLDS protocol is illustrated in Fig. 6.6.
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6.4.2 Channel modeling

Packets are lost in bursts when network congestion is severe. Therefore a more accurate

model for packet loss should take channel memory into account. We model the behavior of

packet losses as a GE channel, a well known two state Markov model for modeling channels

with memory (Fig. 6.3). The transition between the two states form a binary Markov

process. We consider a special case of GE channel where in thebad state (erasure state),

the packet loss probability is 1 while in the good state (non-erasure state), the packet loss

probability is 0, which is equivalent toPG = 0,PB = 0.5. Letg1 andb1 represent transition

probabilities from bad state to good state, and from good state to bad state, respectively.

The average packet loss rateλ = b1/(g1+ b1). The channel memory is defined asµ1 =

1− g1− b1 [59]. The two parametersλ andµ1 determineg1 andb1 and the packet loss

behavior.

The physical layer wireless channel is assumed to be a correlated Rayleigh fading with

Doppler frequencyfd and average received SNR̄γ. The “water-fall” region of the turbo

code is narrow [20] and has the following property: for a given rateRturbo, there exists a

SNR thresholdγt such that when the channel SNRγ > γt , the turbo decoder almost always

decodes the information correctly; and whenγ < γt , the decoder almost always fails due

to errors in the decoder output. The cutoff rate of the turbo coder satisfiesRturbo(γt) =

1− log2(1+exp(−γt)) [20]. Hence for a given turbo code rateRturbo,

γt =− ln(21−Rturbo −1). (6.6)

To model the combination of correlated fading channels and the two cross-layer protocols,
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a good state is used to represent the case when the instantaneous channel SNRγ > γt , while

a bad state represents the case whenγ < γt . In the good state (correct state), the turbo code

always decodes the information correctly and the CRC succeeds. In the bad state (corrupt

state), there are errors present in the turbo decoder outputand the CRC fails.

To match the two-state GE channel to the correlated Rayleighfading, the steady-state

probabilityπb =
∫ γt

0 fγ(γ)dγ = 1−exp(−γt/γ̄) where fγ(γ) = 1
γ̄ exp(−γ/γ̄) is the PDF of

the instantaneous SNR of Rayleigh fading channels. Next, bymatching the average fade

duration, e.g., the time the fading amplitude is below the threshold to the average time of

the GE channel staying in the bad state, it can be shown that [60],

g2 =

√

γt/γ̄ fdT
√

2π
exp(γt/γ̄)−1

(6.7)

b2 =
√

γt/γ̄ fdT
√

2π (6.8)

whereg2 and b2 are the transition probabilities of the “fading” GE channels, fd is the

Doppler frequency,T is the packet duration andfdT is the normalized Doppler frequency.

The overall channel for the application-layer raptor codescan be represented as a hi-

erarchical Markov channel model (Fig. 6.7 ). At the higher level, the channel can be in

the erasure state (packet loss) or the non-erasure state with transition probabilitiesg1 and

b1, respectively where the erasure probability is 1 in the erasure state and 0 in non-erasure

state. Conditional on the event that the packet is not erased, the channel is a GE channel

with transition probabilitiesg2 andb2, where the error probabilities in the good (correct)

state and bad (corrupt) state are 0 andε, respectively, whereε is also termed thepacket

corruption level. Note thatg1 and b1 are independent ofg2 and b2 because the packet
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Figure 6.7. The hierarchical markov model for cross-layer protocols

loss in this channel model is caused by network congestion asopposed to packet header

corruption assumed in [58].

6.5 Capacity and system throughput evaluation

The capacity of CON, CLD and CLDS protocols for memoryless channels have been sum-

marized in [58]. Letδ and λ represent the packet dropping rate in the CON and CLD

schemes, respectively. Letp represent the probability that an error occurs in a data bit in an

unerased packet. The packet corruption levelε is equal to the conditional probability that

an error occurs in a random data bit in an unerased packet given that the CRC fails. The

capacity of the three schemes for memoryless channel can be easily obtained as [58],

CNM
CON = 1−δ (6.9)
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CNM
CLD = (1−λ )(1−hb(p)) (6.10)

CNM
CLDS = (1−δ )+(δ −λ )(1−hb(ε)) (6.11)

where the superscriptNM represents no memory andhb(.) is the binary entropy function,

defined as in Eq. 6.1 as inhb(p) =−p logp− (1− p) log(1− p), and where

p = (δ −λ )ε/(1−λ ). (6.12)

In the channel model of Fig. 6.7, CLD and CLDS schemes only differ by the availability

of instantaneous channel state at the receiver. In [59], it is shown that channel memory

does not change the capacity of GE channel with erasure states for the same average erasure

rate. As a consequence, we can conclude

CCON =CNM
CON. (6.13)

As CLD scheme using the hierarchical Markov model is essential a CLDS scheme without

CSI, from (6.5), we obtain

CNM
CLD <CCLD <CNM

CLDS. (6.14)

Finally, receivers using CLDS scheme is fully aware of CSI, i.e., they know whether the

channel is in erasure, correct or corrupt state. SinceCCSI is not affected by channel memory,

we have

CCLDS =CNM
CLDS. (6.15)

Nevertheless, as the raptor decoder does not attempt to estimate side information of the

instantaneous channel state, the performance of raptor codes over these decoding schemes

137



is still bounded by the capacity for the case of no memory. Eqs. (6.9), (6.10) and (6.11) can

be used to evaluateCNM
CON ,CNM

CLD andCNM
CLDS. By definition, 1−δ is steady state probability of

the correct state in the hierarchical Markov model while 1−λ is the steady state probability

of the non-erased state. Therefore,δ = 1− (1−λ ) g2
b2+g2

.

The application layer capacity provides a bound to the performance of raptor codes.

However, the application layer capacity does not take into account the extra protection

overhead used in the physical layer to protect the information bits. To compare the system

performance using different turbo code rates, we use the maximum system throughput

which is equal toC×Rturbo, whereC is the application layer capacity as a performance

metric. Fig. 6.8 shows a comparison of the maximum achievable system throughputs of

each of the three schemes as a function of channel SNR for two different turbo code rates.

It is quite obvious that the proposed hybrid scheme using theCLDS protocol can achieve

much higher throughput over most of the SNR range. When channel SNR is very high, the

difference becomes negligible. We also observe that a higher turbo code rate is preferable

except for the extremely low SNR regime. We remark that [20] reaches similar conclusions

about the combinations of the turbo code and raptor code rates, but the results there are only

limited to simulations in the CON scheme.
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Figure 6.8. Maximum system throughput as a function of channel SNR for the fading

channel in Fig. 6.7 with parametersλ = 0.1, µ1 = 0.9, f dT = 0.01,ε = 0.05.

6.6 Raptor codes and the hybrid erasure-soft decoder

The first practical realization of fountain codes is known asthe class of Luby Transform

(LT) codes [9] that encodek information bits(x1,x2, ...,xk) into a potentially infinite num-

ber of output bits(z1,z2,z3, ...). The encoding process is performed by first sampling a

probability distributionΩ and a degree ofd distinct information bits are then chosen uni-

formly at random from thek input bits. The value of each output bit is the modulo 2

bit-wise summation of thed chosen input bits. The output bit stream is generated indepen-

dently until the transmitter receives an acknowledgement (ACK) of successful decoding
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from the receiver of successful decoding or until a predesigned code rate is achieved. The

degree distributionΩ is described by its generating polynomialΩ(x) = Σk
i=1Ωixi, where

Ωi represents the probability that valuei is chosen. Shokrollahi [11] extended the idea of

LT codes to raptor codes to reduce the decoding complexity tobe linear for binary erasure

channels (BEC). A raptor code with parameters(k,C,Ω) is constructed by concatenating

a block codeC with a LT code with degree distributionΩ. To encode a raptor code, the

precoderC first encodesk information bits intok̃ intermediate bits. The output bit streams

are then generated by applying the inner LT code on thek̃ intermediate bits.

Decoding of the raptor codes for a binary symmetric channel (BSC) can be performed

iteratively using belief propagation (BP) algorithms overthe Tanner graph of the raptor

code [23]. For the BEC, the BP algorithm can be significantly simplified, which allows

for linear decoding complexity of raptor codes [11]. In thispaper, we term the decoding

method for BEC as erasure decoding, and iterative decoding that uses soft information

as soft decoding. Note that the complexity of erasure decoding is much lower than soft

decoding.

To implement a cross-layer protocol for raptor coding in theMBMS system, we propose

a hybrid erasure-soft decoder. The hybrid decoder works as follows:

Step 1) The Tanner graph of the raptor code is constructed as shown in Fig. 6.9. For

each LT encoded bit, a corresponding check node is added to form a Tanner graph of the

LT code. In the final Tanner graph, there are two types of variable nodes (input variable

nodes and output variable nodes) and two types of check nodes(LDPC check nodes and

LT check nodes).
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Figure 6.9. Tanner graph of raptor code

Step 2) The LLRs of the variable nodes are initialized. The initial LLRs for input

variable nodes are all set to 0 because they have not been transmitted. For all output variable

nodes connected to a packet that is lost or discarded, the initial LLRs should also be set to

0.

In the CLD scheme, since the CRC is turned off, the raptor decoder does not know

whether the channel is in the correct state or the corrupt state, i.e, the decoder does not know

the instantaneous channel state. Therefore, the decoder treats the channel as a BSC with

crossover probabilityp at non-erasure states, wherep is given by (6.12). Hence the decoder

will set the initial LLRs of output bits to 0 for the erasure state and(−1)y ln((1− p)/p) [30]

for the non-erased state, wherey ∈ {0,1} is the physical layer decoder output.
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In the CLDS scheme, the receiver knows which state the current channel is in. There-

fore, the decoder sets the initial LLR to 0 for the erasure state, (−1)y ·∞ for the correct

state, and(−1)y ln((1− ε)/ε) for the corrupt state.

Step 3) The decoder eliminates all the nodes and edges that are associated with encoded

bits that are in the erasure state since they provide zero reliability.

Step 4) Based on the value of all the encoded bits in the correct state, the decoder

performs erasure decoding on the decoding Tanner graph. Anyinformation bit that can be

decoded and any edges associated with these decoded nodes are removed from the graph.

In CLD scheme, this step is not performed because the receiver does not identify the correct

states using CRC.

Step 5) Iterative BP decoding based on LLRs from the corrupt state is performed on

the remaining graph. Because the number of remaining edges is smaller than that of the

original decoding graph, the decoding complexity of the hybrid scheme is simpler than the

traditional iterative decoding scheme. The updating equation for the BP algorithm is the

same as that used for LDPC codes [30].

6.7 Simulation results

To simulate the actual performance of raptor codes, the raptor code described in [23] is

used. The pre-code of this raptor code is a left regular and right Poisson LDPC code with

rate 0.95, and the variable nodes of this LDPC code have constant degree of 4. The code
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dimensionk = 9500 and the inner LT codes use the degree distribution,

Ω(x) = 0.007969x+0.493570x2+0.166622x3

+0.072646x4+0.082558x5+0.056058x8+0.037229x9

+0.055590x19+0.025023x65+0.003135x66. (6.16)

Fig. 6.10 depicts the performance of raptor codes of the three communication schemes

with channel memory for different raptor code rates. It can be seen that the CLDS and CLD

schemes perform significantly better than the CON scheme. Toachieve an average BER of

10−2, the difference between the number of raptor coded bits thatneeds to be generated in

the CON and CLDS schemes is approximately 21% when the corruption levelε = 0.02 and

18% whenε = 0.05. The CLDS scheme performs slightly better than the CLD scheme and

the difference between their performance increases as the corruption level increases. It can

be seen that the gap between the CLD and CLDS schemes is 0.6% for ε = 0.02 and 1.5%

for ε = 0.05 to achieve a BER of 10−2. The raptor codes require less than 12% overhead for

CLD and CLDS schemes to achieve a BER of 10−2 compared to their own capacity bounds

obtained by evaluating (6.10) and (6.11), respectively. Itshould be noted that among the

three schemes, CLD has the highest decoding complexity. Compared to CLD, CLDS not

only provides additional performance gain, but also reduces decoding complexity. It can

also be observed that the performance curve of the raptor code is very steep. Therefore,

the rateless property of raptor codes is very important to provide the flexibility of different

code rates to accommodate different channel conditions.

Fig. 6.11 shows the effect of channel memory on the three different schemes caused by
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Figure 6.10. Raptor code over hybrid error-erasure fading channels with parametersλ =

0.1, µ1 = 0.9, Rturbo = 0.93, γ̄ = 10dB, fdT = 0.01.

fading correlation. It can be observed that memory decreases the performance of the cross-

layer schemes. However, the cross-layer protocols are quite robust to fading correlation as

the effect of memory is only significant for CLD and CLDS schemes when the normalized

Doppler frequency is below 0.01. This can be explained by the fact that packet corruption

only results in a small probability of error for a particularbit inside a packet.

Figs. 6.12 and 6.13 show the influences of channel SNR and corruption levelε. An in-

crease of average SNR decreases the average number of corrupt states, and hence improves

the performances of all three schemes. It can be observed that the performances of CLD
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Figure 6.11. Performance of CLD, CLDS and CON schemes as a function of normalized

doppler frequency with parametersλ = 0.05,µ1 = 0, Rturbo = 0.93, γ̄ = 10dB, ε = 0.05.

and CLDS are less sensitive to SNR than CON. The differences between the SNR require-

ment to achieve BERs of 10−1 and 10−2 is approximately 7dB for CLD and CLDS, and

5dB for CON. This also shows that the combination of an application layer raptor code and

a physical layer code is very robust to variations in channelquality, as a significant drop in

channel SNR can be compensated by a slightly lowered raptor code rate. The corruption

level also has a significant impact on the performance of CLD and CLDS schemes. As

shown in Fig. 6.13, for the same raptor code rate and with all the other parameters equal,

the performances of CLD and CLDS are reasonable at a corruption level of 0.005 (BER
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below 10−2) but very poor at a corruption level above 0.5. The change of corruption level

does not affect the performance of CON since it does not change the average number of

corrupt states.
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Figure 6.12. Performance of raptor codes in correlated fading channels as a function of

different SNR with parametersλ = 0.1, µ1 = 0.9, Rturbo = 0.93,ε = 0.02, R−1 = 1.25,

f dT = 0.01.)

6.8 Conclusion

This chapter proposes a hybrid erasure-soft decoding scheme for application-layer raptor

codes used in broadcasting services with cross-layer protocols. By taking channel memory
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Figure 6.13. Bit error rate performance of raptor codes using CLD, CLDS and CON

schemes as a function of corruption level with parametersλ = 0.1, µ1 = 0.9, Rturbo = 0.93,

γ̄ = 10dB, R−1 = 1.25, f dT = 0.01.

into account, the composite channel is modeled by a hierarchical Markov model which

includes erasure, correct and corrupt states. For this channel model, the CLD and CLDS

schemes differ only by the availability of side informationabout instantaneous channel

state. The proposed cross-layer decoding schemes outperform conventional (CON) scheme

using erasure decoding significantly. The difference in thenumber of raptor coded bits

required to achieve the same BER of 10−2 for the CLDS and CON schemes can be 20%

as shown in Fig. 6.10. Channel correlation decreases the performance of raptor codes for
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all three schemes and the impact is significant when the normalized Doppler frequency

is small. The effect of the choice of turbo code rate on the system throughput is also

discussed.
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Chapter 7

Conclusions and Future Work

In this chapter, we summarize the major contributions in this thesis and suggest several

topics for future research.

7.1 Conclusions

In this thesis, we address two major challenges of the application of rateless codes over

wireless multimedia multicast. To address the challenges due to user heterogeneity, we

propose UEP rateless code designs and present an optimization framework and different

solutions depending on the constraints of the multimedia multicast system.

In Chapter 3, two general problems are formulated for optimizing unequal error protec-

tion (UEP) rateless codes for scalable multimedia multicasting systems with heterogeneous

users. The design objective is to either minimize transmission overhead for guaranteed

quality of service (QoS) or provide best-effort QoS for a given transmission overhead. A

random interleaved UEP raptor code design is proposed that can take advantage of the high
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performance of existing standardized raptor codes. The formulated problem is converted

into a convex optimization problem which can be solved analytically. Numerical results

demonstrate that the optimized proposed UEP raptor codes perform better than existing

UEP raptor code designs when the same degree distribution and iterative decoding is ap-

plied. Large additional gains for the proposed UEP scheme can be obtained by using the

superior existing standardized raptor codes which also takes advantage of a corresponding

efficient maximum likelihood (ML) decoder.

In Chapter 4, we show that the problem of optimal allocation of priority encoding trans-

mission (PET) based rateless codes for asynchronous multimedia multicast [25] [26] can

be transformed into a convex optimization problem when integer constraints are relaxed.

Because the problem is convex and the total number of parameters for the optimization

is equal to the number of user classes, the solution simplifies. In addition, an analytical

solution is found for the case when there are no outage constraints [25]. For the more gen-

eral formulation with outage constraints [26], an analytical solution is found for the special

case of two user classes. Numerical methods of convex optimization software [27] [28] are

required to solve the more general cases.

To address the second challenge due to the time varying wireless channel, we first find

the optimal combination of physical layer code rate and application layer code rate that

maximize overall throughput. We then propose a hybrid erasure-soft decoder of rateless

codes for wireless channels with memory to improve performance and reduce complexity.

In Chapter 5, the balance between physical layer rate and application-layer raptor code

rate for rateless coded communication systems is investigated. Both slow and fast Rayleigh
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fading have been considered. Unlike traditional approaches which choose physical layer

modulation and coding pairs to meet a target outage probability, modulation and coding is

optimally chosen in our proposed cross-layer scheme in order to maximize system through-

put. In addition, a cross-layer adaptive modulation and coding design is proposed for the

slow fading scenario. The proposed cross-layer design shows significantly higher through-

put compared to traditional non cross-layer design. It can also be seen from this study that

allowances for high packet error rates to be corrected by application-layer erasure codes

can be efficient in many situations.

In Chapter 6, performance of raptor codes over BSCE and GE channels are evaluated,

where it is first shown that the average overhead of raptor codes over BSCE and BSC

channels with the same cross-over probabilities are the same. A hierarchical Markov model

is proposed which includes erasure, correct and corrupt states to model hybrid erasure-

error channels with memory. A cross-layer hybrid erasure-soft decoder for raptor code is

proposed. It has been shown that the cross-layer hybrid decoder outperforms the erasure

decoder, which also takes advantage of the build-in CRC mechanism that exists in current

protocols.

7.2 Future Work

There are several areas that are suggested for future research:

• In Chapter 3, the best-effort QoS formulation is only solvednumerically. It is thus

of interest for future studies to find a systematic and lower complexity method to
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solve the best-effort QoS problem, which is to find the optimal selection probabil-

ities of proposed UEP rateless code that maximize the average fidelity measure of

multimedia content for multimedia multicasting over heterogeneous users.

• In Chapter 4, for the general asynchronous multicast optimization problem with out-

age constraints, an analytical solution is not found despite that it is a convex opti-

mization problem. It would be of interest if a similar analytical solution can be found

as in the case without outage constraints.

• In Chapter 5, the results are primarily presented for singleuser cases. It is thus of

interest to investigate the optimal combination of physical layer code rate and appli-

cation layer code rate in multicast, multiple access and other multi-user scenarios.

In addition, the results are presented for slow and fast fading channels. It would be

of interest to provide analytical result for correlated fading channels with a given

normalized Doppler frequency.

• In Chapter 6, although the relationships among the capacities of three cross-layer and

conventional schemes are expressed in relative terms, it would be of interest to derive

the exact capacity values as a function of channel parameters.

• Rateless codes also have potential applications in relay channels. It would be inter-

esting to investigate the optimal degree distribution of a rateless code design when

utilized in relay channels.
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Appendix A

Decoding failure probability evaluation of

rateless codes when the number of received

symbols is random

In Chapter 3, a simplified channel model is considered which assumes that the number

of received symbols of classj users does not change and equalsδ j times the number of

transmitted symbols. In this appendix, we show numericallythat the difference created by

using this model and a model which takes into account the randomness of the number of

received symbols is insignificant.
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A.1 Decoding failure probability evaluation

As described in Chapter 3, when standardized raptor codes are used, fork > 200, the prob-

ability that the receiver fails to fully recoverk source symbols afterm symbols are success-

fully received can be well modeled by the empirically determined equation [20],

Pr
e (m,k) =



















1 if m ≤ k

abm−k if m > k

(A.1)

wherea andb are constants given bya = 0.85,b = 0.567.

To calculate the decoding failure probability in the QoS constraints of Eq. (3.3) when

the channel experiences independent packet losses, letn, m, k, 1− p represent the total

number of transmitted symbols, received symbols, information symbols and the erasure rate

for each code block, respectively. Thenm is a Binomial random variable with probability

density function (PDF)Prob(m = x) = n!
(n−x)!x! px(1− p)n−x. Therefore, the probability of

successfully decoding the whole code frame is equal to

1−P f
e (n,k, p) =

n

∑
x=k

(1−abx−k)P(m = x) (A.2)

=
n

∑
x=k

(1−abx−k)
n!

(n− x)!x!
px(1− p)n−x. (A.3)

Sincen is large, the above equation can be computationally complex. Letting h =

min(k+8,n), we approximate the above equation while significantly reducing computa-

tional complexity via

1−P f
e (n,k, p)≥

h

∑
x=k

(1−abx−k)
n!

(n− x)!x!
px(1− p)n−x

+(1−ab8)
n

∑
x=h

(1−abx−k)
n!

(n− x)!x!
px(1− p)n−x
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≈
h

∑
x=k

(1−abx−k)
1

√

2πnp(1− p)
exp

−(x−np)2

2np(1− p)

+(1−ab8)(Q(
h−np

√

np(1− p)
)−Q(

n−np
√

np(1− p)
)) (A.4)

whereQ(x) = 1√
2π
∫ ∞

x exp(−x2/2)dx is the Q-function. The difference between the two

sides of the inequality in the first step is minimal because when x > k + 8, the outage

probabilityab8 < 0.01 is very small and can be ignored. The approximations made in the

second step use the normal approximation (known also as DeMoivre-Laplace Theorem)

[55], which are also very accurate for largen. The probability that the decoder of a class

j user fails to fully decode layerl, Pe(l, j) in (3.3), can be evaluated asP f
e (n,k, p) of (A.4)

with the number of transmitted symbolsn = tl = (1+ ε)Kρl, the code dimensionk = Sl

andp = δ j.

A.2 Numerical results

In Fig. 3.4, the minimum overhead required to achieve user’ QoS requirements when

different value ofρ1 is used. The results in Fig. 3.4 are shown using the simplifiedchannel

model. In Fig. A.1, the same results are shown using the channel model described in this

appendix. The proposed random interleaved UEP design employing standardized raptor

codes is used. The dashed line represents the results of the original memoryless erasure

channel model based on the decoding failure probability evaluated in Section A.1, while

the solid line represents the results of simplified channel model that is analyzed in Section

3.4.2. The operating point atρ1/ρ2 = S1/S2 on each curve is marked with a star, which

indicates the performance of the equal error protection (EEP) scheme. It can be seen that
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the minimum required transmission overhead is very sensitive to the choice ofρ1: the

minimum transmission overhead with the optimal choice ofρ1 performs significantly better

than that of the EEP scheme and other arbitrary non-optimized allocation schemes. Also,

the performance difference between the two curves is very small. As shown in Fig. 3.2

and Fig. 3.3, the use of an inferior raptor encoder/decoder has a much larger impact on

performance. This validates the use of the simplified channel model which allows for a

much simpler solution based on convex analysis.
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Figure A.1. Minimum transmission overhead required to meetusers’ QoS constraints for

different layer allocation probabilitiesρ1. Two different channel models with proposed

UEP rateless codes employing standardized raptor codes areused, where parametersL =

2;K = 9000;S = [1000,8000];δ = [0.4,0.8];P = [0.95,0.8].
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Appendix B

Proof of the last part of Lemma 3.1

In this appendix, we prove the last part of Lemma 3.1, i.e., after performing Algorithm 3.1,

the transmission overhead cannot be further reduced with additional layer partitioning and

selection probability re-assignment. Let Scheme A denote the source-to-channel layer map-

ping produced by Algorithm 3.1 and denote Scheme B as one which further partitions Layer

l into Layersm andn with dimensionsSm andSn, respectively. Denote the resulting optimal

selection probabilities for Scheme B which minimize the transmission overhead asρm and

ρn for Layersm andn, respectively. We now show that the minimum required transmission

overhead is no larger by using Scheme A with selection probability ρl = ρm +ρn assigned

to Layerl. For the same number of total transmitted symbolsM, the effective average rap-

tor code rates for Layerl in SchemeA, Layerm in SchemeB and Layern in SchemeB are

Rl =
Sl

Mρl
, Rm = Sm

Mρm
andRn = Sn

Mρn
, respectively. Without loss of generality, we assume

ρm/Sm ≥ ρn/Sn. Then it can be shown thatRl =
Sm+Sn

M(ρm+ρn)
≤

Sn
ρn

ρm+
Sn
ρn

ρn

M(ρm+ρn)
= Sn

Mρn
= Rn. As the

decoding failure probability of the raptor codes is monotonically increasing with code rate

for the same user class, we have(1−Pe(l, j))≥ (1−Pe(n, j))> (1−Pe(m, j))(1−Pe(n, j))
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for any class indexj, wherePe(.) is the same decoding failure probability function as de-

fined in (3.3). This means that for the same number of transmitted symbols, the original

mapping scheme (Scheme A) has higher probability of successfully decoding all the sym-

bols in Layerl than Scheme B for all user classes. Therefore, for the same QoS constraints

described by (3.3), Scheme A requires less minimum transmission overhead compared to

Scheme B. Finally, raptor codes with larger dimension have better performance for the

same code rate, which also favors no further layer partitioning.
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Appendix C

General asynchronous multicast system setup

In Chapter 4, the rateless coded asynchronous multicast system is described where fixed

channel erasure rates are used and all the users are assumed to access the multicast system at

the same time. In this appendix, a more general and dynamic system model is investigated

where both the channel erasure rate and user access time are random. The cost functions

and outage probabilities are first derived using the more general system model. Then the

transformation of Problem 4.10 to 4.11 under the new model ispresented. It is shown

that the methods and results presented in Chapter 4 for solving the asynchronous multicast

optimization problems can still be applied to the more general system model used in this

Appendix.

In the dynamic system model, it is assumed that the packet erasure rateσ j for a classj

user at any given time is a random variable with probability density function (PDF) denoted

by fσ j(.), however, the packet erasure rate for each user is fixed for each rateless code

frame. This usually corresponds to a block fading channel model used in the physical

layer.
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In order to reach the target QoS of a Classj user, the user is required to decode Layer

h j. The number of packets need to decode layerh j is given by⌈Kh j(1+ω)⌉. To compute

the average number of transmitted packets required, a givenvalue ofσ j is first considered.

If an un-erased packet is considered as a successful trial and an erased packet is considered

as a failed trial with failure probability equal toσ j, then given the number of successful

trials ⌈Kh j(1+ω)⌉, the number of transmitted packets required,M j, follows a negative

binomial distribution with probability ofM j = x equal to the probability of⌈Kh j(1+ω)⌉−1

successes andx failures in⌈Kh j(1+w)⌉+x−1 trials, and success on the⌈Kh j(1+ω)⌉+x-

th trial, i.e.,

Pr(M j = x) =









x+ ⌈Kh j(1+ω)⌉−1

⌈Kh j(1+ω)⌉−1









(1−σ j)
⌈Kh j

(1+ω)⌉σ x
j . (C.1)

It can be shown that the average value ofM j of the above negative binomial distribution

conditional on a givenσ j is [55]

E(M j)|σ j =
⌈Kh j(1+ω)⌉

1−σ j
. (C.2)

Whenσ j is a random variable with a PDFfσ j(.),

E(M j) =Eσ j

(

E(M j)|σ j

)

=⌈Kh j(1+ω)⌉E

(

1
1−σ j

)

=⌈Kh j(1+ω)⌉
∫ 1

0

fσ j(x)

1− x
dx. (C.3)

Finally, the cost function for all the user classes is given by

Mav =
J

∑
j=1

w jE(M j)
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=(1+ω)
J

∑
j=1

w jKh j

∫ 1

0

fσ j(x)

1− x
dx. (C.4)

To compute the outage probabilities, we first introduce the access time random variable

Tj for Class j users, which is defined by the number of packets that have beentransmitted

before the user accesses the multicast session. Users that join a multicast session too late

may not be able to achieve their QoS requirements before the deadline. Users that join

a session within a certain time interval, or access window, after transmission starts are

allowed to access the multicast content. Therefore, the value ofTj for active users in Class

j are truncated with a maximum valueT0, j. The probability mass function (PMF) of the

access timeTj of Classj users is denoted byPr(Tj = x) = pTj(x),0≤ x ≤ T0, j.

For a given erasure rateσ j and access timeTj, the outage probability is equal to the

probability that the receiver collects fewer than⌈Kh j(1+ω)⌉ encoded packets afterM0

packets have been transmitted, which can be expressed as

O j|σ j,Tj =

⌈Kh j
(1+ω)⌉−1

∑
i=0









M0−Tj

i









(

1−σ j
)i σ M0−Tj−i

j . (C.5)

Thus the outage probability can be expressed as

O j =

⌈Kh j
(1+ω)⌉−1

∑
i=0

T0, j

∑
y=0

pTj(y)
∫ 1

0









M0− y

i









(1− x)i xM0−y−i fσ j(x)dx. (C.6)

Comparing the cost functions given by Eqs. (C.4) and (4.8), it can be seen that the cost

function of this dynamic model is equivalent to the cost function of the model described in

Chapter 4 with fixed erasure rates for Classj users,σ0, j, if

1
1−σ0, j

=

∫ 1

0

fσ j(x)

1− x
dx. (C.7)
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In addition, observe that the outage probabilityO j given by Eq. (C.6), despite being

more complex than the outage expression, Eq. (4.5), in Chapter 4, is also a monotonically

increasing function ofKh j . Hence the outage constraintO j ≤ τ j can also be simplified as

l j being greater than a constant forj = 1,2, ...,J. Therefore, all the results provided by

Chapter 4 for solving the asynchronous multicast optimization problem can also be applied

to the more general and dynamic model described in this appendix.
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