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Abstract

The mobile communications market has seen an explosion of growth over the past

several years. Moreover, trends indicate that this growth will continue uninterrupted

into the next decade. To meet this increasing demand, the use of base station antenna

arrays implementing digital beamforming is being proposed as a method to enhance

both the performance and capacity of cellular systems. In this work, we will examine

the effects of mutual coupling occurring within the base station antenna arrays of

code division multiple access (CDMA) cellular systems.

First, we examine three different methods of incorporating mutual coupling effects

within the base station antenna array. These methods are then applied to several an-

tenna array models for comparison with the ideal case and with each other. Following

this, we then improve a method for determining CDMA system uplink capacity, given

by Earnshaw, by including the effects of mutual coupling.

Next, we derive a generalized model for the cross-correlation statistics between

elements of an antenna array in a scattering environment to include mutual coupling

effects and arbitrary distributions of angle-of-arrival (AOA) statistics. Using this

model, we further improve the above method for determining CDMA system uplink

capacity by including the effects of both scattering and mutual coupling.

Finally, we investigate an improved system capacity prediction where imperfect

power control is assumed. In this derivation, the signal-to-noise ratio is a random
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variable with a log-normal distribution, rather than a fixed value, as in the case

of perfect power control. Furthermore, the outage probability associated with the

imperfect power control case is derived.
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Chapter 1

Introduction

1.1 Motivation

The increase in demand for frequency bandwidth has made it one of the world’s

most valuable and sought-after resources. As a result, new technologies are required

to further expand and exploit this resource to meet modern society’s needs. One

such technology, which has been proposed for the next generation of digital cellular

phones in North America, is code division multiple access (CDMA). Although CDMA

is capable of greater cell capacity by increasing the number of users within a given

bandwidth as compared with other multiple access techniques, it is possible to further

increase the capacity through the use of digital beamforming and base station antenna

arrays.

One method of studying the capacity of CDMA communication systems is by in-

vestigating the electromagnetic behaviour of antenna array structures, usually mod-

eled by combining the beampatterns of the individual antenna elements through su-

perposition. One electromagnetic phenomenon associated with the closely-spaced

array elements is mutual coupling. By definition, when a pair of antennas are in

1



close proximity to each other, whether one or both antennas are transmitting and/or

receiving, some of the energy that is primarily intended for one antenna ends up at

the other. Thus, mutual coupling effects do have an effect on the beampatterns of the

array. Unfortunately, most beampattern synthesis models do not account for the ef-

fects of mutual coupling thus potentially leading to less accurate system performance

predictions. Furthermore, studies which do include mutual coupling effects do not

incorporate the effects of scatter due to multipath. Moreover, these studies do not

bother to re-evaluate the effects of power control on the system performance, which

is required since the mutual coupling and scattering effects change the statistics of

received power levels, such as the mean and variance, which in turn affects power

controllability. As a result, the performance predictions of these studies are poten-

tially less accurate in relation to methods which include all three effects. Also, in

many studies, the assumption of perfect power control is made, thus yielding overly-

optimistic performance predictions.

In this thesis, the development of an improved method, where the effects of mutual

coupling, scatter, and power control are included in the system capacity predictions,

is presented and applied to system performance prediction. Using this improved

method, it can be shown that the inclusion of both mutual coupling and scattering

effects degrades the performance of the system. For example, as the effect of scatter

increases, the capacity of multi-antenna systems decreases and ultimately converges

to the capacity of a system consisting of one antenna. Moreover, the difference in

capacity between a 5-antenna system which does and does not include the effects of

mutual coupling ranges between 6 and 11 percent. With respect to the effects of power

control, the constraint of perfect power control will be dropped and replaced with an

imperfect power control assumption. A comparison of performance predictions, where

the system either assumes perfect or imperfect power control, will follow.
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1.2 Previous Work

One of the major contributions of this thesis is to accurately predict the capacity

of CDMA communication systems using digital beamforming, where the effects of

mutual coupling, scatter, and power control are included. In this section, we discuss

the work carried out by other researchers who have addressed issues pertaining to

capacity prediction as well as the above mentioned effects. Some researchers have

only dealt with system capacity predictions without including any of these effects,

while others have accounted for some of these effects in their analysis. After an

extensive open literature search, it can be stated confidently that an analysis of system

capacity, where all these effects are included, has not been performed. Therefore, the

work presented in this thesis is considered original.

1.2.1 Mutual Coupling Effects

The study of mutual coupling effects in antenna arrays has been conducted for

nearly a century. Thus, the literature on this subject is extensive and in-depth. In

this area there exists three categories which this research can be classified under.

The oldest of these categories deals with the modeling of mutual coupling effects in

antenna arrays. Carter [10], King [37], and Malherbe [50] have adapted an approach

of modeling the mutual coupling effects within a dipole antenna array using the

Induced EMF Method. In their derivations, the array geometry and the number of

array elements were not specified. The mutual coupling information was then included

in several beampattern synthesis problems, resulting in more accurate beampatterns.

Another approach of modeling the effects of mutual coupling has been carried out by

Harrington [30], Strait and Adams [81], Adams and Strait [2], and Strait and Hirasawa
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[80]. In their method, they have modeling the mutual coupling effects within an array

of parallel wire antennas using the Method of Moments, instead of the Induced EMF

Method, and then applied to several problems of beampattern synthesis.

Another, more recent, category of mutual coupling research deals with the com-

pensation of these effects in applications involving antenna arrays. For instance,

Pasala and Friel [62] have investigated a technique of mutual coupling compensation

in the multiple signal classification (MUSIC) algorithm operating over a wideband of

frequencies. Adve and Sarkar [3] used the Method of Moments to obtain a mutual

admittance matrix, which was then used to eliminate the effects of mutual coupling

in the direct data domain adaptive algorithm. Friedlander and Weiss [25] used an

eigenstructure approach to obtain estimates of directions of arrivals as well as esti-

mates of gain, phase and mutual coupling of the observing array. Moreover, it was

shown that the estimation of sensor characteristics is essential in order to estimate

the direction-of-arrivals accurately. Leou, Yeh, and Ucci [42] devised two methods

of counteracting the phase distortion associated with the effects of mutual coupling

such that angel-of-arrival estimation can be performed accurately.

Finally, the last category of mutual coupling research deals with the performance

of systems which employ antenna arrays and include mutual coupling effects. Gupta

and Ksienski [29] investigated the steady-state and transient performance of adaptive

arrays where the effects of mutual coupling are included. They have derived an expres-

sion for the steady-state output signal-to-interference-plus-noise ratio, the eigenvalues

associated with the signal covariance matrix, the steering vector required to maxi-

mize the output signal-to-interference-plus-noise ratio of Applebaum-type adaptive

arrays, all in the presence of mutual coupling. Cheng [11] investigated optimization

techniques for antenna arrays in the presence of mutual coupling. Specifically, he

used the Method of Moments to generate the mutual coupling information, which
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was then included in the maximization procedures for array directivity and signal-to-

noise power ratio. Diouris, McLaughlin, and Zeidler [16] evaluated the performance

of a compact space-time diversity receiver for mobile communications and derived

several expressions for the bit error rate and outage probability as a function of the

channel covariance matrix.

1.2.2 Scatter due to Multipath

Another physical effect associated with antenna arrays is scatter due to multipath

propagation. In the past, much of the research involving antenna arrays assumed

that the envelopes of the received signals were either uncorrelated, as in diversity

research, or perfectly correlated, as in beamforming research. Unfortunately, with

these assumptions, the resulting performance predictions of the system are inaccurate

and optimistic. Thus, there exists several researchers who are currently examining

the cross-correlation statistics between antennas within the antenna array to resolve

this inaccuracy. Within this collection of researchers, there exist two groups with

different research emphasis concerning the cross-correlation statistics.

The first group is concerned with understanding and adequately modeling the spa-

tial characteristics of the channel. Ertel et al. [22] investigated several spatial models

used to characterize the channel in different environments, such as the Gaussian Wide

Sense Stationary Uncorrelated Scattering, Gaussian Angle-of-Arrival, Typical Urban,

and Bad Urban models. Furthermore, Ertel and Reed [23] investigated the time and

angle of arrival statistics for circular and elliptical scattering models, resulting in the

derivation of the joint and marginal time-of-arrival and angle-of-arrival probability

density functions.

The second group is interested in the effect of correlations among the fading
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signals at the array elements. Salz and Winters [74] [75], Jakes [33], Colman [12],

and Bramley [8] examined the cross-correlation statistics between the antennas in

the antenna array. These researchers all approached the problem the same way by

investigating the cross-correlation statistics received from the same source at a pair

of antennas. Most of these researchers assumed a specific spatial distribution in their

analysis. Only Colman in [12] derived an expression of the cross-correlation statistics

which does not assume an specific spatial distribution.

1.2.3 Power Control

A critical component of CDMA systems is power control. Power control tech-

niques are used to overcome the near-far effects by varying transmitted power levels

to ensure that all the signals are received with equal power levels. As a result, many

researchers, such as [9], [14], [19], [31], [44], [45], [51], [91], [92], [93], and [99], have

conducted extensive investigations into these techniques and their impact on the sys-

tem capacity. Cameron and Woerner [9] examined the performance of a CDMA

system which assumes imperfect power control, multiple access interference, and a

single cell. The results are then compared to the case where perfect power control

is assumed. Comparing the results between the two cases, it was shown that a 10

to 30 percent loss in capacity from the perfect power control case occurs when im-

perfect power control is assumed. Corazza, De Maio, and Vatalaro [14] determined

the outage probabilities as a function of interference from both inside and outside

the reference cell, path loss, fading, shadowing, and power control. Earnshaw [19]

investigated and compared both perfect and imperfect power control techniques and

considered in the analysis the effect of mobile call initialization, including the initial-

ization of its transmission power. Hsu and Lee [31] established a system model which

included the effects of shadowing, multipath fading, antenna diversity, voice activity.

6



The performance of this system was then evaluated when perfect and imperfect power

control was assumed. In both cases, the outage probability was determined. They

determined that the system performance was sensitive to multipath fading, antenna

diversity, and power control error. Lin, Huang, and Wu [44] implemented an uplink

power control scheme for a CDMA system based on the IS-95 standard. The cases

of perfect and imperfect power control were assumed. Linnartz [45] derived am ex-

act mathematical expression for the outage probability where the effects of multiple

interfering signals combined with log-normal and Rayleigh fading are present. Manji

and Zhuang [51] examined the reverse link power control in an indoor environment

characterized by a slowly Rayleigh fading channel. Furthermore, three algorithms

were discussed and their performance compared. These algorithms are: open loop,

channel estimation, and closed loop power control. Both perfect and imperfect power

control schemes are investigated although the perfect power control is calculated while

the imperfect power control is simulated. Viterbi [91], as well as Viterbi and Viterbi

[92], presented an approach to the evaluation of the reverse link capacity of a CDMA

cellular voice system which employs power control and a variable rate vocoder based

on voice activity. In fact, the derivations in Chapter 5 for the outage probabilities,

when either perfect or imperfect power control is assumed, follows an approach sim-

ilar to the one presented in [91] [92] with the exception that in our work mutual

coupling and scatter effects are accounted-for. Wu, Wu, and Zhou [93] investigated

an optimum power control scheme for several centralized power control algorithms for

CDMA systems. Finally, Zhou, Onozato, and Yamamoto [99] examined the perfor-

mance of CDMA systems with hierarchical macrocell/microcell architectures where

power control, both perfect and imperfect, are assumed.
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1.2.4 System Capacity

One of the motivations for using CDMA is its ability to support multiple users

simultaneously within the same frequency band via unique pseudo-noise sequence

assignment for each user. Thus, the study of system cellular capacity has been a

major objective of many researchers.

With respect to capacity determination, extensive research has been conducted

with respect to CDMA systems employing omnidirectional antennas. Gilhousen et

al. [27] presented one of the first and most cited papers on CDMA system capacity.

In [27], the problem of calculating the capacity of a CDMA system employing om-

nidirectional antennas and cell sectorization was addressed. Moreover, effects such

as path loss and shadowing as well as voice activity were included in the analysis.

Although our analysis of system capacity throughout this thesis is based on the ap-

proach used in [27], we do not address voice activity, even though to include it would

be a simple extension to our work. Cameron and Woerner [9] compared differences

in system capacity when imperfect power control is used rather than a perfect power

control assumption in a CDMA system where omnidirectional antennas are employed

and the analysis performed for a single cell. Milstein, Rappaport, and Barghouti [53]

studied the effects of the path loss exponent, total number of mobiles, and diversity

on the bit-error probability for both the uplink and downlink. Stuber and Kchao

[82] determined the bit-error rates as a function of path loss, fading, multiple access

interference, and background noise assuming power control and compared it against

the case when power control is not assumed.

Several researchers have adopted queuing theory viewpoint when investigating

system capacity by examining the outage probability and Erlang capacity. As was

mentioned before, Viterbi [91], as well as Viterbi and Viterbi [92], determined the
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outage probability for a power controlled CDMA system from which the Erlang ca-

pacity was obtained. Baiocchi, Delli Priscoli, and Sestini [6] defined traffic control

mechanisms to counteract the detrimental effects of large fluctuations of bursty user

mobility on the Erlang capacity of the CDMA cellular network. The improvement

in capacity was also determined and compared against the case where none of these

control mechanisms were in place. Shen and Krzymien [77] investigated the effect of

fading on the reverse link Erlang capacity of the IS-95 CDMA communication system.

The fading channel multipath intensity profile was included in the Erlang capacity

formula. Lee and Miller [40] calculated the CDMA blocking probability based on a

new analysis of the total squared power of other-cell interference. From this analysis,

the results obtained exhibit higher Erlang capacity relative to previous methods.

Although cellular CDMA systems are capable of handling multiple users simul-

taneously within the same frequency band, the increasing demand for mobile com-

munications can potentially strain the capacity of the CDMA system and affect the

quality of service for each user. Digital beamforming employing the use of base sta-

tion antenna arrays is one proposed method of significantly increasing the cellular

capacity of a CDMA system within a single cell. In this thesis, we determine the

increase in capacity due to beamforming with antenna arrays where the effects of

mutual coupling, scatter, and power control are included. This work is partially an

extension of the work carried out by Colman in [12], who studied the performance of

cellular CDMA communication systems using digital beamforming in environments

with scatter. Furthermore, Earnshaw [19] [20] as well as Naguib and Paulraj [56] -

[59] have presented work also closely related to our own. Finally, other works digital

beamforming and antenna arrays are used to increase capacity of CDMA systems

include [28], [43], [46], [86], and [89].
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1.3 Summary of Contributions

The major contributions of this thesis are:

• A method of including the effects of mutual coupling, generated using either

the Induced EMF Method [37], method of moments [30], or full-wave electro-

magnetic numerical computation [98], in our beampattern synthesis models of

base station antenna arrays used in CDMA communication systems employing

digital beamforming.

• The illustration of mutual coupling effects in antenna beamforming.

• Improved CDMA power and capacity predictions from Colman in [12] for both

single and multiple element antenna array cases by including the effects of mu-

tual coupling.

• A comparison of CDMA system capacity predictions between models which do

and do not include the adverse effects of mutual coupling.

• A model for the cross-correlation statistics between two array elements, similar

to the model developed by Salz and Winters in [75], assuming an unspecified

angle-of-arrival probability distribution P (θ), as in [12], with the effects of

mutual coupling included.

• The extension of the CDMA power and capacity predictions to the scatter-

ing environment case using the cross-correlation statistics at the antenna array

where the effects of mutual coupling are included.

• The illustration of the effects of angle spread, angle-of-arrival spatial distribu-

tions, and number of array elements on CDMA system capacity predictions.
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• Improved probability of outage expressions for CDMA systems assuming perfect

or imperfect power control from Viterbi and Viterbi in [91] and [92] by including

the effects of mutual coupling and scatter due to multipath.

• The illustration of the effects of mutual coupling, scatter due to multipath, and

power control on the Erlang capacity of the CDMA communication system.

1.4 Thesis Outline

The following chapters examine the effects of mutual coupling, scatter due to

multipath, and power control on CDMA cellular communication systems employing

digital beamforming and base station antenna arrays. The goal of this study is to

investigate the impact of these effects on the performance of CDMA systems using

smart antennas via system capacity predictions.

Chapter 2 examines the power and uplink capacity prediction of CDMA systems

which employ digital beamforming and antenna arrays in an ideal environment, i.e.,

no scattering due to multipath and no mutual coupling effects, presented in Col-

man [12] and Naguib [56]. Furthermore, we introduce background material in digital

beamforming and define the array response vectors associated with antenna arrays.

Chapter 3 examines two analytical methods, the Induced EMF Method, from

[37], and the Method of Moments, from [30], as well as a full-wave electromagnetic

numerical computation, from [98], are used to include the effects of mutual coupling

in the system models from Chapter 2. The implementation of these methods in

our beampattern synthesis models and system capacity predictions is meticulously

described in our analysis. A comparison of beampatterns and capacity predictions

when mutual coupling is and is not included is performed.
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Chapter 4 takes the system model we developed in Chapter 3 one step further by

assuming the environment also includes the effects of scatter due to multipath. This is

achieved by determining the cross-correlation statistics between antennas of the array,

as was performed by Salz and Winters [75], but improving it by including the effects of

mutual coupling and using an unspecified angle-of-arrival spatial distribution. Hence,

we can further increase the accuracy of our system model by including both the effects

of mutual coupling and scatter. An illustration of the effects of mutual coupling

scatter on system capacity as a function of angle spread and number of array elements

is performed.

Chapter 5 presents an approach to the evaluation of the reverse link capacity of a

CDMA system using digital beamforming and employing a base station antenna array

under imperfect power control where the effects of mutual coupling and scatter due

to multipath are included. The derivation for the probability of outage for a system

with perfect power control uses an approach based on [91] and [92]. The end result

is two expressions for the outage probability, one is an upper bound and other is a

Gaussian approximation. This derivation is then extended to the case of imperfect

power control, also obtaining the upper-bound and Gaussian approximation of the

outage probability. Finally, we present some comparisons which highlight the relative

effects of digital beamforming with different numbers of antenna elements, mutual

coupling, scatter due to multipath, and power control.
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Chapter 2

Capacity Enhancement using Digital

Beamforming and Antenna Arrays

2.1 Introduction

One of the primary restrictions for current code-division multiple access (CDMA)

communication systems is their susceptibility to interference from other co-channel

users. Although several remedies have been proposed, CDMA systems which employ

digital beamforming and base station antenna arrays, also known as smart antennas,

have been shown to be capable of achieving greater capacity relative to other multiple

access techniques [57]. In this chapter, we examine the uplink power and capacity

prediction of CDMA systems which employ digital beamforming and antenna arrays

in an ideal environment, i.e., no scattering due to multipath and no mutual coupling

effects. Furthermore, we shall introduce some background material on digital beam-

forming and define several array response vectors associated with antenna arrays.
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2.1.1 Chapter Outline

The first half of this chapter deals with the concepts of digital beamforming.

These concepts are then reinforced with an explanation of array response vectors

and its dependency on the array geometry. In particular, the array response vectors

for circular and uniform linear antenna arrays are derived in detail. Following this

subsection, we will discuss beampattern synthesis. This is crucial to understanding

how digital beamforming works since it provides insight into the electromagnetic

behaviour of the antenna array, which can be used to study the performance of the

system.

The second half of this chapter addresses system capacity predictions. Specifically,

a derivation of the system capacity will be carried out and then applied to the case of

a circular antenna array ranging from one to six array elements. Using this example,

the benefits of using antenna arrays to increase system capacity will be exhibited.

2.2 Digital Beamforming

2.2.1 Introduction

Digital beamforming is used to maximize the ratio of the desired mobile’s signal

power to the noise and interference power by taking the weighted sum of the an-

tenna outputs in the multi-element base station antenna array. This maximization

is achieved by suppressing the noise and interference power using a suitable set of

beamforming coefficients.

One critical required component for performing digital beamforming is the knowl-

edge of the array response vector, that contains the relative phases of received signals
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at each array element. The array response vector is used by a digital beamformer to

isolate desired signals and suppress interfering signals.

Using the array response vector, the beampatterns generated for an array which

is beamforming towards a particular direction can be found. This process is called

beampattern synthesis and it is an important and useful tool in determining the per-

formance of the system.

2.2.2 Array Response Vectors

The use of multi-element antenna arrays in the reception of signals requires the

knowledge of the array response vector ā for a signal arriving from direction θk. The

array response vector consists of the relative phases of the received signal at each of

the antennas within the array. Using the array response vector, an amplification of

the desired signals and the suppression of the undesirable signals occurs. This type

of spatial filtering is called beamforming.

2.2.2.1 Array Response Vector for a Uniform Linear Array

Suppose the distance between the desired mobile and the base station is large

relative to the carrier wavelength, λ. Therefore, the incoming signals from that mobile

can be treated as plane waves. When these signals from the kth mobile arrive at the

base station antenna array, as in Figure 2.1 for example, and are incident upon it

with angle θk, each antenna receives the signal out-of-phase with respect to the other

antennas. Thus, assuming the distance between adjacent antennas to be λ/2, the

relative phase of a signal with angle-of-arrival θk being received by the ith element of
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Figure 2.1: Linear array geometry

an NA-element uniform linear array, where 1 ≤ i ≤ NA, is given as [90]
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(2.1)

where ā is the array response vector. It should be noted that in this case, each element

of ā has unity magnitude for simplicity. As will be shown later, when the effects of

mutual coupling and scatter are considered, no such simplification will be made.

16



2.2.2.2 Array Response Vector for a Circular Array

Using the previously made assumptions concerning the distances between the

antenna array and desired mobile as well as between the array elements, suppose

the antennas are arranged in a circular geometry, as in Figure 2.2. Therefore, the

relative phase of a signal with angle-of-arrival θk being received by the ith element of

an NA-element circular array, where 1 ≤ i ≤ NA, is given as [19]

ā (θk) =
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(2.2)

such that the phase delay for ith element of the array, αi, is

αi (θk) =
π cos

(

θk − i 2π
NA

)

2 sin
(

π
NA

) (2.3)

where ā is the array response vector. Just as in the uniform linear array case, each

element of ā has unity magnitude for simplicity.

2.2.3 Beampattern Synthesis

Once the array response vector is obtained for a particular geometry, one is capable

of creating the array beamforming pattern. This is accomplished by using

φk (θk, θd) =
∣

∣

∣ω̄H (θd) ā (θk)
∣

∣

∣

2
(2.4)

where ā (θk) is the array response vector for a mobile k with direction of arrival θk,

ω̄ (θd) is the beamforming weight vector for a desired mobile d with direction of arrival
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Figure 2.2: Circular array geometry

θd, ω̄H (θd) is the conjugate transpose of ω̄ (θd),and φk is the fraction of interferer k’s

signal passed by the beamforming weights of the antenna array.

The result of Equation (2.4) is a beampattern which has a main lobe directed

towards θd. Thus, the signal of the desired mobile is easily passed through the beam-

pattern while signals from the interfering mobiles located at other angles-of-arrival

are suppressed.

As an example, suppose we are using maximum signal-to-noise ratio (SNR) beam-

forming weights. Therefore, the beamforming weight vector is identical to the array

response vector. Using a 5-element circular array with adjacent array elements being
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a half wavelength apart, ω̄ (θd) is

ω̄ (θd) =


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where the phase delay for ith element of the array, wi (θd), is

wi (θd) =
π cos

(

θd − i 2π
NA

)

2 sin
(

π
NA

) (2.6)

and NA = 5.

To create the beampattern, for each θk we vary θd from−π to π radians. Therefore,

if the direction of arrival is π/6 radians for our circular array, Figure 2.3 results.

Likewise, if the direction of arrival is 0 radians, Figure 2.4 results.
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Figure 2.3: Beampattern of a 5-element

circular array DOA of 30o
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Figure 2.4: Beampattern of a 5-element

circular array with DOA of 0o
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2.3 System Capacity Predictions

In this section, the capacity of the CDMA system uplink is derived for both the

single antenna element and multiple antenna element array cases. The approach used

in these derivations are based upon the calculations found in [12] and [27].

2.3.1 Cellular CDMA Reverse Link

Although there exists several standards defining the complete implementation pro-

tocol of a CDMA communication system, such as [55], [87], and [70], we nevertheless

investigate only the reverse link (mobile-to-base station) of such a communication

system within the context of this thesis.

In our system setup, we assume that the base station employs a single NA-element

antenna array to receive and transmit signals from and to mobiles. Moreover, the

mobiles in our system do not possess antenna arrays. To simplify the analysis within

this thesis, a single cell system is considered and BPSK modulation is assumed.

Suppose we consider the signal component from a single mobile in a cell containing

NM mobiles. We can express the digital baseband transmitted signal for the ith

mobile, spread by pseudo-noise (PN) sequence c̃i(t), as

si (t) = WC (bi (t)) c̃i (t) , i = 1, 2, 3..., NM (2.7)

where WC (bi (t)) is the Walsh code corresponding to the data bit bi (t) for period

[t, t + Tb). The bit sequence transmitted by the mobile is defined as

bi (t) =
∞
∑

k=−∞
bi,kp (t− kTb) (2.8)
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where bi,k are assumed to be i.i.d. random variables, Tb is the bit duration, and

p(t) is the pulse shape, which is constant over Tb and assumed to be rectangular.

Furthermore, we define the PN sequence for user i as

c̃i(t) = cI
i (t) + jcQ

i (t) (2.9)

such that the in-phase (I) and quadrature (Q) components of c̃i(t) are

cI
i (t) =

∞
∑

k=−∞
cI
i,kp (t− kTc) cQ

i (t) =
∞
∑

k=−∞
cQ
i,kp (t− kTc)

where cI
i,k and cQ

i,k are assumed to be i.i.d. random variables taking values of ±1 with

equal probability, Tc is the bit duration, and p(t) is the pulse shape, which is constant

over Tc and assumed to be rectangular.

Assuming that the channel parameters vary slowly relative to the bit duration Tb,

such that they are constant over several bit durations, the complex baseband received

signal vector from the ith user at the base station antenna array is

xi (t) =
L

∑

l=1

si (t− τl,i) ejφl,ial,i (2.10)

where φl,i = ωcτl,i, ωc is the carrier frequency in radians per second, τl,i is the integer

chip time delay for multipath component l of user i, L, is the number of multipath

components, and al,i is the array response vector for the ith user and lth multipath

component.

Thus, using Equation (2.10), the total received signal at the base station is the

sum of all the users’ signals plus noise is

x (t) =
NM
∑

i=1

L
∑

l=1

xl,i (t) + n (t) (2.11)

where NM is the total number of mobiles within the cell, and n (t) represents additive

white Gaussian noise.
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Figure 2.5: Space-time matched filter [56]

At the receiver end of the system, as shown in Figure 2.5, the first process that the

received signal encounters is a parallel multi-beamformer, a form of spatial matched

filtering used to reduce the interference from other mobiles by taking the weighted

sum of the antenna array outputs, thus maximizing the ratio of the desired mobile’s

signal power to the noise and interference power.

The weighted sum is performed by using the elements of a complex baseband

beamforming weight vector that is assigned to each mobile. Assuming there exists

L multipath components of mobile i’s signal, the receiver in Figure 2.5 possesses a

bank of L beamformers, each with beamforming weight vector wl, corresponding to

the lth multipath component of the ith mobile’s signal.

After beamforming has been performed, we enter the temporal matched filtering
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process of the receiver, consisting of a bank of L correlators. In this process, the lth

matched filter is matched to the code waveform in the lth path by c̃∗ (t− τl), such

that we obtain the lth sufficient statistic

zl (n) =
∫ nTb+τl

(n−1)Tb+τl

c̃∗ (t− τl)w∗
l x (t) dt , l = 1, 2, 3, ..., L (2.12)

In the following section as well as the remainder of this thesis, the emphasis of the

analysis will be focused on the use of digital beamforming for purpose of increasing

the system cellular capacity.

2.3.2 Single Antenna Element Power and Capacity Calcula-

tions

The system in this derivation uses perfect power control in a single-cell environ-

ment where the base station antenna array consists of only one antenna. Power

control is used to establish a state of equilibrium in CDMA systems with respect to

transmission power levels of each mobile since these systems are strictly interference

limited. This topic is further discussed in Chapter 5

Assuming there are NM mobiles in the CDMA uplink, where each mobile has

received signal power PR, the total received interference power, PI , is

PI = NIPR (2.13)

where NI = NM −1 is the number of interfering mobiles, and the voice activity factor

α is assumed to be unity.

Therefore, the signal-to-noise ratio is given as

SNR =
PR

PI + η
(2.14)

23



where η is the background noise due to spurious interference and thermal noise within

the bandwidth of the spread signal.

Using Equation (2.14), the bit energy-to-noise density ratio can be obtained by

dividing the desired signal power by the data bit rate, RB, and dividing the noise

and interference power by the bandwidth of the spread signal, B. Therefore, the bit

energy-to-noise density ratio is

Eb

No
=

PR/RB

PI/B + σ2
n

(2.15)

where σ2
n is the variance of the background noise. It should be noted that Equation

(2.15) agrees with Equation (2) in [27] and Equation (4.4) in [12].

Therefore, using Equation (2.13), we solve for PR in Equation (2.15), yielding

PR =
(Eb

No

)

σ2
n

{ 1
RB

− NI

B

(Eb

No

)}−1

(2.16)

which is used to predict the signal power and interference power for one array element

given a target signal-to-noise ratio.

To calculate the maximum number of mobiles which the system can support, we

start by isolating NI in Equation (2.16), yielding

PR
(

Eb
No

)

σ2
n

=
1

1
RB
− NI

B

(

Eb
No

)

(

Eb
No

)

σ2
n

PR
=

1
RB

− NI

B

(Eb

No

)

1
RB

−

(

Eb
No

)

σ2
n

PR
=

NI

B

(Eb

No

)

NI =









B

RB

(

Eb
No

) − Bσ2
n

PR







 (2.17)

where b.c is the floor function.
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Since the total number of mobiles is equal to the number of interfering mobiles

plus the desired mobile, using Equation (2.17), the system cell capacity is

NM = NI + 1 =









B

RB

(

Eb
No

) − Bσ2
n

PR







 + 1 (2.18)

where NM is the total number of mobiles within the cell.

Assuming that Eb/No = 7dB, RB = 9600bits/second, and B = 1.2288MHz, as

well as σ2
n = (4.5× 10−11)2 [69], Equation (2.18) can be approximated by

NM ≈
⌊

B
RB (Eb/No)

⌋

+ 1 (2.19)

since the minimum signal level is constrained by the receiver sensitivity. According

to [88], the receiver sensitivity was measured to be −92dBm. Therefore, letting

PR = −92dBm, we see that

B

RB

(

Eb
No

) = 25.5393 � Bσ2
n

PR
= 3.9437× 10−3

thus justifying the approximation of Equation (2.18).

2.3.3 Multiple Antenna Element Array Power Calculations

Following a methodology similar to the one used to determine the predicted power

values for the single antenna element case, an expression for PR, and ultimately NM , is

determined for the multiple antenna element array case. In this case, the suppression

of signals arriving from certain directions due to beamforming, as well as the effects

of mutual coupling, are considered in the following derivations.

In the multiple antenna element case, the expression for the bit energy-to-noise

density ratio from Equation (2.15) becomes

Eb

No
=

PR/RB

PI/B + NAσ2
n

(2.20)
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where NA is the number of array elements and PR is the total received signal power

at the array due to the desired mobile. The factor NA in Equation (2.20) is due to the

fact that the additive noise is assumed to be statistically independent at each array

element.

Therefore, the interference contribution by mobile k is given by

PIk = φkPR (2.21)

where
NI
∑

k=1

PIk = PI (2.22)

and φk is the fraction of interferer k’s signal power passed by the beamforming weights.

Thus, the expected value of the total interference power is given as

E {PI} = E







NI
∑

k=1

PIk







= E







NI
∑

k=1

φkPR







= E







PR

NI
∑

k=1

φk







= PR

NI
∑

k=1

E {φk}

= PRNIE {φk} (2.23)

which is then substituted into Equation (2.20) to solve for the received predicted

power level E{PR}, namely

E{PR} =
(Eb

No

)

NAσ2
n

{

1
RB

− E{φk}NI

B

(Eb

No

)

}−1

(2.24)

where E{φk} is the expected fraction of interferer k’s signal power, which we shall

determine in the next subsection.
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2.3.4 Derivation of E{φk}

In this derivation, we will consider a circular array without loss of generality. The

maximum SNR beamforming weights for a desired user d at an angle θd relative to

the circular antenna array is given as

ω̄(θd) =

































ejw0(θd)

ejw1(θd)

ejw2(θd)

...

ejw(NA−1)(θd)

































(2.25)

where the phase delay for ith element of the array, wi (θd), is

wi (θd) =
π cos

(

θd − i 2π
NA

)

2 sin
(

π
NA

) (2.26)

It should be noted that these beamforming weights can be reconfigured to other

array geometries as well.

Therefore, the amount of interference power seen from an interferer k at an angle-

of-arrival θk is

φk (θd, θk) =
∣

∣

∣ω̄H (θd)ā (θk)
∣

∣

∣

2
(2.27)

where ω̄H (θd) denotes the complex conjugate transpose of ω̄ (θd) and ā (θk) is an array

response vector for an NA-element array, as described in Section 2.2.2.

Assuming both θk and θd are random variables uniformly distributed over [0, 2π),

the expected value of φk can be determined by substituting Equation (2.2) and Equa-

tion (2.25) into Equation (2.27), for the case of a circular array, and average over θk

and θd, yielding [12]

E{φk (θd, θk)} =
1

4π2NA

∫ 2π

0

∫ 2π

0

∣

∣

∣

∣

∣

e
j
(

π cos(θd−q2π/NA)
2 sin(π/NA) −π cos(θk−q2π/NA)

2 sin(π/NA)

)∣

∣

∣

∣

∣

2

dθddθk (2.28)

27



The results of Equation (2.28) for a circular array, where the number of array

elements ranges from NA = 1 to 6 antennas, are shown in Table 2.1. Note that the

effects of mutual coupling are not included in Equation (2.28) and will be discussed

later in Chapter 3.

2.3.4.1 Results

From Table 2.1, we observe that as the number of antennas increases, the expected

values of φk, E {φk}, decrease. Thus, there is an inverse relationship between the

number of antennas and E{φk}. These results, which were determined numerically

using Matlab, are the same as the results found in [12].

NA 1 2 3 4 5 6

E {φk} 1.0000 0.5463 0.3950 0.3241 0.2460 0.2058

Table 2.1: Expected values of φk

Using the derived expressions for E{φk} as well as the tabulated values in Table

2.1, one is now capable of predicting the capacity of a CDMA system using base

station antenna arrays, as we will see in the next section.

2.3.5 Multiple Antenna Element Array Capacity Calcula-

tions

Using the same technique as in the single antenna element case, the system ca-

pacity can be determined by isolating the total number of mobiles within the cell,
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NM , in Equation (2.24), thus yielding

E{PR}
(

Eb
No

)

NAσ2
n

=
1

1
RB
− E{φk}NI

B

(

Eb
No

)

(

Eb
No

)

NAσ2
n

E{PR}
=

1
RB

− E{φk}NI

B

(Eb

No

)

1
RB

−

(

Eb
No

)

NAσ2
n

E{PR}
=

E{φk}NI

B

(Eb

No

)

NI =









B
E{φk}





1
(

Eb
No

)

RB

− NAσ2
n

E{PR}











 (2.29)

where b.c is the floor function.

Since the total number of mobiles is equal to the number of interfering mobiles

plus the desired mobile, using Equation (2.29), the system cell capacity is

NM = NI + 1 =









B
E{φk}





1
(

Eb
No

)

RB

− NAσ2
n

E{PR}











 + 1 (2.30)

Letting Eb/No = 7dB, RB = 9600bits/second, B = 1.2288MHz, σ2
n = (4.5 ×

10−11)2 [69], and PR = −92dBm [88], Equation (2.30) can be approximated by

NM ≈









B
E{φk}





1
(

Eb
No

)

RB











 + 1 (2.31)

since

B

RB

(

Eb
No

) = 25.5393 � NA
Bσ2

n

PR
= NA

(

3.9437× 10−3
)

where in this study 1 ≤ NA ≤ 6.

Using Equation (2.31), the predicted capacity for CDMA systems employing base

station antenna arrays with circular geometries, where adjacent array elements are

a half-wavelength apart and the number of array elements range from one to six,

are given in Table 2.2. Note that the effects of mutual coupling are not included in

Equation (2.31) and will be discussed later in Chapter 3.
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Inspecting these values, it can be seen that as the number of antennas increases,

the number of mobiles which the system can support also increases for all three cases.

Furthermore, when compared against the results in [12], they match.

NA 1 2 3 4 5 6

Capacity 26 47 65 79 104 125

Table 2.2: Predicted capacity values using perfect power control and correlation of

1.0 between array elements

2.4 Chapter Summary

In this chapter, the rationale and concepts of digital beamforming were presented. In

particular, we focused on the array response vectors and their significance in beam-

forming. Furthermore, we looked at two types of array response vectors associated

with different array geometries: the circular array, and the uniform linear array. We

also looked at beampattern synthesis, using an example of maximum SNR beamform-

ing weights, and plotted the beampatterns for two different direction of arrivals.

In the second half of the chapter, we examined a simple derivation of system

capacity. Furthermore, the resulting analysis was applied to a system where the array

possessed a circular geometry and consisted of NA array elements, where 1 ≤ NA ≤ 6.

The results show that an increase in the number of array elements will cause an

increase in the number of mobiles that can be supported by the system.
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Chapter 3

Effects of Mutual Coupling on System

Performance

3.1 Introduction

Extensive research has been carried out worldwide to investigate the performance

of CDMA systems which employ digital beamforming and base station antenna arrays

by using a variety of models. Unfortunately, many of these models neglect the effects

of mutual coupling, an electromagnetic phenomenon which affects closely-spaced an-

tenna arrays. This potentially leads to less accurate system performance predictions.

In this chapter, two analytical methods, the Induced EMF Method [7] [10] [37] [38]

[50] and the Method of Moments [2] [30] [81], as well as a full-wave electromagnetic

numerical computation, are used to include the effects of mutual coupling in our

system models. The implementation of these methods in our beampattern synthesis

models and system capacity predictions is described in detail.
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3.1.1 Chapter Outline

The first section of this chapter deals with the effects of mutual coupling in antenna

arrays. We commence with a brief qualitative explanation of mutual coupling effects

and how these effects behave within the confines of a closely-spaced antenna array.

Two examples of mutual coupling, namely transmission-mode and reception-mode

coupling, are presented.

The next section deals with the methods used to include the effects of mutual

coupling in our beampattern synthesis models and system capacity predictions. The

Induced EMF Method is the first method examined, followed by the Method of Mo-

ments, and finally the full-wave electromagnetic numerical computation. In all three

cases, the basic formulation of the method is described which is then followed by its

application to our system models. The impact of our improved beampattern synthesis

models on system performance is presented.

Finally, system capacity prediction is the last topic in this chapter. The analysis

commences with the case of a single antenna element in a CDMA system. This is

then followed by and extended to the more complicated case of a multiple antenna

element array by utilizing the beampattern models developed in the second section

of this chapter. In particular, the beampatterns are used to determine the power

levels that are influenced by interfering mobiles. The results of our system capacity

predictions where mutual coupling effects are considered is presented.
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3.2 Mutual Coupling Effects

3.2.1 Introduction

When two antennas are in close proximity, whether one and/or both are trans-

mitting or receiving, some of the energy that is primarily intended for one ends up

at the other. According to [7], the amount of energy transferred between antennas

mainly depends on:

• radiation characteristics of each antenna

• relative separation between the pair of antennas

• relative orientation of each antenna

This energy transfer is known as mutual coupling. Various phenomena exist which

may cause this transfer of energy, such as when both antennas are transmitting or

when they are both receiving.

In order to understand transmission mode coupling, let us refer to Figure 3.1. As

our system is transmitting, (a) energy is travelling through antenna n, where (b) it

is radiated into space, and (c) towards antenna m. Upon being received by antenna

m, the energy is rescattered either (d) into space, or (f) back to antenna n, while

the remaining energy (e) travels to the generator of antenna m. It should be noted

that when both antennas are excited simultaneously, vector addition is required to

perform the analysis.

Similarly, following Figure 3.2 closely, we see that (a) a phase wave front is incident

upon the array which excites antenna n first. At antenna n, (c) some of the energy

will be rescattered into space, (d) some of the energy will be reflected to antenna m
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To Transmitter Chain To Transmitter Chain
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Figure 3.1: Transmission mode coupling

antenna n antenna m

(e)

(d)

(b)

(c)

(a) (a)

To Receiver Chain To Receiver Chain

Incident phase
wave front

Figure 3.2: Reception mode coupling
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where it will be added vectorially with (a) to obtain the net received energy, and (b)

the rest will travel towards the receiver chain. Some of this energy in (b) will be (e)

reflected back due to impedance mismatch.

Although the inclusion of mutual coupling effects will complicate our analysis of

CDMA systems using antenna arrays, it is necessary to include them due to the

significant potential impact on the performance of the systems being studied.

3.3 Beampattern Synthesis Models

3.3.1 Mutual Impedance Data Generation Methods

The methods used in this chapter to include mutual coupling effects in our beam-

pattern synthesis models of CDMA systems utilizing base station antenna arrays all

follow a similar formulation. The methods covered, namely, the induced EMF method,

the Method of Moments, and a finite-element numerical computation method, are all

based upon representing an NA element array as a N port network, as shown in Fig-

ure 3.3. In this figure and in our study, all the array elements are of equal length and

the increments are equally distributed over all of them, although these methods are

applicable to non-uniform length array elements as well. Furthermore, the IE3D soft-

ware package used in the finite-element numerical computation method subdivides

the array into a mesh of two-dimensional increments rather than a collection of one-

dimensional increments, as in the Induced EMF Method and Method of Moments,

but the use of a mesh does not change the network representation of the array.

The goal of representing the array as a network of N -ports is to exploit the

circuit parameters associated with such a representation, namely, the driving-point

impedances looking into each port. These impedances can be organized into a mutual
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1 increment

antenna 1

antenna 2

antenna N -1A

antenna NA

NA/N increments
per antenna

Figure 3.3: Equivalent representation of an NA element array as a N -port network

impedance matrix, [Z], which contains information of the mutual coupling effects in

the array. The matrix [Z] can be applied to a beampattern synthesis formulation or

a capacity prediction using the matrix equation

[Z]−→I = −→V (3.1)

where −→V and −→I are vectors of the voltage and current distributions, respectively,

over the array elements of length N .

Therefore, the main difference between the methods of the following three subsec-

tions is the way they obtain the mutual impedance matrix [Z]. Each of the techniques

used to obtain these matrices will be described in detail as well as their implementa-

tion in a beampattern synthesis model.
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3.3.1.1 Induced EMF Method

The induced EMF (electromagnetic fields) method, described in [7] [10] [37] [38]

[50], is a classical method to compute the self and mutual impedances of a collection

of two-port networks, such as antenna arrays. Thus, we are able to obtain an NA×NA

mutual impedance matrix [Z] and employ it to perform beampattern synthesis. Al-

though the method is restricted to straight and parallel elements in formation as well

as possessing difficulties in accurately accounting for wire radii and feed gaps, its

advantage is that it can lead to closed-form solutions. Although [7] [10] [37] [38] [50]

all approach the induced EMF method in a similar fashion, King’s approach [37] was

adopted to our analysis.

Referring to Figure 3.4, we have two center-fed dipole antennas, antenna 1 and

antenna 2, both with half-lengths l1 and l2 separated by a distance d and staggered

in elevation by h. The mutual impedance between the two antennas is given by

Z21 = −V21

I1b
(3.2)

where V21 is the open-circuit voltage at the terminals of antenna 2, due to a base

current I1b in antenna 1. We can determine V21 by applying the reciprocity theorem

[36] to obtain

V21 =
1
I2b







l2+h
∫

h

Ez1I2(z)dz +
2l2+h
∫

l2+h

Ez1I2(z)dz





 (3.3)

where I2b is the base current of antenna 2 and Ez1 is the component of electric intensity

parallel to the axis of the antenna at a point z along antenna 2 due to the current in

antenna 1. Assuming the current distribution of antenna 2, namely I2, is sinusoidal,

we get

I2(z) =















I2m sin β(z − h) , h < z < l2 + h

I2(z) = I2m sin β(2l2 + h− z) , h + l2 < z < 2l2 + h
(3.4)
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where I2m is the value of the current at the current loop or current maximum and

β = 2π/λ is the wave number. Furthermore, the expression for the parallel component

of the electric field is given as [37]

Ez1 = 30I1m

[

−j exp−jβr1

r1
+
−j exp−jβr2

r2
+

2j cos βl1 exp−jβr0

r0

]

(3.5)

l

l

1

2

r

r

r

0

2

1

d

h

dz

z

Figure 3.4: Two parallel antennas of arbitrary length in-echelon [37]

Thus, the mutual impedance related to the loop currents is given by

Z12loop =
I1bI2b

I1mI2m
Z12base (3.6)

Using these equations, we obtain

Z12 = −30
l2+h
∫

h

sin β(z − h)
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·
(

−j exp−jβr1

r1
+
−j exp−jβr2

r2
+

2j cos βl1 exp−jβr0

r0

)

dz

−30
2l2+h
∫

l2+h

sin β(2l2 + h− z)

·
(

−j exp−jβr1

r1
+
−j exp−jβr2

r2
+

2j cos βl1 exp−jβr0

r0

)

dz (3.7)

Observing the geometry in Figure 3.4, we see that

r0 =
√

d2 + z2 (3.8)

r1 =
√

d2 + (l1 − z)2 (3.9)

r2 =
√

d2 + (l1 + z)2 (3.10)

Thus, using Equations (3.7), (3.8), (3.9), and (3.10), as well as using dipole array

elements of equal length in a non-staggered arrangement, we obtain the following

expressions for components Zmn of the NA×NA mutual impedance matrix [Z]

Zmn =















































30 (0.5772 + ln(2βl)− Ci(2βl))

+j30 (Si(2βl)) , m = n

Rmn + jXmn ,m 6= n

(3.11)

where

Rmn = 30 cos(2βl)(Ci(u0) + Ci(v0)− 2Ci(u1)− 2Ci(v1)

+2Ci(βd)) + 30 sin(2βl)(−Si(u0) + Si(v0) + 2Si(u1)

−2Si(v1)) + 30(−2Ci(u1)− 2Ci(v1) + 4Ci(βd))

Xmn = 30 cos(2βl)(−Si(u0)− Si(v0) + 2Si(u1) + 2Si(v1)

−2Si(βd)) + 30 sin(2βl)(−Ci(u0) + Ci(v0) + 2Ci(u1)

−2Ci(v1)) + 30(2Si(u1) + 2Si(v1)− 4Si(βd))
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u0 = β(
√

d2 + 4l2 − 2l) v0 = β(
√

d2 + 4l2 + 2l)

u1 = β(
√

d2 + l2 − l) v1 = β(
√

d2 + l2 + l)

Ci(u) =
u
∫

∞

cos(x)
x dx Si(u) =

u
∫

0

sin(x)
x dx

and d is the horizontal distance between two dipole antennas, l = l1 = l2 is the

half-length of the dipole antennas, Ci(.) and Si(.) are the cosine and sine integral

equations, respectively, and 1 ≤ m, n ≤ NA.

After creating the mutual impedance matrix [Z], we must augment Equation (3.1)

and solve the matrix equation

[Z]−1−→V =
−→I (3.12)

where [Z]−1 is the inverse matrix of [Z]. Using the maximum SNR beamforming

weight vector described in Subsection 2.2.3, we can define the elements of the voltage

distribution vector,
−→
V . Therefore, we can determine the current for each antenna

using Equation (3.12) and perform beampattern synthesis for a circular array using

[50]

A(θ) =

∣

∣

∣

∣

∣

∣

NA
∑

m=1
Ime

j
(

π cos(θ−m(2π/NA))
2 sin(π/NA)

)
∣

∣

∣

∣

∣

∣

2

(3.13)

where Im is an element of
−→I , θ is the angle-of-arrival, and 1 ≤ m ≤ NA.

3.3.1.2 Method of Moments

The Method of Moments is another technique for obtaining the mutual impedance

matrix [Z]. For this method, we referred to [2] [30] [81] for a detailed overview and

analysis. In particular, we used [30] as the basis for the following work concerning

the method of moments.

From basic electromagnetics, we have the following equations [34] [72] [71]

−→E = jω
−→A +

−→∇Φ (3.14)
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−→
A = µ

∫ ∫

S

−→
J

exp−jβR

4πR
ds (3.15)

Φ =
1
ε

∫ ∫

S

σ
exp−jβR

4πR
ds (3.16)

σ =
−1
jω
−→∇ · −→J (3.17)

−→n ×−→E scatter = −−→n ×−→E (3.18)

where β = 2π/λ is the wavenumber, σ is the surface charge density on a conducting

surface S,
−→J is the current vector on a conducting surface S, µ is the permeability

of the dielectric, ε is the permittivity of the dielectric, −→A is the magnetic vector

potential, Φ is the magnetic scalar potential, −→n is the outward direction normal to

the conducting surface S, −→∇ is the gradient operator, ω is the angular frequency

of operation, R is the distance from a source point to a field point, and −→E is the

impressed field vector. Applying these equations to a thin wire structure, where the

current flows in one direction and the current and charge densities are approximated

by filaments of current and charge on the wire axis, we obtain

El = jωAl +
∂Φ
∂l

(3.19)

−→
A = µ

∫

axis

−→I filament(l)
exp−jβR

4πR
dl (3.20)

Φ =
1
ε

∫

axis

σfilament(l)
exp−jβR

4πR
dl (3.21)

σfilament =
−1
jω

dIfilament

dl
(3.22)

where l is the length variable along the wire axis,
−→
I filament is the current vector of

the filament, and σfilament is the charge of the filament.

A convenient way to obtain a simple solution to Equations (3.19), (3.20), (3.21),

and (3.22) is by using matrices. For instance, we can approximate the above integrals

by the sum of integrals over N small increments by treating Ifilament and qfilament as
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constants over each increment. Moreover, derivatives can be approximated by finite

differences over the same increments.

Therefore, referring to Figure 3.5, we see that the nth segment is identified by its

starting position, n−, its midpoint, n, and finally its endpoint, n+. Furthermore, we

define the increment ∆ln as the distance between n− and n+ while ∆l−n and ∆l+n are

increments shifted one-half increments minus or plus along l.

n

n

n

+

-

Y

X

Z

l

m
R

R zmn

m

m

n

m

z

x

z

y
∆l n

ρ
m

Figure 3.5: Geometry of a dipole antenna increment [30]

Using these approximations, we obtain the following

El(m) ≈ jωAl(m) +
Φ(m−)− Φ(m+)

∆lm
(3.23)

−→
A (m) ≈ µ

∑

n

−→I filament(n)
∫

∆ln

exp−jβR

4πR
dl (3.24)
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Φ(m+) ≈ 1
ε

∑

n
σfilament(n+)

∫

∆ln

exp−jβR

4πR
dl (3.25)

σ(n+)filament ≈
−1
jω

Ifilament(n + 1)− Ifilament(n)
∆l+n

(3.26)

Note that the cases where we have Φ(m−) and σ(n−) are treated similarly.

We can view the N equations above as the equations for an N -port network, with

terminal pairs n+ and n−, and an applied voltage
−→
E · ∆−→l n. Applying Equations

(3.24) and (3.25) to two representative elements, n and m, as shown in Figure 3.5,

and noticing that they possess the same integral form, we obtain

ψ(n, m) =
1

∆ln

∫

∆ln

exp−jβRm

4πRm
dl (3.27)

and

Rm =















√

ρ2 + (z − zm)2 : m 6= n
√

a2 + z2 : m = n
(3.28)

where ρ is the horizontal distance between antennas containing points n and m, a is

the dipole antenna radius, k is the wave number, zm is the vertical distance between

points n and m, ∆ln is the length of the nth increment, ω is the frequency of operation

(in radians per second), and Rm is the distance from a point on ∆ln to the point m.

Let the increment n of Figure 3.5 consist of a current filament Ifilament(n) and

two charge filaments of net charge

q(n+) =
1
jω

Ifilament(n) q(n−) =
−1
jω

Ifilament(n) (3.29)

Therefore, using Equation (3.24) we obtain

−→
A = µ−→I filament(n)∆lnψ(n,m) (3.30)

Using Equations (3.27) and (3.29), knowing that q = σfilament∆l, Equation (3.25)

can be rewritten such that the scalar potentials at m+ and m− are

Φ(m+) =
1

jωε

[

Ifilament(n)ψ(n+,m+)− Ifilament(n)ψ(n−,m+)
]

(3.31)
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Φ(m−) =
1

jωε

[

Ifilament(n)ψ(n+,m−)− Ifilament(n)ψ(n−,m−)
]

(3.32)

Substituting equations (3.31), (3.32), and (3.30) into equation (3.23) yields the

impedance equation

Zmn = jωµ∆
−→
l n ·∆

−→
l mψ(n, m)

+
1

jωε

[

ψ(n+, m+)− ψ(n−,m+)− ψ(n+,m−) + ψ(n−,m−)
]

(3.33)

where 1 ≤ m,n ≤ N , ψ(n,m) is given in Equation (3.27), and Zmn is an element of

the mutual impedance matrix [Z].

Numerically integrating ψ(n,m), we obtain the mutual impedance matrix [Z].

Specifying a vector of voltage distribution over all the filaments, −→V , where a filament

may also be referred to as an increment, one can solve the matrix equation

[Zmn]−1[Vn] = [Im] (3.34)

where −→I specifies a vector of the increment currents over the entire array.

In this thesis, we have assumed that the antennas in the array are center-fed

such that only the increments corresponding to the centers of the antennas possess

non-zero voltages while the remaining entries are zero.

Upon obtaining
−→
I , we perform beampattern synthesis by determining the far-zone

field at a point i using [2]

Ai =
µe−jβri

4πri

n
∑

j=1
Ijejβrj cos ξij∆lj (3.35)

where ri and rj are the radius vectors to the distant field and source points, respec-

tively, ξij is the angle between them, and Ij is an element from the current vector
−→I .
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3.3.1.3 Full-Wave Electromagnetic Numerical Computation using IE3D

One commercially-available full-wave electromagnetic numerical computation soft-

ware package is known as IE3D [98]. It is capable of modeling both the electric current

on a metallic structure as well as a magnetic current representing the field distribution

on a metallic aperture. The computation process of IE3D is based upon solving an

integral equation derived using Green’s Functions and the Method of Moments [98].

The N ×N matrix equation is given as

[Z]
−→
I = −→

V (3.36)

such that

Zmn =
∫

S

{Zs
~Bm · ~Bn}ds +

∫

S

ds
∫

S

{ ~Bm · ~G(~r|~r′) · ~Bn}ds′ (3.37)

and

Vn =
∫

S

{ ~Ei(~r) · ~Bn}ds (3.38)

where we compute the voltage vector −→V and mutual impedance matrix [Z] and use

(3.36) to solve for the current vector
−→
I .

The differences among full-wave electromagnetic formulations are based on the

choice of basis functions ~Bn(~r) for the current distribution representation and the

Green’s function ~G(~r|~r′).

The rationale for a full-wave electromagnetic numerical computation approach is

that it is capable of predicting the patterns of larger classes of antenna arrays which

cannot be analytically studied, such as those that have directional radiation which

could be employed in fixed wireless applications.
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3.3.2 Results

Using the Induced EMF Method and the Method of Moments beampattern syn-

thesis models, as well as full-wave electromagnetic numerical computation to include

the effects of mutual coupling, beampattern synthesis can be performed for a num-

ber of desired angle-of-arrivals based on array geometries consisting of equal-length

dipoles positioned in a side-by-side configuration. Figures 3.6 to 3.24 are the nor-

malized beampatterns of NA half wavelength dipole antennas arranged in a circular

array, where NA ranges from 2 to 6. Figures 3.6, 3.10, 3.14, 3.18, and 3.22 do not

consider the effects of mutual coupling while the other figures do include these effects.

It is observed that figures which include the effects of mutual coupling compare

relatively close to one another in terms of there sidelobe levels, null depth, and

beamwidth. When compared to the figures where no mutual coupling is considered,

we see that the figures which do include the effects of mutual coupling all exhibit

higher sidelobe levels, shallower nulls, and wider beamwidths relative to the figures

which do not consider these effects.

Thus, the effects of mutual coupling degrade the beamforming patterns which

ultimately result in a decrease in performance for the CDMA system using these base

station antenna arrays.

It should be noted that in several instances, there exist a difference in the sidelobe

levels between the beampatterns generated using IE3D and the Method of Moments.

For example, Figure 3.12 exhibits smaller sidelobes relative to Figure 3.13 even though

they both include the effects of mutual coupling. The reason why a difference exists

is due to the physical setup of each method. The Method of Moments uses cylindrical

increments with a specified finite radius while the model used in IE3D uses an hexag-

onal polyhedron, where each face is considered an increment. As a result, the IE3D
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Figure 3.6: Beampattern of a 2 ele-

ment circular array with AOA=0o and

no MCE
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Figure 3.7: Beampattern of a 2 ele-

ment circular array with AOA=0o and

Induced EMF Method-generated MCE
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Figure 3.8: Beampattern of a 2 element

circular array with AOA=0o and MoM-

generated MCE

Figure 3.9: Beampattern of a 2 element

circular array with AOA=0o and IE3D-

generated MCE
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Figure 3.10: Beampattern of a 3 el-

ement circular array with AOA=135o

and no MCE
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Figure 3.11: Beampattern of a 3 el-

ement circular array with AOA=135o

and Induced EMF-generated MCE
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Figure 3.12: Beampattern of a 3 el-

ement circular array with AOA=135o

and MoM-generated MCE

Figure 3.13: Beampattern of a 3 el-

ement circular array with AOA=135o

and IE3D-generated MCE
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Figure 3.14: Beampattern of a 4 ele-

ment circular array with AOA=45o and

no MCE
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Figure 3.15: Beampattern of a 4 ele-

ment circular array with AOA=45o and

Induced EMF Method-generated MCE
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Figure 3.16: Beampattern of a 4 ele-

ment circular array with AOA=45o and

MoM-generated MCE

Figure 3.17: Beampattern of a 4 ele-

ment circular array with AOA=45o and

IE3D-generated MCE
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Figure 3.18: Beampattern of a 5 ele-

ment circular array with AOA=80o and

no MCE
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Figure 3.19: Beampattern of a 5 ele-

ment circular array with AOA=80o and

Induced EMF Method-generated MCE
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Figure 3.20: Beampattern of a 5 ele-

ment circular array with AOA=80o and

MoM-generated MCE

Figure 3.21: Beampattern of a 5 ele-

ment circular array with AOA=80o and

IE3D-generated MCE
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Figure 3.22: Beampattern of a 6 ele-

ment circular array with AOA=80o and

no MCE
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Figure 3.23: Beampattern of a 6 ele-

ment circular array with AOA=80o and

Induced EMF Method-generated MCE
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Figure 3.24: Beampattern of a 6 ele-

ment circular array with AOA=80o and

MoM-generated MCE

Figure 3.25: Beampattern of a 6 ele-

ment circular array with AOA=80o and

IE3D-generated MCE
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model experiences volume effects which leads to the difference in sidelobe levels. For

more information about the setup of the IE3D antenna array model, please refer to

Appendix B.

3.4 System Capacity Predictions

The derivation of the system uplink capacity for both the single and multiple

antenna element array cases, where the effects of mutual coupling are accounted-for,

is identical to the work performed in Section 2.3, with one exception which shall be

discussed in the next paragraph. As a result, the received predicted power level,

E{PR}, is given by Equation (2.24) as

E{PR} =
(Eb

No

)

σ2
n

{

1
RB

− E{φk}NI

B

(Eb

No

)

}−1

(3.39)

The only difference between this section and Section 2.3 is the resulting expression

for the expected fraction of interferer k’s signal power passed by the beamforming

weights, E{φk}, since we have included the mutual coupling information in this term.

Therefore, the derivation of E{φk}, which accounts for the effects of mutual coupling,

is performed in the following subsection.

3.4.1 Derivation of E{φk}

In our derivation, E{φk} is a critical factor since it accounts for both the effects

of the beamforming weights on the received signal power and the effects of mutual

coupling associated with closely-spaced array elements.
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In this derivation, the maximum SNR beamforming weights for a desired user d

at an angle θd relative to the circular antenna array is given as

ω̄ (θd) =

































ejw0(θd)

ejw1(θd)

ejw2(θd)

...

ejw(NA−1)(θd)

































(3.40)

where the phase delay for ith element of the array, wi (θd), is

wi (θd) =
π cos

(

θd − i 2π
NA

)

2 sin
(

π
NA

) (3.41)

It should be noted that these beamforming weights can be reconfigured to other

array geometries as well.

According to [32], to account for the effects of mutual coupling, the beamform-

ing weight vector must also contain the mutual impedance information of the an-

tenna array. This can be approached in two different fashions: (a) using the mutual

impedance information generated with the Induced EMF Method, or (b) using the

mutual impedance information generated with the Method of Moments. The follow-

ing two subsections illustrates these two techniques.

3.4.1.1 Including Mutual Coupling Effects in E{φk} with Induced EMF

Method-Generated Data

Using the NA×NA mutual impedance matrix [Z] derived earlier in this chapter

in the Induced EMF Method section, we must first perform a matrix inversion such

that

[Y ] = [Z]−1 (3.42)
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where [Y ] is also a NA×NA matrix.

Using Equation (3.40) and (3.42), we perform matrix multiplication such that we

obtain the modified beamforming weight vector [32]

ω̄MC (θd) = [Y ]ω̄ (θd) (3.43)

where ω̄ (θd) is a maximum SNR beamforming weight vector with unity magnitude,

ω̄MC (θd) is the combination of the beamforming weight vector and the mutual cou-

pling effects, and ω̄MC (θd), [Y ], and ω̄ (θd) have units of amperes, siemens, and volts,

respectively.

Therefore, the normalized amount of interference power seen from an interferer k

at an angle-of-arrival θk is

φk (θd, θk) =
∣

∣

∣

∣

∣

ω̄H
MC (θd)

‖ω̄H
MC (θd)‖

ā (θk)
‖ā (θk)‖

∣

∣

∣

∣

∣

2

(3.44)

where ω̄H
MC (θd) denotes the complex conjugate transpose of ω̄MC (θd), ā (θk) is an

array response vector for an NA-element array, θd is the mean AOA for the desired

mobile, and ‖.‖ is the Euclidean norm over the complex domain.

Assuming that both θk and θd are random variables uniformly distributed over

[0o, 360o), the expected value of φk can be determined by substituting Equation (2.2)

and Equation (3.43) into Equation (3.44), for the case of a circular array, and com-

puting the expected value. Thus, we obtain

E{φk} =
1

N2
θ

∑

θd∈Θd

∑

θk∈Θk

∣

∣

∣

∣

∣

ω̄H
MC (θd)

‖ω̄H
MC (θd)‖

ā (θk)
‖ā (θk)‖

∣

∣

∣

∣

∣

2

(3.45)

where Θk and Θd are sets of Nθ angles-of-arrival that range uniformly over [0o, 360o).

The results of Equation (3.45) for a circular array with array elements ranging from

one to six where the effects of mutual coupling, generated using the Induced EMF

Method, where Nθ consists of 1o increments uniformly distributed over [0o, 360o), are

shown in the second column of Table 3.1.
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NA With MCE With MCE Without MCE

(MoM) (Induced EMF) (from [12])

1 1.0000 1.0000 1.0000

2 0.5603 0.5970 0.5463

3 0.4178 0.4314 0.3950

4 0.3286 0.3283 0.3241

5 0.2751 0.2642 0.2460

6 0.2293 0.2307 0.2058

Table 3.1: Expected values of φk. Mutual coupling effects, generated using the

Method of Moments (MoM) and the Induced EMF Method, are included in the first

two columns of results, respectively.

3.4.1.2 Including Mutual Coupling Effects in E{φk} with Method of Moments-

Generated Data

The technique by which the effects of mutual coupling, generated using the Method

of Moments, are included in E{φk} follows closely to the technique described previ-

ously, where the mutual impedance information was generated using the Induced

EMF Method, but with several exceptions.

Using the N×N mutual impedance matrix [Z] derived earlier in this chapter in

the Method of Moments section, we must perform matrix inversion, yielding

[Y ] = [Z]−1 (3.46)

where the dimensions of admittance matrix [Y ] is also N×N .

The next step is to change the dimension of our beamforming weight vector to
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be N×1 instead of NA×1, in order to perform matrix multiplication with Equation

(3.46). According to [30], if all our antennas are of the same length and center-fed,

the non-zero entries of the new beamforming weight vector must coincide with the

position of the increments corresponding to the feed points of the antenna array. As

for the other entries, they are all zero. Therefore, using Equation (3.40), our new

beamforming weight vector is

ω̄ (θd) =

























ω̄0 (θd)

ω̄1 (θd)
...

ω̄NA−1 (θd)

























(3.47)

where the vector ω̄i (θd) is defined as

ω̄i (θd) =




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
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

0
...

0
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0
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N/NA elements (3.48)

and the phase delay for ith element of the array, wi (θd), is

wi (θd) =
π cos

(

θd − i 2π
NA

)

2 sin
(

π
NA

) (3.49)

Note that the middle element of Equation (3.48) is the only non-zero element of this

vector. Thus, the number of increments per antenna, NA/N , must be an odd number

for the increment corresponding to the midpoint of the antenna to exist. Furthermore,

since the number of increments can never be less than the number of array elements,

we require that NA≤N .
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Once the new beamforming weight vector is obtained, we use Equation (3.47)

and Equation (3.46) to perform matrix multiplication, thus yielding the modified

beamforming weight vector

ω̄MC (θd) = [Y ]ω̄ (θd) (3.50)

which is identical to Equation (3.43).

Therefore, the normalized amount of interference power seen from an interferer k

at an angle-of-arrival θk is

φk (θd, θk) =

∣

∣

∣

∣

∣

ω̄H
MC (θd)

‖ω̄H
MC (θd)‖

ā (θk)
‖ā (θk)‖

∣

∣

∣

∣

∣

2

(3.51)

where ā (θk) is an array response vector for an NA-element array specified in Equation

(2.2). Note that this expression is identical to Equation (3.44).

Assuming that both θk and θd are random variables uniformly distributed over

[0o, 360o), the expected value of φk can be determined by substituting Equation (2.2)

and Equation (3.50) into Equation (3.51) and computing the expected value. There-

fore

E{φk} =
1

N2
θ

∑

θd∈Θd

∑

θk∈Θk

∣

∣

∣

∣

∣

ω̄H
MC (θd)

‖ω̄H
MC (θd)‖

ā (θk)
‖ā (θk)‖

∣

∣

∣

∣

∣

2

(3.52)

where Θk and Θd are sets of Nθ angles-of-arrival that range uniformly over [0o, 360o).

Note that this expression is identical to Equation (3.45).

The results of Equation (3.52) for a circular array with array elements ranging

from one to six where the effects of mutual coupling, generated using the Method of

Moments, are shown in the third column of Table 3.1.

3.4.1.3 Results

From Table 3.1, we see that as the number of antennas increases, the expected

values of φk decrease. Thus there is an inverse relationship between the number
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of antennas and E{φk}. Furthermore, the effects of mutual coupling increases the

value of E{φk}, for both the Induced EMF Method and the Method of Moments

derived mutual impedance, relative to the case where the mutual coupling effects are

unaccounted for, such as in [12].

Using the derived expressions for E{φk} as well as the tabulated values in Table

3.1, one is now capable of predicting the capacity of a CDMA system using base

station antenna arrays, as will be discussed in the next section.

3.4.2 Multiple Antenna Element Array Capacity Calcula-

tions

Using the same technique as in the single antenna element case, the system capac-

ity can be determined by isolating NI in Equation (3.39), resulting with the number

of interfering mobiles within the cell

NI =









B
E{φk}





1
(

Eb
No

)

RB

− NAσ2
n

E{PR}











 (3.53)

Therefore, the total number of mobiles within a cell is

NM =









B
E{φk}





1
(

Eb
No

)

RB

− NAσ2
n

E{PR}











 + 1 (3.54)

which can then be approximated, as was done with Equation (2.30), to yield

NM ≈
⌊

1
E{φk}

B
RB (Eb/No)

⌋

+ 1 (3.55)

where b.c is the floor function. It should be pointed out that the effects of mutual

coupling are included in E {φk}.

The predicted capacity for CDMA systems which use circular arrays, such that

the adjacent array elements are a half-wavelength apart and the number of array

elements range from one to six, are given in Table 3.2.
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Inspecting these values, it can be seen that as the number of antennas increases,

the number of mobiles which the system can support also increases for all three cases.

Furthermore, the predicted capacity values which correspond to models where the

effects of mutual coupling are included are noticeably lower relative to the capacity

values of models which do not consider them. For instance, the case of five antennas

exhibits a difference of six to eleven percent between the models which do include

MCE and those which do not. Moreover, the two sets of capacity values which do

include MCE compare very closely.

NA With MCE With MCE Without MCE

(MoM) (Induced EMF) (from [12])

1 26 26 26

2 46 43 47

3 62 60 65

4 78 78 79

5 93 97 104

6 112 111 125

Table 3.2: Predicted capacity values versus number of antennas assuming perfect

power control and correlation of unity between array elements. Mutual coupling

effects are included in the first two columns.

3.5 Chapter Summary

The impact of mutual coupling effects on the performance of CDMA systems using

base station antenna arrays has been analyzed in this chapter.
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Firstly, the phenomenon of mutual coupling was explained in detail and several

examples were provided to illustrate the mechanisms involved. In particular, the

transmission mode coupling and reception mode coupling cases were examined.

Then the techniques used to incorporate MCE into our beampattern synthesis

models as well as our capacity predictions were outlined, namely, the Induced EMF

Method, the Method of Moments, and a full-wave electromagnetic numerical com-

putation. The mutual impedance information derived from these methods were then

used in several comparisons between beampatterns which accounted for MCE against

those which do not. These comparisons show that when MCE is included in the

beampattern synthesis process, the beampatterns have higher sidelobe levels, shal-

lower nulls, and wider beamwidths relative to beampatterns which do not include

MCE. Moreover, the beampatterns which do account for MCE generated using the

three methods all compare very closely with one another.

Finally, this chapter ends with a detailed analysis of the effects of mutual coupling

upon our capacity predictions. In particular, our analysis focused on computing the

power and predicted capacity of the single antenna element and multiple antenna

element array cases. Furthermore, with respect to the multiple antenna element

array case, a technique of including the MCE within the expected value of φk was

derived and presented. Note that the MCE information was generated using both the

Induced EMF Method and the Method of Moments. The predicted capacity results

for the cases where MCE are included show a noticeable decrease relative to the case

where the MCE is unaccounted for. For example, we observe a difference in system

capacity of six to eleven percent when the effects of mutual coupling are and are not

considered in the NA = 5 antennas case.

60



Chapter 4

System Performance in Scattering

Environments

4.1 Introduction

In our investigation of CDMA systems which use digital beamforming in Chapter

3 , we have examined the performance and behaviour of antenna arrays that include

the effects of mutual coupling with the underlying assumption that the operating

environment for the array consists of noise and interference due to other mobiles.

In this chapter, we take our model one step further by assuming the environment

also includes the effects of scatter due to multipath. This is achieved by determining

the cross-correlation statistics between antennas of the array. Hence, we can further

increase the accuracy of our system model during analysis.

4.1.1 Chapter Outline

We begin this chapter with a brief introduction to the phenomenon of scattering

due to multipath propagation, as well as a quick overview of various spatial channel
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models. Following this section, the remainder of our chapter is subdivided into two

major parts.

The first part deals with a model for the cross-correlation statistics between signals

received from the same source point by a pair of antennas. Although the basic

derivations may be found in [8], [12], [56], [74], and [75], the overall model was re-

derived such that the mutual coupling effects occuring within the antenna array were

included. Furthermore, as in [12], the resulting model is generalized for an arbitrary

angle-of-arrival distribution.

The second part deals with the capacity of the CDMA system uplink in a scat-

tering environment. This analysis makes use of the derived power value expressions,

found in [12], [19], and the previous chapter, in order to determine the threshold for

the number of mobiles the system can support before power control begins to fail.

Furthermore, the scattering effects are included in this analysis by converting the

effects of increasing scatter into decreased amplitude cross-correlation statistics and

through a scatter-induced phase distortion calculation from the beampattern. We

will then assess the impact of scattering relative to the results found in [12] and [19].

4.2 Scatter

Scatter is a phenomenon associated with multipath propagation. It occurs when

signals from a single source arrive at a base station from several directions within

an angular region after being reflected by objects in the surrounding environment. A

graphical representation of this definition is shown in Figure 4.1. This angular region,

known as the angle spread, varies according to the operating environment. Table 4.1,

from [56], gives us several typical angle spreads for different environments.
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Antenna Array
Base Station

Mobile

Ring of Scatterers

Figure 4.1: Graphical representation of scatter

Environment Angle Spread (2∆)

Flat Rural (Macro) 1o

Urban (Macro) 20o

Hilly (Macro) 30o

Microcell (Mall) 120o

Picocell (Indoors) 360o

Table 4.1: Several typical angle spreads (2∆) [56]

Throughout this chapter, most of the work carried out requires the use of cross-

correlation statistics, either directly or indirectly. Thus, the choice of the probability

distribution of the arriving signal power, P (θ), will have a large impact on our anal-

ysis. Several spatial channel models which can be chosen are found in [22]. In this

thesis, we develop a cross-correlation statistics model, based on a simpler method

found in [12] and [75], using a generalized P (θ) which can be used for an arbitrary

angle-of-arrival (AOA) distribution. We then apply the calculation to the the cases
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of a Gaussian distributed AOA modelwhich we refer to later as GAA, and a Uni-

formly distributed AOA model, which we refer to later as UAA, although the same

methodology can be applied to distributions corresponding to other environments as

well.

4.3 Cross-Correlation Model

In this section we derive the cross-correlation statistics of the multipath fading

channel where the mutual coupling effects within the antenna array are included.

Although it is based on the derivations given in [8], [12], [56], [74], and [75], this

derivation takes the model one step further by also including the antenna array mu-

tual coupling effects. Furthermore, in the spirit of the derivation found in [12], we

shall assume that there is no specific AOA distribution used. Thus we can apply this

result later on to cases where an arbitrary distribution is specified.

Assume that we have two identical antennas, i and k, that are spaced a distance

d apart receiving signals from the same source, as shown in Figure 4.2. Let the

direction of the rth wave make an angle θkr with a line passing through antennas i

and k. Suppose the rth wave produces the voltages

vir = ar cos
(

ωt + ψr +
πd
λ

cos (θkr)
)

(4.1)

and

vkr = ar cos
(

ωt + ψr −
πd
λ

cos (θkr)
)

(4.2)

on antennas i and k for a coplanar wave of frequency f = ω/2π and wavelength λ.

The phase delay of the ray r is represented by the value φr while the amplitude of

the ray r is defined as ar.
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d

ray r

phase front of
ray r

k r

Figure 4.2: Model used in our cross-correlation derivation

Therefore, by the principle of superposition, the total voltages produced by all

the waves at antennas i and k are given by

vi =
n

∑

r=1
ar cos

(

ωt + ψr +
πd
λ

cos (θkr)
)

(4.3)

and

vk =
n

∑

r=1
ar cos

(

ωt + ψr −
πd
λ

cos (θkr)
)

(4.4)

which can respectively be rewritten as

vi = A1 cos (ωt + Ψ1) (4.5)

and

vk = A2 cos (ωt + Ψ2) (4.6)
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such that the amplitudes and phases are generally different at the two antennas.

Using Equations (4.5) and (4.6), it can be easily shown that the mean signal

voltage at antennas i and k is

vi = vk = 0 (4.7)

while their mean-squared signal voltage is

v2
i = v2

k =
1
2

n
∑

r=1
a2

r (4.8)

Furthermore, the mean-squared signal amplitude at antennas i and k is

A2
1 = A2

2 =
n

∑

r=1
a2

r (4.9)

Suppose now that instead of receiving a collection of individual rays at the an-

tenna elements, we are dealing with a whole distribution of waves. As a result, the

summations of Equations (4.8) and (4.9) become integrals over the entire distribution

of the received waves. Therefore, given a distribution of the arriving signal power,

P (θ), the total power received from the whole distribution of waves is given as

Po =
∫ 2π

0
P (θ)dθ (4.10)

such that Equations (4.8) and (4.9) now become

v2
i = v2

k = Po =
∫ 2π

0
P (θ)dθ (4.11)

A2
1 = A2

2 = 2Po = 2
∫ 2π

0
P (θ)dθ (4.12)

Therefore, using Equations (4.11) and (4.12), we obtain

1
2

m
∑

r=1
a2

r =
∫ 2π

0
P (θ)dθ (4.13)

which will be used later in our derivation.
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To include the effects of mutual coupling, we must pass these voltages through a

mutual admittance matrix [Y ], which is the inverse of the mutual impedance matrix

[Z] derived in the previous chapter using the Induced EMF Method. Thus the total

voltages which include mutual coupling effects, vi,mc and vk,mc, are, respectively,








vi,mc

vk,mc









=









|Yii| ej 6 Yii |Yik| ej 6 Yik

|Yki| ej 6 Yki |Ykk| ej 6 Ykk

















vi

vk









(4.14)

where, for example, |Yik| and 6 Yik represent the magnitude and phase of the mutual

admittance between antenna elements i and k, respectively. We can rewrite the above

matrix equation as

vi,mc = |Yii|A1 cos (ωt + Ψ1) ej 6 Yii + |Yik|A2 cos (ωt + Ψ2) ej 6 Yik (4.15)

and

vk,mc = |Yki|A1 cos (ωt + Ψ1) ej 6 Yki + |Ykk|A2 cos (ωt + Ψ2) ej 6 Ykk (4.16)

Using the trignometric identity

cos(A + B) = cos(A) cos(B)− sin(A) sin(B) (4.17)

we obtain

vi,mc = |Yii|A1

(

cos(ωt) cos(Ψ1)ej 6 Yii − sin(ωt) sin(Ψ1)ej 6 Yii
)

+ |Yik|A2

(

cos(ωt) cos(Ψ2)ej 6 Yik − sin(ωt) sin(Ψ2)ej 6 Yik
)

(4.18)

and

vk,mc = |Yki|A1

(

cos(ωt) cos(Ψ1)ej 6 Yki − sin(ωt) sin(Ψ1)ej 6 Yki
)

+ |Ykk|A2

(

cos(ωt) cos(Ψ2)ej 6 Ykk − sin(ωt) sin(Ψ2)ej 6 Ykk
)

(4.19)

Equations (4.18) and (4.19) can respectively be rewritten as

vi,mc = (|Yii|A1cos(Ψ1)ej 6 Yii + |Yik|A2cos(Ψ2)ej 6 Yik) cos(ωt)

− (|Yii|A1sin(Ψ1)ej 6 Yii + |Yik|A2sin(Ψ2)ej 6 Yik) sin(ωt) (4.20)
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and

vk,mc = (|Yki|A1cos(Ψ1)ej 6 Yki + |Ykk|A2cos(Ψ2)ej 6 Ykk) cos(ωt)

− (|Yki|A1sin(Ψ1)ej 6 Yki + |Ykk|A2sin(Ψ2)ej 6 Ykk) sin(ωt) (4.21)

In practice, since we usually observe the signal amplitude, we thus need to cal-

culate the correlation coefficient between the total received voltage amplitudes at

antennas i and k. Therefore, let us respectively rewrite Equations (4.20) and (4.21)

as

vi,mc = B1ccos(ωt) + B1ssin(ωt) (4.22)

and

vk,mc = B2ccos(ωt) + B2ssin(ωt) (4.23)

where

B1c = |Yii|A1cos(Ψ1)ej 6 Yii + |Yik|A2cos(Ψ2)ej 6 Yik

= |Yii|
m

∑

r=1
arcos(ψr + χr)ej 6 Yii + |Yik|

m
∑

r=1
arcos(ψr − χr)ej 6 Yik (4.24)

B1s = |Yii|A1sin(Ψ1)ej 6 Yii + |Yik|A2sin(Ψ2)ej 6 Yik

= |Yii|
m

∑

r=1
arsin(ψr + χr)ej 6 Yii + |Yik|

m
∑

r=1
arsin(ψr − χr)ej 6 Yik (4.25)

B2c = |Yki|A1cos(Ψ1)ej 6 Yki + |Ykk|A2cos(Ψ2)ej 6 Ykk

= |Yki|
m

∑

r=1
arcos(ψr + χr)ej 6 Yki + |Ykk|

m
∑

r=1
arcos(ψr − χr)ej 6 Ykk (4.26)

B2s = |Yki|A1sin(Ψ1)ej 6 Yki + |Ykk|A2sin(Ψ2)ej 6 Ykk

= |Yki|
m

∑

r=1
arsin(ψr + χr)ej 6 Yki + |Ykk|

m
∑

r=1
arsin(ψr − χr)ej 6 Ykk (4.27)

and

χr =
πd
λ

cos(θkr) (4.28)

68



Since the phase angles ψr are assumed to be random and m is assumed to be

large, we can then say that B1c, B1s, B2c, and B2s are each distributed normally with

zero mean.

To determine the joint probability distribution of the total received voltage am-

plitudes at antennas i and k, we must derive their second moments, namely, B1cB∗
1c,

B1sB∗
1s, B2cB∗

2c, B2sB∗
2s, B1cB∗

2c, B1sB∗
2s, B1cB∗

1s, B2cB∗
2s, B1cB∗

2s, and B2cB∗
1s, where

(·) is the expectation of (·). After some extensive derivation (see Appendix A), we

obtain

B1cB∗
1c = B1sB∗

1s =
(

|Yii|2 + |Yik|2
)1
2

m
∑

r=1
ar

2

+ |Yii||Yik|
m

∑

r=1
ar

2cos
(

2πd
λ

cos (θkr)
)

cos (6 Yii − 6 Yik) (4.29)

B2cB∗
2c = B2sB∗

2s =
(

|Yki|2 + |Ykk|2
)1
2

m
∑

r=1
ar

2

+ |Yki||Ykk|
m

∑

r=1
ar

2cos
(

2πd
λ

cos (θkr)
)

cos (6 Yki − 6 Ykk)(4.30)

B1cB∗
1s = j |Yii| |Yik| sin ( 6 Yik − 6 Yii)

m
∑

r=1
a2

r sin
(

2πd
λ

cos (θkr)
)

(4.31)

B2cB∗
2s = −j |Ykk| |Yki| sin (6 Yki − 6 Ykk)

m
∑

r=1
a2

r sin
(

2πd
λ

cos (θkr)
)

(4.32)

B1cB∗
2c = B1sB∗

2s = |Yii||Yki|
1
2

m
∑

r=1
a2

re
j(6 Yii−6 Yki)

+ |Yik||Ykk|
1
2

m
∑

r=1
a2

re
j( 6 Yik−6 Ykk)

+ |Yii||Ykk|
1
2

m
∑

r=1
a2

r cos
(

2πd
λ

cos (θkr)
)

ej(6 Yii−6 Ykk)

+ |Yik||Yki|
1
2

m
∑

r=1
a2

r cos
(

2πd
λ

cos (θkr)
)

ej(6 Yik−6 Yki) (4.33)
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B1cB∗
2s = −B2cB∗

1s = −|Yii||Ykk|
1
2

m
∑

r=1
a2

r sin
(

2πd
λ

cos (θkr)
)

ej(6 Yii−6 Ykk)

+ |Yik||Yki|
1
2

m
∑

r=1
a2

r sin
(

2πd
λ

cos (θkr)
)

ej(6 Yki−6 Yik) (4.34)

Equations (4.29), (4.30), (4.33), and (4.34) can be further simplified using the fact

that the mutual admittance matrix is symmetric, namely, 6 Yii = 6 Ykk, 6 Yik = 6 Yki,

|Yii| = |Ykk|, and |Yik| = |Yki|. Thus we obtain

B1cB∗
2c = B1sB∗

2s = |Yii||Yki|
m

∑

r=1
a2

rcos (6 Yii − 6 Yki)

+
(

|Yii|2 + |Yik|2
) 1

2

m
∑

r=1
a2

rcos
(

2πd
λ

cos (θkr)
)

= ρRiRk (4.35)

and

B1cB∗
2s = −B2cB∗

1s = −
(

|Yii|2 − |Yik|2
)1
2

m
∑

r=1
a2

rsin
(

2πd
λ

cos (θkr)
)

= ρRiIk (4.36)

B1cB∗
1c = B1sB∗

1s = B2cB∗
2c = B2sB∗

2s

=
(

|Yii|2 + |Yik|2
)1
2

m
∑

r=1
ar

2

+ |Yii||Yik|
m

∑

r=1
ar

2cos
(

2πd
λ

cos (θkr)
)

cos (6 Yii − 6 Yik)

= bo (4.37)

where ρRiRk is the cross-correlation factor of the real component of the Rayleigh fading

value at antenna element i with the real component of the Rayleigh fading value at

antenna element k, ρRiIk is the cross-correlation factor of the real component of the

Rayleigh fading value at antenna i with the imaginary component of the Rayleigh

fading value at element j, and bo is the mean-squared value of B1c, B1s, B2c, and B2s.
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Substituting Equation (4.13) into Equations (4.35) and (4.36), we obtain

ρRiRk = 2|Yii||Yki|
∫ 2π

0
P (θ)cos (6 Yii − 6 Yki)dθ

+
(

|Yii|2 + |Yik|2
)

∫ 2π

0
P (θ)cos

(

2πd
λ

cos (θ)
)

dθ (4.38)

ρRiIk = −
(

|Yii|2 − |Yik|2
)

∫ 2π

0
P (θ)sin

(

2πd
λ

cos (θ)
)

dθ (4.39)

Our derivation of a cross-correlation model assuming a generalized spatial dis-

tribution P (θ) is now complete, resulting with Equations (4.38) and (4.39). In the

subsequent subsections, the cases of uniform and Gaussian AOA distributions will be

examined.

4.3.1 Use of a Gaussian Distribution for P (θ)

If a Gaussian distribution is used for P (θ) with mean AOA θk and variance σ2
∆,

namely

P (θ) =
1

√

2πσ2
∆

e
−(θ−θk)2

2σ2
∆ (4.40)

then Equations (4.38) and (4.39) become

ρRiRk = 2|Yii||Yki|cos ( 6 Yii − 6 Yki)
(

erf
(

2π − θk

σ∆

)

+ erf
(

θk

σ∆

))

+
(

|Yii|2 + |Yik|2
)

(

Jo

(

2πd
λ

)

+ 2
∞
∑

m=1
J2m

(

2πd
λ

)

cos (2mθk) e−2m2σ2
∆

)

(4.41)

ρRiIk = −
(

|Yii|2 − |Yik|2
)

(

2
∞
∑

m=1
J2m+1

(

2πd
λ

)

sin ((2m + 1) θk) e
−(2m+1)2σ2

∆
2

)

(4.42)

where erf(.) is the error function, defined as

erf (x) =
2√
π

∫ x

0
e−t2dt
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In determining Equations (4.41) and (4.42), the integration is performed over

[0, 2π). Furthermore, it should be noted that for these integrals, the Gaussian AOA

distribution is being truncated. Thus, as σ2
∆ increases, Equations (4.41) and (4.42)

become less close to a true Gaussian AOA distribution.

Figures 4.3, 4.4, 4.5, and 4.6 exhibit the relationship of the cross-correlation be-

tween antennas and their spacing. In these figures, mean arrival angles of 0o and 90o,

as well as angle spreads of 3o, 5o, 10o, 20o, 40o, 90o, and 180o, were used. In partic-

ular, the graphs show the relationship for the cross-correlation coefficients between

the real components of the Rayleigh fading between two antennas as a function of

antenna spacing. Figures 4.3 and 4.5 assume a (truncated) Gaussian AOA distri-

bution where the arrival angles are 0o and 90o, respectively, and where the effects

of mutual coupling in the antenna array are not considered. We can compare these

figures to Figures 3.4 and 3.5 in [12], where the same assumptions were also made.

From this comparison, we see that they compare closely. Figures 4.4 and 4.6 also

assume a Gaussian AOA distribution where the mean arrival angles are 0o and 90o,

respectively, but also contain the effects of mutual coupling in the antenna array.

Figures 4.3 to 4.6 were generated using Equation (4.41). Similar plots may also be

obtained for the correlation coefficient between the real component of the Rayleigh

fading value at one antenna and the imaginary component of the Rayleigh fading

value at another using Equation (4.42).

72



0 1 2 3 4 5 6
−0.5

0

0.5

1

Distance/Wavelength

ρ
R

iR
j

variance corresponding to 3o

5o

10o20o
40o

90o

180o

Figure 4.3: Correlation of the real portion of the fading versus antenna spacing for

θ = 0o and Gaussian angle-of-arrival distribution (mutual coupling effects ignored)
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Figure 4.4: Correlation of the real portion of the fading versus antenna spacing for

θ = 0o and Gaussian angle-of-arrival distribution (mutual coupling effects included)

74



0 1 2 3 4 5 6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Distance/Wavelength

ρ
R

iR
j

3o

20o

40o

90o

180o

Figure 4.5: Correlation of the real portion of the fading versus antenna spacing for

θ = 90o and Gaussian angle-of-arrival distribution (mutual coupling effects ignored)
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Figure 4.6: Correlation of the real portion of the fading versus antenna spacing for

θ = 90o and Gaussian angle-of-arrival distribution (mutual coupling effects included)
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4.3.2 Use of a Uniform Distribution for P (θ)

If an uniform distribution is used for P (θ) with beamwidth [θk−∆, θk+∆], namely

P (θ) =















1
2∆ , θk −∆ ≤ θ ≤ θk + ∆

0, otherwise
(4.43)

then Equations (4.38) and (4.39) become

ρRiRk = 2|Yii||Yki|cos (6 Yii − 6 Yki)

+
(

|Yii|2 + |Yik|2
)

(

Jo

(

2πd
λ

)

+ 2
∞
∑

m=1
J2m

(

2πd
λ

)

cos (2mθk)
sin(2m∆)

2m∆

)

(4.44)

ρRiIk = −
(

|Yii|2 − |Yik|2
)

(

2
∞
∑

m=1
J2m+1

(

2πd
λ

)

sin ((2m + 1) θk)
sin((2m + 1)∆)

(2m + 1)∆

)

(4.45)

Figures 4.7, 4.8, 4.9, and 4.10 are coefficients generated using Equation (4.44) and

exhibit the cross-correlation coefficients between the real components of the Rayleigh

fading between two antennas as a function of antenna spacing for both mean arrival

angles of 0o and 90o as well as angle spreads of 3o, 5o, 10o, 20o, 40o, and 90o. Figures

4.7 and 4.9 assume a Uniform AOA distribution where the effects of mutual coupling

in the antenna array are not considered. They compare closely to Figures 3.2 and 3.3

in [12], where the same assumptions were made. Figures 4.8 and 4.10 also assume a

Uniform AOA distribution but the effects of mutual coupling in the antenna array

are also considered. Similar plots can be obtained for ρRiIk using Equation (4.45).
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Figure 4.7: Correlation of the real portion of the fading versus antenna spacing for

θ = 0o and Uniform angle-of-arrival distribution (mutual coupling effects ignored)
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Figure 4.8: Correlation of the real portion of the fading versus antenna spacing for

θ = 0o and Uniform angle-of-arrival distribution (mutual coupling effects included)
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Figure 4.9: Correlation of the real portion of the fading versus antenna spacing for

θ = 90o and Uniform angle-of-arrival distribution (mutual coupling effects ignored)

80



0 1 2 3 4 5 6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Distance/Wavelength

ρ
R

iR
j

90o40o

20o

3o

Figure 4.10: Correlation of the real portion of the fading versus antenna spacing for

θ = 90o and Uniform angle-of-arrival distribution (mutual coupling effects included)
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4.4 System Capacity Prediction

In this section, we extend the system capacity prediction technique of Section 3.4

to the case of scattering environments.

Although the work Colman presented in [12] provided some insight into this en-

hancement of system capacity predictions, Colman approached this problem using

two different methods: the Beampattern Method in Section 4.4.1 of [12], and the

Mobile Power Prediction Using Cross-Correlation Statistics Method in Section 4.4.2

of [12]. Colman claimed that the first method provided an overly pessimistic view

on the power levels and capacity of the system, while the second method was consid-

ered more in-depth and thus relatively more accurate, exhibiting significant capacity

benefits even in high scatter environments. After a closer inspection of the analysis

conducted in [12], it appears that Colman’s conclusions were inaccurate due to an

incomplete setup of the analysis. Ironically, these two methods which Colman derived

complemented one another in the sense that the Beampattern Method analyzed the

effects of scattering on the received phase information while the Cross-Correlation

Statistics Method analyzed the effects of scattering on the received amplitude infor-

mation.

In the method which we shall present in the following subsection, both the received

amplitude and phase information account for the effects of the scattering environment.

Furthermore, our method also includes the effects of mutual coupling in the base

station antenna array.

4.4.1 Determining E {φk} and E {φd}

To assess the capacity of CDMA systems, we first derive the expected interference
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and mobile power, E{φk} and E{φd} respectively, in a scattering environment where

the effects of mutual coupling in the array are accounted for. The effects of mu-

tual coupling were analyzed using the induced EMF method, as described in Section

3.3.1.1, and is used throughout this section.

Assuming that maximum SNR beamforming is performed in a circular antenna

array, our beamforming weight vector is given as

ω̄ (θd) =

































ejw0(θd)

ejw1(θd)

ejw2(θd)

...

ejw(NA−1)(θd)

































(4.46)

where the phase delay for ith element of the array, wi (θd), is

wi (θd) =
π cos

(

θd − i 2π
NA

)

2 sin
(

π
NA

) (4.47)

It should be noted that these beamforming weights can be changed to correspond

to other array geometries without loss of generality.

To account for the effects of mutual coupling, the NA×NA mutual impedance

matrix [Z] derived in Section 3.3.1.1 is used in the matrix equation

ω̄MC (θd) = [Z]−1ω̄ (θd) = [Y ]ω̄ (θd) (4.48)

where the information concerning the effects of mutual coupling is included in the

modified beamforming weight vector ω̄MC (θd), [Z]−1 is the matrix inverse of [Z], [Y ]

is equal to [Z]−1, and both [Y ] and [Z] are NA×NA dimensioned matrices where NA

is the number of array elements.

Using Equation (2.2), we need to modified the array response vector in this deriva-

tion to account for the received signal power due to mobile k at element i, which we
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denote as βki. We define the NA×NA received signal power matrix [βk] as

[βk] =

























βk1 0 · · · 0

0 βk2
...

... . . . 0

0 · · · 0 βkNA

























(4.49)

where the diagonal matrix elements are the corresponding values of βki.

Therefore, the modified array response vector āβk can be obtained using matrix

multiplication, yielding

āβk (θk) = [βk]ā (θk) =

































βk1

βk2ejα1(θk)

βk3ejα2(θk)

...

βkNAejα(NA−1)(θk)

































(4.50)

where the phase delay for ith element of the array, αi, is

αi (θk) =
π cos

(

θk − i 2π
NA

)

2 sin
(

π
NA

) (4.51)

and āβ contains the received signal strength information.

Using Equations (4.48) and (4.50), the normalized amount of interference power

seen from an interferer k at an angle-of-arrival θk is

φk (θd, θk) =

∣

∣

∣

∣

∣

ω̄H
MC (θd)

‖ω̄H
MC (θd)‖

āβk (θk)
‖āβk (θk)‖

∣

∣

∣

∣

∣

2

(4.52)

where ω̄H
MC (θd) denotes the complex conjugate transpose of ω̄MC (θd) and ‖.‖ is the

Euclidean norm.

In its current form, Equation (4.52) is not a convenient representation and requires

further manipulation. We proceed by excluding the normalizing factors
∥

∥

∥ω̄H
MC (θd)

∥

∥

∥
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and ‖āβk (θk)‖ for the time being. Therefore, without normalization, Equation (4.52)

becomes

∣

∣

∣ω̄H
MC (θd)āβk (θk)

∣

∣

∣

2
=

∣

∣

∣([Y ]ω̄ (θd))
H ([βk]ā (θk))

∣

∣

∣

2

=
∣

∣

∣ω̄H (θd) [Y ]H[βk]ā (θk)
∣

∣

∣

2

=
(

ω̄H (θd) [Y ]H[βk]ā (θk)
) (

ω̄H (θd) [Y ]H[βk]ā (θk)
)H

=
(

ω̄H (θd) [Y ]H[βk]ā (θk)
) (

āH (θk) [βk]H[Y ]ω̄ (θd)
)

= ω̄H (θd) [Y ]H[βk]ā (θk)āH (θk) [βk]H[Y ]ω̄ (θd) (4.53)

Using the following transformations

ai =
π cos

(

θk − (i− 1) 2π
NA

)

2 sin (π/NA)
ar =

π cos
(

θk − (r − 1) 2π
NA

)

2 sin (π/NA)

wp =
π cos

(

θd − (p− 1) 2π
NA

)

2 sin (π/NA)
wl =

π cos
(

θd − (l − 1) 2π
NA

)

2 sin (π/NA)
(4.54)

and after extensive manipulations, Equation (4.53) can equivalently be written in a

component form involving multiple summations as

∣

∣

∣ω̄H
MC (θd)āβk (θk)

∣

∣

∣

2
=

NA
∑

i=1

NA
∑

l=1

NA
∑

p=1

NA
∑

r=1
βkiβ∗krY

∗
li Yrpej(ai+wp−ar−wl) (4.55)

where Yli and Yrp are the normalized elements of the admittance matrix [Y ], the

inverse of the mutual impedance matrix [Z].

Returning to Equation (4.52), the normalizing factors,
∥

∥

∥ω̄H
MC (θd)

∥

∥

∥ and ‖āβk (θk)‖

can be expressed as

‖āβk (θk)‖ =
(

([βk]ā (θk))
H ([βk]ā (θk))

) 1
2

=
(

āH (θk) [βk]H[βk]ā (θk)
) 1

2

=
NA
∑

i=1
β2

ki (4.56)
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∥

∥

∥ω̄H
MC (θd)

∥

∥

∥ =
(

(

ω̄H
MC (θd)

)H (

ω̄H
MC (θd)

)

) 1
2

=
(

ω̄H (θd) [Y ]H[Y ]ω̄ (θd)
) 1

2

=
NA
∑

h=1

NA
∑

s=1

NA
∑

m=1
ej(wh−ws)Y ∗

smYmh (4.57)

using the transformations

wh =
π cos

(

θd − (h− 1) 2π
NA

)

2 sin (π/NA)
ws =

π cos
(

θd − (s− 1) 2π
NA

)

2 sin (π/NA)
(4.58)

Using Equations (4.55), (4.56), and (4.57) in Equation (4.52), we would obtain a

form convenient for numerical computation. Before proceeding, Equations (4.55) and

(4.56) require some additional modifications concerning the received signal strength

βki.

Defining βki = ηkRki, Equation (4.55) and Equation (4.56), respectively, can be

rewritten as

NA
∑

i=1

NA
∑

l=1

NA
∑

p=1

NA
∑

r=1
βkiβ∗krY

∗
li Yrpej(ai+wp−ar−wl)

=
NA
∑

i=1

NA
∑

l=1

NA
∑

p=1

NA
∑

r=1
η2

kRkiRkrY ∗
li Yrpej(ai+wp−ar−wl) (4.59)

NA
∑

i=1
β2

ki =
NA
∑

i=1
η2

kR
2
ki (4.60)

where ηk is the path loss and shadowing effects factor at mobile k, and Rki and Rkr are

Rayleigh fading random variables for mobile k at array elements i and r, respectively.

Both ηk and Rki are functions of two Gaussian-distributed random variables. The

factor ηk is assumed to be independent of Rki and is identically distributed across the

antenna array.

We assume that both θk and θd are random variables uniformly distributed over

[0o, 360o). The expected values of Equations (4.59) and (4.60) conditioned on θk, θd,
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and σ2
∆ are, respectively,

E







NA
∑

i=1

NA
∑

l=1

NA
∑

p=1

NA
∑

r=1
η2

kRkiRkrY ∗
li Yrpej(ai+wp−ar−wl)

∣

∣

∣

∣

∣

∣

θk, θd, σ2
∆







= E
{

η2
k

}
NA
∑

i=1

NA
∑

l=1

NA
∑

p=1

NA
∑

r=1
E

{

RkiRkr|σ2
∆

}

Y ∗
li Yrpej(ai+wp−ar−wl) (4.61)

E







NA
∑

i=1
η2

kR
2
ki

∣

∣

∣

∣

∣

∣

θk, θd, σ2
∆







= E
{

η2
k

}
NA
∑

i=1
E

{

R2
ki

∣

∣

∣ σ2
∆

}

(4.62)

where σ2
∆ is the variance of the spatial AOA distribution P (θ).

Using the second-order statistics of the cross-correlation model derived in Section

4.3, the cross-correlation matrix between antenna elements i and j, R, is

R =

























ρRiRi ρRiIi ρRiRj ρRiIj

ρIiRi ρIiIi ρIiRj ρIiIj

ρRiRj −ρIiRj ρRjRj ρRjIj

ρRiIj ρIiIj ρIjRj ρIjIj

























(4.63)

which simplifies to

R =

























bo 0 ρRiRj ρRiIj

0 bo ρIiRj ρIiIj

ρRiRj −ρIiRj bo 0

ρRiIj ρIiIj 0 bo

























(4.64)

where, referring to Equation (4.38), ρRiRj is the correlation coefficient between the

real component of the Rayleigh fading at antenna i and the real component of the

Rayleigh fading at antenna j. Furthermore, as shown in Equation (4.39), ρRiIk is the

correlation coefficient between the real component of the Rayleigh fading at antenna

i and the imaginary component of the Rayleigh fading at antenna j. Finally bo is

the mean-squared value of the real or imaginary component of the Rayleigh fading at

antenna i or antenna j, as shown in Equation (4.37).

87



Davenport and Root in [15] have shown that E{RkiRkj}, the cross-correlation

between the Rayleigh distributed random variables at antennas i and j due to mobile

k, can be given in terms of the confluent hypergeometric function 2F1

(

−1
2 ,−

1
2 ; 1; .

)

yielding

E{RkiRkj} =
π
2
bo

(

2F1

(

−1
2
,−1

2
; 1; ζ2

ji

))

(4.65)

where

ζ2
ji =

ρ2
RiRj

+ ρ2
RiIj

b2
o

(4.66)

such that for the case of maximum correlation between array elements, Equation

(4.65) equals 2. Furthermore, as the correlation decreases, Equation (4.65) decreases

to a minimum of π
2 . The decrease of correlation will occur when the angle-of-arrival

distribution variance increases, affecting the off-main diagonal matrix elements of R.

Using Equations (4.65), (4.61), (4.57), and (4.62), Equation (4.52) can be rewrit-

ten as

φk (θd, θk) =

(

E {η2
k}

∑NA
i=1

∑NA
l=1

∑NA
p=1

∑NA
r=1 E {RkiRkr|σ2

∆}Y ∗
li Yrpej(ai+wp−ar−wl)

)

(

E {η2
k}

∑NA
i=1 E {R2

ki|σ2
∆}

) (

∑NA
h=1

∑NA
s=1

∑NA
m=1 ej(wh−ws)Y ∗

smYmh

)

=

∑NA
i=1

∑NA
l=1

∑NA
p=1

∑NA
r=1

π
2 bo

(

2F1

(

−1
2 ,−

1
2 ; 1; ζ2

ji

))

Y ∗
li Yrpej(ai+wp−ar−wl)

2NA
∑NA

h=1
∑NA

s=1
∑NA

m=1 ej(wh−ws)Y ∗
smYmh

(4.67)

where ai, ar, wp, wl, wh, and ws are defined in Equations (4.54) and (4.58).

Using Equation (4.67), the interference power contribution of interferer k

PIk = φkPR (4.68)

can be determined, where PIk is the received interference power from kth mobile and

PR is the received signal power due to the desired user.
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Thus, the expected total inference power would be

E {PI} = E







NI
∑

k=1

PIk







= E







NI
∑

k=1

φkPR







= E







PR

NI
∑

k=1

φk







= PR

NI
∑

k=1

E {φk}

= PRNIE {φk} (4.69)

such that the individual paths will be suppressed according to the beamforming pat-

tern and its position relative to the base station antenna array.

In order to compute E {φk}, Equation (4.67) must be averaged over uniformly-

distributed θk and θd, yielding

E {φk} =
1

N2
θ

∑

θd∈Θd

∑

θk∈Θk

φk (θk, θd) (4.70)

where Θk and Θd are sets of Nθ angles-of-arrival that range uniformly over [0o, 360o).

Similarly, due to the fact that some of the desired signal will be suppressed because

not all of the signal is located at the maximum of the spatial filter corresponding to

the maximum SNR beamformer, the percentage of the desired signal being passed by

the beamforming pattern for a mean angle-of-arrival θd must be determined. This

may be accomplished by using Equation (4.67), yielding

φd =
2π
Nθ

∑

θ∈Θ

P (θ)φk (θ, θd) (4.71)

where P (θ) is the spatial distribution of the incoming signal, and Θ is a set of Nθ

angles-of-arrival that range uniformly over [0o, 360o).

For the general case where P (θ) is not specified, the expected percentage of the

desired signal being passed by the beamforming pattern, E {φd}, is determined by
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averaging Equation (4.71) uniformly over θd, resulting in

E {φd} =
1

Nθ

2π
Nθ

∑

θd∈Θd

∑

θ∈Θ

P (θ)φk (θ, θd) (4.72)

where Θd is a set of Nθ angles-of-arrival that range uniformly over [0o, 360o).

In the following two sub-sections, the expected percentage of the desired signal

being passed by the beamforming pattern will be derived for the cases of Gaussian

and uniform P (θ), respectively.

4.4.1.1 Determining E {φd} for a Gaussian P (θ)

A Gaussian P (θ) with mean θd and variance equivalent to that of a uniform

distribution over [θd −∆, θd + ∆] is defined as

P (θ) =

√

3
2π∆2 e−

3(θ−θd)2

2∆2 (4.73)

where σ2
∆ = ∆2

3 .

Therefore, the expected percentage of the desired signal being passed by the beam-

forming pattern, E {φd}, is determined by averaging Equation (4.71) uniformly over

θd. Thus, using Equations (4.72) and (4.73) yields

E {φd} =
√

6π
N2

θ

1
|∆|

∑

θd∈Θd

∑

θ∈Θ

e−
3(θ−θd)2

2∆2 φk (θ, θd) (4.74)

where Θ and Θd are sets of Nθ angles-of-arrival that range uniformly over [0o, 360o).

A set of values of E {φd} and E {φk} using Gaussian angle-of-arrival distributions

with and without mutual coupling are shown in Tables 4.4, 4.5, 4.8, and 4.9.

4.4.1.2 Determining E {φd} for a Uniform P (θ)

A Uniform P (θ) with mean θd distributed over [θd −∆, θd + ∆] is defined as

P (θ) =
1

2∆
(U (θ + (θd −∆))− U (θ − (θd + ∆))) (4.75)
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where U(.) is a unit step, defined as

U(x) =















1 , x ≥ 0

0 , x < 0
(4.76)

Therefore, the expected percentage of the desired signal being passed by the beam-

forming pattern, E {φd}, is determined by averaging Equation (4.71) uniformly over

θd. Thus, using Equations (4.72) and (4.75) yields

E {φd} =
1

Nθ

2π
Nθ

∑

θd∈Θd

∑

θ∈Θ

1
2∆

(U (θ + (θd −∆))− U (θ − (θd + ∆)))φk (θ, θd) (4.77)

where Θ and Θd are sets of Nθ angles-of-arrival that range uniformly over [0o, 360o).

The results for E {φd} and E {φk} using uniform angle-of-arrival distributions

with and without mutual coupling are shown in Tables 4.2, 4.3, 4.6, and 4.7.

4.4.2 Power and Capacity Prediction

Referring to Section 2.3, the numerical calculations can be performed to yield the

expected values for the desired and interfering mobile powers as well as the system

capacity predictions.

Using Equation (2.20), namely

Eb

No
=

PR/RB

PI/B + NAσ2
n

(4.78)

we can replace PR by E {φd}PR and PI with E {φk}PRNI , where NI is the number

of interfering mobiles. Equation (4.78) becomes

Eb

No
=

E {φd}PR/RB

E {φk}PRNI/B + NAσ2
n

(4.79)

Solving for PR yields

PR = NAσ2
n

(Eb

No

)

{

E{φd}
RB

− E{φk}NI

B

(Eb

No

)

}−1

(4.80)
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Isolating NI in Equation (4.80), the number of interfering mobiles within the cell

is

NI =









B
E{φk}





E {φd}
(

Eb
No

)

RB

− NAσ2
n

PR











 (4.81)

Therefore, the total number of mobiles within a cell is

NM = NI + 1

=









B
E{φk}





E {φd}
(

Eb
No

)

RB

− NAσ2
n

PR











 + 1 (4.82)

which can then be approximated, as was done with Equation (2.30), to yield

NM ≈
⌊

E {φd}
E{φk}

B
RB (Eb/No)

⌋

+ 1 (4.83)

where b.c is the floor function. It should be pointed out that the effects of mutual

coupling are included in E {φk} and E {φd}.

Equation (4.83) is applied to the cases with and without mutual coupling effects

for uniform and Gaussian angle-of-arrival distributions and the results are shown in

Figures 4.11 to 4.14.

4.4.3 Results

Observing the results provided in Tables 4.2 through to 4.9 as well as Figures 4.11

to 4.14, we notice several very significant effects occurring.

Unlike the conclusion reached in [12], where it was stated that the effects on power

due to scatter, may, in fact be quite small, suggesting that beamforming would still

provide significant capacity benefits, even in high angle spread environments. Tables

4.2 to 4.9 as well as Figures 4.11 to 4.14 show the opposite conclusion, namely that

the capacity converges to single antenna capacity as the angle spread is increased.
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The fact that the capacity for multiple antenna arrays converges to the case of a single

antenna makes intuitive sense since, as angle spread increases, spatial discrimination

is lost and the beamforming process breaks down.

Comparing the values in Tables 4.2 through 4.9 for the expected fractions of the

desired and interfering mobiles’ signal power passed by the beamforming weights,

E {φd} and E {φk}, respectively, two observations can be made:

1. When comparing the results which do and do not include mutual coupling

effects, whether the results are for E {φd} or E {φk}, the results which do include

the effects of mutual coupling are, on average, greater than the results which

do not contain these effects for all angle spreads.

2. There are only minor differences between the results which use a Gaussian angle-

of-arrival distribution and the results which use an uniform angle-of-arrival dis-

tribution.

Furthermore, mutual coupling reduces the capacity of the system. When the angle

spread is small or zero, the deteriorating effects of mutual coupling are prevalent when

compared to models which do not consider mutual coupling effects. Yet, when the

angle spread increases, the effects of mutual coupling diminishes as the scattering

becomes the dominant deteriorating factor. To demonstrate these differences, refer

to Figures 4.13 and 4.14. We notice that for ∆ = 10o, the difference in system capacity

between cases which do and do not include mutual coupling, when NA = 2, 3, 4, 5,

and 6 antennas, is 13.0, 14.3, 14.5, 14.3, and 10.4 percent, respectively. When the

angle spread increases, say ∆ = 60o, the corresponding difference becomes 0.0, 0.0,

2.4, 2.0, and 12.0 percent, respectively. Finally, when ∆ = 180o, the difference is 5.0

percent at most, with all the system capacity predictions close to the case of a single

antenna. Moreover, in Figure 4.13, the system capacity decreases by 56.5, 65.1, 71.1,
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75.5, and 78.3 percent when the angle spread increases from ∆ = 10o to ∆ = 180o for

NA = 2, 3, 4, 5, and 6 antennas, respectively.

It should be noted that the models using Gaussian angle-of-arrival distributions

are limited to a certain angle spread range. It has been determined that angle spreads

between ∆ = 0o and ∆ = 8.5o, not inclusive, will not provide accurate results when

used in the previously derivations. The reason for this is when ∆ ∈ [0o, 8.5o], Equation

(4.74) produces values greater than one, which is impossible since the expected frac-

tion of desired mobile d’s signal power passed by the beamforming weights can never

exceed one. Therefore, a different method must be derived to specifically compute

E {φd} for Gaussian angle-of-arrival distributions when ∆ ∈ [0o, 8.5o].

Comparing the difference between uniform and Gaussian angle-of-arrival distri-

butions with respect to system capacity predictions, it is observed that as the angle

spread increases, all the multiple antenna capacity predictions converge to that of

the single antenna capacity for both distributions. Furthermore, the capacity predic-

tions which use a Gaussian angle-of-arrival distribution converges slowly relative to

capacity predictions using an uniform angle-of-arrival distribution. Thus, in environ-

ments with small to medium angle spreads, models perform relatively better when a

Gaussian angle-of-arrival distribution is assumed.
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∆o 0o 3o 5o 10o 20o 40o 90o 180o

NA = 1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

NA = 2 0.5463 0.5464 0.5468 0.5485 0.5543 0.5691 0.5902 0.5957

NA = 3 0.3950 0.3952 0.3955 0.3969 0.4017 0.4149 0.4354 0.4406

NA = 4 0.3241 0.3243 0.3247 0.3266 0.3328 0.3459 0.3601 0.3627

NA = 5 0.2460 0.2463 0.2469 0.2494 0.2568 0.2697 0.2789 0.2829

NA = 6 0.2058 0.2063 0.2070 0.2102 0.2190 0.2312 0.2366 0.2390

Table 4.2: Expected fraction of interferer k’s signal power passed by the beamforming

weights, E {φk}, for an uniform angle-of-arrival distribution with no mutual coupling

∆o 0o 3o 5o 10o 20o 40o 90o 180o

NA = 1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

NA = 2 0.5907 0.5908 0.5908 0.5911 0.5920 0.5941 0.5962 0.5963

NA = 3 0.4608 0.4609 0.4610 0.4614 0.4628 0.4666 0.4719 0.4719

NA = 4 0.3782 0.3782 0.3782 0.3784 0.3788 0.3798 0.3809 0.3811

NA = 5 0.2952 0.2952 0.2952 0.2954 0.2961 0.2972 0.2982 0.2984

NA = 6 0.2362 0.2362 0.2363 0.2365 0.2372 0.2382 0.2387 0.2390

Table 4.3: Expected fraction of interferer k’s signal power passed by the beamforming

weights, E {φk}, for an uniform angle-of-arrival distribution with mutual coupling
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∆o 0o 8.5o 10o 20o 40o 60o 90o 180o

NA = 1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

NA = 2 0.5463 0.5480 0.5485 0.5541 0.5682 0.5796 0.5890 0.5953

NA = 3 0.3950 0.3964 0.3968 0.4016 0.4142 0.4248 0.4339 0.4402

NA = 4 0.3241 0.3259 0.3266 0.3325 0.3450 0.3532 0.3589 0.3624

NA = 5 0.2460 0.2484 0.2493 0.2564 0.2686 0.2747 0.2788 0.2825

NA = 6 0.2058 0.2089 0.2101 0.2183 0.2300 0.2345 0.2368 0.2388

Table 4.4: Expected fraction of interferer k’s signal power passed by the beamforming

weights, E {φk}, for a Gaussian angle-of-arrival distribution with no mutual coupling

∆o 0o 8.5o 10o 20o 40o 60o 90o 180o

NA = 1 0.9954 0.9898 0.9891 0.9789 0.9581 0.9373 0.9088 0.9074

NA = 2 0.5886 0.5858 0.5851 0.5800 0.5715 0.5656 0.5620 0.5691

NA = 3 0.4550 0.4542 0.4540 0.4532 0.4528 0.4523 0.4520 0.4584

NA = 4 0.3766 0.3761 0.3760 0.3756 0.3735 0.3683 0.3626 0.3650

NA = 5 0.2946 0.2945 0.2946 0.2956 0.2975 0.2987 0.2997 0.2993

NA = 6 0.2363 0.2362 0.2362 0.2367 0.2380 0.2389 0.2396 0.2396

Table 4.5: Expected fraction of interferer k’s signal power passed by the beamforming

weights, E {φk}, for a Gaussian angle-of-arrival distribution with mutual coupling
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∆o 0o 3o 5o 10o 20o 40o 90o 180o

NA = 1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

NA = 2 1.0000 0.9976 0.9937 0.9788 0.9383 0.8478 0.6217 0.5957

NA = 3 1.0000 0.9026 0.8403 0.7276 0.6151 0.5362 0.4778 0.4406

NA = 4 1.0000 0.8045 0.7241 0.6126 0.5248 0.4428 0.3747 0.3627

NA = 5 1.0000 0.8390 0.7692 0.6740 0.5986 0.5328 0.4045 0.2829

NA = 6 1.0000 0.7711 0.6931 0.5999 0.5448 0.4573 0.3185 0.2390

Table 4.6: Expected fraction of desired mobile d’s signal power passed by the beam-

forming weights, E {φd}, for an uniform angle-of-arrival distribution with no mutual

coupling

∆o 0o 3o 5o 10o 20o 40o 90o 180o

NA = 1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

NA = 2 1.0000 0.9985 0.9958 0.9845 0.9484 0.8327 0.6167 0.5960

NA = 3 1.0000 0.9663 0.9409 0.8823 0.7776 0.6101 0.5293 0.4716

NA = 4 1.0000 0.8891 0.8156 0.6783 0.5242 0.4350 0.3988 0.3805

NA = 5 1.0000 0.9333 0.8867 0.7945 0.6854 0.5510 0.3968 0.2979

NA = 6 1.0000 0.9006 0.8378 0.7269 0.6109 0.5218 0.3172 0.2386

Table 4.7: Expected fraction of desired mobile d’s signal power passed by the beam-

forming weights, E {φd}, for an uniform angle-of-arrival distribution with mutual

coupling
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∆o 0o 8.5o 10o 20o 40o 60o 90o 180o

NA = 1 1.0000 0.9890 0.9880 0.9748 0.9490 0.9234 0.8849 0.7698

NA = 2 1.0000 0.9805 0.9758 0.9293 0.8080 0.6987 0.5931 0.4661

NA = 3 1.0000 0.9781 0.9721 0.9166 0.7734 0.6450 0.5185 0.3729

NA = 4 1.0000 0.9729 0.9645 0.8914 0.7140 0.5708 0.4434 0.3075

NA = 5 1.0000 0.9661 0.9544 0.8600 0.6526 0.5075 0.3904 0.2616

NA = 6 1.0000 0.9582 0.9424 0.8248 0.5950 0.4559 0.3471 0.2251

Table 4.8: Expected fraction of desired mobile d’s signal power passed by the beam-

forming weights, E {φd}, for a Gaussian angle-of-arrival distribution with no mutual

coupling

∆o 0o 8.5o 10o 20o 40o 60o 90o 180o

NA = 1 1.0000 0.9811 0.9797 0.9591 0.9180 0.8770 0.8181 0.7085

NA = 2 1.0000 0.9193 0.9150 0.8757 0.7767 0.6797 0.5762 0.4518

NA = 3 1.0000 0.9487 0.9438 0.9007 0.7903 0.6850 0.5683 0.4075

NA = 4 1.0000 0.9526 0.9451 0.8823 0.7283 0.5903 0.4553 0.3140

NA = 5 1.0000 0.9683 0.9590 0.8843 0.7082 0.5666 0.4342 0.2812

NA = 6 1.0000 0.9641 0.9524 0.8648 0.6723 0.5283 0.3960 0.2412

Table 4.9: Expected fraction of desired mobile d’s signal power passed by the beam-

forming weights, E {φd}, for a Gaussian angle-of-arrival distribution with mutual

coupling
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Figure 4.11: System capacity predictions for an uniform angle-of-arrival distribution

with no mutual coupling
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Figure 4.12: System capacity predictions for an uniform angle-of-arrival distribution

with mutual coupling
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Figure 4.13: System capacity predictions for a Gaussian angle-of-arrival distribution

with no mutual coupling
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Figure 4.14: System capacity predictions for a Gaussian angle-of-arrival distribution

with mutual coupling
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4.5 Chapter Summary

In this chapter, we have presented a model given in [8], [12], [33], and [74] for the

cross-correlation factor for the envelope of a quadrature signal arriving at a pair of

antennas. Although the model was generalized to an arbitrary P (θ), we specifically

examined the cases of the Gaussian and uniform angel-of-arrival distributions. We

then applied this model to the analysis of system capacity predictions in an environ-

ment containing scattering due to multipath. In particular, we formulated a method

where both the received amplitude and phase information are accounted for in the

analysis by using the cross-correlation statistics and the beampattern of the antenna

array, respectively. The results obtained show that mutual coupling effects have a

noticeable adverse effect on system capacity predictions when the angle spread is

small or non-existent while at high angle spreads, scattering is the dominant factor

of degradation. For instance, if we look at ∆ = 10o in Figures 4.13 and 4.14, the

capacity difference between cases which do and do not include mutual coupling ef-

fects ranges between 10 and 14.5 percent. Yet, as the angle spread increases and

approaches ∆ = 180o , the system capacity decreases such that the multiple antenna

capacity reduces to that of a single antenna.
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Chapter 5

Imperfect Power Control

5.1 Introduction

Power control is a critical component of CDMA systems. If the ratio between the

received power from a given mobile and the received interference power is too low,

then an intolerably large number of errors in the data flow will occur. Moreover,

if this same ratio is too high, the mobile will generate excessive interference for the

other users within the cell. Thus, it is necessary to balance the transmission power

level for each mobile such that a state of equilibrium within the system is achieved.

For system performance evaluation purposes, we consider two types of power con-

trol in CDMA systems: perfect and imperfect. Perfect power control occurs when

the system controls the transmission power of each mobile to a desired level instanta-

neously so that users interfere with each other only to a desired amount. However, it

has been shown that using a perfect power control assumption yields overly-optimistic

performance predictions. Therefore, many studies employ an imperfect power control

assumption to attain more realistic performance analysis. Imperfect power control

occurs when the base station is unable to control the transmission power levels of all
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mobiles perfectly due to physical factors.

Although much effort has gone into the study of power control, none of these

studies have analyzed the effects of power control on the system performance when

mutual coupling and scattering effects are included. This is required since these effects

change the statistics of the received power levels, such as the mean and variance, which

in turn affects the power controllability. Therefore, the performance predictions of

these previous studies are potentially less accurate compared to analyses which include

these effects.

5.1.1 Chapter Outline

In this chapter, we present an approach to the evaluation of the reverse link

capacity of a CDMA system using digital beamforming and employing a base station

antenna array under imperfect power control. Furthermore the effects of mutual

coupling and scatter due to multipath are included.

We first carry out the derivation for the probability of outage for a system with

perfect power control using an approach based on [91] and [92]. The end result is two

expressions for the outage probability, one is an upper bound and other is a Gaussian

approximation.

We then extend our derivation to the case of imperfect power control, also obtain-

ing the upper-bound and Gaussian approximation of the outage probability.

Finally, we present some comparisons which highlight the relative effects of digital

beamforming with different numbers of antenna elements, mutual coupling, scatter

due to multipath, and power control.
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5.2 Probability of Outage

5.2.1 Erlang Capacity of Reverse Links

Referring to [73], [91], and [92], assuming we have a very large population of

users in a cell, the arrivals occur randomly at Poisson-distributed intervals with total

average arrival rate λ calls per second. Suppose this process is modeled as a sequence

of binary random variables, in successive infinitesimal time intervals ∆t. Then the

probability of a single arrival per interval occurring is λ (∆t). Assuming the call

service time per user is assumed to exponentially distributed, the probability that

the service time γ exceeds T is

Pr (γ > T ) = e−µT , T > 0 (5.1)

where the average call duration is 1/µ seconds.

Therefore, the probability that the call terminates during an interval ∆t seconds

long is

Pr (T < γ < T + ∆t|γ < T ) =

[

e−µT − e−µ(T+∆t)
]

e−µT

= 1− e−µ∆t

∼ µ (∆t) + o (∆t) (5.2)

where o (∆t) → 0 as ∆t → 0. Suppose the maximum number of users that can be

served simultaneously is equal to Ko, then as the number of active calls k is less than

or equal to Ko, all k calls will be serviced. Therefore, the probability that one of the

calls will end in ∆t is on the order of kµ (∆t). In the case that more than one call

terminates within ∆t, the probability is o (∆t), which becomes negligible as ∆t → 0.

In this chapter, the model used for determining the occupancy distribution and

the probability of lost calls is the “lost call held” (LCH) model. In this model, it is
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Figure 5.1: Transition probabilities represented as a Markov chain state diagram for

the Erlang C model

assumed that the unserved users repeat their attempts to place a call immediately and

thus remain in the system, though unserved. This model is illustrated as a Markov

process in Figure 5.1. In this case, the number of states is infinite, where each state

represents the number of users in the system.

Therefore, the Markov state equations for the LCH model can be written in terms

of the steady-state occupancy probability, namely

Pk =















[1− λ (∆t)] Pk + µ (∆t) Pk+1 , k = 0

λ (∆t) Pk−1 + [1− (λ + kµ) ∆t] Pk + (k + 1) µ (∆t) Pk+1 , k = 1, 2, 3, ...

(5.3)

Thus, by induction and using Equation (5.3), the steady-state occupancy proba-

bility for the kth state is

Pk =
(λ/µ)

k
Pk−1 , k = 1, 2, 3, ... (5.4)

which can be rewritten as

Pk =
(λ/µ)k

k!
P0 , k = 1, 2, 3, ... (5.5)

and

1 =
∞
∑

k=0

Pk = P0

∞
∑

k=0

(λ/µ)k

k!
= P0eλ/µ (5.6)
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Therefore, the LCH model can be presented as a Poisson formula, namely

Pk =
(λ/µ)k

k!
e−λ/µ , k = 0, 1, 2, 3, ... (5.7)

The blocking probability is the probability that when a new user arrives these are

Ko or more users in the system, either being served or seeking service. Thus, the

blocking probability for LCH model is

PB =
∞
∑

k=Ko

Pk = e−λ/µ
∞
∑

k=Ko

(λ/µ)
k!

(5.8)

which is just the sum of the tail of a Poisson distribution.

In the following, Equation (5.7) will be used often to determine a closed-form for

the outage probability of the system.

5.2.2 Derivation of Pout

The derivation for the probability of outage found in the next two subsections is

based upon the approach developed in [91] and [92]. Although the general approach

is similar, there are several significant differences. The first difference is that the

derivations found in [91] and [92] are meant for a single antenna base station while

our derivation extends [91] and [92] to base stations employing multiple antennas. A

second difference is that our derivations include the effects of mutual coupling. Third,

unlike [91] and [92], we account for the effects of scatter due to multipath propagation.

As a result, the expressions that we obtain are more realistic in terms encompassing

more complex propagation conditions, relative to that found in [91] and [92].

5.2.2.1 Perfect Power Control

Assuming that we have a single cell occupied by ku perfectly power-controlled

users, such that each user is received by the base station at the same power level,
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the total average power received by the cell, assuming stationary arrivals and user

activity, is

Total Power =
ku
∑

i=1
ψiviEbRB + E {φk}NANoB (5.9)

where B is the total bandwidth occupancy, RB is the user data rate, No is the

background noise, Eb is the perfectly controlled bit energy, ku is the number of users

within a single cell, vi is a binary random variable indicating whether or not the ith

user is active at any instant, α is the activity factor, defined as α = Pr{vi = 1} =

1− Pr{vi = 1}, NA is the number of array elements, and ψi is defined as

ψi =















E {φd} , i = 1

E {φk} , i 6= 1
(5.10)

where, as defined in Chapter 4, E {φk} is the expected fraction of interferer k’s signal

power passed by the beamforming weights of the array, E {φd} is the expected fraction

of desired mobile d’s signal power passed by the beamforming weights of the array,

and i = 1 refers to desired mobile number one without loss of generality.

Since the total received power is the sum of noise, interference power, and desired

user power, we can express the average noise-plus-interference power, IoB, as

IoB =
ku
∑

i=2
viψiEbRB + E {φk}NANoB (5.11)

where Io is the noise-plus-interference power, and B is the bandwidth.

For dynamic range limitations on the multiple access receiver of bandwidth B, we

should limit the total received noise-plus-interference power-to-background noise, or

equivalently IoB/NoB, such that
Io

No
=

1
τ

(5.12)

where τ typically ranges between 0.25 and 0.1.
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Therefore, we can determine the probability of outage, Pout, by determining the

condition by which the system is deemed to be in outage. To obtain the condition

for non-outage, we can rewrite Equation (5.11) as

IoB − E {φk}NANoB =
ku
∑

i=2
viψiEbRB

B (Io −NoNAE {φk}) =
ku
∑

i=2
viψiEbRB

and then apply Equation (5.12) to get the inequality

B (Io − IoτNAE {φk}) >
ku
∑

i=2
viψiEbRB

IoB (1− τNAE {φk}) >
ku
∑

i=2
viψiEbRB

ku
∑

i=2
viψi <

IoB (1− τNAE {φk})
EbRB

(5.13)

In order to reflect the fact that the bit energy-to-noise ratio is affected by the

beamforming applied to the desired user, we divide the bit energy-to-noise ratio by

E {φd}. Thus, Equation (5.13) becomes

ku
∑

i=2
viψi <

(B/RB) (1− τNAE {φk})
1

E{φd}
Eb
Io

= Ko (5.14)

where both the vi and ku are independent random variables. Note that when the

condition of Equation (5.14) is not met, the system is said to be in an outage condition.

Thus, the probability of outage, Pout, is

Pout = Pr







ku
∑

i=2
viψi > Ko







< Pr







ku
∑

i=1
viψi > Ko







(5.15)

where we have upper-bounded Pout by including in the summation the desired signal

variable, v1, as done in [91] [92]. Unfortunately, including v1 in the outage probability
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expression will loosen it since the v1 term in the outage probability summation con-

tains ψi = E {φd}, referring to Equation (5.10), and thus this term will dominate over

the other terms since they have ψi = E {φk}. As was shown in previous chapters, the

value of E {φd} is larger than E {φk} on average.

We employ a stricter outage condition, namely

Pout = Pr







ku
∑

i=2
viψi > Ko







= Pr







ku
∑

i=2
viE {φk} >

(B/RB) (1− τNAE {φk})
1

E{φd}
Eb
Io







= Pr







ku
∑

i=2
vi >

(B/RB) (1− τNAE {φk})
E{φk}
E{φd}

Eb
Io







= Pr







ku
∑

i=2
vi > K ′

o







(5.16)

To simplify the derivation, suppose we let k′u = ku − 1, where k′u is the number of

interfering mobiles within the cell. Therefore, we can rewrite Equation (5.16) as

Pout = Pr







k′u
∑

l=1

vi > K ′
o







(5.17)

Thus, the outage probability can be determined by the distribution of the sum of

k′u independent random variables, each with probability α. According to Subsection

5.2.1, since we are assuming that the users remain in the system through outage, then

k′u has a Poisson distribution given by Equation (5.7), namely

pk′u = Pr{ k′u active users/sector } =
(λ/µ)k′u

k′u!
e−λ/µ (5.18)

where λ is the total average call arrival rate, µ is the average call duration, and λ/µ

is the average number of calls which is the mean as well as the variance of pk′u .

Therefore, we define the random variable

Z =
k′u
∑

l=1

vl (5.19)
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in order to facilitate the derivation of Pout. One method of computing the distribution

of Z is to derive its moment-generating function, thus obtaining

E
{

esZ
}

= Ek′u

k′u
∏

l=1

Evl (esvl)

= Ek′u

k′u
∏

l=1

[

Pr {vl = 1} es{vl=1} + Pr {vl = 0} es{vl=0}
]

= Ek′u

k′u
∏

l=1

[αes + (1− α)]

= Ek′u [αes + (1− α)]k
′
u

= Ek′u [α (es − 1) + 1]k
′
u

and then applying Equation (5.18) yields

E
{

esZ
}

=
∞
∑

k′u=0

(λ/µ)k′u

ku!
e−λ/µ [α (es − 1) + 1]k

′
u

=
∞
∑

k′u=0

((λ/µ) [α (es − 1) + 1])k′u

ku!
e−λ/µ

= e((λ/µ)[α(es−1)+1])e−λ/µ

= e((αλ/µ)(es−1)) (5.20)

Since Equation (5.20) is, in fact, the moment generating function of a Poisson

Distribution (refer to Example 5-30 in [61]), the outage probability is just the sum of

Poisson tails, namely

Pout = e−αλ/µ
∞
∑

k=bK′
oc

(αλ/µ)k

k!
(5.21)

where Pout can be solved numerically.

Alternatively, Pout may also be evaluated using the moment generating function

in obtaining its Chernoff bound, yielding

Pout < min
s>0

{

E
{

es(Z−K′
o)

}}

= min
s>0

{

e
αλ
µ (es−1)e−sK′

o

}
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where the minimum value of s is

∂
∂s

{

e
αλ
µ (es−1)e−sK′

o

}

= 0

e
αλ
µ (es−1)e−sK′

o

(

αλ
µ

es −K ′
o

)

= 0

s = ln
(

K ′
oµ

αλ

)

Therefore, Pout becomes

Pout < e
αλ
µ eln(K′oµ/αλ)−αλ

µ −ln
(

K′oµ
αλ

)

K′
o

= e
K′

o−λα
µ −K′

o−K′
o ln

(

K′oµ
αλ

)

= e
−K′

o

(

ln
(

K′o
αλ/µ

)

−1+αλ/µ
K′o

)

(5.22)

We can further approximate Equation (5.22), for large K ′
o, by a Gaussian variable

with a mean and variance of αλ/µ, yielding

Pout ≈ Q





K ′
o − αλ/µ
√

αλ/µ



 (5.23)

5.2.2.2 Imperfect Power Control

Suppose now we loosen our restriction on power control and assume imperfect

power control. Therefore, a user that is controlled to a desired Eb/Io level, which

may vary due to multipath propagation conditions, will exhibit a received Eb/Io level

at a desired cell base station which varies according to a log-normal distribution with

a standard deviation of about 1.5 to 2.5dB [91] [92].

To model the effects of imperfect power control, we must modify the derivation

in Section 5.2.2.1 to account for the variable bit energy of each user within the cell.

Thus, instead of a constant Eb, let us define the bit energy to be Ebl = εlEbo , which
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is log-normally distributed. Thus, using this modification, Equation (5.17) becomes

Pout = Pr







Z ′ =
k′u
∑

l=1

εlvl > K ′
o







(5.24)

where

K ′
o =

B
RB

(1− τ (NAE {φk}))
E{φk}
E{φd}

Eb
Io

(5.25)

and k′u is a Poisson variable with parameter α (λ/µ). Therefore, since Ebl = εlEbo is

log-normally distributed, we can define the following transformed random variables

xl = 10 log10 (E {φk} εlEbo/Io) (5.26)

to be normally distributed random variable with mean mc and standard deviation σc.

Thus, inverting Equation (5.26) yields

Ebo

Io
εlE {φk} = 10

xl
10 = eβxl (5.27)

where β = ln (10) /10.

To solve for the moment-generating function of the random variable Z ′, we eval-

uate the nth moment of εl using xl. Thus, since xl is Gaussian with mean mc and

standard deviation σc, we get

E {εn
l } =

(Ebo

Io
E {φk}

)−n ∫ ∞

−∞
enβxl

e−(xl−mc)2/(2σ2
c)

√

2πσ2
c

dxl

=

(

eβmc
)n

(

Ebo
Io

)n
(E {φk})n

en2(βσc)2/2 (5.28)

Since Ebo was defined as an arbitrary constant, let us assign it a convenient value

such that

E {φk}
Ebo

Io
= eβmc = 10

mc
10 (5.29)
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Therefore, using Equation (5.29), Equation (5.28) becomes

E {εn
l } = en2(βσc)2/2 (5.30)

Since the moment-generating function of ε does not exist, we resort to a modi-

fied Chernoff Bound for obtaining the outage probability. This is accomplished by

using a truncated moment-generating function approach, where the outage probabil-

ity expression is broken up into two components. The first part is conditioned on

vlεl < T for all i, for some sufficiently large T , while the second part is conditioned

on the complementary event. Therefore the probability of outage, upper-bounding

the second part of the expression by unity, becomes

Pout = Pr







k′u
∑

l=1

vlεl > K ′
o; vlεl < T







+ Pr







k′u
∑

l=1

vlεl > K ′
o; vlεl ≥ T







< Pr







k′u
∑

l=1

vlεl > K ′
o; vlεl < T







+ Pr {vlεl ≥ T}

< Ek′u

k′u
∏

l=1

Evl (esvlεl ; εl < T ) e−sK′
o + Ek′u

k′u
∑

l=1

Pr {εl≥T}Pr {vl = 1}

< min
s>0,T>0

{

Ek′u

{

[αEεesε + (1− α)]k
′
u ; ε < T

}

e−sK′
o + Ek′u {k

′
uPr {ε≥T}α}

}

< min
s>0,T>0

{

eα(λ
µ)E{esεT−1}−sK′

o + α
(

λ
µ

)

Pr {ε≥T}
}

(5.31)

Furthermore,

E {esεT } = E
{

eseβξ
; ξ ≤ ln (T )

β

}

(5.32)

and

Pr {ε≥T} = Pr
{

ξ≥ ln (T )
β

}

(5.33)

where ξ = ln (ε)/β = x−mc, referring to Equations (5.27) through (5.29). Therefore,

ξ is Gaussian with zero mean and standard deviation σc. Thus, defining θ = ln (T )/β,
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Equations (5.33) and (5.32) become, respectively,

Pr {ε≥T} =
1√

2πσc

∫ ∞

ln(T )
β

e−ξ2/2σ2
c dξ

= Q
(

ln (T )
βσc

)

= Q
(

θ
σc

)

(5.34)

and

E {esεT } =
1

√

2πσ2
c

∫ θ

−∞
eseβξ

e−ξ2/2σ2
c dξ

=
∞
∑

n=0

sn

n!
√

2πσc

∫ θ

−∞
enβξe−ξ2/2σ2

c dξ

=
∞
∑

n=0

sn

n!
en2(βσc)2/2Q

(

nβσc −
θ
σc

)

(5.35)

As was described previously in Section 5.2.2.1 for the case of perfect power control,

we can rewrite Equation (5.24) in the form of a Gaussian approximation. Further-

more, it is no longer necessary to truncate the moments, since the untruncated first

and second moments exist. Therefore, approximating the distribution of Z ′ in Equa-

tion (5.24) yields

Pout ≈ Q





K ′
o − E {Z ′}
√

var (Z ′)



 (5.36)

where

E {Z ′} = E







k′u
∑

l=1

vlεl







= E {k′u}E {v}E {ε}

=
(

λ
µ

)

αe(βσc)2/2 (5.37)

and since k′u is a Poisson variable, then E {k′u} = var (k′u) = λ
µ , therefore

var (Z ′) = var





k′u
∑

l=1

vlεl




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= E {k′u} var (vε) + var (k′u) E2 {vε}

=
(

λ
µ

)

var (vε) +
(

λ
µ

)

E2 {vε}

=
(

λ
µ

)

(

var (vε) + E2 {vε}
)

=
(

λ
µ

)

((

E
{

v2ε2
}

− E2 {vε}
)

+ E2 {vε}
)

=
(

λ
µ

)

((

E
{

v2
}

E
{

ε2
}

− E
{

v2
}

E
{

ε2
})

+ E2 {vε}
)

=
(

λ
µ

)

(

E2 {vε}
)

=
(

λ
µ

)

(

E
{

v2
}

E
{

ε2
})

=
(

λ
µ

)

αe2(βσc)2 (5.38)

Therefore, the Gaussian approximation of the outage probability can be expressed,

using Equations (5.37) and (5.38), as

Pout ≈ Q









K ′
o − α

(

λ
µ

)

e(βσc)2/2

√

α
(

λ
µ

)

e2(βσc)2









(5.39)

5.3 Results

Using Equations (5.21), (5.23), (5.31), and (5.39) from Sections 5.2.2.1 and 5.2.2.2,

we have plotted Figures 5.2 through 5.8 in order to examine the impact of several

different factors, including mutual coupling effects, scattering effects, as well as power

control, on the performance of CDMA systems employing smart antennas.

In all the figures, we have plotted the logarithm of the probability of outage, Pout,

versus the normalized average user occupancy, (λ/µ) α (1 + f), in terms of Erlangs.

The term (λ/µ) represents the occupancy rate of the system, in Erlangs, where λ is

the total mean call arrival rate per unit time and µ is the mean service rate (average
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number of calls per unit time). Multiplying (λ/µ) by the activity factor α, which is

defined as the fraction of the time during which the user’s signal is present, reduces

the occupancy rate by α < 1. As for f , it is defined as the percentage of users

controlled by other cell base stations which introduce interference power into a given

base station. Thus, since our derivations are only based on a single cell model, we

let f = 0. Furthermore, we assume a data transmission activity factor of α = 1,

a spread bandwidth of B = 1228800Hz, a data rate of RB = 9600bits/second, τ =

0.1, and σc = 2.5dB. To be consistent with the rest of this thesis, the array has a

circular geometry with half-wavelength distances between adjacent array elements.

Of course, the derivations of Sections 5.2.2.1 and 5.2.2.2 are equally applicable to

other geometries. Finally, we use the Gaussian angle-of-arrival spatial distribution

for the scatter, although other distributions can be used as well.

Figure 5.2 exhibits the effects on performance as a function of the number of

array elements. In this case, we have assumed perfect power control, no mutual

coupling effects, and no scatter. Using Equations (5.21) and (5.23) for a base station

antenna array consisting of NA = 1,3, and 5 antennas, as the number of antennas

increases, the outage probability decreases. The approximate linear improvement

with the number of antennas, observation agrees with the other results in this thesis

as well as with other references. Furthermore, the curves generated using Equation

(5.21) give the upper-bound performance of each case, as predicted. For example,

suppose we compare the upper-bound curves, corresponding to Equation (5.21), for

NA = 1 and 5 antennas. Fixing log (Pout) to −3.0, we observe the normalized average

user occupancy to be 10 Erlangs for NA = 1 antenna while 64 Erlangs for NA = 5

antennas. Therefore, for a fixed outage probability, a system with NA = 5 antennas

is capable of achieving a greater capacity relative to a system with only NA = 1

antenna. Interpreting this example another way, if we fix the normalized average
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user occupancy, the probability of outage would be greater for a system with NA = 1

antenna relative to system with NA = 5 antennas.

In Figure 5.3, we further examine the impact of the number of array elements

on the performance of our system, where imperfect power control is assumed and

neither the effects of mutual coupling nor scatter are included. Using Equations

(5.31) and (5.39), we have determined the outage probability for base station antenna

arrays consisting of NA = 1,3, and 5 antennas. We observe that the probability of

outage decreases as the number of array elements increases, therefore the capacity of

the system increases. Furthermore, the curves generated using Equation (5.31) give

the upper-bound performance of each case, as predicted. For instance, suppose we

compare the NA = 1 and 5 antennas cases by fixing log (Pout) to −3.0. The normalized

average user occupancy of a system with only NA = 1 array element is 5 Erlangs,

when the upper bound expression of Equation (5.31) is used, or 10 Erlangs, when the

Gaussian approximation of Equation (5.39) is employed. Moreover, the normalized

average user occupancy of a system with NA = 5 array elements is 52 Erlangs, when

the upper bound expression of Equation (5.31) is used, or 61 Erlangs, when the

Gaussian approximation of Equation (5.39) is used. Therefore, for a fixed outage

probability, a system with NA = 5 antennas is capable of achieving a greater capacity

relative to a system with only NA = 1 antenna. Thus, for a fixed normalized average

user occupancy the probability of outage would be greater for a system with NA = 1

antenna relative to system with NA = 5 antennas. Comparing Figures 5.3 and 5.2,

we observe that the normalized average user occupancy in Figure 5.3 is lower relative

to Figure 5.2. For example, the normalized average user occupancy for the NA = 1

array element case at log (Pout) = −3.0 on the upper bound curve of Figure 5.3 is

50 percent lower relative to the corresponding point in Figure 5.2. This observation

agrees with open literature, especially [91], since systems with perfect power control,
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on average, provide overly-optimistic results with respect to Erlang capacity.

Referring to Figure 5.4, we examine the effects of mutual coupling and scatter

on the system performance. Assuming perfect power control (both upper bound and

Gaussian approximation) and an NA = 5 element antenna array, we have plotted

curves where both mutual coupling and scattering effects are included, only mutual

coupling effects are included, and the ideal case where neither mutual coupling nor

scattering effects are included in our system model. When scattering is included,

angle spreads of ∆ = 15o and ∆ = 60o, corresponding to hilly (macro) and microcell

(mall) environments [56], respectively, are used. Referring to Figure 5.4, the following

observations are made:

1. As expected, when mutual coupling is included and scatter is ∆ = 60o, the

performance of the system is the worst of the four cases. For instance, fixing

log (Pout) to −3.0 and referring to the upper-bound curve where mutual coupling

and scatter (∆ = 60o) are both included, we observe that the normalized average

user occupancy is 24 Erlangs, as opposed to 64 Erlangs when both mutual

coupling and scatter are not included.

2. When the scatter is decreased to ∆ = 15o, the performance is somewhat better

although still not as good as the case where only mutual coupling effects are

included. For example, the normalized average user occupancy, when both

mutual coupling and scatter (∆ = 15o) are included and the upper bound curve

is used, is 46 Erlangs, when log (Pout) is fixed to −3.0. This is higher than 24

Erlangs when ∆ = 60o, yet lower compared to 49 Erlangs when only mutual

coupling is included.

3. Finally, when none of these effects are included, the system performs at its best.

Comparing the above values for the normalized average user occupancy when
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log (Pout) is fixed to −3.0, we get 64 Erlangs when none of these effects are

included.

These results agree strongly with the results from the rest of this thesis and serve as

a baseline for the following power control studies.

Figures 5.5 to 5.8 demonstrate the effects of power control on system performance.

Assuming that all figures include the effects of mutual coupling and both imperfect

and perfect power control, Figure 5.5 corresponds to an NA = 3 antenna array system

where the angle spread is ∆ = 15o, Figure 5.6 corresponds to a NA = 3 antenna array

system where the angle spread is ∆ = 60o, Figure 5.7 corresponds to a NA = 5

antenna array system where the angle spread is ∆ = 15o, and Figure 5.8 corresponds

to a NA = 5 antenna array system where the angle spread is ∆ = 60o. From these

figures, three major observations can be made:

1. Imperfect power control using Equation (5.31) gave the lowest capacity values,

followed by imperfect power control using Equation (5.39), then perfect power

control using Equation (5.21), and finally perfect power control using Equation

(5.23) yielded the highest capacity values. For example, fixing log (Pout) is fixed

to −3.0 in Figure 5.5, we notice that the normalized average user occupancy for

the curves generated using Equations (5.31), (5.39), (5.21), and (5.23) are 20, 24,

27, and 28 Erlangs, respectively. This agrees with the literature, especially [91],

since systems with imperfect power control, on average, do not perform as well

as systems with perfect power control. Moreover, the upper bound equations

establish the worst case scenario that a system could obtain. Therefore, it makes

sense that the upper bound always performs worse relative to the Gaussian

approximation.

2. The curves of Figures 5.5 and 5.7 indicate better performance relative to the
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curves of Figures 5.6 and 5.8, respectively. This is due to the fact that the

scatter in Figures 5.5 and 5.7 has an angle spread of ∆ = 15o while the scatter

in Figures 5.6 and 5.8 has an angle spread of ∆ = 60o. Therefore, since the

scatter is larger in Figures 5.6 and 5.8, the curves in those figures indicate

the increased degrading due to scattering effects. For example, comparing the

curves generated using Equations (5.31), (5.39), (5.21), and (5.23) in Figure 5.5

to the corresponding curves in Figure 5.6, we notice a difference in normalized

average user occupancy of 35.0, 29.1, 33.3, and 28.6 percent, when log (Pout) is

fixed to−3.0, where all the curves in Figure 5.5 have relatively higher normalized

average user occupancy.

3. System performance is improved when the array consists of NA = 5 antennas

relative to the NA = 3 antennas case. This is obvious when comparing Figures

5.5 and 5.7 as well as Figures 5.6 and 5.8. This agrees with the general consensus

that as the number of array elements increases, the performance improves. For

instance, the difference in normalized average user occupancy, with respect to

the curves generated using Equations (5.31), (5.39), (5.21), and (5.23), between

Figures 5.5 and 5.7 is 44.4, 42.9, 40.0, and 40.4 percent, respectively, when

log (Pout) is fixed to −3.0. Note that Figure 5.7 possess the higher values for

the normalized average user occupancy.
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Figure 5.2: Effect of the number of array elements on the outage probability [no

mutual coupling, no scatter, perfect power control]
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Figure 5.3: Effect of the number of array elements on the outage probability [no

mutual coupling, no scatter, imperfect power control]
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Figure 5.4: Effect of mutual coupling and scatter on the outage probability [NA = 5

antennas, perfect power control]
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Figure 5.5: Effect of imperfect power control on the outage probability [NA = 3

antennas, mutual coupling included, scatter included (∆ = 15o)]
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Figure 5.6: Effect of imperfect power control on the outage probability [NA = 3

antennas, mutual coupling included, scatter included (∆ = 60o)]

123



30 35 40 45 50 55 60 65 70
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

α(λ/µ) [erlangs]

lo
g 10

(P
ou

t)

Imperfect Power Control 
[Upper Bound]           
                        
Imperfect Power Control 
[Gaussian Approximation]
                        
Perfect Power Control   
[Upper Bound]           
                        
Perfect Power Control   
[Gaussian Approximation]

Figure 5.7: Effect of imperfect power control on the outage probability [NA = 5

antennas, mutual coupling included, scatter included (∆ = 15o)]
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Figure 5.8: Effect of imperfect power control on the outage probability [NA = 5

antennas, mutual coupling included, scatter included (∆ = 60o)]
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5.4 Chapter Summary

We have presented a detailed analysis of the effects of power control on system

performance where multi-antenna arrays are used and mutual coupling as well as

scattering effects are included.

From this analysis, the results indicate that the performance of systems which use

imperfect power control is lower relative to systems using perfect power control. This

agrees with the open literature on this subject and provides us with a sanity check.

Moreover, the effects of mutual coupling and scatter further degrades performance

of these systems. Although this part of the analysis has never been done before, the

results make intuitive sense and agrees with the results found in the rest of this thesis.

Finally, as the number of antennas within the array increases, system performance

also improves. Thus, the use of base station antenna arrays in increase system capacity

is justified.
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Chapter 6

Summary and Future Work

6.1 Introduction

This chapter provides some perspective for the major contributions of this thesis,

and outlines several possible extensions and enhancements which could be performed.

6.2 Summary of Contributions

The major contributions of this thesis are:

• Two analytical methods, the Induced EMF Method, from [37], and the Method

of Moments, from [30], as well as a full-wave electromagnetic numerical com-

putation, from [98], were used to include the effects of mutual coupling in our

beampattern synthesis models and system capacity predictions. Our beampat-

terns which include the effects of mutual coupling exhibit higher sidelobe levels,

shallower nulls, and wider beamwidths relative to beampatterns which do not

include mutual coupling. Moreover, the beampatterns which do account for mu-

tual coupling effects, which were generated using the three methods, all compare
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very closely with one another. Furthermore, the predicted capacity results for

the cases where mutual coupling effects are included show a noticeable decrease

relative to the case where the mutual coupling is unaccounted for. For example,

we observe a difference in system capacity of six to eleven percent when the

effects of mutual coupling are and are not considered in the NA = 5 antennas

case.

• The improved system model we developed, where the effects of mutual coupling

are included, is taken one step further by assuming the environment also includes

the effects of scatter due to multipath. This is achieved by determining the cross-

correlation statistics between antennas of the array, as was performed by Salz

and Winters [75], and improving it by including the effects of mutual coupling as

well as using an unspecified angle-of-arrival spatial distribution. Hence, we can

further increase the accuracy of our system model by including both the effects

of mutual coupling and scatter. The results obtained show that mutual coupling

effects have a noticeable adverse effect on system capacity predictions when the

angle spread is small or non-existent while at high angle spreads, scattering is

the dominant factor of degradation. For instance, if we look at ∆ = 10o in

Figures 4.13 and 4.14, the capacity difference between cases which do and do

not include mutual coupling effects ranges between 10 and 14.5 percent. Yet,

as the angle spread increases and approaches ∆ = 180o, the system capacity

decreases such that the multiple antenna capacity reduces to that of a single

antenna.

• An approach for evaluating the reverse link capacity of a CDMA system using

digital beamforming and employing a base station antenna array under im-

perfect power control where the effects of mutual coupling and scatter due to
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multipath are included. The derivation for the probability of outage for a sys-

tem with perfect power control uses an approach based on [91] and [92]. The

end result is two expressions for the outage probability, one is an upper bound

and other is a Gaussian approximation. This derivation is then extended to the

case of imperfect power control, where the upper-bound and Gaussian approx-

imation of the outage probability are obtained. From this analysis, the results

indicate that the performance of systems which use imperfect power control is

lower relative to systems using perfect power control, which is in agreement

with the open literature on this subject. Moreover, the effects of mutual cou-

pling and scatter further degrades performance of these systems. Although this

part of the analysis is novel, the results are intuitive by reasonable sense and

agree with the results found in the rest of this thesis. Finally, as the number of

antennas within the array increases, system performance also improves. Thus,

the use of base station antenna arrays in increase system capacity is justified.

6.3 Future Work

Suggested areas of researcher which would compliment this thesis are:

• Throughout this thesis we have adopted the same base station antenna ar-

ray setup used by Colman [12] and Earnshaw [19] for the sake of comparison,

namely, a circular array consisting of one to six dipole antenna elements with

half wavelength adjacent spacing. Unfortunately, it has been shown that CDMA

systems using adaptive arrays with circular geometries do not perform as well

as other geometries, such as linear, triangular, and golomb. Therefore, to study

the system performance where other array geometries are used, the analysis
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in this thesis must be modified to account for the new relative positions and

distances of the array elements.

• Several researchers have suggested that there exist several values for the adjacent

separation between dipole antennas in the array that the effects of mutual cou-

pling may be potentially beneficial to the system performance, such as Diouris,

McLaughlin, and Zeidler in [16]. The adjacent separation of dipole antennas

in this thesis has been fixed to one half wavelength, keep with the spirit of re-

search conducted by Colman [12] and Earnshaw [19]. Unfortunately, in many

of the derived expressions have the adjacent separation of one half wavelength

“hard-coded” into them. Thus, to study the impact on performance by array

element adjacent separation, one must modify the expressions by allowing for

an adjacent distance variable.

• Throughout this thesis, we have assumed that capacity prediction being derived

is for a single cell system. Although extending the derivation of the system ca-

pacity to a multi-cell environment is simple in some cases, such as the derivation

for the Erlang capacity in Chapter 5, the modifications of the system capacity

derivations in the majority of this thesis will be extensive.

• This thesis focused primarily on the performance issues of CDMA systems us-

ing digital beamforming and employing base station antenna arrays. We have

chosen, as performance measures, the system capacity and the beampatterns of

the base station antenna array to indicate how well or how poorly our system is

performing when the effects of mutual coupling, scatter, and/or power control

are included. Another performance measure which could be use is the receiver

bit-error-rate (BER), as in [56]-[59]. Using the probability of bit error, the per-

formance of the CDMA system as a function of the number of users within the
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cell could be calculated.

• In Chapter 3, the full-wave electromagnetic numerical software, IE3D, by Ze-

land Software is capable of producing beampatterns in our analysis of CDMA

systems employing smart antennas. Furthermore, the beampatterns produced

with the full-wave electromagnetic numerical computation are in agreement

with the beampatterns produced with analytical methods. Thus, the rationale

for the full-wave electromagnetic numerical computation is that it is capable of

predicting beampatterns for a larger class of antenna arrays and antenna types

which cannot be analytically studied, such as those which have directional radi-

ation that could be used in fixed wireless applications. Therefore, the full-wave

electromagnetic numerical computation could be used in an investigation of the

performance of CDMA systems employing base station antenna arrays where

the array geometry and/or antenna type cannot be analytically studied.

• Throughout this thesis, we have only investigated the uplink system perfor-

mance, where the effects of mutual coupling, scatter due to multipath, and

power control have all been accounted-for. In the future, this work can be ex-

tend to the case of the downlink system performance, such that these effects are

also included. It should be noted that according to the Reciprocity Theorem,

the mutual coupling information is identical in both the uplink and downlink

cases.

6.4 Conclusion

In this thesis, we have significantly improved the accuarcy of the work carried out

in [12] and [19] by including in the system performance analysis the effects of mutual
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coupling, scatter due to multipath, and power control. We observe that by including

these effects, the performance of a CDMA communication system employing digital

beamforming and a base station antenna array degrades significantly relative to the

case when one of more of these effects are not present. Furthermore, the limitations

of smart antennas are exhibited when these effects are significant, as in the case of

beamforming in high-scatter environments, for example.
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Appendix A

Derivation of Complex Second Moments

In this appendix, we derive the complex second moments of the total received

voltage amplitudes at antennas i and k in Section 4.3 such that its joint probabil-

ity distribution is determined. These complex second moments are B1cB∗
1c, B1sB∗

1s,

B2cB∗
2c, B2sB∗

2s, B1cB∗
2c, B1sB∗

2s, B1cB∗
1s, B2cB∗

2s, B1cB∗
2s, and B2cB∗

1s, where (·) is the

expectation of (·), and B1c, B1s, B2c, and B2s are defined by Equations (4.24) through

(4.27), respectively.

Before we begin with the derivations, we must recall several equations from Section

4.3 which are used extensively throughout this appendix.

From Equation (4.9), the mean-squared signal amplitude at antennas i and k is

A2
1 = A2

2 =
n

∑

r=1
a2

r

which is required in every derivation to transform the resulting expression into a

usable form.

Furthermore, since our derivations are based on the basic definition of the mean,

we require the use of Equations (4.24) through (4.27), namely

B1c = |Yii|A1cos(Ψ1)ej 6 Yii + |Yik|A2cos(Ψ2)ej 6 Yik
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= |Yii|
m

∑

r=1
arcos(ψr + χr)ej 6 Yii + |Yik|

m
∑

r=1
arcos(ψr − χr)ej 6 Yik

B1s = |Yii|A1sin(Ψ1)ej 6 Yii + |Yik|A2sin(Ψ2)ej 6 Yik

= |Yii|
m

∑

r=1
arsin(ψr + χr)ej 6 Yii + |Yik|

m
∑

r=1
arsin(ψr − χr)ej 6 Yik

B2c = |Yki|A1cos(Ψ1)ej 6 Yki + |Ykk|A2cos(Ψ2)ej 6 Ykk

= |Yki|
m

∑

r=1
arcos(ψr + χr)ej 6 Yki + |Ykk|

m
∑

r=1
arcos(ψr − χr)ej 6 Ykk

B2s = |Yki|A1sin(Ψ1)ej 6 Yki + |Ykk|A2sin(Ψ2)ej 6 Ykk

= |Yki|
m

∑

r=1
arsin(ψr + χr)ej 6 Yki + |Ykk|

m
∑

r=1
arsin(ψr − χr)ej 6 Ykk

respectively, where

χr =
πd
λ

cos(θkr)

Finally, since the phase angles ψr are assumed to be random and m is assumed to

be large, we can then say that B1c, B1s, B2c, and B2s are each distributed normally

with zero mean.

Therefore, we commence with the expression for B1cB∗
1c by using Equation (4.24),

and applying the definition of the mean squared value, thus yielding

B1cB∗
1c = E

{(

|Yii|A1cos(Ψ1)ej 6 Yii + |Yik|A2cos(Ψ2)ej 6 Yik
)

·
(

|Yii|A1cos(Ψ1)ej 6 Yii + |Yik|A2cos(Ψ2)ej 6 Yik
)∗}

= E
{(

|Yii|A1cos(Ψ1)ej 6 Yii + |Yik|A2cos(Ψ2)ej 6 Yik
)

·
(

|Yii|A1cos(Ψ1)e−j 6 Yii + |Yik|A2cos(Ψ2)e−j 6 Yik
)}

= E
{

|Yii|2 A2
1 cos2 (Ψ1) + |Yik|2 A2

2 cos2 (Ψ2)

+|Yii| |Yik|A1A2 cos (Ψ1) cos (Ψ2) ej( 6 Yii−6 Yik)
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+ |Yii| |Yik|A1A2 cos (Ψ1) cos (Ψ2) ej(6 Yik−6 Yii)
}

= E
{

|Yii|2 A2
1

(1
2

+
1
2

cos (2Ψ1)
)

+ |Yik|2 A2
2

(1
2

+
1
2

cos (2Ψ2)
)

+2 |Yii| |Yik|A1A2 cos (Ψ1) cos (Ψ2) cos (6 Yii − 6 Yik)}

= E
{

|Yii|2 A2
1

(1
2

+
1
2

cos (2Ψ1)
)

+ |Yik|2 A2
2

(1
2

+
1
2

cos (2Ψ2)
)

+|Yii| |Yik|A1A2 (cos (Ψ1 + Ψ2) + cos (Ψ1 −Ψ2)) cos (6 Yii − 6 Yik)}

=
1
2
|Yii|2 A2

1 +
1
2
|Yik|2 A2

2

+ |Yii| |Yik|A1A2 cos (Ψ1 −Ψ2) cos (6 Yii − 6 Yik)

=
(

|Yii|2 + |Yik|2
)1
2

m
∑

r=1
ar

2

+|Yii||Yik|
m

∑

r=1
ar

2cos
(

2πd
λ

cos (θkr)
)

cos (6 Yii − 6 Yik) (A.1)

which agrees with Equation (4.29). Furthermore, using the same approach for deter-

mining B1cB∗
1c, we are able to derive the expressions for B1sB∗

1s, as well as B2cB∗
2c

and B2sB∗
2s, yielding Equations (4.29) and (4.30), respectively.

We next deal with the expression for B1cB∗
2c, which we use Equations (4.24) and

(4.26), and applying the definition of the mean, thus yielding

B1cB∗
2c = E

{(

|Yii|A1cos(Ψ1)ej 6 Yii + |Yik|A2cos(Ψ2)ej 6 Yik
)

·
(

|Yki|A1cos(Ψ1)ej 6 Yki + |Ykk|A2cos(Ψ2)ej 6 Ykk
)∗}

= E
{(

|Yii|A1cos(Ψ1)ej 6 Yii + |Yik|A2cos(Ψ2)ej 6 Yik
)

·
(

|Yki|A1cos(Ψ1)e−j 6 Yki + |Ykk|A2cos(Ψ2)e−j 6 Ykk
)}

= E
{

|Yii| |Yki|A1A1 cos2 (Ψ1) ej(6 Yii−6 Yki)

+ |Yik| |Ykk|A2A2 cos2 (Ψ2) ej(6 Yik−6 Ykk)

+ |Yii| |Ykk|A1A2 cos (Ψ1) cos (Ψ2) ej( 6 Yii−6 Ykk)

+ |Yik| |Yki|A1A2 cos (Ψ1) cos (Ψ2) ej( 6 Yik−6 Yki)
}

= E
{

|Yii| |Yki|A2
1

(1
2

+
1
2

cos (2Ψ1)
)

ej( 6 Yii−6 Yki)
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+ |Yik| |Ykk|A2
2

(1
2

+
1
2

cos (2Ψ2)
)

ej(6 Yik−6 Ykk)

+
1
2
|Yii| |Ykk|A1A2(cos (Ψ1 + Ψ2) + cos (Ψ1 −Ψ2))ej( 6 Yii−6 Ykk)

+
1
2
|Yik| |Yki|A1A2(cos (Ψ1 + Ψ2) + cos (Ψ1 −Ψ2))ej( 6 Yik−6 Yki)

}

=
1
2
|Yii| |Yki|A2

1e
j(6 Yii−6 Yki)

+
1
2
|Yik| |Ykk|A2

2e
j(6 Yik−6 Ykk)

+
1
2
|Yii| |Ykk|A1A2 cos (Ψ1 −Ψ2)ej( 6 Yii−6 Ykk)

+
1
2
|Yik| |Yki|A1A2 cos (Ψ1 −Ψ2)ej( 6 Yik−6 Yki)

= |Yii||Yki|
1
2

m
∑

r=1
a2

re
j( 6 Yii−6 Yki)

+|Yik||Ykk|
1
2

m
∑

r=1
a2

re
j(6 Yik−6 Ykk)

+|Yii||Ykk|
1
2

m
∑

r=1
a2

r cos
(

2πd
λ

cos (θkr)
)

ej( 6 Yii−6 Ykk)

+|Yik||Yki|
1
2

m
∑

r=1
a2

r cos
(

2πd
λ

cos (θkr)
)

ej( 6 Yik−6 Yki) (A.2)

which agrees with Equation (4.33). Similarly, using the approach to determine B1cB∗
2c,

we are able to derive the expression for B1sB∗
2s yielding Equation (4.33).

We next deal with the expression for B1cB∗
1s, which we use Equations (4.24) and

(4.25), and applying the definition of the mean, thus yielding

B1cB∗
1s = E

{(

|Yii|A1cos(Ψ1)ej 6 Yii + |Yik|A2cos(Ψ2)ej 6 Yik
)

·
(

|Yii|A1sin(Ψ1)ej 6 Yii + |Yik|A2sin(Ψ2)ej 6 Yik
)∗}

= E
{(

|Yii|A1cos(Ψ1)ej 6 Yii + |Yik|A2cos(Ψ2)ej 6 Yik
)

·
(

|Yii|A1sin(Ψ1)e−j 6 Yii + |Yik|A2sin(Ψ2)e−j 6 Yik
)}

= E
{

|Yik| |Yii|A2A1 cos (Ψ2) sin (Ψ1) ej(6 Yik−6 Yii)

+ |Yik| |Yik|A2A2 cos (Ψ2) sin (Ψ2)

+ |Yii| |Yii|A1A1 cos (Ψ1) sin (Ψ1)
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+ |Yii| |Yik|A1A2 cos (Ψ1) sin (Ψ2) ej(6 Yii−6 Yik)
}

= E
{1

2
|Yik| |Yii|A2A1 (sin (Ψ1 + Ψ2) + sin (Ψ1 −Ψ2)) ej(6 Yik−6 Yii)

+
1
2
|Yik| |Yik|A2A2 (sin (Ψ2 + Ψ2) + sin (Ψ2 −Ψ2))

+
1
2
|Yii| |Yii|A1A1 (sin (Ψ1 + Ψ1) + sin (Ψ1 −Ψ1))

+
1
2
|Yii| |Yik|A1A2 (sin (Ψ2 + Ψ1) + sin (Ψ2 −Ψ1)) ej(6 Yii−6 Yik)

}

= E
{1

2
|Yik| |Yii|A2A1 (sin (Ψ1 + Ψ2) + sin (Ψ1 −Ψ2)) ej(6 Yik−6 Yii)

+
1
2
|Yik| |Yik|A2A2 sin (2Ψ2) +

1
2
|Yii| |Yii|A1A1 sin (2Ψ1)

+
1
2
|Yii| |Yik|A1A2 (sin (Ψ2 + Ψ1) + sin (Ψ2 −Ψ1)) ej(6 Yii−6 Yik)

}

=
1
2
|Yik| |Yii|A2A1 sin (Ψ1 −Ψ2)ej(6 Yik−6 Yii)

+
1
2
|Yii| |Yik|A1A2 sin (Ψ2 −Ψ1)e−j(6 Yik−6 Yii)

= |Yik| |Yii|A2A1 sin (Ψ1 −Ψ2)j sin (j ( 6 Yik − 6 Yii))

= j |Yii| |Yik| sin ( 6 Yik − 6 Yii)
m

∑

r=1
a2

r sin
(

2πd
λ

cos (θkr)
)

(A.3)

which agrees with Equation (4.31). Similarly, using the approach to determine B1cB∗
1s,

we are able to derive the expression for B2cB∗
2s yielding Equation (4.32).

Finally, we deal with the expression for B1cB∗
2s, which we use Equations (4.24)

and (4.27), and applying the definition of the mean, thus yielding

B1cB∗
2s = E

{(

|Yii|A1cos(Ψ1)ej 6 Yii + |Yik|A2cos(Ψ2)ej 6 Yik
)

·
(

|Yki|A1sin(Ψ1)ej 6 Yki + |Ykk|A2sin(Ψ2)ej 6 Ykk
)∗}

= E
{(

|Yii|A1cos(Ψ1)ej 6 Yii + |Yik|A2cos(Ψ2)ej 6 Yik
)

·
(

|Yki|A1sin(Ψ1)e−j 6 Yki + |Ykk|A2sin(Ψ2)e−j 6 Ykk
)}

= E
{

|Yii| |Yki|A1A1 cos (Ψ1) sin (Ψ1) ej(6 Yii−6 Yki)

+ |Yik| |Ykk|A2A2 cos (Ψ2) sin (Ψ2) ej(6 Yik−6 Ykk)

+ |Yik| |Yki|A1A2 cos (Ψ1) sin (Ψ2) ej(6 Yik−6 Yki)
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+ |Yii| |Ykk|A1A2 cos (Ψ2) sin (Ψ1) ej(6 Yii−6 Ykk)
}

= E
{1

2
|Yii| |Yki|A1A1 (sin (Ψ1 + Ψ1) + sin (Ψ1 −Ψ1)) ej(6 Yii−6 Yki)

+
1
2
|Yik| |Ykk|A2A2 (sin (Ψ2 + Ψ2) + sin (Ψ2 −Ψ2)) ej(6 Yik−6 Ykk)

+
1
2
|Yik| |Yki|A1A2 (sin (Ψ2 + Ψ1) + sin (Ψ2 −Ψ1)) ej(6 Yik−6 Yki)

+
1
2
|Yii| |Ykk|A1A2 (sin (Ψ1 + Ψ2) + sin (Ψ1 −Ψ2)) ej( 6 Yii−6 Ykk)

}

=
1
2
|Yik| |Yki|A1A2sin (Ψ2 −Ψ1)ej(6 Yik−6 Yki)

+
1
2
|Yii| |Ykk|A1A2sin (Ψ1 −Ψ2)ej(6 Yii−6 Ykk)

= −|Yii||Ykk|
1
2

m
∑

r=1
a2

r sin
(

2πd
λ

cos (θkr)
)

ej(6 Yii−6 Ykk)

+|Yik||Yki|
1
2

m
∑

r=1
a2

r sin
(

2πd
λ

cos (θkr)
)

ej(6 Yki−6 Yik) (A.4)

which agrees with Equation (4.34). Similarly, using the approach to determine B1cB∗
2s,

we are able to derive the expression for B2cB∗
1s yielding Equation (4.34).
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Appendix B

Dipole Antenna Array Model in IE3D

B.1 Introduction

IE3D is a full-wave electromagnetic numerical computation and optimization soft-

ware package for the analysis and design of 3-dimensional structures, such as antennas,

printed circuit and digital boards, etc [98].

As was mentioned in Section 6.3, IE3D is capable of predicting beampatterns

for a larger class of antenna arrays and antenna types which cannot be analytically

studied. Furthermore, it comes with several useful software tools to assist the user

in the design and analysis process: the layout editor MGRID, the schematic editor

MODUA, the current display post processor CURVIEW, and the radiation pattern

post processor PATTERNVIEW [98].

Unfortunately, like other proprietary software packages, the specific way in which

IE3D operates is unknown to the end-user and is essentially a “black box”. Thus,

the accuracy of the design and analysis is dependent on the user’s input to the soft-

ware. For example, the beampatterns of Figures 3.9, 3.13, 3.17, 3.21, and 3.25 were

generated using IE3D. Upon comparison with the Method of Moments-generated
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beampatterns of Figures 3.8, 3.12, 3.16, 3.20, and 3.24, respectively, we notice that

the sidelobe levels are relatively smaller in the latter. As was explained in Subsection

3.3.2, it turns out that the way the dipole antennas were implemented in IE3D led to

the difference in the beampatterns.

In this appendix, we will briefly cover the modeling of wire structures in IE3D,

followed by an example of implementing a dipole antenna in IE3D.

B.2 Modeling Wires in IE3D

Usually, a wire is modeled with separated field and observation points. To avoid

the possibility of the occurrence of a singularity in the numerical computation, it is

assumed that the electric current is at the center of the wire and the observation

point is on the surface of the wire. Such a model will inherently introduce some error

since it is known that the current also flows on the surface of the wire.

In IE3D, the software models the surface currents of metallic structures and tests

the field on them. Thus, a thin wire can be modeled as a metallic strip or a polygonal

tube, depending on the accuracy requirements.

Since both the metallic strip or tube model assumes both the current source and

observation point to be on the surface, this tends to increase the accuracy of the

design and analysis.

B.3 Example: Dipole Antenna

We will now go through a quick design example for a simple dipole antenna.
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In this example, we fix the length of the dipole to 15 mm, the dipole radius to

0.075 mm, and a resonant frequency of about 10 GHz. It should be pointed out that

this design process is applicable to other dipole lengths, radii, and frequencies.

1. Using MGRID, select New in File menu. When the window pops up, select

mm as the Length Unit. When prompted for the Layout and Grid, add a

new grid and enter the Grid Size of 0.15 mm. Click OK.

2. Define the following Dielectric Parameters:

(a) Ztop = 0mm, εr = (1, 0), µr = (1, 0), σ = (0, 0)

(b) Ztop = 1.0× 1015mm, εr = (1, 0), µr = (1, 0), σ = (0, 0)

3. Define the following Metallic Strip Parameters:

(a) Thickness = 0.075mm, εr = (1, 0), µr = (1, 0), σ = (4.9× 107, 0)

4. Define the Discretization Parameters:

(a) Fmax = 15GHz

(b) Ncell = 15

5. Choose Create and Edit Vertices in the Input menu and click the Import

button. Then click OK when prompted.

6. Since the IE3D software package comes with some ready made examples and

designs, let us choose the dipole design found in

C:\ie3d\samples\dipole.txt

and then click OK until the MGRID is back in 2D mode.
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7. Choose Build Wire Path in Adv Edit menu. Input 6 for the Number of

Segments for Circle and 0.075 mm for the Radius. Click OK to create the

dipole. To view the whole circuit, choose Whole Circuit in the View menu.

8. Remove the small bend in the dipole by choosing Select Polygon Group in

the Edit menu. Form a window over the bend area and select Delete Objects

in the Edit menu.

9. To attach the ports to this dipole antenna, choose Port for Edge group in the

Port Menu, followed by Extension for MMIC scheme. Using the left mouse

button, define one of the terminals (created via the deletion of the bend in the

previous step) as “+1” and use the right mouse button to define the remaining

terminal as “−1”. Then choose Exit Port in the Port menu to return to 2D

mode.

10. Save the structure as

C:\my documents\dipole.geo

which can then be used by the other software programs found in IE3D. In par-

ticular, CURVIEW can be used to generated the beampattern for this antenna,

or an array of antennas. Please refer to the IE3D User Manual for information

on how to use these packages [98].

It should be noted that the dipole antenna arrays designed in IE3D for this thesis

were created in the same fashion described in this section.
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