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Abstract

Cognitive radio (CR) is a class of wireless communication technologies that have the

ability to learn from the surrounding radio environment and the intelligence to adapt

communication resources to enhance quality of service. The problem of acquiring

information from a CRs radio environment is called spectrum sensing, which can take

on many forms. In particular, this thesis concerns the determination of whether a

spectrum band (or channel) is in a busy or idle state. The binary nature of a channels

availability means that spectrum sensing can be cast as a hypothesis testing problem.

While an abundant literature exists on spectrum sensing as a signal detection problem,

this thesis treats spectrum sensing differently, and features the following elements: 1)

the system is equipped with an arbitrary number of sensors; 2) sensing is performed

over multiple channels; 3) each channels availability is modelled by random periods

of busy and idle times corresponding to packet transmission; and 4) the optimization

criteria minimizes detection delay subject to a reliability constraint.

A related spectrum sensing problem formulation based on the use of a single sen-

sor has been proposed in the recent literature. The previous research employs an

optimization framework based on modeling channel uses as an on-off process via par-

tially observable Markov decision processes (POMDP). This thesis generalizes pre-

vious results from single-sensor to multiple-sensor spectrum sensing, i.e., detecting
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idle periods with multiple sensors. In addition, an alternative reduced-complexity

algorithm is proposed. For both proposed detectors, the performances are evaluated

based on Monte Carlo simulation with calculated confidence intervals, and the results

show that 1) adding sensors generally improves the system performance by reducing

detection delay (improved agility); 2) the application of previously existing quickest

detection methods result in error floors complicating test design. Finally, perfor-

mance assessment using a channel model derived experimentally from the wireless

local area network (WLAN) traffic is conducted and compared to that obtained using

a geometrically-distributed channel traffic model.
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Chapter 1

Introduction

1.1 Motivation

Cogntive Radio (CR) has received much research attention in recent years for its po-

tential to address the problem of spectrum scarcity. As the demands for bandwidth

from smartphones significantly outgrow the supply of spectrum, the cost to transmit

information wirelessly is increasing rapidly. Furthermore, the surveys [4, 14, 15] have

shown that many commercial wireless networks around United States have experi-

enced an under-utilization of their licensed spectrum bands. As a result, the need to

improve the efficiency in bandwidth consumption has been highlighted as the main

motivation for the development of CR.

CR is first proposed in [16] to address the issue of spectrum under-utilization.

In general, CR describes a class of wireless technology that enhances communica-

tion performance by adapting its mode of communication to the surrounding radio

environment. Spectrum sensing is one of the main methods for a CR to acquire in-

formation related to the radio environment and therefore plays an important role in
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the design of CR.

Spectrum sensing concerns the problem of determining whether a spectrum band

is available for CRs to conduct wireless communication. The objective of spectrum

sensing may vary depending on what type of spectrum-related information is to be

acquired. For example, some CR systems need to determine the presence of a wireless

device in a spectrum band while other CR systems need to identify the type of wireless

device it is. This leads to different types of spectrum sensing problems. In this thesis,

the particular spectrum sensing problem of interest is to identify the availability states

of spectrum bands.

For the rest of the thesis, a spectrum band will also be referred to as a channel.

A channel can be in one of two availability states, i.e., it is in either a busy or an

idle state. Given this, spectrum sensing is to provide the ability to determine the

availability of a channel, so a CR can either identify an unused spectrum band to

access, or determine when it needs to vacant the spectrum band for primary devices.

In a hierarchical spectrum access scheme, primary devices are devices that have pri-

oritized spectrum access over the CR devices. Typically, the “primary” networks

are operated by licensed users, i.e., those who hold the licenses to operate in certain

channels, while the “secondary” CR networks contain the unlicensed devices, who

seek to access the same channels opportunistically. Therefore, CR is only permitted

to access these spectrum bands under the pretence that it does not interfere with the

transmission of the primary devices.

Given that the goal is to discern the availability state of a channel by observing it,

the problem of spectrum sensing is naturally cast into a detection problem. Research
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that applies detection theories to spectrum sensing problems is in abundance. Spec-

trum sensing methods based on classical hypothesis testing are studied in the context

of energy detection [9,22], matched filter detection [22], and feature detection [1,2,17].

In the framework of classical hypothesis test described in [1, 2, 9, 17, 22], the primary

criteria for the detector design is reliability, which is measured via the false alarm

rate and the missed detection rate of the detector. However, the criteria does not

concern agility, i.e., how responsive a detector is. Agility of a detector is measured

by the expected amount of time that a detector needs to produce a decision. The

methods proposed in [1, 2, 9, 17, 22] process a fixed block of observations and hence

do not optimize agility of the system. In the context of CR, good system agility and

reliability are both desirable properties for a spectrum sensing detector, because the

time that is spent sensing a channel is both an overhead that reduces CR’s capacity,

and also a cause of interference to primary devices.

Sequential detection is an alternative scheme that optimizes a detector’s agility.

In [24], the spectrum sensing problem is addressed using sequential detection. By em-

ploying the sequential probability ratio test (SPRT), agility of the spectrum sensing

system is optimized by minimizing the number of observations needed to complete

the detection. With SPRT, decisions are produced after a sufficient number of ob-

servations is obtained. So the time to perform SPRT is usually less than that of a

fixed-sample-size detector given that the same reliability is achieved. However, the

problem formulation of SPRT assumes that the channel remains in a state over the

duration of the detection process. If the number of observations is large, a channel

may change its availability state over the time horizon of the detection, violating this

assumption. To better represent the dynamics of changes in the channel’s availability,
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a different kind of sequential detection framework, i.e., quickest detection, is proposed.

Quickest detection is a sequential detection scheme that aims to detect a change

in a random process. The application of quickest detection to spectrum sensing has

been demonstrated in [10, 11, 28], where it is assumed that a channel experiences a

change in its availability state and quickest detectors seek to detect that change as

quickly as possible. The quickest detection problem formulation does not assume that

the channel remains in one state, thus it is a more flexible model to represent the

channel’s availability state.

In some spectrum sensing scenarios, the traffic patterns in a channel can be char-

acterized using stochastic models. Since the traffic patterns provide information on

when a change of availability state will occur in a channel, this information has the

potential to be used by a quickest detector to improve its performance. However,

this information is not taken into account in [10,11,28] where it is assumed that the

change time is unknown and nonrandom. On the other hand, the quickest detection

problem formulation in [21, 25] uses a Bayesian approach, in which the problem is

specially formulated based on the assumption that the change time is random. This

latter problem is known as Shiryaev’s Problem, and incorporates extra information

about the statistical dynamics of the channel’s state and the traffic patterns in a

channel, in contrast to other quickest detection methods in [10,11,28].

Applying quickest detection methods in [10–12, 21, 25, 28] to spectrum sensing

has a number of drawbacks. The first issue is that quickest detection still does not

adequately model the real-world dynamics of the changes of availability states in a

channel. Quickest detection assumes that a channel only experiences a change once,

which contradicts the nature of the channel usage pattern that consists of multiple
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periods of busy and idle times. It is shown later in this thesis that by assuming

that only a single change point exists in a channel, quickest detectors encounter a

performance floor in terms of reliability. When multiple busy and idle periods exist,

a different model is needed to represent the multiple change points.

The second issue that limits the application of quickest detection for spectrum

sensing is that quickest detection only concerns detecting changes in a single channel.

In practice, idle time periods may appear in one of multiple channels. This calls for a

new problem formulation that considers a different detection problem formulated over

multiple channels. The problem formulation and framework proposed in [29] based

on partially observable Markov decision processes (POMDP) addresses both of these

shortcomings of quickest detection. POMDP addresses the first drawback by modeling

the dynamics of a channel’s availability states as an on-off process, which inherently

accepts that a channel can transition between busy and idle states multiple times

at multiple change points. Furthermore, POMDP addresses the second drawback by

providing a framework to model multiple channels for spectrum sensing system would

like to sense.

Both POMDP and quickest detection problems in [21, 25, 29] assume the change

times to be unknown and random with a known a priori distribution. While the au-

thors of [21,25] have proposed a Bayesian quickest detection framework for a random

change time of any probability distribution, a quickest detection design procedure

is only known in the literature for a geometrically distributed change time. In [29],

the derivation of its proposed optimal detector structure for spectrum sensing is also

based on the premise that the change times are geometrically distributed. The ge-

ometric distribution model for the change times has been widely adopted for its

5



analytical tractability rather than for its ability to accurately represent real-world

traffic dynamics. Sophisticated models have been purposed that better characterize

traffic conditions and change times than geometric distributions. In [20,26], analyti-

cal frameworks are developed to derive a random model for a duration of idle state.

In [7, 8], an empirical approach to fitting real-world WLAN traffic usage to a distri-

bution is studied. Although these are better models for change times, incorporating

these models into a quickest detection and POMDP framework is a task that is non-

trivial and needs to be further explored through research. Hence, this thesis will focus

on the use of existing frameworks based on the geometric change-time model for the

development of its proposed detectors. Later in the thesis, the applicability of the

geometric distribution model is assessed using a more realistic traffic model derived

from real data traffic [7,8].

In [29], a framework based on POMDP is presented to consider a spectrum sensing

problem where a detector searches for an idle period across multiple channels that

each transition back and forth between idle and busy states. However, the framework

in [29] assumes that the detector uses only one sensor, and since a spectrum sensing

system may be processing multiple co-located sensor inputs, it thus lacks the flexibility

to apply POMDP to problems multi-sensor processing. Furthermore, it is often the

case that the number of sensors in a system is fewer than the number of channels

available. This motivates the development of a spectrum sensing method that uses

the scarce sensing resources efficiently. This thesis aims to generalize the work in [29]

to problems that involve multiple sensors. In addition, this thesis also assumes that

the duration of either idle or busy periods are geometrically distributed. In contrast

to [29], the number of sensors considered in this thesis is arbitrary and greater than
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one. Based on this problem, this thesis proposes detector designs to minimize the

time required to identify an idle period, subject to a reliability constraint.

1.2 Contributions

The contributions of this thesis are listed as the following:

1. A problem formulation for the spectrum sensing problem is presented based on

partially observable Markov decision processes (POMDP). In particular, this

thesis is concerned with detecting an idle period across multiple channels using

an arbitrary number of co-located sensors. Based on the POMDP formulation,

the criteria for the detector design is formulated.

2. The detector designs from [29] are generalized to accommodate more than one

sensor. As a result, two new detector designs are proposed. In particular,

(a) the optimal detector structure derived in [29] is shown to apply generally

to the problem of multiple sensors,

(b) a sub-optimal detector design, named the multiband multi-sensor spectrum

sensing detector (MMSSD), is proposed as a multi-channel spectrum sens-

ing scheme that uses an arbitrary number of sensors,

(c) a second sub-optimal detector and implementable design, named the re-

duced complexity multiband multi-sensor spectrum sensing detector (RC-

MMSSD), is proposed as a low complexity version of MMSSD to handle

spectrum sensing in a large number of channels,

(d) detector threshold design methods are developed,
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(e) and the performance impact of increasing the number of sensors is evalu-

ated through Monte Carlo simulation.

3. The performance of the proposed multi-sensor detector is benchmarked against

quickest detection methods. Specifically,

(a) a procedure is presented to fairly compare the proposed detector designs

to quickest detection methods,

(b) a limitation on the reliability performance of quickest detectors is demon-

strated in the context of on-off processes,

(c) the performance impact of incorporating an a priori distribution of change

times is investigated via comparisons with Page’s CUSUM [10,11],

(d) and the differences in performance among MMSSD, RC-MMSSD, and

other quickest detectors are characterized. These include Shiryaev’s Bayesian

detector [21,25] and minimum asymptotic risk (MAR) detector [12].

4. The applicability of the proposed detectors to a realistic spectrum sensing model

is assessed. The reference model is based on a channel usage model derived ex-

perimentally from wireless local area network (WLAN) user-datagram-packet

(UDP) traffic [8]. The adequacy of assuming that the change times are geomet-

rically distributed is tested.

1.3 Organization of Thesis

The organization of the thesis is summarized below.
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In Chapter 2, a brief survey of existing detection frameworks that have been

studied in the context of spectrum sensing is given. This chapter provides the back-

ground to the problem considered in this thesis and highlights how these approaches

differ from one another and what these differences mean for the problem of spectrum

sensing. The algorithms for the quickest detectors that will be used for subsequent

comparison are also provided.

In Chapter 3, the main problem considered in this thesis is described. This chap-

ter presents the system models, describes a problem formulation based on partially

observable Markov decision processes (POMDP), and constructs the design criteria

for the proposed detector designs.

In Chapter 4, new detector designs are proposed based on the design criteria

stated in the previous chapter. The procedure that generalizes the optimal detector

structure from one sensor to an arbitrary number of sensors is described along with

generalized optimality. In addition, the proof of an optimality result that motivates

the procedure is also presented. Details on the new detector designs are given, such

as the rules to choose the threshold values as well as the applicability conditions for

the proposed detector designs.

In Chapter 5, the results based on Monte Carlo simulations are given and the

performance in terms of expected detection delays and false alarm rates are compared.

For the comparisons between the proposed detector designs and the quickest detectors,

this chapter describes the methodologies used to ensure fairness. In addition to the

simulation results, discussions of the results are provided along with insights gained.

In Chapter 6, a summary and conclusion are provided. The summary captures the

highlights from each of the chapters while the conclusion summarizes and comments
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on the contributions of the thesis. It also explores topics for possible future research.
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Chapter 2

Background

This chapters surveys the various problem formulations and solutions in the existing

literature on the problem of spectrum sensing. Two broad categories of spectrum

sensing problem formulations are examined: classical hypothesis testing and those

based on quickest detection. Each problem formulation gives rise to different detection

methods. The procedures for each of the methods are are described and discussed.

For the quickest detection methods, the descriptions of the algorithms are provided

in tables.

2.1 General Description of Spectrum Sensing

Spectrum sensing is the problem of determining whether a spectrum band is occupied

or not. Such capability offers wireless systems the ability to decide which spectrum

band they can access without involving a central entity, such as a base station. Using

the signals received over air, a wireless system seeks out and opportunistically accesses

an unused spectrum band. Since these systems appear to possess awareness about

11



the surrounding environment, they are called “cognitive radios”.

In essence, spectrum sensing is a detection problem, because the objective of a

detection problem is often to detect the presence of a signal, which in this case is the

signal belonging to an occupant of the spectrum band. By applying detection theory,

a reliable spectrum sensing system can be designed for cognitive radio.

To construct a detection problem for spectrum sensing, the spectrum band is

modelled as a random system whose outputs depend on whether the band is occu-

pied, or vacant. These outputs pertain to the observations from the receivers on the

cognitive radio and offer information about the availability of the spectrum band. A

detector is to be designed to extract this information with observations as its input,

and produces a result with a reasonable level of reliability and overhead.

Different detection methods have been applied to the problem. In the upcoming

sections, some of these detection approaches are described in detail.

2.2 Classical Hypothesis Testing

There is an abundance of literature that studies spectrum sensing through the frame-

work of classical hypothesis testing [1, 2, 9, 17, 22]. To illustrate the framework, the

problem involving an energy detection solution [9, 22] is described in this section.

Suppose that there is a channel that may be occupied by another device, and a

spectrum sensing system is deployed to determine whether the channel is available.

It is assumed that while the spectrum sensing system performs the detection, the

channel is either occupied, or idle. Let Xt, t = 1, 2, ..., n, be independent and identi-

cally distributed (i.i.d.) observations from the channel. The following hypotheses are
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constructed:  H0 : Xt = wt,

H1 : Xt = gst + wt, t = 1, 2, ..., n
(2.1)

where wt is additive white Gaussian noise with mean equal to zero and variance equal

to σ2, st is the signal transmitted by the other device occupying the channel that is

unknown to the detector, g is the slow fading channel coefficient and n is the number

of the observations. It is assumed that the term gst is a zero-mean Gaussian random

variable with variance P , and that P is known in the problem. For a non-coherent

detection problem related to spectrum sensing, this model has been adopted in [10,22].

It is clear that H1 pertains to the state in which the channel is occupied, and H0 to

an idle state.

The performance of a detector is measured by two metrics: the probability of

correct detection of H1, defined as

Pdetection ≡ Pr(H1|H1), (2.2)

and the probability of false alarm, denoted as

Pfalse alarm ≡ Pr(H1|H0), (2.3)

where Pr({·}) denotes ”take the probability of”. Based on these defined performance

metrics, a detector is designed with the following Neyman-Pearson criterion [19]:

maxPr(H1|H1)

subject to Pr(H1|H0) ≤ α (2.4)

The criterion (2.4) indicates that a detector is designed to maximized the probability

of detection when H1 is true while the false alarm rate being subject to a constraint

α ∈ (0, 1).
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2.2.1 Energy Detection

A solution to the classical hypotheses testing problem is energy detection. This

method assumes that the number of observations is fixed throughout the detection,

i.e., n is a constant. For this reason, energy detection is considered to be a fixed-length

detection method. Let x ≡ {x1, x2, ..., xn} be realizations of the random observations

X ≡ {X1, X2, ..., Xn}. The test for energy detection is derived from the likelihood

ratio test, where a likelihood ratio is compared to a threshold to discern between H1

and H0. Since the random observations are independent, the likelihood ratio for n

observations is defined as

L(x) =
n∏
i=1

l(xi) =
n∏
i=1

p(xi|H1)

p(xi|H0)
(2.5)

where p(xi|H1) and p(xi|H0) are the conditional probability density functions (pdf)

of observations at time t under the hypotheses H1 and H0, respectively. Given the

system model in (2.1), the likelihood ratio test can be simplified to that of energy

detection, which has the following structure:

T (x) ≡
n∑
i=1

x2
i

H0

Q
H1

η (2.6)

where the test statistic T (x) is compared to a constant threshold η to decide between

H0 and H1. According to the Neyman-Pearson Lemma, an energy detector with a

constant threshold η, with which Pfalse alarm = α, is a detector that maximizes Pdetection

among all the detectors that process n observations and have an equal Pfalse alarm.

With xi being a zero-mean Gaussian variable, the test statistic T (x) has a chi-square

distribution with n degrees of freedom. Closed-form solutions for the performance

metrics are available if n is an even number. The probabilities of false alarm and of
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detection as functions of the threshold η are, respectively,

Pfalse alarm = Pr(T (x) > η|H0) = Q2n

(
0,

√
η

σ0

)
, (2.7)

and

Pdetection = Pr(T (x) > η|H1) = Q2n

(
0,

√
η

σ1

)
(2.8)

where Q2n(a, b) is the generalized Marcum Q function. The function is defined in [13],

which also provides tabulated values. To find the threshold that satisfies Pfalse alarm,

one would need to solve for η in (2.7).

As can be seen in the detector structure in (2.6), the number of observations n is a

parameter required to be pre-designed, that does not change dynamically during the

process of detection. In the next section, a different problem formulation is visited

where the number of the observations is not fixed but is instead modelled as a random

variable to achieve a certain performance criteria.

2.2.2 Sequential Probability Ratio Test

An alternative solution to classical hypothesis testing is the sequential probability

ratio test method (SPRT) [24]. As its name suggests, SPRT performs detection every

time a new observation sample becomes available. The detection stops as soon as a

sufficient number of observations has been sampled. Therefore, since it depends on

observations, the number of observations required to make a decision is a random

variable, denoted by N . If observations are independent and identically distributed

(i.i.d.), the SPRT is optimal [27], i.e. it minimizes the number of observations while

achieving a certain level of performance in terms of both Pdetection and Pfalse alarm.

The observed samples are processed sequentially in the SPRT. At every discrete
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time t, SPRT recursively computes the likelihood ratio based on the current obser-

vation and the likelihood ratio in the previous time t-1. Let xt ≡ {x1, x2, ..., xt}, and

the likelihood ratio be computed recursively as

L(xt) =
p(xt|H1)

p(xt|H0)
l(xt−1), t = 1, 2, 3, ... (2.9)

where p(xt|H1) and p(xt|H0) are the conditional probability density functions (pdf)

of observations at time t under the hypotheses H1 and H0, respectively, and l(x1) =

p(x1|H1)
p(x1|H0)

.

Following the computation of the likelihood ratio, SPRT applies a decision rule

involving two thresholds η1 and η0 as below

l(xt) ≥ η1 : accept H1

l(xt) ≤ η0 : accept H0

η0 < l(xt) < η1 : take another sample. (2.10)

The performance constraints of the detector, such as the constraint on the false

alarm rate, α, and on the missed detection rate, β, are considered to be the key

parameters in the SPRT threshold design. Specifically, β is defined as

β ≥ Pmissed detecton (2.11)

where Pmissed detecton ≡ 1 − Pdetection is the missed detection rate of a detector. The

thresholds can be determined from the error probabilities according to the following

bounds [27]

η1 ≤
1− β
α

(2.12)

and,

η0 ≥
β

1− α
. (2.13)
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The inequalities in (2.12) and (2.13) become equalities if l(xt) is equal to the exact

values of either η1 and η2 when the detection process stops. Since l(xt) is likely to

cross either thresholds when the detection stops, α and β, serve as upper bounds to

performance metrics Pfalse alarm and Pmissed detection, respectively.

2.3 Quickest Detection

Quickest detection is a significantly different spectrum sensing problem formulation

compared to that of classical hypothesis testing. The major difference lies in the

inherent assumption in each type of problem about the dynamics of the states of

spectrum occupancy. Classical hypothesis testing is based on the assumption that

each hypothesis pertains to one state. By detecting a state of a spectrum band, it

is implied that the random process that models the spectrum band remains constant

in that one state. In the quickest detection problem formulation, a change in the

stochastic nature of the random process is assumed to occur, and the detection of

such changes become the objective of the problem.

Suppose that a spectrum band occupancy is modelled as a random process and

the problem is to identify the onset of an idle period, and that the process falls into

one of these two hypotheses:

H0 : Xt = Pst + wt, t = 1, 2, ..., n

H1 : ∃τ ∈ 1, 2, ..., n such that,

Xt =

 Pst + wt, t = 1, 2, ..., τ − 1

wt, t = τ, τ + 1, ..., n

(2.14)

where wt, st, and P are defined identically to (2.1). Under the hypothesis H0, no

change occurs over time duration from t = 1 to n, so a spectrum band remains in an
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idle state. On the other hand, under the hypothesis H1, the random process switches

abruptly from being in an idle state to a busy state at time τ and its stochastic

nature changes accordingly. The time τ is referred to as the change time. Based on

the model in (2.14), before the change time, an observation Xt is a sample drawn

from the distribution of a busy state f0, which is a zero-mean normal distribution

with variance (P + σ2), and after the change time, Xt is drawn from the distribution

of an idle state f1, i.e., a zero-mean normal distribution with variance σ2.

Suppose at the time tstop, a detector raises an alarm that a spectrum band has

become idle. If tstop ≥ τ , i.e., the alarm follows the onset of the idle period, the

detector has been correct in declaring the state of the spectrum band and Tdelay =

tstop− τ is the detection delay from when the change occurs to when the alarm is able

to detect the change. If tstop < τ , the detector has alarmed the change prematurely,

which is considered to be a false alarm event.

To measure the performance of a quickest detector, some metrics must be es-

tablished. The first performance measure is detection delay, which is an overhead

of detection. Less detection delay means that a detector is more agile, i.e., it can

promptly alarm the availability of an idle period. As Tdelay is a random variable

because observations are random, the mean of Tdelay is the average detection delay,

conditioned on that H1 is true and a value of τ :

EH1,τ [Tdelay|tstop ≥ τ ] (2.15)

where E(·) is the conditional expectation operator over the distribution of the random

observations X ≡ {X1, X2, ..., Xtstop}. In one problem formulation, the change time τ

is modelled as a random variable, while in another problem formulation, the change

time is assumed to be unknown.
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The second performance measure concerns reliability, or the level of false alarms, of

a detector. Again, different quickest detection problem formulations include different

ways of quantifying reliability. In the following sections, two problem formulations,

which measure the average detection delay and the level of false alarm in different

ways, are examined.

2.3.1 Page’s CUSUM

In a problem formulation that leads to Page’s CUSUM algorithm [10], the change

time τ is assumed to be unknown so that the worst-case detection delay is used to

quantify the detection delay,

T delay = sup
τ≥1

ess supEH1,τ [Tdelay|tstop ≥ τ ]. (2.16)

where ess sup of a function f is the essential supremum of the function, and E(·) is

a conditional expectation operator over the distribution of the random observations

x ≡ {X1, X2, ...Xtstop}.

Measuring reliability involves the use of a performance metric named the average

false alarm run length. It is defined as the average length of time that elapses before

a detector declares a false alarm, given that no change has occurred in a spectrum

band. In particular, the average false alarm run length of a false alarm, or TARL, is

TARL = Ef0 [Tstop], (2.17)

where Tstop is a random stopping time of a quickest detector and the expected value

of Tstop is conditioned on observations having marginal distributions that are equal to

f0, which is the distribution of Xt in a busy state when Xt = Pst +wt. The objective

of a detector is to minimize the worst-case detection delay while maintaining the
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average false alarm run length above a given threshold. Given Tmin
ARL as the minimum

threshold for the average false alarm run length, and Γ as a set of all decision rules,

the design criteria is

min
Γ

T delay

subject to TARL ≥ Tmin
ARL. (2.18)

As is evident above, the problem formulation is constructed as a minimax formula-

tion, where the objective is to minimize the maximum possible detection delay that

the random process may experience.

The problem formulation leads to Page’s CUSUM algorithm. It is a sequential

detection method that computes test statistics and performs a test at every time t.

Let l′(xt) be the log-likelihood function of an observation at time t, and

l′(xt) = log l(xt) = log
f1(xt)

f0(xt)
, (2.19)

where f0(x) and f1(x) are the probability density functions of an observation before

and after the change time τ . The test statistic of Page’s CUSUM, denoted as Qt, is

updated at each time t according to the following equation:

Qt = max{0, Qt−1 + l′(xt)}, (2.20)

where the initial value of the test statistic at t = 0 is Q0 = 0. At time t, CUSUM per-

forms a decision test according to the following detector structure after the likelihood

ratio is computed:

Qt ≥ h : stops and declare the channel to be idle

Qt < h : take another sample (2.21)
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Table 2.1: The algorithm of CUSUM Detection

Algorithm for Page’s CUSUM

Q0 ← 0
t← 1
repeat
{Get observations xt}
{Compute l′(xt)}
Qt ← Qt−1 + l′(xt)
if Qt < 0 then
Qt ← 0

end if
until Qt ≥ h
{Stop and declare the channel to be idle.}

where h is the threshold. For clarity, the decision algorithm is provided in Table

2.1. In [18], CUSUM is shown to be the optimal detection method that minimizes

the worst-case detection delay among all the detectors that have the same or longer

average false alarm run length, for any value of average false alarm length.

2.3.2 Shiryaev’s Problem

In [21, 25], a different approach to quickest detection, called Shiryaev’s Problem, is

considered. Shiryaev’s Problem has a Bayesian framework since it treats the change

point τ as a random variable, with known a priori distribution.

To formulate the problem, the following performance metrics are first defined. Let

T̂delay be the average detection delay of the detector, and

T̂delay = E[Tdelay|tstop ≥ τ ], (2.22)

where the expectation E[·] is computed over the joint probability density involving
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the random variables consisting of the change time τ and the sequence of random ob-

servations X ≡ {X1, X2, X3, ...}. To measure the false alarm performance, Shiryaev’s

Problem specifies the performance in terms of a false alarm rate, which is different

from CUSUM. Let Pfa denote the false alarm rate, where

PFA = Pr(tstop < τ). (2.23)

Since both high average detection delay and high false alarm rate are undesirable, a

risk function that treats both of these measures as costs is defined, and the objective

for the detector is to result in a stopping time tstop ∈ T that minimizes such cost

involving detection delay and false alarm rate:

inf
tstop∈T

[PFA + cT̂delay], (2.24)

where the variable c ∈ {c ≥ 0|PFA < α} is a trade-off constant between the false

alarm rate and the average detection delay, and its value must be chosen such that

the false alarm constraint α is satisfied. Before a solution to (2.24) may be proposed,

an a priori distribution needs to be defined for the change time τ . It is assumed in [21]

the change time distribution is geometric, and in discrete time, its probability mass

function (pmf) is

Pr(τ = k) =

 π k = 0

(1− π)ρ(1− ρ)k−1 k = 1, 2, 3, ...
(2.25)

where the parameter ρ = Pr(τ = k|τ ≥ k). The same assumption about the change

time is adopted for the new methods developed in this thesis. The assumption has

also been adopted in [29] concerning spectrum sensing and a justification based on

analytical tractability is described in Section 3.2.2. Later on, the validity of this

assumption is examined through simulations.
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An optimal solution for the problem formulation (2.24) with the geometric change

time distribution in (2.25) is cited in [21]. In this case, the optimal stopping time,

denoted as T ∗stop, has the following structure:

T ∗stop = inf{t ≥ 0|πt ≥ π∗} (2.26)

where π∗ ∈ [0, 1] is an appropriately chosen threshold, and πt is the a posteriori

probability of a spectrum band being idle, which at each time t is updated. The

detection algorithm is described in Table 2.2. At discrete time t, the test statistic in

(2.26) is updated via

πt =
f1(xt)[πt−1 + ρ(1− πt−1)]

f1(xt)[πt−1 + ρ(1− πt−1)] + f0(xt)(1− ρ)(1− πt−1)
, t = 1, 2, 3, ... (2.27)

where f0(x) and f1(x) are the probability densities of an observation before and after

the change time τ , respectively, and π0 = π. Note that the test statistic πt is the

probability of a spectrum band being idle at time t, or

πt = Pr(“spectrum is idle at time t”|x1, x2, ..., xt). (2.28)

No closed-form expression exists, however, for determining π∗ to satisfy a given prob-

ability of false alarm. It can be obtained iteratively but nested integrations are

involved. A way to design the threshold for (2.26) is to design the detector to ex-

ceed the false alarm constraint. Following results in [25], a threshold, π∗, to satisfy

PFA ≤ α is chosen as

π′ = 1− α. (2.29)

This follows directly from (2.26), (2.28) and the definition of PFA. As seen in the
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Table 2.2: The algorithm of Shiryaev’s Bayesian Detector

Algorithm for Shiryaev’s Bayesian Detector

π0 ← π
t← 1
repeat
{Get observations xt}
{Compute πt(xt)}
t← t+ 1

until πt ≥ π′

{Stop and declare the channel to be idle.}

proposed stopping rule (2.26), the detector stops when

inf{t ≥ 0|πt ≥ π∗}

≡ inf{t ≥ 0|Pr{spectrum idle at time t} ≥ 1− α}

≡ inf{t ≥ 0|E
[
I{spectrum idle at time t}(X1, X2, ..., Xt)

]
≥ 1− α} (2.30)

where I{spectrum idle at time t}(X1, X2, ..., Xt) is the indicator function with value 1 if spec-

trum is idle and 0 otherwise. The rule is equivalent to

inf{t ≥ 0|1− E
[
I{spectrum idle at time t}(X1, X2, ..., Xt)

]
≤ α}, (2.31)

which, by definition, is

inf{t ≥ 0|PFA ≤ α}. (2.32)

2.3.3 Minimum Asymptotic Risk Detection

It can be seen that the previous quickest detectors have different measures for their

reliability performances. While Page’s CUSUM aims to meet a minimum Tmin
ARL,
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Shiryaev’s Problem constructs a risk function with the appropriate tradeoff constant

c such that the constraint on the false alarm rate α is satisfied. The minimum asymp-

totic risk (MAR) detection is another quickest detection framework developed in [12].

The problem formulation of MAR is based on a modified version of Shiryaev’s Prob-

lem that incorporates both of these measures of reliability.

In [12], the problem formulation for MAR detection is called the modified Shiryaev’s

criterion, which is defined as such.

min EH1 [Tdelay|tstop ≥ τ ]

subject to TARL ≥ Tmin
ARL,

and PFA < α. (2.33)

where TARL and PFA are defined in (2.17) and (2.23), respectively, and

EH1 [Tdelay|tstop ≥ τ,x] is the expected detection delay, as defined in (2.15). The

modified Shiryaev’s criterion assumes that the change time τ is a fixed, unknown,

and non-random entity.

Based on the modified Shiryaev’s criterion, the minimum asymptotic risk detector

is proposed. Let Q′t be non-logarithmic version of the Page’s CUSUM statistic (2.20)

at time t, where

Q′t = max{1, Q′t−1}l(xt), (2.34)

In the MAR decision rule, the following test statistic is computed at time t:

r̂(xt) =
Q′tεψ − (1− ε)
Q′tε+ 1− ε

t, t = 1, 2, 3, ... (2.35)

where ε and ψ are MAR design parameters, and Q0 = 1. The design methods for the

design parameters ε and ψ are not available as the closed-form expressions. However,
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Table 2.3: The algorithm of the MAR detection

Algorithm for the MAR Detection

Q′0 ← 1
t← 1
repeat
{Get observations xt}
{Compute l′(xt)}
Q′t ← Q′t−1 + l(xt)
if Q′t < 1 then
Q′t ← 1

end if
{Compute r̂(xt)}

until r̂(xt) > r̂(xt−1)
{Stop and declare the channel to be idle.}

the performances of the MAR detector have been shown to be insensitive to the

fact whether ε and ψ are different or not [12]. Thus, when designing for MAR, the

parameters ε and ψ can be set to be the same value, and only one parameter needs

to be designed. The detection rule for MAR to stop and declare a change is when

r̂(xt) > r̂(xt−1). (2.36)

Table 2.3 provides a description of the algorithm used for the MAR detection.

An important result in [12] shows that the test statistic r̂(xt) converges to a non-

causal Bayesian risk function composed of expected delay time, false alarm rate, and

average run length, under the asymptotic condition that either l(xt)→ 1 or α→ 0 is

true. Therefore, under the modified Shiryaev’s criterion (2.33), the MAR detection

is asymptotically optimal.
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Chapter 3

System Models and Problem

Formulation

In the previous chapter, various problem formulations and detection methods are sur-

veyed. It has been seen that the problem of spectrum sensing can be cast in different

ways. This chapter describes a system model and problem formulation that incorpo-

rates a greater degree of channel dynamics into the system. These are developed as

the basis for the new spectrum sensing methods that form the main contribution of

this thesis.

3.1 System Models

In this section, the system model to describe the dynamics of a channel’s state is

proposed. Also, a signal model for an observation in both idle and non-idle periods

is described.
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3.1.1 Channel Usage Models

Suppose that there are L channels where each channel undergoes periods of idle and

busy states. In an idle state, the primary device of the channel is not active. In

a busy state, the primary device occupies the channel and access from a cognitive

radio device is not permitted. Assuming that the system is modelled in discrete-time,

the periods of busy and idle states in a channel are represented by a discrete-time

ON-OFF process, where the ON and OFF phases represent the busy and idle states,

respectively. Stochastic models are given for when a primary device emerges and

when it exits: it is assumed that a primary device emerges in and exits from a channel

according to an exponential ON-OFF process, in which the durations of busy and idle

periods are assumed to be random and geometrically distributed. Let Tbusy and Tidle

be the random durations of a busy period and an idle period in lth, respectively, and

their respective probability mass functions (pmf) are

Pr(Tbusy = k) = (1− pB)k−1(pB), k = 1, 2, 3, ... (3.1)

Pr(Tidle = k) = (1− pI)k−1(pI), k = 1, 2, 3, ... (3.2)

pB and pI are probabilities that a respective busy or idle period, has a duration equal

to k given that the duration is greater than k − 1. In addition to pI and pB, let λo

be the fraction of idle periods to the total time period, which is a function of average

durations of busy and idle periods. To illustrate this relationship, let mB and mI be

the average durations of a busy and an idle period, respectively. According to the

Poisson arrival process,

mB = 1/pB, (3.3)

and mI = 1/pI . (3.4)
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The fraction of idle periods to the total time period, or just fraction of idle time for

short, is by definition

λo =
mI

mI +mB

. (3.5)

Across L channels, it is assumed that the ON-OFF process used to model the

channel usage is the same, i.e., the channel usage dynamics of each channel are de-

scribed by (3.1)-(3.5) using identical values for the parameters mI ,mB, pI , and pB,

and that channel usage behaviours in each channel are statistically independent from

one another.

3.1.2 Signal Model for Observations

Suppose a spectrum sensing system that is equipped with M co-located sensors si-

multaneously observes different channels. As a result, at a given time t, the M

observations that correspond to the channels being observed form a M -set of L pos-

sible channel observations. For example, let Xl(t) be a random variable denoting the

observation at time t, of channel l, for 1 ≤ l ≤ L. For example, for the case of M = 4

and L = 10, let {1, 3, 6, 8} denote one of the 4-sets of channel indices being observed.

Then the corresponding observations are {X1(t), X3(t), X6(t), X8(t)}.

The signal model describes the probability distributions underlying these random

observations. The probability distribution behind a random observation Xl(t) de-

pends on the state of the channel l, i.e., whether the channel is in a busy or in an idle

state. The signal model is directly formulated as an energy detection problem because

little knowledge of signalling is assumed. As a consequence of this formulation, when

the channel being observed is in an idle state, the observation Xl(t) is drawn from a

zero-mean Gaussian distribution that has a variance of σ2, and when the channel is in
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a busy state, the observation Xl(t) is drawn from a zero-mean Gaussian distribution

that has a variance of (σ2 +P ). The signal-to-noise ratio (SNR) in decibel units (dB)

is defined as 10 log10(P/σ2).

3.2 Problem Formulation

3.2.1 General Multiband Multi-sensor Detection

Consider a spectrum sensing system equipped with M sensors, is to simultaneously

detect an idle period from L channels. In each observed time instant, the spectrum

sensing system observes M observations, processes the observations, and generates

an action that is either 1) stop and declare: indicating that an idle period has been

discovered and terminate the detection process, or 2) continue and observe: continue

the detection process for a longer time in a set of M channels that may be the same

or different from the channels that were observed at the current time t. In contrast to

classical detection methods, which sample observations over multiple time instants,

the described sequential detection method performs processing and produces an action

in each observation period. In addition, the process stops as soon as a satisfactory

level of reliability is reached.

The performance measures for the sequential detection method are the false alarm

rate and the expected detection delay time. The false alarm rate, denoted as PFA, is

the probability of declaring a channel idle at time t when the channel state is busy.

This type of false alarm leads to cognitive radios causing interference to primary

devices and therefore should be kept to a low level. To define the expected detection

delay time, a random variable must be defined. Let Tdeclare be the random elapsed
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time from when the detection process begins to when the detection process declares a

discovery. The expected detection delay time is therefore E[Tdeclare], where E[·] is the

expectation operator over the probability space of the random observations as well

as the random change time, as defined in Sections 3.1.1 and 3.1.2.

Given a false alarm constraint α, the design criterion for the proposed sequential

detector is:

minE [Tdeclare]

subject to PFA ≤ α. (3.6)

Compared to other quickest detection formulations, the problem formulation (3.6)

is similar in some ways but different in others. First of all, the formulation (3.6)

considers L channels and M observations in each time instant while the previous

problem formulations consider just one single channel. Secondly, the formulation (3.6)

supposes that each channel experiences periods of usages, and models these periods

as an ON-OFF process. Thirdly, similar to Shiryaev’s Problem, the formulation (3.6)

models these periods as having durations that can be characterized by a random

distribution, which leads to models that can characterize the onset of change times. As

the change times have been assigned probability densities, the formulation (3.6) differs

from Page’s CUSUM, which is a minimax approach as the CUSUM criterion seeks

to minimize the worst-case delay of the detector, in that it minimizes the expected

detection delay that factors in the distributions of change times. Finally, a significant

difference compared to some of the previous quickest detectors is that the formulation

(3.6) only considers the constraint on false alarm rate, while leaving out the average

run length to a false alarm.
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3.2.2 Partially Observable Markov Decision Processes

The random model to represent the durations of busy and idle states is the geometric

distribution, which is the result of assuming that the primary device enters into and

exits from a channel according to the exponential ON-OFF process. An exponential

ON-OFF process is defined a random process made up of a sequence of events of either

primary device entering or exiting from the channel, and the time elapsed between

each successive event is exponentially distributed. Since the discrete time analogue of

the exponential distribution is the geometric distribution and the process in question

is discrete time, it is adopted as the channel usage model.

A property of the geometric distribution is that the random process is invariant

to time-shifts, that is, given that a channel is in one state at time t, the probability

that the channel will switch state in a future time instant (t+ δt), for δt = 1, 2, 3, ...,

is a function of δt and is invariant to the value of t. Because the dynamics of state

transitions in the future only depend on the current state of the channel, they can be

accurately modelled as a Markov process.

Based on [29], the use of a partially observable Markov decision process (POMDP)

to formulate a problem to solve (3.6) is introduced. The POMDP is a decision

theoretic framework that relies on the property of the time-shift invariance in the

channel usage model. Compared to classical quickest detection methods such as

Shiryaev’s Problem [21] and Pages’s CUSUM [10], a fundamental difference is that

the channel is seen as an ON-OFF process in the POMDP formulation, whereas

in [10, 25] the channel is assumed to start at one state, switch to the other state

and remain in the other state; in other words, only one change would occur over

the entire time horizon. It can be clearly observed that an ON-OFF process is a
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more realistic model for the channel process occupancy than the model assumed in

the classical quickest detection methods. Furthermore, by assuming a single change

point, the classical quickest detectors do not take into account the particular false

alarm situation where the detector declares a channel to be idle after that channel

has exited the idle state.

The problem of detecting an idle period among L channels, employing only one

sensor (M = 1) has been studied in [29]. Our contribution extends the framework laid

out in [29] to include an arbitrary number of sensors. In the following is a formulation

that generalizes POMDP in [29] to the case of multiple sensors.

3.2.2.1 State Space

The channels underlying the system each have an independent state. These states are

defined as {Z1(t), ..., ZL(t)}, where Zl(t) ∈ {0, 1,∆}, for 1 ≤ l ≤ L and t = 1, 2, 3, ...,

is state of the lth channel at time t. The first two values of Zl(t), i.e., State 0 and

State 1, respectively represent busy and idle states. In addition to State 0 and State

1, there is the absorption state, denoted by ∆, that defines the end of the detection

process. When the absorption state ∆ is reached, the states for all channels become

equal to the state ∆.

3.2.2.2 Action Space

Let at be the action taken at time t. The action space consists of all the possible

actions for at, and is separated into two sets. The first set, denoted as C, contains
(
L
M

)
distinct actions to observe M out of L channels. To define an element in the set C, it

is necessary to first define a separate set of actions: let {C1, C2, C3, ..., CL} be a set
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containing all the actions that corresponds to observing each of the L channels, where

an element in this set, which is denoted by Cl, for 1 ≤ l ≤ L, indicates the action of

observing channel l. As the number of sensors is less than or equal to the number

of channels, only the subsets that are the M -sets of the set {C1, C2, C3, ..., CL}, i.e.,

observing M channels, constitute a valid action for at and thus collectively form the

set C. Let each M -set in C be denoted by an index j, so that a particular M -set can

be referred to as Cj, where 1 ≤ j ≤
(
L
M

)
. For example, suppose an M -set in C that

contains channel indices 2, 4, 5 is denoted as C6, then the M -set that corresponds to

C6 would be expressed as {C2, C4, C5}, which indicate that this particular action is

to continue to observe channels 2, 4, and 5.

The second set, denoted as D, is related to actions of declaring a channel idle.

Within D, each action is denoted as Di and represents declaring the lth channel idle,

1 ≤ l ≤ L.

3.2.2.3 State Transition

As described earlier, the assumption that the duration of each state is geometrically

distributed is consistent with the use of a state transition model to represent the

dynamics of change in channel states. Given the channel state for a channel at time

t, or Zl(t), the dynamics of the state change are functions of the action space as well

as parameters pB and pI . These are illustrated in the state transition diagram Fig.

3.1. As all channels are assumed to have independent and identically distributed

transition dynamics, Fig. 3.1 applies across L channels.
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Figure 3.1: The transition dynamics for the lth channel. The same would apply to all
other channels. When the action taken at time t belongs to set C, the channel will
switch between the busy and idle states; otherwise, the process reaches an absorption
state.

3.2.2.4 Observation Model

When the number of sensors is less than or equal to the number of available channels,

i.e., M ≤ L, the detector observes the channels according at1 , i.e., the action that

the detector has taken in the previous time slot. If at−1 = Cj, M observations are

sampled from the channels in the jth M -set. Note that the decision on what channels

to observe is conveyed in the action taken at time t − 1, and only the observed

channels generate observations. Since there are as many observations as there are

sensors, observations is size M . It is assumed that no two sensors can observe the

same channel at time t.

Suppose l is an index for an observed channel at time t. The random observation

from this channel is denoted as Xl(t). The pdf that a sample of Xl(t) is drawn from
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depends on the state of the selected channel at time t, i.e., Zl(t). When Zl(t) = 0, the

channel is in a busy state and the observationXl(t) is drawn from a probability density

function (pdf) pertaining to State 0, denoted as f0. When Zl(t) = 1, Xl(t) is otherwise

drawn from another pdf pertaining to State 1, denoted as f1. According to the signal

model presented in Section 3.1.2, the pdf f0 is a zero-mean Gaussian distribution with

variance of P + σ2 and the pdf f1 is a zero-mean Gaussian distribution with variance

of σ2. When the process reaches the absorption state, the process terminates and

stops generating observations.

3.2.2.5 Cost Model

The cost model defines the cost incurred by each action taken. Let Rat(t) be the cost

incurred at time t under the action at. If the action is to continue, i.e., at ∈ C, unit

cost is incurred, or Rat(t) = 1. On the other hand, if the action is to stop and declare

the ith channel idle when the channel is in fact busy, a cost of γ is incurred to reflect

the cost of the false alarm, i.e., Rat(t) = γ > 0.

3.2.2.6 Sufficient Statistic

As implied by the name of the framework, the state of each channel is partially

observable. As time progresses, the system gathers the available information from the

system and builds knowledge about the states of all the channels. This knowledge is

said to constitute the sufficient statistics, or the belief vector, of the channel states.

As each channel individually has a state, a belief vector of size L is maintained and

updated. The belief vector is denoted as Λ(t) ≡ [λ1(t), ..., λL(t)], where λl(t), 1 ≤ l ≤

L, is the a posteriori probability that the lth channel is in an idle state at time t given
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all the past observations made in this channel, i.e.,

λl(t) ≡ Pr(Zl(t) = 1| past observations in the channel l ). (3.7)

The past observations form a sequence of observations that are not necessarily con-

tiguous in time because the detector may dynamically switch channels in or out of a

channel of its observed list while performing spectrum sensing.

Based on the state transition and observation models, an update function is pro-

posed to update the sufficient statistic (or the belief value) with the latest observations

at every time t, for a system that has M ≥ 1 sensors:

Given that the action at time t− 1 belongs to set C, i.e., at−1 = Cj,

λl(t) =

 T̂ (λl(t− 1), x) Cl ∈ Cj , and Xl(t) = x,

T̃ (λl(t− 1)) Cl /∈ Cj

(3.8)

That is, if one of M sensors is assigned channel l at time t, the update function

T̂ (λl(t − 1), x) is applied to update the belief value; otherwise, T̃ (λl(t − 1)) is used

instead.

The update equations for λl(t) evolve recursively. When the channel is observed

by a sensor at time t, the update function that utilizes the observation x is [29]

T̂ (λ, x) =
(λpI + λpB)f1(x)

(λpI + λpB)f1(x) + (λpI + λ pB)f0(x)
(3.9)

where the operator (·) is defined as 1 − (·), and pI and pB are provided a priori by

the channel usage model. Note that in the special case of pI = 0 and pI = 1 (i.e.,

λo = 1), the above equation reduces to the test statistic (2.27) used in the test of

Shiryaev’s Bayesian detector. This indicates that the problem formulation based on

POMDP is in fact a generalized form of Shiryaev’s Problem.

37



When the lth channel is not observed at time t, the update function on the transi-

tion dynamic evolves solely based on the a priori information and is given as in [29]:

T̃ (λ) = λpI + λpB. (3.10)

In the context of the POMDP formulation, a detector is expressed as a function

that maps the belief vector to an action on a per time slot basis. Such a function,

denoted as Θ(Λ(t)) = at, is called a policy. The optimal policy is one that satisfies

the following criterion, which is based the problem (3.6) being re-cast in the POMDP

formulation. For given M and L,

Θ∗ = arg min
Θ

E

[
∞∑
t=0

RΘ(Λ(t))|Λ(0)

]
(3.11)

where RΘ(Λ(t)) = Rat(t)|at=Θ(Λ(t)) and Λ(0) = [λ0, λ0, ..., λ0] is the a priori belief vector

value. To satisfy the constraint on the false alarm rate in (3.6), the value of the trade-

off constant γ defined in the cost model needs to be properly chosen. However, it

is not necessary to define γ in terms of α. As shown in Section 4.2, an alternative

method is used ensure the policy Θ(Λ(t)) meets the false alarm requirements. In next

chapter, the solution to the problem formulation posed by the POMDP is proposed.
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Chapter 4

New Detection Methods for

Multi-Channel Spectrum Sensing

In the last chapter, physical spectrum bands are considered as homogeneous channels

in which a cognitive radio user tries to discover an idle period that it can opportunis-

tically access. System models that describe random characteristics of channel usages

and of the nature of the received signals have been developed to set up a problem

formulation utilizing partially observable Markov decision processes (POMDP).

In this chapter, novel detection methods for a multiband and multi-sensors sce-

nario are proposed based on the POMDP framework. An optimal, but un-implementable

decision test is first derived. Using the insights gained from the optimal detection

test, two practical detection methods are developed.
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4.1 Optimal Decision Test for the Problem of

POMDP

The problem of detecting an idle period with multiple channels using multiple sen-

sor is posed in the context of POMDP. The criteria in Eq. (3.11) summarizes the

problem. The development of an optimal detector for this problem is shown in detail

in [29] for the special case of M = 1. Based on the procedure in [29], this section

demonstrates that the generalization to M ≥ 1 follows a similar procedure, under

certain assumptions.

To develop a detector structure that solves (3.11), a value function must be defined

to represent the optimal expected cost. The value function expresses the minimum

expected cost that one can obtain from the present time t into the infinite future,

over all possible sequences of actions.

The value function is a function of sufficient statistics, which are also known as the

belief values. Section 3.2.2.6 defines sufficient statistics as Λ(t) ≡ [λ1(t), ..., λL(t)].

By definition, sufficient statistics capture all the a posteriori information about the

state of the process up to time t. Since the POMDP is invariant to time shift, the

absolute time indices of the sufficient statistics Λ(t) ≡ [λ1(t), ..., λL(t)] do not offer

any information about the state of the process. For example, if a process has the

sufficient statistics at times t and t+ k, for k ∈ Z, and that Λ(t) = Λ(t+ k), then it

can be said the process at the times t and t+k shares the identical random properties

and dynamics. Therefore, for the remainder of the chapter, the sufficient statistics

would be usually referred to as Λ ≡ [λ1, ..., λL]. It is assumed that when the time

indices are omitted, the sufficient statistics concern the current time t.
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Suppose that there are M sensors and L available channels, where M ≤ L. The

value function is defined as

V (λ1, ..., λL) = min{VC1
(λ1, ..., λL), VC2

(λ1, ..., λL), ...,

VC|C|(λ1, ..., λL), VD1(λ1, ..., λL), VD2(λ1, ..., λL), ...,

VDL
(λ1, λ2, λ3)}, (4.1)

where VCj
(λ1, ..., λL), 1 ≤ j ≤ |C|, denotes the conditional value function for the

action Cj. The size of C is |C| and has a value of
(
L
M

)
. VDl

, 1 ≤ l ≤ L, are the value

functions of declaring the lth channel as idle. Conditional value functions are defined

as the minimum expected cost that one can obtain from the current time into the

infinite future if an action, such as Cj or Dl, is taken at the current time t.

It is evident that the value function in (4.1) is equal to the conditional value

function for the action that yields the lowest value. Specifically, the conditional value

functions for the actions Dl are defined as follows:

VDl
(λ1, λ2, ..., λL) = (1− λl)γ (4.2)

where {λ′1, ..., λ′L} are the sufficient statistics for time t + 1 and γ is a constant that

trade off the relative importance between the false alarm rate and the average detec-

tion delay, for γ ≥ 1, and Xl is the random variable of an observation from the lth

channel at time t+ 1.

The conditional value functions for the actions Cj are difficult to define in a general

way due to a lack of a clear notation for enumerating all the members Cj in the set C.

Hence, for illustrative purposes, a conditional value function for a particular action

Cj is shown. Note that the following structure applies to all the other members in

the set C straightforwardly: suppose there exists an action C1 ∈ C that pertains to
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observing the channels {1, 2, ...,M}. The conditional value function for this action

C1 is then defined as such:

VC1
(λ1, ..., λL) = 1+ (4.3)∫ ∫

...

∫
x1,x2,...xM

P (x1, x2, ..., xM ;λ1, λ2..., λM)V (λ
′

1, λ
′

2, ..., λ
′

L)dx1dx2...dxM ,

where P (x1, x2, ..., xM ;λ1, λ2, ..., λM) is the joint pdf of the observations from channels

1, 2, 3, ..., and M , which are channels that are included in the M -set C1.

The sufficient statistic for the lth channel, i.e. λ′l, is a function of random observa-

tions at time t + 1, the parameters from the channel usage model, and the sufficient

statistic for the current time λl. For 1 ≤ l ≤ L, the value of λ′l is computed via

λ
′

l =

 T̂ (λl, xl) Cl ∈ Cj

T̃ (λl) Cl /∈ Cj

, (4.4)

where the functions T̂ (·) and T̃ (·) are defined in (3.9) and (3.10), respectively, and

λl is the sufficient statistic at time t. Since the sufficient statistic at t + 1 (λ′l) is a

function of itself at time t (λl), the update function above is recursive. If channel l is

sensed as a result of choosing the action Cj, the update function T̂ (λl(t− 1), x) is to

update λ′l; if not, λ′l = T̃ (λl(t− 1)) is used instead.

The expression in (4.3) reveals how the conditional value function is structured.

The first term is the unit cost of choosing action Cj as opposed to Dl at the current

time t. The second term accounts for the expected minimum cost from time t +

1 onward. It has a nested structure that embeds the value function V (λ
′
1, ..., λ

′
L).

This implies that to find the expected cost for any time instant in the future and

onward, the expected value of the sufficient statistics taken over the densities of

random observations are all one needs to calculate.
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Similar to the case of M = 1 case developed in [29], the conditional value functions

for any value of M given L have some important properties, summarized by Lemma

1.

Lemma 1:

1.1: When pB + pI ≤ 1 and P (xv, xw;λv, λw) = P (xv;λv)P (xw;λw), for (1 ≤ v ≤

L, 1 ≤ w ≤ L; v 6= w), the value functions VCj
(λ1, ...λL) are concave and monotoni-

cally decreasing with λj, for 1 ≤ j ≤ L.

1.2: VCj
(λ1, ..., λL) are symmetric with respect to the planes {λi = λj; 1 ≤ i ≤ L, 1 ≤

j ≤ L, i 6= j}.

1.3: VDi
(λ1, ...λL) is linearly decreasing with λi, for 1 ≤ i ≤ L.

Proof: See Section 4.4.

Lemma 1.2 can be illustrated with an example. Suppose that M = 2 and L = 3,

two actions C1 = (C1, C2) and C2 = (C1, C3) are considered, and variables v and

w are any constants whose values are between [0,1]. The following symmetry exists

between between their conditional value functions

V(C1,C2)(λ1, λ2, λ3)|λ2=v,λ3=w = V(C1,C3)(λ1, λ2, λ3)|λ2=w,λ3=v. (4.5)

where the conditional value functions for the actions (C1, C2) and (C1, C3) are equal

because the sufficient statistics are symmetric around the λ2 = λ3 plane.

The validity of Lemma 1 is conditioned on an important assumption: observa-

tions are random and statistically independent from each other. As a result of this

assumption,

P (xi, xj;λi, λj) = P (xi;λi)P (xj;λj), ∀i, j; i 6= j (4.6)

Condition (4.6) is sastified if channels are mutually independent so that the joint pdf

of observations from different channels is separable into products of marginal pdf’s of
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individual observations.

Lemma 1 leads to Theorem 2 in [29]:

Theorem 2 [29]: The optimal structure Θ∗(Λ(t)) under the belief vector Λ(t) is the

following:

Θ∗(Λ(t)) =


Di, if i = arg max

1≤j≤L
(Λ(t))

and λi ≥ ηd(Λ
−(t))

C, otherwise

(4.7)

where C is the set of actions of continuing to observe channels, as defined in Section

3.2.2, Λ−(t) denotes the set of sufficient statistics for the L−M unobserved channels

at time t, and ηd(Λ
−(t)) is the function that maps Λ−(t) to a stopping threshold

value in [0, 1].

The detector structure (4.7) suggests that there are unique boundaries that parti-

tion the L-dimensional space of the sufficient statistics into decision regions in which

an optimal action exists and that optimal action can be either Cj (to continue) or Dl

(to stop). The function ηd(Λ
−(t)) defines the boundaries that separate these regions.

However, the detector structure (4.7) does not specify the rule that chooses which

channels to sense.

Realizing a practical detector from (4.7) entails determining these decision regions

in the space spanned by the sufficient statistics. It involves the computing value func-

tion in (4.1)-(4.2) iteratively. The nested integrations over a infinitely large domain

make the computation numerically intractable. Due of complexity, the optimal policy

(4.7) cannot be implemented. Therefore, the next sections propose two implementable

detectors as a suboptimal low-complexity versions of the policy (4.7).
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4.2 Multiband Multi-Sensor Spectrum Sensing

Detector

Although it is not realistic to implement the optimal decision test (4.7), the structure

of the test serves as a guide to the design of a practical detector. The proposed

detector have the followings properties: (1) performs discovery of an idle period over

multiple channels (multiband), (2) simultaneously senses multiple channels (multi-

sensing), and (3) tracks the belief vector for all the channels. Due to these properties,

the detector described here is named the Multiband Multi-Sensor Spectrum Sensing

Detector (MMSSD).

Given a general number of sensors M ≥ 1 and number of channels being detected

L, the MMSSD has the following structure:

ΘMMSSD(Λ(t)) =


Di, if i = arg max

1≤j≤L
(Λ(t))

and λi ≥ ηd(Λ
−(t))

Cj∗ , Otherwise

(4.8)

where Cj∗ ∈ C is the action to continue to observe all the channels that have the

M largest belief values. Λ(t) = {λ1(t), ..., λL(t)} is the belief vector that consists of

belief values, computed using (4.4) at each time t = 1, 2, ..., and Λ−(t) denotes a

subset of belief values for the L −M unobserved channels at time t. Using a M=2

and L=3 system as an example, if at time t, channels 2 and 3 have the highest belief

values among Λ(t), i.e., λ2(t) > λ1(t) and λ3(t) > λ1(t), then Cj∗ = {C2, C3}.

The decision test of MMSSD (4.8) specifies a rule that directs a detector to choose

which channels to sense; the detector senses the channels with the largest belief values.
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Given the definition of the belief value, that is,

λl(t) ≡ Pr(Zl(t) = 1| past observations in the channel l ), (4.9)

the best choice for what channels to sense are naturally those channels that have

the highest likelihoods of being in the idle state. This is where the decision test of

MMSSD (4.8) differs from the optimal decision test in (4.7), which does not offer a

rule regarding to choosing which channels to sense.

As mentioned in the previous section, the threshold design for (4.8) is a challenging

task because the function ηd(Λ
−(t)), which defines the boundary between the decision

regions to continue the detection and the regions to stop and declare a channel as

idle, changes with time t and is difficult to compute. To simplify the threshold

design, an alternative threshold design method is proposed here for (4.8), where a pre-

determined constant threshold is assumed, denoted as ηd, rather than as a function.

This threshold design method, however, results in a sub-optimal performance but

offers the designer a viable method to design a detector that satisfies the constraint

on the false alarm rate, or PFA ≤ α, and a way to sidestep the difficult problem of

optimal threshold design.

To develop the alternative threshold design rule, a few new variables must be first

defined. Let Tstop(ηd) be the random detection delay of the MMSSD employing the

threshold ηd, i.e.,

Tstop(ηd) ≡ inf{n ≥ 1 : λmax(n) ≥ ηd} (4.10)

where λmax(n) ≡ max{λ1(n), ..., λL(n)}. As in the formulation of Shiryaev’s Problem

[25], 1 − λmax(Tstop) is by definition the a posteriori probability that a false alarm

would occur. A false alarm occurs when the channel declared to be idle is in a busy

state. This probability is also a function of random-variable observations. Therefore,
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an expected value of 1− λmax(Tstop) over all possible random observation sequences,

represents the false alarm rate of the MMSSD detector, i.e.,

PFA = Eλo [1− λmax(Tstop)] (4.11)

where the expectation operator Eλo [·] is the expected value over all the possible ran-

dom observation sequences conditioned on initial belief value of the sufficient statistics

equal to λo. From (4.10) and (4.11) , an upper bound on PFA can be derived as follows:

λmax(Tstop) ≥ ηd

1− Eλo [λmax(Tstop)] ≤ 1− ηd

PFA ≤ 1− ηd. (4.12)

The first inequality is true by definition: At time t = Tstop, λmax(Tstop) is greater than

the stopping threshold ηd. The final inequality in (4.12) shows that the threshold, ηd,

that satisfies a given false alarm constraint, α, is ηd = 1 − α. This threshold design

is suboptimal because it may cause the detector be too conservative in maintaining

the false alarm rate. That is, the test statistic λmax(Tstop) is likely to overshoot the

threshold ηd in the detection process and result in an actual false alarm rate that is

lower than the false alarm constraint. In other words, given a nominal false alarm

rate α ∈ [0, 1], the threshold ηd = 1 − α provides a loose upper bound to the actual

false alarm rate, PFA. However, the upper bound on PFA becomes tighter as α tends

to zero since

0 ≤ PFA ≤ 1− ηd = α. (4.13)

A description of the detection algorithm for MMSSD is provided in Table 4.1.
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Table 4.1: The operation of a MMSSD is described in an algorithmic form.

Algorithm for MMSSD

for l = 1 to L do
λl ← λ0

end for
t← t+ 1
loop

for l = 1 to L do
if {Channel l is observed at time t} then
{Fetch xl}
λl ← T̂ (λl−1, xl)

else
λl ← T̃ (λl−1)

end if
end for
λmax ← max{λ1, ..., λL}
lmax ← arg max{λ1, ..., λL}
if λmax ≥ ηd then
{Declare channel lmax as idle}
{Terminate detection}

else
{Rank the top M channels based on {λ1, ..., λL}}
{These M channels are sensed in the next time instant.}
t← t+ 1

end if
end loop
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4.3 Reduced-Complexity Multiband Multi-Sensor

Spectrum Sensing Detectors

The MMSSD carries a high complexity cost when the number of channels available

for sensing, L, is large, because of the cost of memory to store the belief vector that

is of length L and of the computation to rank all belief values to find the top M belief

values at every time t. For example, identifying the top M belief values among L

total belief values using a selection sorting algorithm is shown to have an expected

running time of O(L + M logM) [3], where the O(n) is the big-O notation used to

indicate complexity. This section proposes a reduced complexity version of MMSSD,

which has a complexity independent of the number of channels L. Also, under a

specific condition, the reduced complexity version has performance that approaches

that of MMSSD.

In [29], a detector is proposed under the so-called infinite regime, where it assumes

an asymptotic condition L → ∞ and M = 1. This thesis generalizes this work to

arbitrary M and shows that in the case of L >> M , it leads a reduced complexity

version of MMSSD.

Consider the case where MMSSD is detecting for an idle period among L channels,

and L is infinitely larger than M , i.e., (L−M)→∞. Let j be the index of a channel

at time t, where 1 ≤ j ≤ L − M . Let T junobs be the random elapsed time during

which the jth channel is not observed, and finally, let rj(t) be the overall ranking of

the jth channel at time t, among observed and unobserved channels. A lower value

of rj(t) means having a higher relative belief value, e.g., rj(t) = 2 means that the jth

unobserved channel has second highest belief value. Since MMSSD chooses to sense
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channels with the M highest rankings, the jth channel remains in the unobserved

pool as long as its ranking satisfied rj(t) > M . Then

T junobs ≡
∞∑
t=1

{1}(rj(t)>M) (4.14)

where {1}(rj(t)>M) is an indicator function for the event rj(t) > M . As L − M

approaches infinity, Prob (rj(t) > M) → 1 because the probability that the belief

value for the jth channel is ranked in the top M elements becomes vanishingly small.

As a result, T junobs approaches infinity. This offers the insight that as the pool of

unobserved channels grows large, the time that a channel dwells within the unobserved

pool lengthens.

While a channel is in the unobserved pool, no observation of it is generated and

the belief value is updated recursively with the a priori update function (3.10) at every

time t. Given a belief value λl(t) and that the lth channel is not observed for the next

N time instants, at the end of N th interval, the resulting belief value λl(t+N) is

λl(t+N) ≡ T̃ N(λl(t)) = T̃ (T̃ N−1(λl(t)))

= T̃
(
. . . T̃

(
T̃ (λl(t))

))
= pB(1 + (1− pI − pB) + (1− pI − pB)2

+ ...+ (1− pI − pB)Nλl(t)), (4.15)

where the third equality follows as a result of expanding N layers of recursions. It

is seen here that if T junobs is large, λl(t + T junobs) depends less on the value of λl(t)

because the coefficient (1 − pI − pB)N becomes quite small. In the asymptotic case,

with T junobs →∞, the convergence below is observed:

lim
N→∞

T̃ N(λ) =
mI

mB +mI

= λo, (4.16)
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where the condition for convergence is pI + pB ≥ 0, which is met by the definitions

of pI and pB.

This result (4.16) indicates that if (L−M)→∞, the set of unobserved channels is

infinitely large, and the channel in the unobserved will likely to spend a very long time

in the unobserved pool. While it is in the unobserved pool, its belief value converges

to λo. The belief values for all the channels in the unobserved pool then become the

same. Consequently, it is no longer necessary for the detector store the belief values

for all the unobserved channels when it knows a priori that an unobserved channel

has the belief value is likely to be very close to λo.

In practice, for a finite sized unobserved pool, the above holds as an approximation,

as long as L is sufficiently larger than M . One can then assume that a channel’s belief

value converges to λo while the channel is unobserved, because it is evident in (4.15)

that the convergence to λo is rapid as N increases.

Assuming that all unobserved channels have the same belief value equal to λo, the

process of deciding what channels to observe can be simplified. Instead of ranking

against belief values of all channels, the determination of whether to continue to

observe a channel reduces to a comparison to a threshold λ0. If the belief value of

the current channel is higher than λo, the channel is ranked higher than all channels

in the unobserved pool, the detector continues to observe this channel; otherwise, the

channel is ranked lower than all channels in the unobserved pool, and the detector

should switch out of the current channel and sense another channel instead. For

this reason, the threshold used for the comparison is called the ”switching threshold”.

Based on this idea, this thesis proposes a variant of MMSSD with reduced complexity

(RC-MMSSD).
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Table 4.2: The operation of a RC-MMSSD is described in an algorithmic form where
Ω denotes the pool of unobserved channels at the current time t.

Algorithm for RC-MMSSD

for m = 1 to M do
if λm ≥ ηd then
{Declare channel km as idle}

else if λm < λo then
{Switch out of channel km}
km ← index of a new channel selected from Ω
λm(t) ← λo {Resetting λm(t)}
Put the index of the replaced channel back into Ω

else
{Continue to observe channel km}

end if
end for

Due to the dynamics stated above, another interpretation of this result is as such:

at the asymptotic condition L−M →∞, RC-MMSSD effectively chooses the same set

of channels to observe as what MMSSD would have chosen by ranking, and therefore,

MMSSD and RC-MMSSD share the same performance.

For RC-MMSSD, the belief vector is defined differently compared to MMSSD.

The detector re-defines a belief vector of size M , [λ1(t), ..., λM(t)], where λm(t), for

1 ≤ m ≤ M, is the belief value for the channel being sensed by the mth sensor.

It also defines a vector {k1, k2, ..., kM} in which each element km, for 1 ≤ m ≤ M ,

acts as a pointer to the channel being sensed by the mth sensor. For example, the

variable assignment k3 = 5 indicates that the 3rd sensor is sensing channel 5. With

every iteration, the detector updates each belief value using observations from its

corresponding observed channels via (3.9). Once the updated belief vector is obtained,

the detector decides on the action based on the policy as described in Table 4.2.
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The decision test to decide when to declare a channel idle has not changed in the

RC-MMSSD, i.e., the threshold ηd is used and designed in RC-MMSSD in exactly the

same way for MMSSD. By setting ηd = 1 − α, the detector satisfies the false alarm

rate constraints α.

One should be cautious about applying RC-MMSSD to scenarios where L−M is

small, as they may encounter problems in designing the threshold to meet a certain

false alarm rate constraint. Consider a scenario where there is a small unobserved

pool where L−M = 1, and RC-MMSSD is used. Suppose that events unfold in the

following sequence: the mth channel has been swapped out due to λm(t) < λo; after

a small Tmunobs has lapsed, the mth channel is called upon to be sensed again with its

belief value assumed to be λo, and the mth channel is declared idle by RC-MMSSD.

Let δλ(t) denote the error at time t between the assumed belief value, λo, and the

true belief value, λm(t),

δλ(t) = λo − λm(t). (4.17)

If the true belief value converges to λ0, the value of δλ(t+Tmunobs) is then zero. However,

based on (4.15), a small Tmunobs implies that δλ(t+Tmunobs) is a finite positive quantity,

meaning that the belief value has yet converged. This has an effect on the false alarm

rate.
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The false alarm rate, (4.11), can be computed using (4.17) as

1− Eλo [λTstopmax ]

= 1− λo E1[λTstopmax ]− (1− λo)E0[λTstopmax ]

= 1− (λj(t) + δλ(t))E1[λTstopmax ]− (1− λj(t)− δλ(t))E0[λTstopmax ]

= 1− λj(t)E1[λTstopmax ]− (1− λj(t))E0[λTstopmax ]

− δλ(t)
(
E1[λTstopmax ]− E0[λTstopmax ]

)
= PFA,λj(t) −∆PFA (4.18)

where PFA,λj(t) is the false alarm probability based on the true belief value of the jth

channel and is therefore the true false alarm rate of the detector. ∆PFA is the false

alarm probability caused by the error δλ(t). Note that ∆PFA is a positive value and

approaches 0 as δλ(t) → 0. By applying the MMSSD threshold design and setting

ηd = 1− α, the inequality below results:

PFA,λm(t) ≤ 1− α + ∆PFA. (4.19)

As evident in (4.19), the design threshold 1 − α is no longer a sufficient upper

bound for the false alarm rate of the system. Therefore the detector designed using

this methodology does not meet the false alarm rate constraint.

4.4 Appendix: Proof of Lemma 1

This section provides the proof for the properties of the value functions stated in

Lemma 1. The proof generalizes the work in [29] to cases with arbitrary number of

M sensors, and L channels. This section shows that the proof developed in [29] for

the special case of M = 1 can be applied very similarly to the cases of arbitrary

54



M ≥ 1. Many of results from [29], especially ones related to algebraic manipulation,

are re-used in this proof.

Lemma 1.2 follows as a consequence of assuming that the ON-OFF process rep-

resenting each of L channels has identical channel usage and signal models, and that

sufficiency of λ1, λ2, ..., λL as the input values, which mean that ”no other statistics

which can be calculated from the samples of the observation provide more informa-

tion any additional information as to the value of the parameter” [5]. Lemma 1.3 is

true by definition of VDi
in (4.2).

To set up the proof for Lemma 1.1, a finite horizon problem is considered. In a

finite horizon problem, a detector must stop and declare a channel to be idle after a

finite time period, K. In this context, new value functions are defined to correspond

to (4.1)-(4.2):

If K = 1, 2, 3, ..., the finite horizon value function is

V K(λ1, ..., λL) = min{V K
C1

(λ1, ..., λL), V K
C2

(λ1, ..., λL), ...,

V K
C|C|

(λ1, ..., λL), VD1(λ1, ..., λL), VD2(λ1, ..., λL), ...,

VDL
(λ1, λ2, λ3)}, (4.20)

and if K = 0, the finite horizon value function is then

V 0(λ1, ..., λL) = min{VD1(λ1, ..., λL), VD2(λ1, ..., λL), ..., VDL
(λ1, λ2, ..., λL)}, (4.21)

where {VDl
} are the conditional value functions for stopping and declaring a channel

idle, for 1 ≤ l ≤ L, which is defined according to (4.2). Since C is the set that contains

all possible continue actions, the size of the set, |C|, is then L chooses M . {V K
Cj
}, for

1 ≤ j ≤ |C|, are the conditional value functions for continuing the testing given that

the detector must stop after K time instants. Suppose a continue action C1 observes
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channels 1, ,2, ..., M. For Cj, the conditional value functions V K
C1

are

V K
C1

(λ1, λ2..., λL) = 1+ (4.22)∫ ∫
...

∫
x1,x2,...xM

P (x1, x2, ..., xM ;λ1, λ2, ..., λM)V K−1(λ
′

1, λ
′

2, ..., λ
′

L)dx1dx2...dxM .

where the integral in the second term is an expected value of the finite horizon value

function defined in (4.20) taken over over the domain of (x1, x2, ..., xM), which corre-

sponds to the observations belonging to the channels that are included in C1. The

conditional value function for any action Cj, for j 6= 1, is defined similarly to (4.22).

Note that the conditional value function V K
Cj

is defined in terms of the value

function in (4.20) with K = K−1, because as the detection progresses, every decision

to continue gets the detector one time instant closer to the end of the time horizon.

In other words, at time t+ 1, the value function becomes V K−1(·). Eventually, after

a detector processes for K time instants, the conditional value function V 1
Cj

reaches

a special case below (again, the action C1 is used as an example),

V 1
C1

(λ1, λ2, ..., λL) = 1+ (4.23)∫ ∫
...

∫
x1,x2,...xM

P (x1, x2..., xM ;λ1, λ2, ..., λM)V 0(λ
′

1, λ
′

2, ..., λ
′

L)dx1dx2...dxM .

The finite horizon problem is related to the original problem by the following

relationship between the respective value functions defined in (4.1):

V (λ1, ..., λL) = lim
K→∞

V K(λ1, ..., λL) (4.24)

In other words, if the proof applies to the finite horizon value functions for all

values of K, it implicitly applies to the value function V (λ1, ..., λL). Therefore for

the rest of the section, only the finite horizon problem based on V K(λ1, ..., λL) is

considered.
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Inductive reasoning is employed to show that V K
Cj

satisfies that Lemma 1.1, i.e.

V K
Cj

is concave and monotonically decreasing for all K. The property of the concavity

is first shown, and followed by the proof of monotonicity.

For the remainder of this proof, a particular element belonging to the set of C −

C1 = {C1, C2, ..., CM} − is considered. A similar argument holds for all
(
L
M

)
elements

in the set C by the merit of the i.i.d. assumption (4.6). For this action, channels 1

to M are sensed. Based on inductive reasoning, the case K = 1 is proven first. From

(4.2), (4.21), and (4.22), the conditional value function for K = 1 is

V 1
C1

(λ1, ..., λL) ≡ V 1
(C1,C2,...,CM )(λ1, ..., λL)

= 1 +

∫
...

∫
x1...xM

P (x1, ..., xM ;λ1, ..., λM)V 0(λ
′

1, ..., λ
′

L)dx1...dxM

= 1 +

∫
...

∫
x1...xM

P (x1, ..., xM ;λ1, ..., λM) min{(1− λ′1)γ,

(1− λ′2)γ, ..., (1− λ′L)γ}dx1...dxM (4.25)

where λ′l is the belief value for the lth channel at the next time instant t + 1 and

updated via (4.4). As observations across the channels are assumed independent

and identically distributed (i.i.d.) and satisfy the condition (4.6), the joint pdf for

observations P (x1, ..., xM ;λ1, ..., λM) is a product of the marginal pdfs for observations

in each channel:

P (x1, ..., xM ;λ1, ..., λM) =
M∏
i=1

P (xi;λi) (4.26)

where the marginal pdf for an observation in a channel is defined as a mixture distri-

bution as follows:

P (xi;λi) = (λipI + λipB)f1(xi) + (λipI + λipB)f0(xi) (4.27)
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where f1(xi) and f0(xi) are the marginal pdfs for an observation under an idle or a

busy state, respectively, and are defined in Section 3.2.2.4.

Now, multiply P (x1, ..., xM ;λ1, ..., λM) into the min{·} and substitute with (4.26)

into (4.25), and consider only the integrand,

min

{
M∏
i=1

P (xi;λi)(1− λ′1)γ,
M∏
i=1

P (xi;λi)(1− λ′2)γ, ...,
M∏
i=1

P (xi;λi)(1− λ′L)γ

}
.

(4.28)

At this point, let us focus on proving the concavity of V 1
C1

(λ1, ..., λL) with respect

to λ1, given λ2, λ3, ..., λL, with out lost of generality. The main idea is that if all

the arguments in min{·} are linear in λ1 given λ2, ..., λL, the concavity of function

V 1
C1

(λ1, ..., λL) in (4.25) with respect to λ1 is shown.

The argument with index l, 1 ≤ l ≤ L, in the min{·} (4.28), i.e.,
∏M

i=1 P (xi;λi)(1−

λ′l)γ, pertains to the action to stop and declare channel l as idle. It falls into either

one of two types. The first type includes arguments where their corresponding indices

{l} are such that l ∈ {1 ≤ i ≤ M}. In other words, the channels that correspond

to arguments that are to be observed according to the action (C1, C2, ..., CM). The

second type of arguments belongs to indices {l} corresponding to l /∈ {1 ≤ i ≤M}.

Consider an argument of the first type, such as l = 1,

γ

M∏
i=2

P (xi;λi)P (x1;λ1)(1− λ′1)

= γ

M∏
i=2

P (xi;λi)P (x1;λ1)(1− T̂ (λ1, x1))

= γ
M∏
i=2

P (xi;λi)(1− T̃ (λ1))f0(x1) (4.29)

The first equality is based on the definition of λ′1 provided that Channel 1 is to be

observed. The second equality is the result of the algebraic manipulation in [29]. It
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is seen here that the expression in (4.29) is linear in λ1, given the values of λ2, ..., λL.

Consider another argument of the first type, such as l = 2,

γ

M∏
i=2

P (xi;λi)P (x1;λ1)(1− λ′2)

= γ

M∏
i=2

P (xi;λi)P (x1;λ1)(1− T̂ (λ2, x2)). (4.30)

The argument in (4.30) is also linear in λ1 because the product (γ
∏M

i=2 P (xi;λi(1−

T̂ (λ2, x2))) is considered constant and P (x1;λ1) is linear in λ1. The same procedure

can be used to show that all arguments of the first type are linear in λ1.

Now, consider a specific argument of the second type, where l = M + 1 (note:

l /∈ {1 ≤ i ≤M}), where from (4.4),

γ
M∏
i=2

P (xi;λi)P (x1;λ1)(1− λ′M+1)

= γ
M∏
i=2

P (xi;λi)P (x1;λ1)(1− T̃ (λM+1)) (4.31)

Given the values of λ2, ..., λL, it is seen that in (4.31), the expression is also linear in λ1

because the products γ
∏M

i=2 P (xi;λi)(1−T̃ (λM+1)) are merely considered constants.

It has been demonstrated that the integrand of (4.25) is the minima of multiple

functions, which are linear in λ1, given the values of λ2, ..., λL. As it is known that

a minimum function of a family of linear functions is a concave function and the

integration is an infinite sum that preserves the concavity [29], V 1
C1

(λ1, ..., λL) is then

concave in λ1. By symmetry, this applies to concavity of all with respect to all λi

given {λl|1 ≤ l ≤ L, l 6= i}.

The concavity of V K
Cj

(λ1, ..., λL) with respect to any λi has been shown. The

next step is to demonstrate that the concavity exists for cases K = 2, 3, .... By
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the assumption through inductive reasoning, V K(λ1, ..., λL) and V K
Cj

(λ1, ..., λL) are

concave. Through this assumption, if V K(λ1, ..., λL) and V K+1

Cj
(λ1, ..., λL) are also

concave, then V K
Cj

(λ1, ..., λL) is concave for all values of K.

By the assuming that V 1(λ1, ..., λL) is a concave function, it can be expressed as

a minima of an infinite number of linear functions in λ1, λ2, ..., λL. Let these linear

functions be indexed by y ∈ Z and ∃(by0, b
y
1, b

y
2, ..., b

y
L) ∈ RL,

V K(λ1, ..., λL) = min
y∈Z
{by0 + by1λ1 + by2λ2 + ...+ byLλL} . (4.32)

From this definition,

V K+1

C1
(λ1, ..., λL) ≡ V K+1

{C1,C2,...,CM}(λ1, ..., λL)

= 1 +

∫
...

∫
x1...xM

P (x1, ..., xM ;λ1, ..., λM)V K(λ
′

1, ..., λ
′

L)dx1...dxM

= 1 +

∫
...

∫
x1...xM

M∏
i=1

P (xi;λi) min
y∈Z
{by0 + by1λ

′
1 + by2λ

′
2 + ...+ byLλ

′
L} dxi

= 1 +

∫
...

∫
x1...xM

M∏
i=1

P (xi;λi) min
y∈Z

{
by0 + by1T̂ (λ1, x1) + by2T̂ (λ2, x2) + ...

+byM T̂ (λM , xM) + byM+1T̃ (λM) + ...+ byLT̃ (λL)
}
dxi (4.33)

Placing
∏M

i=1 P (xi;λi) into miny∈Z{·}, the integrand in (4.33) becomes

min
y∈Z

{
by0

M∏
i=1

P (xi;λi)

+ by1

M∏
i=1

P (xi;λi)T̂ (λ1, x1) + ...+ byM

M∏
i=1

P (xi;λi)T̂ (λM , xM)

+byM+1

M∏
i=1

P (xi;λi)T̃ (λM+1) + ...+ byL

M∏
i=1

P (xi;λi)T̃ (λL)

}
(4.34)

Using the result from [29] such that

P (xi;λi)T̂ (λi, xi) = [pB + (1− pB − pI)λi]f1(xi), (4.35)
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the expression in (4.34) can be manipulated into

min
y∈Z

{
by0

M∏
i=1

P (xi;λi)

+ by1

M∏
i=2

P (xi;λi) [pB + (1− pB − pI)λ1] f1(x1)

+ by2

M∏
i=1,i 6=2

P (xi;λi)[pB + (1− pB − pI)λ2]f1(x2)

+ ...

+ byM

M∏
i=1,i 6=M

P (xi;λi)[pB + (1− pB − pI)λM ]f1(xM)

+ byM+1

M∏
i=1

P (xi;λi)T̃ (λM+1)

+ ...

+byL

M∏
i=1

P (xi;λi)T̃ (λL)

}
(4.36)

where it can be observed that the function inside the miny∈Z{·} function in (4.33), for

all values of (by0, b
y
1, b

y
2, ..., b

y
L), is a linear function in λ1 with λ2, λ3, ..., λL given. It has

been shown that the integrand in the second term of (4.33) is a concave function be-

cause it is a minima of a family of functions that are all linear in λ1. Hence, the overall

function V K+1

C1
(λ1, ..., λL) is concave as a result. The concavity of V K+1

C1
(λ1, ..., λL)

with respect to other λl can be shown with exactly the same way.

Through inductive reasoning, the basis step, V 1
Cj

(λ1, ..., λL) is concave in any λl,

and the inductive step, V K+1

Cj
(λ1, ..., λL) is concave if V K

Cj
(λ1, ..., λL) is concave. This

completes the proof for the concavity of the V K
Cj

(λ1, ..., λL) function for all values of

K.

The next claim of Lemma 1.1 is that V K
Cj

(λ1, ..., λL) is monotonically decreasing
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with respective to any λl. To show that through inductive reasoning, monotonicity

of V 1
Cj

(λ1, ..., λL) must be shown first.

Recalling from (4.25), the definition of V 1
C1

(λ1, ..., λL) is

V 1
C1

(λ1, ..., λL) ≡ V 1
{C1,C2,...,CM}(λ1, ..., λL)

= 1 +

∫
...

∫
x1...xM

P (x1, ..., xM ;λ1, ..., λM)V 0(λ
′

1, ..., λ
′

L)dx1...dxM

= 1 +

∫
...

∫
x1...xM

M∏
i=1

P (xi;λi)V
0(λ′1, ..., λ

′
L)dxi (4.37)

To examine monotonicity of (4.37), the partial derivative of V 1
C1

(λ1, ..., λL) with

respect to the function’s inputs is considered. For the inputs λ1, λ2, ..., λL, there are

L partial derivatives in question. However, these partial derivatives fall into one of

two groups. Given the action C1 = {C1, C2, ..., CM}, i.e., channels with index in

[1,M ] are sensed and those with index [M +1, L] are not, the first group contains the

partial derivatives with respect to a belief value that corresponds to a sensed channel,

while the second the group contains the partial derivatives with respect to a belief

value of an un-sensed channel. Within a group, the procedure to demonstrate the

monotonicity of a partial derivative is the same as the rest. As such, without loss of

generality, the partial derivative representing the first group as the partial derivative

with respect to λ1, and the one representing the second group as the partial derivative

with respect to λM+1.
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The partial derivative with respect to λ1 is

∂

∂λ1

V 1
C1

(λ1, ..., λL) =
∂

∂λ1

∫
...

∫
x1...xM

M∏
i=1

P (xi;λi)V
0(λ′1, λ

′
2..., λ

′
L)dxi

=

∫
...

∫
x1...xM

∂

∂λ1

M∏
i=1

P (xi;λi)V
0(λ′1, λ

′
2..., λ

′
L)dxi

=

∫
...

∫
x1...xM

(
∂

∂λ1

P (x1;λ1)

) M∏
i=2

P (xi;λi)V
0(λ′1, λ

′
2..., λ

′
L)dxidx1

+

∫
...

∫
x1...xM

P (x1;λ1)

(
∂

∂λ1

M∏
i=2

P (xi;λi)V
0(λ′1, λ

′
2..., λ

′
L)dxidx1

)

(4.38)

The second equality is the result of the application of Leibniz Integral Rule [6], and

the third equality follows after the product rule has been applied to the derivative.

In order to show that V 1
C1

(λ1, ..., λL) is monotonically decreasing with respect to λ1,

both terms in (4.38) must be non-positive.

The following shows that the integrand in the second term of (4.38) is non-positive:

P (x1;λ1)

(
∂

∂λ1

M∏
i=2

P (xi;λi)V
0(λ′1, λ

′
2..., λ

′
L)dxidx1

)

= P (x1;λ1)
M∏
i=2

P (xi;λi)

(
∂

∂λ′1
V 0(λ′1, λ

′
2..., λ

′
L)

)(
∂λ′1
∂λ1

)
dxidx1 (4.39)

where the first equality is a result of the chain rule. In [29], or from (3.9), it can be

shown that

∂λ′1
∂λ1

=
∂T̂ (λ1, x1)

∂λ1

≥ 0, if λ′1 = T̂ (λ1, x1). (4.40)

From the definition of (4.21), the value function V 0(λ1, ..., λL) is a monotonically

decreasing function; hence with respect to λ1,

∂

∂λ′1
V 0(λ′1, λ

′
2..., λ

′
L) ≤ 0. (4.41)
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Consider that the remaining products in (4.39) are non-negative by definition and

that there is only one negative product, the products that make up the integrand in

the second term is in turn non-positive. As integrating over any non-positive function

results in a non-positive value, the second term in (4.39) is non-positive.

Before the monotonicity of the first term in (4.39) is discussed, an inequality below

needs to be established. It needs to be shown that following inequality is true, given

the values of λ2, ..., λL, and x2, ..., xM :

inf
x1:f1(x1)≤f0(x1)

V 0(λ′1, ..., λ
′
L) ≥ sup

x1:f1(x1)>f0(x1)

V 0(λ′1, ..., λ
′
L) (4.42)

Or equivalently, where from (4.4),

inf
x1:f1(x1)≤f0(x1)

V 0(T̂ (λ1, x1), T̂ (λ2, x2), ..., T̃ (λL))

≥ sup
x1:f1(x1)>f0(x1)

V 0(T̂ (λ1, x1), T̂ (λ2, x2), ..., T̃ (λL))

(4.43)

Using the fact that V 0(λ1, ..., λL) is monotonically decreasing and the functions

{
T̂ (λ2, x2), ..., T̃ (λL)

}
(4.44)

are held to constant for given values of λ2, ..., λL, and x2, ..., xM , the inequality in

(4.42) is transformed into the inequality below

sup
x1:f1(x1)≤f0(x1)

T̂ (λ1, x1) ≤ inf
x1:f1(x1)>f0(x1)

T̂ (λ1, x1). (4.45)

Using the result from Lemma 3 of [29], the transformed inequality in (4.45) is proven

to be true.
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With the inequality in (4.42), one can proceed to show the monotonicity of the

first term in (4.38):∫
...

∫
x1...xM

(
∂

∂λ1

P (x1;λ1)

) M∏
i=2

P (xi;λi)V
0(λ′1, λ

′
2..., λ

′
L)dxidx1

=

∫
...

∫
{x1...xM ,xm 6=x1}

M∏
i=2

P (xi;λi)

[∫
x1∈R

(
∂

∂λ1

P (x1;λ1)

)
V 0(λ′1, λ

′
2..., λ

′
L)dx1

]
dxi.

(4.46)

In [29], the following derivative is shown to have a more simple form:

∂

∂λ1

P (x1;λ1) = (1− pB − pI)(f1(x1)− f0(x1)) (4.47)

Substituting (4.47) into (4.46),∫
...

∫
x1...xM

(
∂

∂λ1

P (x1;λ1)

) M∏
i=2

P (xi;λi)V
0(λ′1, λ

′
2..., λ

′
L)dxidx1

=

∫
...

∫
{x1...xM ,xm 6=x1}

M∏
i=2

P (xi;λi)

[∫
x1∈R

(1− pB − pI) (f1(x1)− f0(x1))V 0(λ′1, λ
′
2..., λ

′
L)dx1

]
dxi

=

∫
...

∫
{x1...xM ,xm 6=x1}

M∏
i=2

P (xi;λi)(1− pB − pI)
[∫

x1∈R
(f1(x1)− f0(x1))V 0(λ′1, λ

′
2..., λ

′
L)dx1

]
dxi.

(4.48)

Focusing on the integration within the square bracket in (4.48), the following shows
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that the entire integration is non-positive:∫
x1∈R

(f1(x1)− f0(x1))V 0(λ′1, λ
′
2..., λ

′
L)dx1

=

∫
x1:f1(x1)≤f0(x1)

(f1(x1)− f0(x1))V 0(λ′1, λ
′
2..., λ

′
L)dx1

+

∫
x1:f1(x1)>f0(x1)

(f1(x1)− f0(x1))V 0(λ′1, λ
′
2..., λ

′
L)dx1

≤ inf
x1:f1(x1)≤f0(x1)

V 0(λ′1, λ
′
2..., λ

′
L)

∫
x1:f1(x1)≤f0(x1)

(f1(x1)− f0(x1)) dx1

+ sup
x1:f1(x1)>f0(x1)

V 0(λ′1, λ
′
2..., λ

′
L)

∫
x1:f1(x1)>f0(x1)

(f1(x1)− f0(x1)) dx1

≤ inf
x1:f1(x1)≤f0(x1)

V 0(λ′1, λ
′
2..., λ

′
L)

∫
x1:f1(x1)≤f0(x1)

(f1(x1)− f0(x1)) dx1

+ inf
x1:f1(x1)≤f0(x1)

V 0(λ′1, λ
′
2..., λ

′
L)

∫
x1:f1(x1)>f0(x1)

(f1(x1)− f0(x1)) dx1

= inf
x1:f1(x1)≤f0(x1)

V 0(λ′1, λ
′
2..., λ

′
L)

∫
x1∈R

(f1(x1)− f0(x1)) dx1 = 0. (4.49)

The first inequality originates from upper-bounding the function V 0(λ′1, λ
′
2..., λ

′
L).

That the upper bound to the first term is an infimum may be counter-intuitive at

first. It is because the interval of x1 that the first term integrates over results in a

non-positive product in (f1(x1)− f0(x1)), consequently rendering the entire term non-

positive. The second inequality results from the an application of (4.42). Finally, at

the last equality, the infimum of the V 0(λ′1, λ
′
2..., λ

′
L) is factored out and by definitions

of pdfs f1(x1) and f0(x1), the entire value equals zero. Therefore, it is shown that

the integration within the square bracket in (4.48) is non-positive. Provided that

pB + pI ≤ 1 in (4.48), the quantity (4.46) is also non-positive.

Going back to the original equation that defines ∂
∂λ1
V 1
C1

(λ1, ..., λL), it is shown

that both of the terms in the definition in (4.38) are non-positive. Hence, it is proven

that the function V 1
C1

(λ1, ..., λL) is monotonically decreasing with respect to λ1. As
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the procedures to show ∂
∂λ1
V 1
C1

(λ1, ..., λL) ≤ 0 are the same as ∂
∂λl
V 1
C1

(λ1, ..., λL), for

1 ≤ l ≤M , these partial derivatives are also non-positive.

Next, the monotonicity of the second group of partial derivatives, i.e., the partial

derivatives with respect to {λl|M + 1 ≤ 1 ≤ L}, is examined. Consider the partial

derivative with respect to λM+1, and the definitions

∂

∂λM+1

V 1
C1

(λ1, ..., λL) =
∂

∂λM+1

∫
...

∫
x1...xM

M∏
i=1

P (xi;λi)V
0(λ′1, ..., λ

′
M+1, ..., λ

′
L)dxi.

(4.50)

The above can be manipulated according to the following:

∂

∂λM+1

∫
...

∫
x1...xM

M∏
i=1

P (xi;λi)V
0(λ′1, ..., λ

′
M+1, ..., λ

′
L)dxi

=

∫
...

∫
x1...xM

M∏
i=1

P (xi;λi)

[
∂

∂λM+1

V 0(λ′1, ..., λ
′
M+1, ..., λ

′
L)

]
dxi

=

∫
...

∫
x1...xM

M∏
i=1

P (xi;λi)

[
∂

∂λ′M+1

V 0(λ′1, ..., λ
′
M+1, ..., λ

′
L)
∂λ′M+1

∂λM+1

]
dxi (4.51)

where the first equality is obtained through Liebniz Integral Rule [6], and the second

equality through the chain rule. From (3.10), it is shown that

∂λ′M+1

∂λM+1

=
∂T̃ (λM+1)

∂λM+1

≥ 0, if λ′M+1 = T̃ (λM+1). (4.52)

From (4.41) and (4.52), it can be seen that the integrand in the expression in (4.51)

has one product that is negative and hence is a non-positive function. As integrat-

ing a non-positive function results in a non-positive quantity, it is concluded that

∂
∂λM+1

V 1
C1

(λ1, ..., λM+1, ..., λL) is non-positive. Therefore, monotonicity of the func-

tion V 1
C1

(λ1, ..., λM+1, ..., λL) is shown.
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At this point, the monotonicity of the function V K
C1

(λ1, ..., λL), where K = 1, has

been shown to be non-increasing along all directions of λl. It turns out that show-

ing the monotonicity for K = 2, 3, ... through inductive reasoning, follow the same

procedure to show that V K+1

C1
(λ1, ..., λL) is monotonically decreasing if V K

C1
(λ1, ..., λL)

is assumed to be monotonic. So for all values of K, the function V K
C1

(λ1, ..., λL) is

proven to be a monotonically decreasing function.

As mentioned earlier, concavity and the monotonicity is shown for the function

V K
C1

(λ1, ..., λL) that is particular to the action C1. Without loss of generality, same

procedures apply to any action Cj. Based on this, the proof has shown that all the

conditional value functions {V K
Cj

(λ1, ..., λL)}, for 1 ≤ j ≤ |C|, comply with Lemma

1.1.
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Chapter 5

Simulation Results and Discussions

This chapter evaluates the performance of the multiband multi-sensor spectrum sens-

ing detectors (MMSSD) using Monte Carlo simulations. Firstly, the performance

impact of introducing additional sensors is examined through comparisons between

MMSSDs and detectors with a single-sensor configuration. Secondly, a compari-

son study is conducted between MMSSD and its reduced-complexity version, RC-

MMSSD, in order to determine the complexity vs. detection performance tradeoffs

of RC-MMSSD. Later in this chapter, comparisons to quickest detection methods

are performed to establish the performance of MMSSD relative to existing quickest

detection techniques.

Besides comparing the performance among the detection methods, this chapter

also examines how MMSSD performs if the underlying channel usage pattern does not

conform to the statistical channel usage model assumed in Chapter 3. An alternative

channel usage model derived experimentally from WLAN networks is used to perform

this assessment.

The detector performance that is assessed is the expected detection delay and

69



corresponding false alarm rate. A detector is desired to be agile and reliable. High

agility means that a detector possesses a low expected detection delay, while high

reliability means that a detector possesses a low false alarm rate.

The 95-percent confidence interval is used to measure the accuracy of an em-

pirically derived estimate, which in this case is an estimate of the system’s expected

detection delay and false alarm rate. The methodology below describes the procedure

to determine the intervals for expected detection delay and false alarm rate.

Let W denote the number of trials in a simulation. To compute the 95% confidence

interval, the sample average and the sample variance need to be computed first.

The sample average is the expected detection delay, which denoted by Tdelay, and is

computed as follows:

Tdelay =
1

W

W∑
i=1

T̂delay,i, (5.1)

where T̂delay,i is the detection delay for a single trial in the simulation, for 1 ≤ i ≤ W .

The sample variance, denoted by σ2
delay is computed as follows:

σ2
delay =

1

W − 1

W∑
i=1

(T̂delay,i − Tdelay)2. (5.2)

Using (5.1) and (5.2), the 95% confidence interval is computed via the following

equation [23]:

∆Tdelay = 1.96

√
σ2

delay

W
. (5.3)

The procedure to compute the 95% confidence interval for false alarm rate is

similar to that of expected detection delay. Let the indicator function of a false alarm

outcome of each realization be denoted as P̂FA,i, for 1 ≤ i ≤ W , where P̂FA,i ∈ {0, 1};
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the value ‘1’ represents an occurrence of a false alarm and the value ‘0’ represents

otherwise. Again, sample average and sample variance are needed to determine the

interval. Sample average of the false alarm rate over the W trials is as follows:

PFA =
1

W

W∑
i=1

P̂FA,i, (5.4)

and the sample variance for each of the false alarm rate, denoted by σ2
FA, is

σ2
FA =

1

W − 1

W∑
i=1

(P̂FA,i − PFA)2. (5.5)

Based on these established parameters, the 95% confidence interval for the false alarm

rate obtained via simulation, denoted as ∆PFA, is determined using the following

equation [23],

∆PFA = 1.96

√
σ2

FA

U
. (5.6)

Two assumptions are made for the determination of the confidence interval: 1)

Tdelay and PFA is an unbiased estimate of the true value of the false alarm rate, and

2) the errors are normally distributed around the mean of Tdelay and PFA.

For the simulations, the number of trials W is chosen to be W = 105 so that the

95% confidence intervals are |∆Tdelay| ≤ 1 and |∆PFA| ≤ 0.001.

5.1 Performance Impacts of Extra Sensors

Based on the signal model defined in Section 3.1.2, the marginal distributions of an

observation for either a busy or an idle state are zero-mean normally distributed. In a

busy state, the probability density function (pdf) of an observation, f0, has a variance

of σ2
0 = σ2 +P , which models the combined power from the transmission of the signal
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occupying the channel plus the background white noise. In an idle state, the pdf f1

has a variance of σ2
1 = σ2, indicating only the power of the background white noise is

present. The signal-to-noise ratio (SNR) in decibels (dB) is defined as 10 log10(P/σ2).

Within this section, the detectors are designed to meet the false alarm constraint of

α = 0.1, which is chosen to expedite the execution of the simulation. A lower false

alarm constraint is used in later simulations and the results are consistent with these

results. The number of trials used for the Monte Carlo simulations, i.e., W , is 105.

When M = 1, MMSSD is in a single-sensor configuration, which is the detector

developed in [29]. In order to compare expected detection delays, the detectors in

question must be compared with similar false alarm rates. Fig. 5.1 shows the false

alarm rates of MMSSD with different numbers of sensors as a function of λo, the

fraction of channel idle time. First, it is clear that the threshold design rule ηd = 1−α,

as discussed in Section 4.2, satisfies the false alarm constraint of α = 0.1. Secondly,

Fig. 5.1 shows that no single detector is able to outperform others in terms of false

alarm rate across all values of λo. Note that for the lower λo values, the false alarms

rates are very similar and quite invariant to λo.

Fig. 5.2 compares the expected detection delays of MMSSD for different values of

λo. From Fig. 5.2, it is evident that the reduction in expected detection delay is more

significant when the idle periods account for smaller percentages of time (λo → 0).

The reduction in expected detection delay obtained by adding extra sensors depends

on how many sensors that are deployed. By adding an additional sensor from M = 1

to M = 2, the expected detection time experiences a large gain compared to adding

a sensor from M = 3 to M = 4. In fact, an additional sensor for a detector with 3

sensors yields very little performance gain. Since M = 4 is a full-sensing detector,
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Figure 5.1: The false alarm rates of MMSSD with different numbers of sensors M .
The 95% confidence interval is less than ±0.01 (mB = 300, SNR=0 dB, ηd = 0.9, L =
4,W = 105).

i.e., a configuration with a sensor per channel, it is fair to claim that the performance

of a full-sensing detector, in terms of expected detection delay, can be in large part

achieved by deploying fewer than L sensors.

Next, the performance of RC-MMSSD is compared to that of a single-sensor con-

figuration. For this simulation, the number of available channels, L is chosen to be

large, e.g., L = 100, to ensure that L >> M satisfy the conditions discussed in

Section 4.3. The effect of violating these conditions is studied later. To establish a

baseline false alarm rate, a threshold of ηd = 1 − α = 0.9 is used. Fig. 5.3 shows

the false alarm performances of RC-MMSSD with different numbers of sensors. It is

seen that all detectors comply with the false alarm rate constraints, again verifying
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Figure 5.2: The expected detection delays of MMSSD with different numbers of sen-
sors M . The 95% confidence interval does not exceed±1 (mB = 300, SNR=0 dB, ηd =
0.9, L = 4,W = 105).

the threshold design rule. In addition, the false alarm rates among detectors using

different numbers of sensors remain similar, especially when λo is small.

Fig. 5.4 shows a comparison of expected detection delay using RC-MMSSD. When

M = 1, RC-MMSSD is in a single-sensor configuration, which is first developed and

demonstrated in [29]. Similar to what the MMSSD comparison has shown, the largest

reduction in expected detection delay comes from adding sensors when M is small. As

M becomes larger, the improvement in adding extra sensors diminishes. This implies

that by deploying a smaller number of sensors, a detector can achieve a performance

in terms of expected detection delay that is close to that using a larger number of

sensors.
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Figure 5.3: The false alarm rate of RC-MMSSD for different numbers of sensors, M .
The 95% confidence interval is less than ±0.01 (mB = 300, SNR=0 dB, ηd = 0.9, L =
100,W = 105).

In summary, the performances of MMSSD and RC-MMSSD both experience the

greatest improvement in performance with the first few sensors added. Beyond a

certain value of M , added sensors produce an insignificant performance gain. In

additional, there is no evidence in the comparison of false alarm rates at different M

to suggest that a tradeoff exists between M and the false alarm rate.

5.2 MMSSD versus RC-MMSSD

In the development of RC-MMSSD in Section 4.3, it is indicated that in the asymp-

totic condition L − M → ∞, RC-MMSSD effectively behaves and performs like
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Figure 5.4: The expected detection delay of RC-MMSSD for different numbers of sen-
sors M . The 95% confidence interval does not exceed±1 (mB = 300, SNR=0 dB, ηd =
0.9, L = 100,W = 105).

MMSSD. Here, a comparison between the performances of the two detectors is con-

ducted through simulation. The expected detection delays and false alarm rates for

each detector are shown in Figs. 5.5 and 5.6 for different values of L and, for different

SNR levels: 10dB and 0dB. With the value of M fixed to 4, studying the system with

varying values of L offers insight into the relationship between system performance

and size of the unobserved pool.

It is evident in Fig. 5.5 that when L < 30, there is a problem with designing RC-

MMSSD with the threshold design rule ηd = 1− α, as the detector fails to meet the

prescribed false alarm constraint α. This observation is consistent with the analysis

in Section 4.3 on the impact of having a small pool of unobserved channels on the
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Figure 5.5: The false alarm rates of MMSSD and RC-MMSSD with respect to the
number of available channels, for both SNR=0 dB and SNR=10 dB. Note the violation
of the prescribed false alarm constraint α = 0.1 when L < 30. The 95% confidence
interval is less than ±0.01 (λ0 = 0.25,mB = 300, ηd = 0.9,M = 4,W = 105).

false alarm rate.

For L > 30, the false alarm rates of the two detectors are similar and Fig. 5.6

shows that the expected detection delays of MMSSD and RC-MMSSD are identical.

This result indicates that when the number of available channels greatly outnumbers

the number of sensors, MMSSD and RC-MMSSD have similar performances despite

RC-MMSSD’s reduced complexity, This result affirms the claims in Section 4.3 that

MMSSD behaves no differently from RC-MMSSD as the pool of unobserved channels

grows large, so that both detectors have very similar performances.
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Figure 5.6: The expected detection delays of MMSSD and RC-MMSSD with respect
to the number of available channels, for both SNR=0 dB and SNR=10 dB. The 95%
confidence interval does not exceed ±1 (λ0 = 0.25,mB = 300, ηd = 0.9,M = 4,W =
105).

5.3 MMSSD versus Quickest Detection Methods

The comparisons that have been conducted so far investigate the effect of adding

extra sensors to the detectors first developed in [29], which detect idle periods over

multiple channels using only one sensor. MMSSD, RC-MMSSD, and the detectors

developed in [29] are all based on partially observable Markov decision processes

(POMDP). One area of performance evaluation that has not been explored in the

open literature is how the performance of these POMDP-based detectors compare to

quickest detection schemes. This section considers three different quickest detectors:

Page’s CUSUM (Section 2.3.1), Shiryaev’s Bayesian detector (Section 2.3.2), and
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minimum asymptotic risk (MAR) detector (Section 2.3.3).

Since quickest detection algorithms perform detection on a single channel at a

time, a comparison to MMSSD in a multiband context requires some modification to

these detectors. Full-sensing schemes based on these quickest detectors are developed

here to enable detection using M sensors over L channels.

A full-sensing scheme based on quickest detection works as follows: a full-sensing

system with L sensors has each one independently performing quickest detection on

its assigned channel in parallel. The detection continues until the time that the first

sensor declares a channel to be idle, at which point the entire detection process also

terminates. Since a quickest detector is unable to dynamically switch channels to

sense, it always performs detection with the same number of sensors as the number

of channels and hence is a full-sensing scheme.

Unlike the POMDP, there is an inherent incompatibility issue when applying

quickest detection to the ON-OFF process model. Since by definition an ON-OFF

process has multiple ON and OFF periods, there exist multiple transitions between

idle and busy states over the time horizon of an ON-OFF process. The problem

formulation for quickest detection methods assumes that there is a single change in

signal energy and defines expected detection delay differently from the POMDP’s

definition. Second, due to multiple state transitions, once an ON-OFF process enters

an idle state, it may again switch back to the busy state. This introduces a new type

of false alarm situation because of the assumption of a single change on the part of

quickest detection. Consider a system that employs a quickest detection method. In

this system, the quickest detection methods may have an expected detection delay

that exceeds the average length of the idle time. In this case, it is quite likely that
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the detector may declare a busy-state-to-idle-state change after the channel switches

back to a busy state from an idle state, which constitutes a false alarm. Under the

quickest detection formulation of Eq. (2.14), the process cannot switch state more

than once. Since this scenario is not accounted for, the result is an increase in false

alarm.

As a consequence of not considering the above false alarm situation, the false

alarm rate of these quickest detection methods in Chapter 2 reaches an error floor

around the point where the expected detection delay exceeds the average idle period,

independent of the value of the threshold. This effect is illustrated by examples

through Page’s CUSUM. In Fig. 5.7, the false alarm rate stops decreasing with

respect to an increase in detection threshold after the ratio of expected detection

delay to average idle duration starts to exceed unity. Hence, a CUSUM detector

cannot be designed to meet false alarm requirements below this error floor. This is a

limitation for all quickest detection methods, because channels may contain multiple

state changes between busy and idle states.

Due to this limitation, in order to fairly compare the performance of MMSSD and

RC-MMSSD to a quickest detection, such error floor problems needs to be avoided

in the following simulation. Therefore, the SNR levels and average idle durations are

chosen to achieve a sufficiently low ratio of expected detection delay to average idle

period time for all the comparisons.

The method used to evaluate whether differences in performance are statistically

significant is to compare expected detection delay of each detection method given the

same level of false alarm rate. For a fair comparison, each detector is designed with

the same actual false alarm rate of 0.01. The 95% confidence interval for each false
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Figure 5.7: The false alarm rates reach an error floor in spite of increasing the detector
threshold. The dashed line, i.e., where the ratio of expected detection delay to average
idle time, mI , in the top plot crosses 1, indicates where expected detection delay
begins to exceed the average idle time, and where the false alarm rates begin to
flatten in the bottom plot.

alarm rate is estimated via simulation. If there is no closed-form expression for the

threshold design for a detector, a search is used for a threshold that yields the desired

false alarm rate of 0.01±0.005 with 95% confidence.

5.3.1 MMSSD versus Page’s CUSUM

Figs. 5.8 and 5.9 show comparison between MMSSD (Section 4.2) and CUSUM

(Section 2.3.1). The false alarm rates of MMSSD and CUSUM have been designed to

achieve α = 0.01 and Fig. 5.9 shows that the false alarm rates of CUSUM are set to

be equal to or higher than those of MMSSD detectors by the 95% confidence interval
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Figure 5.8: A comparison of the expected detection delays between full-sensing
CUSUM detection and MMSSD detection that uses 3 and 5 sensors. (SNR=10dB,
mB = 620, L = 5,W = 105). The 95% confidence interval does not exceed ±1.

of 0.005. Fig. 5.8 shows a performance comparison among a full-sensing MMSSD, a

full-sensing CUSUM, and a non-full-sensing MMSSD with three sensors. MMSSD’s

expected detection delay using 5 sensors is shown to perform similarly to CUSUM

detection with 5 sensors. This suggests that MMSSD does not show a performance

advantage over CUSUM in a full-sensing configuration.

The similarity in performance between MMSSD and CUSUM is unexpected as

MMSSD has taken into account more information about the statistical behaviour

of the channel traffic via a channel usage model. The reason for the similarity in

performance lies in the values used for the average busy and average idle periods,

mB and mI , respectively. As mB and mI grow large, pB and pI both tend to 0 and
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Figure 5.9: A comparison of the false alarm rate between a full-sensing CUSUM
detection and MMSSD detection that uses 3 and 5 sensors. The error bars are the
95% confidence intervals for each points. (SNR=10dB, mB = 620, L = 5,W = 105).

the geometric distributions that model the durations of busy and idle times become

stretched out and flattened. To illustrate this trend, the probability mass function of

the duration of an idle period is plotted for different values of pI in Fig. 5.10. This

implies that as the value of pI (or pB) used becomes smaller, idle period durations

become closer to being equiprobable and such an a priori distribution begins to appear

similar to a uniform distribution, which offers very limited information to the detector.

Even though the performance improvement of MMSSD given small values of pI

and pB is limited, MMSSD’s ability to dynamically determine which channels to

sense helps the detector to obtain better utility of each sensor. It can be seen that
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Figure 5.10: The probability mass function (PMF) of the duration of an idle period
becomes flattened as the value of pI tends to zero.

that MMSSD with M = 3 sensors and L = 5 channels performs similarly to full-

sensing CUSUM. MMSSD allows for the reduction of two sensors without paying a

performance penalty. Although the reduction is small, this behaviour is consistent

with the observations in Section 5.1. In the next study, the comparison between RC-

MMSSD and CUSUM further demonstrates the benefits of the detector’s ability to

dynamically switch.

To investigate the effects of the channel usage model, performance is investigated

with different channel usage parameters, where the value of pB is varied. However,

the value pI must remain small due to the need to avoid the error floor that CUSUM

encounters and maintain a fair comparison (See Fig. 5.7). Figs. 5.11 and 5.12 show

the performances of the two detectors with respect to different SNR levels. Fig. 5.12
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establishes a baseline false alarm rate at 0.01 in order to compare expected detection

delays. In Fig. 5.11, the improvement in expected detection delay of MMSSD over

CUSUM is significant at lower SNR values, while both detectors perform very simi-

larly at higher SNR values. The result can be explained by examining the structure

of the update function of the sufficient statistic in Eq. (3.9):

T̂ (λ, x) =
(λpI + λpB)f1(x)

(λpI + λpB)f1(x) + (λpI + λ pB)f0(x)
.

From the above equation, it can be seen that at higher values of SNR, the update

function is dominated by the observations, while as the SNR lowers, the update

function is more influenced by the a priori parameters of the channel usage models.

What the simulation shows is consistent with that view: since CUSUM does not

assume any a priori information about the channel and depends only on observations,

as the SNR drops, its performance in expected detection delay deteriorates faster than

that of MMSSD.

Although it can be seen that the a priori information in the channel usage model

offers more performance improvement when pI is larger, or when mI is smaller, it

is sometimes not practical to assume that a small mI if it is less than the expected

detection delay. That limits the performance gain that results from knowledge of the

channel model.

5.3.2 RC-MMSSD versus Page’s CUSUM when L >> M

In the previous section, the comparison shows that full-sensing performance can be

obtained with only a small reduction in number of sensors. In this section, the goal

is to demonstrate that the case of L >> M warrants the use of RC-MMSSD, i.e.,
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Figure 5.11: The expected detection delays of a full-sensing CUSUM detection and
full-sensing MMSSD detection, and is plotted with respect to different SNR’s. (mI =
300,mB = 30, λ0 = 0.9, L = 5). The 95% confidence interval does not exceed ±1.

that full-sensing performance can be nearly achieved with a significant reduction in

number of sensors.

Fig. 5.13 shows a performance comparison between RC-MMSSD and CUSUM.

Similar to the comparison between MMSSD and CUSUM, in Fig. 5.14 RC-MMSSD

detection is designed to have a similar false alarm rate to that of CUSUM. The

expected detection delays for the CUSUM detector with M = L = 3 and M = L = 30

in Fig. 5.13 illustrate the potential performance gain as the number of channels, L,

increases from 3 to 30. In order for CUSUM detection to realize such a gain, the

number of sensors needs to be increased by tenfold. Without increasing the number

of sensors, Fig. 5.13 shows that the expected detection delay of RC-MMSSD is
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Figure 5.12: A comparison of the false alarm rate between a full-sensing CUSUM
detection and full-sensing detection. The error bars are the 95% confidence intervals
for each point. False alarm rates of the MMSSD’s are designed to be slightly lower
than those of CUSUM. (mI = 300,mB = 30, λ0 = 0.9, L = 5).

significantly lower than that of CUSUM detection with M = 3. In addition, compared

to CUSUM with M = 30 sensors, RC-MMSSD that reduces the number of sensors

by 90%, is able to achieve very similar performance. Therefore, in scenarios where

L is large and M is relatively small, the RC-MMSSD system equipped with a small

number of sensors can achieve similar performance to that of CUSUM equipped with

a larger number of sensors.
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Figure 5.13: A comparison of the expected detection delay of an RC-MMSSD system
that uses 3 sensors and CUSUM with 3 sensors and 30 sensors. (SNR=10dB, mB =
620,W = 105). The 95% confidence interval does not exceed ±1.

5.3.3 MMSSD versus Shiryaev’s Bayesian Detector

As mentioned in Chapter 2, the Shiryaev’s Bayesian detector is a quickest detection

method that is derived from a problem formulation based on a risk function that

embodies a random change time. Like MMSSD, it assumes the duration of a busy

period in the channel is geometrically distributed. At the same time, like CUSUM, it

also assumes that once a change occurs from a busy to an idle state, a channel stays

in the idle state indefinitely. In fact, these assumptions make the Shiryaev’s Bayesian

detector a special case of MMSSD where pI = 0.

The simulation results that compare the performances of MMSSD and the Shiryaev’s

Bayesian detector are shown in Figs. 5.15 and 5.16. As in the previous comparisons
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Figure 5.14: A comparison of the false alarm of RC-MMSSD system that uses 3
sensors to CUSUM with 3 sensors and 30 sensors. (SNR=10dB, mB = 620,W = 105).
From the figure, the false alarm rates are similar with a statistical confidence level of
95%.

to quickest detection algorithms, a baseline false alarm rate is first established in

order to compare expected detection delay. The expected detection delay of full-

sensing MMSSD matches that of the full-sensing Shiryev’s Bayesian detector. This

is expected since the values of mI are kept reasonably high so the quickest detector

may avoid the error floor. It is also observed here that MMSSD with 3 sensors per-

forms favourably compared to its full sensing counterpart, despite the reduction in

the number of sensors.

89



0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

Fraction of Idle Time, ho

Ex
pe

ct
ed

 D
et

ec
tio

n 
D

el
ay

 (s
am

pl
e)

 

 
Shiryaev Full−Sensing
MMSSD Full−Sensing
MMSSD M=3 L=5

Figure 5.15: The expected detection delay of Shiryaev’s Bayesian detection and
MMSSD with M=3 and M=5. (SNR=10dB, mB = 620, L = 5,W = 105). The
95% confidence interval does not exceed ±1 sample.

5.3.4 MMSSD versus Minimum Asymptotic Risk Detector

Minimum Asymptotic Risk detector (MAR) is detector derived from a problem for-

mulation based on a minimizing a Bayes risk function, but assumes that the change

time is an unknown, non-random, and fixed value [12]. With the false alarm rates of

the two detectors lined up in Fig. 5.17, it is observed that MAR detector does not

perform as well as MMSSD. Over a large part of fraction of idle time, λo, as seen in

Fig. 5.18, MMSSD has a consistent gain over MAR detector in terms of expected

detection delay. As mentioned in Section 2.3.3, the MAR detection is asymptotically

optimal in the condition where l(xt)→ 1, i.e., low SNR conditions. In a higher SNR

condition, MAR may be performing in suboptimal conditions, which explains the
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Figure 5.16: The false alarm rates of Shiryaev’s Bayesian detection and MMSSD
with M=3 and M=5 are designed to be 0.01±0.01 in order to establish a baseline for
comparison. (SNR=10dB, mB = 620, L = 5,W = 105).

longer expected detection times than that of MMSSD.

5.4 Performance of MMSSD in WLAN Traffic

In Chapter 3, the POMDP formulation requires a channel usage model that consists

of geometrically distributed idle and busy times. This is a consequence of modeling

the usage traffic using the exponential ON-OFF process. In this section, this assump-

tion is tested on a traffic model derived from WLAN network characteristics with

stationary UDP traffic.

An ON-OFF model is developed in [8] to characterize the channel usage of UDP in
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Figure 5.17: The false alarm rates of full-sensing MAR detection and MMSSD are
designed to be 0.01±0.01 in order to establish a baseline for comparison. (SNR=10dB,
mB = 620, L = 5,W = 105).

a WLAN network. Channel measurements of over-air UDP traffic generated by three

802.11 wireless terminals are performed. Using this empirical data, the measured

traffic pattern is fit to mixture-based distributions according to the Kolmogorov-

Smirnov criterion. The experimentally derived model has a certain structure: a

WLAN channel can be in one of three states, namely, busy, free, and contention

states. The busy states pertain to when the channel is used to transmit data. Since

WLAN is a packetized network, the dwelling time in a busy state has a value of 0.0062

seconds [8] and is thus deterministic. If a terminal is unable to finish transmitting all

its data within this time frame, it is required to relinquish the spectrum and contend

for access again.

92



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

20

40

60

80

100

120

140

Fraction of Idle Time, ho

Ex
pe

ct
ed

 D
et

ec
tio

n 
D

el
ay

 (s
am

pl
e)

 

 
MAR Full−Sensing
MMSSD Full−Sensing

Figure 5.18: The expected detection delay of full-sensing MAR detection vs. full-
sensing MMSSD. (SNR=10dB, mB = 620, L = 5,W = 105). The 95% confidence
interval does not exceed ±1.

The free state and the contention state are defined as follows: the former is when

none of the terminals in the network is utilizing the channel, and the latter refers to

when the terminals contend with one another to obtain access to the channel. In both

states, the channel is unused, so the free state and the contention state are lumped

into a single idle state in the traffic model. As shown in Fig. 5.19, the ON-OFF

process that represents the WLAN traffic patterns has the ON state mapped to the

busy state, and the OFF state to the lumped idle state that contains both free and

contention states.

The cdf for the random dwelling time in the lumped idle state is characterized by
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Figure 5.19: The states and the dynamics in the WLAN traffic models.

a mixture-based structure, as given by [8],

F (t; k, σ) = pcFc(t) + pfFf (t; k, σ), (5.7)

where pc and pf ≡ (1 − pc) are the fractions of times spent in either contention or

free state, respectively; Fc(t) is the cdf of the contention time that is assumed to be

uniformly distributed on [0, 0.0007seconds]; and Ff (t; k, σ) denotes the generalized

Pareto cdf of the free channel time, parameterized by k and σ:

Ff (t; k, σ) = 1− (1 + k
t

σ
)1/k. (5.8)

Table 5.1 provides the values of parameters used to simulate the WLAN traffic

conditions. The values of the variables k and σ are provided in [8] and are directly

adopted here. However, the value of pc is not given in [8]. The values of pc are
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Transmission Packet Rate (packets/second)
25 50 75 100 150 200

k -0.3013 -0.3604 -0.4014 -0.4893 -0.3199 0.0164
σ 0.0149 0.0162 0.0053 0.0053 0.0021 8.09E-4
pc 0.1 0.2 0.3 0.4 0.6 0.8
λo 0.94 0.9393 0.8161 0.7859 0.5767 0.4167

Table 5.1: The values of parameters for the WLAN traffic model.

assumed in this study to increase linearly with the packet transmission rate on the

basis that more transmissions result in more contention periods; the same assumption

is adopted in [8]. Furthermore, in order to apply the MMSSD algorithm, the packet

transmission rates need to be converted to fractions of idle time. The fraction of idle

time of the WLAN model is computed at each transmission rate during simulation.

A traffic model with geometrically distributed idle and busy periods is used as

a nominal, baseline model to identify performance deviation in the WLAN network.

The simplest way to fit the exponential model to the WLAN traffic model is to match

the first order statistics in both models. However, to ensure that the nominal traffic

model is closely matched to the WLAN traffic models in a more systematic fashion,

the measure of Kolmogorov-Smirnov (KS) distance is used to choose the values of the

parameters in the nominal model; specifically, the values of mI and λo that minimize

the KS distance between the nominal distribution and the mixture distribution of

the WLAN traffic model are chosen. The KS distance is computed using the kstest()

function from Matlab. To illustrate the use of KS distance for distribution fitting, Fig.

5.20 shows a plot of the KS distance at different values of mI for a rate of 75 packets

per second. It can be seen that at mI = 0.0022, the KS distance is minimized. The

same procedure is applied to choose the parameters for all the packet rates. Table
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Figure 5.20: The KS distance between a WLAN model with the traffic of 75 packets
per second and an exponential model parameterized by the variable mI . When mI =
0.0022, the KS distance is minimized.

5.2 shows these values.

In a WLAN network, the scenario that corresponds to high channel utilization

contains terminals that attempt to transmit busty data. Since a terminal only has

enough exclusive access to the channel to send one packet, if it needs to send multiple

consecutive packets, it has to enter the contention state before it can send the next

packet. Therefore, the more busty a transmission is, more frequently the contention

period occurs; consequently, this causes the parameter pc to increase. For the low

utilization scenario, the opposite is true.

Since the purpose of this study is to investigate how MMSSD performs with a

more realistic channel usage model, MMSSD is first designed based on a nominal
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Transmission Packet Rate (packets/second)
25 50 75 100 150 200

mI 0.0103 0.0073 0.0022 0.0017 6.76E-4 4.25E-4
λo 0.94 0.92 0.78 0.73 0.52 0.42

min KS Distance 0.0735 0.1462 0.1227 0.1474 0.0780 0.1085

Table 5.2: The values of the parameters in the exponential ON-OFF model, mI and
λo, are chosen to minimize the KS distance between the nominal distribution and the
mixture distribution of the WLAN traffic model.

channel usage model based on the best KS fit exponential ON-OFF traffic and then

its performance is evaluated using the nominal traffic model. Since according to

the 802.11 standard, the unlicensed 2.4GHz band contains three non-overlapping

channels, the number of available channels, L, is assumed to be three in both models.

Next, the traffic model is switched to the WLAN traffic model in the simulation, and

the same MMSSD detector is tested. Fig. 5.21 shows that the expected detection

delay of MMSSD is larger in a WLAN-based traffic model than that of the nominal

exponential ON-OFF traffic model, and that the observed deviation is relatively small

in regions of low spectrum utilization (i.e. large fraction of idle time) and grows to

be more significant as the idle periods become more scarce (i.e. low fraction of idle

time). In Fig. 5.22, it is observed that the false alarm rate generally rises in the

WLAN-based traffic model compared to the nominal exponential ON-OFF traffic

model. In regions of low spectrum utilization, false alarm performance does not

deteriorate significantly; on the other hand, as spectrum utilization increases and

idle periods become rare, the false alarm rate deviates further from the performance

observed in the nominal exponential ON-OFF traffic model. In short, the assumption

of geometrically-distributed idle and busy times has little impact on performance
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Figure 5.21: The expected detection delay of MMSSD in a WLAN-based traffic model
is compared to the nominal traffic model (SNR=10dB, mB = 620, L = 3,W = 105).
The 95% confidence interval does not exceed ±1.

when the spectrum bands experience low utilization, but becomes inadequate as more

bursty packet transmissions begin to take place.

Two points may help to explain the differences in the detector’s performances

between the WLAN-based traffic model and an exponential ON-OFF model: First,

the number of states in a WLAN system is different from that of an exponential ON-

OFF process. Beside the busy and idle states, there is the contention state, which

governs terminals in a WLAN network. In the WLAN model, both the contention

and the idle periods are considered to belong to the same state, and the duration

of this state is randomly characterized using a mixture-based cdf as seen in Eq.

(5.7). This model contains a mismatch with the exponential ON-OFF model because
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Figure 5.22: The false alarm rate of MMSSD in a WLAN-based traffic model is
compared to the nominal traffic model. The 95 percent confidence intervals are less
than ± 1e-3 and not plotted to maintain legibility. (SNR=10dB, mB = 620, L =
3,W = 105).

the geometric distribution, which models the duration of either an ON or OFF state,

generally does not fit well to a mixture-based distribution. Second, the busy period in

the WLAN model is deterministic because of a fixed packet size. Fitting a geometric

distribution to a non-random deterministic value creates another source of model

mismatch between the WLAN-based model and the nominal exponential ON-OFF

model. Since the MMSSD design is based on the exponential ON-OFF traffic model,

it faces the performance limitation posed by the aforementioned model mismatches.

As seen in Figs. 5.21 and 5.22, when there is less contention (when λo is high) the

performance mismatch seems to diminish. This observation motivates the question on
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how well the match is between the Pareto and the exponential distribution. A study

based on this question may be useful in the assessments the MMSSD performance in

other networks and should be part of the future work on this topic.
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Chapter 6

Summary and Conclusions

6.1 Summary

Spectrum sensing concerns the problem of discerning the state of availability for

frequency bands, which is naturally cast as a detection problem. The thesis studies the

spectrum sensing problem from a new perspective. Chapter 1 provides the motivation

for spectrum sensing and describes the elements that make up the problem.

In Chapter 2, the background section surveys a number of detection methods that

can be applied to the problem of spectrum sensing. The detection methods range

from classical hypothesis testing [1, 2, 9, 17, 22], to the sequential probability ratio

test (SPRT) [24], to various kinds of quickest detectors [10, 12, 18, 21, 25]. For each

detection method, the problem formulations and the procedures are provided to offer

insights into the system models, the assumptions needed, as well as to provide an

overall framework.

In Chapter 3, a problem formulation for a unique spectrum sensing problem is

constructed. This chapter illustrates the differences and similarities between the
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proposed formulation and the existing ones. For example, while the existing detection-

based frameworks deal with detecting idle periods either within a single channel or

with a single sensor, this thesis considers a more general problem where the number

of channels to sense and the number of sensors can both be arbitrary. Another

difference mentioned in this chapter is that the approaches in the existing literature

either assume that the state of a spectrum band does not change at all, as in the cases

of classical hypothesis testing and SPRT [1, 2, 9, 17, 22, 24], or that the state changes

only once, as in the case of quickest detection [10,12,18,21,25]. This chapter presents

a channel usage model to represent the channels’ changes in state as an on-off process

in order to better model the channels’ usage patterns. Furthermore, the durations of

idle or busy periods are characterized as geometrically- distributed random variables.

Some similarities to existing approaches are that the problem criterion considered

in this thesis minimizes the expected detection delay as in the quickest detection

methods, and that the geometrically distribution model for the durations in each

state is adopted from a special case of Shiryaev’s problem in [25]. Another similarity

to Shiryaev’s problem is the approach to measure system reliability via the false alarm

rate.

The remainder of Chapter 3 formulates the problem of spectrum sensing into a new

detection problem using partially observable Markov decision processes (POMDP).

The problem is formulated by extending an existing problem formulation developed

in [29] for one sensor to a new one involving multiple sensors.

In Chapters 4 and 5, new detectors are proposed based on the analysis of the

POMDP framework, and their performances are evaluated via Monte Carlo simu-

lation. A summary of the conclusions from these results in Chapters 4 and 5 are
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highlighted in the following section.

6.2 Conclusions

The POMDP formulation and the optimal multiple process detection structure pro-

posed in [29] is generalized to incorporate an arbitrary number of sensors that are

co-located, provided that the observations from different channels are statistically

independent. Based on this result, a new detector, named here as multiband multi-

sensor spectrum sensing detection (MMSSD), is proposed as a low-complexity and

suboptimal form of the optimal detector. The simulation results show that the detec-

tor derives most of its utility from the first few sensors and that the performance of

a detector possessing a large bank of sensors can be achieved with a smaller number

of sensors.

Recognizing that MMSSD has high computational cost when the number of chan-

nels becomes large, this thesis proposes a reduced-complexity version of MMSSD

(RC-MMSSD). Unlike MMSSD, the complexity of RC-MMSSD in terms of storage

requirements and computational complexity is independent of the number of avail-

able channels. Through simulations, it is demonstrated that RC-MMSSD also benefits

from the addition of sensors in terms of shorter expected detection delays, and that

the first few added sensors yield the most significant reduction in delay.

When comparing RC-MMSSD to MMSSD, the simulation results show that their

performances, in terms of expected detection delay, are comparable. Although RC-

MMSSD has lower complexity than MMSSD, there is no evidence that complexity is

traded off for either system agility or reliability. However, a caveat with RC-MMSSD

exists in that the number of channels must be much larger than the number of sensors.
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If such a condition is not met, the designed threshold ηd = 1 − α for RC-MMSSD

could not meet the false alarm requirement, α. In this case, MMSSD must be used.

In practice, this is an acceptable limitation because the scenario, where the number of

available channels greatly exceeds the number of sensors for many spectrum sensing

applications, is realistic. When designing a spectrum sensing system, where there is

likely to be few sensors available, one can make a suitable choice between MMSSD

and RC-MMSSD, depending on the number of available channels, to achieve both

system agility and reliability.

The performances of MMSSD and RC-MMSSD are compared to other quickest

detectors, which include Page’s CUSUM (Section 2.3.1), Shiryaev’s Bayesian Detector

(Section 2.3.2), and MAR (Section 2.3.3). When these existing quickest detectors are

applied to sensing a channel modelled as an on-off process, our results show that the

false alarm rates encounter an error floor. Since the POMDP problem formulation

factors in the on-off model, MMSSD and RC-MMSSD do not experience such an error

floor. This enables the design of MMSSD and RC-MMSSD to satisfy a wider range

of false alarm requirements.

The comparisons among MMSSD, RC-MMSSD, and the quickest detectors can

only be conducted using simulation parameters that avoid the error floor. In addition,

to compare the detectors in a multi-channel setting, the quickest detection method

requires modification, since previously existing quickest detectors are designed to de-

tect in a single channel. The modification produces a full-sensing quickest detector

that can sense in multiple channels. Since there must be one quickest detector per

channel, the number of sensors deployed for a quickest detection system is always
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equal to the number of available channels. In these configurations, MMSSD per-

forms comparably to the CUSUM and Shiryaev’s Bayesian detectors. Initially, it was

thought that the channel usage model could significantly affect performance due to

the a priori information. However, in all the cases simulated, it is observed that the

channel model offers little additional information to the detector when the average

duration in either the busy or idle state grows large. The results suggest that the

performance gain due to the channel usage model is limited when the error floor is

not an issue for the quickest detectors.

It is also observed that the ability for MMSSD and RC-MMSSD to dynamically

switch channels to sense provides for more efficient use of sensors than the quickest

detectors. The MMSSD and RC-MMSSD consistently achieve similar performances to

their full-sensing quickest detector counterparts with fewer sensors. When comparing

RC-MMSSD with full-sensing CUSUM, the performance gain in terms of expected

detection delay is most significant. For example, when there are 30 channels to sense,

it is demonstrated through simulation that RC-MMSSD with 3 sensors achieves a

very similar performance to CUSUM with 30 sensors. It is therefore evident that

the utility per sensor of MMSSD and RC-MMSSD is much higher than that of the

quickest detection methods.

A separate study examines the application of a nominal exponential on-off traffic

model in the POMDP formulation to a WLAN-based traffic model that was experi-

mentally verified [8]. The simulation results using MMSSD based on a nominal expo-

nential on-off traffic model appear to be overly optimistic, as shown by the significant

performance degradation observed for the WLAN-based traffic model.
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6.3 Future Work

One of the goals of this thesis is to investigate how a priori information on channel

usage impacts detection performance. When system reliability of the quickest detec-

tors is not affected by the error floor, MMSSD has demonstrated limited performance

improvement over the quickest detectors. This suggests that there is possibility for

future research on incorporating improved models for channel usage into the detector

optimization, e.g., to apply a better detection framework that incorporates a more

realistic traffic models, or to research into scenarios when more than one sensor can

sense the same channel, lifting the strong independence restriction. Specifically, it

ought to be possible to develop a detector that directly exploits the more realistic

WLAN traffic model.

Another area of future work is to further study the performances of MMSSD

and RC-MMSSD using signals obtained from an actual wireless network. Studies

using real world signals, which requires the access to a network, may be costly to set

up. However, with a suitable industry partner, the ability to access the real world

data may become feasible and would provide new ways to evaluate the practical

performances of MMSSD and RC-MMSSD.
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