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Abstract—In this paper, a joint linear minimum sum mean-
squared error transceiver optimization problem is formulated for
multiuser MIMO uplink systems under a sum power constraint
assuming imperfect channel state information (CSI). Two meth-
ods are proposed to solve this problem. One is based on the
associated Karush-Kuhn-Tucker conditions. The other is to solve
an equivalent problem, approaching the solution by solving a
sequence of semi-definite programming problems. After obtaining
the solution to the optimization problem, we investigate the effects
of channel estimation errors and antenna correlation at the base
station on system performance. Simulation results are provided.

I. INTRODUCTION

Due to its low complexity as well as its effectiveness
in managing both multiple access interference and inter-
stream interference, joint minimum sum mean-squared error
(MSMSE) linear precoder-decoder design has been proposed
to improve multiuser MIMO spatial multiplexing systems [1]-
[7]. Hereafter, we refer to a precoder and decoder pair for each
user as a transceiver pair.

Joint MSMSE linear transceiver designs for the MIMO
uplink have been studied under both sum power and per-
user power constraints [1]-[3]. A separate treatment for the
downlink can be found in [4][5]. More recently, an uplink-
downlink duality has been found, which implies that with
perfect channel state information (CSI), under the same sum
power constraint, the achievable signal-to-interference-plus-
noise ratio regions or the MSE regions for both links are the
same [6]. Based on the duality, the more involved downlink
problem has been tackled by forming and solving a dual uplink
problem [6]. The same idea has also been adopted in [7].

Most of previous work has assumed perfect CSI. However,
in practice, CSI is imperfect. Recently, a duality in average
sum MSE between the uplink and the dual downlink with
imperfect CSI has been shown in [8] and [9] using different
approaches. Therefore, in this paper, we focus only on the
uplink transceiver design with imperfect CSI. Our goal is to
jointly optimize the transceiver pairs and then investigate the
effects of channel estimation errors and antenna correlation at
the base station (BS) on system performance.

After presenting the model of imperfect CSI, we formulate
the uplink transceiver optimization problem. Two methods are
proposed. One is based on the Karush-Kuhn-Tucker (KKT)
conditions associated with the original problem. The other

is to solve an equivalent problem, approaching the solution
by solving a sequence of semi-definite programming (SDP)
problems. The effects of channel estimation errors and chan-
nel correlation on system performance are then assessed by
simulation.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. Uplink system model

Consider a single cell in cellular communication systems.
The BS is equipped with M antennas. There are K mobile
stations (MSs, users), each with N; antennas, i = 1,..., K.
The uplink channels are denoted by H;, i = 1,... , K.

Suppose that user ¢ has [; data streams, denoted by the
l; x 1 (I; < min(M, N;)) vector x;, i = 1,..., K. These data
vectors are assumed to be zero-mean, white with F(x;x) =
I,,, for all ¢ (V2), and mutually independent among users. Here
I,,, denotes the m x m identity matrix. Before the data streams
are sent into the air, a linear precoder is employed for each
user, which is denoted by the N; x[; matrix F;, i =1,..., K.
The signal vector received at the BS antennas is given by
Yul = Zfil H,F;x; + n,;. The noise vector n,; is zero-mean
white complex Gaussian, i.e., /\fc(O, O'% -Ips). The data and the
noise are assumed to be statistically independent. At the BS,
to recover the data for the user j, a linear decoder, denoted
by the [; x M matrix Gy, is used. An estimate of the data
vector for user j, j = 1,..., K, can thus be expressed as
yl,j = Gjyul = G]‘ [Zszl HZF»LXZ] + Gjnul.

B. Channel model and imperfect channel state information

It is assumed that the antennas at each MS are spatially
uncorrelated due to the presence of a large number of lo-
cal scatterers. Therefore, the uplink channel model is given
by [10]: H; = Eg/QHwi, where 3; (seen by user ¢) is the
normalized BS antenna correlation matrix with unit diagonal
entries, ¢+ = 1,..., K. The entries of H,,; are independent
and identically-distributed (i.i.d.) AN.(0,1), Vi. In practice,
CSI is obtained through channel estimation. The uplink CSI
model at the BS can be expressed as [17]: H; = H; + E;,
i=1,...,K, where H; = £/°H,;, and E; = X./°E,,.
The entries of H,,; and E,,; are iid. N,(0,(1 — 0%,)) and
N(0,0%,), respectively, where 0%, is the channel estimation
error variance for user ¢, ¢ = 1, ..., K. Furthermore, for each
1, the entries of I:I,; and E; are independent. We assume that
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the channel estimates {I:I,}Z 1, the channel estimation error
variances {02, } X |, the noise variance 2, and the BS antenna
correlation matrices {X;}X, are avallable at the BS. Here
{a;} | denotes {ai,...,ax}.

C. Problem formulation
With the above CSI model,
K
= Z(I:L + E;)Fix; + ny.

i=1

Yul

The MSE matrix for user j is given by

MSEu,; = E[(rw,; — —x;)"]

K
-

S HEFIH]
- GH;F; -

%;)(Tut,j

+ UiIM} Gf
i=1

R T,

K
> = BE.FFE])

i=1

+ G, G vy,

where E{-} denotes statistical expectation taken over the
distributions of the channel noise vector, the data vectors and
the channel estimation error matrices. Let ¢r(-) denote the
trace operation. Then it can be shown that

K
MSE.,; =G, { {Z H,F.F/a

i=1

+O',,21 'IM} Gf

+G; GY

E UEZ

- GjHij ~-F/H]G] +1,,,

tr(F,FF) . 3,

where E {E..F.F{'E[;} = 0%, - tr(F;F{") -1, has been used.
The sum MSE from all users is then given by mseu: =
Z L tr(MSEy; ;). The uplink problem is to minimize the
(average) sum MSE subject to (s.t.) a sum power constraint:

K
mseu,e st. »_tr(F;Fj) < Pr. (1)

j=1

min
{(F;,G)},
After obtaining the solution to the above problem, we in-
vestigate the effect of channel estimation errors and antenna
correlation on system performance.
In the following, we assume that the joint optimizations
are performed at the BS, and then the optimum filters (i.e.,
precoders) for the users are sent to the MSs.

III. THE JOINT OPTIMIZATION

A. An iterative algorithm for solving (1) based on the KKT
conditions

The problem in (1) is non-convex. However, it can be
shown that a global minimum exists for (1) [17]. Further-
more, both the objective and the constraint functions are
continuously differentiable. Since we only have one inequality
constraint, any feasible set {F;, G;}X, is regular. Thus the
KKT conditions are necessary for optimality [16]. Similar
to [2][5], we now propose an algorithm developed from
the KKT conditions. The Lagrangian associated with (1) is:
Loy = msey s + ,uul{[zjl.(:l tr(FjF;'q)] — Pr}, where i, is the
Lagrange multiplier associated with the sum power constraint.

The associated KKT conditions are given by (2)-(5) (Note:
k=1,...,K):

K
FIHY {ZHFF HY +07. IM}

J:1

+ Gy @

ZUEJ r(F,F]) %

{uul +aEthr(G szH)} Fr,

K

2 GG

fyGy —{Af

frur > 0, Ztr (F,F}') < Pr, “

j=1
K

Hal * {Z tr(F;Fj') -
=1

Proposition 1: (Relation between the Lagrange multiplier
and the receive filters) For any solutions satisfying the KKT
conditions, the following identity holds:

=0. 5)

K
put = (07 /Pr) - >_tr(GrGf). (6)
k=1

Proof: The proof is solely based on the KKT conditions. It
is omitted due to space constraints and can be found in [17].
In Table I, an iterative algorithm is developed based on
the KKT conditions [(2)-(5)]. Similar algorithms have been
used in [2] and [5] with perfect CSI. However, here we
update the Lagrange multiplier using (6), which is simpler
and more accurate than the method in [2][5], as the latter
requires eigenvalue decompositions and a solution to a non-

linear equation for each update of the Lagrange multiplier.

TABLE 1
THE KKT-BASED ITERATIVE ALGORITHM

1)  Initialize F, kK =1,..., K, which are non-zero and satisfy
the power constraint with equality.
2) Update G using 2), k=1,...,K;
G =FHHI Y H;F,FIHT 402 -1y
+2 50 oy - tr(FFH) 2]
3)  Update p,,; using (6);
4) Update F using 3), k=1,..., K;
Fyp = [ﬂH(Z G G)Hy + pu - Iy,
+o2, - 2 L, tr(G 2 GH) Iy, ] THI G
5)  If the termination condition is met, stop; otherwise, go back
to 2).

As in [2][5][7], we cannot show that the iterative algorithm
in Table I is guaranteed to achieve the globally optimum
solution (except when K = 1 [15]), despite the fact that the
global minimum exists. This is because the objective function
in (1) is not convex in {F;,G;}X,!, and thus the KKT

'Note that in (1), the objective function is non-convex in {F;, Gl}zK: 1
even when 0%, = 0, Vi.
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conditions are not sufficient for global optimality. However,
starting from a set of non-zero {F;}X ,, the algorithm yields
reasonable results as shown by simulation in Section IV. In
the next subsection, we seek an alternative solution.

B. Solving (1) by solving an equivalent problem

In this subsection, we assume that the number of data
streams is equal to the number of transmit antennas for each
user, i.e., [; = N;,2 = 1,..., K. The uplink problem (1) can
be equivalently formulated as [12]

min min

MSEylt-
(P}, XK, r(®FA<Pr {Gi}),

It turns out that the inner minimization is achieved when (2)
is satisfied for all k. Then it can be shown that
} + const,

where const denotes a constant that equals Z]K:l tr (Ilj) —
tr (Ins) and we have defined that Q; = F;F},Vj, and

K
mseqy;: = tr {X [UiIM + Z U%jtT(Qj)Ej

Jj=1

-1

K K T
X= [Z H,;QH] + Z optr(Q)E; +onln| . (D)

=1 j=1

Therefore, instead of solving (1) directly, we attempt to solve
the following equivalent formulation [12]:

. -
tr {X {Z optr(Q))E; + onlas } . ®

min
X {Q, 1, =1 ]
K
st. Y tr(Q) < Pr, )
j=1
X as given in (7), (10)
Q;>=0,7=1,..., K. (11

Proposition 2: When 0%, = of and ; = Xpg,j =
1,..., K, (8)-(11) is equivalent to the following SDP problem:

tr{X - [o21y + 03 PrEps]},

min
X; {Q] }_g(:1

K
s.t. Ztr(Qj) S PT,
j=1

(X I )}0
Iy Yoo HQHT + 03 PrEps+02Ly) =
Q=0j=1,...,K,

where A > 0 means that matrix A is positive semi-definite.
Proof: The proof is an extension of that in [3]. Details can
be found in [17].

A SDP involves a convex optimization [12] and can be
solved using the software in [13]. A globally optimum so-
Iution is guaranteed. Once the globally optimum solution is
obtained, {F; }JK:1 can be obtained by performing Cholesky

2 K : —
factorizations® of {Q;};%,, due to the assumption that [; =

?Here the optimum {Q; }JK:1 is unique. However, {F; };(:1 is not unique.
If {F; }JK:1 is an optimum set, in terms of sum MSE, then {F;U; }JK:1 is
also an optimum set, where {U;} 5(: 1 1s any set of unitary matrices of proper
size. We take this into account in our simulations.

N;,j = 1,...,K [3]. The corresponding {(}j}f:1 can be
obtained using (2).

Clearly, the result in Propesition 2 has very limited ap-
plication, because of the conditions required (a%j = 0% and
¥, = Xpg, Vj). In general, the equivalent problem given by
(8)-(11) is not a SDP, because the objective function in (8) is
not convex. However, Proposition 2 provides a basis to find
a solution to the equivalent problem. Specifically, we have a
SDP-based iterative algorithm given in Table II. (See below.)

TABLE 11
THE SDP-BASED ITERATIVE ALGORITHM

1) Initialize Q; = [Pr/(KNj)] - In;,Vj. Calculate the value of
the objective function f°'? using (7) and (8), given {Q; }f(:l
2)  Given {Qj}JK:l, calculate B = Z;il a%jtr(Qj)Ej + 021y
3)  Solve the SDP problem given by (12)-(15) to obtain a new set
of {Q; };(: ;- Calculate the value of the objective function f™¢",
i.e., the value of (12).
4)  If |frew — fold| < g, stop; otherwise, set fold .= frew,
and go back to 2).

During each iteration, the matrix B is fixed and thus the
problem given by (12)-(15) is a SDP problem:

min tr{XB (12)
X {Qi1S, {XB}
K
sty tr(Q;) < Pr, (13)
j=1
(X Tu ) =0 (14)
Iy Yoo, HQHI+B) ="
Q=0,j=1,...,K. (15)

Essentially, the algorithm in Table II approaches the solution
by solving a sequence of SDP problems which approxi-
mate and converge to that given by (8)-(11). After obtaining
{Q;}<,, we can obtain {F;, G}, as mentioned earlier.

Remark: According to the uplink-downlink duality with
imperfect CSI [8][9], when we need to jointly optimize the
linear MSMSE transceiver pairs with imperfect CSI for the
downlink, we can first formulate a dual uplink problem, find
the {F;, G;}X | for the uplink using the above two methods,
and then translate the transceiver pairs for application in the
downlink. (Note that to use duality, we do not need to use the
assumption of channel reciprocity. The dual link is virtual.)

IV. NUMERICAL RESULTS

A. Simulation setup

The BS antenna correlations for different users are given
by [14][15]: 2 pg = pP 79 where 0< p; < 1,i = 1,..., K,
and p,q € {1,...,M}. When simulating the average bit
error probability (ABEP) performance, 4-QAM is used in each
user’s data streams. The sum MSE and the ABEP of User 1
are displayed.
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B. Comparison of the KKT-based algorithm and the SDP-
based algorithm

To show the equivalence of results obtained from the two
algorithms in Tables I and II, we provide an example. Here the
error variances are: 03, = 0.01,0%, = 0.015, 0%, = 0.008.
The BS antenna correlation exponents are: p; = 0.8, p2 =
0.7,p3 = 0.5. We set Pr/o2 = 20 dB. In addition, let the
number of users K = 3, the number of BS antennas M = 6,
and the number of antennas at each user N; = [; = 2,¢ =
1,..., K. Using the channel estimation method in Section II-
B, we obtain the following channel estimates based on a
specific channel realization:

—0.3597 — 0.1932¢  0.1346 + 0.05841

T T
—&— KKT-based, higher p s
—k— SDP-based, higherp s
—<— KKT-based, lower p s
—+— SDP-based, lower p s

Average Sum MSE

Higher p’s:p, = 0.8, Py = 0.7, Py = 0.5;
Lower p’s: p,=05,p,=03,p;=02

2 2 2 .
Ogy =0.01, o, = 0.015, o, =0.008;
K=3,M=6N=1=2i=1.., K.

0 5 10 15 20 25 30
SNR = P,/o? (dB)

Fig. 1. A comparison between the sum MSEs obtained from the KKT-based
and the SDP-based algorithms described in Tables I and II.

solving a SDP problem (see Proposition 2). Fig. 2 shows the
comparison results, where 0% = 0.01, p = 0.5, K =3, M =
6,N; =1; =2,Vi.

: :
—6— KKT-based
| —+—sDpP

0.3479 — 0.7599: 0.2668 — 0.8746¢
I, — 0.4694 — 0.1864: —0.6294 — 0.1607%
0.1349 +0.0139:  —0.8027 + 0.4571¢ |’
0.8689 — 0.2719¢ 0.0640 + 0.2839¢
0.5744 — 0.08737  —1.1839 4 0.0323¢
—0.1467 — 0.7230¢  0.4247 + 0.7612¢
0.8363 — 1.0421¢ 0.2147 — 0.4386¢
I, — 0.0837 — 0.51441 0.2536 + 0.24941
0.0150 — 0.0124¢ 0.0077 + 1.0058: |’
0.2739 + 0.09114 0.4388 + 0.96697
0.2869 + 1.0564:  —0.0046 — 0.1422¢
0.9220 + 0.2587:  —0.0724 — 1.1417¢
0.4581 — 0.0645¢ 0.4294 — 1.0561¢
H. — —0.0474 — 0.1073¢  0.0493 + 0.02041
37| 0.7621 —0.4112i  —0.8851 4 0.03914
0.3653 + 0.5164:  —0.3619 + 0.3661¢

Average Sum MSE

K=3,M=6,Nl=ll=2,i=1,2,..,, K;

0.6788 + 0.5998;  —0.8428 4 0.3026+

The comparison of the two algorithms is given in Table III.
We find that the two algorithms yield equivalent results.
However, the complexity of the SDP-based algorithm is much
higher than that of the KKT-based algorithm, where complex-
ity is measured by the computation time required for both
algorithms to converge. Both algorithms are run on the same
hardware using MATLAB.

TABLE III
A COMPARISON OF THE TWO ALGORITHMS

SDP-based | KKT-based
achieved sum MSE 0.9384 0.9372
average computation time (seconds) 5.3030 0.1090

Similar comparison results can also be observed for different
channel realizations and with different system parameters.
Fig. 1 shows more comparisons of these two algorithms
with different values of Pr/o2 and with different channel
correlation parameters. Each point on the curve is obtained
by averaging the sum MSE from 10,000 channel realizations.

When 0%, = 0% and p; = p,Vi (i.e., ¥; = ¥pg, Vi), the
KKT-based algorithm yields the equivalent sum MSE as from

02EI=0§=0_01;pl=p=0.5,Vi.

0 5 10 15 20 25 30
SNR =P /c” (dB)

Fig. 2. A comparison between the sum MSEs obtained from the KKT-based
algorithm and the SDP described in Proposition 2.

We can see that the results obtained using the KKT-
based algorithm are consistent with those from the SDP-based
algorithm as given by Table II, or from solving a single SDP
problem as in the case specified by Proposition 2. Therefore,
below we investigate the effect of channel estimation error
and BS antenna correlation based on the {F;, G, }X , obtained
from the algorithm given in Table I or Table II.

C. Effect of channel estimation errors and BS antenna corre-
lation

Fig. 3 shows the effect of channel estimation errors as well
as the effect of channel correlation. Comparing Curves 1 and
3 or Curves 2 and 4, we observe that channel estimation
errors cause a large performance degradation on the ABEP
of User 1. Comparing Curves 1 and 2 or Curves 3 and 4,
we can see that BS antenna correlation also has a significant
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impact on system performance. For example, from Curves
3 and 4, the performance degradation is about 4 dB when
[p1, p2, p3] changes from [0.5,0.3,0.2] to [0.8,0.7,0.5] (with
other parameters fixed).

Fig. 4 shows the ABEP results of User 1, when the number
of BS antennas, M, increases from 6 to 8. Increasing M
implies introducing more antenna diversity. Therefore, from
Curves 1 and 3 or Curves 2 and 4 in Fig. 4, it is obvious that
the effect of channel estimation errors can be compensated
by introducing diversity. Note that one can also introduce
diversity by transmitting fewer data streams (i.e., reducing
li,i=1,...,K).

Higher p's: p,=0.8, p,=0.7; p;=0.5;

Lower p'si p,=0.5, p,=0.3, p3=0.2;: - ~

1070k K=3,M=6, N, = 1. =3, =12, K; .. : o
¥ L 2 _

Ertor variances: o =0.01, a_,=0.015, 62370.008,

ABEP of User 1

—4|| —©— 1——-higher p s, with est. err.s

—#— 2———lower p s, with est. err.s

—— 3-—-higher p s, without est. err.s|

—<— 4———lower p s, without est. err.s
n n

0 5 10 15 20 25 30
SNR = P,/o’ (dB)

Fig. 3. Comparison of the ABEP of User 1 with or without channel estimation
errors and with different amounts of channel correlation.

T T
—&— 1-——M=6, higher p s|
—*— 2——M=6, lowerp s

—— 3-—-M=8, higher p |
—%— 4——-M=8, lowerp s

ABEP of User 1

Higher p's:p1=0.8, p,=0:7,p3=0.5;
107} Lower pis:p;=0.5,0,%0.3, p5=0.2;
K=3, Ni=li= 2,i=1,2,..K;

2 2 :
02,=0.01, 6%,=0.015, oZ,=0.008.

10° i i i i i
0 5 10 15 20 25 30

SNR = Pchzn (dB)

Fig. 4. Comparison of the ABEP of User 1 with channel estimation errors
and different amounts of antenna diversity.

V. SUMMARY

A joint linear transceiver optimization problem has been
formulated for the multiuser MIMO uplink system. Two algo-
rithms are proposed to obtain the solution. One is based on the
KKT conditions, the other is based on solving a sequence of
SDP problems. Simulation results have shown the consistency

in average sum MSEs obtained from both algorithms. The
effect of channel estimation errors and BS antenna correlation
has been assessed by simulation.
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