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ABSTRACT 

 

In this paper, we consider the problem of minimizing long-

term sum power under the constraint of an average sum rate 

in fading multiple input multiple output (MIMO) broadcast 

channels (BC) with additive Gaussian noise. This problem 

arises frequently in dynamic power allocation and power 

efficiency optimization for wireless communication systems. 

It is complementary to sum capacity maximization with a 

sum power constraint for a fading MIMO downlink. We 

first formulate the equivalent convex optimization problem 

using the duality between the MIMO multi-access channel 

(MAC) and the MIMO BC. Then we derive a simple and 

fast iterative water-filling algorithm based on the 

subgradient and bisection methods that computes the long-

term sum power of the transmitter. Theoretical analysis and 

numerical simulations show that the proposed algorithm 

converges to the minimum sum power globally and 

efficiently. 

 

1. INTRODUCTION 

 

In cellular wireless MIMO communication systems, power 

allocation and power efficiency optimization have attracted 

considerable attention due to the fading characteristics of 

the wireless channel and the performance limitation caused 

by inter-cell or intra-cell interference. An iterative water-

filling algorithm that maximizes sum capacity with 

individual power constraints for Gaussian vector multi-

access channels was proposed in [1]. Jindal et al. [2] have 

considered the problem of maximizing sum rate with sum 

power constraint for a Gaussian MIMO BC based on the 

duality between the MIMO MAC and the MIMO BC [3]. 

The asymptotic convergence rate of the algorithm proposed 

in [2] becomes slow as the number of users increases. Yu 

introduced an algorithm to solve the same problem as in [2] 

by dual-composition [4], which is not influenced by the 

number of users. All of the above methods solve the 

capacity maximization problem with a power constraint. On 

the other hand, in [5], an iterative algorithm was proposed 

to solve the transmit power minimization problem in a 

Gaussian vector BC under rate constraints for individual 

users. In [6], a complete characterization of MIMO MAC 

and MIMO BC capacity regions and power regions were 

provided under various power and rate constraints. An 

efficient numerical algorithm was also proposed. Zhang et 

al. have studied the multi-user power region based on the 

channel distribution information and the rate demand of 

each individual user in [7]. These papers assume individual 

rate constraints for all users. More recently, Michel et al. [8] 

considered the minimization of sum power with a sum rate 

constraint for the MIMO BC. The algorithm assumes a 

short-term power constraint for MIMO broadcast channel 

and is only a minor modification of the algorithm proposed 

in [2]. Furthermore, the algorithm is only applicable to 

single block fading channels.  

This paper considers the minimization of long-term 

sum power with an average sum rate constraint for the 

fading Gaussian MIMO BC. Power allocation under the 

long-term constraint provides more significant gain 

compared to the case under the short-term one [9]. Power 

can be allocated among different fading states and among 

different antennas. We consider power allocation and power 

efficiency optimization simultaneously. Firstly, we 

transform the non-convex downlink problem into a convex 

uplink problem by the duality between the MIMO MAC and 

the MIMO BC. Then an iterative water-filling algorithm is 

derived based on the subgradient and one-dimensional 

search method for computing transmitter sum power. In 

addition, the algorithm also determines the transmitter 

optimal input covariance matrices in different fading states. 

Notation: In this paper, lower case bold letters denote 

vectors and upper case bold letters denote matrices. 

S denotes the determinant, the inverse, 1S ! HS the 

Hermitian transpose and the trace of a square matrix 

. denotes statistical expectation.

( )Tr S

S {}E M N"
! denotes the 

space of M N" matrices with complex entries. The 

distribution of a complex Gaussian vector with mean vector 

# and the covariance matrix is denoted by $

( , )CN # $ . means that the matrix is positive semi-

definite. 

0S %

 

2. SYSTEM MODEL 
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We consider a discrete fading Gaussian MIMO BC with the 

base station equipped with r transmit antennas and K users 

each equipped with t receive antennas. (Note that our 

analysis below can be easily generalized to the case where 

users are equipped with different numbers of antennas). The 

base station communicates with all users simultaneously. A 

block fading channel model is assumed, i.e., the channel is 

assumed constant during each block, and possibly changing 

from one block to another. The fading process is assumed to 

be jointly stationary and ergodic. Thus, at each channel 

state , the fading Gaussian MIMO BC is denoted as 

follows. 

n

K

1) ( )

 
( )) ( )H

Kn H n&!
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By the duality of the MIMO BC and MIMO MAC, the sum 

capacity of the MIMO BC is equal to the sum capacity of 

the dual MIMO MAC, and then (4) can be denoted by[2][3]: 

sum capacity sum capacity
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where denotes the signal covariance 

matrix transmitted by the user for the MIMO MAC in 

fading state . 

( ) { ( ) ( )}H

k k kS n E x n x n' $ $

thk

n
where denotes a transmitted signal vector. 

 and denote, respectively, the 

received signal vector and the complex channel matrix of 

user The vector denotes the 

additive Gaussian noise received by the user with 

. Now consider the following dual MIMO 

MAC: 

1( ) rx n "0!
1t"0!

,  1, , .k k K' "

(0, )CN I%

( )ky n

( )kz n

( ) t r

kH n "0!

1( ) t

kz n "0!

thk

 

3. PROBLEM FORMULATION 

 

1

1

( )

( ) ( ) ( )    ( ).

( )

H H

K

K

x n

y n H n H n z n

x n

* +
, -* +' (. / , -
, -. /

$

$ $" #

$

"

              (2) 

In this paper, we study the long-term sum power 

optimization (spatial and temporal power optimization) 

under the constraint of an average sum rate in fading 

Gaussian MIMO BC. The problem can be formulated as 

follows: 

Here denotes the signal vector received by the 

base station; denotes the signal vector 

transmitted by the user, and denotes a 

complex additive Gaussian noise vector  received by the 

base station with . 

1( ) ry n 0$ !

$

$

1( ) t

k
x n "0!

thk

( ) (z n CN%

1( ) rz n "0$ !

0, )I

With perfect transmitter channel state information, 

Dirty Paper coding (DPC) can be employed at the 

transmitter. The Dirty Paper encoding 
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where the expectation is with respect to the channel fading 

distribution. Obviously, this is a non-convex function 

of . However, by combining 

(4-6), we can translate (6) into an uplink problem denoted 

by 

(1) (2) ( )( ), ( ), , ( )KQ n Q n Q n& & &"

& is assumed without loss of 

generality, where & is a permutation, and then the 

achievable rate of user ( )k& in fading state n can be 

denoted by: 

( ) ( ) ( ) ( )

1

1

( ) ( ) ( )
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where denotes the signal 

covariance matrix transmitted to user

( ) ( ) ( )
( ) ( ) ( )H

k k k
Q n E x n x n& & &*' .

( )k&  in fading state , 

in which the expectation is taken over the code-book. Thus 

the sum capacity of MIMO BC can be written in the 

following form: 

n Here, we can remove the expectation and assume instead 

that is a random variable taking on the values of fading 

states, 

n

1,2, ,n ' "

( )

 each state having the same probability 

distribution f n  [6] as the channel is stationary. Thus 
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Using the well-known dual-decomposition method [11], the 

minimization of the expression (10) can be decomposed into 

independent problems N

R      (8)      (8) 

( )
1 1

( ) min ( ( )) log ( ) ( ) ( ) .
k

K K
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S n
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' ! () )$  

(13) 
The objective function is linear, and the constraints are 

concave in the space of positive semidefinite matrices. 

Therefore (8) is a convex optimization problem. In general, 

a convex optimization problem can be solved using the 

interior point method [10]. Here, we will exploit the 

structure of the optimization problem and derive a simple 

and efficient iterative water-filling algorithm.  

The objective function is linear, and the constraints are 

concave in the space of positive semidefinite matrices. 

Therefore (8) is a convex optimization problem. In general, 

a convex optimization problem can be solved using the 

interior point method [10]. Here, we will exploit the 

structure of the optimization problem and derive a simple 

and efficient iterative water-filling algorithm.  

Then, the Lagrange dual function ( )g 2  can be denoted by 

1

1
( ) ( ) .

N

n

n

g g
N

2 2 3

'

' () $ R2                              (14) 

Each optimization problem introduced in (13) can be 

written as 
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4. ITERATIVE WATER-FILLING ALGORITHM 4. ITERATIVE WATER-FILLING ALGORITHM 

  

For ease of computation, assume uniform state distribution 

for all n ,

For ease of computation, assume uniform state distribution 

for all n , ( ) 1/( ) 1/f n ' N . The Lagrangian associated with the 

optimization problem (8) is 

4 5
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Obviously, (15) belongs to a class of convex optimization 

problem. Here we employ a simple iterative water-filling 

algorithm to compute in (15). The Lagrangian 

associated with (15) is denoted as  

( )kS n

1
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where 2 is the dual variable ( Lagrange multiplier). 
where k6 are the matrix dual variables associated with the 

positive definiteness constraints. The Karush-Kuhn-Tucker 

(KKT) condition can be obtained by setting ( ) 0kL S n7 7 '$ : 

The Lagrange dual function is defined as [10, 11] 

4 5
( ) 0

( ) min  ( ( ) , ).
k

k
S n

g L S n2 2
%

'                      (10) 

For a convex problem, if Slater’s condition holds, the 

optimal duality gap is zero. Note that by using enough 

power, 
1 1

1
log ( ) ( ) ( )

N

N K
H

k k k

n k

I H n S n H n
' '

() ) can be made 

large enough to contain the specified rate as an interior 

point. Thus for expression (8), Slater’s condition holds. The 

primal problem (8) can be solved by solving the following 

Lagrange dual problem. 

1
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1
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This is the water-filling condition for a Gaussian vector 

channel.  In the problem given by (15), 2 is given and thus 

the water-filling level is fixed. The procedure of water-

filling can be described as follows [4] 

 
Algorithm 1 iterative Multiuser water-filling with fixed water level  

max    ( )

s.t.     0.

g 2
2 8

                                          (11) Given a fixed water level 2  

While the algorithm is not convergent do 

    For 1k ' to K do Here, as the Lagrange dual function ( )g 2 is concave [10] 

and 2 is a single variable, a standard one-dimension search 

method can be utilized to obtain the result. However, it is 

observed from the structure of ( )g 2 that it is not easy to take 

its gradient. Thus, we find a subgradient [12] instead of  the 

gradient here. 

       Perform multiuser water-filling over { } while fixing kS 1,{ }K

i i i kS ' 9  

     end for  

end while 

 

The above table presents an algorithm to solve (15) for 

a given 2 . To solve the problem given by (11), we still need 

to find the subgradient of ( )g 2 . To the end, substituting (13) 

into (14) results in: 

To obtain the subgradient of ( )g 2 , we need solve the 

optimization problem (10). Firstly, the Lagrangian (9) can 

be denoted by the following expression through simple 

manipulations: 

4 5 *

1 1 1

( ( ) , )

1
( ( ( )) log ( ) ( ) ( ) ).

N

k

N K K
H

k k k

n k k
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Let be the optimizing 

solutions of (18). Then for

( ), 1, , , 1, ,
k
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can be obtained: 
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Fig.1 illustrates the convergence behavior of Algorithm 

1 when the water-filling level 2 is fixed and 10K ' . It is 

observed that the algorithm of multi-user water-filling with 

fixed 2 converges, and the rate of convergence is fast. 

n

                                                                                          

(19) 

Fig.2 illustrates the convergence behavior of Algorithm 

2 for a fading Gaussian MIMO BC with 10 users. It is seen 

that the algorithm converges at about the 10th iteration.  Our 

algorithm thus provides a considerably fast convergent rate. 

Fig. 3 illustrates the convergence behavior of 

Algorithm 2 for a fading Gaussian MIMO BC with 50 users. 

It is also shown that the algorithm converges at about the 

10th iteration. Thus the convergence rate of the proposed 

algorithm does not appear to be influenced by the number of 

users. We have also tried to vary the number of users and 

have observed convergence rate that seems to be 

independent of the number of users. 

Thus, *

1 1

1
( log ( ) ( ) ( ) )

N K
H

k k k

n k

h R I H n S n H n
N

3

' '

' ! () ) is a 

subgradient of ( )g 2 . By the bisection linear search method, 

if *

1 1

1
( ) ( ) ( )

N K
H

k k kH n S n H n
N

3

' '

 
log

n k

R I8 () ) , then increase 

water-filling level 2 . Otherwise decrease 2  until the 

stopping criteria for the bisection method is met. 

6. CONCLUSION 

 

In this paper, an iterative water-filling algorithm is proposed 

to solve the problem of minimizing of long-term sum power 

for fading Gaussian MIMO BC with a system throughput 

constraint. We transform the non-convex downlink problem 

into a convex uplink problem by the duality between the 

MIMO MAC and the MIMO BC. Then by the equivalence 

of the primal problem and Lagrange dual problem, we solve 

the Lagrange dual problem based on the subgradient and 

one-dimensional search method, which allows us to solve 

the primal problem. Theoretical analysis and numerical 

simulations show that the proposed algorithm provides low 

complexity and fast convergence rate. Furthermore, the 

convergence rate is not influenced by the number of users.  

The proposed algorithm is summarized as follows: 

 
Algorithm 2 

1) Initialize min max,2 2 ; 

2) Set min max / 2 ; ( )2 2 2' (

3) Solve the optimization problem (12) with the water-filling level 

2 by Algorithm 1; 

4) Compute the subgradient h . If 0h 8 , then min2 2' , otherwise 

max2 2' ; 

5) If max min2 2! is less than the given tolerance, stop. Otherwise, goto 

2). 

 

As the proposed algorithm in this paper exploits the 

specific structure of a convex optimization problem and 

uses the iterative water-filling method, the complexity of the 

algorithm is linear with , whereas the complexity of the 

standard interior point convex optimization algorithm is 

cubic with K  using Newton’s method. Using the bisection 

search method, our algorithm convergents globally. This is 

true even when we choose arbitrary feasible initial points 

for

K

2 . 
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Fig.1 the convergent behavior of Algorithm 1 when 2 is fixed 

 
Fig.2 the convergent behavior of Algorithm 2 with 10 users 

 
Fig.3 the convergent behavior of Algorithm 2 with 50 users 
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