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Abstract— Recent information theory results have indi-
cated that a large channel capacity exists for wireless sys-
tems with multiple transmit and receive antennas. With
different assumptions of channel knowledge and interference
knowledge at the transmitter, the channel capacity of mul-
tiple input multiple output (MIMO) systems has been stud-
ied under both spatially white and colored interference and
noise. In this paper, we fix the total interference-plus-noise
power and evaluate the outage capacity under two spatially
colored interference environments: (1) a few high-data-rate
interferers each with high power, (2) a large number of low-
data-rate interferers each with low power. The results show
that MIMO capacity is larger with fewer high-data-rate in-
terferers. We also assess the impact of an estimated channel
and/or interference on capacity. In the case of 4 transmit
and 4 receive antennas for the user of interest, 10 interferers,
total-interference-to-noise ratio and signal-to-noise ratio are
both 20dB, the results show that it is beneficial to estimate
the channel and/or interference if the variance of estimation
error is less than about 50% of the variance of true channel
and/or interference.

I. Introduction

Recent information theory results have indicated that
a large channel capacity exists for wireless systems with
multiple transmit and receive antennas [1]. With different
assumptions of channel knowledge and interference knowl-
edge at the transmitter, the channel capacity of multiple
input multiple output (MIMO) systems have been studied
under both spatially white and colored interference and
noise by applying different power allocation schemes at the
transmitter [2][3]. Meanwhile, in future generation wire-
less communication systems, multi-rate data services will
be dominant. To support users of different data rate at a
certain quality of service (e.g., a certain level of bit error
rate), the user’s transmit power is, in general, proportional
to the data rate. Therefore, high-data-rate users need high
transmit powers.

In multiple-access systems, the interference is, in gen-
eral, spatially colored. In this paper, we fix the total
interference-plus-noise power and examine the MIMO out-
age capacity under two spatially colored interference en-
vironments: (1) a few high-data-rate interferers each with
high power, (2) a large number of low-data-rate interfer-
ers each with low power. We would like to find out under
which interference environment a MIMO system achieves
a higher outage capacity. The assumption of fixed total
interference-plus-noise power is reasonable since in wire-
less systems, likely there is some mechanism, such as power
control, to control the interference experienced by a user.
The result of this work has the implication on design of

the medium access control (MAC) protocols and schedul-
ing of packet transmissions in future wireless systems. We
will also assess the impact of an estimated channel and/or
interference on capacity.

II. System Model

We consider a single-user narrowband link with interfer-
ence from other users. The user of interest is equipped with
M transmit and N receive antennas. Each interfering user
has one transmit antenna, and the same N receive anten-
nas as the user of interest. The received signal vector y
(N × 1) is

y = Hs +

√

PI

L

L
∑

i=1

hisi + w

︸ ︷︷ ︸

n

(1)

where H (N × M) is the MIMO channel matrix of the
user of interest, s (M × 1) is the transmit signal vector
of the user of interest, n (N × 1) is the interference-plus-
noise vector at the receiver. The number of interferers is
L, PI is the fixed total interference power, hi (N × 1) is
the channel vector of the ith interferer, si is the ith inter-
ferer’s transmit signal with unit power, and w (N × 1) is
the thermal noise with covariance matrix E{ww†} = σ2IN
where † denotes transpose conjugate. The channel matrix
H and the channel vectors hi’s are mutually independent,
and assumed to be quasi-static (constant over one frame)
having uncorrelated realizations in different frames. It is
further assumed that the elements in H and hi are iden-
tically independent distributed (i.i.d.) complex Gaussian
random variables (RVs) with zero-mean and unit variance.
This implies flat Rayleigh fading and that antennas are
separated far apart. The signal of the user of interest s,
the interfering signal si, and the thermal noise w are mu-
tually independent. It is obvious in (1) that each interferer
has the same power. More interferers in the system, lower
power each interferer has. It can be shown that the covari-
ance matrix of the interference-plus-noise is

R0 = E{nn†} =
PI

L

L
∑

i=1

hih
†
i + σ2IN , (2)

and the covariance matrix of the received signal is

E{yy†} = HΣsH† + R0 (3)

where Σs = E{ss†}.



In our system model, we assume each interferer has one
transmit antenna. However, it is easy to accommodate
interferers with more than one transmit antenna by aggre-
gating several interfering users with one transmit antenna.

III. Channel Capacity

In this section, we derive the MIMO channel capacity
with spatially colored interference and under different as-
sumptions of channel and interference knowledge at the
transmitter: (1) both channel and interference covariance
matrices H and R0 are available, (2) only H is available,
and (3) neither H nor R0 is available. In all the cases, we
assume that the receiver knows the channel H. Comparing
to [3], our derivation uses a modeled interference covariance
matrix as (2). In addition, we give a new interpretation of
MIMO channel capacity under spatially colored interfer-
ence.

We introduce the differential entropy of a circularly
symmetric complex Gaussian random vector. If x is
a circularly symmetric complex Gaussian random vector
with covariance matrix Q, the differential entropy of x is
log2 det(πeQ). In addition, circularly symmetric complex
Gaussians are entropy maximizers [4].

Assuming the interference-plus-noise n in (1) is circularly
symmetric complex Gaussian, the optimal distribution for
the signal s is then circularly symmetric complex Gaussian
[4] [5]. As the receiver knows the channel, the mutual in-
formation between the channel input and output is given
as

I(s;y)

= log2 det
[

πe(HΣsH† + R0)
]

− log2 det(πeR0)

= log2 det
(

IN + R−1H
Σs

σ2 H†
)

= log2 det
[

IN +
(

R−1/2H
) Σs

σ2

(

R−1/2H
)†

]

(4)

where

R =
PI

σ2 · L

L
∑

i=1

hih
†
i + IN , (5)

and the third equality comes from the facts that det(I +
AB) = det(I+BA) for square matrices A and B and R−1/2

is Hermitian. We denote PI
σ2 as the ratio of total interfer-

ence power to noise power. The channel capacity is the
maximized mutual information with transmit power con-
straint tr(Σs) ≤ PT , i.e.,

C = max
tr(Σs

σ2 )≤PT
σ2

log2 det
[

IN +
(

R−1/2H
) Σs

σ2

(

R−1/2H
)†

]

,

(6)

where PT
σ2 is the ratio of signal power to noise power.

Eqn. (6) suggests that we could consider R−1/2H as
a combined channel. As a result, the capacity in (6) is

equivalent to the capacity of the combined channel R−1/2H
under spatially white noise. With this new interpretation
and the results of channel capacity under spatially white
noise in [2], we obtain the capacity with spatially colored
interference and noise.

A. Both channel and interference information at the trans-
mitter

By applying water-filling power allocation with the com-
bined channel R−1/2H at the transmitter, the channel ca-
pacity is

C =
M
∑

i=1

log2(1 + piλi), (7)

the optimal transmit signal covariance matrix is

Σs = σ2U diag(p1, . . . , pM )U† (8)

where

H†R−1H = UΛU†, Λ = diag(λ1, . . . , λM ), (9)

λ1, . . . , λM are the eigenvalues of H†R−1H, U is an uni-
tary matrix consisting of eigenvectors of H†R−1H,

pi = (µ− 1
λi

)+ (10)

where µ is chosen such that

M
∑

i=1

pi =
PT

σ2 , (11)

and (x)+ denotes the larger of 0 and x.

B. Neither channel nor interference information at the
transmitter

If the transmitter applies uniform power allocation
across the transmit antennas, i.e., Σs = (PT /M)IM , the
capacity is given by

C = log2 det
(

IN +
PT

M · σ2 R−1HH†
)

. (12)

C. Only channel information at the transmitter

It is claimed in [3] that the optimal power allocation
is the water-filling using H and assuming interference co-
variance matrix to be an identity matrix, i.e., the optimal
transmit signal covariance matrix Σs is obtained from (8)-
(11) by setting R = IN , and the capacity is obtained by
substituting the resultant Σs into (4). However, no justifi-
cation that this scheme is optimal was given in [3]. At the
same time, if we consider R−1/2H as a combined channel,
without knowing R, we do not know this combined chan-
nel. As a result, uniform power allocation at the trans-
mitter should be used, i.e., the capacity is as (12). It is
not obvious which power allocation scheme gives a higher



capacity, uniform power allocation (Section III-B) or water-
filling (Section III-A) using R = IN . Uniform power allo-
cation does not use the known channel information, while
the water-filling scheme uses the incorrect interference in-
formation. We simulated 10,000 sets of H and R, and in
all cases water-filling scheme using H only gives a higher
capacity than uniform power allocation. However, no proof
that this is true in general has been found.

IV. channel capacity with estimated channel
and interference

When the transmitter is provided with estimates of chan-
nel and/or interference covariance matrix, we can calculate
the capacity by applying water-filling as in Section III-A
using estimated interference covariance and channel ma-
trices R̂ and Ĥ, respectively. As a result, we are able to
evaluate the degradation of capacity due to estimation er-
ror of channel and interference covariance matrices.

We model the estimate of H as

Ĥ = H + EH (13)

where H is the true channel. The elements in the estima-
tion error matrix, EH , are i.i.d. zero-mean complex Gaus-
sian. This implies that the estimation errors of channel
are mutually independent. We assume that the variance
of estimation error is proportional to the variance of true
channel. Therefore, the variance of the (i, j)th element of
EH , EH,ij , is specified by

VAR(EH,ij) = µH ·VAR(Hij) (14)

where µH is the parameter that controls the quality of the
estimate. As the (i,j)th element in H, Hij , is complex
Gaussian with unit variance, VAR(Hij) = 1.

Similarly, we model the estimate of R as

R̂ = R + ER (15)

where R is the true interference covariance matrix. We
restrict the estimation error matrix ER to be Hermitian.
We assume that the elements in the lower triangle of ER,
ER,ij for i ≤ j, are mutually independent. The elements
ER,ij for i < j are i.i.d. complex Gaussian, while the
diagonal elements of ER are i.i.d. real Gaussian. Again,
the variance of ER,ij is specified by

VAR(ER,ij) = µR ·VAR(Rij). (16)

The variance of the diagonal elements in R can be calcu-
lated as

VAR(Rjj) =
(

PI

σ2 · L

)2 L
∑

i=1

VAR(hijh
†
ij) (17)

where hij is the jth element in vector hi. Since hij is
zero-mean complex Gaussian with unit variance, hijh

†
ij

is chi-square distributed with 2 degree of freedom, and

VAR(hijh
†
ij) = 1. As hij ’s are i.i.d. for all i and j, we

have

VAR(Rjj) =
(

PI

σ2

)2 1
L

. (18)

The variance of off-diagonal elements in R is

VAR(Rj1j2) =
(

PI

σ2 · L

)2 L
∑

i=1

VAR(hij1h
†
ij2). (19)

Let hij1 = a1+jb1, hij2 = a2+jb2, and a1, a2,b1 and b2 are
i.i.d. zero-mean complex Gaussian with unit variance. It
can be shown that E(hij1h

†
ij2) = 0 and VAR(hij1h

†
ij2) = 1.

With specified µH and µR, we are able to simulate esti-
mated channel and interference covariance matrices Ĥ and
R̂, respectively. The optimal transmit signal covariance
matrix Σs is found by applying water-filling, i.e., (8)-(11)
with estimates Ĥ and/or R̂. The capacity is then obtained
by substituting the resultant Σs into (4).

V. Simulation Results

We calculate the capacity under different assumptions of
knowledge of channel and interference at the transmitter.
For the case of only channel information at the transmitter,
we use (8)-(11) and set R = IN to obtain the capacity. As
H and R are random matrices, the capacity is treated as
a random variable. The performance measurement here is
the 10% outage capacity, C0.1, where P (C < C0.1) = 10%.
Monte Carlo simulation is used to obtain the 10% outage
capacity.

In Fig. 1, we fix the total interference power and evaluate
the outage capacity as the number of interferers increases.
The user of interest is assumed to have 4 transmit and 4
receive antennas. The ratio of signal power to noise power
and the ratio of total interference power to noise power
are both 20dB. We find that the 10% outage capacity de-
creases significantly as the number of interferers increases.
When the channel and interference are not known at the
transmitter, the capacity with one interferer is 16 bps/Hz.
This number is reduced sharply to 3 bps/Hz with 10 in-
terferers each with one tenth the power. This implies that
MIMO systems perform more efficiently where there are a
few strong interferers.

In Fig. 2, we fix the number of interferers to be 4, and
examine the outage capacity as we increase the ratio of to-
tal interference power to noise power. Again, the user of
interest is assumed to have 4 transmit and 4 receive an-
tennas. The ratio of signal power to noise power is 15dB.
We observe that when the total interference power is low,
knowing only the channel allows us to achieve about the
same capacity as that in the case of full knowledge of chan-
nel and interference. However, when the total interference
power is high, without interference information, knowing
only the channel leads to about the same capacity as that
in the case of no channel and interference knowledge at the
transmitter.



In Fig. 3, assuming the user of interest has the same
number of transmit and receive antennas, we calculate the
outage capacity as the number of transmit antennas in-
creases. We fix the number of interferers to be 4, the ratio
of signal power to noise power and the ratio of total inter-
ference power to noise power are both 20dB. We observe
that the capacity increases almost linearly as the number
of antennas. In addition, the differences in capacity under
different knowledge of channel and interference increase as
the number of antennas increases.

In Fig. 4, we assess the degradation of channel capacity
using estimated channel and/or interference. The user of
interest is assumed to have 4 transmit and 4 receive anten-
nas, and the ratio of signal power to noise power and the
ratio of total interference power to noise power are both
20dB. The number of interferers is 10. In the case of no
knowledge of channel and interference at the transmitter,
we compare the capacity of uniform power allocation to
that of water-filling using estimated channel and interfer-
ence. We observe that, for µH = µR, when µH and µR are
less than 50%, water-filling using estimated channel and
interference achieves a higher capacity than uniform power
allocation. In the case of only channel information at the
transmitter, we compare the capacity of water-filling us-
ing known channel and estimated interference to that of
water-filling using channel only. Again, for µH = µR, we
observe that when µR is less than 50%, water-filling using
known channel information and estimate of interference co-
variance matrix is better than water-filling using channel
information only. Fig. 4 also shows the degradation of ca-
pacity due to estimation error of channel and interference
for cases of µH = 0.1µR and µH = 10µR.

VI. Conclusions

In this paper, we fixed the total interference-plus-noise
power and examined MIMO outage capacity under differ-
ent interference environments: (1) a few high-data-rate in-
terferers each with high power, (2) a large number of low-
data-rate interferers each with low power. The results show
that MIMO capacity is larger with fewer high-data-rate
interferers. We also evaluated the degradation of outage
capacity using estimated channel and/or interference.
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Fig. 1. 10% outage capacity versus number of interferers. The user of
interest has 4 transmit and 4 receive antennas, the ratio of signal
power to noise power is 20dB, and the ratio of total interference
power to noise power is 20dB.
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Fig. 2. 10% outage capacity versus the ratio of total interference
power to noise power. The user of interest has 4 transmit and 4
receive antennas, the ratio of signal power to noise power is 15dB,
and the number of interferers is 4.
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Fig. 3. 10% outage capacity versus number of antennas, assuming
the user of interest has the same number of transmit and receive
antennas. The number of interferers is 4, the ratio of signal power
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to noise power is 20dB.
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Fig. 4. 10% outage capacity versus µR. The user of interest has 4
transmit and 4 receive antennas, the number of interferers is 10,
the ratio of signal power to noise power is 20dB, and the ratio of
total interference power to noise power is 20dB.


