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MIMO Minimum Total MSE Transceiver Design
With Imperfect CSI at Both Ends

Minhua Ding, Member, IEEE, and Steven D. Blostein, Senior Member, IEEE

Abstract—This paper presents new results on joint linear
transceiver design under the minimum total mean-square error
(MSE) criterion, with channel mean as well as both transmit and
receive correlation information at both ends of a multiple-input
multiple-output (MIMO) link. The joint design is formulated into
an optimization problem. The optimum closed-form precoder and
decoder are derived. Compared to the case with perfect channel
state information (CSI), linear filters are added at both ends
to balance the suppression of channel noise and the noise from
imperfect channel estimation. The impact of channel estimation
error as well as channel correlation on system performance is
assessed, based on analytical and simulation results.

Index Terms—Channel state information (CSI), mean-square
error (MSE), multiple-input multiple-output (MIMO), precoding,
spatial multiplexing.

I. INTRODUCTION

M ULTIPLE-INPUT MULTIPLE-OUTPUT (MIMO) sys-
tems have been subject of recent extensive research, due

to their capability of providing high data rates through spatial
multiplexing [1], [2] and their capability of providing diversity
through space-time coding [3] or beamforming [4], [5].

Previously, precoder designs or joint precoder-decoder
designs for MIMO spatial multiplexing systems have been pro-
posed to improve data rates or to enhance link reliability. Linear
designs are often preferred due to complexity constraints, es-
pecially for mobile terminals. Various performance measures
have been considered as the design criteria, e.g., minimum
total mean-square error (MSE) from all data streams [6], [7],
minimum weighted MSE [8], maximum mutual information
(capacity) [1], [7], [8], minimum Euclidean distance between
received signal points [9] and minimum bit error rate (BER)
[10]. A comprehensive study of joint precoder-decoder de-
signs under MSE-based, signal-to-interference-plus-noise-ratio
(SINR)-based, or BER-based criteria has been presented in
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[11]. Among those, the minimum total MSE criterion aims at
improving system BER performance. It leads to convenient
analysis, balances interference and noise suppression, and has
been widely adopted in single-user (point-to-point) MIMO,
multiuser MIMO, or MIMO-OFDM systems [12]–[14].

Precoder designs or joint precoder-decoder designs require
channel state information (CSI) at the transmitter (CSIT) and
at the receiver (CSIR). In coherent communications (the case
considered throughout this paper), CSIR is obtained by channel
estimation. To enable signal processing at the transmitter, CSIR
is transferred to the transmitter side [15]. CSIT thus acquired is
usually imperfect, due to channel estimation error and/or limi-
tations of the feedback link.

The minimum total MSE transceiver designs for MIMO sys-
tems have been studied in [6]–[8], [11] and [15]–[19], under
different CSI assumptions. In [6]–[8] and [11], the optimum
precoder and decoder are derived assuming that perfect CSI is
available at both ends. Later there have been more practical de-
signs that consider imperfect CSIT. In [16], the minimum total
MSE design has been studied with outdated CSIT and perfect
CSIR. In [17], [18], [39, Sec. VII], it is assumed that the CSIT is
the channel mean information (CMI) and/or channel correlation
information (CCI) [20], whereas the receiver has perfect CSI.
The imperfectness in CSIR has also been addressed. In [19, Ch.
7], the same imperfect CSI is assumed at both ends, but there
the channel correlation has not been accounted for. In [39, Sec.
VI], closed-form robust designs (including the minimum total
MSE design) have been derived assuming that the same imper-
fect CSI, including channel mean and receive correlation in-
formation, is available to both ends. The same CSI assumption
is also used in [15], where the minimum total MSE design has
been specifically studied. However, to the best of our knowl-
edge, little attention has been paid to the joint design where the
same imperfect CSI, including channel mean and transmit cor-
relation information, is available at both ends. This case is very
interesting, since in practical downlink systems, the mobile is
often surrounded by many local scatterers, whereas the base sta-
tion is often situated at high enough elevation to limit scattering
and thus the channels from different transmit antennas are cor-
related. The more general case, when the CSI at both ends is
imperfect and both transmit and receive antennas exhibit some
correlation, also remains as an open problem.

In this paper, we address the problem of linear precoding/de-
coding to minimize the total MSE with imperfect CSI at both
ends of a single-user MIMO link. The CSIR here is composed
of the estimated channel (channel mean) as well as transmit
(and more generally, transmit and receive) correlation informa-
tion. To simplify the analysis, we assume that the feedback is
error-free and instantaneous, as in [15], [21], [22], and [39, Sec.
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VI], which implies that the CSIT is the same as CSIR.1 The as-
sumption of instantaneous feedback is partly justified since, as
will be shown by our simulations, the system has acceptable
performance with a reasonably low feedback delay. The design
under the above assumption is a step forward from that assuming
perfect CSI at both ends [6]–[8], [11]. It can also serve as a basis
for comparison to future system designs which explicitly take
into account the errors and/or delays in the feedback link. Our
contributions in this paper can be summarized as follows.

1) A detailed model for channel estimation is presented and
the CSI is described. A minimum total MSE design is then
formulated as a nonconvex optimization problem under a
total transmit power constraint.

2) The closed-form optimum linear precoder and decoder
are determined by solving this nonconvex optimization
problem. Our analysis and results are extensions of those
in [6]–[8], [11] to the case with imperfect CSI. The re-
sults obtained here gracefully fit those in [6]–[8], [11]
when channel estimation error diminishes, and match the
discussions in [15], [19, Ch. 7] when there is no channel
correlation (or those in [39, Sec. VI] when there is no
transmit correlation). The analysis here can also be ex-
tended to other quality-of-service (QoS)-based designs
through the minimum weighted MSE design. The rela-
tionship between the minimum total MSE design and the
maximum mutual information design is discussed under
the above assumed imperfect CSI.

3) Based on analytical and simulation results, the impact of
channel estimation error as well as the effect of transmit
and receive correlation is assessed.

The rest of the paper is organized as follows. Section II de-
scribes the system model, the CSI model, the minimum total
MSE problem formulation and the basic methodology. For ease
of presentation, in Section III the minimum total MSE design
problem is solved assuming channel mean and transmit corre-
lation at both ends, and then in Section IV, the analysis is ex-
tended to the more general case with both transmit and receive
correlation as well as channel mean information at both ends.
Numerical results are presented in Section V and conclusions
are given in Section VI.

Notation: Upper (lower) case boldface letters are for matrices
(vectors); denotes statistical expectation and stands
for trace; means the determinant of matrix ; and

denote complex conjugate and complex conjugate trans-
pose (Hermitian), respectively; ; is the

identity matrix; denotes the circularly symmetric
complex Gaussian distribution; denotes the vectoriza-
tion operation which stacks the columns of into a column
vector; is used for the Kronecker product; means that
matrix is positive semidefinite.

II. SYSTEM MODEL, PROBLEM FORMULATION, AND

METHODOLOGY

A. System Model

Linear precoding/decoding for a MIMO link is addressed. It
is assumed that antennas are used at the transmitter and

1One can also assume that the system is implemented offline, and the pre-
coding matrix is calculated at the receiver and then fed back to the transmitter
[12].

antennas are used at the receiver. The information symbols to
be sent are denoted by a vector , where the number of
data streams is chosen and fixed. The data vector is
then fed into the precoder, denoted by , which is a
linear matrix processor and takes the available CSIT into ac-
count. After the precoder, the data vector is transmitted across
the slowly varying, flat, Rayleigh fading MIMO channel, de-
scribed by the matrix . The received signal
vector at the receive antennas is , where is the
spatially and temporally white additive Gaussian noise with dis-
tribution . The input signal is assumed to be
zero-mean and white , and independent of channel
realization. In the receiver, a linear decoder described by the

matrix is employed to recover the original informa-
tion. At the output of the decoder, the signal vector is given by

.
We use the channel model in [23], i.e., ,

where is a spatially white matrix whose entries are indepen-
dent and identically distributed (i.i.d.) . The matrices

and represent normalized transmit and receive correla-
tion (i.e., with unit diagonal entries), respectively. Both and

are assumed to be full-rank.

B. Modeling Channel Estimation

It is assumed that channel estimation is performed on
using the well-established orthogonal training method

[15], [24]. At the receive antennas, the signal matrix
is received in successive time

slots, where is a known training signal matrix
and is the collection of channel noise vectors. Thus

(1)

Let denote the total training power, i.e., .
Choose , where is a unitary matrix

scaled by . Premultiplying both sides of (1) by

and then postmultiplying the resultant formula by ,
we obtain

Let . The entries of are i.i.d. with
. Then

(2)

To obtain a better channel estimation performance, the min-
imum MSE (MMSE) channel estimation of is performed
based on (2) [15], [21], [22], [25], which yields

(3)

Furthermore, is expressed as the sum of and the esti-
mation error matrix, i.e.

(4)
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where the entries of are i.i.d. . Detailed deriva-
tions of (3) and (4) are provided in Appendix A. Let

. The CSI model is described by

(5)

where is the true channel matrix, is
the estimated channel matrix (i.e., the channel mean), and

is the channel estimation error matrix.
In summary, the CSI is given by (3)–(5). In subsequent sec-

tions, we assume that , , , , and are known to
both ends of the link, which is referred to as the channel mean
as well as both transmit and receive correlation information.
(Note that this implies knowledge of .)

We point out that in [22], a different CSI model for the
channel is employed, which is given by

, with and ,
where the entries of and are assumed to be i.i.d.. How-
ever, in [22] it is assumed that a genie-provided estimate of

(i.e. ) is available at the receiver. In comparison,
this is not required in our channel estimation method or
CSI model. Also, in [39, Sec. VI], it has been assumed that

, where is the channel mean, and
is spatially white (i.e., with i.i.d. entries). It is important

to note that the analysis to be presented in this paper can be
applied exactly the same way when using the CSI model in [22]
or [39, Sec. VI].

C. Problem Formulation

With the above CSI, the received signal vector can be
written as

(6)

The system MSE matrix is calculated as

MSE

(7)

Using our assumptions on the statistics of the channel, noise,
and data, with some manipulations, we can simplify (7) as

MSE

(8)

In the above, we have used the result
, if the entries of matrix are i.i.d. , as

well as the identity .
Our goal is to find a pair of appropriate and , such that the

sum of MSEs from different data streams is minimized subject
to a total power constraint , i.e.

MSE

(9)

This is referred to as the minimum total MSE design. We are
also interested in determining the effects of channel correlation
and channel estimation error on system performance.

Note that when , our problem in (9) reduces to those
treated in [6]–[8] and [11]. Also, when and ,

is replaced by as in [15], [19, Ch. 7], [39, Sec.
VI], and the problem (9) becomes mathematically equivalent
to the perfect CSI case. However, the case with and

has not yet been considered in the literature.

D. Methodology

The objective function of (9), i.e. MSE , is non-
convex in , and thus the methods designed for convex
problems are not applicable here. Fortunately, it can be shown
that a global minimum exists for the problem in (9) (see
Appendix B). Furthermore, the objective and constraint func-
tions of (9) are continuously differentiable (with respect to
and/or ). Since there is only one inequality constraint and no
equality constraints in (9), any feasible precoder-decoder pair
is regular whether the inequality constraint is active or inactive
[26, pp. 309, 310].2 The global-minimum-achieving
therefore satisfies the first-order Karush-Kuhn-Tucker (KKT)
necessary conditions for optimality [26, p. 310, Proposition
3.3.1]. Our method is then to find all the solutions which satisfy
the KKT conditions and identify the optimum among
them.

Note that if minimizes the total MSE, so does
, with being an arbitrary unitary matrix.

Below we refer to a specific optimum precoder-decoder pair as
the optimum solution up to a unitary transform.

III. A SPECIAL CASE: ,

From (2)–(4), it can be shown that when ,
, with both and being spatially white.

The entries of and are mutually uncorrelated, and are
i.i.d. and , respectively, with

. The CSI model is described by
, where is the channel

mean, and . Here we assume that , , and
are known to both ends, which is referred to as the channel

mean and transmit correlation information.
When , the MSE matrix in (8) reduces to

MSE

(10)

The problem formulation here is the same as (9), except that
the MSE matrix is given by (10). The associated Lagrangian
is MSE ,
where is the Lagrange multiplier. By taking the derivatives of

with respect to and [27], [33], together with
the power constraint and complementary slackness, the associ-
ated KKT conditions can be obtained as follows:

(11)

2According to [26, pp. 309, 310], a feasible point is said to be regular if either:
(i) all equality constraint gradients and active inequality constraint gradients at
this point are linearly independent; or (ii) in the case of no equality constraints,
all the inequality constraints are inactive at this point.
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(12)

(13)

(14)

Clearly, if , then an obvious solution satisfying the
KKT condition is: , , and . Note that
( , ) is a regular feasible point at which the only
inequality constraint is inactive [26, pp. 309, 310]. However, this
case is not interesting to us in practice. Therefore, we proceed to
search for those solutions with (referred to as the nonzero
solutions).

Lemma 1: For any solution satisfying the KKT conditions
(11)–(14), .

Proof: See Appendix C.
Consider the following eigenvalue decomposition:

(15)

Let be equal to the rank of the matrix in (15), i.e.,
, the number of nonzero channel eigenmodes.

Here the matrix consists of basis vectors
for the null space of (15). The entries of the diagonal matrix
are all zero. The matrix is composed of the eigen-
vectors corresponding to nonzero eigenvalues. Without loss of
generality, the entries of the diagonal matrix are arranged in
decreasing order.

Lemma 2: Assume that the number of data streams is equal
to . The precoder and decoder satisfying the KKT conditions
(11)–(14) can be expressed as

(16)

(17)

where and are arbitrary matrices, and comes
from (15).

Proof: See Appendix D.
Theorem 1: Assume that the number of data streams is

equal to . Without loss of generality, the optimum precoder and
decoder for (9) have the following expressions, respectively:

(18)

(19)

The diagonal matrices and are given by

(20)

(21)

where

(22)

(23)

Let the integer denote the number of nonzero en-
tries of . Scalars , , , and
are traces of the top-left submatrices of ,

, , and
, respectively. The

optimum precoder-decoder pair obtained here is unique up to
a unitary transform.

Proof: As derived in Appendix E, all the nonzero solu-
tions of satisfying the KKT conditions are given by
(18)–(23) up to a unitary transform. The method to determine
the number is also included there. Thus, we have obtained
all the solutions satisfying the KKT conditions (11)–(14), in-
cluding ( , , ), and the nonzero solutions
given by (18)–(23) up to a unitary transform. It can be readily
shown that all the nonzero solutions lead to the same total MSE,
which is lower than the MSE yielded by ( , ,

) [33]. Therefore, we conclude that the nonzero solu-
tions [(18)–(23), up to a unitary transform] are equivalent global
MSE-minimizers.3

Remark 1: When , Theorem 1 reduces
to the results in [6]–[8] or [11]. Compared to the results ob-
tained under perfect CSI, we observe from (18) and (19) that a
linear filter is added to both the transmitter and receiver here,
to balance the suppression of channel noise and the noise from
imperfect channel estimation. Furthermore, the estimation error
variance is coupled with the transmit correlation matrix .

Remark 2: From (18), when , transmission along
the eigenmodes of is optimum, and the channel estima-
tion error simply contributes additional noise . This
result has been mentioned in [15], [19, Ch. 7], [39, Sec. VI].
When , the filter
becomes a scaled version of . This implies that the op-
timum precoder asymptotically cancels the effect of and
transmits along channel eigenmodes of the white part of the
channel estimate .

IV. THE GENERAL CASE: AND

Consider the general problem formulated in (9). Applying the
same method as in the special case, the associated Lagrangian is

MSE , where
is the Lagrange multiplier. Correspondingly, the KKT condi-

tions associated with (9) can be derived, as given by (24)–(27)

(24)

(25)

(26)

3One can verify the results in Theorem 1 using the Saddle Point Theorem
[26, p. 491, Proposition 5.1.6]. Basically, the optimum solution obtained here
satisfies a necessary and sufficient condition for global optimality.
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(27)

It can be shown that Lemma 1 still holds here, i.e.,
for any solution which satisfies the KKT

conditions (24)–(27). Define

(28)

Consider the following eigenvalue decomposition:

(29)

where the subscript “g” means the general case, the matrices
, , , and are similarly defined as those in (15), and
denotes the rank of the matrix in (29), i.e., .

The diagonal entries of are arranged in decreasing order.
Theorem 2: Assume that the number of data streams is

equal to . Without loss of generality, the optimum precoder
and decoder for (9) can be expressed as

(30)

(31)

where is from (29), and are diagonal
matrices, as given

(32)

(33)

Inserting (30)–(33) into the power constraint
as well as the definitions of and in (28) results in three
equations with , , and being the unknowns. By solving
these equations numerically, the values of , , and can be
determined. The optimum solution obtained using this method
is unique up to a unitary transform.

Proof: The proof is similar to that for Theorem 1 and it is
omitted for brevity. Details are available in [33].

Theorem 2, hence, provides the structures of the optimum
precoder and decoder. However, the scalars , and need
to be determined numerically, which can be a difficult task. Al-
ternatively, (9) can be solved using an iterative algorithm devel-
oped from the KKT conditions [12], [13], [28], which is given
in Table I. This algorithm converges according to [13]. Further-
more, starting from a nonzero feasible , this algorithm ob-
tains a nonzero solution satisfying the KKT conditions. Since
all the nonzero solutions satisfying the KKT conditions lead to
the same minimum total MSE, we conclude that the iterative al-
gorithm obtains a solution equivalent to the one obtained from
Theorem 2 up to a unitary transform. Therefore, Table I presents

TABLE I
AN ITERATIVE ALGORITHM FOR SOLVING (9) IN THE GENERAL CASE

a convenient method for the general case. Note that our method
to update the Lagrange multiplier (see Table I) is different
from that in [12] or [13]. In fact, our method is much simpler
and more reliable in simulations, as the method in [12] and [13]
requires an eigenvalue decomposition and a solution to a non-
linear equation for each update of the Lagrange multiplier.

Remark 3: We have assumed in Theorem 1 and
in Theorem 2. If the number of data streams is

chosen to be strictly smaller than the number of nonzero channel
eigenmodes, i.e., the strongest eigenmodes are used, then re-
dundancy is introduced, which can be translated into improved
diversity and, thus, performance improvement [8], [29]. How-
ever, the diversity effect is achieved at the cost of a reduced
number of data streams (and thus reduced data rate). Therefore,
there is a diversity-multiplexing tradeoff here [30]. The choice
of according to channel conditions to guarantee a constant
rate has been studied in [29] assuming perfect CSI at both ends.
Also, the optimum choice of to guarantee that the MSE in
every data stream is lower than a given target (in addition to the
total transmit power constraint) has been studied in [15] where
channel estimation error and receive correlation only are con-
sidered. It is possible to extend the method in [15] to the more
general setting presented in this paper.

Remark 4: In [8], the minimum weighted MSE joint trans-
ceiver design has been studied under perfect CSI at both ends.
It includes several other designs as special cases, e.g., the QoS-
based designs which achieve different SNRs on different sub-
channels by adjusting the weighting matrix. It is straightfor-
ward to extend our analysis to the minimum weighted MSE de-
sign with the imperfect CSI assumed earlier [33]. The impact
of channel estimation error and channel correlation on these de-
signs can then be investigated.

Remark 5: (Relation between the minimum total MSE design
and the maximum mutual information design) The minimum
total MSE design and the maximum mutual information design
are closely related. In [7] and [11], it is pointed out that, under
perfect CSI, the minimum total MSE design minimizes the trace
of a MSE matrix, whereas the maximum mutual information
(capacity) design minimizes its log-determinant. Furthermore,
the optimum transmitters for both designs differ only in a diag-
onal power allocation [7], [8], [11]. With imperfect CSI, exact
capacity formulas are difficult to obtain. Instead, tight upper-
and lower-bounds on mutual information are derived to deter-
mine appropriate transmission strategies [21], [31], [32]. In [31,
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Sec. IV-B], a lower-bound problem on maximum mutual infor-
mation (capacity) has been formulated with channel mean and
transmit correlation information at both ends, i.e.

and a numerical search method has been used to determine
the optimum transmit covariance matrix . However, using
a method similar to that for our minimum total MSE design,
the closed-form optimum transmit covariance matrix can be
determined [33], and can be written as .
The matrix has the same structure as in (18), i.e.,
it also consists of a linear filter, a matrix composed of channel
eigenmodes and a diagonal power allocation matrix. Interest-
ingly, with channel mean and transmit correlation at both ends,
the optimum transmitters for both designs differ only in the
diagonal power allocation, as they do under perfect CSI. The
relation between these two designs in the general case (with
both transmit and receive correlation) has also been determined
in [33].

V. NUMERICAL RESULTS

A. Simulation Scenario

Let . The exponential model is used for
both transmit and receive correlation [31], [34]. Specifically,
the transmit correlation model is given by:
for . The receive correlation matrix is
similarly defined with the exception that is replaced by
and that the indices range from 1 to . QPSK is used for each
data stream. The optimum matrices and or and

are chosen specifically as (18) and (19) or (30) and (31),
respectively. For the minimum total MSE design, a relevant per-
formance measure is the average bit error probability (ABEP)
per data stream [8], defined as ,
where is the BEP of data stream . Define SNR as .
For fair comparisons, we fix in the training stage and
let vary with . In our simulations,

is chosen to be 16.016 or 26.016 dB, which corresponds
to or 0.01 if .

B. Simulation Results

Example 1: Effects of transmit and receive correlation when
there is no channel estimation error [ ;

; ; ]
Fig. 1 is obtained when there is no channel estimation error

. High correlation is observed to have a large impact
on system performance. It is clear that reducing the number of
data streams introduces diversity and thus compensates for
the loss caused by channel correlation. Consequently, should
be chosen carefully according to channel correlation informa-
tion.

Example 2: Effects of channel estimation error and
channel correlation [ with ;

Fig. 1. The ABEP from minimum total MSE design with perfect CSI. � �

� � �, � � � or 4. Different amounts of channel correlation are considered:
� � ���� ���� ��� and � � �������.

Fig. 2. The ABEP from minimum total MSE design with imperfect CSI. � �

� � �, � � � or 4. Different amounts of channel correlation are considered.
� �� � ����	� 
�. The values of � are 0.01, 0.015, and 0.0739, for
� � �������� and ���, respectively. Correspondingly, the values of � are
0.0099, 0.0148, and 0.0689, for � � �������� and 0.9.

; ; ;
]

Fig. 2 shows the ABEPs from using the optimum precoder
and decoder when the CSI is imperfect. From Fig. 2, we ob-
serve that channel estimation error alone has a tremendously
detrimental effect on system ABEP performance (see the curves
in Fig. 2 with and compare them with those in
Fig. 1). At medium to high SNR, the performance degradation
caused by channel estimation error can be compensated by in-
troducing diversity (i.e., reducing the number of data streams),
at the expense of reduced data rate. Also, channel estimation
error causes an irreducible error floor at high SNR. High channel
correlation further deteriorates system performance.

Example 3: Optimum precoder versus two suboptimum pre-
coders with asymptotic optimality [ , ; ;

with or 26.016 dB].
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Fig. 3. Comparison of the optimum and two suboptimum transceivers. � �
� � �, � � �, � � ���, � � ���. Two values of the training power are
used: � �� � ������ 	
 (corresponding to � � ������), and � �� �
������ 	
 (corresponding to � � ������).

Consider the special case without receive correlation in
Section III. A suboptimum transceiver structure can be ob-
tained by ignoring the channel correlation information, treating

as if it were the true channel and then applying the results
in [8]. In this way, the precoder is restricted to be of the form

, where the matrix consists of effective
eigenvectors (corresponding to nonzero eigenvalues) of
and is a diagonal matrix for power allocation. The
decoder is obtained from (11) [or (35)]. Based on Remark 1
and Remark 2, this structure is asymptotically optimum when

(and, thus, the additive noise is the dominant source
of error), or when . We refer to it as the noise-sup-
pression structure.

On the other hand, we obtain another transceiver structure by
restricting the precoder as , where

is composed of the effective eigenvectors of and
is a diagonal power allocation matrix. Again, the decoder

is determined from (11) [or (35)]. Based on Remark 2, this struc-
ture is asymptotically optimum when goes to infinity so
that channel estimation error becomes the dominant source of
error, or when . We will refer to this as the correla-
tion-cancelation structure.

It is interesting to compare the optimum precoder struc-
ture in Theorem 1 and the above two suboptimum ones. The
performance comparisons shown in Fig. 3 remind us of the
relationship between the matched filter (the noise-suppression
precoder), the zero-forcing filter (the correlation-cancelation
precoder) and the optimum linear MMSE filter in multiuser
detection. From Fig. 3, we observe again the tremendous effect
of channel estimation error on system performance.

The noise-suppression structure represents the direct applica-
tion of previous results assuming perfect CSI at both ends [7],
[8], [11] to the case with imperfect CSI. Clearly, this causes a
large performance loss at medium to high SNR. We also notice
that the correlation-cancelation structure has performance close
to that of the optimum design, since it also utilizes the transmit

Fig. 4. Effect of transmit correlation versus effect of receive correlation. � �
� � �, � � � or 4, 
� � � � � 
���� ���� or (0.0, 0.5). In the case of
imperfect CSI, � �� � ������ 	
. The values of � are 0.01 and 0.015,
for � � ��� and 0.5, respectively.

correlation information. However, inverting the transmit corre-
lation is not optimum at low SNR, and thus the correlation-can-
celation structure performs differently from the optimum trans-
mitter in a lower SNR region.

Example 4: Effect of transmit correlation versus effect of re-
ceive correlation [ , 0.5; , 0.5; , or
with 26.016 dB; 3, 4]

Fig. 4 is a comparison of the effects of transmit and receive
correlation. It is clear that the same amount of transmit or re-
ceive correlation has exactly the same effect on system perfor-
mance when the CSI is perfect.

In the channel estimation described in Section II-B, the
knowledge of is explicitly used in the training signal
design, but the knowledge of is not. This means the knowl-
edge of and is not exploited the same way. Therefore,
when there is channel estimation error, the same amount of
correlation at the transmitter and the receiver affects system
performance differently.4

Example 5: Effect of feedback delay and channel estimation
error ( , ; ; with
26.016 dB)

We now simulate the effect of feedback delay on the joint pre-
coder-decoder design. Both spatial and temporal channel cor-
relation are considered. At any time instant, the spatial corre-
lation is modeled in the same way as before. Assuming the
Jakes’ model [37], the temporal magnitude correlation of two
channel realizations separated seconds apart is given by

, where denotes the zeroth-order Bessel func-
tion of the first kind, and is the maximum Doppler frequency.
As in [38], we consider the system working at a carrier fre-
quency of . The data rate on each data stream
is set to be 400 kilo-symbols per second (ks/s), which implies

4As mentioned in Section II-B, a different CSI model appears in [22], in which
the functions of � and � are symmetric. It is interesting to note that after
applying our analysis with the CSI model used there, the effects of � and
� are the same whether there is channel estimation error or not. The same
comments also apply to the CSI model used in [39, Sec. VI].
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Fig. 5. The effect of feedback delay on system performance. � � � � �,
� � �, � � ���, � � ���, � �� � ������ 	
 (corresponding to
� � ������).

the symbol duration . The terminal
speed is . Then is calculated to be 200 Hz.

At time , the receiver obtains , an estimate of the true
channel . Here the subscript denotes the time index. Due to
the feedback delay , the transmitter only knows , i.e., the
estimate of . Therefore, at time , the precoder can only
be calculated according to . The decoder is matched to
the precoder, and is calculated from (11) or (35) (with there
being replaced by ). The resulting performances for such a
scenario are shown in Fig. 5 with different amounts of delay. As
shown, as long as the normalized delay is smaller than 0.01
(i.e., in the example above), the performance degra-
dation is small. Note that is observed as a critical
normalized delay also in [38], below which the system still op-
erates satisfactorily. Thus, our system design is robust against
reasonably small delays. Similar results can also be observed
using other values of system parameters ( , etc.).

VI. CONCLUSION

We have formulated and solved a minimum total MSE trans-
ceiver design problem for MIMO systems with channel mean as
well as both transmit and receive correlation information at both
ends. The closed-form optimum precoder and decoder matrices
are obtained. Our results gracefully fit those in the existing liter-
ature as channel estimation error diminishes. Simulation results
are provided for the minimum total MSE design. We have ob-
served that channel estimation error causes an error floor at high
SNR and a large performance degradation across the whole SNR
range. At medium to high SNR, this degradation can be com-
pensated by introducing diversity. High correlation has a large
impact on system performance as well. The same amounts of
transmit and receive correlation impact the system performance
equivalently under the assumption of perfect channel estima-
tion, whereas under imperfect channel estimation, they might
show different effects on the system performance, depending
on the specific channel estimation method employed.

APPENDIX A
DERIVATIONS OF (3) AND (4)

Perform vectorization operation on (2) to obtain
. Then the minimum MSE

(MMSE) estimate of is given by [35, p. 156, Eq.
(IV.B.53)]

Then (3) is obtained by converting back to its matrix
version. The resulting estimation error covariance matrix is [35,
p. 156, Eq. (IV.B.54)]

The estimation error vector can be represented by
, where the entries of are i.i.d.

[15], [21], [22]. The matrix version of

is given by ,
and (4) follows.

APPENDIX B
EXISTENCE OF A GLOBAL MINIMUM FOR (9)

The problem in (9) can be equivalently formulated as [36,
p. 130, Sec. 4.1.3]

MSE (34)

The minimizing for the inner unconstrained minimization is
readily shown to be

(35)
which is the linear MMSE data estimator (Wiener filter) given

and [35]. Substituting (35) into (34), the problem in (9) can
be equivalently formulated as

MSE (36)

where

MSE

The feasible set of (36) is , a
(closed and bounded) Frobenius norm ball of radius
[36, p. 30, Sec. 2.2.3]. This means the feasible set is compact
[26, p. 653, Proposition A.6 (g)]. The objective function of (36)
is continuous at all points of the feasible set. Thus, according to
Weierstrass’ Theorem [26, p. 654, Proposition A.8], there exists
a global minimum for the problem given by (36). Since (9) and
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(36) are equivalent, the same global minimum also exists for
(9) [36, p. 130, Sec. 4.1.3]. In addition, the minimizing is
the same for both problems, while the minimizing for (9) is
calculated according to (35).

APPENDIX C
PROOF OF LEMMA 1

Proof: Premultiplying both sides of (11) by , we obtain

(37)
Similarly, postmultiplying both sides of (12) by , to get

(38)
Clearly, must be Hermitian. From (37) and (38)

Taking the traces at both sides, we obtain
. Due to (14), if , must be equal

to , which yields , the desired result.
Assume [i.e., ]. Then, if , we must
have , and is still valid.
Finally, it is easy to see that it holds even when , ,
and . This concludes the proof of Lemma 1.

APPENDIX D
PROOF OF LEMMA 2

Proof: Assumed . Let the matrix be expressed as

(39)

where and come from (15), and and are arbitrary
and matrices, respectively. Since

is of full rank, is a unitary matrix

and denotes an arbitrary matrix, (39) is a
general expression for . Define and .
It can be verified that

(40)
By using Lemma 1, (12) can be rewritten as

(41)
Postmultiplying both sides of (41) by

, using (40),
we get , i.e., . This means

and (16) holds. Now

let . The matrix satisfying
(11) is given by

where the second equation is obtained using the matrix
inversion lemma [27], the third equation is obtained by sub-
stituting (16), and is an
arbitrary matrix. Let denote an arbitrary
matrix. The general satisfying (11) can thus be expressed
as . Therefore,
(17) holds.

APPENDIX E
DERIVING (18)–(23) AND DETERMINING IN THEOREM 1

Assume . We first show how to obtain (18)–(23). Post-
multiplying both sides of (41) [which is from (12)] by , we get

(42)

Let as in Appendix D. Per Lemma
2, substituting (16) and (17) into (37) and (42), using Lemma 1,
we obtain the following identities, respectively:

Based on the above two equations, the optimum and can
be shown to be diagonal without loss of generality as in [8], and
are given by and in (20) and (21), respectively.
Finally, insert (18)–(21) into and

, to obtain two equations with and being the
unknown variables. Solving these two equations, we can find
and as given by (22) and (23), respectively.

We further describe an iterative procedure for calculating the
number in Theorem 1, which is similar to that in [8]. Let be
the th entry on the main diagonal of . Re-
call that the diagonal elements of are arranged in decreasing
order. Initialize .

1) Calculate and from (22) and (23), respectively. If
, stop; else: go to step 2).

2) Let and . Go to step 1).
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