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Abstract— This paper proposes a general coordinate-
interleaving method for block-based space-time codes or linear
dispersion codes, called space-time coordinate interleaving linear
dispersion codes (ST-CILDC), which enables not only symbol-
level diversity but also coordinate-level diversity for high rate
block-based space-time code design. This paper analyzes the
upper bound diversity order and provides the analysis results of
the upper bound statistical diversity order and average diversity
order for ST-CILDC systems. Compared with conventional ST-
LDC systems, ST-CILDC systems may show either almost dou-
bled average diversity order or extra coding advantage in time
varying channels. With trivial extra complexity over ST-LDC
systems, ST-CILDC systems maintain the diversity performance
in quasi-static block fading channels, and significantly improve
the diversity performance in rapid fading channels.

I. INTRODUCTION

To support high reliability of space-time multiple input mul-
tiple output (MIMO) transmission, space-time coding (STC)
may be applied to improve system performance and achieve
high capacity potential. Space-time trellis codes [1] have great
diversity and coding gain but exponential decoding complexity,
which motivates the design of low complexity STC. Due to
their attractive complexity, a number of block-based STC have
been proposed [2], [3]. Recently, Hassibi and Hochwald have
constructed a class of high-rate block-based STC known as
linear dispersion codes (LDC) [4], which support arbitrary
numbers of transmit and receive antenna channels. We treat
LDC as a general framework of complex space-time block
code design.

A problem in most existing design criteria of block-based
space-time codes, including LDC, is that they do not efficiently
exploit additional diversity potential in the real and image
parts of coordinates of source data constellation symbols.
A technique to utilize the diversity potential of real and
image parts of coordinates is called coordinate interleaving
or component interleaving (CI), which was first proposed
for single stream communications systems [5], [6]. Recently,
CI has been applied to multiple antenna systems [7]–[9].
However, current existing approaches to using CI in block-
based space-time codes are low-rate designs using orthogonal
space-time block codes or their variation [7]–[9].

This paper proposes coordinate-interleaving as a general
principle for high-rate block-based space-time code design,
i.e., space-time coordinate interleaving linear dispersion codes

(ST-CILDC). This paper determines the the upper bound
diversity order, statistical diversity order and average diversity
order of ST-CILDC. ST-CILDC maintains the same diversity
order as conventional ST-LDC. However, ST-CILDC may
show either almost doubled average diversity order or extra
coding advantage over conventional ST-LDC in time varying
channels. Compared with conventional ST-LDC, ST-CILDC
maintains the diversity performance in quasi-static block fad-
ing channels, and notably improves the diversity performance
in rapid fading channels.

The following notation is used:Re [·] and Im [·] denote the
real and image parts, respectively, (·)T matrix transpose, (·)H
matrix transpose conjugate, [A]a,b denote the (a, b) entry
(element) of matrix A, ⊗ Kronecker product, IK denotes
K ×K identity matrix, and Cm×n denotes a complex matrix
with dimensions m× n.

II. PROPOSED SYSTEMS

A. MIMO system model for LDC in time varying channels

In frequency-flat, time non-selective Rayleigh fading chan-
nels whose coefficients may vary per channel symbol time
slot or channel use, a multi-antenna communication system is
assumed with NT transmit and NR receive antennas. Assume
that an uncorrelated data sequence has been modulated using
complex-valued source data symbols chosen from an arbitrary,
e.g. D-PSK or D-QAM, constellation. Each LDC codeword
of size T × NT is transmitted during every T time channel
uses from NT transmit antennas.

1) Component matrices in system equations: We now in-
troduce several component matrices during the k-th space-time
LDC codeword transmission.

The received signal vector x(k)
LDC =[[

x(k,1)
LDC

]T
, ...,

[
x(k,T )

LDC

]T ]T
, where x(k,t)

LDC ∈ CNR×1, t =

1..., T is the received vector corresponding to the t-th row of
the k-th LDC codeword, S(k)

LDC .
The system channel matrix is

H(k)
LDC =




H(k,1)
LDC · · · 0
...

. . .
...

0 · · · H(k,T )
LDC






where H(k,t)
LDC ∈ CNR×NT , t = 1..., T with entries[

H(k,t)
LDC

]
m,n

= h
(k,t)
m,n , m = 1, ..., NT , n = 1, ..., NR, is

a complex Gaussian MIMO channel matrix with zero-mean,
unit variance entries corresponding to the t-th row of the k-th
LDC codeword, S(k)

LDC , and 0 denotes a zero matrix of size
NR ×NT .

The complex Gaussian noise vector is v(k)
LDC =[[

v(k,1)
LDC

]T
, ...,

[
v(k,T )

LDC

]T ]T
, where v(k,t)

LDC ∈ CNR×1, t =

1..., T is a complex Gaussian noise vector with zero mean,
unit variance entries corresponding to the t-th row of the k-th
LDC codeword, S(k)

LDC .
The LDC encoded complex symbol vector s(k)

LDC corre-
sponds to the k-th LDC codeword, S(k)

LDC , where

s(k)
LDC = vec(

[
S(k)

LDC

]T
). (1)

2) System model equation: The system equation for the
transmission of the k-th LDC matrix codeword is expressed
as

x(k)
LDC=

√
ρ

NT
H(k)

LDCs(k)
LDC+v(k)

LDC (2)

where ρ is the signal-to-noise ratio (SNR) at each receive
antenna, and independent of NT .

B. Procedure of space-time inter-LDC coordinate interleaving

We propose a new space-time LDC encoding procedure
using inter-LDC CI (ILDC-CI), called space-time coordinate
interleaving linear dispersion codes (ST-CILDC) as follows:
Consider a pair of source data symbol vectors s(1) =[
s
(1)
1 , ..., s

(1)
Q

]T
and s(2) =

[
s
(2)
1 , ..., s

(2)
Q

]T
with the same

number, Q of source data symbol symbols, where s
(i)
q =

Re
(
s
(i)
q

)
+ jIm

(
s
(i)
q

)
, i = 1, 2, and q = 1, ..., Q. The trans-

mitter first coordinate-interleaves s(1) and s(2) into sCI(1) =[
s

CI(1)
1 , ..., s

CI(1)
Q

]T
and sCI(2) =

[
s

CI(2)
1 , ..., s

CI(2)
Q

]T
,

where

sCI(1)
q = Re

(
s(1)

q

)
+ jIm

(
s(2)

q

)
(3)

and

sCI(2)
q = Re

(
s(2)

q

)
+ jIm

(
s(1)

q

)
. (4)

Then, sCI(1) and sCI(2) are encoded into two LDC codewords
of size T × NT , SCI(1)

LDC and SCI(2)
LDC , respectively. Then the

transmitter successively sends SCI(1)
LDC and SCI(2)

LDC during two
interleaved periods such that channels are less correlated.

We remark that

1) using different permutations, other methods of space-
time inter-LDC CI than (3) and (4) are also possible;

2) The LDC encoding matrices for SCI(1)
LDC and SCI(2)

LDC need
not be the same.

C. ST-CILDC system structure

The proposed ST-CILDC system structure is shown in
Figure 1. The system structure basically consists of three
layers : (1) mapping from data bits to constellation points,
(2) inter-LDC coordinate interleaving, and (3) LDC coding.
Using the proposed layered structure, the only additional
complexity compared with a conventional ST-LDC system is
the coordinate interleaving operation. Thus, ST-CILDC system
is computationally efficient. The motivation of ST-CILDC is
to render the fading more independent of each coordinate of
the source data signals. Note that due to the superposition
effects of signals from multiple transmit antennas at the space-
time MIMO receivers, existing LDC designs cannot guarantee
fading independence of each coordinate of the source data
signals. Compared with ST-LDC, ST-CILDC introduces co-
ordinate fading diversity at the cost of more decoding delay
using a pair of LDC codewords of the same size.

III. DIVERSITY ANALYSIS

Su and Liu [10] recently analyzed the diversity of space-
time modulation over time-correlated Rayleigh fading chan-
nels. A modified strategy can be used to investigate the
diversity of ST-CILDC systems.

Consider a ST-CILDC block C, which consists of two ST-
LDC codewords of size T ×NT , S(k)

LDC , where k = 1, 2.
The communication model for one ST-CILDC block C can

be rewritten as

Y =
√

ρ

NT
MH + Z, (5)

where

1) the noise vector is Z,

2) the received signal vector Y =
[[

Y(1)
]T

,
[
Y(2)

]T ]T
,

where Y(k) =
[
Y(k)

1 , ...,Y
(k)

NR

]T
, Y(k)

n =
[[

x(k,1)
LDC

]
n,1

, ...,
[
x(k,T )

LDC

]
n,1

]T
, k = 1, 2,

3) M is the channel symbol matrix corresponding to
the block C, M = diag

(
M(1),M(2)

)
, where

M(1) and M(2) are the matrices corresponding to
the LDC codeword S(1)

LDC and S(2)
LDC , respectively,

M(k) = INR
⊗ diag

[
M(k)

1 , ...,M(k)
NT

]
, M(k)

m =

diag

([
S(k)

LDC

]
1,m

, ...,
[
S(k)

LDC

]
T,m

)
, k = 1, 2, and

m = 1, ..., NT ,

4) the channel vector H =
[[

H(1)
]T

,
[
H(2)

]T ]T
, where

H(k) =
[
hT(k)1,1, ...,h

T
(k)NT ,1, ...,h

T
(k)1,NR

, ...,hT(k)NT ,NR

]T
,

and h(k)m,n =
[
h

(k,1)
m,n , ..., h

(k,T )
m,n

]T
.

A directional pair, denoted as X → Y, means that a system
detects X as Y. Consider the direction pair of matrices M and



M̃ corresponding to two different ST-LDC blocks C and C̃.
The upper bound pairwise error probability [11] is

Pr
(
M → M̃

)
6

(
2r − 1

r

) (
r∏

a=1

γa

)−1 (
ρ

NT

)−r

(6)

where r is the rank of
(
M− M̃

)
RH

(
M− M̃

)H
, and

RH = E
{
H [H]H

}
is the correlation matrix of vector H,

RH is of size 2NT NRT × 2NT NRT , γa, a = 1, ..., r are the
non-zero eigenvalues of

Λ =
(
M− M̃

)
RH

(
M− M̃

)H
.

Then the rank and product criteria are

1) Rank criterion: The minimum rank of Λ over all direc-
tion pairs of different matrices M and M̃ should be as
large as possible.

2) Product criterion: the minimum value of the product
r∏

a=1
γa over all direction pairs of different M and M̃

should be maximized.

To maximize the rank of Λ, we need to maximize the ranks
of both RH and

(
M− M̃

)
. Denote

Ω(k) = M(k) − M̃(k),

where k = 1, 2.
Assume that all the possible M(k) and M̃(k) are contained

in a set M(k), i.e.,
{
M(k), M̃(k)

}
∈M(k), where k = 1, 2.

Then the diversity order of the ST-CILDC, rd, is

rd = min
{

rank (Λ) ,M ∈M, M̃ ∈M,M 6= M̃
}

. (7)

When M 6= M̃, there are three distinct categories of
situations,

1) M(1) 6= M̃(1) and M(2) = M̃(2),
2) M(1) = M̃(1) and M(2) 6= M̃(2),
3) M(1) 6= M̃(1) and M(2) 6= M̃(2).

Note that when RH is full rank,

1) in the above Situations (1) and (2), the upper bound of
rank(Λ) is NRT ,

2) in the above Situation (3), the upper bound of rank(Λ)
is 2NRT .

Thus ST-CILDC does not further increase the diversity order
over ST-LDC in terms of the conventional definition (7).
However, ST-CILDC does increase r over ST-LDC for the
above-mentioned third situation, which is not the conventional
diversity order of the STC and may significantly impact system
performance. It is necessary to introduce a new concept to
quantify this effect as follows,

Definition 1: Statistical diversity order, rsd, is the rank of Λ
achieved with a certain probability α, mathematically written

as

Pr





rank (Λ) > rsd,

M 6= M̃,{
M, M̃

}
∈M,





= α. (8)

Then, we have the following theorem.
Theorem 1: A ST-CILDC is constructed through coordinate

interleaving across a pair of component LDC codewords. Both
component LDC encoders are able to generate different code-
words for different input sequences. The diversity orders of the
component LDCs are r

(1)
d and r

(2)
d , respectively. Suppose that

RH is full rank. The codebook sizes of the two component
LDCs are the same value, Na.

1) The diversity order of this ST-CILDC, rd, is
min

{
r
(1)
d , r

(2)
d

}
.

2) Assuming that all directional pairs M and M̃ are
equally probable, the statistical diversity order of this
ST-CILDC, rsd, is r

(1)
d + r

(2)
d with probability

α =

(
Na

2

)(
Na

2

)

(
Na

2

)(
Na

2

)
+ Na

(
Na

2

)

The proof of Theorem 1 is omitted due to space limitations.
A problem of the above discussion is that the analysis is

purely based on pairwise error probability. However, system
performance is normally expressed as average error probability
(AEP). We further introduce a diversity concept based on AEP.

Definition 2: Denote AEP of the communications system
with the codeword block set {M} at average receive SNR
ρ as AEP {M, ρ}. Assume that AEP {M, ρ} is differentiable
at ρ.

Denote
f(ρ) = log10 (AEP {M, ρ})

and
g(ρ) = log10 ρ.

The average diversity order, rad, at the average signal-to-
noise ratio (SNR) of each receive antenna, ρ, is defined as
a differential

rad = −∂f(ρ)
∂g(ρ)

. (9)

Note that AEP cannot be generally derived. Thus we pro-
pose an analysis of the diversity performance of CI-STLDC
based on the error union bound. EUB, an upper bound on
the average error probability, is an average of the pairwise
error probabilities between all direction pairs of codewords.
Due to space limitations, the EUB based analysis is not
provided in detail. The result of this analysis is that the average
diversity order of CI-STLDC can be approximated as either
min

{
r
(1)
d , r

(2)
d

}
or r

(1)
d + r

(2)
d , the choice of which depends

on the value of SNR ρ and the codebook size Na. In the case
of rad = min

{
r
(1)
d , r

(2)
d

}
, the merit of CI appears as an extra

coding advantage.



Note that except for the trivial extra computational load
of coordinate interleaving, for the same size of LDC encod-
ing matrices, the complexity per LDC codeword of the ST-
CILDC system is almost the same as that of conventional
LDC systems. However, the upper bound achievable average
diversity order of a ST-CILDC system is almost twice that
of conventional block-based space-time code (BSTC) systems
if the two component LDCs in the ST-CILDC have similar
diversity features. It is worth mentioning that using nonlinear
sphere or ML decoding, the conventional BSTC systems need
much higher complexity to reach an average diversity order
comparable to ST-CILDC.

We remark the scope of this approach is not limited to
LDC. Other block-based space-time code designs may also be
improved using the proposed space-time inter-LDC coordinate
interleaving approach. Further, the pair of LDC codewords
used in ST-CILDC could be viewed as a single specially
designed LDC codeword of size 2T × NT . Thus ST-CILDC
systems could be viewed as extensions of LDC systems using
different design criteria.

IV. PERFORMANCE

A. Simulation setup

Perfect channel knowledge (amplitude and phase) is as-
sumed at the receiver but not at the transmitter. Assume the
number of receive antennas is equal to the number of transmit
antennas. Channel symbols are estimated using MMSE estima-
tion. Data symbols use QPSK modulation in all simulations.
The signal-to-noise-ratio (SNR) reported in all figures is the
average symbol SNR per receive antenna. The matrix channel
is assumed to be constant over different integer numbers of
channel uses or symbol time slots, and i.i.d. between blocks.
We denote this interval as the channel change interval (CCI).

Three space-time block codes, Code A, Code B, and Code
C, are used as component LDC coding matrices of ST-CILDC
systems in the simulations. Code A is chosen from Eq. (31)
of [4], a class of rate-one square LDC of arbitrary size
proposed by Hassibi and Hochwald. Code B is chosen from
Design A of full diversity full rate (FDFR) codes proposed
by Ma and Giannakis [12]. Code C is a non-rate-one high
rate code for the configuration of NT = 4,T = 6,Q = 12,
proposed by Hassibi and Hochwald [4].

B. Performance comparison

The performance comparison of code A is shown in Figures
2, 3 and 4. The performance comparison of code B is shown
in Figure 5. The performance comparison of code C is shown
in Figure 6.

In block fading channels, i.e., when the 4 × 4 MIMO
channels are constant over the pair of ST-LDC codewords and
code A is used, ST-CILDC obtains the same performance as
that of ST-LDC as shown in Figure 3.

However, as shown in Figures 2, 4 5, and 6, ST-CILDC sig-
nificantly outperforms ST-LDC at high SNRs in rapid fading
channels. Thus, the ST-CILDC procedure may be applied to
both rate-one and slightly lower rate codes. Observing Figures

2 and 5, the performances of code A and code B are similar
in rapid fading channels. Thus, even though code A is not
designed under a diversity criterion, code A appears to possess
good diversity properties.

V. CONCLUSION

This paper has proposed a general space-time inter-LDC
coordinate interleaving procedure, ST-CILDC, which may be
applied to either rate-one (information lossless) or slightly
lower rate block-based space-time coding systems. This en-
ables not only symbol-level diversity but also coordinate-
level diversity. The upper bound diversity order of ST-CILDC
is analyzed, and the analysis results of the upper bound
statistical diversity order and average diversity order of ST-
CILDC are provided. Compared with conventional ST-LDC ,
ST-CILDC show either much higher average diversity order or
extra coding advantage in time varying channels. Compared
with conventional block-based STCs, ST-CILDC maintains
diversity performance in quasi-static block fading channels,
and significantly improves the diversity performance in the
high SNR regions of rapid fading channels.

This work was supported by the Natural Sciences and
Engineering Research Council of Canada (Grant 41731) and
Communications and Information Technology Ontario.
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Fig. 1. Space-time inter-LDC coordinate interleaving system structure
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CCI = 1, NT = 2, NR = 2, T = 2, Q = 4
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