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Abstract— High-rate space-time-frequency block codes
(STFBC) are promising for achieving high bandwidth efficiency,
low overhead and latency. Recently, a class of low-complexity
STFBC methods based on two stages of complex diversity
coding (CDC) have been proposed, known as double linear
dispersion STFC(DLD-STFC). This paper investigates two issues
related to the performance improvement of high-rate STFCs.
First, it is shown that the two CDC stages of DLD-STFC
can be interchanged. Two new diversity concepts for analysis
of 3-dimensional DLD-STFC are introduced: per dimension
diversity order and per dimension symbol-wise diversity order.
A sufficient condition for DLD-STFC to achieve full symbol-wise
diversity order is provided despite the existence of two CDC
stages. Second, the gain obtainable in combining CDC with
forward error correction (FEC) for STFC designs is quantified.
Through simulations, it is shown that STFC based on the proper
combination of CDC and FEC may outperform a variety of
other STFC combinations, especially in spatially correlated
channels. Further, the choice of the mapping from FEC to
DLD-STFC may significantly impact system performance.

I. INTRODUCTION

Space-time coding (STC) is employed to achieve space and
time diversity gains in multiple input multiple output antenna
(MIMO) flat-fading channels [1], [2]. However, in frequency-
selective channels, STC cannot exploit available frequency
dimension diversity in MIMO orthogonal frequency division
multiplexing (OFDM) systems. Coding over space, time, and
frequency, STFC, is therefore needed to exploit all available
diversity across three physical dimensions.

Basically, there are two categories of coding approaches
which can exploit diversity. Complex coding may be utilized
to exploit diversity over physical dimensions, which we refer
to as complex diversity coding (CDC). The second category
includes conventional channel coding, including block-based
or convolutional forward error correction (FEC).

We are interested in high-rate STFC designs. To distinguish
among different existing and newly proposed STFCs discussed
in this paper, in terms of different combinations of CDC and
FEC, we may categorize high-rate STFCs as follows:

1) concatenation of inner 2-dimensional (2-D) channel
codes (e.g. SF FEC or ST FEC) and outer 2-D channel
codes (e.g. ST FEC or TF FEC) [3],

2) 3-D channel codes,
3) concatenation of inner channel codes and outer 2-D

CDC (e.g. over SF or ST) [4],
4) concatenation of inner 2-D CDC and outer 2-D CDC

[5],

5) 3-D CDC [5], [6],
6) concatenation of first-inner channel codes, second-inner

2-D CDC and outer 2-D CDC,
7) concatenation of inner channel codes and outer 3-D

CDC.

Previously STFCs of Categories 1, 3, 4, and 5 have been
proposed. However, there have been no proposals for STFCs of
Categories 2, 6, and 7 to date. Note that STFCs of Category 6
and 7 correspond to STFCs of Category 4 and 5, respectively,
with added channel coding. By extending the concept of linear
dispersion coding (LDC) [7], high rate STFCs, known as
double linear dispersion space-time-frequency-coding (DLD-
STFC) are proposed in [5], which may be classified as
Category 4.

This paper investigates performance improvement of STFCs
in Categories 4 and 6, referred to DLD-STFC based ap-
proaches. Two issues are discussed in this paper,

1) investigating the relation of two 2-D CDC for STFCs of
Category 4,

2) investigating STFCs of Category 6.

The following notation is used: (·)T matrix transpose, [A]a,b

denote the (a, b) entry (element) of matrix A, [A]:,b denote the
b column of matrix A, and CA×B denotes a complex matrix
with dimensions A×B.

II. LDC ENCODING

Assume that an uncorrelated data sequence has been modu-
lated using complex-valued source data symbols chosen from
an arbitrary, e.g. r-PSK or r-QAM, constellation. A T × M
LDC matrix codeword, SLDC , is transmitted from M transmit
channels and occupies T channel uses and encodes Q source
data symbols. Denote the LDC codeword matrix as SLDC ∈
CT×M , and Aq ∈ CT×M ,Bq ∈ CT×M , q = 1, ..., Q are
called dispersion matrices.

Just as in [8], we consider the case of Aq = Bq, q =
1, ..., Q. We have the matrix LDC encoding equation,

vec(SLDC) = GLDCs, (1)

where s = [ s1 · · · sQ ]T is the source complex symbol
vector, and

GLDC = [vec(A1), ..., vec(AQ)] (2)

is the LDC encoding matrix.
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III. MIMO-OFDM SYSTEM MODEL

A MIMO-OFDM system has NT transmit antennas, NR

receive antennas and a block of NC OFDM subcarriers per
antenna. The channel between the m-th transmit antenna
and n-th receive antenna in the k-th OFDM block experi-
ences frequency-selective, temporally flat Rayleigh fading with

channel coefficients h(k)
m,n =

[
h

(k)
m,n(0), ..., h

(k)
m,n(L)

]T
,m =

1, ..., NT , n = 1, ..., NR, where L = max{Lm,n, m =
1, ..., NT , n = 1, ..., NR}, where Lm,n is the frequency-
selective channel order of the path between the m-th transmit
antenna and the n-th receive antenna.

IV. TWO STAGE COMPLEX DIVERSITY CODING OF
DLD-STFC

DLD-STFC [5] is a class of two-stage STFBCs across
NT transmit antennas, NC subcarriers, and T OFDM blocks.
DLD-STFC systems are based on a layered communications
structure, which is compatible to non-LDC coded MIMO-
OFDM systems. An advantage of DLD-STFC is that the sys-
tem may obtain 3-D diversity coding performance for source
data symbols that are only encoded and decoded through 2-
D coding, and the complexity advantage may be significant
if non-linear decoding methods, e.g. sphere decoding, are
involved. Although [6] claims to have a full diversity STFC
design, the 3-D CDC based STFC design in [6] may have high
computational complexity.

In this section, we investigate the relationship of the two
stages 2-D CDCs of DLD-STFC. We term the originally
proposed DLD-STFC as DLD-STFC Type A, which first
encodes frequency-time LDC (FT-LDC) and second encodes
space-time LDC (ST-LDC) [5]. By exchanging the sequence of
the two stages, we propose a modified version of DLD-STFC,
termed DLD-STFC Type B, as follows. The corresponding
encoding procedure for the i-th STF block of size T×NF (i)×
NT within one DLD-STFC Type B block is that

1) First, the source data signals are encoded through per
subcarrier ST-LDC, which are performed across space
(transmit antennas) and time (OFDM blocks), enabling
space and time diversity. The p-th ST matrix codeword is
of size T×NT , where p = p1(i), ..., pNF (i) are subcarrier
indices.

2) Second, all the m-th space index columns of NF (i) ST-
LDC codewords are concatenated in sequence to a vector
of size TNF (i) × 1, which is further encoded into the
m-th FT-LDC codeword of the i-th STF block. FT-LDC
are performed across frequency (subcarriers ) and time
(OFDM blocks), enabling frequency and time diversity.
The m-th FT-LDC matrix codeword is of size T×NF (i).
After NT FT-LDC matrix codewords are created, the i-
th STF block is created.

If all subcarriers are used for DLD-STFC and there are in
total NM STF blocks within one DLD-STFC Type B block,

the frequency block size relation is
NM∑
i=1

NF (i) = NC . The

decoding sequence of DLD-STFC Type B is in the reverse
order of the encoding procedure.

Note that it is inconvenient to analyze the diversity order
of DLD-STFC in general due to the two stages involved.

For further analysis, we employ Tirkkonen and Hottinen’s
concept of symbol-wise diversity order for 2-D codes with
dimensions X and Y , rsd(XY ) [9], [10]. We extend this
concept by introducing a new term, K-symbol-wise diversity
order for 2-D codes, r

(K)
d , for the case that the pair of

matrix codewords contain at most K symbol differences, and

r
(K)
d(XY ) = min

{
rank (Φq1,...,qK ) , 1 ≤ qi ≤ Q,
qi 6= qk, 1 ≤ {i, k} ≤ K

}
, where

Aq, q = 1, ..., Q are dispersion matrices, and {sq1 , ..., sqK
}

and {s̃q1 , ..., s̃qK} are a pair of distinct source symbol se-
quences with at least one symbol difference. Note that
rsd(XY ) = r

(1)
d(XY ).

Further, we introduce two new concepts in 3-D coding:
per dimension diversity order and per dimension symbol-wise
diversity order. Symbol-wise diversity order is a subset of full
diversity order. The importance of symbol-wise diversity for 2-
D codes has been explained in [9], [10], and based on similar
reasoning, full symbol-wise diversity for 3-D codes is also
important, especially in high SNR regions.

Definition 1: A pair of 3-D coded blocks M and M̃ in
dimensions X , Y , and Z are of size NX ×NY ×NZ . All
possible M and M̃ comprise the set M. Denote M(XZ)

(a) and

M̃(XZ)
(a) as a pair of X-Z blocks corresponding to the a-th Y

dimension of size NX ×NZ within M and M̃, respectively.

All possible M(XZ)
(a) and M̃(XZ)

(a) comprise the setM(XY )
(a) . De-

note M(Y Z)
(b) and M̃(Y Z)

(b) as a pair of Y-Z blocks corresponding

to the b-th X dimension of size NY ×NZ within M and M̃,

respectively. All possible M(XZ)
(a) and M̃(XZ)

(a) comprise the set

M(ZX)
(b) .
Denote per dimension diversity order of Y as rd(Y ), which

is defined as

rd(Y ) = max
{
rd(XY ), rd(ZY ),

}
, (3)

where

rd(XY ) = min





rank(M(XY )
(a) − M̃(XY )

(a) ),
a = 1, ..., NZ ,

M(XY )
(a) ∈M(XY )

(a) ,

M̃(XY )
(a) ∈M(XY )

(a) ,

M(XY )
(a) 6= M̃(XY )

(a) ,

M(XY )
(a) within M

M̃(XY )
(a) within M̃

M ∈M, M̃ ∈M,

M 6= M̃





,

rd(ZY ) is defined similarly to rd(XY )

Definition 2: For a 3-D code, the definition of the per
dimension symbol-wise diversity order of Y is the same as
that of the per dimension diversity order of Y except that it
is required that the pair of M and M̃ differs only by a single
source symbol difference, which is denoted as

[
M 6= M̃

]
sw

.
Denote per dimension symbol-wise diversity order of Y as
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rsd(Y ) , which is defined as

rsd(Y ) = max
{
rsd(XY ), rsd(ZY ),

}
, (4)

where rsd(XY ) and rsd(ZY ) are as in Definition 1, except that[
M 6= M̃

]
sw

instead of
[
M 6= M̃

]
.

The above two concepts quantify the fact that in the case
of NX < NY ≤ NZ , the dimension Y may reach full per
dimension (symbol-wise) diversity order NY in the Y -Z plane,
although Y cannot reach full per dimension (symbol-wise)
diversity order in the X-Y plane.

Definition 3: A 3-D code is called a full symbol-wise di-
versity code if the per dimension symbol-wise diversity orders
of X ,Y , and Z satisfy

rsd(X) = NX ,

rsd(Y ) = NY ,

and
rsd(Z) = NZ .

Note that a full symbol-wise diversity code is achievable
only if at least the two largest of NX , NY , and NZ are equal.

We can show that a properly designed DLD-STFC may
achieve full symbol-wise diversity. Let the time dimension
be of size T , and space and frequency dimensions be of size
either NX and NY , respectively, or, NY and NX , respectively.
Without loss of generality, say that dimension X is of size
NX , and dimension Y is of size NY . One STF block of size
NX×NY ×T is constructed through a double linear dispersion
(DLD) encoding procedure such that the first LDC encoding
stage constructs LDCs of size T ×NX in the X-time planes,
and the second LDC encoding stage constructs LDCs of size
T ×NY in the Y -time planes.

Proposition 1: Assume that a DLD procedure is as de-
scribed above. Assume that the second LDC encoding stage
produces information lossless or rate-one codewords. Assume
that all-zero data source elements are allowed for DLD
encoding.

1) In the case of NX < NY = T , if each of the two-stage
LDC encoding procedure enables full diversity in their
2-dimensions, the per dimension diversity orders of Y
and time dimensions satisfy

rd(Time) = rd(Y ) = T = NY .

2) Assume that the following conditions are satisfied:
a) Each Q source data symbols are encoded into

each first stage LDC codeword. The first stage
LDC encoding procedure enables full symbol-wise
diversity in its 2-dimensions, and the second stage
LDC encoding procedure enables full K-symbol-
wise diversity in its 2-dimensions, where K is the
maximum number of non-zero symbols of all the
nX -th time dimensions after the first stage LDC
encoding procedure, where nX = 1, ..., NX .

b) All the encoding matrices of the second stage LDCs
are the same. Denote the dispersion matrices of the

second stage LDC as A(2)
q , where q = 1, ..., NY T .

Denote

J(a,b) =
[[

A(2)
(a−1)T+1

]
:,b

, ...,
[
A(2)

aT

]
:,b

]
, (5)

where a = 1, ..., NY and b = 1, ..., NY . Square
matrix J(a,b) is full rank, i.e. invertible, for any
a = 1, ..., NY and b = 1, ..., NY .

In the cases of both NX < NY = T and NX = T >
NY , the STF block, constructed using DLD procedure,
achieves full symbol-wise diversity order.

The proof of Proposition 1 is omitted due to space limita-
tion, and details may be found in [11]. We remark that

1) Proposition 1 provides a sufficient condition for full
symbol-wise diversity. We call the condition (b) the
DLD cooperation criterion (DLDCC). When failing to
meeting DLDCC, full symbol-wise diversity cannot be
guaranteed. Due to the support of DLDCC, the complex
diversity coding design in the second LDC stage is more
restrictive than that in the first LDC stage. Note that
in [5], we have not considered DLDCC as a design
criterion.

2) According to Proposition 1, the sequence of ST-LDC
and FT-LDC stages can be inter-changed. Properly de-
signed, both DLD-STFC Type A and DLD-STFC Type
B are able to achieve full symbol-wise diversity.

V. COMPLEX DIVERSITY CODING BASED STFC WITH FEC

The fundamental differences between complex diversity
coding (CDC) and FEC are that

1) CDC improves performance through obtaining better
effective communication channels for source data sig-
nals while channel codes improve performance through
correcting errors;

2) CDC operates in the analog domain, while FEC operates
in the digital domain;

3) a system only using CDC cannot guarantee zero bit error
rate (BER) even in relatively high SNR regions as the
SNR gets large, while a system only using FEC may
almost achieve zero BER if SNR is enough high.

We claim that that CDC and FEC are not mutually exclusive
techniques. On the contrary, FEC may cooperate with complex
diversity coding to achieve better performance. The practical
issue is the amount of gain that can be obtained by combining
CDC based STFC and FEC. Recalling our STFC classifica-
tion, DLD-STFC type A (which satisfies DLDCC) with FEC
belongs to Category 6.

Due to the multidimensional structure, there are many
possible mappings from FEC to STFC, which might influ-
ence system performance. For low latency, Reed Solomon
(RS) codes are chosen FEC. In the next section, RS(a, b, c)
denotes RS codes with a coded RS symbols, b information
RS symbols, and c bits per symbol. As shown in Figure 1,
we propose to map one RS(a, b, c) codeword to NK DLD-
STFC blocks, and Na RS symbols are mapped into each of
NG FT-LDC codewords within each DLD-STFC block, where
a = NaNGNK . We refer to the case of NK > 1 as inter-CDC-
STFC FEC, while we refer to the case of NK = 1 as intra-
CDC-STFC FEC. Performance comparison of the combination
of DLD-STFC with FEC will be given in Section VI-B.
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VI. PERFORMANCE

Perfect channel knowledge (amplitude and phase) is as-
sumed at the receiver but not at the transmitter. The symbol
coding rates of all systems are unity. The sizes of all LDC
codewords in the ST-LDC and FT-LDC stage of DLD-STFC
are T ×NT and T ×NF , respectively. An evenly spaced LDC
subcarrier mapping for the FT-LDC of DLD-STFC is used in
simulations.

The frequency selective channel has (L+1) paths exhibiting
an exponential power delay profile, and a channel order of
L = 3 is chosen. Data symbols use QPSK modulation in all
simulations. Denote the transmit spatial correlation coefficient
for 2×2 MIMO systems by ρ. The signal-to-noise-ratio (SNR)
reported in all figures is the average symbol SNR per receive
antenna. The matrix channel is assumed to be constant over
different integer numbers of OFDM blocks, and i.i.d. between
blocks. We term this interval as the channel change interval
(CCI).

A. Satisfaction of DLDCC influences the performance of
DLD-STFC Type A and Type B

In the previous design of DLD-STFC Type A, FT-LDC and
ST-LDC chose Eq. (31) of [7] and uniform linear dispersion
codes (U-LDC) [11], respectively, as dispersion matrices, both
of which support full symbol-wise diversity in 2-dimensions.
Note that original U-LDC design [11] does not support
DLDCC, while the square design Eq. (31) of [7] supports
DLDCC. Thus the previous design [5] of DLD-STFC Type
A does not satisfy DLDCC, and thus does not support full
symbol-wise diversity in 3-dimensions. However, our recent
results show that by permuting the indices of dispersion
matrices from {A1, ...,AQ} to

{
Aσ(1), ...,Aσ(Q)

}
, where σ

is a special permutation operation, a modified U-LDC is able
to support DLDCC. Thus DLD-STFC Type A based on the
modified U-LDC may achieve full symbol-wise diversity in
3-dimensions [11]. We conjecture that the modified DLD-
STFC Type A may achieve full K-symbol-wise diversity in
3-dimensions for some K > 1 with performance close to full
diversity performance in 3-dimensions.

Figure 2 shows the Bit Error Rate (BER) vs. SNR perfor-
mance comparison between DLD-STFC Type A and DLD-
STFC Type B with and without satisfaction of DLDCC. It
is clear that both DLD-STFC Type A and Type B with
satisfaction of DLDCC notably outperform their counterparts
without satisfaction of DLDCC. Note that the sensitivity to
DLDCC of DLD-STFC Type A is greater than that of DLD-
STFC Type B, which might be due to the fact that the size of
the frequency dimension of the codes is larger than that of the
space dimension of the codes. The performance of DLD-STFC
Type A with satisfaction of DLDCC is quite close to that of
DLD-STFC Type A with satisfaction of DLDCC. Thus DLD-
STFC Type A can achieve similar high diversity performance
to DLD-STFC Type B. In the next subsection, we focus on
DLD-STFC Type A with satisfaction of DLDCC.

B. Performance comparison of RS codes based STFCs

We would like to compare the performance of Categories 2
and 3. We compare five applications of RS(8, 6, 4) codes to

STFCs:

(1): the combination of DLD-STFC with RS codes with
parameters Na = 2, NG = 4, and NK = 1;

(2): the combination of DLD-STFC with RS codes with
Na = 1, NG = 2, and NK = 4;

(3): the combination of DLD-STFC with RS codes with
Na = 1, NG = 1, and NK = 8;

(4): the combination of linear constellation precoding (LCP)
[12], [13] based space-frequency codes with RS codes
over T = 8 OFDM blocks (Category 2);

(5): using single RS codes across space-time-frequency (Cat-
egory 3).

Figures 3 and 4 show the performance comparison of FEC
based STFCs. Note that LCP used in STFC (4) supports max-
imal diversity gain and coding gains in supported dimensions.
It can observed that using the same FEC, STFCs (1), (2), and
(3) significantly outperform STFCs (4) and (5) under transmit
spatial correlation ρ = 0 and ρ = 0.3, respectively. Thus,
STFCs of Category 6 may be the best choices in terms of
BER performance. Note that the performance advantage of
STFCs (1), (2), and (3) over STFCs (4) and (5) appears more
significant with an increase of transmit spatial correlation.
According to Figures 3 and 4, different mappings from FEC
to STFC may lead to different BER performances of FEC
based DLD-STFCs. Using the same block based FEC, we
observe that the larger the number of STFCs that one RS
codeword is across, the better the system performance of the
STFCs of Category 6. Finally, inter-CDC-STFC FEC systems
outperform intra-CDC-STFC FEC systems.

VII. CONCLUSION

This paper introduces two concepts of diversity order for 3-
dimensions, per dimension diversity order and per dimension
symbol-wise diversity order. These diversity concepts are used
to analyze the relation of two stages of complex diversity
coding of DLD-STFC. This paper shows that the two stages
of DLD-STFC can be exchanged, and provides a sufficient
condition to realize 3-dimensional diversity order for DLD-
STFC. This results in notable performance improvement over
the originally proposed DLD-STFC codes as shown in simu-
lation results. This paper also investigates the impact of FEC
on performance of DLD-STFC, and shows that the mappings
from FEC to DLD-STFC need to be properly designed.
Finally, this paper shows that STFC based on the combination
of DLD-STFC and FEC may significantly outperform STFC
based on the combination of LCP SFC and FEC. For instance,
in Figure 4, for a 2 × 2 MIMO system, the STFC using
combination of DLD-STFC and FEC with the best FEC
mapping obtains a 2.6 dB gain over the STFC using the
combination of LCP SFC and FEC at a BER of 10−3 and
a transmit space channel correlation of 0.3.

This work was supported in part by Natural Sciences and
Engineering Council of Canada Grant 41731 as well as in part
by Communications and Information Technology Ontario.
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Fig. 1. FEC mapping to DLD-STFC blocks
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Fig. 3. BER Performance of FEC based STFCs under transmit correlation
ρ = 0
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Fig. 4. BER Performance of FEC based STFCs ρ = 0.3


