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Abstract: This study provides a general diversity analysis for joint complex diversity coding (CDC) and channel coding-based space-
time-frequency codeing is provided. The mapping designs from channel coding to CDC are crucial for efficient exploitation of the
diversity potential. This study provides and proves a sufficient condition of full diversity construction with joint three-dimensional
CDC and channel coding, bit-interleaved coded complex diversity coding and symbol-interleaved coded complex diversity coding.
Both non-iterative and iterative detections of joint channel code and CDC transmission are investigated. The proposed minimum
mean-square error-based iterative soft decoding achieves the performance of the soft sphere decoding with reduced complexity.
1 Introduction

A challenging problem in wideband multiple-input multiple-
output (MIMO) system design is to develop new high-rate
coding schemes to efficiently exploit all the diversity
available across space, time and frequency domains. To this
end, the design of space-time-frequency coding (STFC) has
been recently investigated in [1, 2]. We introduce a general
terminology, complex diversity coding (CDC), which
summarises existing diversity coding approaches using
complex conversion. STFCs may be categorised into
different integrations of CDC and channel coding, such as
error control coding (ECC). Note that CDC is also called
signal space diversity [3] in single-input single-output
communications and linear dispersion codes (LDC) in two-
dimensional (2D) space time MIMO channels.

Unlike the previous analysis for pure 3D CDC systems
presented in [2, 4], this paper provides a general diversity
analysis for systems with joint 3D CDC and channel
coding. Our diversity analysis also differs from the joint 1D
or 2D CDC and channel-coding-related performance
analysis (e.g. those conducted in [5, 6]), since we provide
a clear construction of full diversity joint 3D CDC and
channel coding without assumption of infinite length of the
channel code, and the physical dimensions used in our
diversity analysis are different from those in [5, 6].

Unlike the computationally prohibitive maximum
likelihood (ML) or sphere decoding (SD)-based turbo
decoding for joint ECC and 2D CDC in [7], in this paper, a
low complexity iterative minimum mean square error
(MMSE) inner decoding for high rate 3D CDC-based STFC
and Log-MAP outer decoding for ECC is proposed, and is
shown to have comparable performance to the non-iterative
STFC near-ML sphere decoding.
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Notations: (·)T – the matrix transpose, (·)H – the matrix
transpose conjugate, E[.] – the expectation operation, j –
the square root of –1, IK – the identity matrix of size
K × K, 0M×N – the zero matrix of size M × N, A ⊗ B –
the Kronecker (tensor) product of matrices A and B, [A]a,b –
the (a, b) entry of matrix A, and (.) transforms the
argument from a vector to a diagonal matrix, and
vec(X ) − [[[X ]:,1]T , . . . , [[X ]:,N ]T ]T , where matrix X is of
size M × N.

2 Proposed system model

2.1 Space-time-frequency block (STFB) and STFC

The baseband-received signal is formed as shown in Fig. 1.
We consider a MIMO–OFDM system with Nt transmit
antennas, Nr receive antennas, and a block of Nc orthogonal
frequency-division multiplexing (OFDM) subcarriers per
antenna. Channel coefficients are assumed to be constant
within one OFDM block. However, the channel coefficients
change from block to block, and they are assumed to be
statistically independent among different OFDM blocks.
One 3D CDC-based STFC codeword contains D STFB,
each of which is of size Nt × NF × T, that is, across Nt

transmit antennas NF subcarriers and T OFDM blocks,
where NC ¼ DNF. The data sequence is modulated using
complex-valued symbols aq + ibq, chosen from an arbitrary
constellation (e.g. r-PSK or r-QAM). One STFB, denoted
by SSTFB, can be written in matrix form as

SSTFB =
∑Q

q=1

(aqAq + jbqBq) (1)
643
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Fig. 1 Block diagram of the transmitter for the STFC system
where Aq [ CNT×NFT and Bq [ CNT×NFT are dispersion
matrices for the real and imaginary parts of source signals.
Equation (1) may be considered as a 3D formulation of
LDCs [8], and can be reformulated as follows:

1. if Aq = Bq

vec(SSTFB) = Gvec
STFBq (2)

where

Gvec
STFB = [vec(A1), . . . , vec(AQ), jvec(B1), . . . , jvec(BQ)]

u = [a1, . . . , aQ, b1, . . . , bQ]T

2. if Aq ¼ Bq,

vec(SSTFB) = GSTFBs (3)

where

GSTFB = [vec(A1), . . . , vec(AQ)]

s = [s1, . . . , sQ]T

We define the coding rate of CDC-based STFC as
Rsym =

∑D
i=1 Qi/(NtNcT ), where Qi is the number of source

symbols encoded in the ith STFB. In our simulations, we
apply rate-one full diversity CDC-based STFCs proposed in
[2], and these codes satisfy Aq ¼ Bq.
644
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2.2 Frequency domain system model and
structure

Consider one joint CDC–ECC STFC block where ECC are
across K 3D CDC-based STFC codewords. The baseband
frequency domain signal for the ith STFB within the kth
STFC can be written as

y(i,k) =
���
r

Nt

√
H (i,k)

STFBGSTFBs(i,k) + n(i,k) (4)

where H(i,k)
STFB is the corresponding frequency domain channel

matrix of size NrNFT × NtNFT. Both vectors y(i,k) and n(i,k) are
of size NrNFT, and they are the frequency domain received
signal and additive complex Gaussian noise vectors,
respectively. The source signal vector s(i,k) is of size NtNFT.
The channel matrix H (i,k)

STFB is formed as

H (i,k)
STFB = diag(H (i,1,k)

STFB, . . . , H (i,T ,k)
STFB )

where H (i,t,k)
STFB = diag(H (i,t,k)

STFB(p1), . . . , H (i,t,k)
STFB(PNF

)), H (i,t,k)
STFB(p) of

size Nr × Nt is the frequency domain MIMO channel matrix
for the pth subcarrier, tth OFDM block, ith STFB, kth
CDC-based STFC (i ¼ 1, . . . , D, t ¼ 1, . . . , T, nF ¼ 1, . . . ,

NF, k ¼ 1, . . . , K ). {p(i)
1 , . . . , p(i)

NF
} is the subcarrier set

chosen for ith CDC-encoded STF block. As shown in
Fig. 2, the ECC-coded streams are first interleaved with
random interleaver, and mapped into complex source
symbols, which are subsequently encoded into CDC-based
STFCs (Fig. 3). One set of ECC streams is across K STFCs
and Na STFBs within one STFC.
Fig. 2 Structure of multi-stream joint CDC and ECC STFC
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Fig. 3 Structure of the STFC code
3 Diversity analysis

We assume that one channel-coding stream is encoded across
K STFCs and Na STFBs per STFC with indices
i = i1, . . . , iNa

. Denote the ith STFB within the kth STFC
as C(i,k), which is formed as

C(i,k) = [ [ C(1,i,k)]T [C(2,i,k)]T · · · [C(T ,i,k)]T ]T

where C(t,i,k) has entries [C(t,i,k)]a,b = c(t,i,k)

b,p(i)
a

, and c(t,i,k)

m,p(i)
nF

is the

channel symbol of the kth OFDM block, the tth OFDM
block, the p(i)

a th subcarrier from the mth transmit antenna,

and p(i)
a = p(i)

1 , . . . , p(i)
NF

is the subcarrier index for the ith
STFB. The received signal corresponding to STFB C(i,k)

can be reformed as

y(i,k) =
����
r

NT

√
M (i,k)H

(i,k) + v(i,k)

where y(i,k) and v(i,k) are the receive signal vector and noise

vector, respectively, M (i,k) = INr
⊗ [M (i.k)

1 , . . . , M (i,k)
Nt

], and

M (i,k)
m = diag(c(1,i,k)

m,p(i)
1

, . . . , c(1,i,k)

m,p(i)
NF

, . . . , c(T ,i,k)

m,p(i)
1

, . . . , c(T ,i,k)

m,p(i)
NF

)
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The equivalent frequency domain channel vector of size
NFNtNrT × 1 can be expressed as

H
(i,k) =

[H
(i,k)
1,1 ]T, . . . , [H

(i,k)
Nt ,1

]T, . . . , [H
(i,k)
1,2 ]T, . . . , [H

(i,k)
Nt ,2

]T,

. . . , [H
(i,k)
1,Nr

]T, . . . , [H
(i,k)
Nt ,Nr

]T

⎡
⎣

⎤
⎦T

where

H
(i,k)
m,n =

H (1,k)

m,n,p(i)
1

, H (1,k)

m,n,p(i)
2

, . . . , H (1,k)

m,n,p(i)
NF

, . . . ,

H (T ,k)

m,n,p(i)
1

, H (T ,k)

m,n,p(i)
2

, . . . , H (T ,k)

m,n,p(i)
NF

⎡
⎢⎣

⎤
⎥⎦

T

and H (k)

m,n,p(i)
nF

is the frequency domain channel gain of the kth

OFDM block, the p(i)
nF

th subcarrier for block between the
mth transmit antenna and the nth receive antenna, where
m ¼ 1, . . ., Nt and n ¼ 1, . . ., Nr.

Considering a pair of matrices M (i,k)
(a) and M (i,k)

(b) which

correspond to two different blocks C(i,k)
a and C(i,k)

b , the
upper bound for the pairwise error probability between
645
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M (i,k)
(a) and M (i,k)

(b) is [9]

Pr{M (i,k)
a − M (i,k)

b } ≤
2r(i,k) − 1

r(i,k)

( )

×
∏r(i,k)

c=1

g(i,k)
c

( )−1
r

Nt

( )−r(i,k)

(5)

where r(i,k) has the rank of

L
(i,k)
(a,b) = (M (i.k)

(a) − M (i.k)
(b) )R

H
(i,k) (M

(i.k)
(a) − M (i.k)

(b) )H

and RH (i,k) = E{H (i,k)[H (i,k)]H} is correlation matrix of H (i,k),

and g(i,k)
c , c = 1, . . . , r(i,k) are the non-zero eigenvalues of

L
(i,k)
(a,b). Denote c

(i.k)
(b) = M (i,k)

(b) − M (i,k)
(b) , then L(i,k) = c

(i.k)
(a,b)

R
H

(i,k) [c
(i.k)
(a,b)]

H. Also denote c(a,b) = diag(c(1)
(a,b), . . . , c(K)

(a,b)),

c
(k)
(a,b) =diag(c

(i1.k)
(a,b) , . . . ,c

(iNa
.k)

(a,b) ), H= [[H
(1)

]T, . . . , [H
(K)

]T]T,

H
(k) = [[H

(i1,k)
]T, . . . , [H

(iNa
,k)

]T]T, RH =E{H[H ]H}, M (a) =
diag(M (k)

(a), . . . , M (k)
(a)) and M (k)

(a) =diag (M
(i1,k)
(a) , . . . , M

(iNa
,k)

(a) ).
The upper bound of the pairwise error probability between

M(a) and M(b) can now be expressed as

Pr{M (a) − M (b)} ≤ 2r − 1
r

( ) ∏r

c=1

gc

( )−1
r

Nt

( )−r

(6)

where r is the rank of L(a,b), and gc, c ¼ 1, . . ., r are the non-
zero eigenvalues of L(a,b). Note that the upper limit diversity
order of this system is

min{rank(L(a,b))} ≤ K min{NtNrT (L + 1), NrTNC}

≤ rank(RH ) (7)

For the system under investigation, the rank r is actually a
function of the Hamming or free distance d of ECC, the
mapping t of the ECC-coded bit stream into different
STFBs across the whole block, and the mapping s of the
ECC-coded bit stream into constellation symbols. The
system diversity order is further bounded by

min{rank(L(a,b))} ≤ min{K, dmin}

× min{NtNrT (L + 1), NrTNC} ≤ rank(RH ) (8)

where dmin is the minimum distance of the employed channel
code. For block ECC, it refers to Hamming distance; for
convolutional codes, it refers to free distance. Let us denote
r ¼ f(d,t,s). If r and Pr

c=1gc are approximately the same for
the same (d, t, s), the union bound for the average symbol
error rate can be simplified as

Pe ≤
∑

a

Pr(a)
∑
b=a

Pr{M (a) −M (b)}

≃
∑

(t,d,s)

W(d,t,s)

NB

2f(d,t,s) −1

f(d,t,s)

( ) ∏f(d,t,s)

a=1

g(d,t,s)
c

( )−1

r

Nt

( )−f(d,t,s)

(9)
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where W(d,t,s) is the number of pairs of M(a) and M(b) with the
same (d, t, s).

In order to demonstrate the relation between the diversity
performance and the mapping t more precisely, let us
assume that the channels are independent over different
CDC-based STFCs, then

L(a,b) = c(a,b)(RH
(1) , . . . , R

H
(K) )[c(a,b)]

H = (L(1)
(a,b), . . . , L

(K)
(a,b))

where L(k)
(a,b) = c

(k)
(a,b)RH

(k) [c
(k)
(a,b)]

H. In what follows, we

discuss the mapping t of the ECC-coded bit stream into
different STFBs across the whole block.

1. Case 1. Assume NF ≥ NT(L + 1), and full diversity
space-time-frequency CDC, which achieves the upper

bound of rank(L(i,k)
(a,b)) for any pairs of channel-coded

streams, is chosen, for each STFB.
Note that

rank(L(i,k)
(a,b)) ≤ min{NtNrT (L + 1), NrTNC} ≤ rank(R

H
(i,k) )

In this case

min{rank(L(k)
(a,b))} = min{rank(L(i,k)

(a,b))}

Apparently, increasing the number of STFBs per CDC-based
STFC to Na . 1 will not increase the diversity order, which is
min(a,b){rank(L(k)

(a,b))} for the kth CDC-based STFC.
However, there might be some coding gain through channel
coding. In this case, Na ¼ 1 is the best choice for exploiting
diversity, that is, one-channel code stream is across multiple
STFCs, and the part of the stream with one CDC-based
STFC is only encoded in one STFB. However, since this
may introduce long delay for long-channel codes, Na . 1
may still be a practical choice.
2. Case 2. Assume NF , NT(L + 1), and a non-full-
diversity space-time-frequency CDC is chosen for each
STFB. In this case, Na . 1 will increase the diversity order
of the kth CDC-based STFC.

One further issue is to choose the number of units (such as
symbols or bits) of one-channel code stream to be allocated to
each STFB. Now we have the following proposition.

Proposition 1: One STF communications channel is of full
rank over space, time and frequency, and is independent
over different STFBs in time. Consider a joint 3D CDC and
channel coding system. The physical dimensions of 3D
CDC STFBs are sufficient to achieve full diversity over
space, time and frequency. The channel-coding sequences
operate in units (either bits or symbols). There are Nu

channel-coding sequences, and each of them is of length K
units and with minimum pairwise distance dmin ≤ K units to
be encoded into K STFBs. If one STFB only encodes a
single unit of each channel-coding sequence, the system
achieves the diversity order upper bound

min{rank(L(a,b))} = dmin min{NtNrT (L + 1), NrTNC}
IET Signal Process., 2011, Vol. 5, Iss. 7, pp. 643–651
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Proof: Note that

L(a,b) = f(a,b)diag(R
H

(1) , . . . , R
H

(K) )[f(a,b)]
H

= diag(L(1)
(a,b), . . . , L(K)

(a,b)),

= diag(c(1)
(a,b)RH

(1) [c
(1)
(a,b)]

H, . . . , c(K)
(a,b)RH

(K) [c
(K)
(a,b)]

H)

Thus

rank(L(a,b)) =
∑K

k=1

c
(k)
(a,b)RH

(k) [c
(k)
(a,b)]

H

Because each channel-coding sequence has minimum
pairwise distance dmin ≤ K units, there are differences of
dmin units for any two different information sequences. Note
that one STFB only encodes a single unit of each channel-
coding sequence, so that there are at least dmin STFBs with
different channel-coded input for any two different
information sequences. Hence

min{rank(L(a,b))} = dminrank{c(1)
(a,b)RH

(1) [c
(1)
(a,b)]

H}

= dmin min{NtNrT (L + 1), NrTNC}

(10)
A

The coded diversity system described in Proposition 1
actually encodes Nu channel-coded streams of K units in
parallel. If the unit is one bit, we call it bit-interleaved
coded complex diversity coding (BICCDC)-based approach.
Bit-interleaved coded modulation (BICM) is different from
BICCDC, since in BICM, bits are interleaved simply across
different constellation symbols. If the unit is one symbol,
we call the corresponding approach symbol-interleaved
coded complex diversity coding (SICCDC).

4 Iterative decoding of CDC–ECC STFC

Fig. 4 depicts the iterative CDC–ECC STFC decoding
scheme. The STFC decoder takes channel observation
vector y and a priori information l(c′; I ) on the coded and
interleaved bits c′ and computes its extrinsic information
l(c′; O), which is subsequently de-interleaved to l(c; I ).
With a priori input l(c; I ), a soft-input, soft-output (SISO)
ECC decoder computes log-likelihood ratio (LLR) l(c; O)
for the coded bits and l(b; O) for the information bits. The
latter is used at the final iteration to make a hard decision
on the transmitted information bits; whereas the former is
interleaved and fed back to the STFC decoder as a priori
information. Several SISO algorithms can be applied to
compute the ECC decoder output. For the purpose of this
study, we consider the use of the Log-MAP algorithm [10].

Recall that the received signal vector is expressed as
y =

�����
r/Nt

√
HGs + n. The transmitted symbol vector s can

Fig. 4 Structure of the iterative STFC decoding
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be estimated by a linear MMSE algorithm, that is

z = W H y = W H
���
r

Nt

√
HGs + n

( )
= Us + v (11)

where the matrix W is designed to minimise the mean-square
error e ¼ E[‖z 2 s‖2], leading to the solution W ¼ R21P,
where

R = E[yyH ] = E
r

Nt

(HGs + n)(sH GH HH + nH )

[ ]

= r

Nt

HHH + N0I (12)

P = E[ysH ] = E

���
r

Nt

√
HGs + n)sH

[ ]
=

���
r

Nt

√
HG;

U = W H P (13)

Equation (12) is derived utilising the fact that G is a unitary
matrix.

The noise term v is Gaussian since it is a linear
transformation of a Gaussian random vector n (v ¼ WHn),
with zero mean and covariance G ¼ E[vvH] ¼ N0WHW.
Because the filtered noise v is no longer white (G is not an
identity matrix, the elements of v are correlated), optimum
detection involves joint estimation of all the symbols in the
vector s, which requires ML or near-ML sphere decoding.
However, we have observed from our experiments that the
off-diagonal elements of G are quite small compared with
the diagonal elements. Therefore we can well approximate
G as a diagonal matrix. Consequently, each element of s
can be estimated individually, and the receiver design is
greatly simplified. The kth element of z, denoted by zk, can
be written as zk ¼ uksk + vk, where uk is the kth diagonal
element of U, and sk, vk are the kth elements of the vectors
s, v, respectively. The noise term vk is a Gaussian random
variable with zero mean and variance Nk, which is the kth
diagonal element of the matrix G. The probability density
function (PDF) of the MMSE filter output zk, conditioned
on that the mth PSK/QAM symbol is transmitted, can be
expressed as

f (zk |sm) = 1

pNk

exp − |zk − uksm|2

Nk

( )
(14)

In what follows, we derive a general expression for symbol-to-
bit LLR mapping scheme based on the PDF function expressed
by (14) for different modulation schemes. For a PSK/QAM
system, we need to compute LLRs for M coded bits for each
symbol sk, which is one of the r ¼ 2M possible symbols in
the signal constellation. For example, M ¼ 2 for QPSK, and
M ¼ 4 for 16-QAM. Denote the transmitted symbol

sk = map{c0′

k , c1′
k , . . . , c(M−1)′

k }|cm′
k

[{0,1}, the LLR value of

the bit cm′

k conditioned on the MMSE filter output zk can be
calculated as

l(cm′

k |zk ) = ln
Pr(cm′

k = 1|zk )

Pr(cm′
k = 0|zk )

(15)
647
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To simplify (15), we define I+m and I2m for m ¼ 0 as

I−0 =

0 0 · · · 0 0
0 0 · · · 0 1

..

. ..
.

· · · ..
. ..

.

0 0 · · · 1 1
0 1 · · · 0 1

⎛
⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎠

︸�������������︷︷�������������︸
M×2M−1

;

I+0 =

1 1 · · · 1 1
0 0 · · · 0 1

..

. ..
.

· · · ..
. ..

.

0 0 · · · 1 1
0 1 · · · 0 1

⎛
⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎠

︸�������������︷︷�������������︸
M×2M−1

(16)

Note that for m ¼ 0, the first row of matrix I20 has all elements
equal to 0, while the first row of matrix I+0 has all elements
equal to 1. The other matrices for m ¼ 1, 2, . . ., M 2 1 can
be found by exchanging the first row with the corresponding
(m + 1)th row. Using Bayes’ theorem, we can write (15) as

l(cm′

k |zk) = l(cm′

k ) + ln

∑2M−1

p=0 p(zk |map{i+mp})eLimp∑2M−1

p=0 p(zk |map{i−mp})eLimp

(17)

where i+mp and i2mp are (p + 1)th column vectors of matrices
I+m and I2m. In (17), imp is the (p + 1)th column vector of
matrix I+m with its mth entry set equal to zero, and

L = [l(c0′

k )l(c1′

k ) . . .l(c(M−1)′

k )] is a row vector of a posteriori
LLRs. The second term in (17) is the extrinsic information of
bit cm′

k . Denoting the extrinsic information of the mth bit by
le(cm′

k ), we have

le(c
m′

k ) = ln

∑2M−1

p=0 p(zk |map{i+mp})eLimp∑2M−1

p=0 p(zk |map{i−mp})eLimp

(18)

Substituting (14) into (18) yields

le(cm′

k ) = max
∗ −|zk − ukmap{i+m0}Lim0|2

Nk

, . . . ,

{

−|zk − ukmap{i+m(P−1)}Lim(P−1)|2

Nk

}

− max
∗ −|zk − ukmap{i−m0}Lim0|2

Nk

, . . . ,

{
−|zk − ukmap{i−m(P−1)}Lim(P−1)|2

Nk

}
(19)

where max∗[] is defined as max∗[x, y] ¼ ln(ex + ey) ¼ max[x,
y] + ln(1 + e2|x 2 y|), that is, the max operation compensated
with a correction term ln(1 + e2|x 2 y|). Also max∗[x, y,
z] ¼ max∗[max∗[x, y], z], etc.

In the case of QPSK modulation, each QPSK symbol sk

corresponds to two coded bits c0′

k and c1′

k . Equation (18) is
648
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simplified to [11]

le(c0′

k )= ln Pr(zk |c0′

k =1, c1′

k =0)+Pr(zk |c0′

k =1,c1′

k =1)eLa(c1′
k )

Pr(zk |c0′
k =0, c1′

k =0)+Pr(zk |c0′
k =0, c1′

k =1)eLa(c1′
k

)

(20)

where La(c1′

k ) is the a priori value for the bit c1′

k . Substituting
(14) into (20) yields

le(c0′

k )= max
∗ −|zk −uks10|2

Nk

, −|zk −uks11|2

Nk

+La(c1′

k )

{ }

− max
∗ −|zk −uks00|2

Nk

, −|zk −uks01|2

Nk

+La(c1′

k )

{ }

where smn denotes the symbol corresponding to the bits
c0′

k =m, and c1′

k =n. Similarly

le(c1′

k )≃ max
∗ −|zk −uks01|2

Nk

, −|zk −uks11|2

Nk

+La(c0′

k )

{ }

− max
∗ −|zk −uks00|2

Nk

, −|zk −uks10|2

Nk

+La(c1′

k )

{ }

Two bit-to-symbol mapping schemes, namely, Gray and
anti-Gray are considered in this work, for QPSK and 16-
QAM systems, respectively. The results will be shown in
Section 5.

For a multi-stream system, the received signal can be
written as

r =
∑Nt

i=1

���
r

Nt

√
HGisi + n (21)

where Gi is the encoding matrix for the ith stream and si is
the ith source symbol vector. In order to facilitate MMSE
decoding, we reformulate (21) as

r =
∑Nt

i=1

���
r

Nt

√
HGisi + n =

���
r

Nt

√ ∑Nt

i=1

H isi + n

=
���
r

Nt

√
[H 1 · · · HNt

]︸���������︷︷���������︸
Heq

s1

..

.

sNt

⎡
⎢⎢⎣

⎤
⎥⎥⎦

︸��︷︷��︸
seq

+ n (22)

where Hi ¼ HGi. The rest of the derivation follows similarly
to (11)–(18), with HG replaced by Heq, and s replaced by seq.

5 Numerical results

Simulation settings are summarised as follows:

1. A convolutional code (with block size of 512 coded bits,
code rate Rc ¼ 1/2, constraint length 3, and generator
polynomials (5, 7) in octal form) is used in Figs. 5–7; a
Reed Solomon code (each RS codeword includes 6 RS
information symbols and two redundancy symbols, and
each RS symbol corresponds to 4 bits) is used in Fig. 8.
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2. MIMO frequency selective channel has channel order
L ¼ 1 (two-path except in Fig. 6b where seven-path
channel is assumed), and each path experiences independent
Rayleigh fading. Channel power delay profile is assumed to
be uniform.
3. Nt ¼ Nr ¼ 2, NF ¼ 4, T ¼ 2 and NC ¼ 32.
4. The number of STFCs for joint CDC and ECC is K, and
the number of STFBs within one STFC for one block of
3D CDC and ECC is Na.

Performance of different decoding algorithms for the joint
CDC–ECC system with QPSK modulation are demonstrated
in Fig. 5. Comparing the two non-iterative schemes, soft SD
[6] shows 1 dB gain at BER ¼ 1024 compared to the MMSE
scheme with Gray mapping. However, we observed that
the performance of the MMSE decoding can be much
improved by using anti-Gray mapping and iterative
decoding, which is slightly better than or comparable to the
non-iterative soft SD decoding over a wide range of signal-
to-noise ratios (SNRs).

Fig. 5 Performance comparison of MMSE and SD in ECC–STFC
system with QPSK modulation

MMSE with Gray mapping and soft SD decoding schemes are non-iterative.
The curve for MMSE with anti-Gray mapping is plotted at the fourth iteration
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Fig. 6 shows the performance of the MMSE decoding for
16-QAM modulated CDC–ECC STFC system with Gray
and anti-Gray mapping for two-path and seven-path
channels, respectively. For the anti-Gray system, there is a
significant performance improvement by applying an
iterative process if we compare the topmost curve
representing the first iteration of CDC-based STFC MMSE
decoding and Log-MAP ECC decoding with the bottom
curve representing the performance of iterative decoding
upon convergence. The most significant gain is obtained at
the second iteration. Note that no gain can be obtained by
performing the iterative process for the systems with Gray
mapping, in which the bits are mapped to I and Q channels
independently [11]. The iterative MMSE decoding with
anti-Gray mapping outperforms the one with Gray mapping
at the fourth iteration when Eb/N0 . 26.1 dB and Eb/
N0 . 22.2 dB for two-path and seven-path channels,
respectively. This suggests that if the 16-QAM system
operates at low SNR, Gray mapping can be applied.
Otherwise, anti-Gray mapping and iterative decoding would
be preferred. By comparing Fig. 6a with b, it is evident that
the proposed system can exploit the diversity gain provided
by multipth propagation.

Fig. 7 shows the performance comparison between
ECC-only STFCs and iterative CDC–ECC STFCs as well
as the impact of the parameter Na on the STFC system
performance. To maintain the same data rates among
ECC-only STFCs and iterative CDC–ECC STFCs, we
construct ECC-only STFCs by using identity matrices for
GSTFB in CDC-based STFCs. Clearly, iterative CDC–ECC
STFCs outperform ECC-only STFCs, especially at higher
SNRs and when the iterative scheme converges. Consistent
with the analysis in Section 3 (in Fig. 7), the system using
full diversity 3D CDC-based STFC with Na ¼ 1
outperforms that with Na ¼ 4.

Fig. 8 shows the results of joint full diversity 3D CDC and
ECC with Reed–Solomon (RS) codes. Each RS-coded
stream is across Na 3D CDC STFCs, and one RS codeword
is only across one STFB within each STFC. The number of
RS symbols of one RS codeword within one STFB is Ng.
In the simulations, hard SD for 3D CDC STFCs and hard
decisions for RS codes are chosen. From Fig. 8, one can
see that with the same configurations of RS codewords,
Fig. 6 Performance of iterative MMSE decoding

Employed modulation scheme is 16-QAM. For the systems with anti-Gray mapping, the top curve represents the first iteration of the CDC–ECC decoding, and the
bottom curve represents the fifth iteration of the CDC–ECC decoding.
a Two-path channel
b Seven-path channel
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Fig. 7 STFC performance comparisons between iterative CDC–ECC and ECC-only

The top curve represents the first iteration, the bottom curve represents the fourth iteration
a Na ¼ 1
b Na ¼ 4
STFC using SICCDC, that is, Ng ¼ 1 significantly
outperforms STFC without SICCDC, that is, Ng ¼ 4.
Considering the case when a pair of RS codewords have the
minimum distance, that is, two RS symbols, the probability
of two different RS symbols being encoded into two
different STFBs over time is (i) one in the SICCDC
case; (ii) 4/7 in the case without using SICCDC. As
shown by (10), for the SICCDC case, min{rank(L(a,b))} ¼
2 min {NtNrT (L + 1)NrTNC}; whereas for the case without
SICCDC, min{rank(L(a,b))} ¼ min{NtNrT (L + 1),NrTNC}.
Note that they are the lower bounds, and when a pair of RS
codewords differ in more than two RS symbols, rank(L(a,b))
may be much higher than min{rank(L(a,b))} in the SICCDC
case. It is observed from Fig. 8 that the SICCDC with full
diversity, proved in Section 3, yields superior performance
because of its better diversity properties.

6 Conclusions

Joint 3D space-time-frequency CDC and channel coding has
been investigated in this paper. Our theoretical analysis reveals

Fig. 8 Effect of using SICCDC on the performance of joint 3D
CDC and RS codes
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that by exploiting diversities over all three physical dimensions
(spatial, time and frequency), the joint code design has the
potential to achieve a diversity order of min{K,dmin}min{Nt

NrT(L + 1),NrTNC}, where Nt is the number of transmit
antenna, Nr is the number of receive antennas, Nc is the number
of subcarriers per antennas, L is the frequency selective channel
order between any pair of transmit and receive antennas, dmin is
the minimum distance of the employed channel code, and K is
the number of 3D CDC over time. This paper proposes and
proves full diversity construction with 3D CDC and channel
coding, BICCDC and SICCDC.

The iterative decoding of ECC and CDC has been
investigated in order to exploit the diversity potential
inherent in the joint CDC–ECC STFC system. In particular,
a low-complexity MMSE iterative decoding scheme with
anti-Gray mapping is proposed, and is shown to achieve the
performance of soft sphere decoding, and at the same time,
reduce the complexity from exponential to polynomial. A
multi-stream CDC–ECC architecture is also introduced and
is shown to have comparable performance to a single-stream
system with reduced complexity and decoding latency
because of its parallel structure.

7 References

1 Liu, Z., Giannakis, G.: ‘Space-time-frequency coded OFDM over
frequency-selective fading channels’, IEEE Trans. Signal Process.,
2002, 50, (10), pp. 2465–2476

2 Zhang, W., Xia, X., Ching, P.: ‘High-rate full-diversity space-time-
frequency codes for broadband MIMO block-fading channels’, IEEE
Trans. Commun., 2007, 55, (1), pp. 25–34

3 Boutros, J., Viterbo, E.: ‘Signal space diversity: a power- and
bandwidth-efficient diversity technique for the Rayleigh fading
channel’, IEEE Trans. Inf. Theory, 1998, 44, (4), pp. 1453–1467

4 Su, W., Safar, Z., Liu, K.: ‘Towards maximum achievable diversity in
space, time, and frequency: performance analysis and code design’,
IEEE Trans. Wirel. Commun., 2005, 4, (4), pp. 1847–1857

5 Wang, Z., Zhou, S., Giannakis, G.: ‘Joint coding-precoding with
low-complexity turbo-decoding’, IEEE Trans. Wirel. Commun., 2004,
3, (3), pp. 832–842

6 Wang, R., Ma, X., Giannakis, G.: ‘Improving the performance of coded
FDFR multi-antenna systems with turbo-decoding’, Wirel. Commun.
Mob. Comput., 2004, 4, pp. 711–725

7 Wang, R., Giannakis, G.: ‘Approaching MIMO channel capacity with
reduced-complexity soft sphere decoding’, Proc. IEEE WCNC, 2004,
3, pp. 1620–1625
IET Signal Process., 2011, Vol. 5, Iss. 7, pp. 643–651
doi: 10.1049/iet-spr.2010.0196



www.ietdl.org
8 Hassibi, B., Hochwald, B.: ‘High-rate codes that are linear in space and
time’, IEEE Trans. Inf. Theory, 2002, 48, (7), pp. 1804–1824

9 Siwamogsatham, S., Fitz, M., Grimm, J.: ‘New view of performance
analysis of transmit diversity schemes in correlated Rayleigh fading’,
IEEE Trans. Inf. Theory, 2002, 48, (4), pp. 950–956
IET Signal Process., 2011, Vol. 5, Iss. 7, pp. 643–651
doi: 10.1049/iet-spr.2010.0196
10 Robertson, P., Hoeher, P., Villebrum, E.: ‘Optimal and sub-optimal
maximum a posteriori algorithms suitable for Turbo decoding’, Eur.
Trans. Telecommun., 1997, 8, (2), pp. 119–125

11 Brink, S., Speidel, J., Yan, R.: ‘Iterative demapping for QPSK
modulation’, Electron. Lett., 1998, 34, (15), pp. 1459–1460
651

& The Institution of Engineering and Technology 2011


