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Rectangular Information Lossless Linear Dispersion Codes
Jinsong Wu, Member, IEEE, and Steven D. Blostein, Senior Member, IEEE

Abstract—This paper extends square 𝑀×𝑀 linear dispersion
codes (LDC) proposed by Hassibi and Hochwald to 𝑇 × 𝑀
non-square linear dispersion codes of the same rate 𝑀 , termed
uniform LDC, or U-LDC. This paper establishes a unitary
property of arbitrary rectangular U-LDC encoding matrices
and determines their connection to the traceless minimal non-
orthogonality criterion for space-time codes. The U-LDC are
then applied to rapid fading channels by constructing trace-
orthonormal versions, or TON-U-LDC for 2𝐿 and 4𝐿 input
symbols, where 𝐿 is a positive integer. Compared to a variety of
state-of-the-art codes, the proposed codes are found to perform
well in both block and rapid fading channels. In rapid fading,
the symbol-wise time diversity order of a 𝑇 ×𝑀 , TON-U-LDC
for 2𝐿 input symbols is shown to be min(𝑇 ,2𝑀 ).

Index Terms—Space-time coding, MIMO systems, transmit
diversity.

I. INTRODUCTION

HASSIBI and Hochwald have proposed linear dispersion
codes (LDC) as a general framework for arbitrary com-

plex space time codes for block flat-fading channels[1]. In
recent years, a number of high-rate block based complex
space-time code designs have been have been proposed, in-
cluding [1]–[4]. However, existing high-rate complex space-
time codes have limited choices of size and have been mainly
applied to block fading channels. To better exploit available
time diversity, suitable designs for rapid (i.e., fast) fading
channels are also needed. In block fading channels, this may
be achieved by interleaving input symbols within one space-
time codeword over multiple fading blocks. Even with the
use of symbol-interleaving, however, it is not guaranteed
that a codeword would necessarily benefit from the available
diversity due to rapid fading since wireless channels are highly
dynamic. The design of space-time codes that operate well
in both block fading and rapid fading channels is therefore
critical. In this paper, an approach to better exploit time
diversity in rapid fading is investigated, one that employs more
flexibly-sized rectangular algebraic code designs.

Hassibi and Hochwald proposed a rate-𝑀 linear dispersion
codes (LDC) of arbitrary square size 𝑀 × 𝑀 in [1], Eq.
(31). This paper extends [1], which we term HH square LDC,
to arbitrary rectangular size 𝑇 × 𝑀 with rate-𝑀 , for both
𝑇 ≥ 𝑀 and 𝑇 < 𝑀 . These are termed uniform linear
dispersion codes (U-LDC). First, a crucial unitary property of
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arbitrary U-LDC encoding matrices is established. Following
this, a connection is made between this unitary property and
the traceless minimal non-orthogonality criterion for space-
time codes. Based on U-LDC, this paper proposes trace-
orthonormal uniform LDC (TON-U-LDC) for 2𝐿 and 4𝐿
input symbols, for integers 𝐿 > 0. Unlike U-LDC, the
dispersion matrices for the real and imaginary components of
source symbols in TON-U-LDC may differ. While TON-U-
LDC achieves maximal symbolwise diversity order in block
fading channels, in rapid fading channels, the symbol-wise
time diversity order of 𝑇 × 𝑀 TON-U-LDC 2𝐿 is shown to
be min(𝑇 ,2𝑀 ). Finally, in comparison to a number of other
codes, TON-U-LDC are shown to perform effectively in both
block and rapid fading channels.

The following notation is used: (⋅)𝒯 and (⋅)ℋ for matrix
transpose and matrix transpose conjugate, respectively, 𝛿 (⋅)
for Kronecker delta, Tr (⋅) for matrix trace, 𝑗 for

√−1, I𝐾
for a 𝐾×𝐾 identity matrix, and 0𝐴×𝐵 for an 𝐴×𝐵 all-zero
matrix.

II. LDC ENCODING IN MATRIX FORM

Assume that uncorrelated input bits have been modulated
using complex-valued symbols chosen from an arbitrary con-
stellation. A 𝑇 × 𝑀 LDC matrix codeword, S𝐿𝐷𝐶 , is trans-
mitted from 𝑀 transmit channels and occupies 𝑇 channel
uses and encodes 𝑄 source symbols [1]. The matrix codeword
S𝐿𝐷𝐶 is expressed as

S𝐿𝐷𝐶 =

𝑄∑
𝑞=1

𝛼𝑞A𝑞 + 𝑗𝛽𝑞B𝑞, (1)

where S𝐿𝐷𝐶 ∈ 𝐶𝑇×𝑀 , and A𝑞 ∈ 𝐶𝑇×𝑀 ,B𝑞 ∈ 𝐶𝑇×𝑀 , 𝑞 =
1, ..., 𝑄 are called dispersion matrices, the data symbol con-
stellation is 𝑠𝑞 = 𝛼𝑞 + 𝑗𝛽𝑞, 𝑞 = 1, ..., 𝑄. An alternative
dispersion matrix definition [1] is

S𝐿𝐷𝐶 =

𝑄∑
𝑞=1

𝑠𝑞C𝑞 + 𝑠∗𝑞D𝑞, (2)

where C𝑞 = 1
2 (A𝑞 +B𝑞) and D𝑞 = 1

2 (A𝑞 −B𝑞), 𝑞 =
1, ..., 𝑄. This paper considers the cases of both A𝑞 =
B𝑞 and A𝑞 ∕= B𝑞, where 𝑞 = 1, ..., 𝑄. For the case
of A𝑞 = B𝑞, 𝑞 = 1, ..., 𝑄, reordering S𝐿𝐷𝐶 by using
vec(.) operation, we obtain vec (S𝐿𝐷𝐶) = G𝐿𝐷𝐶s, where
G𝐿𝐷𝐶 = [vec(A1), ..., vec(A𝑄)] is LDC encoding matrix,
and s = [𝑠1, ..., 𝑠𝑄]

𝒯 .
The data symbol coding rate of LDC is defined as [1]

𝑅𝑠𝑦𝑚
𝐿𝐷𝐶 =

𝑄

𝑇
. (3)
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III. UNIFORM LINEAR DISPERSION CODES (U-LDC)

A. U-LDC Construction

Denote 𝒟𝐾 = diag
(
1, 𝑒𝑗

2𝜋
𝐾 , ..., 𝑒𝑗

2𝜋(𝐾−1)
𝐾

)
. Denote Π𝐾 as

a matrix of size 𝐾×𝐾 with zeros except [Π𝐾 ]𝑎,𝑎−1 = 1, 𝑎 =

2, ...,𝐾 and [Π𝐾 ]𝐾,𝐾 = 1. Denote X =
[
I𝑇 ,Z𝑇×(𝑀−𝑇 )

]
where Z𝑇×(𝑀−𝑇 ) is a zero matrix.

1) The case of 𝑇 ≤ 𝑀 : Denote Γ = X. The 𝑇 × 𝑀
U-LDC dispersion matrices are:

A𝑀(𝑘−1)+𝑙 = B𝑀(𝑘−1)+𝑙 =
1√
𝑇

[𝒟𝑇 ]
𝑘−1 Γ [Π𝑀 ]𝑙−1 , (4)

where 𝑘 = 1, ..., 𝑇 and 𝑙 = 1, ...,𝑀 .
2) The case of 𝑇 > 𝑀 : Denote Γ = X𝒯 . The 𝑇 × 𝑀

U-LDC dispersion matrices are:

A𝑀(𝑘−1)+𝑙 = B𝑀(𝑘−1)+𝑙 =
1√
𝑇

[Π𝑇 ]
𝑘−1

Γ [𝒟𝑀 ]
𝑙−1

, (5)

where 𝑘 = 1, ..., 𝑇 and 𝑙 = 1, ...,𝑀 .

B. U-LDC Properties

Uniform linear dispersion codes of arbitrary size simulta-
neously hold the following two properties:

1) Unitary encoding matrix:
Property 1: For uniform linear dispersion codes with ar-

bitrary 𝑇 × 𝑀 size dispersion matrices A𝑞, 𝑞 = 1, ..., 𝑇𝑀 ,
the encoding matrix G𝐿𝐷𝐶 = [vec(A1), ..., vec(A𝑇𝑀 )] is
unitary.

A proof of Property 1 is provided in Appendix A. Property
1 implies other desirable properties mentioned in Appendix A.
According to [1], [2], Property 1 ensures capacity and energy-
optimality in block-fading space-time channels. For 𝑇 ≥ 𝑀 ,
U-LDC meets the more restrictive constraint

[A𝑞]
ℋ A𝑞 =

1

𝑀
I𝑀 . (6)

This unitary property ensures arbitrary size 𝑇 ×𝑀 disper-
sion matrices A𝑞, 𝑞 = 1, ..., 𝑇𝑀 satisfy the traceless minimal
non-orthogonality criterion for block quasi-static fading chan-
nels [5]:

Tr
[
[A𝑞1 ]

ℋ
A𝑞2

]
= Tr

[
A𝑞1 [A𝑞2 ]

ℋ]
= 0, (7)

for any 1 ≤ 𝑞1 ∕= 𝑞2 ≤ 𝑇𝑀 . The traceless minimal
non-orthogonality criterion [5] has been related to the error
union bound (EUB) [6], [7]. In [7], Tirkkonen and Kokkonen
have proven that (7) minimizes the dominant self-interference
related to EUB. To the authors’ knowledge, this paper is
the first to establish the link between trace-based criteria and
unitary criteria for space-time coding designs.

2) Symbolwise diversity [5], [8]: is a special case of
full diversity since protection against single-symbol errors is
a necessary condition for full diversity’s protection against
multiple-symbol errors.

Property 2: Uniform linear dispersion codes
of arbitrary size 𝑇 × 𝑀 dispersion matrices
A𝑞, 𝑞 = 1, ..., 𝑇𝑀 achieve symbolwise diversity order
𝑟 = min {rank (A𝑞) , 𝑞 = 1, ..., 𝑄} = min{𝑀,𝑇 }.

Property 2 can be easily proven. To accommodate the
requirement of arbitrary size, only full symbolwise diversity is
guaranteed, while both [3] and [4] consider the achievement
of full diversity.

IV. CONSTRUCTION OF TRACE ORTHONORMAL LINEAR

DISPERSION CODES

A. Introduction

Using {C𝑞,D𝑞} as dispersion matrices, trace orthonormal
linear dispersion codes (TON-LDC) of size 𝐾𝑀 × 𝑀 were
proposed in [3]. TON-LDC may achieve the lower bound
of the worst-case pairwise error probability of the maximum
likelihood detector [3]. We remark that U-LDC is also TON-
LDC with A𝑞 = B𝑞 , where 𝑞 = 1, ..., 𝑄. However, in this
section, we aim to construct TON-LDC with A𝑞 ∕= B𝑞, where
𝑞 = 1, ..., 𝑄.

If the source data symbols are energy-normalized as
𝔼(∥𝑠𝑞∥2) = 1, then the general conditions of TON-LDC [3]
can be re-expressed as follows:

1) For the case of 𝑇 > 𝑀 :

[C𝑞]
ℋ
C𝑞 + [D𝑞]

ℋ
D𝑞 =

𝑇

𝑄
I𝑀 . (8)

2) For the cases of both 𝑇 > 𝑀 and 𝑇 ≤ 𝑀 :

a) Tr
(
C𝑞 [C𝑝]

ℋ +D𝑝 [D𝑞]ℋ
)
= 𝑀𝑇

𝑄 𝛿(𝑝 − 𝑞) (9)

b) Tr
(
D𝑞 [C𝑝]

ℋ
+D𝑝 [C𝑞]

ℋ
)
= 0

(10)
where C𝑝 (or C𝑞) and D𝑝 (or D𝑞) for {𝑝, 𝑞} = 1, ..., 𝑄 are
defined in Section II.

We remark that in [9], TON-LDC may have the additional
condition

[D𝑞]
ℋ
C𝑞 + [C𝑞]

ℋ
D𝑞 = 0, (11)

where 𝑞 = 1, ..., 𝑄. However, a well-performing TON-LDC
may not necessarily satisfy condition (11), e.g., see the 2× 2
optimal design on page 626 of [9]. In the following, we only
assume conditions (8), (9), and (10).

B. Construction of trace orthonormal linear dispersion codes
for 𝑄 = 2𝐿

1) General procedure: The following provides a general
procedure to construct TON-LDC for the case of an even
number of data source symbols. In this construction pro-
cedure, the new TON-LDC dispersion matrices, denoted by{
A

(2)
𝑞 ,B

(2)
𝑞 ,C

(2)
𝑞 ,D

(2)
𝑞

}
, are constructed from an existing

LDC denoted by matrices
{
A

(1)
𝑞 ,B

(1)
𝑞 ,C

(1)
𝑞 ,D

(1)
𝑞

}
, where

A
(1)
𝑞 = B

(1)
𝑞 . Recall from Eq. (2) that C

(1)
𝑞 and D

(1)
𝑞 are

functions of A
(1)
𝑞 and B

(1)
𝑞 . In the TON-LDC, however,

A
(2)
𝑞 ∕= B

(2)
𝑞 .

Proposition 1: Consider a linear dispersion code with en-
coding matrix G

(1)
𝐿𝐷𝐶 =

[
vec(A(1)

1 )...vec(A(1)
𝑄 )

]
for 𝑄 data

symbols as defined in Section II, where A
(1)
𝑞 , 𝑞 = 1, ..., 𝑄,

where Q is an even number, are the corresponding dispersion
matrices of size 𝑇 × 𝑀 . Assume the following holds for
𝑝 = 1, ..., 𝑄 and 𝑞 = 1, ..., 𝑄:

(i) For the case of 𝑇 > 𝑀 ,[
A(1)

𝑞

]ℋ
A(1)

𝑞 =
𝑇

𝑄
I𝑀 . (12)
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(ii) For both cases of 𝑇 > 𝑀 and 𝑇 ≤ 𝑀 ,[
vec(A(1)

𝑝 )
]ℋ

vec(A(1)
𝑞 ) = Tr

(
A(1)

𝑞

[
A(1)

𝑝

]ℋ)

=
𝑇𝑀

𝑄
𝛿(𝑝 − 𝑞). (13)

The codes are constructed by defining the following matri-
ces:

(i) For 𝑞 = 1, ..., 𝑄/2,

C(2)
𝑞 =

1√
2
A(1)

𝑞 ,

D(2)
𝑞 =

1√
2
𝑒𝑗𝜇A

(1)
𝑞+(𝑄/2). (14)

(ii) For 𝑞 = ((𝑄/2) + 1), ..., 𝑄,

C(2)
𝑞 = A

(1)
𝜎(𝑞−(𝑄/2)),

D(2)
𝑞 = −𝑒𝑗𝜇A

(1)
(𝑄/2)+𝜎(𝑞−(𝑄/2)). (15)

where 𝜇 is an arbitrary real number, and 𝜎 (𝑎) is an arbitrary
fixed permutation of 𝑎 = 1, ..., 𝑄/2.

Then C
(2)
𝑞 and D

(2)
𝑞 consist of a set of dispersion matrices,

as defined in Section II, of trace orthonormal linear dispersion
codes.

The proof of Proposition 1 is omitted due to space limi-
tations. Proposition 1 demonstrates that there are an infinite
number of TON-LDC constructions which satisfy conditions
(8), (9), and (10). Proposition 1 can be used not only for
constructing rate-𝑀 TON-LDC, but also for constructing low-
rate TON-LDC. Unlike in [9], Proposition 1 provides flexible
choices of codeword sizes 𝑇 × 𝑀 and only requires that the
number of source data symbols be even.

2) A special subclass of codes - TON-U-LDC-2𝐿: Note that
U-LDC are consistent with the assumptions of Proposition 1
in the case of 𝑄 = 𝑇𝑀 , where 𝑄 is even, i.e., 𝑄 = 2𝐿.
We propose to use dispersion matrices of U-LDC as

{
A

(1)
𝑞

}
and apply the procedure in Section IV-B1 to generate trace-
orthonormal uniform linear dispersion codes, denoted as TON-
U-LDC-2𝐿.

To gain more insight into TON-U-LDC-2𝐿, it is useful to
calculate dispersion matrices A

(2)
𝑞 and B

(2)
𝑞 ,

A(2)
𝑞 = C(2)

𝑞 +D(2)
𝑞

=

⎧⎨
⎩

A
(1)
𝑞 + 𝑒𝑗𝜇A

(1)
𝑞+(𝑄/2),

𝑞 = 1, ..., 𝑄/2

A
(1)
𝜎(𝑞−(𝑄/2)) − 𝑒𝑗𝜇A

(1)
(𝑄/2)+𝜎(𝑞−(𝑄/2)),

𝑞 = ((𝑄/2) + 1), ..., 𝑄

B(2)
𝑞 = C(2)

𝑞 −D(2)
𝑞

=

⎧⎨
⎩

A
(1)
𝑞 + 𝑒𝑗𝜇A

(1)
𝑞+(𝑄/2),

𝑞 = 1, ..., 𝑄/2

A
(1)
𝜎(𝑞−(𝑄/2)) + 𝑒𝑗𝜇A

(1)
(𝑄/2)+𝜎(𝑞−(𝑄/2)),

𝑞 = ((𝑄/2) + 1), ..., 𝑄

It is easy to verify rank(A
(2)
𝑞 ) = rank(B

(2)
𝑞 ) =

min {𝑀,𝑇}, and thus having real and imaginary components
per symbol achieves full component-wise diversity.

Denote c𝑡 =
[
𝑐1𝑡 , ..., 𝑐

𝑀
𝑡

]
and b𝑡 =

[
𝑏1𝑡 , ..., 𝑏

𝑀
𝑡

]
, 1 ≤ 𝑡 ≤ 𝑇 .

The probability of transmitting 𝒞 =
[
[c1]

𝒯
, ..., [c𝑇 ]

𝒯 ]𝒯
and deciding in favor of ℬ =

[
[b1]

𝒯
, ..., [b𝑇 ]

𝒯 ]𝒯 at the
maximum-likelihood decoder is well approximated by [10]

𝑃 (𝒞 → ℬ) ≤
∏

𝑡∈𝒱(𝒞,ℬ)

(
∣c𝑡 − b𝑡∣2 𝜌/4

)−𝑁

, (16)

where 𝜌 is symbol signal-to-noise-ratio (SNR), 𝒱(𝒞,ℬ) de-
notes the set of time instances 1 ≤ 𝑡 ≤ 𝑇 such that
∣c𝑡 − b𝑡∣ ∕= 0 and ∣𝒱(𝒞,ℬ)∣ denotes the number of elements
of 𝒱(𝒞,ℬ). Thus, the diversity achieved is 𝑁 ∣𝒱(𝒞,ℬ)∣ for
space-time rapid fading channels [10].

Note that the code construction of TON-U-LDC-2𝐿 is quite
flexible, and a general analysis of 𝑁 ∣𝒱(𝒞,ℬ)∣ is difficult.
However, we introduce the concepts of symbol and (real and
imaginary) component-wise diversity ∣𝒱(𝒞,ℬ)∣ for a single
input source symbol or component error as

∣𝒱(𝒞,ℬ)∣𝑠 = min

⎧⎨
⎩∣𝒱(𝒞,ℬ)∣

∣∣∣∣∣∣∣
𝑠𝒞𝑞 = 𝑠ℬ𝑞 , 𝑞 = 1, ..., 𝑄,

except ∃𝑘, 1 ⩽ 𝑘 ⩽ 𝑄,

𝑠𝒞𝑘 ∕= 𝑠ℬ𝑘

⎫⎬
⎭

and

∣𝒱(𝒞,ℬ)∣𝑐 = min

⎧⎨
⎩
∣𝒱(𝒞,ℬ)∣

∣∣∣∣∣∣∣∣∣

𝑠𝒞𝑞 = 𝑠ℬ𝑞 , 𝑞 = 1, ..., 𝑄,

except ∃𝑘, 1 ⩽ 𝑘 ⩽ 𝑄

either 𝛼𝒞
𝑘 = 𝛼ℬ

𝑘 , 𝛽𝒞
𝑘 ∕= 𝛽ℬ

𝑘

or 𝛼𝒞
𝑘 ∕= 𝛼ℬ

𝑘 , 𝛽𝒞
𝑘 = 𝛽ℬ

𝑘

⎫⎬
⎭

,

respectively, where
{
𝑠𝒞𝑞 = 𝛼𝒞

𝑞 + 𝑗𝛽𝒞
𝑞

}
and

{
𝑠ℬ𝑞 = 𝛼ℬ

𝑞 + 𝑗𝛽ℬ
𝑞

}
are source symbol sequences for ℬ and 𝒞, respectively.

For 𝑇 ≥ 2𝑀 , it can be verified that TON-U-LDC-2𝐿
always achieves ∣𝒱(𝒞,ℬ)∣𝑠 = ∣𝒱(𝒞,ℬ)∣𝑐 = 2𝑀 , while
the TON-LDC proposed in [9] only achieves ∣𝒱(𝒞,ℬ)∣𝑠 =
∣𝒱(𝒞,ℬ)∣𝑐 = 𝑀 . Further, for 𝑇 ≤ 2𝑀 , ∣𝒱(𝒞,ℬ)∣𝑠 =
∣𝒱(𝒞,ℬ)∣𝑐 = 𝑇 is guaranteed to hold for TON-U-LDC-2𝐿.

C. Construction of trace orthonormal linear dispersion codes
for 𝑄 = 4𝐿

Using dispersion matrices of U-LDC as
{
A

(1)
𝑞

}
, another

set of dispersion matrices of trace orthonormal uniform linear
dispersion codes for 𝑄 = 4𝐿, denoted as TON-U-LDC 4𝐿,
may be constructed as follows:

1) For 𝑞 = 1, ..., 𝑄/4,

C(2)
𝑞 =

1√
2
A(1)

𝑞 ,D(2)
𝑞 =

1√
2
A

(1)
𝑞+(𝑄/2). (17)

2) For 𝑞 = 1 + (𝑄/4), ..., 𝑄/2,

C(2)
𝑞 =

1√
2
𝑒𝑗𝜇A

(1)
𝜏(𝑞−(𝑄/4))+(𝑄/4),

D(2)
𝑞 =

1√
2
𝑒𝑗𝜇A

(1)
𝜏(𝑞−(𝑄/4))+(3𝑄/4). (18)

3) For 𝑞 = ((𝑄/2) + 1), ..., 3𝑄/4,

C(2)
𝑞 =

1√
2
A

(1)
𝑞−(𝑄/2),D

(2)
𝑞 =

(−1)√
2
A(1)

𝑞 . (19)
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4) For 𝑞 = 1 + (3𝑄/4), ..., 𝑄,

C(2)
𝑞 =

1√
2
𝑒𝑗𝜇A

(1)
𝜏(𝑞−(3𝑄/4))+(𝑄/4),

D(2)
𝑞 =

1√
2
𝑒𝑗𝜇A

(1)
𝜏(𝑞−(3𝑄/4))+(3𝑄/4). (20)

In the above, 𝜇 is an arbitrary real-valued constant and 𝜏 (𝑎)
is an arbitrary fixed permutation of 𝑎 = 1, ..., 𝑄/4.

D. Remarks

Note that a specific permutation determines a specific TON-
U-LDC construction, and thus both TON-U-LDC 2L and 4L
are a set of codes due to allowance of different permutations.
According to our experiences, TON-U-LDC under different
permutations approach similar performance for 2L and 4L
cases, respectively.

Note that a specific permutation determines a specific TON-
U-LDC construction. The TON-U-LDC 2L and 4L above each
refer to a set of codes, allowing for different permutations.
The authors have observed, however, that the performances
of TON-U-LDC 2L and 4L are not affected significantly by
these different permutations.

V. PERFORMANCE

In this section, under the same spectral efficiency (bits
per time channel use), we compare the U-LDC and TON-
U-LDC codes with other well-known full-diversity rate-𝑀
designs: HH [1], TAST [11], FDFR [4], TON-LDC [3], [9],
Golden codes [12], Heath-Paulraj (HP) codes [2], and Gohary-
Davidson (GD) codes [13]. In the comparisons, MIMO flat
fading channels are assumed. The matrix channel is assumed
to be constant over a block of an integer number of symbol
time slots, which we denote as the channel change interval
(𝐶𝐶𝐼), and changing independently and identically distributed
between blocks. Data symbols use 4-QAM modulation in all
simulations. The numbers of transmit and receive antennas are
𝑀 and 𝑁 , respectively, where 𝑀 = 𝑁 . Each LDC codeword
is of size 𝑇 ×𝑀 . Maximum likelihood decoding is performed
at the receiver. Average symbol SNR per receive antenna is
reported in all figures.

As shown in Figs. 1 and 2, in 𝑀 = 𝑁 = 2 MIMO block
fading channels (𝐶𝐶𝐼 = 4), TON-U-LDC 2𝐿 of size 4 under
𝜇 = 1

4𝜋 and permutation 𝜎 (𝑎) = (𝑄/2) - a+1 performs
second-best, while, in rapid fading channels (𝐶𝐶𝐼 = 1),
TON-U-LDC 2𝐿 and TON-U-LDC 4𝐿 (under 𝜇 = 1

4𝜋 and
permutation 𝜏 (𝑎) = 𝑎) outperform the others.

As shown in Figs. 3 and 4, in 𝑀 = 𝑁 = 3 MIMO block
fading channels (𝐶𝐶𝐼 = 4), U-LDC of size 5 × 3 performs
the best, TON-U-LDC 2𝐿 of size 4 × 3 under 𝜇 = 2

3𝜋 and
permutation 𝜎 (𝑎) = 𝑎 performs second best, while, in rapid
fading channels (𝐶𝐶𝐼 = 1), TON-U-LDC 2𝐿 again performs
the best.

Fig. 5 illustrates the effects of 𝜇 on the performance of
TON-U-LDC 2𝐿 under permutation 𝜎 (𝑎) = (𝑄/2) − 𝑎 + 1
in block fading channels at 15dB SNR. However, in the case
of rapid fading channels (𝐶𝐶𝐼 = 1), it has been observed
that the performance of TON-U-LDC 2L is insensitive to the
choice of 𝜇.
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Fig. 1. BER performance comparison in space time block fading channels,
𝑀 = 𝑁 = 2, 𝐶𝐶𝐼 = 4
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Fig. 2. BER performance comparison in space-time rapid fading channels,
𝑀 = 𝑁 = 2, 𝐶𝐶𝐼 = 1

In summary, it can be observed that even though U-LDC
and TON-U-LDC are not claimed to possess full diversity, they
are able to outperform several well-known full diversity codes
in the literature in certain cases. Although U-LDC, TON-U-
LDC 2𝐿, and TON-U-LDC 4𝐿 have been compared with
different space-time dimensions, we do not claim that they
have superior performance over all other codes of arbitrary
size. Rather, we conclude that U-LDC, TON-U-LDC 2𝐿,
and TON-U-LDC 4𝐿 are all of flexible size, mathematically
tractable, and possess desirable properties as discussed in
Sections III and IV. We remark that the performance of U-
LDC of larger dimensions for the case of MIMO-OFDM
channels appears in [14].

In this paper, channels are assumed to be uncorrelated.
In the future, code design for correlated channels could be
studied.
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Fig. 3. BER performance comparison in space-time block fading channels,
𝑀 = 𝑁 = 3, 𝐶𝐶𝐼 = 60
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Fig. 4. BER performance comparison in space-time rapid fading channels,
𝑀 = 𝑁 = 3, 𝐶𝐶𝐼 = 1

APPENDIX A
A UNIFIED PROOF OF THE UNITARY PROPERTY

Proof: Consider 𝑝 = 𝑀(𝑘𝑝 − 1) + 𝑙𝑝 and 𝑞 = 𝑀(𝑘𝑞 −
1) + 𝑙𝑞, where 1 ≤ {𝑘𝑝, 𝑘𝑞} ≤ 𝑇 and 1 ≤ {𝑙𝑝, 𝑙𝑞} ≤ 𝑀 .
Denote

Δ𝑝,𝑞 = Tr
(
vec(A𝑞) [vec(A𝑝)]

ℋ)
= [vec(A𝑝)]

ℋ
vec(A𝑞)

= Tr
(
[A𝑝]

ℋ A𝑞

)
.

1) The case of 𝑇 ≤ 𝑀 :
The following always holds for U-LDC,

Δ𝑝,𝑞 =
1

𝑇
Tr

([
Π

𝑙𝑝−1
M

]ℋ
[Γ]

ℋ
[
𝒟𝑘𝑝−1

𝑇

]ℋ

𝒟𝑘𝑞−1
𝑇 ΓΠM

𝑙𝑞−1
)

=
1

𝑇
Tr

((
[ΠM ]

𝒯 )𝑙𝑝−1

CΠM
𝑙𝑞−1

)
,
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Fig. 5. Effects of 𝜇 on the performance of TON-U-LDC 2L in space-time
block fading channels, 𝑀 = 𝑁 = 2, 𝑇 = 4„ 𝐶𝐶𝐼 = 60

where

C = [Γ]𝒯
[
𝒟𝑘𝑝−1

𝑇

]ℋ
𝒟𝑘𝑞−1

𝑇 Γ

=

(
𝒟𝑘𝑞−𝑘𝑝

𝑇 0𝑇×(𝑀−𝑇 )

0(𝑀−𝑇 )×𝑇 0(𝑀−𝑇 )×(𝑀−𝑇 )

)
.

Note that the above proof uses the following facts

a) ΠM and Γ is real matrix, thus [ΠM ]
ℋ

= [ΠM ]
𝒯

and [Γ]
ℋ

= [Γ]
𝒯 ,

b)
[
𝑒𝑗𝜃𝑃

]∗
𝑒𝑗𝜃𝑞 = 𝑒−𝑗𝜃𝑃 𝑒𝑗𝜃𝑞 = 𝑒𝑗(𝜃𝑞−𝜃𝑃 ).

Also, note that Π𝒯
MC rotates the rows of C upward, and

CΠM rotates the columns of C leftward. So, Π𝒯
MCΠM

just rotates the diagonal elements of C from top left
corner to bottom right corner as C is a diagonal matrix
and hence, Tr

(
Π𝒯

MCΠM

)
= Tr (C). Also,

Tr

((
[ΠM ]

𝒯 )𝑙𝑝−1

CΠM
𝑙𝑞−1

)
=

{
Tr(C), 𝑙𝑝 = 𝑙𝑞
0, 𝑙𝑝 ∕= 𝑙𝑞

Thus,

Δ𝑝,𝑞 =

{
Tr(C), 𝑙𝑝 = 𝑙𝑞 and 𝑘𝑝 = 𝑘𝑞, 𝑖.𝑒., 𝑝 = 𝑞
0, 𝑙𝑝 ∕= 𝑙𝑞

2) The case of 𝑇 > 𝑀 : Using Tr (XY) = Tr (YX),

Δ𝑝,𝑞 =
1

𝑀
Tr

([
𝒟𝑙𝑝−1

M

]ℋ
Γ
[
Π

𝑘𝑝−1
𝑇

]ℋ

Π
𝑘𝑞−1
𝑇 Γ𝒟M

𝑙𝑞−1
)

=
1

𝑀
Tr

(
Π

𝑘𝑞−1
𝑇 Γ𝒟M

𝑙𝑞−1
[
𝒟𝑙𝑝−1

M

]ℋ
[Γ]

𝒯

[
Π

𝑘𝑝−1
𝑇

]𝒯 )
.

The rest of the proof for the case of 𝑇 > 𝑀 is similar
to that of the case of 𝑇 ≤ 𝑀 .
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