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ARMA Synthesis of Fading Channels
Hani Mehrpouyan and Steven D. Blostein

Abstract—Computationally scalable and accurate estimation,
prediction, and simulation of wireless communication channels
is critical to the development of more adaptive transceiver
algorithms. Previously, the application of autoregressive moving
average (ARMA) modeling to fading processes has been com-
plicated by ill-conditioning and nonlinear parameter estimation.
This correspondence presents a numerically stable and accurate
method to synthesize ARMA rational approximations of cor-
related Rayleigh fading processes from more complex higher
order representations. Here, the problem is decomposed into
autoregressive (AR) model matching followed by linear system
identification. Performance is compared to that of AR, inverse
discrete Fourier transform, and sum of sinusoids techniques.
Also, for the first time, the finite-precision performance of
different methods is compared.

Index Terms—Autoregressive moving average (ARMA), au-
toregressive (AR), moving average (MA), inverse discrete Fourier
transform (IDFT), sum of sinusoids (SOS), finite numerical
precision.

I. INTRODUCTION

THe properties of a mobile fading channel significantly in-
fluence the design of wireless devices. This has motivated

extensive research into the statistical modeling of Rayleigh
fading channels, which is also a core component of more
complex scattering models. Clark’s fading model [1], or a
simplified version proposed by Jakes [2], have been widely
used for simulation. There also exist a variety of implemen-
tations of these models, ranging from the sum of sinusoids
(SOS) [3]-[5], IDFT [6]-[7], AR [8], and ARMA schemes [9]-
[11]. The limitations of SOS are outlined in [5] and were
addressed, to some extent, in [3]. However the SOS model
fundamentally requires the summation of numerous sinusoids
to generate Rayleigh variates with the correct statistics. The
IDFT method, can offer improved accuracy at a cost of
requiring an inverse fast Fourier transform (IFFT) on a large
block of samples (N = 215 or larger). Performing the IFFT
operation on such a large number of samples, however, results
in large delay and overhead and may be computationally
impractical for generating shorter sequences with different
Doppler parameters, which is important for modeling more
complicated mobile fading dynamics. In contrast, ARMA
modeling has the potentially similar accuracy to a large size
IDFT, with significantly fewer computations. It is important
to note that high-order AR systems are required for accurate
approximation to the non-rational Jakes’ frequency spectrum.

Manuscript received September 21, 2006; revised February 23, 2007 and
June 13, 2007; accepted August 26, 2007. The associate editor coordinating
the review of this paper and approving it for publication was C. Xiao. This
work was supported by NSERC grant RGPIN 41731.

The authors are with the Department of Electrical and Computer Engi-
neering, Queen’s University, Kingston, ON, Canada K7L 3N6 (e-mail: {5hm,
steven.blostein}@queensu.ca).

Digital Object Identifier 10.1109/TWC.2008.060737.

These high-order AR systems can, in principle, be approxi-
mated with considerably lower order ARMA filters. Previous
ARMA-based methods proposed in [9]-[11], determine poles
and zeros separately, and as a result, are still of very high
order, typically ranging from 200-1000.

In the following, a low-order ARMA synthesis technique
is developed that can generate high quality Rayleigh variates.
The resulting ARMA system could then be applied to systems
design and performance assessment in areas such as power
control for broadband and CDMA systems [12]-[17], channel
estimation using Kalman filters [16]-[19], and blind detection
and decoding [13]-[18]. In addition to computational consider-
ations, this correspondence compares the finite-precision per-
formances of the above fading channel simulation techniques,
filling a gap in the previous literature.

II. ARMA MODEL GENERATION

An ARMA(p, q) model of p poles and q zeros has a
potential to generate digital filters with closely matching
second-order statistics. An equivalent AR(P ) model of order
P would require P >> p+q. Unfortunately, the estimation of
the ARMA model parameters leads to a nonlinear least squares
optimization problem. Therefore, suboptimal schemes, with
reduced computational complexity have been proposed in the
literature, e.g., [21]-[23], that estimate the p denominator and
q numerator parameters separately. However, these decoupled
estimation algorithms result in ARMA systems with high
order.

The relationship between the autocorrelation function
rxx[m] and ARMA(p, q) parameters is given by [24], [25]:

rxx[m] =

⎧⎪⎪⎨
⎪⎪⎩

r∗xx[−m] m < 0
−∑p

k=1 a[k]rxx[m − k]+
σ2

w

∑q
k=m b[k]h[k − m] 0 ≤ m ≤ q

−∑p
k=1 a[k]rxx[m − k] m > q

(1)

where rxx[m],−∞ < m < ∞ is the desired autocorrelation
sequence of the fading process, b[k], 0 ≤ k ≤ q and
a[k], 0 ≤ k ≤ p represent the coefficients of the numerator
and denominator polynomials of the ARMA transfer function,
respectively, h[m], 0 ≤ m < ∞ is the corresponding time-
domain impulse response sequence, and σ2

w is the variance
of the input driving sequence. Attempting to determine the
ARMA parameters by solving Eq. (1) results in a non-linear
set of equations, because the impulse response is also a
function of the unknown ARMA parameters.

Suboptimal methods that simultaneously estimate all the
a[k] and b[k] parameters are presented in [26], [27]. How-
ever due to the fact that the autocorrelation sequence under
consideration is a narrowband process and is not rational [2],
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Fig. 1. Information flow diagram to determine ARMA filter coefficients.

none of the above schemes reliably result in a stable ARMA
filter.

The proposed solution first employs a high-order AR ap-
proximation to synthesize a rational model. Note that the
AR(P ) model is able to match the first P autocorrelation lags
of any wide sense stationary random process exactly.

For an order-P AR process, Eq. (1) simplifies to

rxx[m] =

⎧⎨
⎩

r∗xx[−m] m < 0
−∑P

k=1 ar[k]rxx[m − k] + σ2
w 0 ≤ m ≤ q

−∑P
k=1 ar[k]rxx[m − k] m > q.

(2)
This gives rise to the following Yule-Walker equations, which
when solved yield ar[k], 1 ≤ k ≤ P , the parameters of the
AR(P) filter:
⎡
⎢⎢⎢⎢⎢⎣

rxx[0] rxx[−1] rxx[−2] ... rxx[−P + 1]
rxx[1] rxx[0] rxx[−1] ... rxx[−P + 2]

. . . .

. . . .

. . . .
rxx[P ] rxx[P − 1] rxx[P − 2] ... rxx[0]

⎤
⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎣

ar[1]
ar[2]

.

.

.
ar[P ]

⎤
⎥⎥⎥⎥⎥⎦

= −

⎡
⎢⎢⎢⎢⎢⎣

rxx[0]
rxx[1]

.

.

.
rxx[P ]

⎤
⎥⎥⎥⎥⎥⎦

(3)

This system of equations (3) can be efficiently solved us-
ing the Levinson-Durbin algorithm. Details on application to
Rayleigh fading channels can be found in [8].

The resulting ARMA system is then determined by formu-
lating a system identification problem [21], [22]. The input
to the ARMA system consists of the sequence x(n) that is
generated by the AR(P ) system driven by white noise w[k] ∼
WGN(0, σ2

w) (see Figure 1). The input-output equation is
given by

a0x(n) = −
p∑

k=1

akx(n − k) +
q∑

k=0

bkw(n − k). (4)

Setting a0 = b0 = 1, without loss of generality, Eq. (4) can
be expressed as

x[n] = zT (n − 1)cARMA + w(n) (5)

where

z[n] = [−x(n) . . .−x(n−p+1) w(n) . . . w(n−q+1)]T (6)

and the vector of filter coefficients,

cARMA = [a[1] . . . a[p] b[1] . . . b[q]]T . (7)

Assuming that the excitation w(n) is known we may predict
x(n) from past values, using the following linear predictor:

x̂(n) = zT (n − 1)ĉARMA (8)

ĉARMA =
[
â[1] . . . â[p] b̂[1] . . . b̂[q]

]
. (9)

The prediction error

e(n) = x(n) − x̂(n) = x(n) − zT (n − 1)ĉARMA (10)

equals w(n) if cARMA = ĉARMA. Minimization of the total
squared error

ξ(c) =
Nf∑

n=Ni

e2(n) (11)

leads to the system of linear equations

R̂zĉARMA = r̂z (12)

where the correlation of the output AR process

R̂z =
Nf∑

n=Ni

z(n − 1)zT (n − 1) (13)

and the cross correlation

r̂z =
Nf∑

n=Ni

z(n − 1)x(n). (14)

Therefore a total of p + q equations need to be solved to
determine the the parameters of the ARMA model. The use
of residual windowing implies that Ni = max(p, q) and Nf =
N − 1, where N , the number of inputs and outputs generated
by the AR(P) filter, is chosen large enough to approximate
Eqs. (13) and (14) by their expectations. It is important to
note that the resulting ARMA filter is not guaranteed to be
minimum phase and reflection of poles and zeros inside the
z-plane unit-circle may be required. The resulting ARMA filter
is of considerably lower order and therefore more numerically
stable as will be described in the next section.

III. NUMERICAL RESULTS

Using the method outlined above, an AR(50) model (P =
50) was approximated by an ARMA(12,12) model. The nor-
malized maximum doppler frequency, fm = .05Hz and N =
220 inputs and outputs were used to determine the parameters
of the ARMA model. Since different Doppler values result in
a horizontal-axis scaling of the Jakes frequency spectrum, it is
sufficient to consider only one typical Doppler value in detail.
Figures 2 and 3 represent the autocorrelation sequence of the
Rayleigh variates generated using the example ARMA(12,12)
digital filter. Comparing the second-order statistics of the
variates generated using the ARMA(12,12) filter to that of
the AR(50), it is clear that the ARMA(12, 12) filter closely
matches Jakes autocorrelation sequence. Possible criteria for
selecting the ARMA model order are discussed in [28] and
may be applied here, but is beyond the scope of this paper.
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Fig. 2. Autocorrelation function for ARMA(12) and AR(50) filters.

Fig. 3. Autocorrelation function for ARMA(12) and AR(50) filters.

However, it is also noted in [28] that these criteria seem to
work well only for a true AR or ARMA process. For fm = .05
Hz and N = 220, we obtained impressive results with p = 12
and q = 12.

Next, using the quality measures described in [6], the
quality of the variates y(n) generated using the ARMA(12,12)
filter are compared to that of the SOS [4], IDFT [6], and
AR [8] models. The two quality measures are defined as
follows. The first, termed the mean power margin, is defined
by [6]

gmean =
1

σ2
yL

trace{CyC−1
ŷ Cy} (15)

and the second, the maximum power margin, is defined by [6]

gmax =
1
σ2

y

max{diag{CyC
−1
ŷ Cy}} (16)

where σy2 is the variance of the reference distribution. In (15)
and (16), the L×L matrix Cŷ is defined to be the covariance
matrix of any length-L subset of adjacent variates produced
by the random variate generator. Due to the stationarity of the
generator output, the covariance matrix of all such subsets will
be identical. The L×L covariance matrix of a reference vector

TABLE I
A COMPARISON OF THE ARMA, AR, IDFT, AND SOS METHODS OF

GENERATING BANDLIMITED RAYLEIGH VARIATES FOR COVARIANCE

SEQUENCE LENGTH 200

gmean gmax

ARMA Filtering(12) (E) 0.56 dB 0.68 dB

AR Filtering(20) (T) 2.7 dB 2.9 dB
AR Filtering(20) (E) 2.6 dB 2.9 dB
AR Filtering(50) (T) 0.29 dB 0.43 dB
AR Filtering(50) (E) 0.26 dB 0.4 dB

IDFT Method (T) 0.00076 dB 0.00081 dB
IDFT Method (E) (N = 215) 0.23 dB 0.29 dB
IDFT Method (E) (N = 220) 0.0012 dB 0.0013 dB

SOS (24 Sinusoids) (E) 0.012 dB 0.015 dB

of L ideally distributed variates is similarly defined to be Cy .
The matrix Cy represents the desired covariance matrix, and is
known exactly (in this case the zeroth order bessel function).
L = 200 in this paper to keep the results consistent with the
simulation results presented in [4], [6], and [8].

Table I summarizes the effects of the available numerical
precision on the quality of the generated variates. Perfect
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TABLE II
QUANTIZATION ANALYSIS OF ARMA, AR, IDFT, AND SOS METHODS

Quantization (bits) gmean(dB) gmax(dB)
AR(50) 28 .26 .40
AR(50) 24 .28 .41
AR(50) 22 .65 .68
AR(50) 20 fails

AR(200) 28 .0047 .0048
AR(200) 24 .058 .062
AR(200) 22 fails
AR(200) 20 fails

ARMA(12) 28 .86 .96
ARMA(12) 24 .98 1.04
ARMA(12) 22 10.23 10.35
ARMA(12) 20 fails

IDFT(215) 28 .21 .41
IDFT(215) 20 fails
IDFT(220) 28 .0074 .0076
IDFT(220) 16 3.63 3.68

SOS(24) 28 .012 .015
SOS(24) 10 .011 0.014

variate generation corresponds to 0 dB for both measures.
An autocorrelation sequence length of 200 was considered
for evaluation of [6], Eq. (22) and [6], Eq. (23). The results
presented in Table I demonstrates that the variate generating
capability of the ARMA (12,12) filter compares favorably to
that of the AR(50) filter in terms of quality and significantly
outperforms the AR(20) filter. It is also important to point
out the computational advantage of the proposed ARMA filter
compared to the IDFT scheme. According to Table I, the
215 length IDFT has accuracy comparable to that of the
ARMA(12,12). However, the IDFT (using an FFT) requires
about log2(N) = 15 complex multiplications per unit time
(MPUs) and a delay of 215 samples. The ARMA(12,12)
requires 24 real MPUs and a delay of only 12 samples. If only
a few hundred samples are needed at that particular Doppler
value, the total computation using the IDFT approach cannot
be scaled down without a significant loss in accuracy whereas
the ARMA method is scalable. It is also important to note
that the ARMA filtering is potentially subject to transient
response effects. However this issue is addressed using the
scheme proposed in [8].

IV. FINITE NUMERICAL PRECISION EFFECTS

Due to the presence of poles near the unit circle in the
Jakes spectrum, it is imperative to investigate the performance
of the different Rayleigh variate generating schemes under
various degrees of quantization. This aspect of the problem
has not been addressed previously e.g., not in [4]- [8]. Table
II compares the performance of the ARMA, AR, IDFT, and
SOS methods under 28, 24, 22, 20, and 16 bits of quantization
to represent varying degrees of precision. Equations (15) and
(16) were used again to determine the quality of the generated
variates. The quantization was applied to the inputs, outputs,
filter coefficients, and the output of the IFFT operation. It is
noteworthy that the AR and ARMA schemes tend to fail, i.e.,
result in unstable filters when the data is quantized below 22
bits. This is due to the fact that the poles of both sets of filters
lie extremely close to the z-plane unit circle and therefore

the stability of the system is quite sensitive to quantization.
This latter effect exhibits the particular difficulties with the
Jakes spectrum, which in theory, does not correspond to a
positive definite autocorrelation spectrum and is therefore very
ill-conditioned.

V. CONCLUSION

By separating the issues of ill-conditioning and ARMA/AR
equivalences, ARMA filters for the generation of Rayleigh
random variates were considered. The inherent nonlinearity in
determining the ARMA filter coefficients was addressed by
first using an AR approximation filter. The AR filter was then
modeled by a significantly lower order ARMA filter through
a linear system identification process, developing a reduced
order ARMA model for generating Rayleigh variates. Through
a finite numerical precision study it was also determined that
typically AR and ARMA schemes require a minimum of 22-
bit quantization to result in stable filters.
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