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Maximal-Ratio Eigen-Combining for
Smarter Antenna Arrays

Constantin Siriteanu and Steven D. Blostein, Senior Member, IEEE

Abstract— In typical mobile wireless scenarios, signals are
received with power azimuth angle spectrum (p.a.s.) of variable
azimuth angle spread (AS). Therefore, conventional maximum
average signal-to-noise ratio beamforming (BF) or maximal-
ratio combining (MRC) may not necessarily be effective in
terms of performance or signal processing complexity. A newer,
more flexible, approach, called maximal-ratio eigen-combining
(MREC) is analyzed and found to generalize BF and MRC.
For imperfectly-known channels we study both suboptimal and
optimal eigen-/combining. MREC-based analysis is shown to
simplify MRC performance investigations for correlated channel
gains. For MPSK signals, we present average error probability
(AEP) expressions for MREC, BF, and MRC, that are new or
generalizations of our previous work. Furthermore, we propose a
performance–complexity tradeoff criterion (PCTC) for MREC-
receiver adaptation to changing AS. Numerical evaluations for
typical urban scenarios with realistic Laplacian p.a.s. of random
AS demonstrate that PCTC-based MREC is an interesting
alternative to BF and MRC, for smart antenna arrays.

Index Terms— Array signal processing, diversity methods,
eigen-combining, fading channels.

I. INTRODUCTION

IN mobile wireless communications, received signals are
characterized by power azimuth angle spectrum (p.a.s.)

[1], [2] with variable azimuth spread (AS) [3]. This changes
the correlation between signals received at the antenna array
elements [1], [4]. As a result, for traditional combining meth-
ods such as maximum average signal-to-noise ratio (SNR)
beamforming (BF) [5] and maximal-ratio combining (MRC)
[6], [7], symbol detection performance varies, while algorithm
complexity (and thus receiver power consumption) remains
constant.

A more flexible approach is maximal-ratio eigen-combining
(MREC) [8]–[15] which consists of the Karhunen-Loève
Transform (KLT) [12] followed by MRC. Numerical results
from lengthy simulations [11], [13], or from analysis for
unrealistic channel characteristics (e.g., uniform p.a.s.) [8], [9],
suggest that MREC adapted to channel scattering geometry
can outperform BF and even MRC, and can lower complexity
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compared to MRC. Nevertheless, previously-proposed MREC
adaptation criteria [12], [14] disregard the channel estimation
method and its parameters, and, even worse, MREC perfor-
mance and complexity.

Using channel estimates as in the traditional combining
approach [7], [16], [17], which we refer to as approximate
MRC [8]–[10], because it yields suboptimal performance, has
complicated analysis even for BPSK signals when branches
are not independent identically distributed (i.i.d.) [7], [8], [10],
[16]–[22]. On the other hand, analysis of optimum combining
for estimated channels [20], [23], i.e., exact MRC [9], is
straightforward for i.i.d. branches and MPSK signals [23].
Both approaches were applied to eigen-combining in [8], [9],
for BPSK.

In this paper we provide a comprehensive perfor-
mance/complexity analysis of exact and approximate MREC,
BF, and MRC, when the channel is estimated based on pilot-
symbol-aided modulation (PSAM) [24] and interpolation [8]–
[10]. We make the following contributions:

• performance/complexity studies for suboptimal and opti-
mal eigen-/combining are presented, and previous results
[9] are generalized.

• equivalences between MREC, BF, and MRC are proved,
and exploited to simplify BF and MRC analysis for
correlated, imperfectly-known, channel gains.

• a novel approximate-MRC average error probability
(AEP) expression for MPSK and i.i.d. branches, that is
much simpler than a previous result [7, Appendix C, Eqn.
C-16], is derived based on exact-MRC.

• the effectiveness of a novel performance–complexity
tradeoff criterion (PCTC) for MREC adaptation is
demonstrated for typical urban (TU) scenarios with
Laplacian p.a.s. and random AS variation.

This paper is organized as follows: Section II contains
the received signal model; suboptimal and optimal combining
and eigen-combining are analyzed in Section III; MREC
adaptation criteria are discussed in Section IV, and numerical
results are presented in Section V.

II. SIGNAL MODEL

Consider a mobile station transmitting an MPSK signal
through a frequency-flat Rayleigh fading channel and an
L-element receiving base-station antenna array. After de-
modulation, matched-filtering and symbol-rate sampling, the
complex-valued received signal vector is

ỹ =
√

Es b h̃ + ñ, (1)
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Fig. 1. Top: fading correlation for adjacent antenna elements, ρ, and channel
correlation matrix eigenvalues, λi, i = 1 : L; Middle: exact-MREC AEPs
for BPSK and MMSE PSAM eigengain estimation; BF performs poorly for
non-zero AS; MRC-like performance can be achieved with MREC, at much
lower complexity; Bottom: MREC order selected with criteria described in
Section IV.

whose dependence on the sampling time is not explicit, to
simplify notation. The L elements ỹi, i = 1 : L

!= 1, . . . , L,
of the received signal vector ỹ = [ỹ1 ỹ2 · · · ỹL]T , are called
branches, and the elements h̃i, i = 1 : L, of the channel vector
h̃ = [h̃1 h̃2 · · · h̃L]T , are called channel gains. In (1), Es is
the energy transmitted per symbol, and b is the transmitted
MPSK symbol, with |b|2 = 1. We assume that the channel
vector h̃ and the noise vector ñ are complex-valued, mutually
independent, zero-mean Gaussian, with h̃ ∼ CN (0,Rh) and
ñ ∼ CN (0, N0 IL). Further assumptions are that the channel
fading is frequency-flat, the noise is temporally-white, and
the received signal is interference-free. The numerical results
shown in this work are for channel gains with unit variance.

In cellular wireless communications systems, wave scatter-
ing induces azimuthal angle dispersion [1]–[3]. The channel’s
spatial selectivity, i.e., the antenna decorrelation [1], [4], is
affected by the power azimuth spectrum (p.a.s.), defined in
[3, Eqn. 2], and its root second central moment, denoted as
azimuth spread (AS) [3], [4]. The numerical results presented
herein assume a truncated Laplacian p.a.s. [4, Eqn. 12], which
accurately models measurements for most actual scenarios [3],
unlike the uniform and Gaussian p.a.s. [1], [4]. Straightforward
mathematical operations can produce closed-form expressions
for the elements of Rh [4], [10].

For a uniform linear array (ULA) with L = 5, normalized
inter-element distance dn = 1 (i.e., the physical distance
equals half the carrier wavelength), and for average angle of
arrival (AoA) θc = 0◦ (with respect to antenna broadside), the
top subplot in Fig. 1 shows the correlation, ρ, between any two
adjacent antennas, and the eigenvalues of Rh, λi, i = 1 : L,
vs. the AS. Clearly, the AS determines antenna correlation
and the relative eigenvalue magnitudes. For small AS, the
received signals are highly correlated, and the received signal
energy, proportional to tr(Rh) !=

∑L
i=1(Rh)i,i =

∑L
i=1 λi,

TABLE I

MOBILE, CHANNEL, AND RECEIVER (CHANNEL ESTIMATION)

PARAMETERS.

Parameter Value

Mobile speed v = 60 km/h
Transmitted BPSK symbol rate fs = 10 ksps
Carrier frequency fc = 1.8 GHz
Pilot symbol period [24, Sect. III.C] Ms = 39

Maximum Doppler frequency fD = 100 Hz

Normalized max. Doppler frequency fm = fD/fs = 0.01

Channel coherence time [25, Eqn. 4.40.b] Tc ≈ 1.8 ms
Channel coherence distance dc = v Tc ≈ 30 mm

Interpolator size [24, Sect. III.D] T = 11

is concentrated along the first few eigen-directions. Then, the
channel is said to be spatially non-selective and the available
diversity gain is small [12]. When the AS increases, antenna
correlation decreases, the channel becomes spatially more
selective, and higher diversity gain becomes available. In
subsequent sections we show how to exploit available diversity
gain within computational constraints.

The AS depends on the environment and antenna array
location and height, and is time-varying [3]. Measurements
for sub/urban scenarios [3] showed that the base-station AS
can be well-modeled as a random variable with log-normal
distribution, i.e.,

AS = 10εx+µ; x ∼ N (0, 1). (2)

For numerical results shown hereafter we set µ = 0.74 and
ε = 0.47, as empirically determined in [3] for a typical urban
(TU) scenario, with uniform density of 4−6-storey buildings,
irregular street layout, 0.2 − 1.1 km distance between the
mobile station and the base station, no line of sight, and
receiving antenna array positioned above rooftop level. Then,
AS is predominantly small-to-moderate, i.e., Pr(1◦ < AS <
20◦) ≈ 0.8 [2], [3], with spatial correlation given by [3]

ρAS(d) = e−d/dAS , (3)

where d is the distance traveled by the mobile station, and dAS

is the AS decorrelation distance, i.e., the distance for which
AS correlation decreases by a factor of two [3]. Measurements
found dAS = 50 m for this TU scenario [3]. By comparison,
the fading coherence distance [25, Eqn. 4.40.b], dc, given for
typical system parameter values in Table I, is 3 orders of
magnitude shorter.

III. MAXIMAL-RATIO EIGEN-COMBINING (MREC)

A. Optimum Eigen-/Combining for Perfectly-Known Channels

1) Maximal-Ratio Eigen-Combining for Perfectly-Known
Channel — Ideal MREC: The channel correlation matrix Rh
has real non-negative eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λL ≥ 0,
orthonormal eigenvectors, ei, i = 1 : L, and can be decom-
posed as Rh = ELΛΛΛLEH

L , where ΛΛΛL
!= diag{λi}L

i=1 is a

diagonal matrix, and EL
!= [e1 e2 . . . eL] is a unitary matrix.

Hereafter, Rh, ΛΛΛL, and EL are assumed perfectly-known
because, in practice, enough independent channel samples
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would be available for accurate estimation [11], since AS
varies slowly compared to the fading.

Ideal maximal-ratio eigen-combining (MREC) of order N ,
1 ≤ N ≤ L, consists of two steps:

(i) The L × N , full column rank matrix
EN

!= [e1 e2 . . . eN ] transforms (1) into

y =
√

Es bh + n, (4)

where y != EH
N ỹ,h != EH

N h̃,n != EH
N ñ.

(ii) The eigenbranches, i.e., the elements of y, are linearly
combined so as to maximize the instantaneous output
SNR (i.e., the maximal-ratio criterion [6]) using

wMREC = h. (5)

The elements of h are denoted further as eigengains. They
are mutually uncorrelated, with zero mean, and variances

σ2
hi

!= E{|hi|2} = λi, (6)

i.e., Rh
!= E{hhH} = ΛΛΛN = diag{λi}N

i=1, for any
channel gain distribution [12]. From the initial assumptions
on fading and noise, we obtain n ∼ CN (0, N0 IN ), and
h ∼ CN (0,ΛΛΛN ), so that the eigengains are independent.

The transformation leading to (4) is the Karhunen-Loève
Transform (KLT) [12]. Of all possible transforms, the KLT
packs the largest amount of energy from the original, L-
dimensional, signal vector ỹ, into the transformed, N -
dimensional, signal vector y, which is desirable for dimension
reduction [14].

Using eigenbranch independence, the approach in [19,
Chapter 9] applied for the moment generating function (m.g.f.)
of the MREC-output SNR yields the following AEP expres-
sion for order-N ideal MREC, MPSK, and branches that can
be non-i.i.d. [8, Eqn. 11]

Pe,N =
1
π

∫ M−1
M π

0

N∏

i=1

(
1 +

Es

N0
λi

gPSK

sin2 φ

)−1

dφ, (7)

where

gPSK
!= sin2 π

M
. (8)

2) Relation to Ideal BF and MRC: For N = 1, MREC re-
duces to BF [12], [14], where the inner product of the original
received signal vector with a vector proportional to the eigen-
vector of Rh corresponding to its largest eigenvalue is taken
[5]. It is known that BF can provide maximum 10 log10 L dB
antenna gain [5], [12], for coherent branches. However, BF
cannot exploit diversity gain in spatially-selective channels
[12], [13], unlike higher-order MREC [8]–[10]. The BF AEP
is given by (7) for N = 1, which can also be recast in closed-
form [8, p. 17], [10].

For perfectly-known channel gains, MRC [6] is equivalent
to MREC of order N = L [26], [27], denoted as full MREC.
Thus, for N = L, Eqn. (7) is the AEP expression for ideal
MRC, for branches that can be correlated and non-identically
distributed. (An analogous equivalence does not hold for
diversity combining techniques such as equal-gain or selection
combining [27].)

B. Channel Estimation using Pilot-Symbol-Aided Modulation
(PSAM)

A practical method to estimate the eigen/gains is as follows
[24]: the transmitter inserts one known pilot symbol every Ms

symbols, an approach known as pilot-symbol-aided modula-
tion (PSAM); then, the receiver estimates the channel fading
corresponding to data symbols by interpolating between T
pilot samples acquired across slots. Refer to [8]–[10] for de-
tails on two such estimation methods denoted as SINC PSAM
(data-independent, simple, suboptimal, with poor performance
in low SNR) and MMSE PSAM (minimum mean-squared-
error interpolation; data-dependent, complex, optimal).

C. Suboptimal Eigen-/Combining for Imperfectly-Known
Channels

In Section III-A above, we assumed perfect knowledge of
Rh (thus of EL,ΛΛΛL), and the eigen/gains. Hereafter, we relax
the assumption regarding the latter, and denote the estimators
of h̃i and hi as g̃i and gi, respectively, i = 1 : L.

1) Suboptimal Combining given Estimates of the Channel
Gains — Approximate MRC: For the signal model (1), when
individual channel gains are estimated, a standard approach
(see [7, Appendix C], [15]–[17] [19, Section 9.9], [20]–[22]
and references therein) is to detect symbols using the test
variable

q̃
!= g̃H ỹ, where (9)

g̃ != [g̃1 g̃2 · · · g̃L]T , (10)

i.e., the receiver uses the channel gain estimates as if they
coincide with the actual gains. This approach is denoted
approximate MRC [9], [10] due to its suboptimality [20,
Section III].

2) Previous Approximate-MRC Analyses, for MPSK, and
I.I.D. Branches: Traditionally, analyses of approximate MRC
for BPSK modulation and i.i.d. branches have relied on:

• the characteristic function of the test variable q̃ we defined
in (9) [7, Appendix C], [16]. The lengthy, yet straightfor-
ward, derivation in [16] lead to a simple closed-form AEP
expression [16, Eqn. 59]. Involved derivations lead to an
equivalent closed-form AEP expression [7, Appendix C,
Eqn. C-18].

• the pdf of the combiner-output SNR [17]. Such an ap-
proach [18] was recently shown to only yield an error
probability lower bound [21, Section II]. In [21], the AEP
expression from [16, Eqn. 59] was re-derived, still using
the test variable q̃, and the convenient fading estimate
model from [17, Eqn. 16].

For other PSK constellations, a previous performance study
of approximate MRC of i.i.d. branches is involved and pro-
duced a complicated, non-closed-form symbol-AEP expres-
sion [7, Appendix C, Eqn. C-16]. We present a simpler
approach and AEP expression in Section III-E.1.

3) Previous Approximate-MRC Analyses, for BPSK, and
Non-I.I.D. Branches: The approach in [16] was rediscovered
and applied for non-i.i.d. branches in [20], although explicit
AEP expressions were not provided. A finite-limit integral
AEP expression [22, Eqn. 19], found by reinterpreting results
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from [7, Appendix B] [19, Appendix 9A], is claimed to apply
to BPSK modulation, even for non-i.i.d. fading. However, the
assumption in [22, Eqn. 2] regarding the relation between a
channel gain and its estimate can limit the applicability of
these results to the case of i.i.d. branches. Our Section III-C.5
and Appendix describe a more comprehensive performance
analysis approach and AEP expression.

4) Suboptimal Eigen-Combining given Estimates of the
Eigengains — Approximate MREC: This approach [8], [10],
[12], [14], [15] uses for symbol detection the test statistic

q
!= gH y, where (11)

g != [g1 g2 · · · gN ]T . (12)

Statistical independence of the eigenbranches allows for a
straightforward analysis of approximate MREC [8] based on
the approach in [16], [20], although casting the AEP in closed-
form is tedious [8]. For completeness, an abridged version of
our derivation from [8] appears in the Appendix. The involved,
closed-form, approximate-MREC AEP expression derived in
[8] appears as Eqn. (37) in the Appendix. It can be used
to confirm that for highly-correlated branches approximate-
MREC performance can degrade with increasing order [8],
[12], [14], [15].

5) Relation to BF and MRC for Approximate Eigen-
/Combining: Since for N = 1 approximate MREC reduces
to BF [5], [13], an approximate-BF AEP expression is (37),
with N = 1.

If the same linear estimation method, e.g., SINC/MMSE
PSAM [8], is used before and after the KLT then, for N = L,

g = EH
L g̃. (13)

As y = EH
L ỹ, the test statistics for approximate full MREC

and MRC coincide, i.e.,

q = gH y = g̃H ỹ = q̃, (14)

proving their performance-equivalence, which we confirmed
by simulation in [8], [10]. Hence, Eqn. (37) with N = L, is
also the AEP expression for BPSK and approximate MRC of
non-i.i.d. branches, and the most comprehensive such result
known to the authors.

D. Optimal Eigen-/Combining for Imperfectly-Known Chan-
nels

Optimal eigen-/combining given estimated eigen/gains,
which we term exact MREC/MRC [9], [10], has rarely been
considered before [9], [20], [23], although it can provide useful
performance limits. Exact-MRC implementation and analysis
are tedious for correlated gains [10], [20], even for BPSK.
The opposite is true for uncorrelated gains even for MPSK
[23]. In the following, we expand on the exact-MREC work
we initiated in [9].

1) Optimal Eigen-Combining given Estimates of the Eigen-
gains — Exact MREC: For zero-mean, jointly-Gaussian h and
g (a common assumption also found in [7], [17], [21], [23]
for estimates obtained from pilot samples), the distribution of

the channel gain vector conditioned on its estimate is given
by CN (m,Re), where [28, Appendix 15B, p. 562]

m != E{h|g} = E{hgH}
[
E{ggH}

]−1
g, (15)

Re
!= E{(h− m) (h − m)H |g}
= Rh − E{hgH}

[
E{ggH}

]−1
E{g hH}, (16)

so that

h = m + e, (17)

with e ∼ CN (0,Re). Thus, from (4), we have

y =
√

Es bm + ννν ∼ CN (
√

Es bm,Rννν) (18)

where ννν
!=

√
Es b e + n, and Rννν

!= E{ννν νννH} = Es · Re +
N0 · IN , for MPSK transmitted symbols.

Eigenbranch independence causes the elements of g to be
independent, and the above correlation matrices to be diagonal.

Based on (15), (16), and (6), mi =
σ2

hi,gi
σ2

gi

gi and (Rννν)i,i =

Es

(
λi −

|σ2
hi,gi

|2

σ2
gi

)
+N0, where σ2

hi,gi

!= E{hi g∗i } (assumed

real-valued, positive — see [7, p. 954], [16, p. 34]) and σ2
gi

!=
E{|gi|2}. The expressions for these correlations are shown in
[8, Tables 2,3] for SINC/MMSE PSAM. The SNR for the ith
element of the conditioned signal vector in (18) is

γi
!= Es

|mi|2
(Rννν)i,i

=
Es
N0

λi |µi|2
Es
N0

λi (1 − |µi|2) + 1
· |gi|2

σ2
gi

. (19)

where µi is the correlation coefficient of hi and gi defined as

µi
!=

E{hi g∗i }√
E{|hi|2}E{|gi|2}

=
σ2

hi,gi√
σ2

hi
σ2

gi

. (20)

The maximum-likelihood combiner for the signal model
in (18) is

we,N = R−1
ννν m. (21)

The output SNR conditioned on the eigengain estimates, i.e.,
the SNR in wH

e,N y, is then

γ = Es mH R−1
ννν m = Es

N∑

i=1

|mi|2
(Rννν)i,i

=
N∑

i=1

γi, (22)

i.e., maximum [6], motivating the term “exact MREC” for this
approach. From (21), (15) and (16), the individual weights for
exact MREC are

[we,N ]i =
1

Es
N0

λi (1 − |µi|2) + 1
σ2

hi,gi

σ2
gi

gi, i = 1 : N. (23)

Besides gi, which is a weight for approximate MREC, the
weights in (23) require an additional factor which depends on
fading and noise statistics.

As shown in the Appendix, for BPSK, approximate MREC
yields to a straightforward test-variable-based analysis which,
however, produces the complicated AEP expression from (37).
On the other hand, for exact MREC, the independence of
γi, i = 1 : N , coupled with (22), allows for the following
conditioned-SNR-based AEP analysis [23] that produces a
simple, insightful, and helpful AEP expression.
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For MPSK transmitted signals and order-N exact MREC,
the symbol error probability conditioned on γ can be written
as [19, Eqn. 8.22]

Pe,N (γ) =
1
π

∫ M−1
M π

0
exp

{
−γ

gPSK

sin2 φ

}
dφ. (24)

Then, the symbol-AEP is [19]

Pe,N
!= E{Pe,N (γ)} =

1
π

∫ M−1
M π

0
Mγ

(
− gPSK

sin2 φ

)
dφ. (25)

where Mγ(s)
!= E{es γ} is the m.g.f. of γ. Using (22) and

the independence of γi, i = 1 : L, Eqn. (25) becomes

Pe,N =
1
π

∫ M−1
M π

0

N∏

i=1

Mγi

(
− gPSK

sin2 φ

)
dφ. (26)

Since gi is Gaussian, the conditioned SNR γi from (19)
is exponentially distributed [19, Eqn. 2.7], with Mγi(s) =
[1 − Γi s]−1 [19, Table 2.2], where from (19)

Γi
!= E{γi} =

Es
N0

λi |µi|2
Es
N0

λi (1 − |µi|2) + 1
. (27)

Then, (26) yields the symbol-AEP expression for MPSK and
exact MREC of order N as

Pe,N =
1
π

∫ M−1
M π

0

N∏

i=1

(
1 + Γi

gPSK

sin2 φ

)−1

dφ, (28)

which depends on modulation constellation size, MREC order
N , antenna correlation (i.e., also AS), and estimation method
and parameters. Although (28) requires numerical integration,
it can be computed easily, unlike the approximate MREC
closed-form AEP expression (37). Note from (28) that the
performance of exact MREC cannot degrade with an increas-
ing number of eigenbranches because Γi > 0, ∀i = 1 : N ,
unlike for approximate MREC [8].

2) Relation to BF and MRC for Exact Combining: For
N = 1, exact MREC becomes exact BF, and then (28) is
the exact-BF AEP expression. This can be shown to coincide
with the approximate-BF AEP expression, i.e., Eqn. (37)
written for N = 1. This is anticipated since approximate and
exact BF coincide for our assumption of real-valued, positive,
correlation coefficients.

For N = L, exact MREC is equivalent to exact MRC
because the total SNR conditioned on the eigen-gain estimates
given by (22) equals the corresponding MRC SNR, even for
non-i.i.d. branches [10]. Thus, (28) with N = L describes
exact-MRC performance.

3) Relation to Ideal Eigen-/Combining: For perfect channel
knowledge we obtain µi = 1, ∀ i = 1 : L. Then Γi

from (27) becomes Γ̌i
!= Es

N0
λi, and (28) reduces to (7), i.e.,

the AEP expression for ideal MREC (and for ideal BF and
MRC, as special cases) for correlated branches and MPSK
modulation. Clearly, Γi, ∀ i = 1 : L, can be regarded
as effective average SNRs. Thus, we unified the treatment
of optimum eigen-/combining for perfectly- and imperfectly-
known channel gains which can be non-i.i.d.

E. Revisiting Approximate MRC for I.I.D. Gains and MPSK

1) New AEP Expression: Consider the case of imperfectly-
known channel and i.i.d. branches. MRC and full MREC
obviously coincide. The factor which multiplies gi in (23)
to yield the exact-MRC weight is real-valued, positive, and
the same ∀i = 1 : L, which reduces the exact-MRC
weights to the approximate-MRC weights from (10). Then,
Eqn. (24) represents a simple, novel, symbol error probability
expression for MPSK and approximate MRC of i.i.d. branches,
conditioned on the channel gains estimates, readily applicable
for outage probability [19] calculations. The symbol-AEP
expression follows from (28) as

Papprox MRC, i.i.d. =
1
π

∫ M−1
M π

0

(
1 + Γ1

gPSK

sin2 φ

)−L

dφ, (29)

since Γ1 = Γ2 = . . . = ΓL. Note that approximate/exact
MRC performance cannot degrade as more (i.i.d.) branches
are added, because Γ1 > 0.

Using [19, Appendix 5A.1], Eqn. (29) with M = 2 can be
shown to reduce to previous results for BPSK [7, Appendix
C, Eqn. C-18], [8, Eqn. 38], [16, Eqn. 59], [21, Eqn. 23].
However, it is not known whether the analysis methods in
[8], [16], [21] can be generalized for MPSK. Furthermore,
for MPSK modulation, the new AEP expression (29) is
much simpler than the only (incomplete, non-closed-form)
alternative [7, Appendix C, Eqn. C-16] known to the authors.
An involved closed-form equivalent of (29) can be obtained
based on [19, Appendix 5.A.3].

2) Comparison with Previous Work: We noticed intrigu-
ing similarities and differences between our approach in
deriving (29), and previous results targeting BPSK and i.i.d.
branches [21, Section III-A]: Γ1, defined in (27), which enters
our AEP expression (29), coincides with the “effective SNR
due to Gaussian errors” defined in [21, Eqn. 22], which enters
the AEP expression [21, Eqn. 23]. Further investigation reveals
that a cumbersome model used previously to express the
fading gain in terms of its estimate [21, Eqn. 8] (originally
proposed in [17, Eqn. 16]) is actually equivalent to (17).
However, [17], [21] do not focus on the conditioned SNR,
as we did in Section III-D.1 — see Eqn. (22) — which leads
to a complicated and apparently inaccurate AEP derivation in
[18] (for the reason explained in [21, Section II]), as well as an
additional averaging step in [21] (over V1 defined in [21, Eqn.
15], completed using [21, Eqn. 18]). The approach presented
above in Section III-E.1 (and based on the derivations from
Section III-D.1) is simpler and works for any MPSK constel-
lation because e from (17) is considered as noise, unlike in
previous work [17], [21].

F. Performance and Complexity Comparison

Table II lists MRC and order-N MREC per symbol com-
plexities involved by KLT, interpolation, and combining. Inter-
polation vectors and eigen-decomposition computations have
been neglected, since they need to be updated infrequently.
Note that: 1) MREC complexity scales linearly with order; 2)
unlike for MRC, MREC complexity is fairly invariant with
the combining method, and invariant with the interpolation
method, due to eigenbranch independence; 3) for MMSE
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TABLE II

PER SYMBOL NUMERICAL COMPLEXITY (NO. OF COMPLEX

MULTIPLICATIONS/ADDITIONS) FOR L BRANCHES.

Combining Interpolation MRC order-N
method method MREC

approximate SINC L (T + 1) N (L + T + 1)

MMSE L (L T + 1) N (L + T + 1)

exact SINC L (L + T + 1) N (L + T + 2)

MMSE L (L T + L + 1) N (L + T + 2)

PSAM, MRC (performance-equivalent to full MREC) is much
more complex than full MREC; 4) for SINC PSAM, MRC
and full MREC have similar complexity for exact combining,
while high-order MREC can be more complex than MRC for
approximate combining.

For the same scenario as in Section II (BPSK, ULA, L = 5,
dn = 1, θc = 0◦, Laplacian p.a.s., fm = 0.01), symbol SNR
Es/N0 = 5 dB, and MMSE PSAM (Ms = 39, T = 11 [24]),
the middle subplot of Fig. 1 shows the exact-MREC AEP
versus AS. BF performs best for zero AS and poorly otherwise
because it relies on branch coherence. MRC, which yields
full diversity advantage, can significantly outperform BF for
AS > 0. Nevertheless, for small AS, MRC yields BF-like per-
formance for about 16 times higher complexity (see Table II).
For larger AS, low-order MREC (with diversity advantage)
can greatly outperform BF, and can achieve MRC/full-MREC
(optimum) performance, for significantly lower complexity
than that of MRC (see Table II): for AS < 6◦, order-2 MREC
yields ≈ 88% savings, for 6◦ < AS < 12◦, order-3 MREC
yields ≈ 82% savings, while for 12◦ < AS < 18◦, order-4
MREC yields ≈ 76% savings. For AS > 18◦, full MREC
yields ≈ 70% savings over MRC. Recall that for the typical
urban scenario described in Section II, the AS is small-to-
moderate, i.e., Pr(1◦ < AS < 20◦) ≈ 0.8, and slowly
varying compared to channel fading [2], [3]. Hence, significant
performance gains and complexity reductions over BF and
MRC are possible by exploiting adaptive MREC with optimal
order selection.

IV. OPTIMUM ORDER SELECTION FOR MREC

A. Previous Criteria

Drawing on previous results [12], a possible criterion for
MREC adaptation is

min
N=1:L

E
{
Es · ‖ΠL−N h̃‖2 + ‖ΠN ñ‖2

}
, (30)

where ‖ · ‖ stands for Euclidian norm, ΠN
!= EN EH

N is the
orthogonal projection on the subspace spanned by the columns
of EN , and ΠL−N

!= IL − ΠN . This criterion is equivalent
to

min
N=1:L

[
Es ·

L∑

i=N+1

λi + N0 · N
]

(31)

and is better known as the bias-variance tradeoff criterion [12]
(BVTC) because (31) balances the loss incurred by removing
the weakest (L − N) intended-signal contributions (the first

term) against the residual-noise contribution (the second term).
Although applicable for both approximate-MREC [12] and
exact-MREC [10], BVTC does not account for the actual
combining approach, Doppler rate, channel estimation method
and its parameters (Ms, T ). Furthermore, the BVTC requires
knowledge of the smallest eigenvalues, which may be inaccu-
rately estimated.

To ensure that the selected order depends on the estima-
tion method and parameters, Dietrich et al. [14] applied the
following MMSE criterion (MMSEC)

min
N=1:L

E
{
‖h̃− EN g‖2

}
(32)

for order selection in approximate MREC. However, it was
found that the MMSEC output does not minimize the AEP
for maximum-likelihood eigengain estimation [14, Section VI]
or for SINC PSAM [10]. Furthermore, the MMSEC cannot
reduce dimension for MMSE PSAM, regardless of antenna
correlation, symbol SNR or fading rate [10].

A common, important, BVTC and MMSEC drawback is
disregard of ensuing MREC complexity and symbol-detection
performance. These criteria can thus 1) waste processing re-
sources on inaccurately estimating insignificant eigengains and
on high-dimensional combining, or 2) ignore eigen-directions
with needed performance-enhancing potential.

B. Proposed Performance–Complexity Tradeoff Criterion
(PCTC)

For Rayleigh fading and MPSK, the AEP of exact MREC
given by (28) is a non-increasing function of the MREC order,
N . Furthermore, since sin2 φ ≤ 1, Eqn. (28) implies

Pe,N ≤ Pe,N−1

1 + ΓN · sin2 π
M

, (33)

i.e., order-N MREC will guarantee an AEP decrease by the
factor

[
1 + ΓN · sin2 π

M

]
over order-(N − 1) MREC. This

decrease is larger for smaller signal constellation sizes as well
as for larger ΓN . However, this performance improvement may
not be worth the extra computational complexity of estimating
the additional eigengain. Therefore, we propose the following
performance–complexity tradeoff criterion (PCTC): use the
N th eigenbranch only if it guarantees

Pe,N ≤ υ · Pe,N−1, (34)

where υ ∈ (0, 1) is a design parameter chosen based on
eigengain estimation complexity and receiver processing load.
A sufficient condition for (34) to hold is that

ΓN ≥ Γc
!=

(
υ−1 − 1

)

sin2 π
M

, (35)

where Γc is the cutoff average conditioned SNR. (The deriva-
tion of the necessary condition for (34) is not tractable).
The PCTC selects as MREC order the largest value of N
for which (35) holds. (Note that, unlike the BVTC-based
approach, the PCTC may not require knowledge of weak
eigenvalues, whose estimates may be inaccurate.) When the
channel conditions are so poor that Γ2 +≥ Γc, the receiver will
deploy BF. Otherwise, higher-order MREC is selected. For
very good channel conditions, the MREC order N output by
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Fig. 2. Top: AEP for BPSK, MMSE PSAM, and exact MREC vs. the SNR
per symbol, averaged over 10,000 independent samples of log-normal AS for
a TU scenario; the results for MREC of order N = 3, 4 (not shown) approach
those for full MREC. Bottom: MREC order selected with discussed criteria.
Higher symbol-SNR leads to better performance but also higher complexity.

our criterion may approach or equal L. The above PCTC needs
to be supplemented with a condition for switching from order-
N MREC to MRC only if MREC complexity can become
higher than MRC complexity, which is not the case considered
hereafter.

In Fig. 1, the bottom subplot shows the MREC order
selected with the PCTC for υ = 0.95, and with the BVTC.
The corresponding AEP values for adapted MREC appear in
the middle subplot. For this choice of υ, the proposed PCTC
outperforms the BVTC, at the price of higher complexity. The
situation may reverse when complexity is more important, i.e.,
for smaller υ. The effectiveness of the PCTC-based MREC
is evident at AS = 10◦, where MREC yields almost the
same (lowest) AEP for 3 ≤ N ≤ L = 5, but N = 3 is
selected, to minimize complexity. The BVTC selects N =
2, even though the performance may be unacceptable and
sufficient processing resources may still be available. The SNR
thresholds for a PCTC-based MREC receiver can be adapted
to the base station load, so that they increase before the signal
processing resources are exhausted, thus yielding higher user
capacity and graceful performance degradation.

V. NUMERICAL RESULTS FOR

RANDOM AZIMUTH SPREAD

For the same scenario as before, we generated 10, 000 in-
dependent log-normal AS samples using (2). The AS average
and standard deviation were 9.76◦ and 13.43◦, respectively.
The correlation matrix Rh and its eigenvalues were computed
at every sample, and the exact-MREC AEP was computed
using (28) for MMSE PSAM. Fig. 2 shows that PCTC-based
MREC performs significantly better than BF (e.g., almost 5 dB
at AEP = 10−2, and more than 7 dB at AEP ≈ 10−3), and as
well as full MREC and MRC. Note that higher MREC order
is selected for increasing SNR. Fig. 2 and Table II indicate
that, for symbol-SNR in the range [0 dB, 10 dB], PCTC-based
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Fig. 3. Top: AS vs. distance traveled by mobile station, for a TU scenario;
Middle: AEP for BPSK, MMSE PSAM, and exact BF, MRC, and adaptive
MREC, vs. time; Bottom: adaptively-selected MREC order vs. time. The
PCTC adaptively selects the MREC order which ensures the best performance
for a designer-approved complexity level.

adaptive exact MREC achieves optimum performance (i.e.,
the exact-MRC performance) for about 80% − 90% lower
complexity than that of exact MRC.

The top subplot in Fig. 3 displays the AS computed
using (2), (3). The mobile station travels a 125 m distance
in 7.5 s and transmits 75, 000 symbols. To emulate actual
updating, Rh and its eigenstructure are recalculated once
every dAS/20 = 2.5 m (or 1500 symbols). Over this dis-
tance there is small AS variation, and sufficient independent
signal samples would be available for actual eigenstructure
estimation. Fig. 3 shows in the middle subplot the BF, MRC,
and adaptive MREC AEPs evaluated using (28) after each
eigenstructure update, and in the lower subplot the MREC or-
ders selected adaptively with the applicable criteria described
in Section IV. Adaptive PCTC-based MREC can lead to
significant performance gain and complexity reduction over
BF and MRC, respectively. Simulations of this scenario when
Rh and its eigenstructure are recursively updated confirm
these results. Numerical results from [8], [10] indicate that
the PCTC from (35) is effective also for approximate-MREC
adaptation.

VI. CONCLUSIONS

The performance and complexity of optimal (exact) and
suboptimal (approximate) eigen-/combining are analyzed for
PSK transmitted signal, and imperfectly-known Rayleigh fad-
ing channel gains which can be correlated and non-identically
distributed. The claim that exact/approximate maximal-ratio
eigen-combining (MREC) is a superset of maximum aver-
age signal-to-noise ratio beamforming (BF) and maximal-
ratio combining (MRC) is proved for pilot-based estimated
channels. A new, simple, average error probability (AEP)
expression for approximate MRC of i.i.d. branches and MPSK
is derived using exact-MRC analysis.

The flexibility of MREC can be advantageously harnessed
for controlled performance adjustments as users enter and
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leave the system. A new performance–complexity tradeoff cri-
terion for MREC-adaptation to channels with variable spatial
scattering is proposed and evaluated for a typical urban mobile
scenario which is characterized by Laplacian power azimuth
spectrum with log-normal, small-to-moderate, azimuth spread.
We found that a compact, 5-element, adaptive exact-MREC
antenna array can outperform a BF antenna array by about
5−7 dB, at AEP∈ [10−2, 10−3]. Furthermore, for symbol-SNR
in the range [0 dB, 10 dB], adaptive exact-MREC can achieve
optimum performance (i.e., the exact-MRC performance) for
about 80%− 90% lower complexity than that of exact MRC.
Smarter, MREC-based, scattering-aware, antenna arrays can
thus significantly benefit mobile wireless communication sys-
tems.

APPENDIX

CLOSED-FORM AEP EXPRESSION FOR BPSK AND

APPROXIMATE MREC

Let us assume BPSK transmission of symbol b = 1. Then, it
can be shown [8, Section III.A], [10] that for the test variable
q from (11) we can write

Mq(−s) != E{e−s q} =
Nd∏

k=1

1
[−a2

k(s − sk,1)(s + sk,2)]
rk

,

with
∑Nd

k=1 rk = N ,

a2
k =

1
4
N0 σ2

gk

[
1 + (1 − µ2

k) Γ̌k

]
> 0,

with Γ̌k defined in Section III-D.3, and

sk,1, sk,2 =
2ξ̌k√

Es σ2
hk

σ2
gk

· 1
1 ∓ µk ξ̌k

> 0,

with ξ̌k =
√

Γ̌k

Γ̌k+1
. Above, (sk,1,−sk,2) represent the kth

— out of Nd — distinct pole pairs of Mq(−s), and rk is the
corresponding algebraic multiplicity.

Then, the p.d.f. of q is given by

pq(α) !=
∫ ∞

−∞
esα Mq(−s)ds. (36)

and the average error probability is given by Pe = Pr(q < 0),
i.e., [8, Section III.A.1, pp. 18-19], [10]

Pe =
1
B

Nd∑

k=1

rk∑

l=1

ck,l ·



−

√
Es σ2

hk
σ2

gk

ξ̌k
· 1 − µk ξ̌k

2





l

(37)

with

B =
Nd∏

k=1

(−a2
k)rk , (38)

cp,l = (−1)ρp−l ·
∑

Ψ

2Nd∏

j=1
j &=p

δj ·
1

(σj − σp)
ρj+ij

, (39)

where Ψ stands for the set of integers ij , satisfying 0 ≤ ij ≤
ρp − l, ∀j += p, and

∑2Nd
j=1
j &=p

ij = ρp − l, δj =
(ρj−1+ij

ij

)
, while

σp = −sp,1, ρp = rp, for p = 1 : Nd, and σp = sp−Nd,2,
ρp = rp−Nd , for p = Nd + 1 : 2Nd.
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