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Outage Probability Comparisons for Diversity Systems
With Cochannel Interference in Rayleigh Fading
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Abstract—Space diversity is an effective method to combat fad-
ing and cochannel interference (CCI) in wireless systems. In this
paper, outage performances of several diversity schemes, including
a practical variation of maximal-ratio combining that does not
require signal-to-noise ratios at different antennas, equal-gain
combining, and selection combining, are compared analytically for
an interference-limited environment in a Rayleigh fading channel.
Our analysis provides insight into the performance of diversity
schemes in the presence of CCI as well as assesses the impact of
cochannel interferer power distributions.

Index Terms—Cochannel interference (CCI), diversity methods,
Rayleigh channels.

I. INTRODUCTION

IN SPACE diversity, the received signals at antenna branches
are combined to combat fading and cochannel interfer-

ence (CCI). The optimal scheme is optimum combining (OC),
which achieves maximum signal-to-interference-plus-noise ra-
tio (SINR) at the combiner output [1]. To implement OC, the
second-order statistics of interference and noise needs to be
known. For simplicity, suboptimal combining schemes such
as maximal-ratio combining (MRC), equal-gain combining
(EGC), and selection combining (SC) [2] are used. A number of
papers have studied the outage performance of these diversity
systems in fading and CCI [3]–[9]. However, to our knowledge,
a comparative analysis of the relative outage performance for
suboptimal combining schemes in fading and CCI has not
been attempted. Such knowledge can be useful to better un-
derstand the design tradeoffs in practical cellular systems. The
outage comparison for MRC, EGC, and SC with fading and
additive white Gaussian noise was treated in the classical paper
of Brennan [2]. In this paper, we provide a comparison study,
both analytically and numerically, on the outage probability for
suboptimal diversity systems with CCI and flat Rayleigh fading.
The analysis considers an arbitrary number of interferers as
well as arbitrary interferer power distributions.
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We assume that CCI is the dominant source of system degra-
dation. Therefore, for simplicity, thermal noise was ignored
in the analysis and an interference-limited environment was
considered [4], [8]–[10]. The outage is defined as the event
when the signal-to-interference ratio (SIR) at the combiner out-
put drops below a threshold β, i.e., POUT(β) = Pr{SIR < β}.
In an interference-limited environment, MRC, which maxi-
mizes the output signal-to-noise ratio (SNR) and whose weights
depend on noise powers on antenna branches [2], becomes
invalid. Therefore, a variation of MRC was considered and de-
noted as channel-matched combining (CMC), whose weights
are given as the desired user’s channel response vector.1 In
practical systems where diversity branches are usually assumed
to have the same noise powers, MRC is reduced to CMC [11].

II. RECEIVED SIGNAL VECTOR

We consider a system where the desired signal is corrupted
by L interfering signals, all transmitting data at a rate of 1/T .
Assuming perfect synchronization for the desired user and
sampling the output of the receiver matched filter at time t =
nT , we obtain the baseband signal vector at an M -element
receiver antenna as [8]

r[n] =
√

Pscsas[n]

+
L∑

i=1

√
Pici

( ∞∑

m=−∞
ai[m]h(nT − mT − τi)

)

︸ ︷︷ ︸
zi[n]

(1)

where Ps and Pi are, respectively, the transmitting powers of
the desired and the ith interfering signals. Data symbols as[n]
and ai[m] are mutually independent with zero mean and unit
variance. The delay of the ith interfering signal relative to the
desired signal τi is assumed to be uniformly distributed over the
interval [0, T ). The combined transmitter and receiver impulse
response h(t) is a Nyquist pulse with a raised cosine spectrum
and roll-off factor ρ, where 0 ≤ ρ ≤ 1 [12]. The channel vectors
of the desired and the interfering signals cs and ci’s are mutu-
ally independent. All channel vectors are assumed to be quasi-
static (constant over a time frame [8]) and to have uncorrelated
realizations in different frames. We further assume independent

1In [8], the combining scheme the authors called MRC is really CMC since
an interference-limited environment was assumed.
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Rayleigh fading among diversity branches, i.e., the elements
of cs and ci are independent identically distributed (i.i.d.) cir-
cularly symmetric complex Gaussian random variables (RV’s)
with zero mean and unit variance. In (1), zi[n] denotes the
signal intersymbol interference from the ith interferer. It can
be shown [13] that E[zi[n]] = 0, E[|zi[n]|2] = 1 − ρ/4, and
E[zi[n]z∗j [n]] = 0 for i %= j, where E[·] denotes the expectation
and the superscript ∗ denotes the conjugate operation.

The channel vectors of the desired user and the ith inter-
ferer can be expressed component-wise as cs = [αs,1ejθs,1 · · ·
αs,Mejθs,M ]T and ci = [αi,1ejθi,1 · · ·αi,Mejθi,M ]T, respec-
tively, where the superscript T denotes the transpose operation.
The phase for the desired user channel θs,j and the phase
for the interfering user channel θi,j are uniformly distributed
over [0, 2π). The fading amplitudes αs,j and αi,j are modeled
as Rayleigh with probability density function (pdf) fα(α) =
2αe−α2

, α ≥ 0.

III. OUTAGE PROBABILITIES OF CMC,
EGC, AND SC WITH CCI

A. Outage Probability of CMC

Using the weight vector wCMC = cs, the output of CMC
becomes

wH
CMCr[n] =

√
Ps

(
cH

s cs

)
as[n] +

L∑

i=1

√
Pi

(
cH

s ci

)
zi[n]

where the superscript H denotes the conjugate transpose opera-
tion. The SIR can be written as

SIRCMC =
Ps

∣∣cH
s cs

∣∣2
(
1 − ρ

4

)∑L
i=1 Pi |cH

s ci|2

=
|cs|2

(
1 − ρ

4

)∑L
i=1

1
Λi

|cH
s ci|2
|cs|2

=
∑M

j=1 α
2
s,j(

1 − ρ
4

)∑L
i=1

ηi

Λi

(2)

where Λi
∆= Ps/Pi, i = 1, . . . , L, is the power ratio of the de-

sired signal to the ith interfering signal and ηi
∆= |cH

s ci|2/|cs|2.
It has been shown in [8] that cH

s ci/|cs| is a circularly symmetric
complex Gaussian RV with zero mean and unit variance and is
independent of cs. Hence, ηi is exponentially distributed with
unit mean.

In Appendix A, we derive new outage probability expres-
sions of CMC for both equal (Λ1 = · · · = ΛL = Λ) and dis-
tinct (Λi %= Λj for i %= j) interferer powers as shown in the
following:

POUT,CMC(β) =






(
β0

β0+Λ

)M L−1∑
k=0

(k+M− 1)!
k!(M−1)!

(
Λ

β0+Λ

)k

equal interferer powers
L∑

i=1
πi

(
β0

β0 + Λi

)M

distinct interferer powers
(3)

where β0 = (1 − ρ/4)β and πk =
∏L

i=1
i!=k

(Λi)/(Λi − Λk). It
can be verified that (3) is numerically equivalent to the outage
expressions derived by Aalo and Chayawan [7, eqs. (13) and
(14)], as well as the outage expression recently derived by Shah
and Haimovich [8, eq. (43)]. However, as shown in Section IV,
the present expressions are more suitable for analytical outage
probability comparison.

B. EGC Outage Probability

Using combining weight vector wEGC = [ejθs,1 · · ·
ejθs,M ]T, the EGC output is

wH
EGCr[n] =

√
Ps




M∑

j=1

αs,j



 as[n]

+
L∑

i=1

√
Pi




M∑

j=1

αi,je
j(θi,j−θs,j)

︸ ︷︷ ︸
gi,j



 zi[n]

where gi,j is a circularly symmetric complex Gaussian RV with
zero mean and unit variance [9].

The SIR can be found from the above expression as

SIREGC =
Ps

(∑M
j=1 αs,j

)2

(
1 − ρ

4

)∑L
i=1 Pi

∣∣∣
∑M

j=1 gi,j

∣∣∣
2

=

(∑M
j=1 αs,j

)2

(
1 − ρ

4

)∑L
i=1

µi

Λi

(4)

where µi = |
∑M

j=1 gi,j |2. It can be shown that µi is exponen-
tially distributed with mean M . An exact outage analysis for
EGC in Rayleigh fading and CCI has recently been reported in
[9, eqs. (4)–(7)].

C. SC Outage Probability

In SC, the outage event occurs when the branch with maxi-
mum SIR value drops below a predefined threshold. The
outage probability of SC can therefore be calculated from
POUT,SC(β) = Pr{SIRSC,1 < β, · · · ,SIRSC,M < β}, where
SIRSC,i is the SIR at the output of the ith receiving antenna.
The outage probability expressions of SC can be obtained
from [3],2 [4], and [5] as

POUT,SC(β)=






[
1−
(

Λ
β0+Λ

)L
]M

equal interferer powers

[
L∑

k=1
πk

β0

β0+Λk

]M

distinct interferer powers.

(5)

2Note that the SC outage probability expression presented in [3, eq. (1)] is
only valid for the equal interferer power case.
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IV. ANALYTICAL OUTAGE PROBABILITY COMPARISONS

A. Outage Probability Comparison for CMC and EGC

This section proves that CMC has a lower outage probability
than that of EGC. To show this, we first rewrite the output SIR
expression of CMC in (2) as

SIRCMC =
M
∑M

j=1 α
2
s,j(

1 − ρ
4

)∑L
i=1

Mηi

Λi

=
M
∑M

j=1 α
2
s,j(

1 − ρ
4

)∑L
i=1

νi
Λi

(6)

where νi = Mηi. Since ηi is exponentially distributed with unit
mean, νi is exponentially distributed with mean M . Comparing
(6) with (4), we recognize that ξ1

∆=
∑L

i=1 νi/Λi in (6) and

ξ2
∆=
∑L

i=1 µi/Λi in (4) have the same distribution. In (4) and
(6), the denominator is independent of the numerator. Thus, we
express the respective outage probabilities as

POUT,CMC(β) = Pr




M
M∑

j=1

α2
s,j

ξ1
< β0






=
∫

Pr




M
M∑

j=1

α2
s,j < β0ξ




 fξ1(ξ)dξ

POUT,EGC(β) = Pr






(∑M
j=1 αs,j

)2

ξ2
< β0






=
∫

Pr









M∑

j=1

αs,j




2

< β0ξ




 fξ2(ξ)dξ.

Since pdf fξ1(ξ) = fξ2(ξ) and (
∑M

j=1 αs,j)2 ≤ M
∑M

j=1 α
2
s,j

due to the Cauchy–Schwarz inequality, we have
POUT,CMC(β) ≤ POUT,EGC(β), where equality is achieved
when M = 1 (single antenna). When M > 1, the outage
probability for CMC is strictly lower than that for EGC.
The above conclusion holds for arbitrary interferer power
distributions.

B. Outage Probability Comparison for CMC and SC

We first consider the case of one interfering signal, which
approximates the situation where the system has one strong
dominant interfering user. Setting L = 1 in (3) and (5), we
obtain

POUT,CMC(β)
∣∣∣∣
L=1

= POUT,SC(β)
∣∣∣∣
L=1

=
(

β0

β0 + Λ

)M

.

Therefore, the outage probabilities for CMC and SC are identi-
cal for L = 1.

When the number of interfering signals is greater than one
(L > 1), it is proved in Appendix B that, for the special case
of equal interferer powers, the outage probabilities for CMC
are smaller than those of SC. For distinct interferer powers, the
numerical results presented in Section V suggest that CMC still
outperforms SC.

C. Outage Probability Comparison for EGC and SC

As shown in Section V, the relative outage performance of
EGC and SC depends on factors such as the number of inter-
ferers and the interferer power distribution. More interestingly,
SC can have better outage performance than EGC in the pres-
ence of one dominant interferer. An exact analytical outage
comparison for EGC and SC in CCI is difficult. We will,
however, use a geometric argument3 to provide an intuitive
explanation to this observation by considering a dual branch
(M = 2) case. In SC, the SIR at the first antenna branch is

SIRSC,1 =
α2

s,1
(
1 − ρ

4

)∑L
i=1

α2
i,1
Λi

=
Mα2

s,1
(
1 − ρ

4

)∑L
i=1

Mα2
i,1

Λi

. (7)

Since Mα2
i,1 is exponentially distributed with mean M , it is

clear that ξ3
∆=
∑L

i=1 Mα2
i,1/Λi in (7) and ξ2

∆=
∑L

i=1 µi/Λi

in (4) have the same distribution. Similarly, denoting
ξ4

∆=
∑L

i=1 Mα2
i,2/Λi in SIRSC,2, we express the respective

outage probability for SC and EGC as that shown in (8)
and (9) at the bottom of the page. Since fξ2(ξ) = fξ3(ξ),
in order to compare the outage probabilities in (8) and (9),
one is only required to compare Pr(αs,1 <

√
β0ξ/2, αs,2 <√

β0ξ′/2) and Pr(αs,1 + αs,2 <
√
β0ξ).

Referring to Fig. 1, Pr(αs,1 <
√

β0ξ/2, αs,2 <
√

β0ξ′/2)
is obtained by integrating the joint pdf of αs,1 and αs,2

over the rectangular region and Pr(αs,1 + αs,2 <
√
β0ξ) is

obtained by integrating the same pdf over the triangular re-
gion. For one interferer (L = 1), ξ4 has an exponential dis-
tribution and takes small values of ξ′ with high probability.
A small value of ξ′ will result, as shown in Fig. 1, a rectan-
gular region (solid line) contained inside the triangular re-
gion, thus Pr(αs,1 <

√
β0ξ/2, αs,2 <

√
β0ξ′/2) < Pr(αs,1 +

αs,2 <
√
β0ξ). Therefore, POUT,SC(β) < POUT,EGC(β)

when L = 1. For large values of L, ξ4 is chi-square dis-
tributed with its pdf pushed away from the origin and hence
takes large values of ξ′ with high probabilities. A large

3A similar, but not identical, geometric argument was used by Brennan [2].

POUT,SC(β) =
∫ [∫

Pr

(
αs,1 <

√
β0ξ

2
, αs,2 <

√
β0ξ′

2

)
fξ4(ξ

′)dξ′
]

fξ3(ξ)dξ (8)

POUT,EGC(β) =
∫

Pr
(
αs,1 + αs,2 <

√
β0ξ

)
fξ2(ξ)dξ =

∫ [∫
Pr
(
αs,1 + αs,2 <

√
β0ξ

)
fξ4(ξ

′)dξ′
]

fξ2(ξ)dξ (9)
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Fig. 1. Regions of integration for the conditional outage probability of SC
and EGC.

Fig. 2. Analytical outage probability of CMC, EGC, and SC for an
interference-limited environment: equal interferer powers (Λ = 10 dB),
M = 4 antennas, and L = 1, 2, and 6 interferers.

value of ξ′ will result, as the dashed line shown in Fig. 1,
in Pr(αs,1 <

√
β0ξ/2, αs,2 <

√
β0ξ′/2) > Pr(αs,1 + αs,2 <√

β0ξ) for Rayleigh-distributed αs,1 and αs,2 [2]. Therefore,
POUT,SC(β) > POUT,EGC(β) for large values of L.

V. NUMERICAL RESULTS

In this section, we make quantitative comparisons of the
outage probabilities for CMC, EGC, and SC with CCI in a
Rayleigh fading channel. In obtaining all the numerical results
without loss of generality, we set ρ = 0.

Fig. 2 plots the outage probabilities for CMC, EGC, and
SC versus the outage threshold β with four diversity branches
(M = 4) and equal interferer powers (Λ = 10 dB) for L = 1,
2, and 6 interferers. Fig. 2 confirms, as argued in Section IV-A,
that the outage probabilities for CMC are smaller than those

Fig. 3. Analytical outage probability of CMC, EGC, and SC for an
interference-limited environment: distinct interferer powers (Λavg = 10 dB),
M = 4 antennas, and L = 2 and 6 interferers. The interference power vectors
for L = 2 and L = 6 are, respectively, [0.1, 0.9] and [0.05, 0.1, 0.15, 0.22,
0.23, 0.25].

of EGC in all cases considered. The improvement of CMC
over EGC is approximately 1 dB over a wide range of outage
probability levels and numbers of interferers. As expected,
Fig. 2 also indicates that SC and CMC have the same outage
performance when the system has one interferer. However, the
outage performance of SC degrades quickly (with respect to
that of CMC) when the number of interferers increases.

Fig. 3 shows the effect of interferer power distribution on the
outage probabilities for CMC, EGC, and SC. We first define the
ratio of the desired signal power to the average interference
power as Λavg(dB) = 10 log10(Ps/(1/L)

∑L
i=1 Pi). Denoting

the normalized interference power vector by q = [q1, q2, . . . ,
qL], where

∑L
i=1 qi = 1, we can calculate the power ra-

tio Λi(dB) = Ps/Pi(dB) = Λavg(dB) − 10 log10(Lqi). With
four diversity branches (M = 4), Fig. 3 compares the outage
probabilities for two interferers (L = 2) with a highly unbal-
anced interference power vector [0.1, 0.9] and for six interferers
(L = 6) with a more evenly distributed interference power
vector [0.05, 0.1, 0.15, 0.22, 0.23, 0.25]. In both cases, as
expected, CMC outperforms both EGC and SC. The relative
performance for EGC and SC, however, depends on the inter-
ferer power distribution. With six interferers, Fig. 3 shows that
EGC outperforms SC in a scenario that approximates the equal
interferer power case studied in Fig. 2. For two interferers,
however, EGC is inferior to SC. This can be explained by noting
that the interference power vector [0.1, 0.9] represents the case
of a strong dominant interferer, a scenario where the outage
performance of SC is almost equivalent to that of CMC.

In the presence of noise, we use Monte Carlo simulation
to evaluate the outage probabilities. Assuming all antenna
branches have the same noise powers, Figs. 4 and 5 show
the outage probabilities of CMC,4 EGC, and SC at different
SNRs for four antennas (M = 4), one interferer (L = 1), and

4In this case, CMC is equivalent to MRC.
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Fig. 4. Monte Carlo simulated outage probability of CMC, EGC, and SC for
a finite SNR: M = 4 antennas, L = 1 interferer, Λ = 10 dB, and SNR =
20 dB.

Fig. 5. Monte Carlo simulated outage probability of CMC, EGC, and SC
for a finite SNR: M = 4 antennas, L = 1 interferer, Λ = 10 dB, and SNR =
10 dB.

Λ = 10 dB. We observe that, for one interferer, as expected,
SC outperforms EGC at high SNRs but may not outperform
EGC in lower SNRs. To investigate how closely the analysis of
an interference-limited environment holds for finite SNRs, we
compare the L = 1 curves in Fig. 2 to those in Figs. 4 and 5.
We note that the performance of CMC and EGC is within 2 dB
at low SNR (10 dB) and almost the same as that predicted by
the interference-limited analysis at higher SNR (20 dB). The
interference-limited analysis of SC is less accurate for finite
SNRs.

VI. CONCLUSION

In this paper, we have analytically compared the outage
performance of CMC, EGC, and SC for an interference-limited
environment in flat Rayleigh fading. We have shown that CMC

has a lower outage probability than that of EGC and that CMC
has no greater outage probability than that of SC. The relative
outage performance between EGC and SC, however, depends
on the number of interferers and interferer power distribution.
For finite SNRs, the simulation results show that the relative
performance between EGC and SC is SNR dependent.

APPENDIX A

In (2), let X
∆=
∑M

j=1 α
2
s,j and U

∆=
∑L

i=1 ηi/Λi, where αs,j

is Rayleigh distributed and ηi is exponentially distributed with
unit mean. Since the denominator and the numerator in (2) are
independent, we have

POUT,CMC(β) = Pr
{

X

U
< β0

}
=

∞∫

0

fX(x)
∞∫

x
β0

fU (u)dudx

(10)

where the pdf of X is fX(x) = [1/Γ(M)]xM−1e−x, x > 0
since X is chi-square distributed [12]. The pdf of U is [12,
eqs. 14-4-13, and 14-5-26]

fU (u) =






ΛL

(L − 1)!
uL−1e−Λu, u > 0

equal interferer powers∑L
k=1 Λkπke−Λku, u > 0

distinct interferer powers.

Hence, using [14, 3.351-2], we have

∞∫

x
β0

fU (u)du

=






L−1∑
k=0

1
k!

(
Λ
β0

)k

xke−
Λ
β0

x equal interferer powers

L∑
k=1

πke−
Λk
β0

x distinct interferer powers.

(11)

Substituting (11) into (10) and using [14, 3.351-3], we
obtain (3).

APPENDIX B

In this appendix, we prove POUT,CMC(β) < POUT,SC(β)
for equal interferer powers, i.e., from (3) and (5)

(
β0

β0 + Λ

)M L−1∑

k=0

(k + M − 1)!
k!(M − 1)!

(
Λ

β0 + Λ

)k

<

[
1 −

(
Λ

β0 + Λ

)L
]M

(12)

for L > 1 and M > 1. Before proving this result, we first
introduce a useful lemma.
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Lemma 1: For positive integers L > 1 and M > 1,

(1 + x + · · · + xL−1)M

=
L−1∑

k=0

(M + k − 1)!
(M − 1)!k!

xk + higher order terms. (13)

Proof: We prove Lemma 1 by induction. It can be shown
easily that (13) is true for M = 2. Now assuming (13) holds,
we need to show that the expression holds for M + 1, i.e.,

(1 + x + · · · + xL−1)M+1

=
L−1∑

k=0

(M + k)!
M !k!

xk + higher order terms. (14)

To do so, we expand the left side of (14) as

(1 + x + · · · + xL−1)M+1

= (1 + x + · · · + xL−1)

×
(

1 + Mx + · · · + (M + k − 1)!
(M − 1)!k!

xk + · · ·

+
(M + L − 2)!

(M − 1)!(L − 1)!
xL−1 + higher order terms

)

= 1 + (M + 1)x +
2∑

j=0

(M + j − 1)!
(M − 1)!j!

x2 + · · ·

+
L−1∑

j=0

(M + j − 1)!
(M − 1)!j!

xL−1 + higher order terms.

Applying the identity
∑k

j=0((M + j − 1)!/(M − 1)!j!) =
((M + k)!/M !k!) [15, p. 212] in the above expression, we have
(14). Therefore, by induction, Lemma 1 holds. !

From Lemma 1, it follows that for x > 0, M > 1, and L > 1

(1 + x + · · · + xL−1)M
>

L−1∑

k=0

(M + k − 1)!
(M − 1)!k!

xk. (15)

Denoting (Λ/β0 + Λ) by x, for the case of equal interferer
powers, we rewrite (3) and (5) as

POUT,CMC(x) = (1 − x)M
L−1∑

k=0

(M + k − 1)!
(M − 1)!k!

xk (16)

POUT,SC(x) = (1 − xL)M

= (1 − x)M (1 + x + . . . + xL−1)M
(17)

where 0 < x < 1 (since both β0 and Λ are positive). Compar-
ing (16) with (17) and using (15), we obtain the inequality
in (12).
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