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Maximum Mutual Information Design for MIMO
Systems With Imperfect Channel Knowledge
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Abstract—New results on maximum mutual information design
for multiple-input multiple-output (MIMO) systems are presented,
assuming that both transmitter and receiver know only an estimate
of the channel state as well as the transmit and receive correlation.
Since an exact capacity expression is difficult to obtain for this case,
a tight lower-bound on the mutual information between the input
and the output of a MIMO channel has been previously formulated
as a design criterion. However, in the previous literature, there has
been no analytical expression of the optimum transmit covariance
matrix for this lower-bound. Here it is shown that for the general
case with channel correlation at both ends, there exists a unique
and globally optimum transmit covariance matrix whose explicit
expression can be conveniently determined. For the special case
with transmit correlation only, the closed-form optimum transmit
covariance matrix is presented. Interestingly, the optimal trans-
mitters for the maximum mutual information design and the min-
imum total mean-square error design share the same structure, as
they do in the case with perfect channel state information. Simula-
tion results are provided to demonstrate the effects of channel esti-
mation errors and channel correlation on the mutual information.

Index Terms—Channel state information (CSI), mean-square
error (MSE), multiple-input multiple-output (MIMO), mutual
information, optimization.

I. INTRODUCTION

M ULTIPLE-INPUT multiple-output (MIMO) systems
are known to be capable of providing high data rates

without increasing bandwidth in rich scattering wireless fading
channels [1]. However, the capacity of a MIMO channel de-
pends on the availability of channel state information (CSI) at
both ends. Correspondingly, different transmit strategies should
be used with different types of CSI. The case when the fading
channel is perfectly known to both ends has been studied in
[1]–[3] and [20]. More recently, optimal transmit strategies are
obtained for the case when the CSI at the receiver (CSIR) is
perfect and the CSI at the transmitter (CSIT) is the channel
mean or covariance information [4]. The noncoherent case with
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no instantaneous CSIT or CSIR has been studied in [5] and [6].
A comprehensive overview of the capacity results of MIMO
systems can be found in [7]. In the above, either a perfect
coherent system (perfect CSIR) or a noncoherent system (no
instantaneous CSIR) has been assumed.

In [8], a different MIMO channel scenario is considered,
where the CSIR is obtained through channel estimation and
contains estimation errors. The CSIT is assumed to be obtained
from the receiver via a lossless feedback link and is the same as
the CSIR. The CSI at both ends consists of the channel estimate
and channel correlation information. Under this assumption of
CSI, an exact capacity expression is hardly tractable. Instead,
tight upper- and lower-bounds on capacity have been proposed
for system design [8], which are generalizations from those
for a single-input single-output (SISO) channel [9]. The case
when the CSI at both ends consists of channel estimates and
channel correlation has been studied in [10] and [11], where
the upper- and lower-bounds are shown to be close and thus
are both tight. In particular, the lower-bound on the ergodic
capacity has been formulated and used as the design criterion
[10], [11]. Unfortunately, so far, no expression for the optimum
transmit covariance matrix has been obtained for the capacity
lower-bound with channel mean (i.e., channel estimate) and
channel correlation information at both ends. In this paper, we
attempt to solve this problem.

Our main contributions are listed as follows:
• We show that a globally optimum transmit covariance ma-

trix exists for the capacity lower-bound. We also present
its expression, which clarifies the transmitter structure and
can be conveniently determined.

• The methodology employed to determine the optimum
transmit covariance matrix enables us to determine the
relationship between the maximum mutual information
design and minimum total mean-square error (MSE)
design with imperfect CSI.

• In [11], due to the absence of the optimum covariance ma-
trix for the capacity lower-bound, the effects of the same
amount of transmit and receive correlation are found to be
different (see [11, Figs. 4 and 5]). Based on the optimum
transmit covariance matrix obtained here, we reassess the
effects of transmit and receive correlation, and observe dif-
ferent results from those in [11].

The differences between our work and that in the literature
can be highlighted as follows:

• In [12, Sec. VI], linear MIMO transceiver designs with im-
perfect CSI at both ends have been considered. The authors
have obtained results for the case with receive correlation
only, which is mathematically equivalent to the perfect CSI
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case. However, it is the presence of transmit correlation
that requires a nontrivial new problem to be solved. In this
paper, we consider the case with transmit correlation alone
as well as the general case with both transmit and receive
correlation.

• In the special case with only transmit correlation, a numer-
ical search method has been proposed in [10, Sec. IV-B].
For this case, we provide a unique closed-form optimum
solution.

• Unlike [10, Sec. IV-B] or [12, Sec. VI], our method is to
formulate an equivalent problem first, and then apply the
general nonlinear programming method based on the asso-
ciated Karush–Kuhn–Tucker (KKT) optimality conditions.

A. Notation

Upper (lower) case boldface letters are for matrices (vectors);
denotes statistical expectation and denotes the trace

of a matrix; stands for the determinant of matrix , whereas
denotes the magnitude of scalar ; and denote the

complex conjugate and complex conjugate transpose (Hermi-
tian), respectively; ; is the iden-
tity matrix; represents the circularly symmetric complex
Gaussian distribution; means that is positive semidefi-
nite; is the Frobenius norm of defined as .

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

Consider a single-user MIMO communication system. The
flat-fading MIMO channel, with antennas at the transmitter
and antennas at the receiver, is represented by the
matrix . The system is described by , where
is the 1 zero-mean data vector (channel input) with its co-
variance matrix given by , and is the 1
received signal vector (channel output). The 1 Gaussian
noise vector , distributed according to ), is as-
sumed to be zero-mean, spatially and temporally white, and in-
dependent of both data and channel fades. The channel model
used here is given by [13], where and
represent normalized transmit and receive correlation matrices
with unit diagonal entries, respectively. The entries of are
independent and identically-distributed (i.i.d.) .

In this paper, the imperfect channel state information is mod-
eled in the same way as in [11].1 Specifically, the CSIR is de-
scribed by

(1)

where is the estimate of , and is the overall channel
estimation error matrix. Spatially white matrices and
are uncorrelated with i.i.d. entries distributed according to

and , respectively. Note that is the
variance of channel estimation error. As in [11], [12, Sec. VI],
a lossless feedback link is assumed, i.e., CSIT is the same as

1We employ the current model to facilitate the comparison between our results
and those in the literature. However, the model of CSI here and the one described
by [12, Eq. (3)] or [16, Eqs. (3)–(5)] lead to mathematically equivalent problem
formulations.

CSIR.2 Thus, , , , and represent the CSI known
to both ends.

Under the above channel uncertainty model, the channel
output can be written as . The total noise is
given by , with its mean being the zero vector
and its covariance matrix given by

(2)

where the expectation is with respect to the distributions of ,
and , and we have used the result

if the entries of matrix are i.i.d. . Note that
is not Gaussian and an exact capacity expression is hard to ob-
tain. As a result, tight upper- and lower-bounds on capacity
have been proposed for system design purposes. In particular,
assuming a Gaussian input distribution, though it does not nec-
essarily achieve capacity with the above assumed CSI, the mu-
tual information between and given can be bounded as
[8]–[11]

where

(3)

(4)

The expectation in (4) is taken over the distribution of .
and denote the lower- and upper-bounds on the actual max-
imum achievable mutual information, respectively.

B. Problem Formulation

As in [8], [10], and [11], below we adopt the capacity lower-
bound as the design criterion. To obtain the highest data rate
from using the capacity lower-bound, i.e., to get the best out
of the worst case [24], we need to solve the following problem
[10], [11]

(5)

The lower-bound on the ergodic capacity is then [8], [10]

(6)

where the expectation is taken with respect to the fading channel
distribution.

Note that the short-term power constraint is imposed on the
spatial domain. No temporal power allocation is considered.
Since the power constraint is imposed across antennas at each

2While this assumption is still far from practical, it is more realistic than the
one which assumes the same perfect CSI at both ends [1]–[3], [20]. A design
which explicitly models and accounts for errors in the feedback, though of en-
gineering interest, is beyond the scope of this paper.
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Fig. 1. Virtual auxiliary system model.

fading state (or channel realization), we then perform the max-
imization for each fading state, i.e., for a given (or, equiva-
lently, here). If the mutual information is maximized for each
channel state, the expectation of mutual information over fading
distribution is maximized. In a word, in general [26]

where the right-hand side is indeed the maximum which one can
possibly achieve with a short-term power constraint and with the
CSI specified in this paper.

The problem in (5) is considered to be a maximum mutual
information design problem with imperfect channel knowledge.
This explains the title of this paper.

III. DETERMINING THE OPTIMUM TRANSMIT COVARIANCE

MATRIX FOR THE CAPACITY LOWER-BOUND

A. Methodology

Our approach to obtaining the optimum relies on solving
an equivalent problem of (5). Toward this end, we introduce
a virtual auxiliary precoder-decoder pair in our system
model (see Fig. 1), where and are and
matrices, respectively, and . The choice of the
sizes of and is explained in Part 3) of Appendix B. Let
be a zero-mean 1 data vector whose entries are i.i.d. with
unit variance. Then , and . From
Fig. 1,

The received vector after the decoder is given by .
Define the MSE matrix as

(7)

In the above, the expectation is with respect to , and .

Lemma 1: The problem in (5) is equivalent to

(8)

where denotes the natural logarithm. Denote the optimum so-
lution for (8) as . Then for (5) is related to
the optimum solution for (8) by . Further-
more, a global maximum exists for (5) and a global minimum
exists for (8).

Proof: See Appendix A.

Remark 1: Based on Lemma 1, in order to solve (5), we
attempt to solve (8) instead. A similar line of thinking can be
found in [2], [14] for the perfect CSI case. Nevertheless, this
idea has not been exploited to solve problems associated with
imperfect CSI. With imperfect CSI, while the minimum total
MSE design in [16] minimizes the trace of the MSE matrix, the
maximum mutual information design minimizes its log deter-
minant, which is the capacity lower-bound achievable with a
Gaussian input distribution. This is analogous to their relation
in the perfect CSI case [2].

Upon reaching this point, we take an approach similar to that
in [16] to solve (8), a nonconvex problem.3 Since the objec-
tive and constraint functions of (8) are continuously differen-
tiable with respect to (or, equivalently, ), and
the feasible points of (8) satisfy the regularity condition [19,
pp. 309–310], the global minimum, which exists per Lemma
1, should satisfy the first-order KKT necessary conditions asso-
ciated with (8) [19, p. 310, Prop. 3.3.1]. Our method is to ob-
tain all the solutions satisfying the KKT necessary conditions,
compare the object values induced by them, and then single
out the optimum pairs from them.4 Note that if

is optimum, so is , where
is an arbitrary unitary matrix. Nevertheless, the op-

timum transmit covariance matrix for this
group of pairs is unique. Below we will refer to

as an optimum solution for (8) up to a unitary
transform.

B. General Results: and

Theorem 1: With the MSE matrix given by (7), the optimal
structures of the precoder and decoder for (8) (up to a unitary
transform) are given by

(9)

(10)

respectively, where

(11)

(12)

3An easy way to check this is to consider the special case when all matrices
are one-by-one (scalars).

4A simple example using this method can be found in [19, p. 11].
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and

(13)

(14)

Matrices and are defined by the following eigenvalue
decomposition

(15)

(in which is replaced by ), and
. The matrix consists of basis

vectors for the null space of (15). The entries of the diagonal
matrix are all zero. The matrix is composed
of the eigenvectors corresponding to the nonzero eigenvalues.
Without loss of generality, the entries of the diagonal matrix

are arranged in nonincreasing order. By inserting (9) and
(10) into (13) and (14), two equations can be obtained with
and being the only two unknowns, which can be determined
numerically.

Proof: See Appendix B.
Theorem 1 clearly describes the structures of the optimal pre-

coder and decoder. However, and need to be determined
numerically. Inspired by [15], we provide a KKT-conditions-
based iterative algorithm to determine the optimum solution as
given in Table I. This algorithm has the property of reducing the
value of the objective function at each iteration. Based on a large
number of simulations, starting from a nonzero matrix , the
algorithm in Table I yields the optimum ( ) up to a
unitary transform. Unfortunately, a rigorous convergence anal-
ysis of this iterative algorithm has not been obtained to date, but
represents a subject for future investigation.

The following corollary follows immediately from Lemma 1
and Theorem 1.

Corollary 1: The unique optimum covariance matrix for (5)
is given by , where is from Theorem
1.

C. Special Case: and

In MIMO downlink transmissions, base stations are usually
located at high elevation with relatively few local scatterers
around. As a result, the channels arising from the BS antennas
(transmitter) are often correlated. In contrast, the channels
arising from the mobile station antennas (receiver) are often un-
correlated due to sufficient local scattering [10], [23]. Thus, we

TABLE I
ITERATIVE ALGORITHM FOR SOLVING (8) IN THE GENERAL CASE

consider (5) in this special case. It turns out that the closed-form
optimum transmit covariance matrix can be found, unlike in
the general case where undetermined parameters appear in the
eigenvalue decomposition [see (15)].

Corollary 2: For the case with , the closed-form
optimal precoder and decoder for (8) are given by

(16)

(17)

respectively, where

(18)

(19)

Matrices and are obtained from the following eigenvalue
decomposition

(20)

and ( ) denotes the number of nonzero
channel eigenmodes. is the diagonal matrix whose
entries are the nonzero eigenvalues arranged in nonincreasing
order. The matrix is composed of the eigenvectors
corresponding to the nonzero eigenvalues. Scalars and are
given by

(21)

(22)

where the integer ( ) denotes the number of the nonzero
entries of the diagonal matrix . , and are traces of the

top-left sub-matrices of ,

, and , respectively.
The optimum solution is unique up to a unitary transform.
The unique, optimum covariance matrix is determined using

.
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Fig. 2. Ergodic capacity or capacity bounds, with different amounts of CSI and with different transmit strategies. � � � for all curves here. � � ���� for
the case with imperfect CSI. “CUB” stands for the capacity upper-bound, and “CLB” for the lower-bound. Those marked with “uniform” are the lower-bounds
obtained using a uniform power allocation at the transmitter under imperfect CSI.

Proof: Here is the Lagrangian associated with the opti-
mization problem for the special case, and

The main procedure is similar to the proof for Theorem 1.
Therefore, details are omitted for brevity. By substituting
(16)–(19) into the expression for and the power constraint

, two equations with and being the only
two unknowns can be obtained, from which we finally obtain
(21) and (22). The method to determine is included in
Appendix C.

Remark 2: When , Corollary 2 reduces to the ca-
pacity results obtained in [1]–[3], and [20].

Remark 3: In [10, Th. 5], it has been pointed out that when
goes to infinity, the optimum transmit strategy is to per-

form a water-filling procedure over the eigenmodes of and
then invert the effect of . This agrees with Corollary 2.

Remark 4: With the same imperfect CSI considered here (i.e.,
transmit correlation only), the optimal transmitters for the max-
imum mutual information design and the minimum total MSE
design share the same structure, and differ only in the power al-
locations [16], [17].

IV. NUMERICAL RESULTS

The transmit correlation model is given by [25, eq. (13)],[10]:
for . The receive corre-

lation matrix is similarly defined with the exception that
is replaced by and that the indices range from 1 to .

Four antennas are employed at each end of the channel. Below
the ergodic capacity and the ergodic capacity bounds will be

shown in bits per MIMO channel use (or bits per MIMO trans-
mission), which are calculated by averaging the instantaneous
mutual information over the fading distribution (similar to (6)).
The signal-to-noise ratio (SNR) here is defined as .

To obtain the optimum transmit covariance matrix for the
lower-bound, in the case without receive correlation (i.e.,

), the closed-form result in Section III-C is applied. When
there is both transmit and receive correlation, we use the algo-
rithm in Table I.

A. Comparison of the Ergodic Capacity and Different
Capacity Bounds

Fig. 2 shows a comparison between the ergodic capacity and
upper- and lower-bounds of capacity. For each of two different
channel spatial correlation values, the bounds (marked with
“CUB” or “CLB”) are calculated using (4) and (3), respectively,
and then averaged over the fading distribution. The optimum
covariance matrix for the lower-bound derived in this paper is
used as the transmit strategy in the calculations of (4) and (3).
The two bounds obtained this way are seen to be very close to
each other, especially in the low to medium SNR region (
dB), and thus are both tight in our cases. This justifies the use of
the lower-bound as a design criterion to maximize the mutual
information. Asymptotic analysis of the difference between the
upper- and lower-bounds can be found in [8], [11].

When there is no channel estimation error (perfect CSI at both
ends), the optimum strategy is to transmit along the nonzero
channel eigenmodes and then perform a water-filling type of
power allocation among the channel eigenmodes. The uniform
power allocation scheme simply ignores the CSIT and allocates
the same power to all antennas. In the case of imperfect CSI
considered here, the optimum transmit strategy refers to that for
the capacity lower-bound. The case with imperfect CSI is shown
in Fig. 2 (those two curves marked with “uniform”). As seen in
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Fig. 3. Ergodic capacity lower-bound of MIMO channels for the case with imperfect CSI (� � ����).

Fig. 2, with imperfect CSI, the uniform power allocation (used
in [11]) performs strictly worse over the entire SNR range when
the channel correlation is high. This, in turn, shows the advan-
tage (in terms of accuracy) of using the optimum covariance ma-
trix for the lower-bound. From Fig. 2, this advantage increases
with the amount of channel correlation.

B. Effects of Channel Estimation Error and Channel
Correlation

Fig. 3 shows more curves of the capacity lower-bound with
imperfect CSI using the optimum covariance matrix. Channel
estimation error causes a significant loss in ergodic capacity.
From Figs. 2 and 3, at high SNR the capacity saturates due to
channel estimation error. Channel correlation can also signifi-
cantly reduce the ergodic capacity, based on Figs. 2 and 3.

C. Comparison of the Effects of Transmit and Receive
Correlation

In [11], based on the capacity lower-bound derived from the
suboptimum uniform transmit power allocation, the effects of
the same amount of transmit and receive correlation are shown
to be different (see [11, Figs. 4 and 5]). In fact, by using the
closed-form optimal transmit covariance matrices for the cases
with transmit correlation only and with receive correlation only,
we can show that, when and , the effective
eigenchannels and the optimal MSE matrices in both cases are
identical. This implies that the same amount of transmit and
receive correlation should have the same effect on the optimum
capacity lower-bound, as shown in Fig. 4.

V. CONCLUSIONS

We have used a tight capacity lower-bound as a design cri-
terion to maximize the mutual information of a MIMO channel
with imperfect channel knowledge. The expression of the op-
timum transmit covariance matrix (or the precoder matrix) for

this lower-bound has been determined, which clearly gives the
transmitter structure and is shown to be advantageous over the
suboptimum uniform power allocation scheme. The effects of
channel estimation error and channel correlation have also been
assessed.

APPENDIX A
PROOF OF LEMMA 1

Proof: We first equivalently formulate (8) as [18, p. 130,
Sec. 4.1.3]

(23)

where denotes the natural logarithm. It can be shown that
the inner minimization is given by (see, for example, [20, Sec.
IV-A]): , where
is defined in (2). Note that this optimum is the same as that
from (29) in Appendix B, derived using a different method. Sub-
stituting this formula into the third equation in (7), using the ma-
trix inversion lemma [22], following the same steps as (29)–(32)
in Appendix B, we can see that (8) is equivalent to

(24)

where we have used the identity [22].
Let , and then the equivalence between (24) and (5)
becomes clear.

The problem (24) has a compact feasible set [16], while its
objective function is continuous at all points of the feasible set.
Thus, by Weierstrass’ Theorem [19, p. 654, Prop. A.8], a global
minimum exists for (24). By equivalence [18, p. 130, Sec. 4.1.3],
the same global maximum exists for (8). Again, by equivalence,
a global maximum exists for (5) and the maximizing for
(5) is related to the minimizing for (24) or (8) through

. This concludes the proof of Lemma 1.
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Fig. 4. Effect of transmit correlation versus that of receive correlation for the case of imperfect CSI (� � ����).

APPENDIX B
PROOF OF THEOREM 1

1) The Lagrangian, KKT Conditions, and Simplifications:
The Lagrangian associated with (8) is

where is the Lagrange multiplier. By taking the derivative of
the Lagrangian with respect to [21], [22], respectively,
we obtain the KKT necessary conditions for (8)

(25)

(26)

(27)

(28)

where , being used throughout Appendix B, is the same
as given in (2) except that there is replaced by .

An obvious solution that satisfies the above conditions is
, which will be compared to other solutions

presented later. For now, we consider the case where .
Since (8) is assumed to be well-defined, should

be larger than 0, and then (25) is equivalent to

(29)

Based on (29), by writing as a function of , and after some
algebra, we obtain

(30)

Again based on (29), using the matrix inversion lemma [22], we
can show that

(31)

while

(32)

and

(33)

Substituting (30) and (33) into (26), we obtain

(34)

From now on, we will focus on (34), (29), (27), and (28).
2) Relation Between and ( , ): From (33), using the

fact that

we can show that

(35)

Premultiplying both sides of (34) by , we have

(36)

Then taking the trace of both sides, using (35) and the fact that
is Hermitian, we obtain
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Due to (28), if , must be equal to , which
yields

(37)

Assume that (i.e., ). Then if ,
we must have , and (37) is still valid.
Furthermore, (37) holds even when , , and .

3) Determining the Optimal Structures of and : Par-
allel to the calculations in [16], we first write in a general
form5

(38)

where and are defined in (15), and and are arbi-
trary and matrices, respectively. It can
be verified that

(39)
Substituting (38) into (36), using (39), after some calculations,
we can show that . Therefore, without loss of gen-
erality, here can be expressed as

(40)

Based on (31) and (40), using the matrix inversion lemma [22]

(41)

where , also an arbi-
trary matrix due to .

At this point, one might argue that the sizes of and
should be and matrices, respectively, where
should be allowed to take any integer value satisfying

. Since our ultimate goal is to determine , which is given by
, the quantity of interest is the matrix .

We can then safely choose without incurring any loss
of generality for our problem. This explains our earlier choice
of as a matrix.

Assume . Post-multiply both sides of (29) by , and
then we obtain

(42)

5Our proof here is similar but not identical to that in [3]. Since
� � � � � � is a nonsingular matrix, (38) is general.

Substituting (40) and (41) into (36) and (42), using (15), the
following two formulas hold:

(43)

(44)

Based on (43)-(44), using the same method as in [3, App. I, B
and C], we obtain

(45)

(46)

Based on (40), (41), (45), and (46), we have proved (9) and (10).
Equations (13) and (14) follow from (33) and (37), respectively.
In addition, the specific values of and need to be deter-
mined numerically.

Up to now, we have shown that the nonzero solutions satis-
fying the KKT conditions (25)–(28) with are given by
(9)–(14), up to a unitary transform. By direct calculations, all
these nonzero solutions lead to the same value of the objective
function in (8), which is lower than that from using (

). Therefore, we conclude that they are equivalently op-
timum and Theorem 1 holds.

APPENDIX C
DETERMINING IN COROLLARY 2

In order to determine the number in the expressions of
(21) and (22), we use an iterative procedure. Let be the th
element of , where . Initialize .

1) Calculate from (22) and from (21). If ,
stop; else: go to step 2).

2) Let and . Go to step 1).
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