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Abstract—A spectrum sensing problem in which multiple
sensors are used to detect an idle period in multiple channels is
considered in this paper. By casting the problem using a partially
observable Markov decision process (POMDP), a sequential
detection scheme that minimizes the expected detection time and
false alarm is described. Recent research shows that the POMDP
formulation can be applied to spectrum sensing problems that
sense multiple channels using only one sensor. This paper shows
that this approach can be generalized to systems that incorporate
an arbitrary number of sensors. Based on this more general
procedure, this paper proposes two sequential detection schemes
that exploit the additional sensors to reduce the detection time
in the spectrum sensing system while maintaining its false alarm
rate under a desired design constraint. The performances of the
two detectors are investigated through Monte Carlo simulation.

I. INTRODUCTION AND BACKGROUND

Spectrum sensing, which concerns the problem of char-
acterizing the state of spectrum in terms of its availability,
has recently become an important area of research with the
promise to alleviate the strain caused by the scarcity of
wireless spectrum. Spectrum sensing is naturally framed as a
detection problem. Research on this problem is already abun-
dant. Methods based on feature detection to detect different
classes of signals are studied for various applications, such
as for wireless microphones and analog TV signals [1], [2],
or OFDM pilot signals [3]. There is also work on exploring
alternative sensing methods such as energy detection [4].

The above publications all treat detector reliability as the
most important requirement. Agility, which is determined by
the time required to perform the detection, is also an important
performance measure, since the time spent sensing a channel
is an overhead that should be minimized.

The methods proposed by [1], [2], [3], [4] process a fixed
block of observations, which means that their agility is fixed.
In [5], agility is addressed through a sequential detection
framework. By employing the sequential probability ratio test
(SPRT) detector, decisions are produced after a sufficient
number of observations is obtained, which is usually less than
that of a fixed-sample-size detector for the same reliability of
performance. The authors of [6][7] apply quickest detection to
spectrum sensing, which is a sequential detection framework
that detects for the changes in a signal. In [6][7], it is assumed
that the change time, i.e., the time when the change event
occurs, is unknown. By this assumption the potential statistical

behaviour of the change time is ignored. Alternatively, [8]
proposes a Bayesian design for quickest detection based on
Shiryaev’s problem, where it is assumed that there is a priori
knowledge about the probability distribution of the change
time.

While the classical change point detection framework stud-
ied in [5], [6], [7], [8] is based on detecting one single change
event in one random process, [9] re-casts the problem under
the framework of partially observable Markov decision pro-
cesses (POMDP) and extends its solution to observing multiple
processes. Through its POMDP formulation, the authors in [9]
arrive at a very similar detector structure to that derived for
Shiryaev’s problem [8]. In the formulation [9], however, it is
assumed that the detector may only observe one channel at a
time. In practical CR systems, this is an unnecessary constraint
as multiple spectrum sensors may be available, where each can
be tuned to different spectrum band. The incorporation of more
spectrum sensors should enable performance enhancement at
moderate cost.

The contribution of this paper is to re-formulate the POMDP
in [9] to accommodate multiple sensors, and propose two de-
tector designs that incorporate an arbitrary number of sensors
while maintaining the favourable properties of the detectors
in [9]. The second detector design is motivated by the need
to reduce complexity. Through evaluating the performance via
Monte Carlo simulation, this paper studies system performance
with varying numbers of sensors.

The paper is organized as follows: Section II describes
the formulation and the proposed detectors for the multi-
sensor case. Section III investigates the effects of introducing
additional sensors, as well as provides a comparison between
the two proposed detectors via simulation.

II. SYSTEM AND METHODS

A. Problem Statement

Consider a discrete-time system with L channels that each
may transition back and forth between occupied and unoccu-
pied states. Among the L channels, a spectrum sensing system
is tasked with finding an unoccupied channel. Suppose the
spectrum sensing system is equipped with M sensors, so it
can freely observe any M out of L channels. Each channel
consists of time intervals of either occupied or unoccupied
periods, termed busy and idle periods, respectively.



As in [9], it is assumed that the occupants emerge into and
exit from any channel according to a Poisson arrival model,
which implies that the length of each busy/idle period is
modelled randomly using a geometric distribution. Given that
a channel is in the busy state, the probability that the channel
enters the idle state in the next time interval is represented
by pB ; likewise, if a channel is in the idle state, there is a
probability, which is denoted by pI , that the channel switches
to the busy state in the next time interval. The probability of
a channel being in the idle state without knowledge of the
channel’s previous state is denoted as λo, which represents
the fraction of idle time to total time as below,

λo =
mI

mI +mB
(1)

where mI ≡ 1/pI and mB ≡ 1/pB are the average busy and
idle times.

It is assumed that all L channels transit between the busy
and idle states with the same pB and pI . Also, each busy/idle
period is assumed to be statistically independent of the others.

Using observations from M sensors out of the L channels,
the detector makes a decision between whether to continue to
observe or to stop to declare that an idle channel is found.
Furthermore, if the system decides to continue to observation
process, it must also make an decision on which channels to
observe.

Let Tdeclare be the random elapsed time from when the de-
tection process begins to when the detection process declares
a discovery of an idle time period. The false alarm rate of
the detector, denoted as PFA, is the probability of declaring a
channel idle when the state the channel is busy.

The goal is to design a detection scheme that achieves the
minimum expected detection time while maintaining its false
alarm rate under a given constraint, α. That is,

minE [Tdeclare]

subject to PFA ≤ α. (2)

B. POMDP Formulation for Multi-Sensor Scenario

A POMDP is utilized to model the dynamics of the chan-
nels. In [9], it is pointed out that the POMDP approach differs
from Shiryaev’s problem [8] in that the POMDP models the
dynamics of multiple change points, i.e., a channel may switch
states following its change point, which is more realistic for
spectrum sensing.

A POMDP formulation for the case of M = 1 is provided
in [9], i.e., the case where a detector is only able to observe
one channel at one time. In the following is a formulation that
generalizes the POMDP in [9] to the case of multiple sensors,
e.g., to M > 1.

1) State Space: The channels underlying the system
each have independent states. These states are defined as
{Z1(t), ..., ZL(t)}, where Zi(t) ∈ {0, 1} denotes the state of
the ith channel. State 0 and State 1 represent busy and idle
states, respectively. In addition, there is an absorption state
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Fig. 1. The transition dynamics for the the ith channel, 1 ≤ i ≤ M . A
similar diagram would apply to all other channels. When the action taken at
t belongs to set C, the channel will switch between the busy and idle states.

that is shared by all the channels that define the end of the
detection process.

2) Action Space: Let at be the action taken at time t. The
action space consists of all the possible actions for at, and is
separated into two sets. The first set, denoted as C, contains the
action options to observe M out of L channels and therefore
includes

(
L
M

)
distinct options. An action within C, denoted by

(Ck1 , Ck2 , ..., CkM ), represents continuing to observe channels
with indices k1, ..., kM . The second set, denoted as D,is related
to actions of declaring a channel idle. Within D, each action
is denoted as (Di) and represents declaring the ith channel
idle, 1 ≤ i ≤ L.

3) State Transition: The transition dynamics are modelled
in terms of pB and pI . Fig. 1 shows the state transition diagram
for the ith channel, and since the dynamics of all the channels
are assumed to be independent and identically distributed, the
same diagram applies for all channels.

4) Observation Model: If in the previous time instant an
action belonging to set C is taken, M samples from M chan-
nels are observed from the process. When the total number
of channels L > M , the detector observes a subset of the
channels. The channels that fall within this observable subset
are selected by the action taken at time t − 1. The pdf that
the sample is drawn from depends on the state of the selected
channel at time t. If the channel is busy, the observation is
drawn from the pdf of f0. On the other hand, if the channel is
idle, the observation is drawn from pdf of f1. When the action
to declare a channel idle is taken in time t, the process enters
the absorption state and stops generating further observations.

5) Cost Model: The cost model defines the cost incurred
by each action taken. Let Rat(t) be the cost incurred at time t
under the action at. Similar to [9], if the action is to continue,
i.e., at ∈ C, unit cost is incurred, i.e., Rat(t) = 1. On the other
hand, if the action is to stop and declare the ith channel idle
when the channel is in fact busy, a cost of γ > 0 is incurred
to reflect the cost of the false alarm, i.e., Rat(t) = γ, γ > 1.



6) Sufficient Statistic: The detector does not directly ob-
serve the state of the channel. Instead through the POMDP
model and the observations, sufficient statistics evolve to
improve the observer’s belief about the state of the process.
The sufficient statistic for the process is a belief vector of size
L: Λ(t) ≡ [λ1(t), ..., λL(t)], where λi(t) is the probability that
the ith channel is in an idle state at time t given all the past
observations up to time t. In [9], an update function for the
elements in a belief vector is derived for the case of M = 1.
The following expression is the modified update function for
M > 1:

When at−1 ∈ C,

λi(t) =

{
T̂ (λi(t− 1), x) Ci ∈ at−1, Xi(t) = x

T̃ (λi(t− 1)) Ci /∈ at−1.
(3)

The update equation for λi(t) evolves recursively and differs
depending on whether the ith channel is being observed. From
[9], the update function utilizing the observation x is

T̂ (λ, x)

=
(λpI + λpB)f1(x)

(λpI + λpB)f1(x) + (λpI + λ pB)f0(x)
(4)

where the operator (·) is defined as 1− (·), and pI and pB are
given by the prior geometric pdf.

When updating λi for which the ith channel is not being ob-
served, the update function on the transition dynamic evolves
solely based on a priori information and is as follows [9]:

T̃ (λ) = λpI + λpB . (5)

In the context of the POMDP formulation, the detector is
a function that maps the belief vector to a decision per time
slot basis. Such a function, denoted as π(Λ(t)) = at, is the
policy obtained, which leads to the following the POMDP
formulation that solves (2). For given M and L,

π∗ = arg min
π
E

[ ∞∑
t=0

Rπ(Λ(t))|Λ(0)

]
(6)

where Rπ(Λ(t)) = Rat(t)|at=π(Λ(t)) and Λ(0) =
[λ0, λ0, ..., λ0] is the a priori belief vector value.

C. Multiband Multi-Sensor Spectrum Sensing Detector

This section proposes a new multiband multi-sensor spec-
trum sensing detector (MMSSD) that has the following prop-
erties: (1) performs quickest detection over multiple chan-
nels (multiband), (2) simultaneously senses multiple channels
(multi-sensor), and (3) tracks the complete belief vector. The
last property is the result of the detector updating the belief
values for all the channels.

The MMSSD has the following structure for the case of
general M and L:

πMMSSD(Λ(t)) =


Di, if i = arg max

1≤j≤L
(Λ(t))

and λi ≥ ηd(Λ−(t))
(Ck1 , ..., CkM ), Otherwise

(7)

where k1, ..., kM denote the indices of the L channels that
have the M largest belief values, Λ(t) is updated using (3)
for t = 1, 2, ..., and Λ−(t) denotes the set of belief values for
the L−M unobserved channels at time t.

In the policy (7), the detector chooses the M channels with
the highest belief values to observe the next time slot. The
detector continues to observe and update the belief values until
one belief value crosses the threshold, ηd(Λ−(t)).

To develop a detector structure that minimizes (6) for
arbitrary M and L, where M ≤ L, a value function is defined
to represent the optimal expected cost as

V (λ1, ..., λL) = min{VC1
(λ1, ..., λL), VC2

(λ1, ..., λL), ...,

VC|C|
(λ1, ..., λL), VD1

(λ1, ..., λL), VD2
(λ1, ..., λL), ...,

VDL
(λ1, λ2, λ3)}, (8)

where VCj
, 1 ≤ j ≤ |C|, denotes the value function for the

action (Ck1 , Ck2 , ..., CkM ). There exists a total of |C| VCj

functions since all possible combinations of Ck1 , ..., CkM need
to be included. VDj , 1 ≤ j ≤ L, are the value functions of
declaring the jth channel as idle. The action-specific value
functions are defined as follows:

VCj
(λ1, ..., λL) = 1+∫
...

∫
P (xk1 , ..., xkM ;λk1 , ..., λkM )V (λ

′

1, ..., λ
′

L)dxk1 ...dxkM ,

(9)
VDi

(λ1, λ2, λ3) = (1− λi)γ (10)

where P (xk1 , ..., xkM ;λk1 , ..., λkM ) is the joint pdf of obser-
vations of the channels k1, ...kM , given the channels’ belief
values, λk1 ...λkM . The arguments of the V (·) function, λ

′

j ,
1 ≤ j ≤ L, are the transformed belief values defined as

λ
′

j =

{
T̂ (λj , xj) j ∈ {k1, ..., kM}
T̃ (λj) j /∈ {k1, ..., kM}

, (11)

where the functions T̂ (·) and T̃ (·) are defined in (4) and (5),
respectively.

To describe the properties of the defined value functions,
this paper proposes Lemma 1 that extends Lemma 2 from [9]
to general values M and L:
Lemma 1:
L1.1: When pB +pI ≤ 1 and P (xk1 , ..., xkM ;λk1 , ..., λkM ) =
P (xk1 ;λk1)P (xk2 ;λk2)...P (xkM ;λkM ), the value functions
VAj

(λ1, ...λL) are concave and monotonically decreasing with
λj , for 1 ≤ j ≤ L.
L1.2: VAj

(λ1, ...λL) are symmetric with respect to the planes
{λi = λj ; 1 ≤ i ≤ L, 1 ≤ j ≤ L, i 6= j}.
L1.3: VDi(λ1, ...λL) is linearly decreasing with λi, for 1 ≤
i ≤ L.

Due to space limitations, a detailed proof for Lemma 1 is
omitted. However, using the assumption

P (xi, xj ;λi, λj) = P (xi;λi)P (xj ;λj), ∀i, j; i 6= j (12)



and the value functions defined in (8)-(10), Lemma 1 can
be proved straightforwardly using the procedures provided in
Appendix B of [9].

The condition (12) arises if channels are mutually inde-
pendent so that the joint pdf of observations from different
channels is separable into products of marginal pdf’s of
individual observations.

Having shown Lemma 1, Theorem 2 from [9] then follows
as such:
Theorem 2 [9]: The optimal structure π∗(Λ(t)) under the
belief vector Λ(t) is the following:

π∗(Λ(t)) =


Di, if i = arg max

1≤j≤L
(Λ(t))

and λi ≥ ηd(Λ−(t))
C, otherwise

(13)

where C is the set of actions of continuing to observe channels,
as defined in Section II-B2, and ηd(Λ−(t)) is the function that
maps Λ−(t) to a threshold value in [0, 1].

Identifying how the values of λ1, ..., λL optimally map to
the action (Ck1 , ..., CkM ) requires the computation of the value
functions (9)(10), which is a challenging task due to the nested
integrations involved. Due to the complexity, the optimal
policy (13) is difficult to implement. Therefore, MMSSD (7),
which selects the action (Ck1 , ..., CkM ) by the ranking of
λ1, ..., λL, is proposed as a suboptimal low-complexity version
of the policy (13).

The threshold design for (7) is also an challenging task
because the function ηd(Λ

−(t)) is difficult to compute. In
addition, the detector must satisfied PFA ≤ α. An alternate
threshold design method is proposed here for (7), where the
threshold is assumed to be a constant, ηd, rather than a
function.

Let Tstop(ηd) denote the random detection time of the
MMSSD detector employing the threshold ηd, i.e.,

Tstop(ηd) ≡ inf{n ≥ 1 : λmax(n) ≥ ηd} (14)

where λmax(n) ≡ max(λ1(n), ..., λL(n)). By definition, 1 −
λmax(Tstop) is the a posteriori probability that the channel
declared to be idle is in a busy state, given the observation.
Therefore, the false alarm rate of the MMSSD detector is

PFA = Eλo [1− λmax(Tstop)] (15)

where the expectation operator Eλo
[·] is the expected value

over all the possible random observation sequences with initial
belief value equal to λo. From (14) and (15) , an upper bound
on PFA can be derived using λmax(Tstop) ≥ ηd to obtain
PFA = 1−Eλo

[λmax(Tstop)] ≤ 1−ηd. The inequality suggests
that a detector threshold that satisfied the false alarm constraint
α is ηd = 1 − α. This threshold design may be conservative
if λmax(Tstop) overshoots the threshold ηd significantly in the
detection process. However, the upper bound on PFA becomes
tighter as α tends to zero since

0 ≤ PFA ≤ 1− ηd = α. (16)

D. Reduced Complexity Multiband Multi-Sensor Spectrum
Sensing Detector

The detector in (7) carries a high complexity cost, i.e., the
cost of memory to store the belief vector that is of length L
and the cost of computation to rank all the belief values in
order to find the top M elements. To address this concern, we
seek a way to reduce MMSSD’s complexity.

Inspired by the detector proposed by [9] for the infinite
regime problem, we consider the case where L is infinitely
larger than M . Let j, 1 ≤ j ≤ L −M , be the index of an
unobserved channel; T junobs be the random elapsed time during
which jth channel is not observed; and the rj(t) is the ranking
of jth channel at the time t, in which a lower ranking means
having a higher belief value. Then

T junobs =

∞∑
t=1

{1}(rj(t)>M) (17)

where {1}(rj(t)>M) is an indicator function for the event
rj(t) > M . As L − M approaches infinity, Prob(rj(t) >
M) → 1 because the probability that the belief value for
jth channel becomes the top ranked M elements becomes
vanishingly small. As a result, T junobs approaches infinity.

While a channel is not being observed, the corresponding
belief value is updated recursively via (5). After N time slots
pass, the resulting belief value is expressed as a function of
an initial belief value as

T̃ N (λ) = pB(1 + pI,B + p2I,B + ...+ pNI,Bλ), (18)

where pI,B ≡ (1− pI − pB). As T junobs →∞,

lim
N→∞

T̃ N (λ) =
mI

mB +mI
= λo, (19)

with the condition that pI + pB ≥ 0.
The above results suggest that if the set of unobserved

channels is infinitely large, the belief values of all the channels
approach λo. Therefore, the procedure to find the top ranked
M belief values, as required by MMSSD, is reduced to
comparing the belief value of the observed channels to λo:
If a belief value of a channel is greater than λo, the detector
continues to observe the channel. Otherwise, the detector
stops observing the channel and starts sensing another channel
from the unobserved set instead. Based on this idea, this
paper proposes the following variant of MMSSD with reduced
complexity, called RC-MMSSD:

The detector maintains a belief vector of size M ,
[λ1(t), ..., λM (t)], where λj(t), 1 ≤ j ≤M, is the belief value
for the lthj channel, and lj ∈ (1, 2, ..., L). With every iteration,
the detector updates each belief value using the observation
from its corresponding observed channels via (4). Based on
the updated belief vector, the detector decides on the action at
time t based on the following policy:

Let Ω be the set of channels that are not under observation
at time t.

for j = 1 to M do
if λj ≥ ηd then



{Declare channel lj as idle}
else if λj < λo then
{Switch out of channel lj}
lj ← index of a new channel selected from Ω
λj(t) to λo {Resetting λj(t)}
Update Ω accordingly

else
{Continue to observe channel lj}

end if
end for
RC-MMSSD has removed the need to store and update the

belief values for all L channels. In addition, the decision to
choose which channels to observe depends only on M belief
values, rather than on a ranking of L belief values in the case
of (7), which is costly to compute.

In the asymptotic case where L −M → ∞, MMSSD and
RC-MMSSD behave the same because all the belief values in
the unobserved pool converge to λo. In practice, (18) shows
that the convergence to λo can occur rather quickly as pI +
pB → 1 and hence RC-MMSSD can be applied to problems
with a moderately-sized unobserved channel pool.

1) Problem with False Alarm Rate for Small L −M : To
demonstrate such problem, consider a scenario where L −
M → 0 and RC-MMSSD is used. An event occurs in the
following sequence: an jth channel has been swapped out due
to λj(t) < λo; after a short T junobs has lapsed, the jth channel
is called upon to be sensed again with its belief value assumed
to be λo; and eventually the jth channel is declared idle by
RC-MMSSD.

Let δλ(t) be the error at time t between the assumed belief
value and the true belief value

δλ(t) = λo − λj(t). (20)

Based on (18), a small T junobs implies that δλ is a finite positive
quantity. The false alarm rate, using (20), can be re-written as

1− Eλo
[λ
Tstop
max ] = PFA,λj(t) −∆PFA (21)

where PFA,λj(t) is the false alarm based on the true belief
value of the jth channel and is therefore the true false alarm
rate of the detector. ∆PFA is false alarm caused by the error
δλ(t). Note that ∆PFA is a positive value and approaches 0
as δλ(t)→ 0.

Using the same threshold design method as MMSSD, by
setting ηd = 1− α, the inequality below then follows:

PFA,λj(t) ≤ 1− α+ ∆PFA. (22)

As is evident in (22), the design threshold 1−α is no longer
a sufficient upper bound for the false alarm rate of the system.

III. SIMULATION RESULTS

The performance of the proposed detectors MMSSD and
RC-MMSSD are evaluated using Monte Carlo simulation. The
marginal distributions for both observation states, f0 and f1,
are both zero-mean Gaussian distributions with variances σ2

0

and σ2
1 , respectively. In a physical sense, the variance σ2
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Fig. 2. The expected detection times of MMSSD and RC-MMSSD with
different M ’s as the fraction of idle time varies. (mB = 300, SNR =
0dB, ηd = 0.9,L=4 (MMSSD), and L=100 (RC-MMSSD)). We have simu-
lated the case of M=3 for MMSSD, which has very similar result as that of
M=4, and the cases of M=5 and 7 for RC-MMSSD, which performs similarly
to M=9. These cases are not displayed in order to make the plot more legible.

busy state is the transmission power of the channel occupant,
and the variance σ2

1 in the idle state is the power of the noise
of an unoccupied channel. The SNR is termed as the amount
of the shift and is determined by 10 log(σ2

0 − σ2
1) (in dB). To

specify the busy/idle transitions of the channels statistically,
the average busy time, mB and the fraction of the idle period,
λo are defined from which the other related parameters can be
derived (See (1)). The value α is chosen to be 0.1 for all the
scenarios described.

A. Effects of Adding Sensors

Fig. 2 compares the expected detection time of MMSSD and
RC-MMMSD as the the prior probability of an idle channel,
λo, varies. The gain in performance is more significant when
the idle periods are more rare. As idle periods become more
probable, the benefit of adding extra sensors vanishes. By
adding one sensor from M = 1 to M = 2 in the MMSSD
system, the expected detection time converges quickly to that
of M = 4. With L = 4, the MMSSD with M = 4 is
effectively a full sensing detector. Therefore, it is fair to claim
that the performance of a full-sensing detector, in terms of
expected detection time, can be in large part achieved by
deploying fewer than L sensors. A similar effect is observed in
the RC-MMSSD system, where the most significant reduction
in detection time comes from the addition of the first few
sensors. Fig. 3 shows the comparison of the false alarm rates
for both detectors. It is clear the false alarm constraint α has
been satisfied. No single detector is able to outperform others
in false alarm rates across all values of λo and for lower
λo values, the false alarms rates are very similar and quite
invariant to λo.

B. MMSSD versus RC-MMSSD

The system performances of both proposed detectors are
compared in Figs. 4 and 5 over different values of L, at SNR
levels of 10dB and 0dB. Fig. 5 shows the impact on reliability
when L − M is small. For a fixed M and L ≤ 30, the
false alarm rates of RC-MMSSD at both high and low SNRs
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violate the false alarm constraint α. This observation validates
the earlier analysis on the impact of having a small pool of
unobserved channels on the false alarm rate. For L > 30,
the false alarm rates of the two detectors are similar. Over
this range, Fig. 4 shows the expected detection times between
MMSSD and RC-MMSSD are identical. This result indicates
that when the number of available channels greatly outnumbers
the number of sensors, MMSSD and RC-MMSSD have similar
performance despite MMSSD’s extra complexity, This result
is expected because it has been shown in Section II-D that
MMSSD behaves similarly to RC-MMSSD as the pool of
unobserved channels grows large.

IV. CONCLUSION

In this paper, it is shown that the POMDP formulation and
the optimal multiple process detection structure proposed in
[9] can be generalized to incorporate an arbitrary number
of sensors. Based on this result, a new detector, MMSSD,
is proposed as the low-complexity and suboptimal form of
the optimal detector. Our simulation results show that the the
detector derives most of its utility from the first few added
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Fig. 5. The false alarm rate of MMSSD and RC-MMSSD with respect to
the number of available channels, for SNR=0dB and SNR=10dB. The false
alarm constraint is 0.1. (λo = 0.25,mB = 300, ηd = 0.9,M = 4).

sensors and that the performance of a detector with a large
bank of sensors can be achieved with a relatively small number
of sensors. This paper also addresses the high complexity of
implementing MMSSD when the number of available channels
grows large. To address this issue, a second detector, RC-
MMSSD, is proposed. RC-MMSSD reduces both the storage
requirement and the computational complexity in MMSSD.
Through simulation, it is shown that the system performance
of RC-MMSSD is comparable to that of MMSSD. However, a
caveat with RC-MMSSD is that the number of channels must
greatly outnumber the number of sensors. If such a condition
is not met, MMSSD has to be used. In spectrum sensing,
where there is likely to be few sensors available, one can make
suitable choice between MMSSD and RC-MMSSD, depending
on the number of available channels, to achieve both system
agility and reliability.
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