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Abstract—We investigate the density of codes in the complex
Grassmann manifolds G

C
n,p equipped with the chordal distance.

The density of a code is defined as the fraction of the Grass-
mannian covered by ‘kissing’ balls of equal radius centered
around the codewords. The kissing radius cannot be determined
solely from the minimum distance, nonetheless upper and lower
bounds as a function of minimum distance only are provided,
along with the corresponding bounds on the density. This leads
to a refinement of the Hamming bound for Grassmannian
codes. Finally, we provide explicit bounds on code cardinality
and minimum distance, notably a generalization of a bound
on minimum distance previously proven only for line packing
(p = 1).

I. INTRODUCTION

Grassmannian codes are a generalization of spherical codes

with applications in the area of multiple-antenna transmis-

sion [1]–[4]. Results on the structure of the Grassmann

manifold have application to coherent MIMO systems with

limited feedback, non-coherent MIMO systems, as well as

manifold signal processing. Density is an important property

for spherical codes. In [3], using chordal distance as a metric,

the density of a line packing is defined. However, when consid-

ering packing of complex lines in C
2, the complex projective

line is ismorphic to the Riemann sphere [5, Ex.17.23], and

the proposed definition is not consistent with the conventional

definition of density for spherical codes [6]. This comes from

the fact that the chordal distance is not “strictly intrinsic,”

i.e., the triangle inequality is never satisfied with equality, as

remarked in [7].

In this paper, we investigate a density of Grassmannian

codes which is consistent with the density of spherical codes.

Except in the case of line packing where a closed-form solu-

tion is provided, the density is not a single-variable function

of the minimum distance of the code. Namely, two codes

with equal minimum distance could have different densities.

Nevertheless, upper and lower bounds on the density as a

function of minimum distance only are provided. In order

to obtain these bounds on the code density, we bound the

kissing radius, i.e., the maximum radius of non-overlapping

metric balls centered around the codewords (so called sphere

packing).

Another fundamental problem of coding theory is to es-

tablish the relationship between the size of the code and the

minimum distance among elements of the code. The Hamming

bound gives an upper bound of the size of codes for a given

minimum distance. In previous work, asymptotic results on the

volume of a metric ball in the Grassmann manifold GC
n,p as

n → ∞ were derived [7] leading to bounds on the asymptotic

rate of codes. These bounds were later improved in [8],

[9]. The framework in [7] was generalized and bounds were

derived for the minimum distance on codes for arbitrary values

of n and p in [10].

The approach to investigating density presented here leads

to a refinement of the Hamming bound for any values of n and

p. The Hamming bound provided in this paper is tighter than

the Hamming bound that can be derived using the geometrical

argument in [7].

Finally, we use the Hamming bound to compute two ex-

plicit bounds on codes in complex Grassmann manifolds by

exploiting the closed-form expression on the volume of a

small ball derived in [11]. We first derive an explicit bound

on code cardinality given the minimum distance. Then, we

provide a new upper bound on the minimum distance tighter

than the Rankin bound for large codebook sizes. This bound

appears to be a generalization of a bound on minimum

distance previously proven only for line packing (p = 1)

in [12, Eq. (32)].

II. DEFINITION AND EARLIER RESULTS

A. Grassmann manifold

The complex Grassmann manifold GC
n,p, with p ≤ n, is the

set of p-dimensional subspaces in the n-dimensional complex

vector space C
n. It can be expressed as a homogeneous space

of the unitary group Up:

GC

n,p
∼=

VC
n,p

Up

(1)

where VC
n,p is the complex Stiefel manifold, the space of

orthonormal non-square matrices:

VC

n,p =
{

Y ∈ C
n×p | Y HY = Ip

}

.

The quotient representation in (1) implies that a point in the

Grassmann manifold can be represented by the equivalence

class of n× p unitary matrices whose columns span the same

space:

[Y ] = {Y Up | Up ∈ Up}

with Y ∈ VC
n,p, a generator of the Grassmannian plane [Y ].

Because GC
n,p and GC

n,n−p are isomorphic, we will assume

that p ≤ n/2.
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Given Y , Z ∈ Vn,p, we denote the principal angles [13]

between the two subspaces of GC
n,p, [Y ], [Z] ∈ Gn,p

by θ1 . . . θp ∈ [0, π
2 ]. To the principal angles, we asso-

ciate the p-dimensional vectors ~θ = [θ1, · · · , θp]T , sin ~θ =

[sin θ1, · · · , sin θp]T and cos ~θ = [cos θ1, · · · , cos θp]T . The

principal angles are independent of the possible generators

and may be calculated from the the singular value decompo-

sition of the matrix Y Z† which has the form UΣV † where

Σ = diag(cos ~θ), where M† denotes the Hermitian conjugate

of M .

Several nonequivalent distances can be defined on the Grass-

mann manifold [14]. In this paper, we are primary interested in

chordal distance. The chordal distance arises naturally by em-

bedding the Grassmann manifold into the space of associated

projection matrices [15]. For each [Y ] ∈ Gn,p, we associate

the orthogonal projection from C
n to [Y ]: ΠY = Y Y †.

This projection is unique for every element of GC
n,p and

independent of the generator matrix. Projection matrices are

n× n idempotent matrices which lie in the space of n2 − 1-

dimensional Hermitian matrices with trace equal to p [10].

The following map is an isometric embedding [15]

GC

n,p →֒ Sn2−2 (
√

p(n−p)
2n

) ⊂ R
n2−1 (2)

[Y ] 7→ 1√
2
(ΠY − p

n
I)

where the Grassmannian GC
n,p is equipped with the following

chordal distance metric:

dc([Y ], [Z]) =
1√
2
||ΠY −ΠZ ||F . (3)

The chordal distance between [Y ] and [Z] ∈ GC
n,p can be also

expressed as function of the principal angles [15]

dc([Y ], [Z]) = ‖ sin ~θ‖2. (4)

We denote B[Y ](γ) as the metric ball of radius γ with center

at [Y ], defined as

B[Y ](γ) =
{

[V ] ∈ GC

n,p : dc([V ], [Y ]) ≤ γ
}

. (5)

The normalized volume of a ball of radius γ ≤ 1 has been

derived in closed form in [11], generalizing the result of [4]:

µ(B(γ)) = cn,pγ
2p(n−p) (6)

where

cn,p =
1

p(n− p)!

p
∏

i=1

(n− i)!

(p− i)!
. (7)

This quantity is independent of its center [Y ].

B. Grassmannian codes

An (N, δ) code in GC
n,p is a finite subset of N points in the

Grassmannian with (pairwise) minimum distance among the

elements δ. A packing is a code that maximizes the minimum

distance for a given cardinality.

Since a Grassmannian code can be isometrically embedded

in a hypersphere, the Rankin bound [16] on spherical codes

leads to the following bound on the minimum distance of

complex Grassmannian codes [15]

δ2 ≤
{

p(n−p)
n

N
N−1 if N ≤ n2

p(n−p)
n

if n2 < N ≤ 2(n2 − 1)
. (8)

The above bound is still valid but not achievable for N >
2(n2 − 1), motivating the search for lower bounds for higher

value of N .

For any (N, δ) code in GC
n,p, the standard Hamming bound

states that

Nµ(B(δ/2)) ≤ 1. (9)

Applying the volume formula (6), an upper bound of the size

of codes for a given minimum distance can be expressed

as follows [11]: when δ ≤ 2, for any (N, δ) complex

Grassmannian code

N ≤ c−1
n,p

(

δ

2

)−2p(n−p)

. (10)

As noted in [7], it is possible to extend the radius δ
2 so that

the Hamming bound is still valid.

Lemma 1 ( [7]): For any (N, δ) code in GC
n,p, define r =

√

p(n−p)
2n . Then

Nµ(B(δm)) ≤ 1 (11)

with

δm =
√
2r

√

1−
√

1− δ2

4r2
. (12)

Proof: From the isometric embedding, given [Y ], [Z] ∈
GC

n,p with distance δ, simple geometric arguments show that

the midpoint between their corresponding images on Sn2−2(r)
is at distance δm given in (12) [7]. The balls B[Y ](δm) and

B[Z](δm) have thus no common interior.

The volume of the ball of radius δm can then be evaluated in

closed form with the help of (6) provided that δm ≤ 1, which

is satisfied if either a) 2r2 ≤ 1 ⇔ p = 1, or (n, p) = (4, 2)
or b) δ2 ≤ 4− r−2.

Corollary 1: For any (N, δ) code in GC
n,p with p = 1,

(n, p) = (4, 2), or δ ≤
√
4− r−2 with r2 = p(n−p)

2n ,

N ≤ c−1
n,p

[

2r2

(

1−
√

1− δ2

4r2

)]−p(n−p)

. (13)

III. DENSITY OF GRASSMANNIAN CODE

We define the density of a Grassmannian code as the

fraction of GC
n,p covered by non-overlapping metric balls of

maximum equal radius centered around the codewords.

Definition 1: The density of a code [W] ∈ GC
n,p is defined

as

∆([W]) = Nµ (B(̺[W])) (14)

with

̺[W] = sup
B[Wl]

(γ)∩B[Wk](γ)=∅
∀(k,l) k 6=l

γ. (15)
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By definition, we have ∆([W]) ≤ 1. The kissing radius ̺[W]

is hard to determine since it not only depends on the minimum

distance of the packing but on the principal angles between the

subspaces. However, the next result provides upper and lower

bounds on ̺[W] and corresponding bounds on the density.

Proposition 1: For any (N, δ) code in GC
n,p, we have

̺
¯
≤ ̺[W] ≤ ¯̺ (16)

where

̺
¯
=

√

p

2

(

1−
√

1− δ2

p

)

, (17)

¯̺ =

√

1

2

(

⌈δ2⌉ −
√

⌈δ2⌉ − δ2
)

, (18)

and ⌈x⌉ is the smallest integer greater or equal to x. It follows,

therefore, that

Nµ
(

B(̺
¯
)
)

≤ ∆([W]) ≤ min {1, Nµ (B(¯̺))} . (19)

A proof is provided in appendix.

Figure 1 illustrates the upper and lower bounds (16) on the

kissing radius and shows that δ/2 is a good approximation

for ̺[W] when the minimum distance of the code is relatively

small. In general, since the chordal distance is not strictly

intrinsic, we have δ
2 < ̺[W].
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Fig. 1. From top to bottom, upper and lower bounds (16), and approximation
δ/2 of the kissing radius ̺[W] for p = 4.

Bounds (19) on the density may be calculated in a more

explicit form using of (6), providing that ¯̺≤ 1 and ̺
¯
≤ 1.

Corollary 2: For any (N, δ) code in GC
n,p that satisfies δ ≤

2
√

p−1
p

or if p ≤ 2

∆([W]) ≥ Ncn,p̺
¯

2p(n−p). (20)

Moreover for δ ≤ 2,

∆([W]) ≤ min
{

1, Ncn,p ¯̺
2p(n−p)

}

. (21)

In the specific case of Grassmannian line packing, i.e., p =
1, the kissing radius and the density can be calculated exactly

as a function of the minimum distance

Corollary 3: For any line packing in GC
n,1

̺[W] = ̺
¯
= ¯̺ (22)

and

∆([W]) = N

(

1−
√
1− δ2

2

)n−1

. (23)

Remark 1: For the specific case of n = 2, p = 1, the

Grassmann manifold is isomorphic to the real sphere: GC
2,1

∼=
S2 [5, Ex. 17.23], and the present definition of density of

Grassmannian packing is consistent with the definition of

density for sphere packing [6]. For illustration, in Figure 2

we have plotted the densities of the best known packings on

S2 from the literature [6].
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Fig. 2. Density of best known packings on GC
2,1

∼= S2 as a function of the

number of points.

IV. EXPLICIT BOUNDS ON GRASSMANNIAN CODES

In this section, we exploit results on density to derive

explicit bounds on cardinality and minimum distance. In the

previous section, we have found a function of the minimum

distance such that f(δ) ≥ δ/2 still satisfies the Hamming

bound Nµ(B(f(δ))) ≤ 1. For this we have defined the density

of codes which verifies ∆ ≤ 1, in order to bound the density

from below by Nµ (B(f(δ))) ≤ ∆. Then, provided that

f(δ) < 1, we apply the volume formula (6) to derive a closed-

form upper bound on the size of the code as a function of the

minimum distance N ≤ c−1
n,p (f(δ))

−2p(n−p)
. Additionally, if

f is invertible, it is possible to bound the minimum distance

from above by δ ≤ f−1
(

(Ncn,p)
−1

2p(n−p)

)

.

According to Proposition 1, we have the following improve-

ment of the Hamming bound:

Corollary 4: For any (N, δ) code in GC
n,p

Nµ(B(̺
¯
)) ≤ 1 (24)
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with

̺
¯
=

√

p

2

(

1−
√

1− δ2

p

)

(25)

Corollary 5: The bound (24) is tighter than the bound (11)

with equality if and only if p = n/2.

Proof: It is easy to verify that p ≤ 4r2 with equality

iff p = n/2. Then, since x/2(1 −
√

1− δ2/x) is a strictly

decreasing function, it follows that δm ≤ ̺
¯

with equality iff

p = n/2. Here δm and r are defined in Lemma 1.

A. Cardinality

Accordingly, we have the following improvement of the

explicit Hamming-type bound on the cardinality:

Lemma 2: For any (N, δ) code in GC
n,p with p ≤ 2, or

δ ≤ 2
√

p−1
p

N ≤ c−1
n,p

[

p

2

(

1−
√

1− δ2

p

)]−p(n−p)

. (26)

Proof: From (19), we have Nµ
(

B(̺
¯
)
)

≤ 1. The volume

of the ball of radius ̺
¯

can be evaluated in closed form with

the help of (6) provided that ̺
¯
≤ 1, which is satisfied if either

a) p ≤ 2 or b) δ ≤ 2
√

p−1
p

. The result then follows.

In Figure 3, the bound (26) is compared with bounds

(10) and (13) for the Grassmannian GC
5,2. As can be noted,

bound (26) provides a refinement for larger values of minimal

distance. When the minimum distance tends to zero all the

bounds converge.
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Fig. 3. Hamming bounds on the rate of codes in GC
5,2

. From top to bottom,

bounds (10), (13), and the new bound (26).

B. Minimum distance

The last result is a new bound on the minimum distance.

This bounds appears to be a generalization of a bound for line

packing in [12] to any value of p.

Lemma 3: For N sufficiently large, specifically for p ≤ 2

with N ≥ c−1
n,p

(

2
p

)p(n−p)

,

δ2 ≤ 4(Ncn,p)
−1

p(n−p) − 4
p
(Ncn,p)

−2
p(n−p) . (27)

Proof: Bound (20) requires that p ≤ 2 or δ ≤ 2
√

p−1
p

.

Further simple manipulations result in N ≥ c−1
n,p

(

2
p

)p(n−p)

.

Condition δ ≤ 2
√

p−1
p

is achievable for any code as N → ∞.

Remark 2: For the case p = 1 the bound of Lemma 3

reduces to the following bound derived in [12, (32)]:

δ2 ≤ 4N
−1
n−1 − 4N

−2
n−1 . (28)

As illustrated in Figure 4, this bound is tighter than the

Rankin bound for very large codebook sizes.
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Fig. 4. Bound (27) on the minimum distance for GC
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V. CONCLUSION

This paper discussed the density and the ‘kissing radius’

of Grassmannian codes with chordal distance. For a code

with given minimum distance and cardinality, the density is

a function of the kissing radius which itself does not only

depend on the minimum distance but also on the principal

angles. According to this observation, we provide upper and

lower bounds (as a function of the minimum distance only)

on density and kissing radius for packing of equal spheres in

a complex Grassmann manifold GC
n,p. The proof is based on a

geometric argument leading to a simple optimization problem.

As a direct consequence, this result gives tighter Hamming-

type bounds for finite values of n, p than previously known

results, i.e. in the pre-asymptotic regime. In the asymptotic

regime, the analysis provided here would lead to the same

bound on code rate than in [8] improving [7], but later

improved in [9].
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APPENDIX: PROOF OF PROPOSITION 1

Let us consider a Grassmannian code [W] with min-

imum distance δ. The principal angles (θ1, . . . , θp) be-

tween two codewords [Wi], [Wj ] separated by δ satisfies
∑p

i=1 sin
2(θi) = δ2. Without loss of generality, the code-

book may be rotated so that Wi = (I 0)T and Wj =
(diag(cos θ) diag(sin θ))T [15].

The midpoint between [Wi] and [Wj ] measured with chordal

distance is the midpoint on the geodesic. The principal angles

between the midpoint on the geodesic joining [Wi] and [Wj ],

and the codeword [Wi] are thus ( θ12 , . . . ,
θp
2 ) [14]. It follows

that the squared chordal distance between the midpoint on the

geodesic and an extremity of the geodesic is

̺2 = ‖ sin
~θ

2
‖22 =

p
∑

i=1

sin2
θi
2
.

Finding lower and upper bounds reduces to solving the

following optimization problems:

minimize/maximize
~θ∈[0, π

2 ]p
‖ sin

~θ

2
‖22

subject to ‖ sin ~θ‖22 = δ2.

(29)

The corresponding Lagrange function is

Λ(θ1, . . . , θp, λ) = ‖ sin
~θ

2
‖22 + λ

(

‖ sin ~θ‖22 − δ2
)

.

Solving the following set of equations:

∂Λ

∂θi
= sin θi(1/2 + 2λ cos θi) = 0 for i = 1 . . . p

∂Λ

∂λ
=

p
∑

i=1

sin2 θi − δ2 = 0

yields a set of stationary points where at least x angles are

nonzero such that x ≥ ⌈δ2⌉ and equal to θ∗ = arcsin δ√
x

.

It is then easy to verify that the objective funtion f(x) =
∑p

i=1 sin
2 θi

2 = x/2(1 −
√

1− δ2/x) is a strictly decreasing

function on [⌈δ2⌉, p] and thus is minimized for x = p. The

result follows.

Maximization in (29) is obtained when a minimum number

of angles is maximized, i.e., with (θ⋆1 , . . . , θ
⋆
p) ∈ [0, π

2 ]
p such

that θ⋆1 = · · · = θ⋆⌊δ2⌋ = π
2 , θ⋆⌈δ2⌉ = arcsin(

√

δ2 − ⌊δ2⌋) and

θ⋆⌈δ2⌉+1 = · · · = θ⋆p = 0.

This can be verify by contradiction: Defining si = sin2 θi
and t(si) = (1−

√
1− si)/2, consider the equivalent problem

of maximizing
∑

t(si) such that
∑

si = δ2 and without loss

of generality 1 ≥ s1 ≥ s2 · · · ≥ sp ≥ 0. By contradiction,

assume that
∑

t(si) is maximum at ~a with ai > 0∀i. It is

possible to find a ~b with bi ≥ ai for 1 ≤ i ≤ p − 1 and

bp = 0. From the mean value theorem and since t′(·) is stricly

increasing, there exist c ∈]ap−1, bp−1[ and d ∈]0, ap[ such

that

∑

t(bi)− t(ai) ≥ t′(c)
p−1
∑

i=1

(bi − ai) + t′(d)(ap − bp)

= (t′(c) + t′(d))ap > 0,

where the last equality is due to the constraint
∑

bi =
∑

ai =
δ2. This is in contradiction with the fact that

∑

t(ai) is a

maximum. Repeating the procedure from sp to s⌈δ2⌉ leads to

the conclusion. Then, the maximum is

p
∑

i=1

sin2
θ⋆i
2

=
⌊δ2⌋
2

+
1−

√

1− (δ2 − ⌊δ2⌋)
2

=
1

2

(

⌈δ2⌉ −
√

⌈δ2⌉ − δ2
)

.
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