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A recursive algorithm for estimating the three-dimensional 
trajectory and structure of a moving rigid object in an 
image sequence has been previously developed by Broida, 
Chandrashekhar, and Chellappa [I]. Since then, steady advances 
have occurred in the calculation of optical flow. This work 
improves 3-D motion trajectory and structure estimation by 
incorporating optical flow into the estimation framework 
introduced in [l]. The new solution combines optical flow and 
feature point measurements and determines their statistical 
relationship. The feasibility of a hybrid feature point/optical flow 
algorithm, demonstrated through detailed simulation on synthetic 
and real image sequences, significantly lowers bias and mean 
squared error in trajectory estimation over the feature-based 
approach [l]. 
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I .  INTRODUCTION 

Recovering the 3-D motion and structure of a 
rigid object from image sequences is a fundamental 

in applications such as target recognition, 
issance, vision-based servoing, and computer 
. The main approaches to 3-D trajectory 

estimation have usually exploited either point features 
[2] or optical flow [3] independently. 

In feature-based approaches, 3-D motion and 
structure are estimated by observing the 2-D positions 
of a set of relatively sparse set of image features 
(corners, lines, regions, etc.) over two or more 
time-sequential images. In contrast, optical-flow-based 
techniques estimate instantaneous 3-D motion from 
dense image plane velocity data. 

Feature-based estimation can be subdivided into 
recursive [ l ,  4, 51 and batch [6, 71 formulations. This 
paper focuses on recursive estimation, which is better 
suited for on-line applications. In [l] ,  a nonlinear 
dynamical system is formulated, and linearized 
using an iterated extended Kalman filter (IEKF). 
Wu, et al. [8] adopt a similar approach, except 
assume a priori knowledge about object structure, 
i.e., the configuration of the feature points within 
an object-centered system, resulting in a simplified 
measurement function compared with [l]. The 
formulation in [4] is also simpler than in [l], except 
it assumed that the center of rotation is always visible, 
which appears difficult in practice to achieve. Silvkn 
and Rep0 [9] have recently developed an integrated 
monocular visual tracking system, with an emphasis 
on real-time operation. Finally, Chandrashekhar and 
Chellappa [ 101 use known navigational landmarks 
in their state estimation formulation, and interleave 
motion estimation and feature correspondence. Salient 
features of these recursive algorithms are compared in 
Table I. 

In contrast, optical-flow-based motion and 
structure estimation requires computation of an optical 
flow field {u(x,y) = [u(x,y) v(x,y>lT}. The optical 
flow at coordinates (x,y) on the image plane, in terms 
of 3-D translational velocity [T, Ty ?IT, the depth 
Z of 3-D point [ X  Y ZIT, and rotational velocity 
[wx w, wZlT can be expressed as [l 11 

1 
u ( x , y )  = z z  --xA -xywx + (1 +x*>w, -ywz (1) 

T T ,  v ( x , y )  = 4 - y- - (1 + y2)wx + xyw, + xwz. (2) z z  
A variety of methods exist for computing optical flow 
[12]. Once optical flow is computed, 3-D motion and 
structure estimation can be estimated using methods 
such as proposed in [3], which involve splitting the 
optical flow equation algebraically into three separate 
components. 

It is also possible to estimate 3-D motion 
without explicitly computing optical flow nor 
establishing feature correspondence prior to recovery 
of 3-D motion and structure [13]. However, such 
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TABLE I 
Summary of Recursive 3-D Motion Estimation Techniques 

Name # Frames # Features Type Test Data 

Broida et al. 100 4 point synthetic and real 
Chandrashekhar & Chellappa 16 11 point real 
Iu & Wohn 100 3 point synthetic 
Silvdn & Rep0 1000 1-6 point real 
Wu et al. 6 14 point real 

direct methods appear to be at an early stage of 
development. 

The rest of the paper is organized as follows. 
As in [l], we assume an environment where a 
stationary video camera is used to observe a single 
rigid moving object over time. Our goal is to recover 
the 3-D trajectory and structure of this object from 
an extended image sequence captured by the sensor 
array in perspective projection. Section I1 introduces 
the imaging, object, and motion models and briefly 
reviews the recursive formulation proposed in [ 11, and 
Section I11 describes the new approach that combines 
optical flow and position measurements. Experimental 
results on synthetic and real scenes are then described 
in Section IV. 

II. SYSTEM MODEL 

A. Imaging Model 

perspective projection, in which a 3-D point P = 
(X,Y,Z)  projects onto the 2-D image point p = ( x , y )  
via the transformation 

The image acquisition process is modeled using 

(3) 

where n, and ny represent additive noise terms that 
account for random errors mainly due to spatial 
quantization. Without loss of generality, we either 
assume a unity focal length (i.e., f = l), or, where 
appropriate, use focal lengths as our unit of distance. 

B. Object Model 

unknown, through a stationary camera, we define 
a camera-centered coordinate system (CCCS) 
with z-axis aligned with the optical axis. An 
object-centered coordinate system (OCCS) is also 
needed to specify the object structure to be estimated. 
Let 0, be the origin of the OCCS which is not 
directly observable. In the CCCS, let the object 
rotation center be located at 

To observe a moving object, whose structure is 

sR(t) = f X R ( t )  YR(t) ZR( t ) lT  (4) 

and the position vector of the ith feature point in the 
OCCS be located at 

s,i = [X,j Y,i ZoiIT. ( 5 )  

Fig. 1. Camera- and object-centered coordinate systems. 

Using (4) and (3, the position vector of the ith 
feature point in the CCCS is 

si(t) = SR(t) + R(t)soi (6) 

where R(t) is the 3-D rotation matrix that aligns 
the OCCS with the CCCS. Since object rigidity is 
assumed, soi is not dependent on time (see Fig. 1). 

C. Motion Model 

Motion of a rigid body is completely characterized 
by translational and rotational components. We 
assume constant translational velocity T = [c Ti TI'. 
A point x(t) on the translating object with initial 
location x(to) at time t = to will have position 

x(t) =  to) -t (t - to)T (7) 

at any time t .  
The unit quaternion, q(t) is used to represent. the 

orientation of a rotating object. By assuming constant 
rotational velocity, w = [w, wy w,IT, q(t) can be 
propagated in time using the matrix exponential, e.g., 

q(0 = exp[Wt - 4Jlq(to) (8) 

where 

1-w, -wy -wz 0 J 
In addition, the rotation matrix R(t) in (6), can be 
expressed in terms of the unit quaternion [ l ] .  

D. State-Space Model 

Our plant equation consists of a rigid object 
translating and rotating continuously in time, and 
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measurements are made at equally spaced discrete 
time intervals. The vector differential equation that 
describes the continuous plant is 

\ 

/ 

dxo dt = a(x(t),t) + G(t)w(t) (10) 

> structure states 

where x(t) is the state of the system, w(t) represents 
the process noise and G(t) maps w(t) onto the state 
space. Observations, yk, are described by the discrete 
measurement equation 

yk = h(Xk) + vk (1 1) 

where h(.) is a nonlinear measurement function, due 
to perspective transformation (l) ,  and vk models 
measurement noise arising mainly from spatial 
quantization. The problem is to find an estimate, Gk, 
of xk, based on yk. Since both a(x(t),t) and h(xk) are 
nonlinear, various types of extended Kalman filters 
can be used [ 1, 141 and linearization of a(x(t), t )  and 
h(xk) are required, e.g., we form matrices 

where i ( t )  and iik denote points about which a(x(t),t) 
and h(xk) are linearized, respectively. 

Following [l], we choose our state vector to be 
estimated as 

x(t) = 

SI 

s 2  

s3 

s4 

s5 

' 6  

s 7  

SX 

89 

SI0 

SI 1 

SI2  

'13 

'14 

'15 

"10+3M 

"I I +3M 

"12+3M 

x-position 
y-position 

x-translational velocity 
y-translational velocity 
z-translational velocity 

3-D rotational position 
3-D rotational position 

3-D rotational position 
3-D rotational position 

x-axis rotational velocity 
y-axis rotational velocity 

z-axis rotational velocity 

The normalization factor ZR(t) is needed due to 
the unknown scale factor inherent in the perspective 
transformation [ 13. In practice, it is reasonable to 
assume that crude estimates of object distance, 
ZR( t ) ,  are available through other sensors. Using 
the perspective projection, the measurement vector 
corresponding to (1 1) is given by [ 13 

where pi = (xi,yi) is the projection of ith 3-D 
feature point Pi = ( X i , T , Z i )  onto the image plane. 
This measurement vector was used by Broida, 
Chandrashekhar, and Chellappa [ 13 which we refer to 
as BCC. The above measurement function is nonlinear 
in the state variables. It can be shown [ l ,  141 that the 
image plane coordinates of the ith feature point, in 
terms of the state variables is given by 

1 +ci ' 1 +ci 

where 

BLOSTEIN ET AL.: THREE-DIMENSIONAL TRAJECTORY ESTIMATION FROM IMAGE POSITION AND VELOCITY 1077 



I l l .  NEW APPROACH 

A. General Optical Flow Formulation 

Suppose that, in addition to the image plane 
coordinates of feature points, we also have available 
estimates of image plane velocity (optical flow) at 
each feature location. With this additional information, 
we improve the accuracy of state estimates as follows. 
Differentiating image coordinates (xi, y i )  with respect 
to time, we obtain optical flow components 

where, without loss of generality, the focal length is 
assumed to be unity. 

In order to incorporate optical flow into the 
recursive filtering framework proposed by Broida, 
et al., (19) and (20) must be expressed in terms of 
state variables. Rearranging (19) and (20), 

y. z, y. z z.  ZR v ,  = L - - L A L -  
' ZR zi z, zi ZR  Z i '  

Clearly, we need to express the velocity of the 
ith feature point with respect to the camera, i.e., 
si(t) = [Xi e ZiIT in terms of the system states. 
Differentiating (6)  with respect to time, we obain 

where 

Also, from (6), 

Using the above equations, (19) and (20) can be 
expressed in terms of the state variables defined in 
(13) 

s3 + cisll - biS12 (ss + biS10 - uislI)(J:l + ai) - ui = 
(26) 

1 + c i  (1 + Ci)2  

where ai,  bi, and ci are defined in (16), (17), ,and (18) ,  
respectively, and where i denotes one of M feature 
points. The new measurement vector y k  doubles in 
size over (14) as there are now two extra observations 
at each feature point location, which is given as 

The individual elements of the Jacobian matrix Hk are 
obtained by differentiating (15), (26), and (27) with 
respect to each state variable, i.e., 

... 

The expression for H ( & )  is quite lengthy, and can be 
found in [ 141. 

B. Measurement of Position and Velocity From Image 
Sequences 

In the following, we relate optical flow U = [U vIT, 
image-plane position x = [x  yIT and observed .gray 
values g(x,t) obtained from a digital camera at time 
t. When denoting a specific time is unimportant, the 
variable t is omitted to simplify notation. 

As in [15], we assume that g(x,tk-l) is observed 
at time in tk-,, and g(x,tk) is observed at time tk. A 
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local neighborhood around position x is assumed 
to have been displaced between tk-l and tk by an 
optical flow vector U. To determine U, we minimize 
C [ g ( x , t k )  - g(x - u At, tk-l)12, where At = tk -- tk - l  is 
constant for all k and is assumed small. Without loss 
of generality, let At = 1. The minimization produces 
two coupled nonlinear equations in terms of the two 
unknown components of U.  In the special case of a 
gruy value corner, an clegant closcd-form solution 
can be found [ 151. Unfortunately, the solution in [l5] 
requires special gray-value corner.7 where the principal 
curvatures of g ( x , t )  are aligncd with the CCCS, 
thereby making the second-order spatial derivative gxy 
zero. In the following, we gencralizc the f'eature point 
in 1151 to what we tcrin a gray vulue extremum point 
and find an altcriiative closed-form solution. 

Assume that thc origin xo = [x,, yo]'' of the 
coordinate system is at the center OF the local 
neighborhood. The observed gray-level surface can 
be approximated by a second-order Taylor expansion 
about xi) = (0,O) [15]. In the following, we let the true 
gray-level surface be modeled as 

where ,lK, ,fi: arc partial derivatives ol' ,f(x) with 
respcct to x and y, ,L.r, , J y y ,  and ,h,), are second partial 
derivatives. 

We index samples of the obscrved gray level 
within a (2P + 1) x (21' + 1) pixel window for each 
feature point as 

g ( x j )  = . f ( ~ , ~ ) + n , ~  /zRi-N(O,o;), j = 1,2 , . .  . ,N 

(31) 
where integer coordinates x, = ( j  ~ l)mod(2P + 
I )  - P ,  -P 5 .xi 5 i', and y,i = P - ( j  .- 1)mod(2P + 
l),  -I' 5 y,  5 P ,  where I-' is an integer, and N = 
(21' -t 1)*, representing the number oC raster points in 
the window. For example, P = I and I' = 2 correspond 
to 3 x 3 and 5 x 5 windows, respectively. I n  (31), 
n,, are independent Gaussian random noise samples 
with variance U,' that correspond to model errors. The 
determinalion of (rR is discussed in the next section. 

In matrix-vector notation, we writc ( 3  I )  as 

G = A f + n ,  (32) 

where 

For a given estimate o f f ,  the squared error is 

e' = (G - Af')"W(G - Af') (33) 

where W is a given weighting matrix set as W = 
l/(r;I. Then, setting ae2/3f to zero, the usual 
least-squares estimate is obtained 

i = (A~WA)-'A"WG (34) 

which is also the maximum likelihood estimate. Under 
Gaussian noise assumptions, 

i-- Nlf, (ATWA)-']. (35) 

The parameter error vector 
with covariancc matrix 1161 

= f - f is zero-mean 

C W ( & ~ )  = (A~WA)-' (36) 

which is constant. For the 3 x 3 window size used in 
simulations in the next section, 

1 40 0 0 -48 0 -48 
0 1 2 0  0 0 0 
0 0 1 2 0  0 

C0V(Ef) = U,' 
-48 0 0 144 0 0 
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where g ( t k w l )  and g(tk) denote average gray levels 
over the N points, and T2, 7’ denote mean-square 
values of integer coordinates in the (2P + 1) x (2P + 1) 
window. For the case of a 3 x 3 window, X2 = y2 = 
2/3. In (38) and (39), we have used the conditions 
fX(lk-1) = .f;,(t,-l) = 0. 

Expanding (30) about x in a second-order Taylor 
series, with the assumption that f((x - uAt,t ,- ,)  = 
f(x,t,), where At = tk - tk-l  is small, 

f x 0 k ) f X y  (tk- I )  - fY ( t k ) f x x ( t k -  1 )  

Lx 0,- 1 I f , ,  (4- 1 1 - Ly (4- 1 )2 
(43) Vk = 

and the corresponding extremum point position is 
given by equating the first-order spatial derivatives 
of (30) to zero: 

Define yf. = [xi yi  ui viIT as four components of 
the hybrid optical flow/position measurement vector 
corresponding to the ith extremum feature point based 
on measurem5nt vector fi.  By Taylor expansion about 
the estimated fi 

Yfi Yii + JIfiZii ’ qi (46) 

where JIf,-i is the 4 x 6 Jacobian matrix of the partial 
derivatives of yfi with respect to fi, and Efi = fi - fi is 
a Gaussian random vector with qi N NIO,(ATWA)-’l, 

1- i 

t 
Fig. 2. Feature points in OCCS. 

which is independent of i. Define measurement error 
E = yfi - yii = J . Efi which is also a random vector 
where 

E ( & )  = E ( J .  Efi) = JE(Efi) = 0 (47) 

and 

COV(E) = cov(Jlfi=ii . Efi> 

= EIJlfi,fi . Efi $JTlfi=ii1 

= J I  fi =iiE(Efi . E ; )  JT Ifi (48) 

Note that COV(E) = 
which is invariant to fi. 

To generate values of yfi, we need to determine 
cfi. We may use Cholesky decomposition to factor 
COV(E~~)  = S S T ,  where S is the lower triangular matrix 
square root of (ATWA)-’. Then, 

E;) = (A;) = (ATWA)-’, 

yfi = yii + J . Sn’ (49) 

where n’ - N ( 0 , l )  is a 6 x 1 vector of standard normal 
random variables. 

We have shown that the estimate yii is unbiased 
with error covariance Jcov(Efi)JT. Note that Jlf,-i, is 
time varying, whereas cov(aii) is time invariant. In 
summary, the new algorithm is obtained by replacing 
the 2M-dimensional measurement vector (14) with the 
following 4M-dimensional measurement vector: 

(50) 

I- I 

Yhybri&,) = [Y,,(t,)TYf2(tk)T.. . Y f & W  
where yfi(tk) is formed for feature point i, 1 5 i 5 M at 
time tk via (42)-(45). 

IV. EXPERIMENTAL RESULTS 

A. Synthetic Simulation 

We have developed a synthetic testbed to evaluate 
the proposed 3-D trajectory estimation algorithm, 
consisting of a stationary “pin-hole” camera and a 
transparent moving cube of size 3 x 3 x 3. Four of the 
cube’s vertices are arbitrarily chosen as feature points 
( M  = 4) as shown in Fig. 2. 
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TABLE II 
Spatial Resolutions for Cxperimeiits 

Spatial Resolution (pixels) U,, (in focal Ieiigths) 

256 x 256 
512 x 512 

IO24 x 1024 

0.004 
0.002 
0.001 

TABLE 111 
Gray-Value Resolutions for Experiments 

Gray-V~ilue Resolution (hit) 0, 

8 
10 
12 

0.2887 

0.018 
0.0722 

Since the purposc of this study is limited to 
validating the new trajectory estimation approach, 
perfect feature point association from frame to frame 
is assumed. The ineasuremcnts are gencrated by (49), 
where sources of noise are finite spatial resolution 
as well as gray-value resolution. The measurement 
noise covariance matrix is given by (48). In the 
simulations, a 3 x 3 pixel window is used ( N  = 9). 
The spatial resolution has interpixel distance with 
standard deviation mP given in units of focal length as 
in Table 11. The corresponding gray-value resolutions 
are given in Table 111, where a dynamic raiigc of 0 
(black) to 255 (white) is used. 

The image plane is chosen to be a unit square 
(measured in terms of focal lengths) with the origin 
at the center. For a unit focal length, this configuration 
is equivalent to a camera system with a 53" field of 
view. Its origin is located at the center. The spatial 
resolulion parameter op is easily obtained for thc 
unit square. For example, for a 256 x 256 pixel 
resolution, 0,. = 0.004. The gray-value resolution mg is 
obtained by determining the variance ol' the uniformly 
distributed quantization error and using a Gaussian 
model with the same variancc. For example, 8 bit 
gray-value resolution achieves a standard deviation 
(ii: = J [ O S  ~ (-0.5)]2/12 x 0.2887 (sec Table 11.) 

Uncertainty in the initial state estimates is 
simulated via 

XO(i) = ri * (1 + r)elxl)( i ) ,  

i = 1,2 ,..., 5,10,11, . . . ,  1 2 + 3 M  

where r is uniformly distributed in (0, I )  and e 
is a chosen constant. A value of e = 0.2 is uscd, 
corresponding to a crude initial estimation with crrors 
in the range 20%-40%. We note that in the complete 
absence of initialization information, batch techniques 
are more appropriate [6, 71. No noise is added to 
initial state estimates (s6--s9) because thc OCCS and 
CCCS are assumed to be initially aligned. 

(51) 

The selection of the process noise covariance 
matrix is important to the overall performance of thc 
Kalman filter. Ideally, the components of the process 
noise should be correlated because of the constraints 
imposed by rigid motion on the feature points. 
However, the correlation is not easy to determine. 
Here we choose the process noise covariance matrix, 
somewhat arbitrarily, to be a constant diagonal matrix 
with all the diagonal entries having the value 5 x lo-.". 
Given 2,) and xo, the initial error covariance matrix is 
compnted as I;, = d 2 i  where I is a (12 + 3M) x 
(12 + 3M) identity matrix and d is the largest 
component in the vector I;,, - xoI. For the simulations, 
the average absolute error in position measurements, 
is defined as 

and is chosen since it is independent of the choice of 
origin. For the optical flow measurements, average 
relative error is used instead. A total of R = 30 Montc 
Carlo trials are used, the image sequences contain 
N = 100 frames, and M = 4 feature points are tracked. 
'The bias and mean-squared error of the estimated 
states is the criteria used to measure the performance 
ofthe Kalman filter. Suppose we have obtained the 
value of one particular state variable ; (L)  at time t. The 
bias is calculated as 

and the mean-squared error is calculated as 

(53)  

(54) 

where R is the total number of Monte Carlo trials, x ( t )  
is the true value of this particular state variable at time 
t ,  and the subscript i denotes the trial number. 

comparison among EKF, IEKF, and iterated linear 
filter smoother, has revealed similar performance of 
each [14]. 

We now briefly describe a typical experiment 
that compares the new algorithm to the BCC 
algorithm. The object, which is initially far away 
from the camera, approaches the camera at constant 
translational and rotational velocity. The motion of the 
object, as seen in the image plane, is shown in Fig. 3 
where the object is represented as a wirefraine model. 
The motion parameters are given in Table IV. 

The bias and mean-squared error of the position 
states (sl and s2), translational velocity states (s3-s5), 
and rotational velocity states (S,~-S,~) are shown 
in Figs. 4 (bias) and 5 (mean-squared error). In 
these plots, all position and translational velocity 
states have been scaled by ZR(t ) ,  the true depth 
of the object's rotation center. The dashed line 

Throughout, the EKF is used. A detailed 
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Ij/ lQ - 
-1. 4. 4, .* 4,  , *, .* *, .. ,, 

Fig. 3. Object motion in image plane. 
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'i! trm.. 

Fig. 4. Results in Monte Carlo simulations: bias (eq. (53)) averaged over 30 runs. 
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Fig. 5.  Results of Monte Carlo simulations: sample mean-squared error (eq. (54)) averaged over 30 runs. 

0 
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TABLE I V  
Motion Paranicters For Synthetic Experimcnt 

initial position s,&) 1-6 i o  2x1'' 
translational velocity I 10.05 ~ 0.1 ~ 0.21' 
rotational velocity w 10.03 0.04 0.051" 

and solid line represent estimates obtaincd by the 
BCC algorithm and the hybrid fcature/optical-flow 
algorithm, respectively. Wc rcmark that in [I], 
Monte Carlo results were not provided. Note that 
marked improvements can bc achieved by the hybrid 
algorithm, especially in [he velocity statcs. In the 
translational velocity states, significant improvements 
can be observed mainly during the filter initialization 
stage (the first 20 frames) where the bias and variance 
are significantly reduced. Improveinents are even 
greater in the rotational velocity states. While the BCC 
algorithm diverges, the hybrid algorithm converges 
quickly and locks on to the true values. 

resolu~ions affect the estimation of state variables, 
a set of different spatial and gray-value rcsolutions 
wcre used. Typical results are shown in Fig. 6 where 
8, 10 and 12 bit gray-value resolutions are uscd with a 
fixed spatial resolution of 512' pixels. Similar results 
were observed for the other states but are not shown 
due to space limitations. Table V shows the effect of 
varying the spatial resolution: 256', 512', and 1024' 
pixel resolutions were used with a 10 bit gray-level 
resolution. It is interesting to note that the choice 
among gray-level resolutions had a larger impact than 
the choice of spatial resolutions. 

increasing the number of Moiitc Carlo trials Onc 
might argue that thc large initial estimation errors 
produced by the algorithms can be reduccd or 
rcmoved by simply increasing the number of Monte 
Carlo trials. However, this is not the case; a significant 
bias still exists even after averaging 1000 Monte Carlo 
trials. 

unmodeled translational acceleration. In addition, 

To examine how different spatial and gray-value 

Finally, we have also examined the effect of 

Similar results were obtained for the case of 

0 10 20 30 40 50 60 70 80 80 1w 
llsms I 

(a) 

10 20 30 60 SO 80 70 80 00 100 
l/lma x 

(b) 

Fig. 6. Results of varying gray-level resolution for fixed 512* 
pixel spatial resolution. (a) Bias. (b) Mean-square error foor 

x-translational velocity state. 

we have also investigated the case where the object 
deviates from a 3-D motion model more drastically, 
corresponding to the case where the trajectory changes 
abruptly from one model to another, simulating 
a sudden object maneuver. Here, the optical flow 
measurements improved the accuracy of the state 
estimates. 

TABLE V 
Mean-Squ;ired Error as Function of Spatial Resolution 

Spatial Resolution Position Position Trans. Vel. Trans. Vel. 

256 x 256 I .25 x 1.26 x 4.03 x lo-' 4.20 x 
512 x 512 1.24 x 1.24 x 4.03 x IO-' 4.18 x lo-' 

1024 x 1024 1.21 x 10-6 1.21 x 10-6 4.01 x 4.07 x 

(pixels) (*.I (Y 1 (1) (Y) 

Spatial Resolution Trans. Vel. Rot. Vel. Rot. Vel. Rot. Vel. 
(pixels) ( 2 )  (Y I ( 2 )  

256 x 256 5.53 x 10-8 1.06 x IO-' 1.02 10-7 7.95 x 10-8 
512x512 5.53 x 10-8 1.05 10-7 1.01 10-7 7.90 x IO-' 

I024 x 1024 5.51 x 10-8 1.05 10-7 1.01 10-7 7.89 x IO-' 

Note: Gray-valuc resolution fixed to 10 bits. 
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TABLE VI 
Motion Paraiiieters for PUMA2 Experiment From [I71 

initial position s&,) 
translational velocity T 

1-2 0 19.11411~ 
[0 0 0]T 

rotational velocity w [0 0 -0.0698]" 

TABLE VI1 

From [I71 
Ground Truth of Four Chosen Feature Points at Frame 1 

Structure Structure Structure 
Feature Ground Ground Ground 
Points Truth Truth Truth 

(number) (X) (Y) ( Z )  

I -9.247 -3.341 29.494 
2 -7.215 -0.457 3 1.020 
3 -3.192 -2.258 31.800 
4 1.230 3.624 19.613 

B. Experiment of a Real Image Sequence 

In this experiment, we obtained the 30-frame 
PUMA2 image sequence used in 1171 and 1181 which 
was taken by connecting a camera to the end of 
a puma robot arm. The robot arm was rotated for 
120 deg over 30 frames. The rotation between two 
succesive frames is approximately 4 deg (0.0698 rad). 
The radius of the robot arm is about 2 ft. The image 
size is 512 by 484 pixels. The field of view is 
41.67491 and 39.52927 deg in the x and y axes, 
respectively. The focal length in pixels is 673.0424 
pixels. As in [17], the world coordinate system is set 
to be the first-frame imagc coordinate system with the 
origin located at the center of the image plane. Twclve 
points with known locations in the world coordinate 
are given in [17]. We use four of these given in 
Table VI1 and Fig. 7. Unlike [I71 where the camera 
motion is being estimated, we assume that the camera 
is fixed, and the relative motion with respect of the 
camera is of interest. We may think of the motion as 
the room rotating around the rotation center 0,. An 
initial guess of the world coordinate, O,, is obtained 
by measuring its location on the image plane from 
the first two frames and then using (3) without noise. 
The motion parameters of the PUMA2 sequence are 
listed in Table VI. The measurements of the feature 
point coordinates are obtained by using the method 
discussed in last section. The spatial resolution is .5122 
pixels, the gray-value resolution is 8 bits. The method 
of measuring optical flow discussed in last section is 
not feasible because the displacements werc too large 
in this image sequence. We instead use the position 
difference, 

where p is the measurement of feature point position. 
According to [ I  81, there should exist only rotation 

around the z axis. But as pointed out by 1171, the 

Fig. 7. Locations of feature points i n  first and last frame of 
PUMA2 sequence. 

CCCS changes slightly from frame to frame. Thus 
there exists small amounts of translational motion 
not accounted for by the motion modcl. That makes 
a comparision of the rotation centcr's true position 
to its estimate unavailable. Our results (see Fig. 8) 
show that there exists negative and positive biases 
on translational velocity components s3 and s4, 
respectively. Thc results are presented in Figs. 8 
(bias) and 9 (mean-squared error). The plots of the 
velocity states are scalcd by Z,(t), the truc depth of 
the rotation center. The dashcd line and solid line 
represent estimates obtained by the BCC and our 
hybrid algorithm, respectively. Although the BCC 
algorithm gives accurate 3-D motion cstimates in this 
case, the new hybrid algorithm performs somewhat 
better. 

V. CONCLUSION 

In conclusion, we have proposed a new algorithm 
that estirnatcs 3-D motion and structure of a rigid 
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Fig. 8. PUMA2 results of Monte Carlo simulations: bias (eq. (53)) averaged over 30 runs. 

object from a sequence of images when image plane 
velocity information is available at feature ooint 
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