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A recursive algorithm for estimating the three-dimensional
trajectory and structure of a moving rigid object in an
image sequence has been previously developed by Broida,
Chandrashekhar, and Chellappa [1]. Since then, steady advances
have occurred in the calculation of optical flow. This work
improves 3-D motion trajectory and structure estimation by
incorporating optical flow into the estimation framework
introduced in [1]. The new solution combines optical flow and
feature point measurements and determines their statistical
relationship. The feasibility of a hybrid feature point/optical flow
algorithm, demonstrated through detailed simulation on synthetic
and real image sequences, significantly lowers bias and mean
"squared error in trajectory estimation over the feature-based
approach [1].
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I. INTRODUCTION

Recovering the 3-D motion and structure of a
rigid object from image sequences is a fundamental
problem in applications such as target recognition,
recofinaissance, vision-based servoing, and computer
graphics. The main approaches to 3-D trajectory
estimation have usually exploited either point features
[2] or optical flow [3] independently.

In feature-based approaches, 3-D motion and
structure are estimated by observing the 2-D positions
of a set of relatively sparse set of image features
(corners, lines, regions, etc.) over two or more
time-sequential images. In contrast, optical-flow-based
techniques estimate instantaneous 3-D motion from
dense image plane velocity data.

Feature-based estimation can be subdivided into
recursive [1, 4, 5] and batch [6, 7] formulations. This
paper focuses on recursive estimation, which is better
suited for on-line applications. In [1], a nonlinear
dynamical system is formulated, and linearized
using an iterated extended Kalman filter JEKF).

Wau, et al. [8] adopt a similar approach, except
assume a priori knowledge about object structure,

i.e., the configuration of the feature points within

an object-centered system, resulting in a simplified
measurement function compared with [1]. The
formulation in [4] is also simpler than in [1], except
it assumed that the center of rotation is always visible,
which appears difficult in practice to achieve. Silvén
and Repo [9] have recently developed an integrated
monocular visual tracking system, with an emphasis
on real-time operation. Finally, Chandrashekhar and
Chellappa [10] use known navigational landmarks

in their state estimation formulation, and interleave
motion estimation and feature correspondence. Salient
features of these recursive algorithms are compared in
Table I.

In contrast, optical-flow-based motion and
structure estimation requires computation of an optical
flow field {u(x,y) = [u(x,y) v(x,y)]"}. The optical
flow at coordinates (x,y) on the image plane, in terms
of 3-D translational velocity [T, T, T,)7, the depth

Z of 3-D point [X Y Z]7, and rotational velocity

(w, w, w,]” can be expressed as [11]

T,
= % - sz —xyw, + (1 +x2)wy —yw, (1)
L L 2
v(x,y) = 7Yy~ (1 + Yy )w, + xyw,, +xw,.  (2)
A variety of methods exist for computing optical flow
[12]. Once optical flow is computed, 3-D motion and
structure estimation can be estimated using methods
such as proposed in [3], which involve splitting the
optical flow equation algebraically into three separate
components.

It is also possible to estimate 3-D motion
without explicitly computing optical flow nor
establishing feature correspondence prior to recovery
of 3-D motion and structure [13]. However, such
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TABLE I
Summary of Recursive 3-D Motion Estimation Techniques

Name # Frames: # Features Type Test Data
Broida et al. 100 4 point synthetic and real
Chandrashekhar & Chellappa 16 11 point real
Tu & Wohn 100 3 point synthetic
Silvén & Repo 1000 1-6 point real
Wu et al. 6 14 point real

direct methods appear to be at an early stage of
development.

The rest of the paper is organized as follows.
As in [1], we assume an environment where a
stationary video camera is used to observe a single
rigid moving object over time. Our goal is to recover
the 3-D trajectory and structure of this object from
an extended image sequence captured by the sensor
array in perspective projection. Section II introduces
the imaging, object, and motion models and briefly
reviews the recursive formulation proposed in [1], and
Section IIT describes the new approach that combines
optical flow and position measurements. Experimental
results on synthetic and real scenes are then described
in Section IV.

Il.  SYSTEM MODEL
A. Imaging Model

The image acquisition process is modeled using
perspective projection, in which a 3-D point P =
(X,Y,Z) projects onto the 2-D image point p = (x,y)
via the transformation

b =zl]+ L]

where n, and n, represent additive noise terms that
account for random errors mainly due to spatial
quantization. Without loss of generality, we either
assume a unity focal length (i.e., f = 1), or, where
appropriate, use focal lengths as our unit of distance.

p= 3)

B. Object Model

To observe a moving object, whose structure is
unknown, through a stationary camera, we define
a camera-centered coordinate system (CCCS)
with z-axis aligned with the optical axis. An
object-centered coordinate system (OCCS) is also
needed to specify the object structure to be estimated.
Let O, be the origin of the OCCS which is not
directly observable. In the CCCS, let the object
rotation center be located at

s(0) = [Xg(t) YR(t) ZpI" @)

and the position vector of the ith feature point in the
OCCS be located at

S = Xy Yo Zyl'. )
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Fig. 1. Camera- and object-centered coordinate systems.
Using (4) and (5), the position vector of the ith
feature point in the CCCS is

(©)

§;(2) = sg(®) + R(1)s,;

where R(t) is the 3-D rotation matrix that aligns
the OCCS with the CCCS. Since object rigidity is
assumed, s; is not dependent on time (see Fig. 1).

C. Motion Model

Motion of a rigid body is completely characterized
by translational and rotational components. We
assume constant translational velocity T = [T, T, 7;]7.
A point x(¢) on the translating object with initial
location X(t,) at time ¢ = ¢, will have position

X(t) = x(ty) + ¢ — 1T N

at any time ¢.

The unit quaternion, q(¢) is used to represent the
orientation of a rotating object. By assuming constant
rotational velocity, w = [w, w, w,]7, q(#) can be
propagated in time using the matrix exponential, e.g.,

q(r) = explQ(r —15)1q() ®

where 0 v, —w, w
Q= % B ©)

wy Wy 0 w,

—w, ~w, ~w, 0

In addition, the rotation matrix R(¢) in (6), can be
expressed in terms of the unit quaternion [1].
D. State-Space Model

Our plant equation consists of a rigid object
translating and rotating continuously in time, and
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_ measurements are made at equally spaced discrete
- time intervals. The vector differential equation that
describes the continuous plant is

dax(r)
dt

where x(t) is the state of the system, w(¢) represents
the process noise and G(f) maps w(r) onto the state
space. Observations, y,, are described by the discrete
measurement equation

= a(x(0),t) + GOw(r) (10)

11

where h(-) is a nonlinear measurement function, due
to perspective transformation (1), and v, models
measurement noise arising mainly from spatial
quantization. The problem is to find an estimate, X,
of x;, based on y,. Since both a(x(¢),7) and h(x,) are
nonlinear, various types of extended Kalman filters
can be used [1, 14] and linearization of a(x(t),?) and
h(x,) are required, e.g., we form matrices

Y, =hx)+v,

R _ da(x(1),r)
A(X(l),t) - T([) x([):f((f) and
G = &ixk_) 12)
ko Ixp=Xy

where X(f) and f(k denote points about which a(x(z),¢)
and h(x,) are linearized, respectively.

Following [1], we choose our state vector to be
estimated as

TXeW/Zx®T1 T 8 7
Ye(0)/Z4(®) 5
T,/Z4(0) 55
T,/ ZR(0) S4
T,/ Z (@) S5
q; S¢
92 57
93 Sg
44 9
x(r) = Wy = | S0
w, i1
w, Sip
Xo1/Zr(® 513
Y1/ Zx(®) Si4
Z,1/Zg(®) 515
Xom!Zg(®) S10+3M
Yor/Zg(0) S1143M
L oM/ZR(’)J “S1243M -
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x-position 1
y-position
x-translational velocity
y-translational velocity
z-translational velocity
3-D rotational position
3-D rotational position
3-D rotational position
3-D rotational position
= | x-axis rotational velocity (13)
y-axis rotational velocity

z-axis rotational velocity

N

structure states

L J ]

The normalization factor Z,(¢) is needed due to

- the unknown scale factor inherent in the perspective

transformation [1]. In practice, it is reasonable to
assume that crude estimates of object distance,
ZR(2), are available through other sensors. Using
the perspective projection, the measurement vector
corresponding to (11) is given by [1]

(X 1 [ Xi/Z,
N1 Yl/zl
Yeect) = | 1 | = : (14)
Xp Xu!Zy
VM - LYy /Zy

where p; = (x;,y;) is the projection of ith 3-D

feature point P; = (X,,Y;,Z;) onto the image plane.
This measurement vector was used by Broida,
Chandrashekhar, and Chellappa [1] which we refer to
as BCC. The above measurement function is nonlinear
in the state variables. It can be shown [1, 14] that the
image plane coordinates of the ith feature point, in

terms of the state variables is given by

sp+a; S, +b;
X,y = , 15
(i, ;) (1+ci 1+¢ (s)
where
— 2 2 2 2
a; = (85— 55 — 53 + 5551043
+2(s657 = 5g59)S1143;
+2(s6Sg + 575981243 (16)
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b; = 2(s¢87 + Sg59)S1043i

+ (=5 + 57— 55 + 33)31“3;‘

+ 25755 — $659)81243 a7
¢; = 2(565g — 5759)51043;

+2(878g + S659)81 143

2 2., 2.2
+ (=8¢ — 57 + 55 +55)81543; (18)

{ll.  NEW APPROACH

A. General Optical Flow Formulation

Suppose that, in addition to the image plane
coordinates of feature points, we also have available
estimates of image plane velocity (optical flow) at
each feature location. With this additional information,
we improve the accuracy of state estimates as follows.
Differentiating image coordinates (x;,y;) with respect
to time, we obtain optical flow components

dx; d (X X XZ
L= — = — | — 1
“T dt(Zi) zZ, zz (19)
dy, _d(%\_Y% 1z
W'E'm(a)’; z? 20)

where, without loss of generality, the focal length is
assumed to be unity.

In order to incorporate optical flow into the
recursive filtering framework proposed by Broida,
et al., (19) and (20) must be expressed in terms of
state variables. Rearranging (19) and (20),

X, Zy X, Zg Z; Zy

ui - ZR Zi ZR Zi ZR Zi (21)
= Yz Zr _ Y Zp Zi Zg

i ZR Zi ZR Zi ZR Zi . (22)

Clearly, we need to express the velocity of the
ith feature point with respect to the camers, i.e.,
$0O =X Y Z .17 in terms of the system states.
Differentiating (6) with respect to time, we obain

dR(t)
dtS,(t) = R(t) Soi - (23)
where
J —w,  wy
a—iR(t) =| w, 0 —w,|RO®. 24)
—wy, w, 0
Also, from (6),
Zp Zy 1
Z; ZR+R3S 1+R3h (25)
Z

Using the above equations, (19) and (20) can be
expressed in terms of the state variables defined in

(13)
_SyHesy —bisyy, (s +bisig— a5y + ay)
i~ - 2
+¢ (A +¢) (26)
S4—CiS10+ a;Sy, (S5 +bisyo—a;5,)(s, + b))
v, = -
! L+¢ (1 +¢)?

27

where q;, b;, and ¢; are defined in (16), (17), and (18),
respectively, and where i denotes one of M feature
points. The new measurement vector y, doubles in
size over (14) as there are now two extra observations
at each feature point location, which is given as

=

Y1

M
Y
Y = .

Vi

Up

LV -

(28)

The individual elements of the Jacobian matrix H, are
obtained by differentiating (15), (26), and (27) with

respect to each state variable, i.e.,

oy
os,
oy,
0s,
A dh(x
#60= G
Xy =X
Os,
0vy,

Ouy,

| s,

Ox; 1
0512431
o
O81243m

Ouy,
0S1243m
0vy,

051243m 4

29)

The expression for H(X,) is quite lengthy, and can be

found in [14].

B. Measurement of Position and Velocity From Image

Sequences

In the following, we relate optical flow u = [u vIT,
image-plane position x = [x y]” and observed gray
values g(x,?) obtained from a digital camera at time
t. When denoting a specific time is unimportant, the
variable ¢ is omitted to simplify notation.

As in [15], we assume that g(x,t,_,) is observed
at time in #,_, and g(x,t,) is observed at time #,. A
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local neighborhood around position x is assumed

to have been displaced between ¢,_, and ¢, by an
optical flow vector u. To determine u, we minimize
Slgx, ) — g(x —udsi,_)]%, where Af =t —~1t, | is
constant for all k¥ and is assumed small. Without loss
of generality, let Ar = 1. The minimization produces
two coupled nonlinear equations in terms of the two
unknown components of u. In the special case of a
gray value corner, an clegant closed-form solution
can be found [15]. Unfortunately, the solution in [15]
requires special gray-value corners where the principal
curvatures of g(x,r) are aligned with the CCCS,
thereby making the second-order spatial derivative g,,
zero. In the following, we generalize the feature point
in [15] to what we term a gray value extremum point
and find an alternative closed-form solution.

Assume that the origin x; = [x, y,]" of the
coordinate system is at the center of the local
neighborhood. The observed gray-level surface can
be approximated by a second-order Taylor expansion
about x, = (0,0) [15]. In the following, we let the true
gray-level surface be modeled as

FO) = fo+ fx+ [y + 5 L8>+ foxy+ 5f,5°
(30)

where f,, f, arc partial derivatives ol f(x) with
respect to x and y, f,, ij,, and f,), are second partial
derivatives.

We index samples of the observed gray level
within a (2P + 1) x (2P + 1) pixel window for each
feature point as

g =f(x)+n,; n,~NQy), j=12,...,N

(3D

where integer coordinates x; = (j — Dmod(2P +
D-P,—P<x; <P, and yy=P—(- Dimod(2P +

D), -r< Y < P, where P is an integer, and N =

(2P + 1), representing the number of raster points in
the window. For example, P = 1 and P = 2 correspond
to 3 x 3 and 5 x 5 windows, respectively. In (31),

n,; are independent Gaussian random noise samples

with variance UZ that correspond to model errors. The
determination of T, is discussed in the next section.
In matrix-vector notation, we write (31) as
G = Af + n, (32)
where

G = (800,85, ¥2), - 8o )T

) .2 L2
Loxy oy %7 x9N
1.2 L2
I xy ¥ 3% N0 30
A:
") 1.2
boxy yvo 3% Sadv o adw

£ = Us fos Syo frows foys Sy I and mg = [ g,y 17
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For a given estimate of f, the squared error is

e? = (G - ADHTW(G — A (33)
where W is a given weighting matrix set as W =
1 /2L Then, setting de*/f to zero, the usual
least-squares estimate is obtained
f=(ATWA)"'ATWG (34)

which is also the maximum likelihood estimate. Under
Gaussian noise assumptions,

£~ NIf,(ATWA) ). (35)
The parameter error vector €, =f— f is zero-mean
with covariance matrix [16]

cov(e,) = (ATWA)™! (36)

which is constant. For the 3 x 3 window size used in
simulations in the next section,

[40 0 0 -48 0 —48]
O 120 0 0 0
o o012 0 0o o0
CVED=T% ) 48 0 0 144 0 0
0 0 0 0 18 0

48 0 0 0 0 144

Letting £(2,) = [f,(t,) f.@0 .fy(tk) Sor(te) fxy (t)
[y (#)] denote derivatives of the gray-value surface
at time t,, the squared error over the N points is

N .
Z[g(xpfk) PR f\‘([kfl)(xf —u)
j=1

L D -~ 1St — u)?

— Loy (e D0 =)y = v) = 3 f, G ) — PP
(37)

Now, we assume there exists an extremum feature
point on the gray-level surface in the local area of
interest and we wish to find the displacement vector
u and its position x in the local window. Rather than
align the axes of the local coordinate system to force
Jey to zero as in [15], we instead differentiate (37).
After some algebra, we obtain

= Do+ 1, G vl
(B0~ Bl — 3Lt )0 = £, v — LF (6, v
+ B Ll A + f v+ [, _Jul =0 (38)
and
=@ Du+ £ (V]
(B~ 8, ) — 3 L 6 = [0 Dwv = 51, V)

V2 f b L) + £y + £ (w1 =0 (39)
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where g(,_;) and g(s,) denote average gray levels
over the N points, and ¥*, 3* denote mean-square
values of integer coordmates inthe 2P+ 1) x 2P+ 1)
window. For the case of a 3 x 3 window, ¥ = 3% =
2/3. In (38) and (39), we have used the conditions
f;(tk_l) = fy(tk—l) =0

Expanding (30) about x in a second-order Taylor
series, with the assumption that f((x—uAz,z,_,) =
fx,t,), where At =1, —1,_, is small,

F&0) — f(x,84_y)
~[e 1]
L) Ly
N {ur ,:fxx(tk——l) fxy(fk—l)] {“]
v Uy@o) £yl Ly

= b D+ £, v + 2 fo (e ul?

+ oy Dwv + 4 £ (G v (40)
Using f.(4_1) = f,(4_1) = 0, and f(x,4,) —
S0 _) = gt) — 8., (40) simplifies to
g(tk) - g(tkq) - %fxx(tk_l)uz
= foy e Dwy = 3 £, (4 V* = 0. 41)

Substituting (41) into (38) and (39), using the fact that
¥ f.(4_,) and Y2 £, (t,_,) are non-zero, we solve for
the optical flow:

5@ @) — LG (5 y)

= 42
R ACRA TN O o O
L) fy 4 = L) f )
= 43
" Ferlle D)y Gemy) — oy (G )? )
and the corresponding extremum point position is
given by equating the first-order spatial derivatives
of (30) to zero:
5@ fy @) — L@ £, ()
= 44
G — ()P @
_ L0y @) = [0 fee () 45)

T @ @) — (@Y

Define y;, = [x; y; ; v, as four components of
the hybrid optical flow/position measurement vector
corresponding to the ith extremum feature point based
on measurement vector f;. By Taylor expansion about
the estimated f;

Yo =g, ;-6 (46)

where J| =, is the 4 x 6 Jacobian matrix of the part1a1
derivatives of y; with respect to f;, and g, = f; — f is
a Gaussian random vector with &; ~ N[0, (ATWA) 1,

1080

Z,

Fig. 2. Feature points in OCCS.

which is independent of i. Define measurement error

€ =Yg, —¥; = J- &g which is also a random vector
where
E(e)=EJ-e;) = JE(e;) = 0 47)
and
cov(g) = cov(J| f=t -€g)
= ElJl, - &, 'EEJT“.:ﬁ]
= J|fi=i'iE(€fi ) Eg)‘]r[fiﬂi' (48)

Note that cov(e) = E(g;- €f) = (AT) = (ATWA) ™!,
which is invariant to f;.

To generate values of y;, we need to determine
gg. We may use Cholesky decomposition to factor
cov(ey) = SST, where S is the lower triangular matrix

square root of (ATWA)~!. Then,

Yo =v; +J-Snf (49)

where n’ ~ N(0,1) is a 6 x 1 vector of standard normal
random variables.

‘We have shown that the estimate Y is unblas»d
with error covariance Jcov(eg, 7. Note that J | fi=i;
time varying, whereas cov(sf) is time invariant. In
summary, the new algorithm is obtained by replacing
the 2M -dimensional measurement vector (14) with the
following 4M-dimensional measurement vector:

= [y, )Ty )" - ¥y (B)11F

where yfi(tk) is formed for feature point i, 1 <i <M at
time 1, via (42)—(45).

Yhybria (%) (50)

IV. EXPERIMENTAL RESULTS

A.  Synthetic Simulation

We have developed a synthetic testbed to evaluate
the proposed 3-D trajectory estimation algorithm,
consisting of a stationary “pin-hole” camera and a
transparent moving cube of size 3 x 3 x 3. Four of the
cube’s vertices are arbitrarily chosen as feature points
(M = 4) as shown in Fig. 2.
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TABLE IL
Spatial Resolutions for Experiments

Spatial Resolution (pixels) 7, (in focal lengths)

256 x 256 0.004
512 x 512 0.002
1024 x 1024 0.001

TABLE III
Gray-Value Resolutions for Experiments

Gray-Value Resolution (bit) T,
8 0.2887
10 0.0722
12 0.018

Since the purpose of this study is limited to
validating the new trajectory estimation approach,
perfect feature point association from frame to frame
is assumed. The measurements are generated by (49),
where sources of noise are finite spatial resolution
as well as gray-value resolution. The measurement
noise covariance matrix is given by (48). In the
simulations, a 3 x 3 pixel window is used (N =9).
The spatial resolution has interpixel distance with
standard deviation 7, given in units of focal length as
in Table TI. The corresponding gray-value resolutions
are given in Table III, where a dynamic range of 0
(black) to 255 (white) is used.

The image plane is chosen to be a unit square
(measured in terms of focal lengths) with the origin
at the center. For a unit focal length, this configuration
is equivalent to a camera system with a 53° field of
view. Its origin is located at the center. The spatial
resolution parameter ¢, is easily obtained for the
unit square. For example, for a 256 x 256 pixel
resolution, ¢, = 0.004. The gray-value resolution o, is
obtained by determining the variance of the uniformly
distributed quantization error and using a Gaussian
model with the same variance. For example, 8 bit
gray-value resolution achieves a standard deviation
o, = \/[0.5 —(—0.5)]7/12 2 0.2887 (see Table IL)

Uncertainty in the initial state estimates is
simulated via

Xo(fy = [1 £ (1 + r)elxy (@),

i=1,2,...,510,11,...,12 + 3M oD

where r is uniformly distributed in (0,1) and ¢

is a chosen constant. A value of e = 0.2 is used,
corresponding to a crude initial estimation with errors
in the range 20%—-40%. We note that in the complete
absence of initialization information, batch techniques
are more appropriate [6, 7]. No noise is added to
initial state estimates (s;—sy) because the OCCS and
CCCS are assumed to be initially aligned.

BLOSTEIN ET AL.: THREE-DIMENSIONAL TRAJECTORY ESTIMATION FROM IMAGE POSITION AND VELOCITY

The selection of the process noise covariance
matrix is important to the overall performance of the
Kalman filter. Ideally, the components of the process
noise should be correlated because of the constraints
imposed by rigid motion on the feature points.
However, the correlation is not easy to determine.
Here we choose the process noise covariance matrix,
somewhat arbitrarily, to be a constant diagonal matrix
with all the diagonal entries having the value 5 x 1079,
Given X, and x,, the initial error covariance matrix is
computed as B = d*I where I is a (12 + 3M) x
(12 + 3M) identity matrix and ¢ is the largest
component in the vector |X, — X,|. For the simulations,
the average absolute error in position measurements,
is defined as

Gom = D 93 (100 = pul + [Py ~ py )

R N M

(52)

and is chosen since it is independent of the choice of
origin. For the optical flow measurements, average
relative error is used instead. A total of R = 30 Monte
Carlo trials are used, the image sequences contain

N =100 frames, and M = 4 feature points are tracked.
The bias and mean-squared error of the estimated
states is the criteria used to measure the performance
of the Kalman filter. Suppose we have obtained the
value of one particular state variable x(¢) at time ¢. The
bias is calculated as

1,
b= lei(t) —x(?) (53)
i=
and the mean-squared error is calculated as
1R
= o 2
mso = ;[xi(t) — x(1)] (54)

where R is the total number of Monte Carlo trials, x{r)
is the true value of this particular state variable at time
t, and the subscript i denotes the trial number.

Throughout, the EKF is used. A detailed
comparison ameng EKF, IEKF, and iterated linear
filter smoother, has revealed similar performance of
each [14].

We now briefly describe a typical experiment
that compares the new algorithm to the BCC
algorithm. The object, which is initially far away
from the camera, approaches the camera at constant
translational and rotational velocity. The motion of the
object, as seen in the image plane, is shown in Fig. 3
where the object is represented as a wireframe model.
The motion parameters are given in Table IV.

The bias and mean-squared error of the position
states (s, and s,), translational velocity states {s3—55),
and rotational velocity states (s,,—s,,) are shown
in Figs. 4 (bias) and 5 {mean-squared error). In
these plots, all position and translational velocity
states have been scaled by Z,(¢), the true depth
of the object’s rotation center. The dashed line
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Fig. 3. Object motion in image plane.

1082 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 36, NO. 4 OCTOBER 2000



107 Posillon {x) x10® Position {y}
[} T v T ——T— — T T 4
In withou! optical fiow
u‘ with optical How
§ ]
'
v
s \

e _]

-2f
" —_— L . o
10 20 30 40 50 80 70 L1 90 100 10 20 0 40 S0 L1 ki 80 20 100
frame # frame ¥
; . -4 Translational veloci
x10? Transiational velocity (x) ‘Ht‘) -  —Jronlaflonal vaio "Y(Y) ) . .
T T v T —— T

withoul oplical flaw
th opticat How

R N . N N . — L C ]

=~ withoul opiical flow
~2r —— with aptical flow 1
-1.8
P
% &

o
ITIT ) 5 700 0 20 30 40 ""5:“ o 70 8 W 100
frame ¥
% 10° Rotalional velodily (x)
Tranuationsl velocity {z) Lo T v A —
.02, T —r — T T T u |

= = withoul opiical flow
—— with oplical fow
0.015

fadians/frame

1
1
1
“Gf
'
¥
'
'
1
i
[
i
1,

_10 . " . L 4 L o

10 20 40 50 60 70 80 Y 100
fama
10 Rolatlonal veloclty (z)
Rotations! valacity {y) 4 T T T T T — T T

[
1
) (
]
1
1
! without optieal fiow
"
~0.008] e TN UL L NP s with optical flow J
- )
i
'
|
1
]
]
i
]

=0.0% 4
=8
-0.016
_o.02 . . . PR N el e n PO . .
10 20 ] © 50 &0 70 80 90 100 10 20 0 40 50 &0 70 B0 0 100
inme # frame #

Fig. 4. Results in Monte Carlo simulations: bias (eq. (53)) averaged over 30 runs.
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TABLE TV
Motion Parameters for Synthetic Experiment

[—6 10 28"
(0.0s —o0.a1 —o02]"
10.03 0.04 0.05]"

initial position s,(i,)
translational velocity T
rotational velocity w

and solid line represent estimates obtained by the
BCC algorithm and the hybrid feature/optical-flow
algorithm, respectively. We remark that in [1],

Monte Carlo results were not provided. Note that
marked improvements can be achieved by the hybrid
algorithm, especially in the velocity states. In the
translational velocity states, significant improvements
can be observed mainly during the filter initialization
stage (the first 20 frames) where the bias and variance
are significantly reduced. Improvements are even
greater in the rotational velocity states. While the BCC
algorithm diverges, the hybrid algorithm converges
quickly and locks on to the true values.

To examine how different spatial and gray-value
resolutions affect the estimation of state variables,

a set of different spatial and gray-value resolutions
were used, Typical results are shown in Fig. 6 where
8, 10 and 12 bit gray-value resolutions are used with a
fixed spatial resolution of 5122 pixels. Similar results
were observed for the other states but are not shown
due to space limitations. Table V shows the effect of
varying the spatial resolution: 2562, 5122, and 10247
pixel resolutions were used with a 10 bit gray-level
resolution. It is interesting to note that the choice
among gray-level resolutions had a larger impact than
the choice of spatial resolutions.

Finally, we have also examined the effect of
increasing the number of Monte Carlo (rials One
might argue that the large initial estimation errors
produced by the algorithms can be reduced or
removed by simply increasing the number of Monte
Carlo trials. However, this is not the case; a significant
bias still exists even after averaging 1000 Monte Carlo
trials.

Similar results were obtained for the case of
unmodeled translational acceleration. In addition,

%107 Translaticnal velocily (x)
15 T y T T T T T T La—

focal lengthsfirame

0 10 20 30 40 50 60 70 80 80 100
irame #

(@)

Translallonal velocity {x}
T T T T

focal lengthsfrarme

frame #

(b)
Fig. 6. Results of varying gray-level resolution for fixed 5122

pixel spatial resolution. (a) Bias. (b) Mean-square error for
x-translational velocity state.

we have also investigated the case where the object
deviates from a 3-D motion model more drastically,
corresponding to the case where the trajectory changes
abruptly from one mode] to another, simulating

a sudden object maneuver, Here, the optical flow
measurements improved the accuracy of the state
estimates.

TABLE V

Mean-Squared Brror as Function of Spatial Resolution

Spatial Resolution Position Position Trans. Vel. Trans. Vel.
(pixels) x) 49 x) o}

256 x 256 125x 1079 1.26 % 107° 4.03 x 10-8 4.20x 1078

512512 124 % 1076 1.24 x 107° 4.03 x 1078 4.18 x 1078

1024 x 1024 121 x 107 121 x 1079 4.01 x 108 4,07 % 1078

Spatial Resolution Trans. Vel. Rot. Vel Rot. Vel. Rot. Vel

(pixels) (2) (x) o) @)

256 x 256 553 % 1078 1.06 x 167 1.02 %1077 7.95 x 1078

512%x512 5.53x 1078 .05 x 1077 1.01x 1077 7.90 x 108

1024 x 1024 351 x 1078 1.65 x 1077 1.01 x 1077 7.89 x 10-8

Nore: Gray-value resolution fixed to 10 bits.
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TABLE VI
Motion Parameters tor PUMAZ2 Experiment From [17]

[-2 0 19.1141}"
[o oo
[0 0 —-0.0698]"

initial position §,(t,)
translational velocity T
rotational velocity w

TABLE VII
Ground Truth of Four Chosen Feature Points at Frame 1
From (17}
Structure Structure Structure
Feature Ground Ground Ground
Points Truth Truth Truth
(number) (X) ) ' (Z)
1 —9.247 —3.341 29.494
2 —-7.215 —-0.457 31.020
3 -3.192 -2.258 31.800
4 1.230 3.624 19.613

B. Experiment of a Real Image Sequence

In this experiment, we obtained the 30-frame
PUMA?2 image sequence used in [17] and [18] which
was taken by connecting a camera to the end of
a puma robot arm. The robot arm was rotated for
120 deg over 30 frames. The rotation between two
succesive frames is approximately 4 deg (0.0698 rad).
The radius of the robot arm is about 2 ft. The image
size is 512 by 484 pixels. The field of view is
41.67491 and 39.52927 deg in the x and y aXes,
respectively. The focal length in pixels is 673.0424
pixels. As in [17], the world coordinate system is set
to be the first-frame image coordinate system with the
origin located at the center of the image plane, Twelve
points with known locations in the world coordinate
are given in [17]. We use four of these given in
Table VII and Fig. 7. Unlike [17] where the camera
motion is being estimated, we assume that the camera
is fixed, and the relative motion with respect of the
camera is of interest. We may think of the motion as
the room rotating around the rotation center (J,. An
initial gness of the world coordinate, (,, is obtained
by measuring its location on the image plane from
the first two frames and then using (3) without noise.
The motion parameters of the PUMA?2 sequence are
listed in Table VI. The measurements of the feature
point coordinates are obtained by using the method
discussed in last section. The spatial resolution is 5122
pixels, the gray-value resolution is 8 bits. The method
of measuring optical flow discussed in last section is
not feasible because the displacements were too large
in this image sequence. We instead use the position
difference,
pe+ D) —pk—1)

241
where p is the measurement of feature point position.

According to [18], there should exist only rotation
around the z axis. But as pointed out by [17], the

u(k) = (55)

1086

Fig. 7. Locations of feature points in first and last trame of

PUMAZ2 sequence.

CCCS changes slightly from frame to frame. Thus
there exists small amounts of translational motion
not accounted for by the motion model. That makes
a comparision of the rotation center’s true position
to its estimate unavailable. Our results (see Fig. 8)
show that there exists negative and positive biases
on translational velocity components s; and s,
respectively. The results are presented in Figs. 8
{bias) and 9 (mean-squared error). The plots of the
velocity states are scaled by Z, (1), the true depth of
the rotation center. The dashed line and solid line
represent estimates obtained by the BCC and our
hybrid algorithm, respectively. Although the BCC
algorithm gives accurate 3-D motion estimates in this
case, the new hybrid algorithm performs somewhat
better.

V. CONCLUSION

In conclusion, we have proposed a new algorithm
that estimates 3-D motion and structure of a rigid
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Fig. 8. PUMAZ2 results of Monte Carlo simulations: bias (eq. {(53)) averaged over 30 runs.

object from a sequence of images when image plane
velocity information is available at feature point
locations. The main observed improvements were in
the estimation of velocity states and in the reduction
of occasional large swings in the estimation errot,
Experiments on actual images have shown that even
with very crade estimates of optical flow such as by
(19}, performence improvements were observed.
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